code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class lowercase__ : '''simple docstring''' def __init__( self , snake_case , snake_case=13 , snake_case=7 , snake_case=True , snake_case=True , snake_case=True , snake_case=True , snake_case=99 , snake_case=32 , snake_case=5 , snake_case=4 , snake_case=4 , snake_case="gelu" , snake_case=0.0 , snake_case=0.1 , snake_case=True , snake_case=512 , snake_case=16 , snake_case=2 , snake_case=0.02 , snake_case=3 , snake_case=4 , snake_case=None , ) -> int: _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_multiple_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout _UpperCAmelCase = attention_dropout _UpperCAmelCase = weight_tying _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = scope def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = self.get_config() return config, input_ids, input_mask, token_labels def lowerCamelCase_ ( self ) -> Dict: return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case , initializer_range=self.initializer_range , ) def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase = True return config, input_ids, input_mask, token_labels def lowerCamelCase_ ( self , snake_case , snake_case , snake_case ) -> Any: _UpperCAmelCase = GPTNeoXJapaneseModel(config=snake_case ) model.to(snake_case ) model.eval() _UpperCAmelCase = model(snake_case , attention_mask=snake_case ) _UpperCAmelCase = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case ) -> List[Any]: _UpperCAmelCase = True _UpperCAmelCase = GPTNeoXJapaneseModel(snake_case ) model.to(snake_case ) model.eval() _UpperCAmelCase = model(snake_case , attention_mask=snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case , snake_case ) -> Any: _UpperCAmelCase = GPTNeoXJapaneseForCausalLM(config=snake_case ) model.to(snake_case ) model.eval() _UpperCAmelCase = model(snake_case , attention_mask=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case ) -> Tuple: _UpperCAmelCase = True _UpperCAmelCase = GPTNeoXJapaneseForCausalLM(config=snake_case ) model.to(snake_case ) model.eval() # first forward pass _UpperCAmelCase = model(snake_case , attention_mask=snake_case , use_cache=snake_case ) _UpperCAmelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _UpperCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) _UpperCAmelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _UpperCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) _UpperCAmelCase = torch.cat([input_mask, next_mask] , dim=-1 ) _UpperCAmelCase = model(snake_case , attention_mask=snake_case , output_hidden_states=snake_case ) _UpperCAmelCase = output_from_no_past['hidden_states'][0] _UpperCAmelCase = model( snake_case , attention_mask=snake_case , past_key_values=snake_case , output_hidden_states=snake_case , )['hidden_states'][0] # select random slice _UpperCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() _UpperCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach() _UpperCAmelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case , snake_case , atol=1E-3 ) ) def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowercase__ ( A, A, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () _UpperCAmelCase = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () _UpperCAmelCase = ( {'''feature-extraction''': GPTNeoXJapaneseModel, '''text-generation''': GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def lowerCamelCase_ ( self ) -> Tuple: _UpperCAmelCase = GPTNeoXJapaneseModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=snake_case , hidden_size=37 ) def lowerCamelCase_ ( self ) -> List[Any]: self.config_tester.run_common_tests() def lowerCamelCase_ ( self ) -> Any: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(snake_case , snake_case , snake_case ) def lowerCamelCase_ ( self ) -> Tuple: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(snake_case , snake_case , snake_case ) def lowerCamelCase_ ( self ) -> Tuple: # This regression test was failing with PyTorch < 1.3 _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_decoder() _UpperCAmelCase = None self.model_tester.create_and_check_model_as_decoder(snake_case , snake_case , snake_case ) def lowerCamelCase_ ( self ) -> List[Any]: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(snake_case , snake_case , snake_case ) def lowerCamelCase_ ( self ) -> str: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*snake_case ) @slow def lowerCamelCase_ ( self ) -> Any: _UpperCAmelCase = 'abeja/gpt-neox-japanese-2.7b' _UpperCAmelCase = ['データサイエンティストとは、', '100年後に必要とされる会社は、', 'フルリモートの環境で働くために必要なことは、', '国境の長いトンネルを抜けると', '美味しい日本食といえば、'] _UpperCAmelCase = [ 'データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。', '100年後に必要とされる会社は、「人」が中心の会社です。', 'フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。', '国境の長いトンネルを抜けると、そこは雪国だった。', '美味しい日本食といえば、やっぱりお寿司ですよね。', ] _UpperCAmelCase = GPTNeoXJapaneseTokenizer.from_pretrained(snake_case ) _UpperCAmelCase = GPTNeoXJapaneseForCausalLM.from_pretrained(snake_case ) _UpperCAmelCase = [] for prompt in prompts: _UpperCAmelCase = tokenizer(snake_case , return_tensors='pt' ).input_ids _UpperCAmelCase = model.generate(snake_case , max_length=50 ) _UpperCAmelCase = tokenizer.batch_decode(snake_case , skip_special_tokens=snake_case ) predicted_outputs += generated_string self.assertListEqual(snake_case , snake_case )
573
"""simple docstring""" import logging from transformers.configuration_utils import PretrainedConfig lowercase = logging.getLogger(__name__) class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = '''masked_bert''' def __init__( self , snake_case=30522 , snake_case=768 , snake_case=12 , snake_case=12 , snake_case=3072 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=512 , snake_case=2 , snake_case=0.02 , snake_case=1E-12 , snake_case=0 , snake_case="topK" , snake_case="constant" , snake_case=0.0 , **snake_case , ) -> str: super().__init__(pad_token_id=snake_case , **snake_case ) _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = hidden_act _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = pruning_method _UpperCAmelCase = mask_init _UpperCAmelCase = mask_scale
573
1
"""simple docstring""" import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE__:Dict = """▁""" SCREAMING_SNAKE_CASE__:Union[str, Any] = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class snake_case__ ( snake_case_, unittest.TestCase ): _snake_case : str = BigBirdTokenizer _snake_case : Optional[Any] = BigBirdTokenizerFast _snake_case : List[str] = True _snake_case : Tuple = True def a__ ( self ): super().setUp() __a = self.tokenizer_class(lowerCamelCase , keep_accents=lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def a__ ( self ): __a = "<s>" __a = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase ) , lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase ) , lowerCamelCase ) def a__ ( self ): __a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "[MASK]" ) self.assertEqual(len(lowerCamelCase ) , 1004 ) def a__ ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def a__ ( self ): if not self.test_rust_tokenizer: return __a = self.get_tokenizer() __a = self.get_rust_tokenizer() __a = "I was born in 92000, and this is falsé." __a = tokenizer.tokenize(lowerCamelCase ) __a = rust_tokenizer.tokenize(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) __a = tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) __a = rust_tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) __a = self.get_rust_tokenizer() __a = tokenizer.encode(lowerCamelCase ) __a = rust_tokenizer.encode(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) def a__ ( self ): __a = BigBirdTokenizer(lowerCamelCase , keep_accents=lowerCamelCase ) __a = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowerCamelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase ) , [285, 46, 10, 170, 382] , ) __a = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowerCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) __a = tokenizer.convert_tokens_to_ids(lowerCamelCase ) self.assertListEqual( lowerCamelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) __a = tokenizer.convert_ids_to_tokens(lowerCamelCase ) self.assertListEqual( lowerCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def a__ ( self ): return BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base" ) @slow def a__ ( self ): __a = "Hello World!" __a = [65, 18536, 2260, 101, 66] self.assertListEqual(lowerCamelCase , self.big_tokenizer.encode(lowerCamelCase ) ) @slow def a__ ( self ): __a = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) # fmt: off __a = [65, 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, 66] # noqa: E231 # fmt: on self.assertListEqual(lowerCamelCase , self.big_tokenizer.encode(lowerCamelCase ) ) @require_torch @slow def a__ ( self ): import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence __a = list(self.big_tokenizer.get_vocab().keys() )[:10] __a = " ".join(lowerCamelCase ) __a = self.big_tokenizer.encode_plus(lowerCamelCase , return_tensors="pt" , return_token_type_ids=lowerCamelCase ) __a = self.big_tokenizer.batch_encode_plus( [sequence + " " + sequence] , return_tensors="pt" , return_token_type_ids=lowerCamelCase ) __a = BigBirdConfig(attention_type="original_full" ) __a = BigBirdModel(lowerCamelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**lowerCamelCase ) model(**lowerCamelCase ) @slow def a__ ( self ): __a = BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base" ) __a = tokenizer.decode(tokenizer("Paris is the [MASK]." ).input_ids ) self.assertTrue(decoded_text == "[CLS] Paris is the[MASK].[SEP]" ) @slow def a__ ( self ): __a = {"input_ids": [[65, 39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114, 66], [65, 448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase , model_name="google/bigbird-roberta-base" , revision="215c99f1600e06f83acce68422f2035b2b5c3510" , )
701
"""simple docstring""" from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class snake_case__ : _snake_case : torch.Tensor # [batch_size x 3] _snake_case : torch.Tensor # [batch_size x 3] _snake_case : torch.Tensor # [batch_size x 3] _snake_case : torch.Tensor # [batch_size x 3] _snake_case : int _snake_case : int _snake_case : float _snake_case : float _snake_case : Tuple[int] def a__ ( self ): assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def a__ ( self ): return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def a__ ( self ): return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def a__ ( self ): __a = torch.arange(self.height * self.width ) __a = torch.stack( [ pixel_indices % self.width, torch.div(lowerCamelCase , self.width , rounding_mode="trunc" ), ] , axis=1 , ) return coords @property def a__ ( self ): __a , *__a = self.shape __a = int(np.prod(lowerCamelCase ) ) __a = self.get_image_coords() __a = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) __a = self.get_camera_rays(lowerCamelCase ) __a = rays.view(lowerCamelCase , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def a__ ( self , lowerCamelCase ): __a , *__a , __a = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] __a = coords.view(lowerCamelCase , -1 , 2 ) __a = self.resolution() __a = self.fov() __a = (flat.float() / (res - 1)) * 2 - 1 __a = fracs * torch.tan(fov / 2 ) __a = fracs.view(lowerCamelCase , -1 , 2 ) __a = ( self.z.view(lowerCamelCase , 1 , 3 ) + self.x.view(lowerCamelCase , 1 , 3 ) * fracs[:, :, :1] + self.y.view(lowerCamelCase , 1 , 3 ) * fracs[:, :, 1:] ) __a = directions / directions.norm(dim=-1 , keepdim=lowerCamelCase ) __a = torch.stack( [ torch.broadcast_to(self.origin.view(lowerCamelCase , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(lowerCamelCase , *lowerCamelCase , 2 , 3 ) def a__ ( self , lowerCamelCase , lowerCamelCase ): assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=lowerCamelCase , height=lowerCamelCase , x_fov=self.x_fov , y_fov=self.y_fov , ) def _lowerCamelCase( a ): __a = [] __a = [] __a = [] __a = [] for theta in np.linspace(0 , 2 * np.pi , num=2_0 ): __a = np.array([np.sin(a ), np.cos(a ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) __a = -z * 4 __a = np.array([np.cos(a ), -np.sin(a ), 0.0] ) __a = np.cross(a , a ) origins.append(a ) xs.append(a ) ys.append(a ) zs.append(a ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(a , axis=0 ) ).float() , x=torch.from_numpy(np.stack(a , axis=0 ) ).float() , y=torch.from_numpy(np.stack(a , axis=0 ) ).float() , z=torch.from_numpy(np.stack(a , axis=0 ) ).float() , width=a , height=a , x_fov=0.7 , y_fov=0.7 , shape=(1, len(a )) , )
67
0
'''simple docstring''' def _UpperCamelCase ( UpperCamelCase__ ): """simple docstring""" __magic_name__ : Tuple = 0 while len(UpperCamelCase__ ) > 1: __magic_name__ : List[Any] = 0 # Consider two files with minimum cost to be merged for _ in range(2 ): __magic_name__ : List[str] = files.index(min(UpperCamelCase__ ) ) temp += files[min_index] files.pop(UpperCamelCase__ ) files.append(UpperCamelCase__ ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
436
'''simple docstring''' class UpperCAmelCase : def __init__( self : List[str] , __snake_case : str ) -> Union[str, Any]: _lowerCAmelCase = val _lowerCAmelCase = None _lowerCAmelCase = None def lowercase__ ( self : Optional[Any] , __snake_case : int ) -> Optional[int]: if self.val: if val < self.val: if self.left is None: _lowerCAmelCase = Node(__snake_case ) else: self.left.insert(__snake_case ) elif val > self.val: if self.right is None: _lowerCAmelCase = Node(__snake_case ) else: self.right.insert(__snake_case ) else: _lowerCAmelCase = val def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase ): """simple docstring""" if root: inorder(root.left , lowerCAmelCase ) res.append(root.val ) inorder(root.right , lowerCAmelCase ) def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" if len(lowerCAmelCase ) == 0: return arr _lowerCAmelCase = Node(arr[0] ) for i in range(1 , len(lowerCAmelCase ) ): root.insert(arr[i] ) # Traverse BST in order. _lowerCAmelCase = [] inorder(lowerCAmelCase , lowerCAmelCase ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
207
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) __lowerCAmelCase : Any = { '''microsoft/wavlm-base''': '''https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json''', # See all WavLM models at https://huggingface.co/models?filter=wavlm } class snake_case__ (__UpperCAmelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = '''wavlm''' def __init__( self : int , __lowerCamelCase : int=32 , __lowerCamelCase : Optional[int]=7_68 , __lowerCamelCase : Optional[int]=12 , __lowerCamelCase : List[Any]=12 , __lowerCamelCase : List[Any]=30_72 , __lowerCamelCase : Tuple="gelu" , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : Any=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : Tuple=0.0 , __lowerCamelCase : Any=0.1 , __lowerCamelCase : str=0.1 , __lowerCamelCase : Any=0.02 , __lowerCamelCase : Optional[int]=1e-5 , __lowerCamelCase : int="group" , __lowerCamelCase : List[str]="gelu" , __lowerCamelCase : int=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , __lowerCamelCase : int=(5, 2, 2, 2, 2, 2, 2) , __lowerCamelCase : Any=(10, 3, 3, 3, 3, 2, 2) , __lowerCamelCase : List[str]=False , __lowerCamelCase : Any=1_28 , __lowerCamelCase : Optional[int]=16 , __lowerCamelCase : Dict=3_20 , __lowerCamelCase : str=8_00 , __lowerCamelCase : int=False , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : str=0.05 , __lowerCamelCase : Optional[int]=10 , __lowerCamelCase : Dict=2 , __lowerCamelCase : Dict=0.0 , __lowerCamelCase : Tuple=10 , __lowerCamelCase : str=3_20 , __lowerCamelCase : Dict=2 , __lowerCamelCase : Tuple=0.1 , __lowerCamelCase : Optional[int]=1_00 , __lowerCamelCase : Optional[Any]=2_56 , __lowerCamelCase : List[str]=2_56 , __lowerCamelCase : Tuple=0.1 , __lowerCamelCase : List[str]="mean" , __lowerCamelCase : Tuple=False , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : Dict=2_56 , __lowerCamelCase : Any=(5_12, 5_12, 5_12, 5_12, 15_00) , __lowerCamelCase : List[str]=(5, 3, 3, 1, 1) , __lowerCamelCase : List[str]=(1, 2, 3, 1, 1) , __lowerCamelCase : Optional[Any]=5_12 , __lowerCamelCase : Any=80 , __lowerCamelCase : Optional[int]=0 , __lowerCamelCase : int=1 , __lowerCamelCase : List[str]=2 , __lowerCamelCase : Union[str, Any]=False , __lowerCamelCase : Optional[int]=3 , __lowerCamelCase : Dict=2 , __lowerCamelCase : Tuple=3 , __lowerCamelCase : Any=None , **__lowerCamelCase : int , ) -> Any: super().__init__(**__SCREAMING_SNAKE_CASE , pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE ) a = hidden_size a = feat_extract_norm a = feat_extract_activation a = list(__SCREAMING_SNAKE_CASE ) a = list(__SCREAMING_SNAKE_CASE ) a = list(__SCREAMING_SNAKE_CASE ) a = conv_bias a = num_buckets a = max_bucket_distance a = num_conv_pos_embeddings a = num_conv_pos_embedding_groups a = len(self.conv_dim ) a = num_hidden_layers a = intermediate_size a = hidden_act a = num_attention_heads a = hidden_dropout a = attention_dropout a = activation_dropout a = feat_proj_dropout a = final_dropout a = layerdrop a = layer_norm_eps a = initializer_range a = num_ctc_classes a = vocab_size a = do_stable_layer_norm a = use_weighted_layer_sum a = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 a = apply_spec_augment a = mask_time_prob a = mask_time_length a = mask_time_min_masks a = mask_feature_prob a = mask_feature_length # parameters for pretraining with codevector quantized representations a = num_codevectors_per_group a = num_codevector_groups a = contrastive_logits_temperature a = num_negatives a = codevector_dim a = proj_codevector_dim a = diversity_loss_weight # ctc loss a = ctc_loss_reduction a = ctc_zero_infinity # adapter a = add_adapter a = adapter_kernel_size a = adapter_stride a = num_adapter_layers a = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. a = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. a = list(__SCREAMING_SNAKE_CASE ) a = list(__SCREAMING_SNAKE_CASE ) a = list(__SCREAMING_SNAKE_CASE ) a = xvector_output_dim @property def __UpperCAmelCase ( self : Optional[int] ) -> Optional[Any]: return functools.reduce(operator.mul , self.conv_stride , 1 )
716
import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case__ (_UpperCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = LongformerTokenizer SCREAMING_SNAKE_CASE_ : Optional[int] = True SCREAMING_SNAKE_CASE_ : Optional[int] = LongformerTokenizerFast SCREAMING_SNAKE_CASE_ : str = True def __UpperCAmelCase ( self : Optional[int] ) -> str: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt a = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] a = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) a = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] a = {"unk_token": "<unk>"} a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__lowerCamelCase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__lowerCamelCase ) ) def __UpperCAmelCase ( self : Dict , **__lowerCamelCase : Dict ) -> Any: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def __UpperCAmelCase ( self : Union[str, Any] , **__lowerCamelCase : Any ) -> List[Any]: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def __UpperCAmelCase ( self : int , __lowerCamelCase : List[Any] ) -> Union[str, Any]: a = "lower newer" a = "lower newer" return input_text, output_text def __UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]: a = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) a = "lower newer" a = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] a = tokenizer.tokenize(__lowerCamelCase ) # , add_prefix_space=True) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) a = tokens + [tokenizer.unk_token] a = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , __lowerCamelCase ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: a = self.get_tokenizer() self.assertListEqual(tokenizer.encode("Hello world!" , add_special_tokens=__lowerCamelCase ) , [0, 3_14_14, 2_32, 3_28, 2] ) self.assertListEqual( tokenizer.encode("Hello world! cécé herlolip 418" , add_special_tokens=__lowerCamelCase ) , [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2] , ) @slow def __UpperCAmelCase ( self : Union[str, Any] ) -> List[Any]: a = self.tokenizer_class.from_pretrained("allenai/longformer-base-4096" ) a = tokenizer.encode("sequence builders" , add_special_tokens=__lowerCamelCase ) a = tokenizer.encode("multi-sequence build" , add_special_tokens=__lowerCamelCase ) a = tokenizer.encode( "sequence builders" , add_special_tokens=__lowerCamelCase , add_prefix_space=__lowerCamelCase ) a = tokenizer.encode( "sequence builders" , "multi-sequence build" , add_special_tokens=__lowerCamelCase , add_prefix_space=__lowerCamelCase ) a = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase ) a = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase , __lowerCamelCase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def __UpperCAmelCase ( self : Any ) -> str: a = self.get_tokenizer() a = "Encode this sequence." a = tokenizer.byte_encoder[" ".encode("utf-8" )[0]] # Testing encoder arguments a = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase , add_prefix_space=__lowerCamelCase ) a = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__lowerCamelCase , __lowerCamelCase ) a = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase , add_prefix_space=__lowerCamelCase ) a = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__lowerCamelCase , __lowerCamelCase ) tokenizer.add_special_tokens({"bos_token": "<s>"} ) a = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) a = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__lowerCamelCase , __lowerCamelCase ) # Testing spaces after special tokens a = "<mask>" tokenizer.add_special_tokens( {"mask_token": AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase )} ) # mask token has a left space a = tokenizer.convert_tokens_to_ids(__lowerCamelCase ) a = "Encode <mask> sequence" a = "Encode <mask>sequence" a = tokenizer.encode(__lowerCamelCase ) a = encoded.index(__lowerCamelCase ) a = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__lowerCamelCase , __lowerCamelCase ) a = tokenizer.encode(__lowerCamelCase ) a = encoded.index(__lowerCamelCase ) a = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__lowerCamelCase , __lowerCamelCase ) def __UpperCAmelCase ( self : str ) -> List[str]: pass def __UpperCAmelCase ( self : int ) -> int: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): a = self.rust_tokenizer_class.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) a = self.tokenizer_class.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) a = "A, <mask> AllenNLP sentence." a = tokenizer_r.encode_plus(__lowerCamelCase , add_special_tokens=__lowerCamelCase , return_token_type_ids=__lowerCamelCase ) a = tokenizer_p.encode_plus(__lowerCamelCase , add_special_tokens=__lowerCamelCase , return_token_type_ids=__lowerCamelCase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , ) a = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) a = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["input_ids"] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( __lowerCamelCase , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( __lowerCamelCase , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) def __UpperCAmelCase ( self : List[Any] ) -> Union[str, Any]: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): a = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__lowerCamelCase , add_prefix_space=__lowerCamelCase , trim_offsets=__lowerCamelCase ) a = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) a = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["add_prefix_space"] , __lowerCamelCase ) self.assertEqual(post_processor_state["add_prefix_space"] , __lowerCamelCase ) self.assertEqual(post_processor_state["trim_offsets"] , __lowerCamelCase ) def __UpperCAmelCase ( self : List[Any] ) -> Dict: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): a = "hello" # `hello` is a token in the vocabulary of `pretrained_name` a = f"""{text_of_1_token} {text_of_1_token}""" a = self.rust_tokenizer_class.from_pretrained( __lowerCamelCase , use_fast=__lowerCamelCase , add_prefix_space=__lowerCamelCase , trim_offsets=__lowerCamelCase ) a = tokenizer_r(__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowerCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__lowerCamelCase ) + 1, len(__lowerCamelCase ) + 1 + len(__lowerCamelCase )) , ) a = self.rust_tokenizer_class.from_pretrained( __lowerCamelCase , use_fast=__lowerCamelCase , add_prefix_space=__lowerCamelCase , trim_offsets=__lowerCamelCase ) a = tokenizer_r(__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowerCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__lowerCamelCase ) + 1, len(__lowerCamelCase ) + 1 + len(__lowerCamelCase )) , ) a = self.rust_tokenizer_class.from_pretrained( __lowerCamelCase , use_fast=__lowerCamelCase , add_prefix_space=__lowerCamelCase , trim_offsets=__lowerCamelCase ) a = tokenizer_r(__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowerCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__lowerCamelCase ), len(__lowerCamelCase ) + 1 + len(__lowerCamelCase )) , ) a = self.rust_tokenizer_class.from_pretrained( __lowerCamelCase , use_fast=__lowerCamelCase , add_prefix_space=__lowerCamelCase , trim_offsets=__lowerCamelCase ) a = tokenizer_r(__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowerCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__lowerCamelCase ), len(__lowerCamelCase ) + 1 + len(__lowerCamelCase )) , ) a = f""" {text}""" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) a = self.rust_tokenizer_class.from_pretrained( __lowerCamelCase , use_fast=__lowerCamelCase , add_prefix_space=__lowerCamelCase , trim_offsets=__lowerCamelCase ) a = tokenizer_r(__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__lowerCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__lowerCamelCase ) + 1, 1 + len(__lowerCamelCase ) + 1 + len(__lowerCamelCase )) , ) a = self.rust_tokenizer_class.from_pretrained( __lowerCamelCase , use_fast=__lowerCamelCase , add_prefix_space=__lowerCamelCase , trim_offsets=__lowerCamelCase ) a = tokenizer_r(__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__lowerCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__lowerCamelCase ), 1 + len(__lowerCamelCase ) + 1 + len(__lowerCamelCase )) , ) a = self.rust_tokenizer_class.from_pretrained( __lowerCamelCase , use_fast=__lowerCamelCase , add_prefix_space=__lowerCamelCase , trim_offsets=__lowerCamelCase ) a = tokenizer_r(__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__lowerCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__lowerCamelCase ), 1 + len(__lowerCamelCase ) + 1 + len(__lowerCamelCase )) , )
662
0
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Dict = logging.get_logger(__name__) __lowerCAmelCase : str = { "facebook/wav2vec2-base-960h": "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json", # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class a_ ( __UpperCamelCase ): UpperCamelCase_ : List[str] = "wav2vec2" def __init__( self : Any , snake_case__ : Any=32 , snake_case__ : Optional[int]=768 , snake_case__ : Any=12 , snake_case__ : Dict=12 , snake_case__ : Any=3072 , snake_case__ : Any="gelu" , snake_case__ : Tuple=0.1 , snake_case__ : Optional[Any]=0.1 , snake_case__ : Optional[int]=0.1 , snake_case__ : List[str]=0.0 , snake_case__ : Any=0.0 , snake_case__ : Any=0.1 , snake_case__ : Optional[Any]=0.1 , snake_case__ : List[str]=0.02 , snake_case__ : Union[str, Any]=1E-5 , snake_case__ : Dict="group" , snake_case__ : int="gelu" , snake_case__ : Optional[int]=(512, 512, 512, 512, 512, 512, 512) , snake_case__ : int=(5, 2, 2, 2, 2, 2, 2) , snake_case__ : List[Any]=(10, 3, 3, 3, 3, 2, 2) , snake_case__ : Tuple=False , snake_case__ : Dict=128 , snake_case__ : List[str]=16 , snake_case__ : int=False , snake_case__ : Dict=True , snake_case__ : List[Any]=0.05 , snake_case__ : List[str]=10 , snake_case__ : int=2 , snake_case__ : Tuple=0.0 , snake_case__ : Optional[int]=10 , snake_case__ : Tuple=0 , snake_case__ : Any=320 , snake_case__ : Union[str, Any]=2 , snake_case__ : str=0.1 , snake_case__ : List[Any]=100 , snake_case__ : List[Any]=256 , snake_case__ : int=256 , snake_case__ : List[str]=0.1 , snake_case__ : int="sum" , snake_case__ : Dict=False , snake_case__ : Any=False , snake_case__ : Optional[Any]=256 , snake_case__ : Optional[Any]=(512, 512, 512, 512, 1500) , snake_case__ : str=(5, 3, 3, 1, 1) , snake_case__ : int=(1, 2, 3, 1, 1) , snake_case__ : Any=512 , snake_case__ : int=0 , snake_case__ : str=1 , snake_case__ : Optional[int]=2 , snake_case__ : Optional[int]=False , snake_case__ : Dict=3 , snake_case__ : Dict=2 , snake_case__ : Optional[int]=3 , snake_case__ : Tuple=None , snake_case__ : Optional[int]=None , **snake_case__ : Union[str, Any] , ): super().__init__(**snake_case__ , pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ ) lowerCAmelCase__ = hidden_size lowerCAmelCase__ = feat_extract_norm lowerCAmelCase__ = feat_extract_activation lowerCAmelCase__ = list(snake_case__ ) lowerCAmelCase__ = list(snake_case__ ) lowerCAmelCase__ = list(snake_case__ ) lowerCAmelCase__ = conv_bias lowerCAmelCase__ = num_conv_pos_embeddings lowerCAmelCase__ = num_conv_pos_embedding_groups lowerCAmelCase__ = len(self.conv_dim ) lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_act lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = hidden_dropout lowerCAmelCase__ = attention_dropout lowerCAmelCase__ = activation_dropout lowerCAmelCase__ = feat_proj_dropout lowerCAmelCase__ = final_dropout lowerCAmelCase__ = layerdrop lowerCAmelCase__ = layer_norm_eps lowerCAmelCase__ = initializer_range lowerCAmelCase__ = vocab_size lowerCAmelCase__ = do_stable_layer_norm lowerCAmelCase__ = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCAmelCase__ = apply_spec_augment lowerCAmelCase__ = mask_time_prob lowerCAmelCase__ = mask_time_length lowerCAmelCase__ = mask_time_min_masks lowerCAmelCase__ = mask_feature_prob lowerCAmelCase__ = mask_feature_length lowerCAmelCase__ = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowerCAmelCase__ = num_codevectors_per_group lowerCAmelCase__ = num_codevector_groups lowerCAmelCase__ = contrastive_logits_temperature lowerCAmelCase__ = feat_quantizer_dropout lowerCAmelCase__ = num_negatives lowerCAmelCase__ = codevector_dim lowerCAmelCase__ = proj_codevector_dim lowerCAmelCase__ = diversity_loss_weight # ctc loss lowerCAmelCase__ = ctc_loss_reduction lowerCAmelCase__ = ctc_zero_infinity # adapter lowerCAmelCase__ = add_adapter lowerCAmelCase__ = adapter_kernel_size lowerCAmelCase__ = adapter_stride lowerCAmelCase__ = num_adapter_layers lowerCAmelCase__ = output_hidden_size or hidden_size lowerCAmelCase__ = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. lowerCAmelCase__ = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. lowerCAmelCase__ = list(snake_case__ ) lowerCAmelCase__ = list(snake_case__ ) lowerCAmelCase__ = list(snake_case__ ) lowerCAmelCase__ = xvector_output_dim @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): return functools.reduce(operator.mul , self.conv_stride , 1 )
644
"""simple docstring""" import logging import os import threading import time try: import warnings except ImportError: __lowerCAmelCase : Optional[int] = None try: import msvcrt except ImportError: __lowerCAmelCase : List[Any] = None try: import fcntl except ImportError: __lowerCAmelCase : Optional[int] = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: __lowerCAmelCase : int = OSError # Data # ------------------------------------------------ __lowerCAmelCase : Dict = [ "Timeout", "BaseFileLock", "WindowsFileLock", "UnixFileLock", "SoftFileLock", "FileLock", ] __lowerCAmelCase : str = "3.0.12" __lowerCAmelCase : Optional[int] = None def _UpperCAmelCase ( ): """simple docstring""" global _logger lowerCAmelCase__ = _logger or logging.getLogger(__name__ ) return _logger class a_ ( __UpperCamelCase ): def __init__( self : str , snake_case__ : Optional[int] ): lowerCAmelCase__ = lock_file return None def __str__( self : Any ): lowerCAmelCase__ = F"""The file lock '{self.lock_file}' could not be acquired.""" return temp class a_ : def __init__( self : Tuple , snake_case__ : Optional[int] ): lowerCAmelCase__ = lock return None def __enter__( self : Union[str, Any] ): return self.lock def __exit__( self : List[Any] , snake_case__ : Dict , snake_case__ : str , snake_case__ : List[Any] ): self.lock.release() return None class a_ : def __init__( self : Dict , snake_case__ : Tuple , snake_case__ : Dict=-1 , snake_case__ : Dict=None ): lowerCAmelCase__ = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long lowerCAmelCase__ = self.hash_filename_if_too_long(snake_case__ , snake_case__ ) # The path to the lock file. lowerCAmelCase__ = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. lowerCAmelCase__ = None # The default timeout value. lowerCAmelCase__ = timeout # We use this lock primarily for the lock counter. lowerCAmelCase__ = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. lowerCAmelCase__ = 0 return None @property def _SCREAMING_SNAKE_CASE ( self : Tuple ): return self._lock_file @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): return self._timeout @timeout.setter def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : str ): lowerCAmelCase__ = float(snake_case__ ) return None def _SCREAMING_SNAKE_CASE ( self : List[str] ): raise NotImplementedError() def _SCREAMING_SNAKE_CASE ( self : str ): raise NotImplementedError() @property def _SCREAMING_SNAKE_CASE ( self : str ): return self._lock_file_fd is not None def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : Union[str, Any]=None , snake_case__ : Optional[int]=0.05 ): # Use the default timeout, if no timeout is provided. if timeout is None: lowerCAmelCase__ = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 lowerCAmelCase__ = id(self ) lowerCAmelCase__ = self._lock_file lowerCAmelCase__ = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F"""Attempting to acquire lock {lock_id} on {lock_filename}""" ) self._acquire() if self.is_locked: logger().debug(F"""Lock {lock_id} acquired on {lock_filename}""" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F"""Timeout on acquiring lock {lock_id} on {lock_filename}""" ) raise Timeout(self._lock_file ) else: logger().debug( F"""Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...""" ) time.sleep(snake_case__ ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: lowerCAmelCase__ = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , snake_case__ : Tuple=False ): with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: lowerCAmelCase__ = id(self ) lowerCAmelCase__ = self._lock_file logger().debug(F"""Attempting to release lock {lock_id} on {lock_filename}""" ) self._release() lowerCAmelCase__ = 0 logger().debug(F"""Lock {lock_id} released on {lock_filename}""" ) return None def __enter__( self : Optional[Any] ): self.acquire() return self def __exit__( self : Any , snake_case__ : Optional[Any] , snake_case__ : Optional[Any] , snake_case__ : Optional[Any] ): self.release() return None def __del__( self : Optional[int] ): self.release(force=snake_case__ ) return None def _SCREAMING_SNAKE_CASE ( self : Optional[int] , snake_case__ : str , snake_case__ : int ): lowerCAmelCase__ = os.path.basename(snake_case__ ) if len(snake_case__ ) > max_length and max_length > 0: lowerCAmelCase__ = os.path.dirname(snake_case__ ) lowerCAmelCase__ = str(hash(snake_case__ ) ) lowerCAmelCase__ = filename[: max_length - len(snake_case__ ) - 8] + """...""" + hashed_filename + """.lock""" return os.path.join(snake_case__ , snake_case__ ) else: return path class a_ ( __UpperCamelCase ): def __init__( self : List[Any] , snake_case__ : int , snake_case__ : str=-1 , snake_case__ : Tuple=None ): from .file_utils import relative_to_absolute_path super().__init__(snake_case__ , timeout=snake_case__ , max_filename_length=snake_case__ ) lowerCAmelCase__ = """\\\\?\\""" + relative_to_absolute_path(self.lock_file ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): lowerCAmelCase__ = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: lowerCAmelCase__ = os.open(self._lock_file , snake_case__ ) except OSError: pass else: try: msvcrt.locking(snake_case__ , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(snake_case__ ) else: lowerCAmelCase__ = fd return None def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): lowerCAmelCase__ = self._lock_file_fd lowerCAmelCase__ = None msvcrt.locking(snake_case__ , msvcrt.LK_UNLCK , 1 ) os.close(snake_case__ ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class a_ ( __UpperCamelCase ): def __init__( self : Union[str, Any] , snake_case__ : List[str] , snake_case__ : str=-1 , snake_case__ : List[str]=None ): lowerCAmelCase__ = os.statvfs(os.path.dirname(snake_case__ ) ).f_namemax super().__init__(snake_case__ , timeout=snake_case__ , max_filename_length=snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): lowerCAmelCase__ = os.O_RDWR | os.O_CREAT | os.O_TRUNC lowerCAmelCase__ = os.open(self._lock_file , snake_case__ ) try: fcntl.flock(snake_case__ , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(snake_case__ ) else: lowerCAmelCase__ = fd return None def _SCREAMING_SNAKE_CASE ( self : str ): # Do not remove the lockfile: # # https://github.com/benediktschmitt/py-filelock/issues/31 # https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition lowerCAmelCase__ = self._lock_file_fd lowerCAmelCase__ = None fcntl.flock(snake_case__ , fcntl.LOCK_UN ) os.close(snake_case__ ) return None class a_ ( __UpperCamelCase ): def _SCREAMING_SNAKE_CASE ( self : Tuple ): lowerCAmelCase__ = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: lowerCAmelCase__ = os.open(self._lock_file , snake_case__ ) except OSError: pass else: lowerCAmelCase__ = fd return None def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): os.close(self._lock_file_fd ) lowerCAmelCase__ = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None __lowerCAmelCase : Optional[int] = None if msvcrt: __lowerCAmelCase : Tuple = WindowsFileLock elif fcntl: __lowerCAmelCase : Optional[int] = UnixFileLock else: __lowerCAmelCase : Tuple = SoftFileLock if warnings is not None: warnings.warn("only soft file lock is available")
644
1
import math def lowercase_ ( A__ , A__ ) -> float: """simple docstring""" return math.pow(A__ , 2 ) - a def lowercase_ ( A__ ) -> float: """simple docstring""" return 2 * x def lowercase_ ( A__ ) -> float: """simple docstring""" snake_case = 2.0 while start <= a: snake_case = math.pow(A__ , 2 ) return start def lowercase_ ( A__ , A__ = 9999 , A__ = 0.00000000000001 ) -> float: """simple docstring""" if a < 0: raise ValueError("math domain error" ) snake_case = get_initial_point(A__ ) for _ in range(A__ ): snake_case = value snake_case = value - fx(A__ , A__ ) / fx_derivative(A__ ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
294
_A = 0 # The first color of the flag. _A = 1 # The second color of the flag. _A = 2 # The third color of the flag. _A = (red, white, blue) def lowercase_ ( A__ ) -> list: """simple docstring""" if not sequence: return [] if len(A__ ) == 1: return list(A__ ) snake_case = 0 snake_case = len(A__ ) - 1 snake_case = 0 while mid <= high: if sequence[mid] == colors[0]: snake_case , snake_case = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: snake_case , snake_case = sequence[high], sequence[mid] high -= 1 else: snake_case = F'The elements inside the sequence must contains only {colors} values' raise ValueError(A__ ) return sequence if __name__ == "__main__": import doctest doctest.testmod() _A = input("Enter numbers separated by commas:\n").strip() _A = [int(item.strip()) for item in user_input.split(",")] print(f"{dutch_national_flag_sort(unsorted)}")
294
1
'''simple docstring''' def a__ ( _SCREAMING_SNAKE_CASE : int ) -> int: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError("Input value must be an 'int' type" ) UpperCAmelCase_ : Union[str, Any] = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
71
'''simple docstring''' from argparse import ArgumentParser from . import BaseTransformersCLICommand def _lowercase ( lowerCamelCase__ ) -> int: """simple docstring""" return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class __A (__magic_name__ ): @staticmethod def _snake_case ( UpperCamelCase_ ): __UpperCAmelCase : Dict = parser.add_parser("download" ) download_parser.add_argument( "--cache-dir" , type=UpperCamelCase_ , default=UpperCamelCase_ , help="Path to location to store the models" ) download_parser.add_argument( "--force" , action="store_true" , help="Force the model to be download even if already in cache-dir" ) download_parser.add_argument( "--trust-remote-code" , action="store_true" , help="Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine" , ) download_parser.add_argument("model" , type=UpperCamelCase_ , help="Name of the model to download" ) download_parser.set_defaults(func=UpperCamelCase_ ) def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Optional[Any] = model __UpperCAmelCase : int = cache __UpperCAmelCase : Union[str, Any] = force __UpperCAmelCase : Optional[int] = trust_remote_code def _snake_case ( self ): from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
168
0
import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE : str =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Any ={ '''facebook/encodec_24khz''': '''https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json''', '''facebook/encodec_48khz''': '''https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json''', } class A_ ( __a ): _A :List[str] = '''encodec''' def __init__( self : List[Any] , snake_case__ : str=[1.5, 3.0, 6.0, 12.0, 24.0] , snake_case__ : int=2_40_00 , snake_case__ : Any=1 , snake_case__ : Optional[int]=False , snake_case__ : Tuple=None , snake_case__ : Optional[int]=None , snake_case__ : str=1_28 , snake_case__ : Tuple=32 , snake_case__ : Optional[int]=1 , snake_case__ : Dict=[8, 5, 4, 2] , snake_case__ : List[Any]="weight_norm" , snake_case__ : Union[str, Any]=7 , snake_case__ : Optional[int]=7 , snake_case__ : List[Any]=3 , snake_case__ : Optional[int]=2 , snake_case__ : List[str]=True , snake_case__ : str="reflect" , snake_case__ : int=2 , snake_case__ : Union[str, Any]=2 , snake_case__ : str=1.0 , snake_case__ : str=10_24 , snake_case__ : str=None , snake_case__ : List[Any]=True , **snake_case__ : Any , ): lowercase = target_bandwidths lowercase = sampling_rate lowercase = audio_channels lowercase = normalize lowercase = chunk_length_s lowercase = overlap lowercase = hidden_size lowercase = num_filters lowercase = num_residual_layers lowercase = upsampling_ratios lowercase = norm_type lowercase = kernel_size lowercase = last_kernel_size lowercase = residual_kernel_size lowercase = dilation_growth_rate lowercase = use_causal_conv lowercase = pad_mode lowercase = compress lowercase = num_lstm_layers lowercase = trim_right_ratio lowercase = codebook_size lowercase = codebook_dim if codebook_dim is not None else hidden_size lowercase = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( F"""self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}""" ) super().__init__(**snake_case__ ) @property def SCREAMING_SNAKE_CASE__ ( self : Any ): if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def SCREAMING_SNAKE_CASE__ ( self : str ): if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): lowercase = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def SCREAMING_SNAKE_CASE__ ( self : str ): return int(10_00 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
715
import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 __SCREAMING_SNAKE_CASE : Tuple =get_tests_dir('''fixtures/dummy_feature_extractor_config.json''') __SCREAMING_SNAKE_CASE : Union[str, Any] =get_tests_dir('''fixtures/vocab.json''') __SCREAMING_SNAKE_CASE : Union[str, Any] =get_tests_dir('''fixtures''') class A_ ( unittest.TestCase ): _A :List[str] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou'''] def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): lowercase = 0 def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): lowercase = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(snake_case__ , snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): with tempfile.TemporaryDirectory() as tmpdirname: lowercase = WavaVecaConfig() lowercase = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" ) # save in new folder model_config.save_pretrained(snake_case__ ) processor.save_pretrained(snake_case__ ) lowercase = AutoProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : Any ): with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(snake_case__ , os.path.join(snake_case__ , snake_case__ ) ) copyfile(snake_case__ , os.path.join(snake_case__ , """vocab.json""" ) ) lowercase = AutoProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : int ): with tempfile.TemporaryDirectory() as tmpdirname: lowercase = WavaVecaFeatureExtractor() lowercase = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" ) lowercase = WavaVecaProcessor(snake_case__ , snake_case__ ) # save in new folder processor.save_pretrained(snake_case__ ) # drop `processor_class` in tokenizer with open(os.path.join(snake_case__ , snake_case__ ) , """r""" ) as f: lowercase = json.load(snake_case__ ) config_dict.pop("""processor_class""" ) with open(os.path.join(snake_case__ , snake_case__ ) , """w""" ) as f: f.write(json.dumps(snake_case__ ) ) lowercase = AutoProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : Any ): with tempfile.TemporaryDirectory() as tmpdirname: lowercase = WavaVecaFeatureExtractor() lowercase = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" ) lowercase = WavaVecaProcessor(snake_case__ , snake_case__ ) # save in new folder processor.save_pretrained(snake_case__ ) # drop `processor_class` in feature extractor with open(os.path.join(snake_case__ , snake_case__ ) , """r""" ) as f: lowercase = json.load(snake_case__ ) config_dict.pop("""processor_class""" ) with open(os.path.join(snake_case__ , snake_case__ ) , """w""" ) as f: f.write(json.dumps(snake_case__ ) ) lowercase = AutoProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : str ): with tempfile.TemporaryDirectory() as tmpdirname: lowercase = WavaVecaConfig(processor_class="""Wav2Vec2Processor""" ) model_config.save_pretrained(snake_case__ ) # copy relevant files copyfile(snake_case__ , os.path.join(snake_case__ , """vocab.json""" ) ) # create emtpy sample processor with open(os.path.join(snake_case__ , snake_case__ ) , """w""" ) as f: f.write("""{}""" ) lowercase = AutoProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(snake_case__ ): lowercase = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(snake_case__ ): lowercase = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=snake_case__ ) lowercase = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" , trust_remote_code=snake_case__ ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) lowercase = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) lowercase = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version lowercase = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=snake_case__ , use_fast=snake_case__ ) lowercase = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , """NewTokenizer""" ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): try: AutoConfig.register("""custom""" , snake_case__ ) AutoFeatureExtractor.register(snake_case__ , snake_case__ ) AutoTokenizer.register(snake_case__ , slow_tokenizer_class=snake_case__ ) AutoProcessor.register(snake_case__ , snake_case__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(snake_case__ ): AutoProcessor.register(snake_case__ , snake_case__ ) # Now that the config is registered, it can be used as any other config with the auto-API lowercase = CustomFeatureExtractor.from_pretrained(snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dir: lowercase = os.path.join(snake_case__ , """vocab.txt""" ) with open(snake_case__ , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) lowercase = CustomTokenizer(snake_case__ ) lowercase = CustomProcessor(snake_case__ , snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(snake_case__ ) lowercase = AutoProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): class A_ ( __a ): _A :List[str] = False class A_ ( __a ): _A :Dict = False class A_ ( __a ): _A :Union[str, Any] = '''AutoFeatureExtractor''' _A :Tuple = '''AutoTokenizer''' _A :Optional[Any] = False try: AutoConfig.register("""custom""" , snake_case__ ) AutoFeatureExtractor.register(snake_case__ , snake_case__ ) AutoTokenizer.register(snake_case__ , slow_tokenizer_class=snake_case__ ) AutoProcessor.register(snake_case__ , snake_case__ ) # If remote code is not set, the default is to use local classes. lowercase = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. lowercase = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=snake_case__ ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. lowercase = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=snake_case__ ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): lowercase = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) self.assertEqual(processor.__class__.__name__ , """BertTokenizerFast""" ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): lowercase = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-convnext""" ) self.assertEqual(processor.__class__.__name__ , """ConvNextImageProcessor""" ) @is_staging_test class A_ ( unittest.TestCase ): _A :Optional[int] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou'''] @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Optional[int] ): lowercase = TOKEN HfFolder.save_token(snake_case__ ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Union[str, Any] ): try: delete_repo(token=cls._token , repo_id="""test-processor""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-processor-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-processor""" ) except HTTPError: pass def SCREAMING_SNAKE_CASE__ ( self : List[str] ): lowercase = WavaVecaProcessor.from_pretrained(snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(snake_case__ , """test-processor""" ) , push_to_hub=snake_case__ , use_auth_token=self._token ) lowercase = WavaVecaProcessor.from_pretrained(F"""{USER}/test-processor""" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(snake_case__ , getattr(new_processor.feature_extractor , snake_case__ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): lowercase = WavaVecaProcessor.from_pretrained(snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(snake_case__ , """test-processor-org""" ) , push_to_hub=snake_case__ , use_auth_token=self._token , organization="""valid_org""" , ) lowercase = WavaVecaProcessor.from_pretrained("""valid_org/test-processor-org""" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(snake_case__ , getattr(new_processor.feature_extractor , snake_case__ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() lowercase = CustomFeatureExtractor.from_pretrained(snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dir: lowercase = os.path.join(snake_case__ , """vocab.txt""" ) with open(snake_case__ , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) lowercase = CustomTokenizer(snake_case__ ) lowercase = CustomProcessor(snake_case__ , snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(F"""{USER}/test-dynamic-processor""" , token=self._token ) lowercase = Repository(snake_case__ , clone_from=F"""{USER}/test-dynamic-processor""" , token=self._token ) processor.save_pretrained(snake_case__ ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { """AutoFeatureExtractor""": """custom_feature_extraction.CustomFeatureExtractor""", """AutoProcessor""": """custom_processing.CustomProcessor""", } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(snake_case__ , """tokenizer_config.json""" ) ) as f: lowercase = json.load(snake_case__ ) self.assertDictEqual( tokenizer_config["""auto_map"""] , { """AutoTokenizer""": ["""custom_tokenization.CustomTokenizer""", None], """AutoProcessor""": """custom_processing.CustomProcessor""", } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(snake_case__ , """custom_feature_extraction.py""" ) ) ) self.assertTrue(os.path.isfile(os.path.join(snake_case__ , """custom_tokenization.py""" ) ) ) self.assertTrue(os.path.isfile(os.path.join(snake_case__ , """custom_processing.py""" ) ) ) repo.push_to_hub() lowercase = AutoProcessor.from_pretrained(F"""{USER}/test-dynamic-processor""" , trust_remote_code=snake_case__ ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , """CustomProcessor""" )
72
0
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowercase_ = 16 lowercase_ = 32 def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 16 ): lowercase__ = AutoTokenizer.from_pretrained("bert-base-cased" ) lowercase__ = load_dataset("glue" , "mrpc" ) def tokenize_function(SCREAMING_SNAKE_CASE_ ): # max_length=None => use the model max length (it's actually the default) lowercase__ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase__ = datasets.map( SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(SCREAMING_SNAKE_CASE_ ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase__ = 16 elif accelerator.mixed_precision != "no": lowercase__ = 8 else: lowercase__ = None return tokenizer.pad( SCREAMING_SNAKE_CASE_ , padding="longest" , max_length=SCREAMING_SNAKE_CASE_ , pad_to_multiple_of=SCREAMING_SNAKE_CASE_ , return_tensors="pt" , ) # Instantiate dataloaders. lowercase__ = DataLoader( tokenized_datasets["train"] , shuffle=SCREAMING_SNAKE_CASE_ , collate_fn=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ ) lowercase__ = DataLoader( tokenized_datasets["validation"] , shuffle=SCREAMING_SNAKE_CASE_ , collate_fn=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowercase_ = mocked_dataloaders # noqa: F811 def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS" , SCREAMING_SNAKE_CASE_ ) == "1": lowercase__ = 2 # Initialize accelerator lowercase__ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ = config["lr"] lowercase__ = int(config["num_epochs"] ) lowercase__ = int(config["seed"] ) lowercase__ = int(config["batch_size"] ) lowercase__ = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation lowercase__ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: lowercase__ = batch_size // MAX_GPU_BATCH_SIZE lowercase__ = MAX_GPU_BATCH_SIZE set_seed(SCREAMING_SNAKE_CASE_ ) lowercase__ , lowercase__ = get_dataloaders(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=SCREAMING_SNAKE_CASE_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase__ = model.to(accelerator.device ) # Instantiate optimizer lowercase__ = AdamW(params=model.parameters() , lr=SCREAMING_SNAKE_CASE_ ) # Instantiate scheduler lowercase__ = get_linear_schedule_with_warmup( optimizer=SCREAMING_SNAKE_CASE_ , num_warmup_steps=100 , num_training_steps=(len(SCREAMING_SNAKE_CASE_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Now we train the model for epoch in range(SCREAMING_SNAKE_CASE_ ): model.train() for step, batch in enumerate(SCREAMING_SNAKE_CASE_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowercase__ = model(**SCREAMING_SNAKE_CASE_ ) lowercase__ = outputs.loss lowercase__ = loss / gradient_accumulation_steps accelerator.backward(SCREAMING_SNAKE_CASE_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() lowercase__ = 0 for step, batch in enumerate(SCREAMING_SNAKE_CASE_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ = model(**SCREAMING_SNAKE_CASE_ ) lowercase__ = outputs.logits.argmax(dim=-1 ) lowercase__ , lowercase__ = accelerator.gather((predictions, batch["labels"]) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(SCREAMING_SNAKE_CASE_ ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples lowercase__ = predictions[: len(eval_dataloader.dataset ) - samples_seen] lowercase__ = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=SCREAMING_SNAKE_CASE_ , references=SCREAMING_SNAKE_CASE_ , ) lowercase__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , SCREAMING_SNAKE_CASE_ ) def __lowerCAmelCase ( ): lowercase__ = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) lowercase__ = parser.parse_args() lowercase__ = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
413
class _snake_case : def __init__( self : Optional[int], __lowercase : int ): lowercase__ = size lowercase__ = [0] * size lowercase__ = [0] * size @staticmethod def A__ ( __lowercase : int ): return index | (index + 1) @staticmethod def A__ ( __lowercase : int ): return (index & (index + 1)) - 1 def A__ ( self : Optional[Any], __lowercase : int, __lowercase : int ): lowercase__ = value while index < self.size: lowercase__ = self.get_prev(__lowercase ) + 1 if current_left_border == index: lowercase__ = value else: lowercase__ = max(__lowercase, __lowercase, __lowercase ) lowercase__ = self.get_next(__lowercase ) def A__ ( self : List[Any], __lowercase : int, __lowercase : int ): right -= 1 # Because of right is exclusive lowercase__ = 0 while left <= right: lowercase__ = self.get_prev(__lowercase ) if left <= current_left: lowercase__ = max(__lowercase, self.tree[right] ) lowercase__ = current_left else: lowercase__ = max(__lowercase, self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
413
1
'''simple docstring''' def _lowerCAmelCase (_lowercase , _lowercase ): """simple docstring""" a__ = len(__UpperCamelCase ) a__ = len(__UpperCamelCase ) a__ = ( first_str_length if first_str_length > second_str_length else second_str_length ) a__ = [] for char_count in range(__UpperCamelCase ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(__UpperCamelCase ) if __name__ == "__main__": print(alternative_string_arrange("""AB""", """XYZ"""), end=""" """)
708
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase_ : Optional[int] = { """configuration_bridgetower""": [ """BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BridgeTowerConfig""", """BridgeTowerTextConfig""", """BridgeTowerVisionConfig""", ], """processing_bridgetower""": ["""BridgeTowerProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ : Dict = ["""BridgeTowerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ : Tuple = [ """BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST""", """BridgeTowerForContrastiveLearning""", """BridgeTowerForImageAndTextRetrieval""", """BridgeTowerForMaskedLM""", """BridgeTowerModel""", """BridgeTowerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bridgetower import ( BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP, BridgeTowerConfig, BridgeTowerTextConfig, BridgeTowerVisionConfig, ) from .processing_bridgetower import BridgeTowerProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_bridgetower import BridgeTowerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bridgetower import ( BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST, BridgeTowerForContrastiveLearning, BridgeTowerForImageAndTextRetrieval, BridgeTowerForMaskedLM, BridgeTowerModel, BridgeTowerPreTrainedModel, ) else: import sys UpperCamelCase_ : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
394
0
"""simple docstring""" import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging a = logging.get_logger(__name__) a = {'''vocab_file''': '''vocab.txt'''} a = { '''vocab_file''': { '''facebook/esm2_t6_8M_UR50D''': '''https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt''', '''facebook/esm2_t12_35M_UR50D''': '''https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt''', }, } a = { '''facebook/esm2_t6_8M_UR50D''': 1_024, '''facebook/esm2_t12_35M_UR50D''': 1_024, } def _snake_case ( _snake_case : Optional[int] ) -> Union[str, Any]: '''simple docstring''' with open(_snake_case , 'r' ) as f: _A = f.read().splitlines() return [l.strip() for l in lines] class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : str = VOCAB_FILES_NAMES UpperCAmelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase : int = ['''input_ids''', '''attention_mask'''] def __init__( self : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Any="<unk>" , _UpperCAmelCase : int="<cls>" , _UpperCAmelCase : Optional[Any]="<pad>" , _UpperCAmelCase : List[str]="<mask>" , _UpperCAmelCase : List[str]="<eos>" , **_UpperCAmelCase : Dict , ): super().__init__(**_UpperCAmelCase ) _A = load_vocab_file(_UpperCAmelCase ) _A = dict(enumerate(self.all_tokens ) ) _A = {tok: ind for ind, tok in enumerate(self.all_tokens )} _A = unk_token _A = cls_token _A = pad_token _A = mask_token _A = eos_token _A = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : int ): return self._id_to_token.get(_UpperCAmelCase , self.unk_token ) def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : str ): return self._token_to_id.get(_UpperCAmelCase , self._token_to_id.get(self.unk_token ) ) def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : int , **_UpperCAmelCase : List[str] ): return text.split() def lowerCAmelCase_ ( self : int , _UpperCAmelCase : List[str]=False ): return len(self._id_to_token ) def lowerCAmelCase_ ( self : Optional[int] ): return {token: i for i, token in enumerate(self.all_tokens )} def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : str ): return self._token_to_id.get(_UpperCAmelCase , self._token_to_id.get(self.unk_token ) ) def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : int ): return self._id_to_token.get(_UpperCAmelCase , self.unk_token ) def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ): _A = [self.cls_token_id] _A = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('Cannot tokenize multiple sequences when EOS token is not set!' ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def lowerCAmelCase_ ( self : int , _UpperCAmelCase : List , _UpperCAmelCase : Optional[List] = None , _UpperCAmelCase : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] _A = [1] + ([0] * len(_UpperCAmelCase )) + [1] if token_ids_a is not None: mask += [0] * len(_UpperCAmelCase ) + [1] return mask def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Any ): _A = os.path.join(_UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + 'vocab.txt' ) with open(_UpperCAmelCase , 'w' ) as f: f.write('\n'.join(self.all_tokens ) ) return (vocab_file,) @property def lowerCAmelCase_ ( self : int ): return self.get_vocab_size(with_added_tokens=_UpperCAmelCase ) def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : Union[List[str], List[AddedToken]] , _UpperCAmelCase : bool = False ): return super()._add_tokens(_UpperCAmelCase , special_tokens=_UpperCAmelCase )
7
'''simple docstring''' _lowerCAmelCase :Union[str, Any] = { """meter""": """m""", """kilometer""": """km""", """megametre""": """Mm""", """gigametre""": """Gm""", """terametre""": """Tm""", """petametre""": """Pm""", """exametre""": """Em""", """zettametre""": """Zm""", """yottametre""": """Ym""", } # Exponent of the factor(meter) _lowerCAmelCase :Union[str, Any] = { """m""": 0, """km""": 3, """Mm""": 6, """Gm""": 9, """Tm""": 12, """Pm""": 15, """Em""": 18, """Zm""": 21, """Ym""": 24, } def __lowerCAmelCase ( a_ , a_ , a_ ) -> float: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = from_type.lower().strip('s' ) SCREAMING_SNAKE_CASE : Union[str, Any] = to_type.lower().strip('s' ) SCREAMING_SNAKE_CASE : Dict = UNIT_SYMBOL.get(a_ , a_ ) SCREAMING_SNAKE_CASE : Optional[int] = UNIT_SYMBOL.get(a_ , a_ ) if from_sanitized not in METRIC_CONVERSION: SCREAMING_SNAKE_CASE : Any = ( f"""Invalid 'from_type' value: {from_type!r}.\n""" f"""Conversion abbreviations are: {", ".join(a_ )}""" ) raise ValueError(a_ ) if to_sanitized not in METRIC_CONVERSION: SCREAMING_SNAKE_CASE : int = ( f"""Invalid 'to_type' value: {to_type!r}.\n""" f"""Conversion abbreviations are: {", ".join(a_ )}""" ) raise ValueError(a_ ) SCREAMING_SNAKE_CASE : Dict = METRIC_CONVERSION[from_sanitized] SCREAMING_SNAKE_CASE : List[str] = METRIC_CONVERSION[to_sanitized] SCREAMING_SNAKE_CASE : Dict = 1 if from_exponent > to_exponent: SCREAMING_SNAKE_CASE : Any = from_exponent - to_exponent else: SCREAMING_SNAKE_CASE : Tuple = -(to_exponent - from_exponent) return value * pow(10 , a_ ) if __name__ == "__main__": from doctest import testmod testmod()
251
0
def __lowerCamelCase ( A__ : float , A__ : float ) -> float: if mass < 0: raise ValueError("""The mass of a body cannot be negative""" ) return 0.5 * mass * abs(A__ ) * abs(A__ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
704
import argparse snake_case__ : Dict = 'docs/source/_static/js/custom.js' def __lowerCamelCase ( A__ : List[str] ) -> int: with open(A__ , encoding="""utf-8""" , newline="""\n""" ) as f: lowerCamelCase_ : List[Any] = f.readlines() lowerCamelCase_ : Dict = 0 # First let's put the right version while not lines[index].startswith("""const stableVersion =""" ): index += 1 lowerCamelCase_ : int = f'''const stableVersion = "v{version}"\n''' # Then update the dictionary while not lines[index].startswith("""const versionMapping = {""" ): index += 1 # We go until the end while not lines[index].startswith("""}""" ): index += 1 # We add the new version at the end lines[index - 1] += f''' "v{version}": "v{version}",\n''' with open(A__ , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(A__ ) if __name__ == "__main__": snake_case__ : int = argparse.ArgumentParser() parser.add_argument('--version', help='Release version.') snake_case__ : Tuple = parser.parse_args() update_custom_js(args.version)
171
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowercase ( _UpperCAmelCase , unittest.TestCase ): _SCREAMING_SNAKE_CASE = KandinskyVaaInpaintPipeline _SCREAMING_SNAKE_CASE = ['image_embeds', 'negative_image_embeds', 'image', 'mask_image'] _SCREAMING_SNAKE_CASE = [ 'image_embeds', 'negative_image_embeds', 'image', 'mask_image', ] _SCREAMING_SNAKE_CASE = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] _SCREAMING_SNAKE_CASE = False @property def _snake_case ( self ) -> Union[str, Any]: return 32 @property def _snake_case ( self ) -> Optional[Any]: return 32 @property def _snake_case ( self ) -> Tuple: return self.time_input_dim @property def _snake_case ( self ) -> Dict: return self.time_input_dim * 4 @property def _snake_case ( self ) -> int: return 100 @property def _snake_case ( self ) -> Optional[int]: torch.manual_seed(0 ) lowerCAmelCase = { """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } lowerCAmelCase = UNetaDConditionModel(**lowercase ) return model @property def _snake_case ( self ) -> Optional[Any]: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _snake_case ( self ) -> List[Any]: torch.manual_seed(0 ) lowerCAmelCase = VQModel(**self.dummy_movq_kwargs ) return model def _snake_case ( self ) -> Dict: lowerCAmelCase = self.dummy_unet lowerCAmelCase = self.dummy_movq lowerCAmelCase = DDIMScheduler( num_train_timesteps=1_000 , beta_schedule="""linear""" , beta_start=0.00_085 , beta_end=0.012 , clip_sample=lowercase , set_alpha_to_one=lowercase , steps_offset=1 , prediction_type="""epsilon""" , thresholding=lowercase , ) lowerCAmelCase = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def _snake_case ( self , lowercase , lowercase=0 ) -> List[str]: lowerCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowercase ) ).to(lowercase ) lowerCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( lowercase ) # create init_image lowerCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowercase ) ).to(lowercase ) lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase = Image.fromarray(np.uinta(lowercase ) ).convert("""RGB""" ).resize((256, 256) ) # create mask lowerCAmelCase = np.ones((64, 64) , dtype=np.floataa ) lowerCAmelCase = 0 if str(lowercase ).startswith("""mps""" ): lowerCAmelCase = torch.manual_seed(lowercase ) else: lowerCAmelCase = torch.Generator(device=lowercase ).manual_seed(lowercase ) lowerCAmelCase = { """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def _snake_case ( self ) -> Any: lowerCAmelCase = """cpu""" lowerCAmelCase = self.get_dummy_components() lowerCAmelCase = self.pipeline_class(**lowercase ) lowerCAmelCase = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) lowerCAmelCase = pipe(**self.get_dummy_inputs(lowercase ) ) lowerCAmelCase = output.images lowerCAmelCase = pipe( **self.get_dummy_inputs(lowercase ) , return_dict=lowercase , )[0] lowerCAmelCase = image[0, -3:, -3:, -1] lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] print(f'image.shape {image.shape}' ) assert image.shape == (1, 64, 64, 3) lowerCAmelCase = np.array( [0.50_775_903, 0.49_527_195, 0.48_824_543, 0.50_192_237, 0.48_644_906, 0.49_373_814, 0.4_780_598, 0.47_234_827, 0.48_327_848] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' def _snake_case ( self ) -> Any: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowercase ( unittest.TestCase ): def _snake_case ( self ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ) -> Dict: lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy""" ) lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) lowerCAmelCase = np.ones((768, 768) , dtype=np.floataa ) lowerCAmelCase = 0 lowerCAmelCase = """a hat""" lowerCAmelCase = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(lowercase ) lowerCAmelCase = KandinskyVaaInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder-inpaint""" , torch_dtype=torch.floataa ) lowerCAmelCase = pipeline.to(lowercase ) pipeline.set_progress_bar_config(disable=lowercase ) lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowerCAmelCase , lowerCAmelCase = pipe_prior( lowercase , generator=lowercase , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() lowerCAmelCase = pipeline( image=lowercase , mask_image=lowercase , image_embeds=lowercase , negative_image_embeds=lowercase , generator=lowercase , num_inference_steps=100 , height=768 , width=768 , output_type="""np""" , ) lowerCAmelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowercase , lowercase )
532
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = 'speech_to_text_2' _SCREAMING_SNAKE_CASE = ['past_key_values'] _SCREAMING_SNAKE_CASE = {'num_attention_heads': 'decoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , lowercase=10_000 , lowercase=6 , lowercase=2_048 , lowercase=4 , lowercase=0.0 , lowercase=True , lowercase="relu" , lowercase=256 , lowercase=0.1 , lowercase=0.0 , lowercase=0.0 , lowercase=0.02 , lowercase=2 , lowercase=True , lowercase=1 , lowercase=0 , lowercase=2 , lowercase=1_024 , **lowercase , ) -> Optional[int]: lowerCAmelCase = vocab_size lowerCAmelCase = d_model lowerCAmelCase = decoder_ffn_dim lowerCAmelCase = decoder_layers lowerCAmelCase = decoder_attention_heads lowerCAmelCase = dropout lowerCAmelCase = attention_dropout lowerCAmelCase = activation_dropout lowerCAmelCase = activation_function lowerCAmelCase = init_std lowerCAmelCase = decoder_layerdrop lowerCAmelCase = use_cache lowerCAmelCase = decoder_layers lowerCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True lowerCAmelCase = max_target_positions super().__init__( pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , decoder_start_token_id=lowercase , **lowercase , )
532
1
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @property def lowercase_ ( self : str ) -> int: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def lowercase_ ( self : int ) -> str: SCREAMING_SNAKE_CASE__ = self.dummy_uncond_unet SCREAMING_SNAKE_CASE__ = KarrasVeScheduler() SCREAMING_SNAKE_CASE__ = KarrasVePipeline(unet=__lowerCamelCase , scheduler=__lowerCamelCase ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = pipe(num_inference_steps=2 , generator=__lowerCamelCase , output_type='''numpy''' ).images SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = pipe(num_inference_steps=2 , generator=__lowerCamelCase , output_type='''numpy''' , return_dict=__lowerCamelCase )[0] SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE__ = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : int ) -> List[Any]: SCREAMING_SNAKE_CASE__ = '''google/ncsnpp-celebahq-256''' SCREAMING_SNAKE_CASE__ = UNetaDModel.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = KarrasVeScheduler() SCREAMING_SNAKE_CASE__ = KarrasVePipeline(unet=__lowerCamelCase , scheduler=__lowerCamelCase ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = pipe(num_inference_steps=20 , generator=__lowerCamelCase , output_type='''numpy''' ).images SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) SCREAMING_SNAKE_CASE__ = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
715
import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class UpperCAmelCase__ : """simple docstring""" def __init__( self : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : List[str]=13 , __lowerCamelCase : Any=7 , __lowerCamelCase : str=True , __lowerCamelCase : Tuple=True , __lowerCamelCase : Tuple=True , __lowerCamelCase : str=True , __lowerCamelCase : int=99 , __lowerCamelCase : Optional[int]=64 , __lowerCamelCase : Dict=32 , __lowerCamelCase : Dict=5 , __lowerCamelCase : Optional[Any]=4 , __lowerCamelCase : Optional[Any]=37 , __lowerCamelCase : Dict="gelu" , __lowerCamelCase : Any=0.1 , __lowerCamelCase : str=0.1 , __lowerCamelCase : Optional[Any]=512 , __lowerCamelCase : List[Any]=16 , __lowerCamelCase : Optional[int]=2 , __lowerCamelCase : Union[str, Any]=0.02 , __lowerCamelCase : List[str]=3 , __lowerCamelCase : Any=4 , __lowerCamelCase : Dict=None , ) -> int: SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = seq_length SCREAMING_SNAKE_CASE__ = is_training SCREAMING_SNAKE_CASE__ = use_input_mask SCREAMING_SNAKE_CASE__ = use_token_type_ids SCREAMING_SNAKE_CASE__ = use_labels SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = embedding_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = type_sequence_label_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = num_labels SCREAMING_SNAKE_CASE__ = num_choices SCREAMING_SNAKE_CASE__ = scope def lowercase_ ( self : List[str] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ = None if self.use_input_mask: SCREAMING_SNAKE_CASE__ = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE__ = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None if self.use_labels: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase_ ( self : Dict ) -> Any: return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , ) def lowercase_ ( self : List[str] , __lowerCamelCase : int , __lowerCamelCase : str , __lowerCamelCase : Tuple , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] ) -> Any: SCREAMING_SNAKE_CASE__ = MobileBertModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase , token_type_ids=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase_ ( self : Dict , __lowerCamelCase : int , __lowerCamelCase : List[Any] , __lowerCamelCase : Dict , __lowerCamelCase : Dict , __lowerCamelCase : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Any ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = MobileBertForMaskedLM(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ ( self : int , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : List[Any] , __lowerCamelCase : List[Any] ) -> int: SCREAMING_SNAKE_CASE__ = MobileBertForNextSentencePrediction(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE__ = model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowercase_ ( self : str , __lowerCamelCase : int , __lowerCamelCase : List[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Any ) -> int: SCREAMING_SNAKE_CASE__ = MobileBertForPreTraining(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE__ = model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase , next_sentence_label=__lowerCamelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowercase_ ( self : List[Any] , __lowerCamelCase : int , __lowerCamelCase : Tuple , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any ) -> Dict: SCREAMING_SNAKE_CASE__ = MobileBertForQuestionAnswering(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE__ = model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , start_positions=__lowerCamelCase , end_positions=__lowerCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase_ ( self : Optional[Any] , __lowerCamelCase : int , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : str , __lowerCamelCase : List[Any] , __lowerCamelCase : int , __lowerCamelCase : Union[str, Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = self.num_labels SCREAMING_SNAKE_CASE__ = MobileBertForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ ( self : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : Any , __lowerCamelCase : str , __lowerCamelCase : Any , __lowerCamelCase : int , __lowerCamelCase : str , __lowerCamelCase : Union[str, Any] ) -> int: SCREAMING_SNAKE_CASE__ = self.num_labels SCREAMING_SNAKE_CASE__ = MobileBertForTokenClassification(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase_ ( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : List[str] , __lowerCamelCase : Any , __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : int , __lowerCamelCase : Tuple ) -> List[Any]: SCREAMING_SNAKE_CASE__ = self.num_choices SCREAMING_SNAKE_CASE__ = MobileBertForMultipleChoice(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ = model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase_ ( self : List[str] ) -> Tuple: SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE__ ),( SCREAMING_SNAKE_CASE__ ),( SCREAMING_SNAKE_CASE__ ),( SCREAMING_SNAKE_CASE__ ),( SCREAMING_SNAKE_CASE__ ),( SCREAMING_SNAKE_CASE__ ),( SCREAMING_SNAKE_CASE__ ), ) = config_and_inputs SCREAMING_SNAKE_CASE__ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase__ ( A__ , A__ , unittest.TestCase ): """simple docstring""" a = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) a = ( { "feature-extraction": MobileBertModel, "fill-mask": MobileBertForMaskedLM, "question-answering": MobileBertForQuestionAnswering, "text-classification": MobileBertForSequenceClassification, "token-classification": MobileBertForTokenClassification, "zero-shot": MobileBertForSequenceClassification, } if is_torch_available() else {} ) a = True def lowercase_ ( self : int , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[int]=False ) -> str: SCREAMING_SNAKE_CASE__ = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) if return_labels: if model_class in get_values(__lowerCamelCase ): SCREAMING_SNAKE_CASE__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase ) return inputs_dict def lowercase_ ( self : Optional[Any] ) -> List[str]: SCREAMING_SNAKE_CASE__ = MobileBertModelTester(self ) SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=37 ) def lowercase_ ( self : Any ) -> Union[str, Any]: self.config_tester.run_common_tests() def lowercase_ ( self : Optional[int] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__lowerCamelCase ) def lowercase_ ( self : Tuple ) -> Any: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__lowerCamelCase ) def lowercase_ ( self : Dict ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__lowerCamelCase ) def lowercase_ ( self : Union[str, Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__lowerCamelCase ) def lowercase_ ( self : Any ) -> str: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__lowerCamelCase ) def lowercase_ ( self : Dict ) -> str: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__lowerCamelCase ) def lowercase_ ( self : List[str] ) -> str: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__lowerCamelCase ) def lowercase_ ( self : Tuple ) -> List[Any]: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__lowerCamelCase ) def UpperCAmelCase_ ( _A ): '''simple docstring''' return torch.tensor( _A , dtype=torch.long , device=_A , ) _SCREAMING_SNAKE_CASE : Optional[Any] = 1e-3 @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def lowercase_ ( self : List[str] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = MobileBertModel.from_pretrained('''google/mobilebert-uncased''' ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = _long_tensor([[101, 7110, 1005, 1056, 2023, 1_1333, 1_7413, 1029, 102]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase )[0] SCREAMING_SNAKE_CASE__ = torch.Size((1, 9, 512) ) self.assertEqual(output.shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.tensor( [ [ [-2.4_73_65_26e07, 8.2_69_16_56e04, 1.6_52_18_38e05], [-5.7_54_17_04e-01, 3.9_05_60_22e00, 4.4_01_15_07e00], [2.6_04_73_59e00, 1.5_67_76_52e00, -1.7_32_41_88e-01], ] ] , device=__lowerCamelCase , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE SCREAMING_SNAKE_CASE__ = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) SCREAMING_SNAKE_CASE__ = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
472
0
'''simple docstring''' import math import sys import cva import numpy as np def lowerCamelCase__ ( A_ , A_ ): # For applying gaussian function for each element in matrix. UpperCAmelCase_ = math.sqrt(__UpperCamelCase ) UpperCAmelCase_ = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def lowerCamelCase__ ( A_ , A_ , A_ , A_ ): UpperCAmelCase_ = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def lowerCamelCase__ ( A_ , A_ ): # Creates a gaussian kernel of given dimension. UpperCAmelCase_ = np.zeros((kernel_size, kernel_size) ) for i in range(0 , __UpperCamelCase ): for j in range(0 , __UpperCamelCase ): UpperCAmelCase_ = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(__UpperCamelCase , __UpperCamelCase ) def lowerCamelCase__ ( A_ , A_ , A_ , A_ , ): UpperCAmelCase_ = np.zeros(img.shape ) UpperCAmelCase_ = get_gauss_kernel(__UpperCamelCase , __UpperCamelCase ) UpperCAmelCase_ , UpperCAmelCase_ = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): UpperCAmelCase_ = get_slice(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) UpperCAmelCase_ = img_s - img_s[kernel_size // 2, kernel_size // 2] UpperCAmelCase_ = vec_gaussian(__UpperCamelCase , __UpperCamelCase ) UpperCAmelCase_ = np.multiply(__UpperCamelCase , __UpperCamelCase ) UpperCAmelCase_ = np.multiply(__UpperCamelCase , __UpperCamelCase ) UpperCAmelCase_ = np.sum(__UpperCamelCase ) / np.sum(__UpperCamelCase ) UpperCAmelCase_ = val return imga def lowerCamelCase__ ( A_ ): UpperCAmelCase_ = args[1] if args[1:] else "../image_data/lena.jpg" UpperCAmelCase_ = float(args[2] ) if args[2:] else 1.0 UpperCAmelCase_ = float(args[3] ) if args[3:] else 1.0 if args[4:]: UpperCAmelCase_ = int(args[4] ) UpperCAmelCase_ = kernel_size + abs(kernel_size % 2 - 1 ) else: UpperCAmelCase_ = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": __snake_case , __snake_case , __snake_case , __snake_case : List[Any] = parse_args(sys.argv) __snake_case : List[str] = cva.imread(filename, 0) cva.imshow('''input image''', img) __snake_case : List[str] = img / 2_55 __snake_case : Optional[Any] = out.astype('''float32''') __snake_case : List[Any] = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) __snake_case : int = out * 2_55 __snake_case : int = np.uinta(out) cva.imshow('''output image''', out) cva.waitKey(0) cva.destroyAllWindows()
660
from argparse import ArgumentParser from .env import EnvironmentCommand def UpperCAmelCase_ ( ): SCREAMING_SNAKE_CASE__ =ArgumentParser("""Diffusers CLI tool""", usage="""diffusers-cli <command> [<args>]""" ) SCREAMING_SNAKE_CASE__ =parser.add_subparsers(help="""diffusers-cli command helpers""" ) # Register commands EnvironmentCommand.register_subcommand(__UpperCamelCase ) # Let's go SCREAMING_SNAKE_CASE__ =parser.parse_args() if not hasattr(__UpperCamelCase, """func""" ): parser.print_help() exit(1 ) # Run SCREAMING_SNAKE_CASE__ =args.func(__UpperCamelCase ) service.run() if __name__ == "__main__": main()
151
0
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _snake_case : List[str] = { 'facebook/mask2former-swin-small-coco-instance': ( 'https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json' ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } _snake_case : Tuple = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE__ ="""mask2former""" SCREAMING_SNAKE_CASE__ =["""swin"""] SCREAMING_SNAKE_CASE__ ={"""hidden_size""": """hidden_dim"""} def __init__( self, _a = None, _a = 2_56, _a = 2_56, _a = 2_56, _a = 10_24, _a = "relu", _a = 6, _a = 10, _a = 8, _a = 0.0, _a = 20_48, _a = False, _a = False, _a = 4, _a = 2_55, _a = 1_00, _a = 0.1, _a = 2.0, _a = 5.0, _a = 5.0, _a = 1_25_44, _a = 3.0, _a = 0.75, _a = 0.02, _a = 1.0, _a = True, _a = [4, 8, 16, 32], _a = None, **_a, ) -> List[Any]: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `Swin` backbone." ) __SCREAMING_SNAKE_CASE = CONFIG_MAPPING["swin"]( image_size=2_24, in_channels=3, patch_size=4, embed_dim=96, depths=[2, 2, 18, 2], num_heads=[3, 6, 12, 24], window_size=7, drop_path_rate=0.3, use_absolute_embeddings=_a, out_features=["stage1", "stage2", "stage3", "stage4"], ) if isinstance(_a, _a ): __SCREAMING_SNAKE_CASE = backbone_config.pop("model_type" ) __SCREAMING_SNAKE_CASE = CONFIG_MAPPING[backbone_model_type] __SCREAMING_SNAKE_CASE = config_class.from_dict(_a ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. ''' f'''Supported model types: {",".join(self.backbones_supported )}''' ) __SCREAMING_SNAKE_CASE = backbone_config __SCREAMING_SNAKE_CASE = feature_size __SCREAMING_SNAKE_CASE = mask_feature_size __SCREAMING_SNAKE_CASE = hidden_dim __SCREAMING_SNAKE_CASE = encoder_feedforward_dim __SCREAMING_SNAKE_CASE = activation_function __SCREAMING_SNAKE_CASE = encoder_layers __SCREAMING_SNAKE_CASE = decoder_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = dropout __SCREAMING_SNAKE_CASE = dim_feedforward __SCREAMING_SNAKE_CASE = pre_norm __SCREAMING_SNAKE_CASE = enforce_input_projection __SCREAMING_SNAKE_CASE = common_stride __SCREAMING_SNAKE_CASE = ignore_value __SCREAMING_SNAKE_CASE = num_queries __SCREAMING_SNAKE_CASE = no_object_weight __SCREAMING_SNAKE_CASE = class_weight __SCREAMING_SNAKE_CASE = mask_weight __SCREAMING_SNAKE_CASE = dice_weight __SCREAMING_SNAKE_CASE = train_num_points __SCREAMING_SNAKE_CASE = oversample_ratio __SCREAMING_SNAKE_CASE = importance_sample_ratio __SCREAMING_SNAKE_CASE = init_std __SCREAMING_SNAKE_CASE = init_xavier_std __SCREAMING_SNAKE_CASE = use_auxiliary_loss __SCREAMING_SNAKE_CASE = feature_strides __SCREAMING_SNAKE_CASE = output_auxiliary_logits __SCREAMING_SNAKE_CASE = decoder_layers super().__init__(**_a ) @classmethod def __lowerCAmelCase ( cls, _a, **_a ) -> int: return cls( backbone_config=_a, **_a, ) def __lowerCAmelCase ( self ) -> Dict[str, any]: __SCREAMING_SNAKE_CASE = copy.deepcopy(self.__dict__ ) __SCREAMING_SNAKE_CASE = self.backbone_config.to_dict() __SCREAMING_SNAKE_CASE = self.__class__.model_type return output
214
import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def _A ( __snake_case :int ) -> Optional[int]: """simple docstring""" if ( (cp >= 0x4E_00 and cp <= 0x9F_FF) or (cp >= 0x34_00 and cp <= 0x4D_BF) # or (cp >= 0x2_00_00 and cp <= 0x2_A6_DF) # or (cp >= 0x2_A7_00 and cp <= 0x2_B7_3F) # or (cp >= 0x2_B7_40 and cp <= 0x2_B8_1F) # or (cp >= 0x2_B8_20 and cp <= 0x2_CE_AF) # or (cp >= 0xF9_00 and cp <= 0xFA_FF) or (cp >= 0x2_F8_00 and cp <= 0x2_FA_1F) # ): # return True return False def _A ( __snake_case :str ) -> int: """simple docstring""" for char in word: __SCREAMING_SNAKE_CASE = ord(__snake_case ) if not _is_chinese_char(__snake_case ): return 0 return 1 def _A ( __snake_case :List[str] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = set() for token in tokens: __SCREAMING_SNAKE_CASE = len(__snake_case ) > 1 and is_chinese(__snake_case ) if chinese_word: word_set.add(__snake_case ) __SCREAMING_SNAKE_CASE = list(__snake_case ) return word_list def _A ( __snake_case :List[str] , __snake_case :set() ) -> Any: """simple docstring""" if not chinese_word_set: return bert_tokens __SCREAMING_SNAKE_CASE = max([len(__snake_case ) for w in chinese_word_set] ) __SCREAMING_SNAKE_CASE = bert_tokens __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 0, len(__snake_case ) while start < end: __SCREAMING_SNAKE_CASE = True if is_chinese(bert_word[start] ): __SCREAMING_SNAKE_CASE = min(end - start , __snake_case ) for i in range(__snake_case , 1 , -1 ): __SCREAMING_SNAKE_CASE = "".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): __SCREAMING_SNAKE_CASE = "##" + bert_word[j] __SCREAMING_SNAKE_CASE = start + i __SCREAMING_SNAKE_CASE = False break if single_word: start += 1 return bert_word def _A ( __snake_case :List[str] , __snake_case :LTP , __snake_case :BertTokenizer ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = [] for i in range(0 , len(__snake_case ) , 100 ): __SCREAMING_SNAKE_CASE = ltp_tokenizer.seg(lines[i : i + 100] )[0] __SCREAMING_SNAKE_CASE = [get_chinese_word(__snake_case ) for r in res] ltp_res.extend(__snake_case ) assert len(__snake_case ) == len(__snake_case ) __SCREAMING_SNAKE_CASE = [] for i in range(0 , len(__snake_case ) , 100 ): __SCREAMING_SNAKE_CASE = bert_tokenizer(lines[i : i + 100] , add_special_tokens=__snake_case , truncation=__snake_case , max_length=512 ) bert_res.extend(res["input_ids"] ) assert len(__snake_case ) == len(__snake_case ) __SCREAMING_SNAKE_CASE = [] for input_ids, chinese_word in zip(__snake_case , __snake_case ): __SCREAMING_SNAKE_CASE = [] for id in input_ids: __SCREAMING_SNAKE_CASE = bert_tokenizer._convert_id_to_token(__snake_case ) input_tokens.append(__snake_case ) __SCREAMING_SNAKE_CASE = add_sub_symbol(__snake_case , __snake_case ) __SCREAMING_SNAKE_CASE = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__snake_case ): if token[:2] == "##": __SCREAMING_SNAKE_CASE = token[2:] # save chinese tokens' pos if len(__snake_case ) == 1 and _is_chinese_char(ord(__snake_case ) ): ref_id.append(__snake_case ) ref_ids.append(__snake_case ) assert len(__snake_case ) == len(__snake_case ) return ref_ids def _A ( __snake_case :Tuple ) -> Any: """simple docstring""" with open(args.file_name , "r" , encoding="utf-8" ) as f: __SCREAMING_SNAKE_CASE = f.readlines() __SCREAMING_SNAKE_CASE = [line.strip() for line in data if len(__snake_case ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' __SCREAMING_SNAKE_CASE = LTP(args.ltp ) # faster in GPU device __SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained(args.bert ) __SCREAMING_SNAKE_CASE = prepare_ref(__snake_case , __snake_case , __snake_case ) with open(args.save_path , "w" , encoding="utf-8" ) as f: __SCREAMING_SNAKE_CASE = [json.dumps(__snake_case ) + "\n" for ref in ref_ids] f.writelines(__snake_case ) if __name__ == "__main__": _snake_case : List[Any] = argparse.ArgumentParser(description='prepare_chinese_ref') parser.add_argument( '--file_name', type=str, default='./resources/chinese-demo.txt', help='file need process, same as training data in lm', ) parser.add_argument( '--ltp', type=str, default='./resources/ltp', help='resources for LTP tokenizer, usually a path' ) parser.add_argument('--bert', type=str, default='./resources/robert', help='resources for Bert tokenizer') parser.add_argument('--save_path', type=str, default='./resources/ref.txt', help='path to save res') _snake_case : Union[str, Any] = parser.parse_args() main(args)
214
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCamelCase_ = { '''configuration_efficientformer''': [ '''EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientFormerConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ['''EfficientFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ '''EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientFormerForImageClassification''', '''EfficientFormerForImageClassificationWithTeacher''', '''EfficientFormerModel''', '''EfficientFormerPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ '''TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFEfficientFormerForImageClassification''', '''TFEfficientFormerForImageClassificationWithTeacher''', '''TFEfficientFormerModel''', '''TFEfficientFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
95
"""simple docstring""" def __A ( a_ :Tuple , a_ :Union[str, Any] , a_ :int=False) -> List[str]: if isinstance(a_ , a_) and isinstance(a_ , a_): __a : List[str] = len(set_a.intersection(a_)) if alternative_union: __a : List[str] = len(a_) + len(a_) else: __a : int = len(set_a.union(a_)) return intersection / union if isinstance(a_ , (list, tuple)) and isinstance(a_ , (list, tuple)): __a : Union[str, Any] = [element for element in set_a if element in set_b] if alternative_union: __a : Union[str, Any] = len(a_) + len(a_) return len(a_) / union else: __a : List[Any] = set_a + [element for element in set_b if element not in set_a] return len(a_) / len(a_) return len(a_) / len(a_) return None if __name__ == "__main__": A = {'''a''', '''b''', '''c''', '''d''', '''e'''} A = {'''c''', '''d''', '''e''', '''f''', '''h''', '''i'''} print(jaccard_similarity(set_a, set_b))
52
0
"""simple docstring""" import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A = '▁' A = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class UpperCAmelCase__ ( UpperCamelCase ,unittest.TestCase ): lowerCAmelCase_ : Dict = BigBirdTokenizer lowerCAmelCase_ : Dict = BigBirdTokenizerFast lowerCAmelCase_ : Union[str, Any] = True lowerCAmelCase_ : List[str] = True def A_ ( self : Optional[Any] ) -> Dict: '''simple docstring''' super().setUp() A = self.tokenizer_class(snake_case , keep_accents=snake_case ) tokenizer.save_pretrained(self.tmpdirname ) def A_ ( self : int ) -> List[Any]: '''simple docstring''' A = '<s>' A = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case ) , snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case ) , snake_case ) def A_ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' A = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , '[MASK]' ) self.assertEqual(len(snake_case ) , 1_004 ) def A_ ( self : int ) -> Optional[Any]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_000 ) def A_ ( self : List[Any] ) -> int: '''simple docstring''' if not self.test_rust_tokenizer: return A = self.get_tokenizer() A = self.get_rust_tokenizer() A = 'I was born in 92000, and this is falsé.' A = tokenizer.tokenize(snake_case ) A = rust_tokenizer.tokenize(snake_case ) self.assertListEqual(snake_case , snake_case ) A = tokenizer.encode(snake_case , add_special_tokens=snake_case ) A = rust_tokenizer.encode(snake_case , add_special_tokens=snake_case ) self.assertListEqual(snake_case , snake_case ) A = self.get_rust_tokenizer() A = tokenizer.encode(snake_case ) A = rust_tokenizer.encode(snake_case ) self.assertListEqual(snake_case , snake_case ) def A_ ( self : List[Any] ) -> List[str]: '''simple docstring''' A = BigBirdTokenizer(snake_case , keep_accents=snake_case ) A = tokenizer.tokenize('This is a test' ) self.assertListEqual(snake_case , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case ) , [285, 46, 10, 170, 382] , ) A = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( snake_case , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) A = tokenizer.convert_tokens_to_ids(snake_case ) self.assertListEqual( snake_case , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) A = tokenizer.convert_ids_to_tokens(snake_case ) self.assertListEqual( snake_case , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def A_ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' return BigBirdTokenizer.from_pretrained('google/bigbird-roberta-base' ) @slow def A_ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' A = 'Hello World!' A = [65, 18_536, 2_260, 101, 66] self.assertListEqual(snake_case , self.big_tokenizer.encode(snake_case ) ) @slow def A_ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' A = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) # fmt: off A = [65, 871, 419, 358, 946, 991, 2_521, 452, 358, 1_357, 387, 7_751, 3_536, 112, 985, 456, 126, 865, 938, 5_400, 5_734, 458, 1_368, 467, 786, 2_462, 5_246, 1_159, 633, 865, 4_519, 457, 582, 852, 2_557, 427, 916, 508, 405, 34_324, 497, 391, 408, 11_342, 1_244, 385, 100, 938, 985, 456, 574, 362, 12_597, 3_200, 3_129, 1_172, 66] # noqa: E231 # fmt: on self.assertListEqual(snake_case , self.big_tokenizer.encode(snake_case ) ) @require_torch @slow def A_ ( self : int ) -> Any: '''simple docstring''' import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence A = list(self.big_tokenizer.get_vocab().keys() )[:10] A = ' '.join(snake_case ) A = self.big_tokenizer.encode_plus(snake_case , return_tensors='pt' , return_token_type_ids=snake_case ) A = self.big_tokenizer.batch_encode_plus( [sequence + ' ' + sequence] , return_tensors='pt' , return_token_type_ids=snake_case ) A = BigBirdConfig(attention_type='original_full' ) A = BigBirdModel(snake_case ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**snake_case ) model(**snake_case ) @slow def A_ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' A = BigBirdTokenizer.from_pretrained('google/bigbird-roberta-base' ) A = tokenizer.decode(tokenizer('Paris is the [MASK].' ).input_ids ) self.assertTrue(decoded_text == '[CLS] Paris is the[MASK].[SEP]' ) @slow def A_ ( self : Dict ) -> List[Any]: '''simple docstring''' A = {'input_ids': [[65, 39_286, 458, 36_335, 2_001, 456, 13_073, 13_266, 455, 113, 7_746, 1_741, 11_157, 391, 13_073, 13_266, 455, 113, 3_967, 35_412, 113, 4_936, 109, 3_870, 2_377, 113, 30_084, 45_720, 458, 134, 17_496, 112, 503, 11_672, 113, 118, 112, 5_665, 13_347, 38_687, 112, 1_496, 31_389, 112, 3_268, 47_264, 134, 962, 112, 16_377, 8_035, 23_130, 430, 12_169, 15_518, 28_592, 458, 146, 41_697, 109, 391, 12_169, 15_518, 16_689, 458, 146, 41_358, 109, 452, 726, 4_034, 111, 763, 35_412, 5_082, 388, 1_903, 111, 9_051, 391, 2_870, 48_918, 1_900, 1_123, 550, 998, 112, 9_586, 15_985, 455, 391, 410, 22_955, 37_636, 114, 66], [65, 448, 17_496, 419, 3_663, 385, 763, 113, 27_533, 2_870, 3_283, 13_043, 1_639, 24_713, 523, 656, 24_013, 18_550, 2_521, 517, 27_014, 21_244, 420, 1_212, 1_465, 391, 927, 4_833, 388, 578, 11_786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2_169, 7_687, 21_932, 18_146, 726, 363, 17_032, 3_391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case , model_name='google/bigbird-roberta-base' , revision='215c99f1600e06f83acce68422f2035b2b5c3510' , )
721
"""simple docstring""" import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase__ ( UpperCamelCase ,unittest.TestCase ): lowerCAmelCase_ : Tuple = LayoutLMTokenizer lowerCAmelCase_ : Any = LayoutLMTokenizerFast lowerCAmelCase_ : Optional[int] = True lowerCAmelCase_ : List[Any] = True def A_ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' super().setUp() A = [ '[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def A_ ( self : str , **snake_case : Tuple ) -> Union[str, Any]: '''simple docstring''' return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **snake_case ) def A_ ( self : List[str] , snake_case : int ) -> List[Any]: '''simple docstring''' A = 'UNwant\u00E9d,running' A = 'unwanted, running' return input_text, output_text def A_ ( self : Tuple ) -> Optional[int]: '''simple docstring''' A = self.tokenizer_class(self.vocab_file ) A = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(snake_case , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case ) , [7, 4, 5, 10, 8, 9] ) def A_ ( self : Any ) -> List[Any]: '''simple docstring''' pass
109
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a_ :List[str] = { 'configuration_swiftformer': [ 'SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SwiftFormerConfig', 'SwiftFormerOnnxConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :List[str] = [ 'SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'SwiftFormerForImageClassification', 'SwiftFormerModel', 'SwiftFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys a_ :Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
35
from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { '''deepmind/language-perceiver''': '''https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json''', # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class lowercase ( _UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """perceiver""" def __init__(self , __a=256 , __a=1280 , __a=768 , __a=1 , __a=26 , __a=8 , __a=8 , __a=None , __a=None , __a="kv" , __a=1 , __a=1 , __a="gelu" , __a=0.1 , __a=0.02 , __a=1E-1_2 , __a=True , __a=262 , __a=2048 , __a=56 , __a=[368, 496] , __a=16 , __a=1920 , __a=16 , __a=[1, 16, 224, 224] , **__a , ) -> Union[str, Any]: """simple docstring""" super().__init__(**__a ) UpperCAmelCase__ = num_latents UpperCAmelCase__ = d_latents UpperCAmelCase__ = d_model UpperCAmelCase__ = num_blocks UpperCAmelCase__ = num_self_attends_per_block UpperCAmelCase__ = num_self_attention_heads UpperCAmelCase__ = num_cross_attention_heads UpperCAmelCase__ = qk_channels UpperCAmelCase__ = v_channels UpperCAmelCase__ = cross_attention_shape_for_attention UpperCAmelCase__ = self_attention_widening_factor UpperCAmelCase__ = cross_attention_widening_factor UpperCAmelCase__ = hidden_act UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = initializer_range UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = use_query_residual # masked language modeling attributes UpperCAmelCase__ = vocab_size UpperCAmelCase__ = max_position_embeddings # image classification attributes UpperCAmelCase__ = image_size # flow attributes UpperCAmelCase__ = train_size # multimodal autoencoding attributes UpperCAmelCase__ = num_frames UpperCAmelCase__ = audio_samples_per_frame UpperCAmelCase__ = samples_per_patch UpperCAmelCase__ = output_shape class lowercase ( _UpperCamelCase ): '''simple docstring''' @property def UpperCamelCase__ (self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": UpperCAmelCase__ = {0: 'batch', 1: 'choice', 2: 'sequence'} else: UpperCAmelCase__ = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('inputs', dynamic_axis), ('attention_mask', dynamic_axis), ] ) @property def UpperCamelCase__ (self ) -> float: """simple docstring""" return 1E-4 def UpperCamelCase__ (self , __a , __a = -1 , __a = -1 , __a = -1 , __a = False , __a = None , __a = 3 , __a = 40 , __a = 40 , ) -> Mapping[str, Any]: """simple docstring""" if isinstance(__a , __a ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCAmelCase__ = compute_effective_axis_dimension( __a , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCAmelCase__ = preprocessor.num_special_tokens_to_add(__a ) UpperCAmelCase__ = compute_effective_axis_dimension( __a , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__a ) # Generate dummy inputs according to compute batch and sequence UpperCAmelCase__ = [' '.join(['a'] ) * seq_length] * batch_size UpperCAmelCase__ = dict(preprocessor(__a , return_tensors=__a ) ) UpperCAmelCase__ = inputs.pop('input_ids' ) return inputs elif isinstance(__a , __a ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCAmelCase__ = compute_effective_axis_dimension(__a , fixed_dimension=OnnxConfig.default_fixed_batch ) UpperCAmelCase__ = self._generate_dummy_images(__a , __a , __a , __a ) UpperCAmelCase__ = dict(preprocessor(images=__a , return_tensors=__a ) ) UpperCAmelCase__ = inputs.pop('pixel_values' ) return inputs else: raise ValueError( 'Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.' )
146
0
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) __lowerCamelCase : Tuple = pytest.mark.integration @pytest.mark.parametrize("""path""" , ["""paws""", """csv"""] ) def A__ ( _a : Optional[Any] , _a : int ): '''simple docstring''' inspect_dataset(_UpperCamelCase , _UpperCamelCase ) snake_case__ : Optional[int] =path + """.py""" assert script_name in os.listdir(_UpperCamelCase ) assert "__pycache__" not in os.listdir(_UpperCamelCase ) @pytest.mark.filterwarnings("""ignore:inspect_metric is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.parametrize("""path""" , ["""accuracy"""] ) def A__ ( _a : Tuple , _a : Optional[Any] ): '''simple docstring''' inspect_metric(_UpperCamelCase , _UpperCamelCase ) snake_case__ : Union[str, Any] =path + """.py""" assert script_name in os.listdir(_UpperCamelCase ) assert "__pycache__" not in os.listdir(_UpperCamelCase ) @pytest.mark.parametrize( """path, config_name, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def A__ ( _a : Optional[Any] , _a : Any , _a : int ): '''simple docstring''' snake_case__ : str =get_dataset_config_info(_UpperCamelCase , config_name=_UpperCamelCase ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def A__ ( _a : Any , _a : List[str] , _a : Union[str, Any] ): '''simple docstring''' with pytest.raises(_UpperCamelCase ): get_dataset_config_info(_UpperCamelCase , config_name=_UpperCamelCase ) @pytest.mark.parametrize( """path, expected""" , [ ("""squad""", """plain_text"""), ("""acronym_identification""", """default"""), ("""lhoestq/squad""", """plain_text"""), ("""lhoestq/test""", """default"""), ("""lhoestq/demo1""", """lhoestq--demo1"""), ("""dalle-mini/wit""", """dalle-mini--wit"""), ] , ) def A__ ( _a : Any , _a : Optional[Any] ): '''simple docstring''' snake_case__ : List[str] =get_dataset_config_names(_UpperCamelCase ) assert expected in config_names @pytest.mark.parametrize( """path, expected_configs, expected_splits_in_first_config""" , [ ("""squad""", ["""plain_text"""], ["""train""", """validation"""]), ("""dalle-mini/wit""", ["""dalle-mini--wit"""], ["""train"""]), ("""paws""", ["""labeled_final""", """labeled_swap""", """unlabeled_final"""], ["""train""", """test""", """validation"""]), ] , ) def A__ ( _a : str , _a : Optional[int] , _a : int ): '''simple docstring''' snake_case__ : str =get_dataset_infos(_UpperCamelCase ) assert list(infos.keys() ) == expected_configs snake_case__ : str =expected_configs[0] assert expected_config in infos snake_case__ : int =infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( """path, expected_config, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def A__ ( _a : str , _a : int , _a : str ): '''simple docstring''' snake_case__ : Tuple =get_dataset_infos(_UpperCamelCase ) assert expected_config in infos snake_case__ : List[str] =infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def A__ ( _a : Any , _a : Optional[int] , _a : Optional[int] ): '''simple docstring''' with pytest.raises(_UpperCamelCase ): get_dataset_split_names(_UpperCamelCase , config_name=_UpperCamelCase )
721
def A__ ( _a : Optional[Any] , _a : Tuple , _a : List[str]=False ): '''simple docstring''' if isinstance(_a , _a ) and isinstance(_a , _a ): snake_case__ : int =len(set_a.intersection(_a ) ) if alternative_union: snake_case__ : int =len(_a ) + len(_a ) else: snake_case__ : Tuple =len(set_a.union(_a ) ) return intersection / union if isinstance(_a , (list, tuple) ) and isinstance(_a , (list, tuple) ): snake_case__ : Optional[int] =[element for element in set_a if element in set_b] if alternative_union: snake_case__ : Optional[Any] =len(_a ) + len(_a ) return len(_a ) / union else: snake_case__ : Dict =set_a + [element for element in set_b if element not in set_a] return len(_a ) / len(_a ) return len(_a ) / len(_a ) return None if __name__ == "__main__": __lowerCamelCase : List[Any] = {"""a""", """b""", """c""", """d""", """e"""} __lowerCamelCase : Optional[int] = {"""c""", """d""", """e""", """f""", """h""", """i"""} print(jaccard_similarity(set_a, set_b))
448
0
def lowerCamelCase_ ( lowerCamelCase__ ): if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = F'Input value of [number={number}] must be an integer' raise TypeError(lowerCamelCase__ ) if number < 1: lowerCamelCase_ = F'Input value of [number={number}] must be > 0' raise ValueError(lowerCamelCase__ ) lowerCamelCase_ = 1 for i in range(1 , lowerCamelCase__ ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
463
import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class _SCREAMING_SNAKE_CASE : def __init__( self , lowercase , lowercase=99 , lowercase=13 , lowercase=7 , lowercase=9 , lowercase=True , lowercase=True , lowercase=False , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=37 , lowercase=8 , lowercase=0.1 , lowercase=0.0_0_2 , lowercase=1 , lowercase=0 , lowercase=0 , lowercase=None , lowercase=None , ) -> Tuple: lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = encoder_seq_length lowerCamelCase_ = decoder_seq_length # For common tests lowerCamelCase_ = self.decoder_seq_length lowerCamelCase_ = is_training lowerCamelCase_ = use_attention_mask lowerCamelCase_ = use_labels lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = d_ff lowerCamelCase_ = relative_attention_num_buckets lowerCamelCase_ = dropout_rate lowerCamelCase_ = initializer_factor lowerCamelCase_ = eos_token_id lowerCamelCase_ = pad_token_id lowerCamelCase_ = decoder_start_token_id lowerCamelCase_ = None lowerCamelCase_ = decoder_layers def SCREAMING_SNAKE_CASE_( self ) -> List[str]: return TaConfig.from_pretrained("google/umt5-base" ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase=None , lowercase=None , lowercase=None , lowercase=None , lowercase=None , ) -> str: if attention_mask is None: lowerCamelCase_ = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: lowerCamelCase_ = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: lowerCamelCase_ = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=lowercase ) if decoder_head_mask is None: lowerCamelCase_ = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=lowercase ) if cross_attn_head_mask is None: lowerCamelCase_ = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=lowercase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def SCREAMING_SNAKE_CASE_( self ) -> Dict: lowerCamelCase_ = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) lowerCamelCase_ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input lowerCamelCase_ = input_ids.clamp(self.pad_token_id + 1 ) lowerCamelCase_ = decoder_input_ids.clamp(self.pad_token_id + 1 ) lowerCamelCase_ = self.get_config() lowerCamelCase_ = config.num_attention_heads lowerCamelCase_ = self.prepare_inputs_dict(lowercase , lowercase , lowercase ) return config, input_dict def SCREAMING_SNAKE_CASE_( self ) -> str: lowerCamelCase_ , lowerCamelCase_ = self.prepare_config_and_inputs() return config, inputs_dict def SCREAMING_SNAKE_CASE_( self ) -> List[str]: return TaConfig( vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def SCREAMING_SNAKE_CASE_( self ) -> Any: return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> Optional[Any]: lowerCamelCase_ = UMTaModel(config=lowercase ) model.to(lowercase ) model.eval() lowerCamelCase_ = model( input_ids=lowercase , decoder_input_ids=lowercase , attention_mask=lowercase , decoder_attention_mask=lowercase , ) lowerCamelCase_ = model(input_ids=lowercase , decoder_input_ids=lowercase ) lowerCamelCase_ = result.last_hidden_state lowerCamelCase_ = result.past_key_values lowerCamelCase_ = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(lowercase ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> Optional[int]: lowerCamelCase_ = UMTaModel(config=lowercase ).get_decoder().to(lowercase ).eval() # first forward pass lowerCamelCase_ = model(lowercase , use_cache=lowercase ) lowerCamelCase_ = model(lowercase ) lowerCamelCase_ = model(lowercase , use_cache=lowercase ) self.parent.assertTrue(len(lowercase ) == len(lowercase ) ) self.parent.assertTrue(len(lowercase ) == len(lowercase ) + 1 ) lowerCamelCase_ , lowerCamelCase_ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCamelCase_ = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and lowerCamelCase_ = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCamelCase_ = model(lowercase )["last_hidden_state"] lowerCamelCase_ = model(lowercase , past_key_values=lowercase )["last_hidden_state"] # select random slice lowerCamelCase_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCamelCase_ = output_from_no_past[:, -1, random_slice_idx].detach() lowerCamelCase_ = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase , lowercase , atol=1e-3 ) ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , ) -> Tuple: lowerCamelCase_ = UMTaModel(config=lowercase ).to(lowercase ).half().eval() lowerCamelCase_ = model(**lowercase )["last_hidden_state"] self.parent.assertFalse(torch.isnan(lowercase ).any().item() ) @require_torch class _SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): lowerCAmelCase__ = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) lowerCAmelCase__ = (UMTaForConditionalGeneration,) if is_torch_available() else () lowerCAmelCase__ = ( { 'conversational': UMTaForConditionalGeneration, 'feature-extraction': UMTaModel, 'summarization': UMTaForConditionalGeneration, 'text2text-generation': UMTaForConditionalGeneration, 'translation': UMTaForConditionalGeneration, 'question-answering': UMTaForQuestionAnswering, } if is_torch_available() else {} ) lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = True lowerCAmelCase__ = True # The small UMT5 model needs higher percentages for CPU/MP tests lowerCAmelCase__ = [0.8, 0.9] def SCREAMING_SNAKE_CASE_( self ) -> str: lowerCamelCase_ = UMTaModelTester(self ) @unittest.skip("Test has a segmentation fault on torch 1.8.0" ) def SCREAMING_SNAKE_CASE_( self ) -> List[str]: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() lowerCamelCase_ = UMTaModel(config_and_inputs[0] ).to(lowercase ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( lowercase , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f'{tmpdirname}/t5_test.onnx' , export_params=lowercase , opset_version=9 , input_names=["input_ids", "decoder_input_ids"] , ) @unittest.skipIf(torch_device == "cpu" , "Cant do half precision" ) def SCREAMING_SNAKE_CASE_( self ) -> str: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> List[str]: lowerCamelCase_ = ["encoder_attentions", "decoder_attentions", "cross_attentions"] lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() lowerCamelCase_ = config_and_inputs[0] lowerCamelCase_ = UMTaForConditionalGeneration(lowercase ).eval() model.to(lowercase ) lowerCamelCase_ = { "head_mask": torch.zeros(config.num_layers , config.num_heads , device=lowercase ), "decoder_head_mask": torch.zeros(config.num_decoder_layers , config.num_heads , device=lowercase ), "cross_attn_head_mask": torch.zeros(config.num_decoder_layers , config.num_heads , device=lowercase ), } for attn_name, (name, mask) in zip(lowercase , head_masking.items() ): lowerCamelCase_ = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": lowerCamelCase_ = torch.ones( config.num_decoder_layers , config.num_heads , device=lowercase ) lowerCamelCase_ = model.generate( config_and_inputs[1]["input_ids"] , num_beams=1 , max_length=3 , output_attentions=lowercase , return_dict_in_generate=lowercase , **lowercase , ) # We check the state of decoder_attentions and cross_attentions just from the last step lowerCamelCase_ = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip("Does not work on the tiny model as we keep hitting edge cases." ) def SCREAMING_SNAKE_CASE_( self ) -> Tuple: pass @require_torch @require_sentencepiece @require_tokenizers class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow @unittest.skip( "Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged" ) def SCREAMING_SNAKE_CASE_( self ) -> int: lowerCamelCase_ = UMTaForConditionalGeneration.from_pretrained("google/umt5-small" , return_dict=lowercase ).to(lowercase ) lowerCamelCase_ = AutoTokenizer.from_pretrained("google/umt5-small" , use_fast=lowercase , legacy=lowercase ) lowerCamelCase_ = [ "Bonjour monsieur <extra_id_0> bien <extra_id_1>.", "No se como puedo <extra_id_0>.", "This is the reason why we <extra_id_0> them.", "The <extra_id_0> walks in <extra_id_1>, seats", "A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.", ] lowerCamelCase_ = tokenizer(lowercase , return_tensors="pt" , padding=lowercase ).input_ids # fmt: off lowerCamelCase_ = torch.tensor( [ [ 38530, 210703, 256299, 1410, 256298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 25922, 256299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1460, 339, 312, 19014, 10620, 758, 256299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 256299, 14869, 281, 301, 256298, 275, 119983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 256299, 14869, 281, 2234, 289, 2275, 333,61391, 289, 256298, 543, 256297, 168714, 329, 256296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(lowercase , lowercase ) lowerCamelCase_ = model.generate(input_ids.to(lowercase ) ) lowerCamelCase_ = [ "<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>", "<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", "<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", "<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", "<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", ] lowerCamelCase_ = tokenizer.batch_decode(lowercase ) self.assertEqual(lowercase , lowercase )
463
1
'''simple docstring''' from __future__ import annotations __lowerCAmelCase = [-1_0, -5, 0, 5, 5.1, 1_1, 1_3, 2_1, 3, 4, -2_1, -1_0, -5, -1, 0] __lowerCAmelCase = [-5, 0, 5, 5.1, 1_1, 1_3, 2_1, -1, 4, -1, -1_0, -5, -1, 0, -1] def UpperCAmelCase_ (__a : list[float] ): """simple docstring""" _a : Optional[Any] = [] _a : Tuple = len(__a ) for i in range(__a ): _a : float = -1 for j in range(i + 1 , __a ): if arr[i] < arr[j]: _a : int = arr[j] break result.append(__a ) return result def UpperCAmelCase_ (__a : list[float] ): """simple docstring""" _a : int = [] for i, outer in enumerate(__a ): _a : float = -1 for inner in arr[i + 1 :]: if outer < inner: _a : int = inner break result.append(__a ) return result def UpperCAmelCase_ (__a : list[float] ): """simple docstring""" _a : Union[str, Any] = len(__a ) _a : list[float] = [] _a : list[float] = [-1] * arr_size for index in reversed(range(__a ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: _a : str = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) __lowerCAmelCase = ( """from __main__ import arr, next_greatest_element_slow, """ """next_greatest_element_fast, next_greatest_element""" ) print( """next_greatest_element_slow():""", timeit("""next_greatest_element_slow(arr)""", setup=setup), ) print( """next_greatest_element_fast():""", timeit("""next_greatest_element_fast(arr)""", setup=setup), ) print( """ next_greatest_element():""", timeit("""next_greatest_element(arr)""", setup=setup), )
708
'''simple docstring''' import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer __lowerCAmelCase = logging.get_logger(__name__) class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" __UpperCAmelCase : int = '''AutoTokenizer''' __UpperCAmelCase : Optional[Any] = ['''tokenizer'''] __UpperCAmelCase : str = { '''semantic_prompt''': 1, '''coarse_prompt''': 2, '''fine_prompt''': 2, } def __init__( self : Union[str, Any] ,_a : Union[str, Any] ,_a : Dict=None ): '''simple docstring''' super().__init__(_a ) _a : List[str] = speaker_embeddings @classmethod def __lowercase ( cls : Any ,_a : Optional[int] ,_a : Union[str, Any]="speaker_embeddings_path.json" ,**_a : Union[str, Any] ): '''simple docstring''' if speaker_embeddings_dict_path is not None: _a : Tuple = get_file_from_repo( _a ,_a ,subfolder=kwargs.pop('subfolder' ,_a ) ,cache_dir=kwargs.pop('cache_dir' ,_a ) ,force_download=kwargs.pop('force_download' ,_a ) ,proxies=kwargs.pop('proxies' ,_a ) ,resume_download=kwargs.pop('resume_download' ,_a ) ,local_files_only=kwargs.pop('local_files_only' ,_a ) ,use_auth_token=kwargs.pop('use_auth_token' ,_a ) ,revision=kwargs.pop('revision' ,_a ) ,) if speaker_embeddings_path is None: logger.warning( F"""`{os.path.join(_a ,_a )}` does not exists , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.""" ) _a : List[Any] = None else: with open(_a ) as speaker_embeddings_json: _a : List[str] = json.load(_a ) else: _a : str = None _a : Any = AutoTokenizer.from_pretrained(_a ,**_a ) return cls(tokenizer=_a ,speaker_embeddings=_a ) def __lowercase ( self : List[str] ,_a : Tuple ,_a : Any="speaker_embeddings_path.json" ,_a : Optional[int]="speaker_embeddings" ,_a : bool = False ,**_a : Optional[int] ,): '''simple docstring''' if self.speaker_embeddings is not None: os.makedirs(os.path.join(_a ,_a ,'v2' ) ,exist_ok=_a ) _a : Optional[Any] = {} _a : List[str] = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": _a : Any = self._load_voice_preset(_a ) _a : Tuple = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict['repo_or_path'] ,_a ,F"""{prompt_key}_{key}""" ) ,voice_preset[key] ,allow_pickle=_a ,) _a : Dict = os.path.join(_a ,F"""{prompt_key}_{key}.npy""" ) _a : Any = tmp_dict with open(os.path.join(_a ,_a ) ,'w' ) as fp: json.dump(_a ,_a ) super().save_pretrained(_a ,_a ,**_a ) def __lowercase ( self : Tuple ,_a : str = None ,**_a : List[Any] ): '''simple docstring''' _a : Optional[Any] = self.speaker_embeddings[voice_preset] _a : Optional[Any] = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( F"""Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].""" ) _a : List[Any] = get_file_from_repo( self.speaker_embeddings.get('repo_or_path' ,'/' ) ,voice_preset_paths[key] ,subfolder=kwargs.pop('subfolder' ,_a ) ,cache_dir=kwargs.pop('cache_dir' ,_a ) ,force_download=kwargs.pop('force_download' ,_a ) ,proxies=kwargs.pop('proxies' ,_a ) ,resume_download=kwargs.pop('resume_download' ,_a ) ,local_files_only=kwargs.pop('local_files_only' ,_a ) ,use_auth_token=kwargs.pop('use_auth_token' ,_a ) ,revision=kwargs.pop('revision' ,_a ) ,) if path is None: raise ValueError( F"""`{os.path.join(self.speaker_embeddings.get('repo_or_path' ,'/' ) ,voice_preset_paths[key] )}` does not exists , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset} embeddings.""" ) _a : Tuple = np.load(_a ) return voice_preset_dict def __lowercase ( self : List[Any] ,_a : Optional[dict] = None ): '''simple docstring''' for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(F"""Voice preset unrecognized, missing {key} as a key.""" ) if not isinstance(voice_preset[key] ,np.ndarray ): raise ValueError(F"""{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.""" ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(F"""{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.""" ) def __call__( self : Any ,_a : List[str]=None ,_a : Tuple=None ,_a : Tuple="pt" ,_a : Any=256 ,_a : Optional[Any]=False ,_a : List[str]=True ,_a : Optional[Any]=False ,**_a : Dict ,): '''simple docstring''' if voice_preset is not None and not isinstance(_a ,_a ): if ( isinstance(_a ,_a ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): _a : Union[str, Any] = self._load_voice_preset(_a ) else: if isinstance(_a ,_a ) and not voice_preset.endswith('.npz' ): _a : str = voice_preset + '.npz' _a : Optional[int] = np.load(_a ) if voice_preset is not None: self._validate_voice_preset_dict(_a ,**_a ) _a : List[str] = BatchFeature(data=_a ,tensor_type=_a ) _a : List[Any] = self.tokenizer( _a ,return_tensors=_a ,padding='max_length' ,max_length=_a ,return_attention_mask=_a ,return_token_type_ids=_a ,add_special_tokens=_a ,**_a ,) if voice_preset is not None: _a : Dict = voice_preset return encoded_text
319
0
'''simple docstring''' import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = LEDTokenizer SCREAMING_SNAKE_CASE_ = LEDTokenizerFast SCREAMING_SNAKE_CASE_ = True def UpperCamelCase( self ) -> str: '''simple docstring''' super().setUp() lowerCamelCase_ = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] lowerCamelCase_ = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) lowerCamelCase_ = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] lowerCamelCase_ = {'unk_token': '<unk>'} lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(SCREAMING_SNAKE_CASE_ ) ) def UpperCamelCase( self , **SCREAMING_SNAKE_CASE_ ) -> int: '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self , **SCREAMING_SNAKE_CASE_ ) -> Tuple: '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: '''simple docstring''' return "lower newer", "lower newer" @cached_property def UpperCamelCase( self ) -> str: '''simple docstring''' return LEDTokenizer.from_pretrained('allenai/led-base-16384' ) @cached_property def UpperCamelCase( self ) -> Any: '''simple docstring''' return LEDTokenizerFast.from_pretrained('allenai/led-base-16384' ) @require_torch def UpperCamelCase( self ) -> List[str]: '''simple docstring''' lowerCamelCase_ = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] lowerCamelCase_ = [0, 250, 251, 17818, 13, 39186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase_ = tokenizer(SCREAMING_SNAKE_CASE_ , max_length=len(SCREAMING_SNAKE_CASE_ ) , padding=SCREAMING_SNAKE_CASE_ , return_tensors='pt' ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) lowerCamelCase_ = batch.input_ids.tolist()[0] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @require_torch def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase_ = tokenizer(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , return_tensors='pt' ) self.assertIn('input_ids' , SCREAMING_SNAKE_CASE_ ) self.assertIn('attention_mask' , SCREAMING_SNAKE_CASE_ ) self.assertNotIn('labels' , SCREAMING_SNAKE_CASE_ ) self.assertNotIn('decoder_attention_mask' , SCREAMING_SNAKE_CASE_ ) @require_torch def UpperCamelCase( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ = [ 'Summary of the text.', 'Another summary.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase_ = tokenizer(text_target=SCREAMING_SNAKE_CASE_ , max_length=32 , padding='max_length' , return_tensors='pt' ) self.assertEqual(32 , targets['input_ids'].shape[1] ) @require_torch def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase_ = tokenizer( ['I am a small frog' * 1024, 'I am a small frog'] , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , return_tensors='pt' ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(batch.input_ids.shape , (2, 5122) ) @require_torch def UpperCamelCase( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ = ['A long paragraph for summarization.'] lowerCamelCase_ = [ 'Summary of the text.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase_ = tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors='pt' ) lowerCamelCase_ = tokenizer(text_target=SCREAMING_SNAKE_CASE_ , return_tensors='pt' ) lowerCamelCase_ = inputs['input_ids'] lowerCamelCase_ = targets['input_ids'] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def UpperCamelCase( self ) -> Tuple: '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase_ = ['Summary of the text.', 'Another summary.'] lowerCamelCase_ = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] lowerCamelCase_ = tokenizer(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = [[0] * len(SCREAMING_SNAKE_CASE_ ) for x in encoded_output['input_ids']] lowerCamelCase_ = tokenizer.pad(SCREAMING_SNAKE_CASE_ ) self.assertSequenceEqual(outputs['global_attention_mask'] , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Optional[int]: '''simple docstring''' pass def UpperCamelCase( self ) -> Optional[int]: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = 'A, <mask> AllenNLP sentence.' lowerCamelCase_ = tokenizer_r.encode_plus(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer_p.encode_plus(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ ) self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) lowerCamelCase_ = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) lowerCamelCase_ = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) self.assertSequenceEqual(tokens_p['input_ids'] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( SCREAMING_SNAKE_CASE_ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( SCREAMING_SNAKE_CASE_ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
42
import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def UpperCAmelCase_ ( _A , _A , _A , _A , _A = None , _A = None , _A = None , ): '''simple docstring''' if config_name_or_path is None: SCREAMING_SNAKE_CASE__ = '''facebook/rag-token-base''' if model_type == '''rag_token''' else '''facebook/rag-sequence-base''' if generator_tokenizer_name_or_path is None: SCREAMING_SNAKE_CASE__ = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: SCREAMING_SNAKE_CASE__ = question_encoder_name_or_path SCREAMING_SNAKE_CASE__ = RagTokenForGeneration if model_type == '''rag_token''' else RagSequenceForGeneration # Save model. SCREAMING_SNAKE_CASE__ = RagConfig.from_pretrained(_A ) SCREAMING_SNAKE_CASE__ = AutoConfig.from_pretrained(_A ) SCREAMING_SNAKE_CASE__ = AutoConfig.from_pretrained(_A ) SCREAMING_SNAKE_CASE__ = gen_config SCREAMING_SNAKE_CASE__ = question_encoder_config SCREAMING_SNAKE_CASE__ = model_class.from_pretrained_question_encoder_generator( _A , _A , config=_A ) rag_model.save_pretrained(_A ) # Sanity check. model_class.from_pretrained(_A ) # Save tokenizers. SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(_A ) gen_tokenizer.save_pretrained(dest_dir / '''generator_tokenizer/''' ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(_A ) question_encoder_tokenizer.save_pretrained(dest_dir / '''question_encoder_tokenizer/''' ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : str = argparse.ArgumentParser() parser.add_argument( '''--model_type''', choices=['''rag_sequence''', '''rag_token'''], required=True, type=str, help='''RAG model type: rag_sequence, rag_token''', ) parser.add_argument('''--dest''', type=str, required=True, help='''Path to the output checkpoint directory.''') parser.add_argument('''--generator_name_or_path''', type=str, required=True, help='''Generator model identifier''') parser.add_argument( '''--question_encoder_name_or_path''', type=str, required=True, help='''Question encoder model identifier''' ) parser.add_argument( '''--generator_tokenizer_name_or_path''', type=str, help='''Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``''', ) parser.add_argument( '''--question_encoder_tokenizer_name_or_path''', type=str, help='''Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``''', ) parser.add_argument( '''--config_name_or_path''', type=str, help=( '''Identifier of the model config to use, if not provided, resolves to a base config for a given''' ''' ``model_type``''' ), ) _SCREAMING_SNAKE_CASE : List[Any] = parser.parse_args() _SCREAMING_SNAKE_CASE : str = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
493
0
_a: List[Any] = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_0000)] def __lowerCAmelCase ( A ): UpperCAmelCase_ = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 100000] number //= 100000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution _a: list[bool | None] = [None] * 1000_0000 _a: Any = True _a: Optional[Any] = False def __lowerCAmelCase ( A ): if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore UpperCAmelCase_ = chain(next_number(A ) ) UpperCAmelCase_ = number_chain while number < 10000000: UpperCAmelCase_ = number_chain number *= 10 return number_chain def __lowerCAmelCase ( A = 10000000 ): for i in range(1 , A ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(A ) if __name__ == "__main__": import doctest doctest.testmod() print(F'{solution() = }')
268
import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _a: str = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class __UpperCamelCase ( lowercase , unittest.TestCase ): SCREAMING_SNAKE_CASE__ = ReformerTokenizer SCREAMING_SNAKE_CASE__ = ReformerTokenizerFast SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = True def __A ( self : Dict ): '''simple docstring''' super().setUp() UpperCAmelCase_ = ReformerTokenizer(lowerCAmelCase , keep_accents=lowerCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __A ( self : List[Any] ): '''simple docstring''' UpperCAmelCase_ = "<s>" UpperCAmelCase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase ) , lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase ) , lowerCAmelCase ) def __A ( self : Dict ): '''simple docstring''' UpperCAmelCase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(lowerCAmelCase ) , 1_000 ) def __A ( self : List[Any] ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_000 ) def __A ( self : str ): '''simple docstring''' if not self.test_rust_tokenizer: return UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = "I was born in 92000, and this is falsé." UpperCAmelCase_ = tokenizer.tokenize(lowerCAmelCase ) UpperCAmelCase_ = rust_tokenizer.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase_ = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) UpperCAmelCase_ = rust_tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = tokenizer.encode(lowerCAmelCase ) UpperCAmelCase_ = rust_tokenizer.encode(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) def __A ( self : List[Any] , lowerCAmelCase : Optional[int]=15 ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): UpperCAmelCase_ = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase , **lowerCAmelCase ) # Simple input UpperCAmelCase_ = "This is a simple input" UpperCAmelCase_ = ["This is a simple input 1", "This is a simple input 2"] UpperCAmelCase_ = ("This is a simple input", "This is a pair") UpperCAmelCase_ = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(lowerCAmelCase , tokenizer_r.encode , lowerCAmelCase , max_length=lowerCAmelCase , padding="max_length" ) # Simple input self.assertRaises(lowerCAmelCase , tokenizer_r.encode_plus , lowerCAmelCase , max_length=lowerCAmelCase , padding="max_length" ) # Simple input self.assertRaises( lowerCAmelCase , tokenizer_r.batch_encode_plus , lowerCAmelCase , max_length=lowerCAmelCase , padding="max_length" , ) # Pair input self.assertRaises(lowerCAmelCase , tokenizer_r.encode , lowerCAmelCase , max_length=lowerCAmelCase , padding="max_length" ) # Pair input self.assertRaises(lowerCAmelCase , tokenizer_r.encode_plus , lowerCAmelCase , max_length=lowerCAmelCase , padding="max_length" ) # Pair input self.assertRaises( lowerCAmelCase , tokenizer_r.batch_encode_plus , lowerCAmelCase , max_length=lowerCAmelCase , padding="max_length" , ) def __A ( self : Union[str, Any] ): '''simple docstring''' pass def __A ( self : Dict ): '''simple docstring''' UpperCAmelCase_ = ReformerTokenizer(lowerCAmelCase , keep_accents=lowerCAmelCase ) UpperCAmelCase_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowerCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase ) , [285, 46, 10, 170, 382] , ) UpperCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowerCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(lowerCAmelCase ) self.assertListEqual( lowerCAmelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(lowerCAmelCase ) self.assertListEqual( lowerCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def __A ( self : int ): '''simple docstring''' return ReformerTokenizer.from_pretrained("google/reformer-crime-and-punishment" ) @slow def __A ( self : str ): '''simple docstring''' UpperCAmelCase_ = "Hello World!" UpperCAmelCase_ = [126, 32, 262, 152, 38, 72, 287] self.assertListEqual(lowerCAmelCase , self.big_tokenizer.encode(lowerCAmelCase ) ) @slow def __A ( self : int ): '''simple docstring''' UpperCAmelCase_ = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) UpperCAmelCase_ = [ 108, 265, 24, 111, 4, 258, 156, 35, 28, 275, 3, 259, 297, 260, 84, 4, 35, 110, 44, 8, 259, 91, 268, 21, 11, 209, 274, 109, 266, 277, 117, 86, 93, 315, 258, 278, 258, 277, 258, 0, 258, 288, 258, 319, 258, 0, 258, 0, 258, 0, 258, 0, 258, 287, 258, 315, 258, 289, 258, 278, 99, 269, 266, 262, 8, 259, 241, 4, 217, 230, 268, 266, 55, 168, 106, 75, 193, 266, 223, 27, 49, 26, 282, 25, 264, 299, 19, 26, 0, 258, 277, 117, 86, 93, 176, 183, 270, 11, 262, 42, 61, 265, ] self.assertListEqual(lowerCAmelCase , self.big_tokenizer.encode(lowerCAmelCase ) ) @require_torch @slow def __A ( self : Tuple ): '''simple docstring''' import torch from transformers import ReformerConfig, ReformerModel # Build sequence UpperCAmelCase_ = list(self.big_tokenizer.get_vocab().keys() )[:10] UpperCAmelCase_ = " ".join(lowerCAmelCase ) UpperCAmelCase_ = self.big_tokenizer.encode_plus(lowerCAmelCase , return_tensors="pt" ) UpperCAmelCase_ = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors="pt" ) UpperCAmelCase_ = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) UpperCAmelCase_ = encoded_sequence["input_ids"].shape UpperCAmelCase_ = ReformerModel(lowerCAmelCase ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**lowerCAmelCase ) model(**lowerCAmelCase ) @slow def __A ( self : Any ): '''simple docstring''' UpperCAmelCase_ = {"input_ids": [[108, 265, 24, 111, 4, 258, 156, 7, 51, 279, 58, 7, 76, 25, 69, 278], [140, 243, 264, 134, 17, 267, 77, 263, 22, 262, 297, 258, 304, 177, 279, 266, 14, 89, 13, 35, 261, 299, 272, 137, 275, 278]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 UpperCAmelCase_ = [ "This is a very simple sentence.", "The quick brown fox jumps over the lazy dog.", ] self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase , model_name="google/reformer-crime-and-punishment" , revision="0e6c3decb8211d49bf881013425dc8b0448b3f5a" , padding=lowerCAmelCase , sequences=lowerCAmelCase , )
268
1
'''simple docstring''' import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = """https://openaipublic.azureedge.net/jukebox/models/""" __lowerCAmelCase = { """jukebox-1b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """1b_lyrics/prior_level_2.pth.tar""", ], """jukebox-5b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """5b_lyrics/prior_level_2.pth.tar""", ], } def UpperCAmelCase_ (__a : List[Any] ): """simple docstring""" if key.endswith('.model.1.bias' ) and len(key.split('.' ) ) > 1_0: _a : Union[str, Any] = key.replace('.model.1.bias' , '.conv1d_1.bias' ) elif key.endswith('.model.1.weight' ) and len(key.split('.' ) ) > 1_0: _a : Optional[Any] = key.replace('.model.1.weight' , '.conv1d_1.weight' ) elif key.endswith('.model.3.bias' ) and len(key.split('.' ) ) > 1_0: _a : str = key.replace('.model.3.bias' , '.conv1d_2.bias' ) elif key.endswith('.model.3.weight' ) and len(key.split('.' ) ) > 1_0: _a : Optional[Any] = key.replace('.model.3.weight' , '.conv1d_2.weight' ) if "conditioner_blocks.0." in key: _a : Dict = key.replace('conditioner_blocks.0' , 'conditioner_blocks' ) if "prime_prior" in key: _a : Union[str, Any] = key.replace('prime_prior' , 'encoder' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: _a : List[str] = key.replace('.emb.' , '.' ) if key.endswith('k' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('.k' , '.codebook' ) if "y_emb." in key: return key.replace('y_emb.' , 'metadata_embedding.' ) if "x_emb.emb." in key: _a : str = key.replace('0.x_emb.emb' , 'embed_tokens' ) if "prime_state_ln" in key: return key.replace('prime_state_ln' , 'encoder.final_layer_norm' ) if ".ln" in key: return key.replace('.ln' , '.layer_norm' ) if "_ln" in key: return key.replace('_ln' , '_layer_norm' ) if "prime_state_proj" in key: return key.replace('prime_state_proj' , 'encoder.proj_in' ) if "prime_x_out" in key: return key.replace('prime_x_out' , 'encoder.lm_head' ) if "prior.x_out" in key: return key.replace('x_out' , 'fc_proj_out' ) if "x_emb" in key: return key.replace('x_emb' , 'embed_tokens' ) return key def UpperCAmelCase_ (__a : Optional[Any] , __a : str , __a : Any , __a : Optional[int] ): """simple docstring""" _a : Optional[int] = {} import re _a : Optional[int] = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _a : Any = re.compile( R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _a : Union[str, Any] = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _a : Optional[Any] = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _a : Optional[int] = re.compile( R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _a : str = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _a : int = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)' ) _a : str = re.compile( R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _a : List[Any] = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_snake_case ): _a : List[str] = re_encoder_block_conv_in.match(_snake_case ) _a : List[str] = regex_match.groups() _a : Optional[int] = int(groups[2] ) * 2 + int(groups[3] ) _a : Any = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}""" _a : List[Any] = re_encoder_block_conv_in.sub(_snake_case , _snake_case ) elif re_encoder_block_resnet.fullmatch(_snake_case ): _a : Optional[Any] = re_encoder_block_resnet.match(_snake_case ) _a : Optional[Any] = regex_match.groups() _a : Dict = int(groups[2] ) * 2 + int(groups[3] ) _a : Optional[int] = {'1': 1, '3': 2}[groups[-2]] _a : Any = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.""" _a : Dict = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" _a : int = prefix + resnet_block _a : Union[str, Any] = re_encoder_block_resnet.sub(_snake_case , _snake_case ) elif re_encoder_block_proj_out.fullmatch(_snake_case ): _a : str = re_encoder_block_proj_out.match(_snake_case ) _a : str = regex_match.groups() _a : str = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}""" _a : int = re_encoder_block_proj_out.sub(_snake_case , _snake_case ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_snake_case ): _a : List[str] = re_decoder_block_conv_out.match(_snake_case ) _a : Any = regex_match.groups() _a : List[Any] = int(groups[2] ) * 2 + int(groups[3] ) - 2 _a : Dict = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}""" _a : Optional[int] = re_decoder_block_conv_out.sub(_snake_case , _snake_case ) elif re_decoder_block_resnet.fullmatch(_snake_case ): _a : Optional[int] = re_decoder_block_resnet.match(_snake_case ) _a : Optional[Any] = regex_match.groups() _a : List[str] = int(groups[2] ) * 2 + int(groups[3] ) - 2 _a : Dict = {'1': 1, '3': 2}[groups[-2]] _a : int = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.""" _a : Tuple = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" _a : List[Any] = prefix + resnet_block _a : Tuple = re_decoder_block_resnet.sub(_snake_case , _snake_case ) elif re_decoder_block_proj_in.fullmatch(_snake_case ): _a : Dict = re_decoder_block_proj_in.match(_snake_case ) _a : List[str] = regex_match.groups() _a : Tuple = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}""" _a : Dict = re_decoder_block_proj_in.sub(_snake_case , _snake_case ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_snake_case ): _a : Union[str, Any] = re_prior_cond_conv_out.match(_snake_case ) _a : Tuple = regex_match.groups() _a : Tuple = int(groups[1] ) * 2 + int(groups[2] ) - 2 _a : List[Any] = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}""" _a : Tuple = re_prior_cond_conv_out.sub(_snake_case , _snake_case ) elif re_prior_cond_resnet.fullmatch(_snake_case ): _a : Dict = re_prior_cond_resnet.match(_snake_case ) _a : List[Any] = regex_match.groups() _a : Union[str, Any] = int(groups[1] ) * 2 + int(groups[2] ) - 2 _a : int = {'1': 1, '3': 2}[groups[-2]] _a : Dict = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.""" _a : List[Any] = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" _a : Optional[int] = prefix + resnet_block _a : Any = re_prior_cond_resnet.sub(_snake_case , _snake_case ) elif re_prior_cond_proj_in.fullmatch(_snake_case ): _a : Dict = re_prior_cond_proj_in.match(_snake_case ) _a : List[Any] = regex_match.groups() _a : Any = f"""conditioner_blocks.upsampler.proj_in.{groups[-1]}""" _a : str = re_prior_cond_proj_in.sub(_snake_case , _snake_case ) # keep original key else: _a : Tuple = original_key _a : List[Any] = replace_key(_snake_case ) if f"""{key_prefix}.{key}""" not in model_state_dict or key is None: print(f"""failed converting {original_key} to {key}, does not match""" ) # handle missmatched shape elif value.shape != model_state_dict[f"""{key_prefix}.{key}"""].shape: _a : int = model_state_dict[f"""{key_prefix}.{key}"""] print(f"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""" ) _a : Optional[Any] = original_key _a : str = original_key _a : List[str] = value return new_dict @torch.no_grad() def UpperCAmelCase_ (__a : Optional[Any]=None , __a : Union[str, Any]=None ): """simple docstring""" for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f"""{pytorch_dump_folder_path}/{file.split('/' )[-1]}""" ): _a : List[str] = requests.get(f"""{PREFIX}{file}""" , allow_redirects=_snake_case ) os.makedirs(f"""{pytorch_dump_folder_path}/""" , exist_ok=_snake_case ) open(f"""{pytorch_dump_folder_path}/{file.split('/' )[-1]}""" , 'wb' ).write(r.content ) _a : int = MODEL_MAPPING[model_name.split('/' )[-1]] _a : Tuple = JukeboxConfig.from_pretrained(_snake_case ) _a : Union[str, Any] = JukeboxModel(_snake_case ) _a : Optional[int] = [] _a : str = {} for i, dict_name in enumerate(_snake_case ): _a : Optional[Any] = torch.load(f"""{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}""" )['model'] _a : Union[str, Any] = {} for k in old_dic.keys(): if k.endswith('.b' ): _a : List[str] = old_dic[k] elif k.endswith('.w' ): _a : Optional[Any] = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: _a : Tuple = old_dic[k] else: _a : Dict = old_dic[k] _a : List[Any] = 'vqvae' if i == 0 else f"""priors.{3 - i}""" _a : Any = fix_jukebox_keys(_snake_case , model.state_dict() , _snake_case , _snake_case ) weight_dict.append(_snake_case ) _a : str = weight_dict.pop(0 ) model.vqvae.load_state_dict(_snake_case ) for i in range(len(_snake_case ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_snake_case ).mkdir(exist_ok=_snake_case ) with open(f"""{pytorch_dump_folder_path}/mapping.json""" , 'w' ) as txtfile: json.dump(_snake_case , _snake_case ) print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_snake_case ) return weight_dict if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""jukebox-5b-lyrics""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""jukebox-5b-lyrics-converted""", type=str, help="""Path to the output PyTorch model directory.""", ) __lowerCAmelCase = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
229
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" def snake_case_ ( self : Tuple ) -> Optional[int]: _A = tempfile.mkdtemp() _A = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) _A = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4814_5466, 0.457_8275, 0.4082_1073], '''image_std''': [0.2686_2954, 0.2613_0258, 0.2757_7711], } _A = os.path.join(self.tmpdirname , __lowerCAmelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__lowerCAmelCase , __lowerCAmelCase ) def snake_case_ ( self : Dict , **__lowerCAmelCase : int ) -> Optional[int]: return BertTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def snake_case_ ( self : str , **__lowerCAmelCase : Optional[Any] ) -> Tuple: return BertTokenizerFast.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def snake_case_ ( self : Tuple , **__lowerCAmelCase : str ) -> Union[str, Any]: return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def snake_case_ ( self : Optional[Any] ) -> Optional[int]: shutil.rmtree(self.tmpdirname ) def snake_case_ ( self : int ) -> Optional[Any]: _A = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] _A = [Image.fromarray(np.moveaxis(__lowerCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def snake_case_ ( self : Dict ) -> List[str]: _A = self.get_tokenizer() _A = self.get_rust_tokenizer() _A = self.get_image_processor() _A = AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) _A = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=__lowerCAmelCase ) _A = AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) _A = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __lowerCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , __lowerCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __lowerCAmelCase ) self.assertIsInstance(processor_fast.image_processor , __lowerCAmelCase ) def snake_case_ ( self : List[Any] ) -> List[str]: _A = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _A = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) _A = self.get_image_processor(do_normalize=__lowerCAmelCase , padding_value=1.0 ) _A = AlignProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowerCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowerCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCAmelCase ) def snake_case_ ( self : str ) -> List[Any]: _A = self.get_image_processor() _A = self.get_tokenizer() _A = AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) _A = self.prepare_image_inputs() _A = image_processor(__lowerCAmelCase , return_tensors='''np''' ) _A = processor(images=__lowerCAmelCase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def snake_case_ ( self : Union[str, Any] ) -> Dict: _A = self.get_image_processor() _A = self.get_tokenizer() _A = AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) _A = '''lower newer''' _A = processor(text=__lowerCAmelCase ) _A = tokenizer(__lowerCAmelCase , padding='''max_length''' , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def snake_case_ ( self : List[str] ) -> Any: _A = self.get_image_processor() _A = self.get_tokenizer() _A = AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) _A = '''lower newer''' _A = self.prepare_image_inputs() _A = processor(text=__lowerCAmelCase , images=__lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowerCAmelCase ): processor() def snake_case_ ( self : Optional[Any] ) -> str: _A = self.get_image_processor() _A = self.get_tokenizer() _A = AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) _A = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _A = processor.batch_decode(__lowerCAmelCase ) _A = tokenizer.batch_decode(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) def snake_case_ ( self : str ) -> str: _A = self.get_image_processor() _A = self.get_tokenizer() _A = AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) _A = '''lower newer''' _A = self.prepare_image_inputs() _A = processor(text=__lowerCAmelCase , images=__lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
2
0
"""simple docstring""" import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate lowerCamelCase__ = trt.Logger(trt.Logger.WARNING) lowerCamelCase__ = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) lowerCamelCase__ = logging.getLogger(__name__) lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--onnx_model_path""", default=None, type=str, required=True, help="""Path to ONNX model: """, ) parser.add_argument( """--output_dir""", default=None, type=str, required=True, help="""The output directory where the model checkpoints and predictions will be written.""", ) # Other parameters parser.add_argument( """--tokenizer_name""", default="""""", type=str, required=True, help="""Pretrained tokenizer name or path if not the same as model_name""", ) parser.add_argument( """--version_2_with_negative""", action="""store_true""", help="""If true, the SQuAD examples contain some that do not have an answer.""", ) parser.add_argument( """--null_score_diff_threshold""", type=float, default=0.0, help="""If null_score - best_non_null is greater than the threshold predict null.""", ) parser.add_argument( """--max_seq_length""", default=384, type=int, help=( """The maximum total input sequence length after WordPiece tokenization. Sequences """ """longer than this will be truncated, and sequences shorter than this will be padded.""" ), ) parser.add_argument( """--doc_stride""", default=128, type=int, help="""When splitting up a long document into chunks, how much stride to take between chunks.""", ) parser.add_argument("""--per_device_eval_batch_size""", default=8, type=int, help="""Batch size per GPU/CPU for evaluation.""") parser.add_argument( """--n_best_size""", default=20, type=int, help="""The total number of n-best predictions to generate in the nbest_predictions.json output file.""", ) parser.add_argument( """--max_answer_length""", default=30, type=int, help=( """The maximum length of an answer that can be generated. This is needed because the start """ """and end predictions are not conditioned on one another.""" ), ) parser.add_argument("""--seed""", type=int, default=42, help="""random seed for initialization""") parser.add_argument( """--dataset_name""", type=str, default=None, required=True, help="""The name of the dataset to use (via the datasets library).""", ) parser.add_argument( """--dataset_config_name""", type=str, default=None, help="""The configuration name of the dataset to use (via the datasets library).""", ) parser.add_argument( """--preprocessing_num_workers""", type=int, default=4, help="""A csv or a json file containing the training data.""" ) parser.add_argument("""--overwrite_cache""", action="""store_true""", help="""Overwrite the cached training and evaluation sets""") parser.add_argument( """--fp16""", action="""store_true""", help="""Whether to use 16-bit (mixed) precision instead of 32-bit""", ) parser.add_argument( """--int8""", action="""store_true""", help="""Whether to use INT8""", ) lowerCamelCase__ = parser.parse_args() if args.tokenizer_name: lowerCamelCase__ = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported by this script.""" """You can do it from another script, save it, and load it from here, using --tokenizer_name.""" ) logger.info("""Training/evaluation parameters %s""", args) lowerCamelCase__ = args.per_device_eval_batch_size lowerCamelCase__ = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties lowerCamelCase__ = True lowerCamelCase__ = """temp_engine/bert-fp32.engine""" if args.fpaa: lowerCamelCase__ = """temp_engine/bert-fp16.engine""" if args.inta: lowerCamelCase__ = """temp_engine/bert-int8.engine""" # import ONNX file if not os.path.exists("""temp_engine"""): os.makedirs("""temp_engine""") lowerCamelCase__ = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, """rb""") as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network lowerCamelCase__ = [network.get_input(i) for i in range(network.num_inputs)] lowerCamelCase__ = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: lowerCamelCase__ = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) lowerCamelCase__ = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) lowerCamelCase__ = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, """wb""") as f: f.write(engine.serialize()) def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : Tuple = np.asarray(inputs['input_ids'] , dtype=np.intaa ) __lowerCAmelCase : Union[str, Any] = np.asarray(inputs['attention_mask'] , dtype=np.intaa ) __lowerCAmelCase : List[str] = np.asarray(inputs['token_type_ids'] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , _UpperCamelCase ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , _UpperCamelCase ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , _UpperCamelCase ) # start time __lowerCAmelCase : List[Any] = time.time() # Run inference context.execute_async( bindings=[int(_UpperCamelCase ) for d_inp in d_inputs] + [int(_UpperCamelCase ), int(_UpperCamelCase )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) cuda.memcpy_dtoh_async(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Synchronize the stream and take time stream.synchronize() # end time __lowerCAmelCase : str = time.time() __lowerCAmelCase : Optional[Any] = end_time - start_time __lowerCAmelCase : Optional[int] = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. lowerCamelCase__ = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowerCamelCase__ = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError("""Evaluation requires a dataset name""") # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. lowerCamelCase__ = raw_datasets["""validation"""].column_names lowerCamelCase__ = """question""" if """question""" in column_names else column_names[0] lowerCamelCase__ = """context""" if """context""" in column_names else column_names[1] lowerCamelCase__ = """answers""" if """answers""" in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). lowerCamelCase__ = tokenizer.padding_side == """right""" if args.max_seq_length > tokenizer.model_max_length: logger.warning( f'The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the' f'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) lowerCamelCase__ = min(args.max_seq_length, tokenizer.model_max_length) def __lowerCAmelCase (_UpperCamelCase ): # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace __lowerCAmelCase : Tuple = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. __lowerCAmelCase : Union[str, Any] = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation='only_second' if pad_on_right else 'only_first' , max_length=_UpperCamelCase , stride=args.doc_stride , return_overflowing_tokens=_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , padding='max_length' , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. __lowerCAmelCase : str = tokenized_examples.pop('overflow_to_sample_mapping' ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. __lowerCAmelCase : List[Any] = [] for i in range(len(tokenized_examples['input_ids'] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). __lowerCAmelCase : Optional[int] = tokenized_examples.sequence_ids(_UpperCamelCase ) __lowerCAmelCase : List[Any] = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. __lowerCAmelCase : List[Any] = sample_mapping[i] tokenized_examples["example_id"].append(examples['id'][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. __lowerCAmelCase : Optional[int] = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples['offset_mapping'][i] ) ] return tokenized_examples lowerCamelCase__ = raw_datasets["""validation"""] # Validation Feature Creation lowerCamelCase__ = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc="""Running tokenizer on validation dataset""", ) lowerCamelCase__ = default_data_collator lowerCamelCase__ = eval_dataset.remove_columns(["""example_id""", """offset_mapping"""]) lowerCamelCase__ = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase="eval" ): # Post-processing: we match the start logits and end logits to answers in the original context. __lowerCAmelCase : List[str] = postprocess_qa_predictions( examples=_UpperCamelCase , features=_UpperCamelCase , predictions=_UpperCamelCase , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=_UpperCamelCase , ) # Format the result to the format the metric expects. if args.version_2_with_negative: __lowerCAmelCase : Tuple = [ {'id': k, 'prediction_text': v, 'no_answer_probability': 0.0} for k, v in predictions.items() ] else: __lowerCAmelCase : int = [{'id': k, 'prediction_text': v} for k, v in predictions.items()] __lowerCAmelCase : Optional[int] = [{'id': ex['id'], 'answers': ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=_UpperCamelCase , label_ids=_UpperCamelCase ) lowerCamelCase__ = load_metric("""squad_v2""" if args.version_2_with_negative else """squad""") # Evaluation! logger.info("""Loading ONNX model %s for evaluation""", args.onnx_model_path) with open(engine_name, """rb""") as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def __lowerCAmelCase (_UpperCamelCase ): return trt.volume(engine.get_binding_shape(_UpperCamelCase ) ) * engine.get_binding_dtype(_UpperCamelCase ).itemsize # Allocate device memory for inputs and outputs. lowerCamelCase__ = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer lowerCamelCase__ = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) lowerCamelCase__ = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) lowerCamelCase__ = cuda.mem_alloc(h_outputa.nbytes) lowerCamelCase__ = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. lowerCamelCase__ = cuda.Stream() # Evaluation logger.info("""***** Running Evaluation *****""") logger.info(f' Num examples = {len(eval_dataset)}') logger.info(f' Batch size = {args.per_device_eval_batch_size}') lowerCamelCase__ = 0.0 lowerCamelCase__ = 0 lowerCamelCase__ = timeit.default_timer() lowerCamelCase__ = None for step, batch in enumerate(eval_dataloader): lowerCamelCase__ , lowerCamelCase__ = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 lowerCamelCase__ , lowerCamelCase__ = outputs lowerCamelCase__ = torch.tensor(start_logits) lowerCamelCase__ = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered lowerCamelCase__ = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) lowerCamelCase__ = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) lowerCamelCase__ = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) lowerCamelCase__ = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: lowerCamelCase__ = nested_truncate(all_preds, len(eval_dataset)) lowerCamelCase__ = timeit.default_timer() - start_time logger.info(""" Evaluation done in total %f secs (%f sec per example)""", evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info("""Average Inference Time = {:.3f} ms""".format(total_time * 1_000 / niter)) logger.info("""Total Inference Time = {:.3f} ms""".format(total_time * 1_000)) logger.info("""Total Number of Inference = %d""", niter) lowerCamelCase__ = post_processing_function(eval_examples, eval_dataset, all_preds) lowerCamelCase__ = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f'Evaluation metrics: {eval_metric}')
549
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) def __lowerCAmelCase (_UpperCamelCase ): # initialize config if "resnet-50" in model_name: __lowerCAmelCase : int = ResNetConfig.from_pretrained('microsoft/resnet-50' ) elif "resnet-101" in model_name: __lowerCAmelCase : Union[str, Any] = ResNetConfig.from_pretrained('microsoft/resnet-101' ) else: raise ValueError('Model name should include either resnet50 or resnet101' ) __lowerCAmelCase : Union[str, Any] = DetrConfig(use_timm_backbone=_UpperCamelCase , backbone_config=_UpperCamelCase ) # set label attributes __lowerCAmelCase : Optional[int] = 'panoptic' in model_name if is_panoptic: __lowerCAmelCase : Dict = 250 else: __lowerCAmelCase : List[str] = 91 __lowerCAmelCase : Tuple = 'huggingface/label-files' __lowerCAmelCase : str = 'coco-detection-id2label.json' __lowerCAmelCase : Optional[int] = json.load(open(hf_hub_download(_UpperCamelCase , _UpperCamelCase , repo_type='dataset' ) , 'r' ) ) __lowerCAmelCase : List[Any] = {int(_UpperCamelCase ): v for k, v in idalabel.items()} __lowerCAmelCase : List[Any] = idalabel __lowerCAmelCase : Dict = {v: k for k, v in idalabel.items()} return config, is_panoptic def __lowerCAmelCase (_UpperCamelCase ): # here we list all keys to be renamed (original name on the left, our name on the right) __lowerCAmelCase : Tuple = [] # stem # fmt: off rename_keys.append(('backbone.0.body.conv1.weight', 'backbone.conv_encoder.model.embedder.embedder.convolution.weight') ) rename_keys.append(('backbone.0.body.bn1.weight', 'backbone.conv_encoder.model.embedder.embedder.normalization.weight') ) rename_keys.append(('backbone.0.body.bn1.bias', 'backbone.conv_encoder.model.embedder.embedder.normalization.bias') ) rename_keys.append(('backbone.0.body.bn1.running_mean', 'backbone.conv_encoder.model.embedder.embedder.normalization.running_mean') ) rename_keys.append(('backbone.0.body.bn1.running_var', 'backbone.conv_encoder.model.embedder.embedder.normalization.running_var') ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight", ) ) rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight", ) ) rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias", ) ) rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean", ) ) rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var", ) ) # 3 convs for i in range(3 ): rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight", ) ) rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight", ) ) rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias", ) ) rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean", ) ) rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var", ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( F"transformer.encoder.layers.{i}.self_attn.out_proj.weight", F"encoder.layers.{i}.self_attn.out_proj.weight", ) ) rename_keys.append( (F"transformer.encoder.layers.{i}.self_attn.out_proj.bias", F"encoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear1.weight", F"encoder.layers.{i}.fc1.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear1.bias", F"encoder.layers.{i}.fc1.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear2.weight", F"encoder.layers.{i}.fc2.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear2.bias", F"encoder.layers.{i}.fc2.bias") ) rename_keys.append( (F"transformer.encoder.layers.{i}.norm1.weight", F"encoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append( (F"transformer.encoder.layers.{i}.norm1.bias", F"encoder.layers.{i}.self_attn_layer_norm.bias") ) rename_keys.append( (F"transformer.encoder.layers.{i}.norm2.weight", F"encoder.layers.{i}.final_layer_norm.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.norm2.bias", F"encoder.layers.{i}.final_layer_norm.bias") ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( F"transformer.decoder.layers.{i}.self_attn.out_proj.weight", F"decoder.layers.{i}.self_attn.out_proj.weight", ) ) rename_keys.append( (F"transformer.decoder.layers.{i}.self_attn.out_proj.bias", F"decoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append( ( F"transformer.decoder.layers.{i}.multihead_attn.out_proj.weight", F"decoder.layers.{i}.encoder_attn.out_proj.weight", ) ) rename_keys.append( ( F"transformer.decoder.layers.{i}.multihead_attn.out_proj.bias", F"decoder.layers.{i}.encoder_attn.out_proj.bias", ) ) rename_keys.append((F"transformer.decoder.layers.{i}.linear1.weight", F"decoder.layers.{i}.fc1.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear1.bias", F"decoder.layers.{i}.fc1.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear2.weight", F"decoder.layers.{i}.fc2.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear2.bias", F"decoder.layers.{i}.fc2.bias") ) rename_keys.append( (F"transformer.decoder.layers.{i}.norm1.weight", F"decoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append( (F"transformer.decoder.layers.{i}.norm1.bias", F"decoder.layers.{i}.self_attn_layer_norm.bias") ) rename_keys.append( (F"transformer.decoder.layers.{i}.norm2.weight", F"decoder.layers.{i}.encoder_attn_layer_norm.weight") ) rename_keys.append( (F"transformer.decoder.layers.{i}.norm2.bias", F"decoder.layers.{i}.encoder_attn_layer_norm.bias") ) rename_keys.append( (F"transformer.decoder.layers.{i}.norm3.weight", F"decoder.layers.{i}.final_layer_norm.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm3.bias", F"decoder.layers.{i}.final_layer_norm.bias") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ] ) return rename_keys def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : str = state_dict.pop(_UpperCamelCase ) __lowerCAmelCase : Dict = val def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase=False ): __lowerCAmelCase : Tuple = '' if is_panoptic: __lowerCAmelCase : Union[str, Any] = 'detr.' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) __lowerCAmelCase : Optional[int] = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight" ) __lowerCAmelCase : List[Any] = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase : int = in_proj_weight[:256, :] __lowerCAmelCase : Tuple = in_proj_bias[:256] __lowerCAmelCase : Dict = in_proj_weight[256:512, :] __lowerCAmelCase : Optional[int] = in_proj_bias[256:512] __lowerCAmelCase : int = in_proj_weight[-256:, :] __lowerCAmelCase : int = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention __lowerCAmelCase : int = state_dict.pop(F"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight" ) __lowerCAmelCase : List[str] = state_dict.pop(F"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase : List[str] = in_proj_weight[:256, :] __lowerCAmelCase : int = in_proj_bias[:256] __lowerCAmelCase : Any = in_proj_weight[256:512, :] __lowerCAmelCase : Any = in_proj_bias[256:512] __lowerCAmelCase : Any = in_proj_weight[-256:, :] __lowerCAmelCase : Optional[int] = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention __lowerCAmelCase : Union[str, Any] = state_dict.pop( F"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight" ) __lowerCAmelCase : Optional[Any] = state_dict.pop(F"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias" ) # next, add query, keys and values (in that order) of cross-attention to the state dict __lowerCAmelCase : List[Any] = in_proj_weight_cross_attn[:256, :] __lowerCAmelCase : Union[str, Any] = in_proj_bias_cross_attn[:256] __lowerCAmelCase : Optional[Any] = in_proj_weight_cross_attn[256:512, :] __lowerCAmelCase : Any = in_proj_bias_cross_attn[256:512] __lowerCAmelCase : str = in_proj_weight_cross_attn[-256:, :] __lowerCAmelCase : Optional[int] = in_proj_bias_cross_attn[-256:] def __lowerCAmelCase (): __lowerCAmelCase : List[str] = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowerCAmelCase : Any = Image.open(requests.get(_UpperCamelCase , stream=_UpperCamelCase ).raw ) return im @torch.no_grad() def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase=None , _UpperCamelCase=False ): __lowerCAmelCase , __lowerCAmelCase : int = get_detr_config(_UpperCamelCase ) # load original model from torch hub __lowerCAmelCase : List[str] = { 'detr-resnet-50': 'detr_resnet50', 'detr-resnet-101': 'detr_resnet101', } logger.info(F"Converting model {model_name}..." ) __lowerCAmelCase : List[Any] = torch.hub.load('facebookresearch/detr' , model_name_to_original_name[model_name] , pretrained=_UpperCamelCase ).eval() __lowerCAmelCase : str = detr.state_dict() # rename keys for src, dest in create_rename_keys(_UpperCamelCase ): if is_panoptic: __lowerCAmelCase : List[str] = 'detr.' + src rename_key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # query, key and value matrices need special treatment read_in_q_k_v(_UpperCamelCase , is_panoptic=_UpperCamelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them __lowerCAmelCase : Optional[Any] = 'detr.model.' if is_panoptic else 'model.' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('detr' ) and not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ) ): __lowerCAmelCase : Optional[Any] = state_dict.pop(_UpperCamelCase ) __lowerCAmelCase : Tuple = val elif "class_labels_classifier" in key or "bbox_predictor" in key: __lowerCAmelCase : List[Any] = state_dict.pop(_UpperCamelCase ) __lowerCAmelCase : Union[str, Any] = val elif key.startswith('bbox_attention' ) or key.startswith('mask_head' ): continue else: __lowerCAmelCase : Optional[Any] = state_dict.pop(_UpperCamelCase ) __lowerCAmelCase : Union[str, Any] = val else: if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ): __lowerCAmelCase : Dict = state_dict.pop(_UpperCamelCase ) __lowerCAmelCase : Optional[int] = val # finally, create HuggingFace model and load state dict __lowerCAmelCase : Tuple = DetrForSegmentation(_UpperCamelCase ) if is_panoptic else DetrForObjectDetection(_UpperCamelCase ) model.load_state_dict(_UpperCamelCase ) model.eval() # verify our conversion on an image __lowerCAmelCase : Optional[Any] = 'coco_panoptic' if is_panoptic else 'coco_detection' __lowerCAmelCase : List[str] = DetrImageProcessor(format=_UpperCamelCase ) __lowerCAmelCase : Union[str, Any] = processor(images=prepare_img() , return_tensors='pt' ) __lowerCAmelCase : Optional[int] = encoding['pixel_values'] __lowerCAmelCase : Optional[Any] = detr(_UpperCamelCase ) __lowerCAmelCase : Union[str, Any] = model(_UpperCamelCase ) assert torch.allclose(outputs.logits , original_outputs['pred_logits'] , atol=1e-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs['pred_boxes'] , atol=1e-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['pred_masks'] , atol=1e-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase ) model.save_pretrained(_UpperCamelCase ) processor.save_pretrained(_UpperCamelCase ) if push_to_hub: # Upload model and image processor to the hub logger.info('Uploading PyTorch model and image processor to the hub...' ) model.push_to_hub(F"nielsr/{model_name}" ) processor.push_to_hub(F"nielsr/{model_name}" ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""detr-resnet-50""", type=str, choices=["""detr-resnet-50""", """detr-resnet-101"""], help="""Name of the DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Whether to push the model to the hub or not.""") lowerCamelCase__ = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
549
1
'''simple docstring''' import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser a : Any = logging.getLogger(__name__) torch.set_grad_enabled(False) a : Tuple = '''cuda''' if torch.cuda.is_available() else '''cpu''' def __UpperCAmelCase ( _UpperCAmelCase : str , _UpperCAmelCase : Tuple=1_00 , _UpperCAmelCase : List[Any]=" " ) -> List[str]: __snake_case = text.split(_UpperCAmelCase ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(_UpperCAmelCase ) , _UpperCAmelCase )] def __UpperCAmelCase ( _UpperCAmelCase : dict ) -> dict: __snake_case , __snake_case = [], [] for title, text in zip(documents["title"] , documents["text"] ): if text is not None: for passage in split_text(_UpperCAmelCase ): titles.append(title if title is not None else "" ) texts.append(_UpperCAmelCase ) return {"title": titles, "text": texts} def __UpperCAmelCase ( _UpperCAmelCase : dict , _UpperCAmelCase : DPRContextEncoder , _UpperCAmelCase : DPRContextEncoderTokenizerFast ) -> dict: __snake_case = ctx_tokenizer( documents["title"] , documents["text"] , truncation=_UpperCAmelCase , padding="longest" , return_tensors="pt" )["input_ids"] __snake_case = ctx_encoder(input_ids.to(device=_UpperCAmelCase ) , return_dict=_UpperCAmelCase ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def __UpperCAmelCase ( _UpperCAmelCase : "RagExampleArguments" , _UpperCAmelCase : "ProcessingArguments" , _UpperCAmelCase : "IndexHnswArguments" , ) -> Union[str, Any]: ###################################### logger.info("Step 1 - Create the dataset" ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way __snake_case = load_dataset( "csv" , data_files=[rag_example_args.csv_path] , split="train" , delimiter="\t" , column_names=["title", "text"] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words __snake_case = dataset.map(_UpperCAmelCase , batched=_UpperCAmelCase , num_proc=processing_args.num_proc ) # And compute the embeddings __snake_case = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=_UpperCAmelCase ) __snake_case = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) __snake_case = Features( {"text": Value("string" ), "title": Value("string" ), "embeddings": Sequence(Value("float32" ) )} ) # optional, save as float32 instead of float64 to save space __snake_case = dataset.map( partial(_UpperCAmelCase , ctx_encoder=_UpperCAmelCase , ctx_tokenizer=_UpperCAmelCase ) , batched=_UpperCAmelCase , batch_size=processing_args.batch_size , features=_UpperCAmelCase , ) # And finally save your dataset __snake_case = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset" ) dataset.save_to_disk(_UpperCAmelCase ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("Step 2 - Index the dataset" ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search __snake_case = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index("embeddings" , custom_index=_UpperCAmelCase ) # And save the index __snake_case = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset_hnsw_index.faiss" ) dataset.get_index("embeddings" ).save(_UpperCAmelCase ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class SCREAMING_SNAKE_CASE__ : __SCREAMING_SNAKE_CASE = field( default=str(Path(_UpperCamelCase ).parent / """test_run""" / """dummy-kb""" / """my_knowledge_dataset.csv""" ) , metadata={"""help""": """Path to a tab-separated csv file with columns 'title' and 'text'"""} , ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."""} , ) __SCREAMING_SNAKE_CASE = field( default="""facebook/rag-sequence-nq""" , metadata={"""help""": """The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"""} , ) __SCREAMING_SNAKE_CASE = field( default="""facebook/dpr-ctx_encoder-multiset-base""" , metadata={ """help""": ( """The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or""" """ 'facebook/dpr-ctx_encoder-multiset-base'""" ) } , ) __SCREAMING_SNAKE_CASE = field( default=str(Path(_UpperCamelCase ).parent / """test_run""" / """dummy-kb""" ) , metadata={"""help""": """Path to a directory where the dataset passages and the index will be saved"""} , ) @dataclass class SCREAMING_SNAKE_CASE__ : __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={ """help""": """The number of processes to use to split the documents into passages. Default is single process.""" } , ) __SCREAMING_SNAKE_CASE = field( default=16 , metadata={ """help""": """The batch size to use when computing the passages embeddings using the DPR context encoder.""" } , ) @dataclass class SCREAMING_SNAKE_CASE__ : __SCREAMING_SNAKE_CASE = field( default=768 , metadata={"""help""": """The dimension of the embeddings to pass to the HNSW Faiss index."""} , ) __SCREAMING_SNAKE_CASE = field( default=128 , metadata={ """help""": ( """The number of bi-directional links created for every new element during the HNSW index construction.""" ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) a : int = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) a , a , a : str = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: a : str = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
69
import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 lowerCAmelCase__ : Optional[int] =0B1011_0011_1110_1100_1001_0000_0111_1011_1011_0001_1001_1110 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 lowerCAmelCase__ : str =[int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class __lowercase : """simple docstring""" def __init__( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = WATERMARK_BITS SCREAMING_SNAKE_CASE_ : int = WatermarkEncoder() self.encoder.set_watermark('bits' , self.watermark ) def UpperCamelCase__ ( self , lowerCAmelCase__ ): """simple docstring""" if images.shape[-1] < 2_5_6: return images SCREAMING_SNAKE_CASE_ : Tuple = (2_5_5 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1 ).float().numpy() SCREAMING_SNAKE_CASE_ : Optional[int] = [self.encoder.encode(lowerCAmelCase__ , 'dwtDct' ) for image in images] SCREAMING_SNAKE_CASE_ : List[str] = torch.from_numpy(np.array(lowerCAmelCase__ ) ).permute(0 , 3 , 1 , 2 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.clamp(2 * (images / 2_5_5 - 0.5) , min=-1.0 , max=1.0 ) return images
101
0
'''simple docstring''' import operator as op def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : Union[str, Any] = [] _snake_case : Dict = lambda lowerCAmelCase_ , lowerCAmelCase_ : int(x / y ) # noqa: E731 integer division operation _snake_case : List[Any] = { '''^''': op.pow, '''*''': op.mul, '''/''': div, '''+''': op.add, '''-''': op.sub, } # operators & their respective operation # print table header print('''Symbol'''.center(8 ) , '''Action'''.center(12 ) , '''Stack''' , sep=''' | ''' ) print('''-''' * (30 + len(lowerCAmelCase_ )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(lowerCAmelCase_ ) # append x to stack # output in tabular format print(x.rjust(8 ) , ('''push(''' + x + ''')''').ljust(12 ) , ''','''.join(lowerCAmelCase_ ) , sep=''' | ''' ) else: _snake_case : Optional[int] = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8 ) , ('''pop(''' + b + ''')''').ljust(12 ) , ''','''.join(lowerCAmelCase_ ) , sep=''' | ''' ) _snake_case : Optional[Any] = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8 ) , ('''pop(''' + a + ''')''').ljust(12 ) , ''','''.join(lowerCAmelCase_ ) , sep=''' | ''' ) stack.append( str(opr[x](int(lowerCAmelCase_ ) , int(lowerCAmelCase_ ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ('''push(''' + a + x + b + ''')''').ljust(12 ) , ''','''.join(lowerCAmelCase_ ) , sep=''' | ''' , ) return int(stack[0] ) if __name__ == "__main__": UpperCAmelCase : Optional[int] = input('\n\nEnter a Postfix Equation (space separated) = ').split(' ') print('\n\tResult = ', solve(Postfix))
703
'''simple docstring''' from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def _a ( ): """simple docstring""" _snake_case : List[Any] = ArgumentParser('''Transformers CLI tool''' , usage='''transformers-cli <command> [<args>]''' ) _snake_case : List[str] = parser.add_subparsers(help='''transformers-cli command helpers''' ) # Register commands ConvertCommand.register_subcommand(lowerCAmelCase_ ) DownloadCommand.register_subcommand(lowerCAmelCase_ ) EnvironmentCommand.register_subcommand(lowerCAmelCase_ ) RunCommand.register_subcommand(lowerCAmelCase_ ) ServeCommand.register_subcommand(lowerCAmelCase_ ) UserCommands.register_subcommand(lowerCAmelCase_ ) AddNewModelCommand.register_subcommand(lowerCAmelCase_ ) AddNewModelLikeCommand.register_subcommand(lowerCAmelCase_ ) LfsCommands.register_subcommand(lowerCAmelCase_ ) PTtoTFCommand.register_subcommand(lowerCAmelCase_ ) # Let's go _snake_case : str = parser.parse_args() if not hasattr(lowerCAmelCase_ , '''func''' ): parser.print_help() exit(1 ) # Run _snake_case : Union[str, Any] = args.func(lowerCAmelCase_ ) service.run() if __name__ == "__main__": main()
47
0
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE = 1000 ) -> int: SCREAMING_SNAKE_CASE_ : Union[str, Any] = 3 SCREAMING_SNAKE_CASE_ : Optional[Any] = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(f'''{solution() = }''')
345
import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class snake_case_ ( lowerCAmelCase ): def __init__( self , __lowerCAmelCase=0.01 , __lowerCAmelCase=1_000 ): SCREAMING_SNAKE_CASE_ : Optional[Any] = p_stop SCREAMING_SNAKE_CASE_ : Dict = max_length def __iter__( self ): SCREAMING_SNAKE_CASE_ : Dict = 0 SCREAMING_SNAKE_CASE_ : Dict = False while not stop and count < self.max_length: yield count count += 1 SCREAMING_SNAKE_CASE_ : Union[str, Any] = random.random() < self.p_stop class snake_case_ ( unittest.TestCase ): def __A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False , __lowerCAmelCase=True ): SCREAMING_SNAKE_CASE_ : int = [ BatchSamplerShard(__lowerCAmelCase , 2 , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) for i in range(2 ) ] SCREAMING_SNAKE_CASE_ : Tuple = [list(__lowerCAmelCase ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(__lowerCAmelCase ) for shard in batch_sampler_shards] , [len(__lowerCAmelCase ) for e in expected] ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) def __A ( self ): # Check the shards when the dataset is a round multiple of total batch size. SCREAMING_SNAKE_CASE_ : str = BatchSampler(range(24 ) , batch_size=3 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[str] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=__lowerCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. SCREAMING_SNAKE_CASE_ : Tuple = BatchSampler(range(21 ) , batch_size=3 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : str = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : int = BatchSampler(range(21 ) , batch_size=3 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. SCREAMING_SNAKE_CASE_ : int = BatchSampler(range(22 ) , batch_size=3 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Any = BatchSampler(range(22 ) , batch_size=3 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. SCREAMING_SNAKE_CASE_ : int = BatchSampler(range(20 ) , batch_size=3 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) # Check the shards when the dataset is very small. SCREAMING_SNAKE_CASE_ : List[str] = BatchSampler(range(2 ) , batch_size=3 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : int = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : int = BatchSampler(range(2 ) , batch_size=3 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[str] = [[], []] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) def __A ( self ): # Check the shards when the dataset is a round multiple of batch size. SCREAMING_SNAKE_CASE_ : Any = BatchSampler(range(24 ) , batch_size=4 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Any = BatchSampler(range(24 ) , batch_size=4 , drop_last=__lowerCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size. SCREAMING_SNAKE_CASE_ : List[str] = BatchSampler(range(22 ) , batch_size=4 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : int = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. SCREAMING_SNAKE_CASE_ : List[str] = BatchSampler(range(21 ) , batch_size=4 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) # Check the shards when the dataset is very small. SCREAMING_SNAKE_CASE_ : Any = BatchSampler(range(2 ) , batch_size=4 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[str] = BatchSampler(range(2 ) , batch_size=4 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : int = [[], []] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) def __A ( self ): # Check the shards when the dataset is a round multiple of total batch size. SCREAMING_SNAKE_CASE_ : str = BatchSampler(range(24 ) , batch_size=3 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Dict = BatchSampler(range(24 ) , batch_size=3 , drop_last=__lowerCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. SCREAMING_SNAKE_CASE_ : List[str] = BatchSampler(range(21 ) , batch_size=3 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : str = BatchSampler(range(21 ) , batch_size=3 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. SCREAMING_SNAKE_CASE_ : int = BatchSampler(range(22 ) , batch_size=3 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. SCREAMING_SNAKE_CASE_ : Optional[Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Dict = BatchSampler(range(20 ) , batch_size=3 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[str] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) # Check the shards when the dataset is very small. SCREAMING_SNAKE_CASE_ : str = BatchSampler(range(2 ) , batch_size=3 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = [[[0, 1]], []] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Tuple = BatchSampler(range(2 ) , batch_size=3 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Any = [[], []] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) def __A ( self ): # Check the shards when the dataset is a round multiple of batch size. SCREAMING_SNAKE_CASE_ : Tuple = BatchSampler(range(24 ) , batch_size=4 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Tuple = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=__lowerCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size. SCREAMING_SNAKE_CASE_ : int = BatchSampler(range(22 ) , batch_size=4 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Tuple = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = BatchSampler(range(22 ) , batch_size=4 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. SCREAMING_SNAKE_CASE_ : str = BatchSampler(range(21 ) , batch_size=4 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Tuple = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = BatchSampler(range(21 ) , batch_size=4 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) # Check the shards when the dataset is very small. SCREAMING_SNAKE_CASE_ : Tuple = BatchSampler(range(2 ) , batch_size=4 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = [[[0, 1]], []] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Any = BatchSampler(range(2 ) , batch_size=4 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[Any] = [[], []] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) def __A ( self ): SCREAMING_SNAKE_CASE_ : Optional[int] = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] SCREAMING_SNAKE_CASE_ : Union[str, Any] = [BatchSamplerShard(__lowerCAmelCase , 2 , __lowerCAmelCase , even_batches=__lowerCAmelCase ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def __A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False , __lowerCAmelCase=2 , __lowerCAmelCase=False ): random.seed(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Any = list(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Dict = [ IterableDatasetShard( __lowerCAmelCase , batch_size=__lowerCAmelCase , drop_last=__lowerCAmelCase , num_processes=__lowerCAmelCase , process_index=__lowerCAmelCase , split_batches=__lowerCAmelCase , ) for i in range(__lowerCAmelCase ) ] SCREAMING_SNAKE_CASE_ : List[Any] = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(__lowerCAmelCase ) iterable_dataset_lists.append(list(__lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ : Dict = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size SCREAMING_SNAKE_CASE_ : Dict = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) ) self.assertTrue(len(__lowerCAmelCase ) % shard_batch_size == 0 ) SCREAMING_SNAKE_CASE_ : Dict = [] for idx in range(0 , len(__lowerCAmelCase ) , __lowerCAmelCase ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(__lowerCAmelCase ) < len(__lowerCAmelCase ): reference += reference self.assertListEqual(__lowerCAmelCase , reference[: len(__lowerCAmelCase )] ) def __A ( self ): SCREAMING_SNAKE_CASE_ : str = 42 SCREAMING_SNAKE_CASE_ : List[str] = RandomIterableDataset() self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) # Edge case with a very small dataset SCREAMING_SNAKE_CASE_ : List[str] = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) def __A ( self ): SCREAMING_SNAKE_CASE_ : Optional[Any] = BatchSampler(range(16 ) , batch_size=4 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[str] = SkipBatchSampler(__lowerCAmelCase , 2 ) self.assertListEqual(list(__lowerCAmelCase ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def __A ( self ): SCREAMING_SNAKE_CASE_ : Dict = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def __A ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = DataLoader(list(range(16 ) ) , batch_size=4 ) SCREAMING_SNAKE_CASE_ : Tuple = skip_first_batches(__lowerCAmelCase , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def __A ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(__lowerCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(__lowerCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def __A ( self ): Accelerator() SCREAMING_SNAKE_CASE_ : Any = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(__lowerCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(__lowerCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
345
1
"""simple docstring""" from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class UpperCamelCase__ ( lowercase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
317
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase__ : Optional[int] = { """configuration_timesformer""": ["""TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TimesformerConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Dict = [ """TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TimesformerModel""", """TimesformerForVideoClassification""", """TimesformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys lowercase__ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
317
1
'''simple docstring''' __magic_name__ : Tuple = """Alexander Joslin""" import operator as op from .stack import Stack def snake_case_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' _snake_case = {'''*''': op.mul, '''/''': op.truediv, '''+''': op.add, '''-''': op.sub} _snake_case = Stack() _snake_case = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(SCREAMING_SNAKE_CASE__ ) ) elif i in operators: # RULE 2 operator_stack.push(SCREAMING_SNAKE_CASE__ ) elif i == ")": # RULE 4 _snake_case = operator_stack.peek() operator_stack.pop() _snake_case = operand_stack.peek() operand_stack.pop() _snake_case = operand_stack.peek() operand_stack.pop() _snake_case = operators[opr](SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) operand_stack.push(SCREAMING_SNAKE_CASE__ ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": __magic_name__ : int = """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(F'{equation} = {dijkstras_two_stack_algorithm(equation)}')
672
'''simple docstring''' import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowercase__ = logging.get_logger(__name__) lowercase__ = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } lowercase__ = { "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } lowercase__ = {"facebook/blenderbot-3B": 1_2_8} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _UpperCamelCase ( ) -> Optional[Any]: '''simple docstring''' snake_case : Dict = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) snake_case : int = bs[:] snake_case : Any = 0 for b in range(2**8 ): if b not in bs: bs.append(SCREAMING_SNAKE_CASE__ ) cs.append(2**8 + n ) n += 1 snake_case : Tuple = [chr(SCREAMING_SNAKE_CASE__ ) for n in cs] return dict(zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ ) -> Any: '''simple docstring''' snake_case : List[str] = set() snake_case : str = word[0] for char in word[1:]: pairs.add((prev_char, char) ) snake_case : Dict = char return pairs class snake_case__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" lowerCamelCase = VOCAB_FILES_NAMES lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase = ["""input_ids""", """attention_mask"""] def __init__( self : Tuple , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : str="replace" , UpperCamelCase__ : int="<s>" , UpperCamelCase__ : Optional[int]="</s>" , UpperCamelCase__ : int="</s>" , UpperCamelCase__ : Optional[int]="<s>" , UpperCamelCase__ : Any="<unk>" , UpperCamelCase__ : List[Any]="<pad>" , UpperCamelCase__ : Optional[int]="<mask>" , UpperCamelCase__ : Optional[Any]=False , **UpperCamelCase__ : Dict , ) -> str: """simple docstring""" snake_case : str = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else bos_token snake_case : Any = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else eos_token snake_case : List[str] = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else sep_token snake_case : Optional[Any] = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else cls_token snake_case : int = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else unk_token snake_case : str = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it snake_case : str = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else mask_token super().__init__( errors=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , **UpperCamelCase__ , ) with open(UpperCamelCase__ , encoding='''utf-8''' ) as vocab_handle: snake_case : Union[str, Any] = json.load(UpperCamelCase__ ) snake_case : Dict = {v: k for k, v in self.encoder.items()} snake_case : Optional[int] = errors # how to handle errors in decoding snake_case : List[Any] = bytes_to_unicode() snake_case : Dict = {v: k for k, v in self.byte_encoder.items()} with open(UpperCamelCase__ , encoding='''utf-8''' ) as merges_handle: snake_case : Optional[Any] = merges_handle.read().split('''\n''' )[1:-1] snake_case : Optional[int] = [tuple(merge.split() ) for merge in bpe_merges] snake_case : Optional[int] = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) snake_case : int = {} snake_case : Any = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions snake_case : Any = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" return len(self.encoder ) def lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def lowerCAmelCase ( self : Union[str, Any] , UpperCamelCase__ : Tuple ) -> Dict: """simple docstring""" if token in self.cache: return self.cache[token] snake_case : str = tuple(UpperCamelCase__ ) snake_case : Union[str, Any] = get_pairs(UpperCamelCase__ ) if not pairs: return token while True: snake_case : Tuple = min(UpperCamelCase__ , key=lambda UpperCamelCase__ : self.bpe_ranks.get(UpperCamelCase__ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break snake_case ,snake_case : List[str] = bigram snake_case : int = [] snake_case : int = 0 while i < len(UpperCamelCase__ ): try: snake_case : Optional[int] = word.index(UpperCamelCase__ , UpperCamelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) snake_case : Optional[int] = j if word[i] == first and i < len(UpperCamelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 snake_case : str = tuple(UpperCamelCase__ ) snake_case : Tuple = new_word if len(UpperCamelCase__ ) == 1: break else: snake_case : List[str] = get_pairs(UpperCamelCase__ ) snake_case : str = ''' '''.join(UpperCamelCase__ ) snake_case : int = word return word def lowerCAmelCase ( self : Optional[int] , UpperCamelCase__ : List[Any] ) -> List[str]: """simple docstring""" snake_case : str = [] for token in re.findall(self.pat , UpperCamelCase__ ): snake_case : Optional[int] = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCamelCase__ ).split(''' ''' ) ) return bpe_tokens def lowerCAmelCase ( self : int , UpperCamelCase__ : Any ) -> Any: """simple docstring""" return self.encoder.get(UpperCamelCase__ , self.encoder.get(self.unk_token ) ) def lowerCAmelCase ( self : Any , UpperCamelCase__ : List[Any] ) -> int: """simple docstring""" return self.decoder.get(UpperCamelCase__ ) def lowerCAmelCase ( self : Tuple , UpperCamelCase__ : int ) -> List[str]: """simple docstring""" snake_case : Optional[int] = ''''''.join(UpperCamelCase__ ) snake_case : int = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def lowerCAmelCase ( self : int , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(UpperCamelCase__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return snake_case : int = os.path.join( UpperCamelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) snake_case : List[Any] = os.path.join( UpperCamelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCamelCase__ , ensure_ascii=UpperCamelCase__ ) + '''\n''' ) snake_case : str = 0 with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCamelCase__ : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ''' Please check that the tokenizer is not corrupted!''' ) snake_case : List[str] = token_index writer.write(''' '''.join(UpperCamelCase__ ) + '''\n''' ) index += 1 return vocab_file, merge_file def lowerCAmelCase ( self : List[Any] , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None , UpperCamelCase__ : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase__ , token_ids_a=UpperCamelCase__ , already_has_special_tokens=UpperCamelCase__ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase__ )) + [1] return [1] + ([0] * len(UpperCamelCase__ )) + [1, 1] + ([0] * len(UpperCamelCase__ )) + [1] def lowerCAmelCase ( self : Optional[Any] , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" snake_case : List[Any] = [self.sep_token_id] snake_case : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCAmelCase ( self : Optional[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Any=False , **UpperCamelCase__ : List[Any] ) -> int: """simple docstring""" snake_case : Union[str, Any] = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCamelCase__ ) > 0 and not text[0].isspace()): snake_case : Dict = ''' ''' + text return (text, kwargs) def lowerCAmelCase ( self : Optional[Any] , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ) -> str: """simple docstring""" return token_ids_a + [self.eos_token_id] def lowerCAmelCase ( self : str , UpperCamelCase__ : "Conversation" ) -> List[int]: """simple docstring""" snake_case : Any = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(''' ''' + text ) else: # Generated responses should contain them already. inputs.append(UpperCamelCase__ ) snake_case : List[str] = ''' '''.join(UpperCamelCase__ ) snake_case : Tuple = self.encode(UpperCamelCase__ ) if len(UpperCamelCase__ ) > self.model_max_length: snake_case : List[Any] = input_ids[-self.model_max_length :] logger.warning(f'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.' ) return input_ids
638
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCAmelCase_ : List[Any] = { """configuration_efficientformer""": [ """EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """EfficientFormerConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Tuple = ["""EfficientFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Dict = [ """EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """EfficientFormerForImageClassification""", """EfficientFormerForImageClassificationWithTeacher""", """EfficientFormerModel""", """EfficientFormerPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : List[str] = [ """TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFEfficientFormerForImageClassification""", """TFEfficientFormerForImageClassificationWithTeacher""", """TFEfficientFormerModel""", """TFEfficientFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys lowerCAmelCase_ : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
204
'''simple docstring''' import sys from collections import defaultdict class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Tuple ) ->Optional[int]: '''simple docstring''' _UpperCamelCase : List[Any] = [] def snake_case__ ( self : Any , lowercase__ : Any ) ->Optional[int]: '''simple docstring''' return self.node_position[vertex] def snake_case__ ( self : str , lowercase__ : Optional[int] , lowercase__ : Optional[int] ) ->int: '''simple docstring''' _UpperCamelCase : List[Any] = pos def snake_case__ ( self : Union[str, Any] , lowercase__ : Optional[int] , lowercase__ : List[Any] , lowercase__ : Dict , lowercase__ : Dict ) ->Dict: '''simple docstring''' if start > size // 2 - 1: return else: if 2 * start + 2 >= size: _UpperCamelCase : Tuple = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: _UpperCamelCase : str = 2 * start + 1 else: _UpperCamelCase : List[Any] = 2 * start + 2 if heap[smallest_child] < heap[start]: _UpperCamelCase , _UpperCamelCase : Dict = heap[smallest_child], positions[smallest_child] _UpperCamelCase , _UpperCamelCase : int = ( heap[start], positions[start], ) _UpperCamelCase , _UpperCamelCase : Tuple = temp, tempa _UpperCamelCase : Optional[Any] = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , lowercase__ ) self.top_to_bottom(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) def snake_case__ ( self : Optional[int] , lowercase__ : List[Any] , lowercase__ : str , lowercase__ : List[Any] , lowercase__ : List[str] ) ->str: '''simple docstring''' _UpperCamelCase : str = position[index] while index != 0: _UpperCamelCase : List[str] = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: _UpperCamelCase : Tuple = heap[parent] _UpperCamelCase : List[Any] = position[parent] self.set_position(position[parent] , lowercase__ ) else: _UpperCamelCase : Optional[int] = val _UpperCamelCase : Tuple = temp self.set_position(lowercase__ , lowercase__ ) break _UpperCamelCase : Any = parent else: _UpperCamelCase : Optional[Any] = val _UpperCamelCase : Union[str, Any] = temp self.set_position(lowercase__ , 0 ) def snake_case__ ( self : Tuple , lowercase__ : Optional[Any] , lowercase__ : Tuple ) ->Optional[int]: '''simple docstring''' _UpperCamelCase : Optional[int] = len(lowercase__ ) // 2 - 1 for i in range(lowercase__ , -1 , -1 ): self.top_to_bottom(lowercase__ , lowercase__ , len(lowercase__ ) , lowercase__ ) def snake_case__ ( self : Dict , lowercase__ : Union[str, Any] , lowercase__ : Union[str, Any] ) ->Any: '''simple docstring''' _UpperCamelCase : List[Any] = positions[0] _UpperCamelCase : Tuple = sys.maxsize self.top_to_bottom(lowercase__ , 0 , len(lowercase__ ) , lowercase__ ) return temp def __A ( UpperCAmelCase ) -> Any: '''simple docstring''' _UpperCamelCase : Union[str, Any] = Heap() _UpperCamelCase : Optional[int] = [0] * len(UpperCAmelCase ) _UpperCamelCase : List[str] = [-1] * len(UpperCAmelCase ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph _UpperCamelCase : List[Any] = [] # Heap of Distance of vertices from their neighboring vertex _UpperCamelCase : List[str] = [] for vertex in range(len(UpperCAmelCase ) ): distance_tv.append(sys.maxsize ) positions.append(UpperCAmelCase ) heap.node_position.append(UpperCAmelCase ) _UpperCamelCase : Optional[Any] = [] _UpperCamelCase : Union[str, Any] = 1 _UpperCamelCase : int = sys.maxsize for neighbor, distance in adjacency_list[0]: _UpperCamelCase : Union[str, Any] = 0 _UpperCamelCase : int = distance heap.heapify(UpperCAmelCase ,UpperCAmelCase ) for _ in range(1 ,len(UpperCAmelCase ) ): _UpperCamelCase : Union[str, Any] = heap.delete_minimum(UpperCAmelCase ,UpperCAmelCase ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) _UpperCamelCase : Optional[int] = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(UpperCAmelCase )] ): _UpperCamelCase : List[str] = distance heap.bottom_to_top( UpperCAmelCase ,heap.get_position(UpperCAmelCase ) ,UpperCAmelCase ,UpperCAmelCase ) _UpperCamelCase : List[str] = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > lowerCAmelCase_ : Any = int(input("""Enter number of edges: """).strip()) lowerCAmelCase_ : Optional[Any] = defaultdict(list) for _ in range(edges_number): lowerCAmelCase_ : Union[str, Any] = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
204
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { 'facebook/wav2vec2-base-960h': 'https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json', # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : Any = 'wav2vec2' def __init__(self : str , a__ : Optional[int]=32 , a__ : str=768 , a__ : Tuple=12 , a__ : str=12 , a__ : Tuple=3072 , a__ : Dict="gelu" , a__ : Tuple=0.1 , a__ : List[Any]=0.1 , a__ : Dict=0.1 , a__ : int=0.0 , a__ : str=0.0 , a__ : List[Any]=0.1 , a__ : List[str]=0.1 , a__ : str=0.0_2 , a__ : List[Any]=1E-5 , a__ : Tuple="group" , a__ : Optional[int]="gelu" , a__ : Union[str, Any]=(512, 512, 512, 512, 512, 512, 512) , a__ : Union[str, Any]=(5, 2, 2, 2, 2, 2, 2) , a__ : List[str]=(10, 3, 3, 3, 3, 2, 2) , a__ : Any=False , a__ : Any=128 , a__ : Union[str, Any]=16 , a__ : int=False , a__ : str=True , a__ : Any=0.0_5 , a__ : List[Any]=10 , a__ : Optional[int]=2 , a__ : int=0.0 , a__ : Any=10 , a__ : int=0 , a__ : Dict=320 , a__ : str=2 , a__ : Dict=0.1 , a__ : Union[str, Any]=100 , a__ : List[Any]=256 , a__ : Tuple=256 , a__ : Optional[int]=0.1 , a__ : Dict="sum" , a__ : int=False , a__ : str=False , a__ : Any=256 , a__ : Union[str, Any]=(512, 512, 512, 512, 1500) , a__ : Optional[Any]=(5, 3, 3, 1, 1) , a__ : Optional[int]=(1, 2, 3, 1, 1) , a__ : Any=512 , a__ : List[str]=0 , a__ : Any=1 , a__ : Tuple=2 , a__ : int=False , a__ : List[Any]=3 , a__ : Any=2 , a__ : Any=3 , a__ : str=None , a__ : List[str]=None , **a__ : Optional[int] , ): """simple docstring""" super().__init__(**a__ , pad_token_id=a__ , bos_token_id=a__ , eos_token_id=a__ ) __snake_case = hidden_size __snake_case = feat_extract_norm __snake_case = feat_extract_activation __snake_case = list(a__ ) __snake_case = list(a__ ) __snake_case = list(a__ ) __snake_case = conv_bias __snake_case = num_conv_pos_embeddings __snake_case = num_conv_pos_embedding_groups __snake_case = len(self.conv_dim ) __snake_case = num_hidden_layers __snake_case = intermediate_size __snake_case = hidden_act __snake_case = num_attention_heads __snake_case = hidden_dropout __snake_case = attention_dropout __snake_case = activation_dropout __snake_case = feat_proj_dropout __snake_case = final_dropout __snake_case = layerdrop __snake_case = layer_norm_eps __snake_case = initializer_range __snake_case = vocab_size __snake_case = do_stable_layer_norm __snake_case = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __snake_case = apply_spec_augment __snake_case = mask_time_prob __snake_case = mask_time_length __snake_case = mask_time_min_masks __snake_case = mask_feature_prob __snake_case = mask_feature_length __snake_case = mask_feature_min_masks # parameters for pretraining with codevector quantized representations __snake_case = num_codevectors_per_group __snake_case = num_codevector_groups __snake_case = contrastive_logits_temperature __snake_case = feat_quantizer_dropout __snake_case = num_negatives __snake_case = codevector_dim __snake_case = proj_codevector_dim __snake_case = diversity_loss_weight # ctc loss __snake_case = ctc_loss_reduction __snake_case = ctc_zero_infinity # adapter __snake_case = add_adapter __snake_case = adapter_kernel_size __snake_case = adapter_stride __snake_case = num_adapter_layers __snake_case = output_hidden_size or hidden_size __snake_case = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. __snake_case = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __snake_case = list(a__ ) __snake_case = list(a__ ) __snake_case = list(a__ ) __snake_case = xvector_output_dim @property def a (self : List[Any] ): """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
592
import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def a (self : Union[str, Any] ): """simple docstring""" __snake_case = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) __snake_case = Vector() def a (self : str ): """simple docstring""" __snake_case = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(a__ ) , '''(0,0,0,0,0,1)''' ) def a (self : Optional[Any] ): """simple docstring""" __snake_case = Vector([1, 2, 3, 4] ) self.assertEqual(len(a__ ) , 4 ) def a (self : Dict ): """simple docstring""" __snake_case = Vector([1, 2] ) __snake_case = Vector([1, 2, 3, 4, 5] ) __snake_case = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) __snake_case = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.2_3_6 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.4_1_6 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.6_1_6 , 3 ) def a (self : List[Any] ): """simple docstring""" __snake_case = Vector([1, 2, 3] ) __snake_case = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def a (self : Union[str, Any] ): """simple docstring""" __snake_case = Vector([1, 2, 3] ) __snake_case = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def a (self : Dict ): """simple docstring""" __snake_case = Vector([1, 2, 3] ) __snake_case = Vector([2, -1, 4] ) # for test of dot product __snake_case = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , '''(3.0,6.0,9.0)''' ) self.assertEqual((a * b) , 0 ) def a (self : Optional[int] ): """simple docstring""" self.assertEqual(str(zero_vector(10 ) ).count('''0''' ) , 10 ) def a (self : Optional[Any] ): """simple docstring""" self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , '''(0,1,0)''' ) def a (self : List[Any] ): """simple docstring""" __snake_case = Vector([1, 2, 3] ) __snake_case = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , a__ , a__ ) ) , '''(3,4,7)''' ) def a (self : Optional[Any] ): """simple docstring""" __snake_case = Vector([1, 0, 0, 0, 0, 0] ) __snake_case = x.copy() self.assertEqual(str(a__ ) , str(a__ ) ) def a (self : Dict ): """simple docstring""" __snake_case = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(a__ ) , '''(0,1,0)''' ) def a (self : int ): """simple docstring""" __snake_case = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual('''|1,2,3|\n|2,4,5|\n|6,7,8|\n''' , str(a__ ) ) def a (self : Optional[Any] ): """simple docstring""" __snake_case = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __snake_case = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(a__ , a__ ) ) def a (self : Optional[int] ): """simple docstring""" __snake_case = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __snake_case = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(a__ , a__ ) ) def a (self : str ): """simple docstring""" __snake_case = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def a (self : Union[str, Any] ): """simple docstring""" __snake_case = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) __snake_case = Vector([1, 2, 3] ) self.assertEqual('''(14,32,50)''' , str(a * x ) ) self.assertEqual('''|2,4,6|\n|8,10,12|\n|14,16,18|\n''' , str(a * 2 ) ) def a (self : Any ): """simple docstring""" __snake_case = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual('''|1,2,5|\n|2,4,5|\n|6,7,8|\n''' , str(a__ ) ) def a (self : Optional[Any] ): """simple docstring""" __snake_case = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.0_1 ) def a (self : Union[str, Any] ): """simple docstring""" __snake_case = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __snake_case = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('''|2,4,10|\n|4,8,10|\n|12,14,18|\n''' , str(a + b ) ) def a (self : Optional[Any] ): """simple docstring""" __snake_case = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __snake_case = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('''|0,0,-4|\n|0,0,0|\n|0,0,-2|\n''' , str(a - b ) ) def a (self : Optional[int] ): """simple docstring""" self.assertEqual( '''|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n''' , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
592
1
from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging UpperCamelCase__ = logging.get_logger(__name__) def _UpperCamelCase (a__ :int , a__ :Dict ): """simple docstring""" try: with open(a__ , """rb""" ) as flax_state_f: UpperCamelCase__ = from_bytes(a__ , flax_state_f.read() ) except UnpicklingError as e: try: with open(a__ ) as f: if f.read().startswith("""version""" ): raise OSError( """You seem to have cloned a repository without having git-lfs installed. Please""" """ install git-lfs and run `git lfs install` followed by `git lfs pull` in the""" """ folder you cloned.""" ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(f"""Unable to convert {model_file} to Flax deserializable object. """ ) return load_flax_weights_in_pytorch_model(a__ , a__ ) def _UpperCamelCase (a__ :Dict , a__ :int ): """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( """Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise # check if we have bf16 weights UpperCamelCase__ = flatten_dict(jax.tree_util.tree_map(lambda a__ : x.dtype == jnp.bfloataa , a__ ) ).values() if any(a__ ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( """Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` """ """before loading those in PyTorch model.""" ) UpperCamelCase__ = jax.tree_util.tree_map( lambda a__ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , a__ ) UpperCamelCase__ = """""" UpperCamelCase__ = flatten_dict(a__ , sep=""".""" ) UpperCamelCase__ = pt_model.state_dict() # keep track of unexpected & missing keys UpperCamelCase__ = [] UpperCamelCase__ = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): UpperCamelCase__ = flax_key_tuple.split(""".""" ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: UpperCamelCase__ = flax_key_tuple_array[:-1] + ["""weight"""] UpperCamelCase__ = jnp.transpose(a__ , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": UpperCamelCase__ = flax_key_tuple_array[:-1] + ["""weight"""] UpperCamelCase__ = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": UpperCamelCase__ = flax_key_tuple_array[:-1] + ["""weight"""] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(a__ ): UpperCamelCase__ = ( flax_key_tuple_string.replace("""_0""" , """.0""" ) .replace("""_1""" , """.1""" ) .replace("""_2""" , """.2""" ) .replace("""_3""" , """.3""" ) .replace("""_4""" , """.4""" ) .replace("""_5""" , """.5""" ) .replace("""_6""" , """.6""" ) .replace("""_7""" , """.7""" ) .replace("""_8""" , """.8""" ) .replace("""_9""" , """.9""" ) ) UpperCamelCase__ = """.""".join(a__ ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """ f"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) else: # add weight to pytorch dict UpperCamelCase__ = np.asarray(a__ ) if not isinstance(a__ , np.ndarray ) else flax_tensor UpperCamelCase__ = torch.from_numpy(a__ ) # remove from missing keys missing_keys.remove(a__ ) else: # weight is not expected by PyTorch model unexpected_keys.append(a__ ) pt_model.load_state_dict(a__ ) # re-transform missing_keys to list UpperCamelCase__ = list(a__ ) if len(a__ ) > 0: logger.warning( """Some weights of the Flax model were not used when initializing the PyTorch model""" f""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing""" f""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture""" """ (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This""" f""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect""" """ to be exactly identical (e.g. initializing a BertForSequenceClassification model from a""" """ FlaxBertForSequenceClassification model).""" ) if len(a__ ) > 0: logger.warning( f"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly""" f""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to""" """ use it for predictions and inference.""" ) return pt_model
548
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def _UpperCamelCase (a__ :str , a__ :complex , a__ :str = "x" , a__ :float = 10**-10 , a__ :int = 1 , ): """simple docstring""" UpperCamelCase__ = symbols(a__ ) UpperCamelCase__ = lambdify(a__ , a__ ) UpperCamelCase__ = lambdify(a__ , diff(a__ , a__ ) ) UpperCamelCase__ = starting_point while True: if diff_function(a__ ) != 0: UpperCamelCase__ = prev_guess - multiplicity * func(a__ ) / diff_function( a__ ) else: raise ZeroDivisionError("""Could not find root""" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess UpperCamelCase__ = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"""The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}""") # Find root of polynomial # Find fourth Root of 5 print(f"""The root of x**4 - 5 = 0 is {newton_raphson('x**4 -5', 0.4 +5J)}""") # Find value of e print( "The root of log(y) - 1 = 0 is ", f"""{newton_raphson('log(y) - 1', 2, variable='y')}""", ) # Exponential Roots print( "The root of exp(x) - 1 = 0 is", f"""{newton_raphson('exp(x) - 1', 10, precision=0.0_05)}""", ) # Find root of cos(x) print(f"""The root of cos(x) = 0 is {newton_raphson('cos(x)', 0)}""")
548
1
import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A_ ( unittest.TestCase ): '''simple docstring''' @property def lowerCAmelCase_ (self ) -> Dict: torch.manual_seed(0 ) __UpperCAmelCase = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase = self.dummy_uncond_unet __UpperCAmelCase = ScoreSdeVeScheduler() __UpperCAmelCase = ScoreSdeVePipeline(unet=lowercase__ , scheduler=lowercase__ ) sde_ve.to(lowercase__ ) sde_ve.set_progress_bar_config(disable=lowercase__ ) __UpperCAmelCase = torch.manual_seed(0 ) __UpperCAmelCase = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=lowercase__ ).images __UpperCAmelCase = torch.manual_seed(0 ) __UpperCAmelCase = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=lowercase__ , return_dict=lowercase__ )[ 0 ] __UpperCAmelCase = image[0, -3:, -3:, -1] __UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __UpperCAmelCase = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ (self ) -> List[str]: __UpperCAmelCase = '''google/ncsnpp-church-256''' __UpperCAmelCase = UNetaDModel.from_pretrained(lowercase__ ) __UpperCAmelCase = ScoreSdeVeScheduler.from_pretrained(lowercase__ ) __UpperCAmelCase = ScoreSdeVePipeline(unet=lowercase__ , scheduler=lowercase__ ) sde_ve.to(lowercase__ ) sde_ve.set_progress_bar_config(disable=lowercase__ ) __UpperCAmelCase = torch.manual_seed(0 ) __UpperCAmelCase = sde_ve(num_inference_steps=10 , output_type='''numpy''' , generator=lowercase__ ).images __UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) __UpperCAmelCase = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
303
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase = 0 while b > 0: if b & 1: __UpperCAmelCase = ((res % c) + (a % c)) % c a += a b >>= 1 return res
303
1
import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL UpperCAmelCase_ : Union[str, Any] = version.parse(version.parse(torch.__version__).base_version) < version.parse('''1.11''') def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Optional[Any] , __magic_name__ : int , __magic_name__ : str , __magic_name__ : str , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : str=False , ) -> int: output_path.parent.mkdir(parents=_UpperCAmelCase , exist_ok=_UpperCAmelCase ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( _UpperCAmelCase , _UpperCAmelCase , f=output_path.as_posix() , input_names=_UpperCAmelCase , output_names=_UpperCAmelCase , dynamic_axes=_UpperCAmelCase , do_constant_folding=_UpperCAmelCase , use_external_data_format=_UpperCAmelCase , enable_onnx_checker=_UpperCAmelCase , opset_version=_UpperCAmelCase , ) else: export( _UpperCAmelCase , _UpperCAmelCase , f=output_path.as_posix() , input_names=_UpperCAmelCase , output_names=_UpperCAmelCase , dynamic_axes=_UpperCAmelCase , do_constant_folding=_UpperCAmelCase , opset_version=_UpperCAmelCase , ) @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( __magic_name__ : str , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : int = False ) -> int: UpperCamelCase :int = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): UpperCamelCase :int = """cuda""" elif fpaa and not torch.cuda.is_available(): raise ValueError("""`float16` model export is only supported on GPUs with CUDA""" ) else: UpperCamelCase :Optional[int] = """cpu""" UpperCamelCase :List[Any] = Path(_UpperCAmelCase ) # VAE DECODER UpperCamelCase :Tuple = AutoencoderKL.from_pretrained(model_path + """/vae""" ) UpperCamelCase :List[str] = vae_decoder.config.latent_channels # forward only through the decoder part UpperCamelCase :int = vae_decoder.decode onnx_export( _UpperCAmelCase , model_args=( torch.randn(1 , _UpperCAmelCase , 25 , 25 ).to(device=_UpperCAmelCase , dtype=_UpperCAmelCase ), False, ) , output_path=output_path / """vae_decoder""" / """model.onnx""" , ordered_input_names=["""latent_sample""", """return_dict"""] , output_names=["""sample"""] , dynamic_axes={ """latent_sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, } , opset=_UpperCAmelCase , ) del vae_decoder if __name__ == "__main__": UpperCAmelCase_ : List[Any] = argparse.ArgumentParser() parser.add_argument( '''--model_path''', type=str, required=True, help='''Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).''', ) parser.add_argument('''--output_path''', type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--opset''', default=14, type=int, help='''The version of the ONNX operator set to use.''', ) parser.add_argument('''--fp16''', action='''store_true''', default=False, help='''Export the models in `float16` mode''') UpperCAmelCase_ : str = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print('''SD: Done: ONNX''')
716
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : jnp.ndarray snake_case__ : jnp.ndarray class _SCREAMING_SNAKE_CASE ( nn.Module ): snake_case__ : int snake_case__ : Tuple[int] = (1_6, 3_2, 9_6, 2_5_6) snake_case__ : jnp.dtype = jnp.floataa def _A ( self : Any ): UpperCamelCase :Union[str, Any] = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) UpperCamelCase :List[str] = [] for i in range(len(self.block_out_channels ) - 1 ): UpperCamelCase :Optional[Any] = self.block_out_channels[i] UpperCamelCase :List[Any] = self.block_out_channels[i + 1] UpperCamelCase :List[Any] = nn.Conv( __lowerCamelCase , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(__lowerCamelCase ) UpperCamelCase :List[str] = nn.Conv( __lowerCamelCase , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(__lowerCamelCase ) UpperCamelCase :Tuple = blocks UpperCamelCase :Optional[Any] = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self : Dict , __lowerCamelCase : Dict ): UpperCamelCase :Tuple = self.conv_in(__lowerCamelCase ) UpperCamelCase :Optional[Any] = nn.silu(__lowerCamelCase ) for block in self.blocks: UpperCamelCase :Tuple = block(__lowerCamelCase ) UpperCamelCase :List[str] = nn.silu(__lowerCamelCase ) UpperCamelCase :Dict = self.conv_out(__lowerCamelCase ) return embedding @flax_register_to_config class _SCREAMING_SNAKE_CASE ( nn.Module , _a , _a ): snake_case__ : int = 3_2 snake_case__ : int = 4 snake_case__ : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) snake_case__ : Union[bool, Tuple[bool]] = False snake_case__ : Tuple[int] = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0) snake_case__ : int = 2 snake_case__ : Union[int, Tuple[int]] = 8 snake_case__ : Optional[Union[int, Tuple[int]]] = None snake_case__ : int = 1_2_8_0 snake_case__ : float = 0.0 snake_case__ : bool = False snake_case__ : jnp.dtype = jnp.floataa snake_case__ : bool = True snake_case__ : int = 0 snake_case__ : str = "rgb" snake_case__ : Tuple[int] = (1_6, 3_2, 9_6, 2_5_6) def _A ( self : int , __lowerCamelCase : jax.random.KeyArray ): # init input tensors UpperCamelCase :int = (1, self.in_channels, self.sample_size, self.sample_size) UpperCamelCase :Union[str, Any] = jnp.zeros(__lowerCamelCase , dtype=jnp.floataa ) UpperCamelCase :int = jnp.ones((1,) , dtype=jnp.intaa ) UpperCamelCase :Tuple = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) UpperCamelCase :Tuple = (1, 3, self.sample_size * 8, self.sample_size * 8) UpperCamelCase :Tuple = jnp.zeros(__lowerCamelCase , dtype=jnp.floataa ) UpperCamelCase , UpperCamelCase :int = jax.random.split(__lowerCamelCase ) UpperCamelCase :Union[str, Any] = {"""params""": params_rng, """dropout""": dropout_rng} return self.init(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )["params"] def _A ( self : int ): UpperCamelCase :Dict = self.block_out_channels UpperCamelCase :Tuple = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. UpperCamelCase :List[Any] = self.num_attention_heads or self.attention_head_dim # input UpperCamelCase :Optional[Any] = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time UpperCamelCase :Tuple = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) UpperCamelCase :Tuple = FlaxTimestepEmbedding(__lowerCamelCase , dtype=self.dtype ) UpperCamelCase :List[Any] = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) UpperCamelCase :Union[str, Any] = self.only_cross_attention if isinstance(__lowerCamelCase , __lowerCamelCase ): UpperCamelCase :List[Any] = (only_cross_attention,) * len(self.down_block_types ) if isinstance(__lowerCamelCase , __lowerCamelCase ): UpperCamelCase :str = (num_attention_heads,) * len(self.down_block_types ) # down UpperCamelCase :int = [] UpperCamelCase :str = [] UpperCamelCase :str = block_out_channels[0] UpperCamelCase :Optional[Any] = nn.Conv( __lowerCamelCase , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(__lowerCamelCase ) for i, down_block_type in enumerate(self.down_block_types ): UpperCamelCase :List[str] = output_channel UpperCamelCase :Optional[Any] = block_out_channels[i] UpperCamelCase :Tuple = i == len(__lowerCamelCase ) - 1 if down_block_type == "CrossAttnDownBlock2D": UpperCamelCase :List[Any] = FlaxCrossAttnDownBlockaD( in_channels=__lowerCamelCase , out_channels=__lowerCamelCase , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: UpperCamelCase :List[Any] = FlaxDownBlockaD( in_channels=__lowerCamelCase , out_channels=__lowerCamelCase , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(__lowerCamelCase ) for _ in range(self.layers_per_block ): UpperCamelCase :List[Any] = nn.Conv( __lowerCamelCase , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(__lowerCamelCase ) if not is_final_block: UpperCamelCase :str = nn.Conv( __lowerCamelCase , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(__lowerCamelCase ) UpperCamelCase :Optional[Any] = down_blocks UpperCamelCase :Optional[Any] = controlnet_down_blocks # mid UpperCamelCase :str = block_out_channels[-1] UpperCamelCase :Dict = FlaxUNetMidBlockaDCrossAttn( in_channels=__lowerCamelCase , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) UpperCamelCase :List[str] = nn.Conv( __lowerCamelCase , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self : List[str] , __lowerCamelCase : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : float = 1.0 , __lowerCamelCase : bool = True , __lowerCamelCase : bool = False , ): UpperCamelCase :Dict = self.controlnet_conditioning_channel_order if channel_order == "bgr": UpperCamelCase :List[Any] = jnp.flip(__lowerCamelCase , axis=1 ) # 1. time if not isinstance(__lowerCamelCase , jnp.ndarray ): UpperCamelCase :Any = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(__lowerCamelCase , jnp.ndarray ) and len(timesteps.shape ) == 0: UpperCamelCase :Any = timesteps.astype(dtype=jnp.floataa ) UpperCamelCase :Optional[Any] = jnp.expand_dims(__lowerCamelCase , 0 ) UpperCamelCase :Optional[Any] = self.time_proj(__lowerCamelCase ) UpperCamelCase :Any = self.time_embedding(__lowerCamelCase ) # 2. pre-process UpperCamelCase :int = jnp.transpose(__lowerCamelCase , (0, 2, 3, 1) ) UpperCamelCase :Dict = self.conv_in(__lowerCamelCase ) UpperCamelCase :Any = jnp.transpose(__lowerCamelCase , (0, 2, 3, 1) ) UpperCamelCase :Optional[int] = self.controlnet_cond_embedding(__lowerCamelCase ) sample += controlnet_cond # 3. down UpperCamelCase :int = (sample,) for down_block in self.down_blocks: if isinstance(__lowerCamelCase , __lowerCamelCase ): UpperCamelCase , UpperCamelCase :Optional[Any] = down_block(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , deterministic=not train ) else: UpperCamelCase , UpperCamelCase :Union[str, Any] = down_block(__lowerCamelCase , __lowerCamelCase , deterministic=not train ) down_block_res_samples += res_samples # 4. mid UpperCamelCase :List[str] = self.mid_block(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , deterministic=not train ) # 5. contronet blocks UpperCamelCase :str = () for down_block_res_sample, controlnet_block in zip(__lowerCamelCase , self.controlnet_down_blocks ): UpperCamelCase :Any = controlnet_block(__lowerCamelCase ) controlnet_down_block_res_samples += (down_block_res_sample,) UpperCamelCase :Optional[Any] = controlnet_down_block_res_samples UpperCamelCase :str = self.controlnet_mid_block(__lowerCamelCase ) # 6. scaling UpperCamelCase :str = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=__lowerCamelCase , mid_block_res_sample=__lowerCamelCase )
590
0
import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder lowerCAmelCase_ = '''__DUMMY_TRANSFORMERS_USER__''' lowerCAmelCase_ = '''Dummy User''' lowerCAmelCase_ = '''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''' lowerCAmelCase_ = '''https://hub-ci.huggingface.co''' lowerCAmelCase_ = CI_HUB_ENDPOINT + '''/datasets/{repo_id}/resolve/{revision}/{path}''' lowerCAmelCase_ = CI_HUB_ENDPOINT + '''/{repo_id}/resolve/{revision}/{filename}''' lowerCAmelCase_ = Path('''~/.huggingface/hub_ci_token''').expanduser() @pytest.fixture def lowerCamelCase_ ( _UpperCamelCase ) -> Optional[int]: """simple docstring""" monkeypatch.setattr( '''huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE''' , _UpperCamelCase ) @pytest.fixture def lowerCamelCase_ ( _UpperCamelCase ) -> Optional[int]: """simple docstring""" monkeypatch.setattr('''datasets.config.HF_ENDPOINT''' , _UpperCamelCase ) monkeypatch.setattr('''datasets.config.HUB_DATASETS_URL''' , _UpperCamelCase ) @pytest.fixture def lowerCamelCase_ ( _UpperCamelCase ) -> str: """simple docstring""" monkeypatch.setattr('''huggingface_hub.hf_api.HfFolder.path_token''' , _UpperCamelCase ) @pytest.fixture def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> Any: """simple docstring""" HfFolder.save_token(_UpperCamelCase ) yield HfFolder.delete_token() @pytest.fixture(scope='''session''' ) def lowerCamelCase_ ( ) -> Tuple: """simple docstring""" return HfApi(endpoint=_UpperCamelCase ) @pytest.fixture(scope='''session''' ) def lowerCamelCase_ ( _UpperCamelCase ) -> List[Any]: """simple docstring""" snake_case_ : List[Any] = HfFolder.get_token() HfFolder.save_token(_UpperCamelCase ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(_UpperCamelCase ) @pytest.fixture def lowerCamelCase_ ( _UpperCamelCase ) -> List[Any]: """simple docstring""" def _cleanup_repo(_UpperCamelCase ): hf_api.delete_repo(_UpperCamelCase , token=_UpperCamelCase , repo_type='''dataset''' ) return _cleanup_repo @pytest.fixture def lowerCamelCase_ ( _UpperCamelCase ) -> Union[str, Any]: """simple docstring""" @contextmanager def _temporary_repo(_UpperCamelCase ): try: yield repo_id finally: cleanup_repo(_UpperCamelCase ) return _temporary_repo @pytest.fixture(scope='''session''' ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> str: """simple docstring""" snake_case_ : Any = f'''repo_txt_data-{int(time.time() * 10E3 )}''' snake_case_ : Optional[int] = f'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(_UpperCamelCase , token=_UpperCamelCase , repo_type='''dataset''' , private=_UpperCamelCase ) hf_api.upload_file( token=_UpperCamelCase , path_or_fileobj=str(_UpperCamelCase ) , path_in_repo='''data/text_data.txt''' , repo_id=_UpperCamelCase , repo_type='''dataset''' , ) yield repo_id try: hf_api.delete_repo(_UpperCamelCase , token=_UpperCamelCase , repo_type='''dataset''' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> str: """simple docstring""" return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope='''session''' ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Optional[int]: """simple docstring""" snake_case_ : str = f'''repo_zipped_txt_data-{int(time.time() * 10E3 )}''' snake_case_ : Optional[Any] = f'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(_UpperCamelCase , token=_UpperCamelCase , repo_type='''dataset''' , private=_UpperCamelCase ) hf_api.upload_file( token=_UpperCamelCase , path_or_fileobj=str(_UpperCamelCase ) , path_in_repo='''data.zip''' , repo_id=_UpperCamelCase , repo_type='''dataset''' , ) yield repo_id try: hf_api.delete_repo(_UpperCamelCase , token=_UpperCamelCase , repo_type='''dataset''' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Union[str, Any]: """simple docstring""" return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope='''session''' ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> str: """simple docstring""" snake_case_ : int = f'''repo_zipped_img_data-{int(time.time() * 10E3 )}''' snake_case_ : List[str] = f'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(_UpperCamelCase , token=_UpperCamelCase , repo_type='''dataset''' , private=_UpperCamelCase ) hf_api.upload_file( token=_UpperCamelCase , path_or_fileobj=str(_UpperCamelCase ) , path_in_repo='''data.zip''' , repo_id=_UpperCamelCase , repo_type='''dataset''' , ) yield repo_id try: hf_api.delete_repo(_UpperCamelCase , token=_UpperCamelCase , repo_type='''dataset''' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Optional[int]: """simple docstring""" return hf_private_dataset_repo_zipped_img_data_
60
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger() @dataclass class _UpperCAmelCase : lowerCamelCase_ : nn.Module lowerCamelCase_ : List[nn.Module] = field(default_factory=lowercase ) lowerCamelCase_ : list = field(default_factory=lowercase ) def _snake_case ( self : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tensor , UpperCAmelCase : Tensor): SCREAMING_SNAKE_CASE_ :Union[str, Any] = len(list(m.modules())) == 1 or isinstance(UpperCAmelCase , nn.Convad) or isinstance(UpperCAmelCase , nn.BatchNormad) if has_not_submodules: self.traced.append(UpperCAmelCase) def __call__( self : Optional[int] , UpperCAmelCase : Tensor): for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook)) self.module(UpperCAmelCase) [x.remove() for x in self.handles] return self @property def _snake_case ( self : Optional[Any]): # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda UpperCAmelCase: len(list(x.state_dict().keys())) > 0 , self.traced)) @dataclass class _UpperCAmelCase : lowerCamelCase_ : nn.Module lowerCamelCase_ : nn.Module lowerCamelCase_ : int = 1 lowerCamelCase_ : List = field(default_factory=lowercase ) lowerCamelCase_ : List = field(default_factory=lowercase ) lowerCamelCase_ : bool = True def __call__( self : List[str] , UpperCAmelCase : Tensor): SCREAMING_SNAKE_CASE_ :str = Tracker(self.dest)(UpperCAmelCase).parametrized SCREAMING_SNAKE_CASE_ :Optional[int] = Tracker(self.src)(UpperCAmelCase).parametrized SCREAMING_SNAKE_CASE_ :str = list(filter(lambda UpperCAmelCase: type(UpperCAmelCase) not in self.src_skip , UpperCAmelCase)) SCREAMING_SNAKE_CASE_ :Tuple = list(filter(lambda UpperCAmelCase: type(UpperCAmelCase) not in self.dest_skip , UpperCAmelCase)) if len(UpperCAmelCase) != len(UpperCAmelCase) and self.raise_if_mismatch: raise Exception( F"Numbers of operations are different. Source module has {len(UpperCAmelCase)} operations while" F" destination module has {len(UpperCAmelCase)}.") for dest_m, src_m in zip(UpperCAmelCase , UpperCAmelCase): dest_m.load_state_dict(src_m.state_dict()) if self.verbose == 1: print(F"Transfered from={src_m} to={dest_m}") class _UpperCAmelCase ( nn.Module ): def __init__( self : Optional[Any] , UpperCAmelCase : nn.Module): super().__init__() SCREAMING_SNAKE_CASE_ :List[Tuple[str, nn.Module]] = [] # - get the stem feature_blocks.append(("conv1", model.stem)) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith("block"), F"Unexpected layer name {k}" SCREAMING_SNAKE_CASE_ :Any = len(UpperCAmelCase) + 1 feature_blocks.append((F"res{block_index}", v)) SCREAMING_SNAKE_CASE_ :List[str] = nn.ModuleDict(UpperCAmelCase) def _snake_case ( self : List[Any] , UpperCAmelCase : Tensor): return get_trunk_forward_outputs( UpperCAmelCase , out_feat_keys=UpperCAmelCase , feature_blocks=self._feature_blocks , ) class _UpperCAmelCase ( lowercase ): def _snake_case ( self : Union[str, Any] , UpperCAmelCase : str): SCREAMING_SNAKE_CASE_ :Optional[Any] = x.split("-") return x_split[0] + x_split[1] + "_" + "".join(x_split[2:]) def __getitem__( self : str , UpperCAmelCase : str): # default to timm! if x not in self: SCREAMING_SNAKE_CASE_ :List[str] = self.convert_name_to_timm(UpperCAmelCase) SCREAMING_SNAKE_CASE_ :Tuple = partial(lambda: (timm.create_model(UpperCAmelCase , pretrained=UpperCAmelCase).eval(), None)) else: SCREAMING_SNAKE_CASE_ :Tuple = super().__getitem__(UpperCAmelCase) return val class _UpperCAmelCase ( lowercase ): def __getitem__( self : Any , UpperCAmelCase : str): if "seer" in x and "in1k" not in x: SCREAMING_SNAKE_CASE_ :Union[str, Any] = RegNetModel else: SCREAMING_SNAKE_CASE_ :Optional[int] = RegNetForImageClassification return val def lowercase ( a , a , a ): '''simple docstring''' for from_key, to_key in keys: SCREAMING_SNAKE_CASE_ :List[Any] = from_state_dict[from_key].clone() print(F"Copied key={from_key} to={to_key}" ) return to_state_dict def lowercase ( a , a , a , a , a , a = True , ): '''simple docstring''' print(F"Converting {name}..." ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ :Any = from_model_func() SCREAMING_SNAKE_CASE_ :Optional[Any] = our_model_func(a ).eval() SCREAMING_SNAKE_CASE_ :Union[str, Any] = ModuleTransfer(src=a , dest=a , raise_if_mismatch=a ) SCREAMING_SNAKE_CASE_ :Optional[Any] = torch.randn((1, 3, 224, 224) ) module_transfer(a ) if from_state_dict is not None: SCREAMING_SNAKE_CASE_ :Tuple = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: SCREAMING_SNAKE_CASE_ :str = [("0.clf.0.weight", "classifier.1.weight"), ("0.clf.0.bias", "classifier.1.bias")] SCREAMING_SNAKE_CASE_ :Optional[Any] = manually_copy_vissl_head(a , our_model.state_dict() , a ) our_model.load_state_dict(a ) SCREAMING_SNAKE_CASE_ :str = our_model(a , output_hidden_states=a ) SCREAMING_SNAKE_CASE_ :Dict = ( our_outputs.logits if isinstance(a , a ) else our_outputs.last_hidden_state ) SCREAMING_SNAKE_CASE_ :Union[str, Any] = from_model(a ) SCREAMING_SNAKE_CASE_ :int = from_output[-1] if type(a ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: SCREAMING_SNAKE_CASE_ :Union[str, Any] = our_outputs.hidden_states[-1] assert torch.allclose(a , a ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message="Add model" , use_temp_dir=a , ) SCREAMING_SNAKE_CASE_ :List[Any] = 224 if "seer" not in name else 384 # we can use the convnext one SCREAMING_SNAKE_CASE_ :Optional[Any] = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" , size=a ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message="Add image processor" , use_temp_dir=a , ) print(F"Pushed {name}" ) def lowercase ( a , a = None , a = True ): '''simple docstring''' SCREAMING_SNAKE_CASE_ :Union[str, Any] = "imagenet-1k-id2label.json" SCREAMING_SNAKE_CASE_ :str = 1000 SCREAMING_SNAKE_CASE_ :List[Any] = (1, num_labels) SCREAMING_SNAKE_CASE_ :Dict = "huggingface/label-files" SCREAMING_SNAKE_CASE_ :Union[str, Any] = num_labels SCREAMING_SNAKE_CASE_ :Any = json.load(open(cached_download(hf_hub_url(a , a , repo_type="dataset" ) ) , "r" ) ) SCREAMING_SNAKE_CASE_ :Optional[int] = {int(a ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_ :Optional[Any] = idalabel SCREAMING_SNAKE_CASE_ :List[str] = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_ :int = partial(a , num_labels=a , idalabel=a , labelaid=a ) SCREAMING_SNAKE_CASE_ :str = { "regnet-x-002": ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 , layer_type="x" ), "regnet-x-004": ImageNetPreTrainedConfig( depths=[1, 2, 7, 12] , hidden_sizes=[32, 64, 160, 384] , groups_width=16 , layer_type="x" ), "regnet-x-006": ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[48, 96, 240, 528] , groups_width=24 , layer_type="x" ), "regnet-x-008": ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[64, 128, 288, 672] , groups_width=16 , layer_type="x" ), "regnet-x-016": ImageNetPreTrainedConfig( depths=[2, 4, 10, 2] , hidden_sizes=[72, 168, 408, 912] , groups_width=24 , layer_type="x" ), "regnet-x-032": ImageNetPreTrainedConfig( depths=[2, 6, 15, 2] , hidden_sizes=[96, 192, 432, 1008] , groups_width=48 , layer_type="x" ), "regnet-x-040": ImageNetPreTrainedConfig( depths=[2, 5, 14, 2] , hidden_sizes=[80, 240, 560, 1360] , groups_width=40 , layer_type="x" ), "regnet-x-064": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 392, 784, 1624] , groups_width=56 , layer_type="x" ), "regnet-x-080": ImageNetPreTrainedConfig( depths=[2, 5, 15, 1] , hidden_sizes=[80, 240, 720, 1920] , groups_width=120 , layer_type="x" ), "regnet-x-120": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 , layer_type="x" ), "regnet-x-160": ImageNetPreTrainedConfig( depths=[2, 6, 13, 1] , hidden_sizes=[256, 512, 896, 2048] , groups_width=128 , layer_type="x" ), "regnet-x-320": ImageNetPreTrainedConfig( depths=[2, 7, 13, 1] , hidden_sizes=[336, 672, 1344, 2520] , groups_width=168 , layer_type="x" ), # y variant "regnet-y-002": ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 ), "regnet-y-004": ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[48, 104, 208, 440] , groups_width=8 ), "regnet-y-006": ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[48, 112, 256, 608] , groups_width=16 ), "regnet-y-008": ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[64, 128, 320, 768] , groups_width=16 ), "regnet-y-016": ImageNetPreTrainedConfig( depths=[2, 6, 17, 2] , hidden_sizes=[48, 120, 336, 888] , groups_width=24 ), "regnet-y-032": ImageNetPreTrainedConfig( depths=[2, 5, 13, 1] , hidden_sizes=[72, 216, 576, 1512] , groups_width=24 ), "regnet-y-040": ImageNetPreTrainedConfig( depths=[2, 6, 12, 2] , hidden_sizes=[128, 192, 512, 1088] , groups_width=64 ), "regnet-y-064": ImageNetPreTrainedConfig( depths=[2, 7, 14, 2] , hidden_sizes=[144, 288, 576, 1296] , groups_width=72 ), "regnet-y-080": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 448, 896, 2016] , groups_width=56 ), "regnet-y-120": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 ), "regnet-y-160": ImageNetPreTrainedConfig( depths=[2, 4, 11, 1] , hidden_sizes=[224, 448, 1232, 3024] , groups_width=112 ), "regnet-y-320": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 "regnet-y-320-seer": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), "regnet-y-640-seer": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), "regnet-y-1280-seer": RegNetConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), "regnet-y-2560-seer": RegNetConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), "regnet-y-10b-seer": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 1_1110, 2_8280] , groups_width=1010 ), # finetuned on imagenet "regnet-y-320-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), "regnet-y-640-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), "regnet-y-1280-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), "regnet-y-2560-seer-in1k": ImageNetPreTrainedConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), "regnet-y-10b-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 1_1110, 2_8280] , groups_width=1010 ), } SCREAMING_SNAKE_CASE_ :List[str] = NameToOurModelFuncMap() SCREAMING_SNAKE_CASE_ :Tuple = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(a , a ) -> Tuple[nn.Module, Dict]: SCREAMING_SNAKE_CASE_ :int = torch.hub.load_state_dict_from_url(a , model_dir=str(a ) , map_location="cpu" ) SCREAMING_SNAKE_CASE_ :List[str] = model_func() # check if we have a head, if yes add it SCREAMING_SNAKE_CASE_ :Union[str, Any] = files["classy_state_dict"]["base_model"]["model"] SCREAMING_SNAKE_CASE_ :List[str] = model_state_dict["trunk"] model.load_state_dict(a ) return model.eval(), model_state_dict["heads"] # pretrained SCREAMING_SNAKE_CASE_ :Union[str, Any] = partial( a , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) SCREAMING_SNAKE_CASE_ :int = partial( a , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) SCREAMING_SNAKE_CASE_ :int = partial( a , "https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) SCREAMING_SNAKE_CASE_ :Tuple = partial( a , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=620.83 , w_m=2.52 ) ) ) , ) # IN1K finetuned SCREAMING_SNAKE_CASE_ :Optional[int] = partial( a , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) SCREAMING_SNAKE_CASE_ :int = partial( a , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) SCREAMING_SNAKE_CASE_ :List[str] = partial( a , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) SCREAMING_SNAKE_CASE_ :List[Any] = partial( a , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=620.83 , w_m=2.52 ) ) ) , ) if model_name: convert_weight_and_push( a , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , a , a , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( a , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , a , a , a , ) return config, expected_shape if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help=( "The name of the model you wish to convert, it must be one of the supported regnet* architecture," " currently: regnetx-*, regnety-*. If `None`, all of them will the converted." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=Path, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=True, type=bool, required=False, help="If True, push model and image processor to the hub.", ) SCREAMING_SNAKE_CASE__ = parser.parse_args() SCREAMING_SNAKE_CASE__ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
631
0
import importlib import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Union import torch from ..utils import BaseOutput __UpperCAmelCase : Union[str, Any] = "scheduler_config.json" class _snake_case ( _A ): _A = 1 _A = 2 _A = 3 _A = 4 _A = 5 _A = 6 _A = 7 _A = 8 _A = 9 _A = 10 _A = 11 _A = 12 _A = 13 _A = 14 @dataclass class _snake_case ( _A ): _A = 42 class _snake_case : _A = SCHEDULER_CONFIG_NAME _A = [] _A = True @classmethod def lowerCAmelCase_ ( cls ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase=False ,**UpperCamelCase ,) -> Tuple: snake_case__ :str = cls.load_config( pretrained_model_name_or_path=UpperCamelCase ,subfolder=UpperCamelCase ,return_unused_kwargs=UpperCamelCase ,return_commit_hash=UpperCamelCase ,**UpperCamelCase ,) return cls.from_config(UpperCamelCase ,return_unused_kwargs=UpperCamelCase ,**UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = False ,**UpperCamelCase ) -> Union[str, Any]: self.save_config(save_directory=UpperCamelCase ,push_to_hub=UpperCamelCase ,**UpperCamelCase ) @property def lowerCAmelCase_ ( self ) -> Optional[Any]: return self._get_compatibles() @classmethod def lowerCAmelCase_ ( cls ) -> str: snake_case__ :Dict = list(set([cls.__name__] + cls._compatibles ) ) snake_case__ :Optional[int] = importlib.import_module(__name__.split("." )[0] ) snake_case__ :int = [ getattr(UpperCamelCase ,UpperCamelCase ) for c in compatible_classes_str if hasattr(UpperCamelCase ,UpperCamelCase ) ] return compatible_classes
700
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) def lowercase_ ( __snake_case : Any , __snake_case : Any ) -> Any: '''simple docstring''' snake_case__ :Optional[Any] = b.T snake_case__ :Optional[Any] = np.sum(np.square(__snake_case ) , axis=1 ) snake_case__ :Tuple = np.sum(np.square(__snake_case ) , axis=0 ) snake_case__ :Union[str, Any] = np.matmul(__snake_case , __snake_case ) snake_case__ :Union[str, Any] = aa[:, None] - 2 * ab + ba[None, :] return d def lowercase_ ( __snake_case : Optional[Any] , __snake_case : int ) -> Any: '''simple docstring''' snake_case__ :Optional[Any] = x.reshape(-1 , 3 ) snake_case__ :List[str] = squared_euclidean_distance(__snake_case , __snake_case ) return np.argmin(__snake_case , axis=1 ) class _snake_case ( _A ): _A = ['pixel_values'] def __init__( self ,UpperCamelCase = None ,UpperCamelCase = True ,UpperCamelCase = None ,UpperCamelCase = PILImageResampling.BILINEAR ,UpperCamelCase = True ,UpperCamelCase = True ,**UpperCamelCase ,) -> None: super().__init__(**UpperCamelCase ) snake_case__ :List[Any] = size if size is not None else {"height": 256, "width": 256} snake_case__ :str = get_size_dict(UpperCamelCase ) snake_case__ :Dict = np.array(UpperCamelCase ) if clusters is not None else None snake_case__ :str = do_resize snake_case__ :List[str] = size snake_case__ :List[Any] = resample snake_case__ :Union[str, Any] = do_normalize snake_case__ :int = do_color_quantize def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = PILImageResampling.BILINEAR ,UpperCamelCase = None ,**UpperCamelCase ,) -> np.ndarray: snake_case__ :List[str] = get_size_dict(UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'Size dictionary must contain both height and width keys. Got {size.keys()}' ) return resize( UpperCamelCase ,size=(size["height"], size["width"]) ,resample=UpperCamelCase ,data_format=UpperCamelCase ,**UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ,) -> np.ndarray: snake_case__ :Tuple = rescale(image=UpperCamelCase ,scale=1 / 127.5 ,data_format=UpperCamelCase ) snake_case__ :List[Any] = image - 1 return image def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = ChannelDimension.FIRST ,**UpperCamelCase ,) -> PIL.Image.Image: snake_case__ :Optional[int] = do_resize if do_resize is not None else self.do_resize snake_case__ :int = size if size is not None else self.size snake_case__ :Tuple = get_size_dict(UpperCamelCase ) snake_case__ :str = resample if resample is not None else self.resample snake_case__ :Dict = do_normalize if do_normalize is not None else self.do_normalize snake_case__ :Tuple = do_color_quantize if do_color_quantize is not None else self.do_color_quantize snake_case__ :List[Any] = clusters if clusters is not None else self.clusters snake_case__ :str = np.array(UpperCamelCase ) snake_case__ :int = make_list_of_images(UpperCamelCase ) if not valid_images(UpperCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_color_quantize and clusters is None: raise ValueError("Clusters must be specified if do_color_quantize is True." ) # All transformations expect numpy arrays. snake_case__ :Union[str, Any] = [to_numpy_array(UpperCamelCase ) for image in images] if do_resize: snake_case__ :int = [self.resize(image=UpperCamelCase ,size=UpperCamelCase ,resample=UpperCamelCase ) for image in images] if do_normalize: snake_case__ :Any = [self.normalize(image=UpperCamelCase ) for image in images] if do_color_quantize: snake_case__ :Optional[Any] = [to_channel_dimension_format(UpperCamelCase ,ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) snake_case__ :Union[str, Any] = np.array(UpperCamelCase ) snake_case__ :Optional[int] = color_quantize(UpperCamelCase ,UpperCamelCase ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) snake_case__ :List[Any] = images.shape[0] snake_case__ :str = images.reshape(UpperCamelCase ,-1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. snake_case__ :Any = list(UpperCamelCase ) else: snake_case__ :List[str] = [to_channel_dimension_format(UpperCamelCase ,UpperCamelCase ) for image in images] snake_case__ :List[str] = {"input_ids": images} return BatchFeature(data=UpperCamelCase ,tensor_type=UpperCamelCase )
57
0
from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A: '''simple docstring''' def __init__( self : Dict , A_ : List[str] , A_ : List[str]=3 , A_ : Dict=32 , A_ : Union[str, Any]=3 , A_ : Any=10 , A_ : List[Any]=[10, 20, 30, 40] , A_ : int=[1, 1, 2, 1] , A_ : List[str]=True , A_ : Tuple=True , A_ : Tuple="relu" , A_ : str=3 , A_ : int=None , ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = image_size lowerCamelCase_ = num_channels lowerCamelCase_ = embeddings_size lowerCamelCase_ = hidden_sizes lowerCamelCase_ = depths lowerCamelCase_ = is_training lowerCamelCase_ = use_labels lowerCamelCase_ = hidden_act lowerCamelCase_ = num_labels lowerCamelCase_ = scope lowerCamelCase_ = len(A_ ) def a__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_labels ) lowerCamelCase_ = self.get_config() return config, pixel_values, labels def a__ ( self : str ) -> Optional[int]: """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def a__ ( self : Optional[Any] , A_ : Optional[Any] , A_ : Union[str, Any] , A_ : List[Any] ) -> Tuple: """simple docstring""" lowerCamelCase_ = TFRegNetModel(config=A_ ) lowerCamelCase_ = model(A_ , training=A_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a__ ( self : int , A_ : Tuple , A_ : int , A_ : str ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.num_labels lowerCamelCase_ = TFRegNetForImageClassification(A_ ) lowerCamelCase_ = model(A_ , labels=A_ , training=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ ( self : Tuple ) -> List[str]: """simple docstring""" lowerCamelCase_ = self.prepare_config_and_inputs() lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = config_and_inputs lowerCamelCase_ = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class A( UpperCamelCase , UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () UpperCamelCase = ( {'''feature-extraction''': TFRegNetModel, '''image-classification''': TFRegNetForImageClassification} if is_tf_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = TFRegNetModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=A_ , has_text_modality=A_ ) def a__ ( self : Optional[Any] ) -> Any: """simple docstring""" return @unittest.skip(reason='RegNet does not use inputs_embeds' ) def a__ ( self : Optional[Any] ) -> Dict: """simple docstring""" pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('GPU' ) ) == 0 , reason='TF does not support backprop for grouped convolutions on CPU.' , ) @slow def a__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" super().test_keras_fit() @unittest.skip(reason='RegNet does not support input and output embeddings' ) def a__ ( self : Optional[int] ) -> int: """simple docstring""" pass def a__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = model_class(A_ ) lowerCamelCase_ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ = [*signature.parameters.keys()] lowerCamelCase_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , A_ ) def a__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def a__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" def check_hidden_states_output(A_ : List[str] , A_ : List[str] , A_ : List[Any] ): lowerCamelCase_ = model_class(A_ ) lowerCamelCase_ = model(**self._prepare_for_class(A_ , A_ ) , training=A_ ) lowerCamelCase_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCamelCase_ = self.model_tester.num_stages self.assertEqual(len(A_ ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: lowerCamelCase_ = layer_type lowerCamelCase_ = True check_hidden_states_output(A_ , A_ , A_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ = True check_hidden_states_output(A_ , A_ , A_ ) def a__ ( self : Any ) -> int: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(A_ : Union[str, Any] , A_ : Optional[Any] , A_ : Optional[Any] , A_ : Dict={} ): lowerCamelCase_ = model(A_ , return_dict=A_ , **A_ ) lowerCamelCase_ = model(A_ , return_dict=A_ , **A_ ).to_tuple() def recursive_check(A_ : Any , A_ : Optional[Any] ): if isinstance(A_ , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(A_ , A_ ): recursive_check(A_ , A_ ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(A_ , A_ ) ) , msg=( 'Tuple and dict output are not equal. Difference:' f""" {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}""" ) , ) recursive_check(A_ , A_ ) for model_class in self.all_model_classes: lowerCamelCase_ = model_class(A_ ) lowerCamelCase_ = self._prepare_for_class(A_ , A_ ) lowerCamelCase_ = self._prepare_for_class(A_ , A_ ) check_equivalence(A_ , A_ , A_ ) lowerCamelCase_ = self._prepare_for_class(A_ , A_ , return_labels=A_ ) lowerCamelCase_ = self._prepare_for_class(A_ , A_ , return_labels=A_ ) check_equivalence(A_ , A_ , A_ ) lowerCamelCase_ = self._prepare_for_class(A_ , A_ ) lowerCamelCase_ = self._prepare_for_class(A_ , A_ ) check_equivalence(A_ , A_ , A_ , {'output_hidden_states': True} ) lowerCamelCase_ = self._prepare_for_class(A_ , A_ , return_labels=A_ ) lowerCamelCase_ = self._prepare_for_class(A_ , A_ , return_labels=A_ ) check_equivalence(A_ , A_ , A_ , {'output_hidden_states': True} ) def a__ ( self : str ) -> Tuple: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) @slow def a__ ( self : str ) -> str: """simple docstring""" for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = TFRegNetModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class A( unittest.TestCase ): '''simple docstring''' @cached_property def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def a__ ( self : Any ) -> int: """simple docstring""" lowerCamelCase_ = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowerCamelCase_ = self.default_image_processor lowerCamelCase_ = prepare_img() lowerCamelCase_ = image_processor(images=A_ , return_tensors='tf' ) # forward pass lowerCamelCase_ = model(**A_ , training=A_ ) # verify the logits lowerCamelCase_ = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , A_ ) lowerCamelCase_ = tf.constant([-0.4180, -1.5051, -3.4836] ) tf.debugging.assert_near(outputs.logits[0, :3] , A_ , atol=1E-4 )
70
def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : str ): '''simple docstring''' if len(lowercase ) != len(lowercase ): raise ValueError('String lengths must match!' ) lowerCamelCase_ = 0 for chara, chara in zip(lowercase , lowercase ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
70
1
"""simple docstring""" def _lowerCAmelCase ( UpperCAmelCase__ : str, UpperCAmelCase__ : int ) ->list: A__ : Dict = word.split() def justify(UpperCAmelCase__ : list, UpperCAmelCase__ : int, UpperCAmelCase__ : int ) -> str: A__ : Any = max_width - width A__ : List[Any] = len(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: A__ : List[str] = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] A__ : Dict = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] A__ : Any = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(UpperCAmelCase__ ): num_spaces_between_words_list[i] += 1 A__ : Tuple = [] for i in range(UpperCAmelCase__ ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * """ """ ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(UpperCAmelCase__ ) A__ : int = [] A__ : list[str] = [] A__ : Any = 0 for word in words: if width + len(UpperCAmelCase__ ) + len(UpperCAmelCase__ ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(UpperCAmelCase__ ) width += len(UpperCAmelCase__ ) else: # justify the line and add it to result answer.append(justify(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) ) # reset new line and new width A__ , A__ : Optional[int] = [word], len(UpperCAmelCase__ ) A__ : int = max_width - width - len(UpperCAmelCase__ ) answer.append(""" """.join(UpperCAmelCase__ ) + (remaining_spaces + 1) * """ """ ) return answer if __name__ == "__main__": from doctest import testmod testmod()
498
"""simple docstring""" import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def _lowerCAmelCase ( UpperCAmelCase__ : List[str] ) ->str: A__ : Tuple = {} A__ : Union[str, Any] = tokenizer(example["""content"""], truncation=UpperCAmelCase__ )["""input_ids"""] A__ : Any = len(example["""content"""] ) / len(output["""input_ids"""] ) return output A_ = HfArgumentParser(PretokenizationArguments) A_ = parser.parse_args() if args.num_workers is None: A_ = multiprocessing.cpu_count() A_ = AutoTokenizer.from_pretrained(args.tokenizer_dir) A_ = time.time() A_ = load_dataset(args.dataset_name, split='''train''') print(F'Dataset loaded in {time.time()-t_start:.2f}s') A_ = time.time() A_ = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ '''repo_name''', '''path''', '''copies''', '''size''', '''content''', '''license''', '''hash''', '''line_mean''', '''line_max''', '''alpha_frac''', '''autogenerated''', ], ) print(F'Dataset tokenized in {time.time()-t_start:.2f}s') A_ = time.time() ds.push_to_hub(args.tokenized_data_repo) print(F'Data pushed to the hub in {time.time()-t_start:.2f}s')
498
1
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params UpperCamelCase__ : Tuple = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['''memory_attention''', '''encoder_attn'''], ['''attention''', '''attn'''], ['''/''', '''.'''], ['''.LayerNorm.gamma''', '''_layer_norm.weight'''], ['''.LayerNorm.beta''', '''_layer_norm.bias'''], ['''r.layer_''', '''r.layers.'''], ['''output_proj''', '''out_proj'''], ['''ffn.dense_1.''', '''fc2.'''], ['''ffn.dense.''', '''fc1.'''], ['''ffn_layer_norm''', '''final_layer_norm'''], ['''kernel''', '''weight'''], ['''encoder_layer_norm.''', '''encoder.layer_norm.'''], ['''decoder_layer_norm.''', '''decoder.layer_norm.'''], ['''embeddings.weights''', '''shared.weight'''], ] def __UpperCAmelCase ( lowerCamelCase_ : Any ) -> List[Any]: """simple docstring""" for pegasus_name, hf_name in PATTERNS: SCREAMING_SNAKE_CASE_ : Optional[Any] = k.replace(lowerCamelCase_ , lowerCamelCase_ ) return k def __UpperCAmelCase ( lowerCamelCase_ : dict , lowerCamelCase_ : dict ) -> PegasusForConditionalGeneration: """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = DEFAULTS.copy() cfg_kwargs.update(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[int] = PegasusConfig(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : List[Any] = PegasusForConditionalGeneration(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : List[Any] = torch_model.model.state_dict() SCREAMING_SNAKE_CASE_ : Dict = {} for k, v in tf_weights.items(): SCREAMING_SNAKE_CASE_ : str = rename_state_dict_key(lowerCamelCase_ ) if new_k not in sd: raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if "dense" in k or "proj" in new_k: SCREAMING_SNAKE_CASE_ : str = v.T SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor(lowerCamelCase_ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F'{new_k}, {k}, {v.shape}, {sd[new_k].shape}' # make sure embedding.padding_idx is respected SCREAMING_SNAKE_CASE_ : Dict = torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] ) SCREAMING_SNAKE_CASE_ : int = mapping['shared.weight'] SCREAMING_SNAKE_CASE_ : Optional[int] = mapping['shared.weight'] SCREAMING_SNAKE_CASE_ : Any = {k: torch.zeros_like(lowerCamelCase_ ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping} mapping.update(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = torch_model.model.load_state_dict(lowerCamelCase_ , strict=lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = [ k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight'] ] assert unexpected_missing == [], F'no matches found for the following torch keys {unexpected_missing}' assert extra == [], F'no matches found for the following tf keys {extra}' return torch_model def __UpperCAmelCase ( lowerCamelCase_ : List[str]="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = tf.train.list_variables(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Dict = {} SCREAMING_SNAKE_CASE_ : List[str] = ['Adafactor', 'global_step'] for name, shape in tqdm(lowerCamelCase_ , desc='converting tf checkpoint to dict' ): SCREAMING_SNAKE_CASE_ : List[str] = any(pat in name for pat in ignore_name ) if skip_key: continue SCREAMING_SNAKE_CASE_ : str = tf.train.load_variable(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : List[str] = array return tf_weights def __UpperCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : str ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = Path(lowerCamelCase_ ).parent.name SCREAMING_SNAKE_CASE_ : int = task_specific_params[F'summarization_{dataset}']['max_position_embeddings'] SCREAMING_SNAKE_CASE_ : str = PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=lowerCamelCase_ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(lowerCamelCase_ ) # convert model SCREAMING_SNAKE_CASE_ : Union[str, Any] = get_tf_weights_as_numpy(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : str = task_specific_params[F'summarization_{dataset}'] if dataset == "large": SCREAMING_SNAKE_CASE_ : Tuple = task_specific_params SCREAMING_SNAKE_CASE_ : Any = convert_pegasus(lowerCamelCase_ , lowerCamelCase_ ) torch_model.save_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Tuple = torch_model.state_dict() sd.pop('model.decoder.embed_positions.weight' ) sd.pop('model.encoder.embed_positions.weight' ) torch.save(lowerCamelCase_ , Path(lowerCamelCase_ ) / 'pytorch_model.bin' ) if __name__ == "__main__": UpperCamelCase__ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('''tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') UpperCamelCase__ : List[Any] = parser.parse_args() if args.save_dir is None: UpperCamelCase__ : Optional[Any] = Path(args.tf_ckpt_path).parent.name UpperCamelCase__ : List[str] = os.path.join('''pegasus''', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
105
import os import sys import unittest UpperCamelCase__ : Optional[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path UpperCamelCase__ : Tuple = os.path.join(git_repo_path, '''src''', '''transformers''') UpperCamelCase__ : List[Any] = ''' {0} = None ''' UpperCamelCase__ : str = ''' class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) ''' UpperCamelCase__ : List[Any] = ''' def {0}(*args, **kwargs): requires_backends({0}, {1}) ''' class lowerCAmelCase_ ( unittest.TestCase ): def snake_case ( self ): SCREAMING_SNAKE_CASE_ : int = find_backend(' _import_structure["models.albert"].append("AlbertTokenizerFast")' ) self.assertIsNone(snake_case__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = find_backend(' if not is_tokenizers_available():' ) self.assertEqual(snake_case__ ,'tokenizers' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = find_backend(' if not is_tensorflow_text_available():' ) self.assertEqual(snake_case__ ,'tensorflow_text' ) SCREAMING_SNAKE_CASE_ : int = find_backend(' if not (is_sentencepiece_available() and is_tokenizers_available()):' ) self.assertEqual(snake_case__ ,'sentencepiece_and_tokenizers' ) SCREAMING_SNAKE_CASE_ : str = find_backend( ' if not (is_sentencepiece_available() and is_tensorflow_text_available()):' ) self.assertEqual(snake_case__ ,'sentencepiece_and_tensorflow_text' ) SCREAMING_SNAKE_CASE_ : Tuple = find_backend( ' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):' ) self.assertEqual(snake_case__ ,'sentencepiece_and_tokenizers_and_vision' ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : str = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('torch' ,snake_case__ ) self.assertIn('tensorflow_text' ,snake_case__ ) self.assertIn('sentencepiece_and_tokenizers' ,snake_case__ ) # Likewise, we can't assert on the exact content of a key self.assertIn('BertModel' ,objects['torch'] ) self.assertIn('TFBertModel' ,objects['tf'] ) self.assertIn('FlaxBertModel' ,objects['flax'] ) self.assertIn('BertModel' ,objects['torch'] ) self.assertIn('TFBertTokenizer' ,objects['tensorflow_text'] ) self.assertIn('convert_slow_tokenizer' ,objects['sentencepiece_and_tokenizers'] ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : str = create_dummy_object('CONSTANT' ,'\'torch\'' ) self.assertEqual(snake_case__ ,'\nCONSTANT = None\n' ) SCREAMING_SNAKE_CASE_ : Dict = create_dummy_object('function' ,'\'torch\'' ) self.assertEqual( snake_case__ ,'\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n' ) SCREAMING_SNAKE_CASE_ : List[str] = '\nclass FakeClass(metaclass=DummyObject):\n _backends = \'torch\'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, \'torch\')\n' SCREAMING_SNAKE_CASE_ : Dict = create_dummy_object('FakeClass' ,'\'torch\'' ) self.assertEqual(snake_case__ ,snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[Any] = '# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, ["torch"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = ["torch"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, ["torch"])\n' SCREAMING_SNAKE_CASE_ : Dict = create_dummy_files({'torch': ['CONSTANT', 'function', 'FakeClass']} ) self.assertEqual(dummy_files['torch'] ,snake_case__ )
105
1
"""simple docstring""" import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self , _lowercase ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Dict = 3 snake_case_ : str = 2_5_0 snake_case_ : Union[str, Any] = ids_tensor((batch_size, length) , lowerCAmelCase__ ) snake_case_ : List[str] = torch.ones((batch_size, length) , device=lowerCAmelCase__ , dtype=torch.float ) / length return input_ids, scores def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ , snake_case_ : Optional[int] = self._get_tensors(5 ) snake_case_ : List[str] = StoppingCriteriaList( [ MaxLengthCriteria(max_length=1_0 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) ) snake_case_ , snake_case_ : List[Any] = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) ) snake_case_ , snake_case_ : Dict = self._get_tensors(1_0 ) self.assertTrue(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : Any = MaxLengthCriteria(max_length=1_0 ) snake_case_ , snake_case_ : Optional[int] = self._get_tensors(5 ) self.assertFalse(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) ) snake_case_ , snake_case_ : Dict = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) ) snake_case_ , snake_case_ : Any = self._get_tensors(1_0 ) self.assertTrue(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Union[str, Any] = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) snake_case_ , snake_case_ : Union[str, Any] = self._get_tensors(5 ) self.assertFalse(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) ) snake_case_ , snake_case_ : Union[str, Any] = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) ) snake_case_ , snake_case_ : Union[str, Any] = self._get_tensors(1_0 ) self.assertTrue(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) ) snake_case_ : Any = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 1_0 ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ , snake_case_ : str = self._get_tensors(5 ) snake_case_ : List[str] = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) ) snake_case_ : Optional[int] = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(1_0 )] ) , 1_0 ) with self.assertWarns(lowerCAmelCase__ ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(1_0 )] ) , 1_1 ) snake_case_ : str = validate_stopping_criteria(StoppingCriteriaList() , 1_1 ) self.assertEqual(len(lowerCAmelCase__ ) , 1 )
701
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCAmelCase : str = logging.get_logger(__name__) __lowerCAmelCase : Tuple = { '''shi-labs/nat-mini-in1k-224''': '''https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json''', # See all Nat models at https://huggingface.co/models?filter=nat } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''nat''' _lowerCamelCase = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , _lowercase=4 , _lowercase=3 , _lowercase=6_4 , _lowercase=[3, 4, 6, 5] , _lowercase=[2, 4, 8, 1_6] , _lowercase=7 , _lowercase=3.0 , _lowercase=True , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.1 , _lowercase="gelu" , _lowercase=0.02 , _lowercase=1E-5 , _lowercase=0.0 , _lowercase=None , _lowercase=None , **_lowercase , ) -> Optional[Any]: '''simple docstring''' super().__init__(**_lowercase ) snake_case_ : Any = patch_size snake_case_ : Optional[Any] = num_channels snake_case_ : Optional[Any] = embed_dim snake_case_ : Tuple = depths snake_case_ : int = len(_lowercase ) snake_case_ : Optional[int] = num_heads snake_case_ : List[str] = kernel_size snake_case_ : str = mlp_ratio snake_case_ : str = qkv_bias snake_case_ : str = hidden_dropout_prob snake_case_ : Tuple = attention_probs_dropout_prob snake_case_ : Tuple = drop_path_rate snake_case_ : Dict = hidden_act snake_case_ : Union[str, Any] = layer_norm_eps snake_case_ : Tuple = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case_ : Union[str, Any] = int(embed_dim * 2 ** (len(_lowercase ) - 1) ) snake_case_ : Union[str, Any] = layer_scale_init_value snake_case_ : Optional[Any] = ["""stem"""] + [f'stage{idx}' for idx in range(1 , len(_lowercase ) + 1 )] snake_case_ , snake_case_ : Any = get_aligned_output_features_output_indices( out_features=_lowercase , out_indices=_lowercase , stage_names=self.stage_names )
21
0
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 a_ = get_tests_dir("""fixtures""") a_ = get_tests_dir("""fixtures/dummy_feature_extractor_config.json""") a_ = get_tests_dir("""fixtures/dummy-config.json""") class __lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = 0 def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = AutoFeatureExtractor.from_pretrained('''facebook/wav2vec2-base-960h''' ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = AutoFeatureExtractor.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: __lowerCamelCase = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally __lowerCamelCase = AutoFeatureExtractor.from_pretrained(__UpperCAmelCase ).to_dict() config_dict.pop('''feature_extractor_type''' ) __lowerCamelCase = WavaVecaFeatureExtractor(**__UpperCAmelCase ) # save in new folder model_config.save_pretrained(__UpperCAmelCase ) config.save_pretrained(__UpperCAmelCase ) __lowerCamelCase = AutoFeatureExtractor.from_pretrained(__UpperCAmelCase ) # make sure private variable is not incorrectly saved __lowerCamelCase = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = AutoFeatureExtractor.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' with self.assertRaisesRegex( __UpperCAmelCase , '''bert-base is not a local folder and is not a valid model identifier''' ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained('''bert-base''' ) def lowerCamelCase ( self ): '''simple docstring''' with self.assertRaisesRegex( __UpperCAmelCase , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained(__UpperCAmelCase , revision='''aaaaaa''' ) def lowerCamelCase ( self ): '''simple docstring''' with self.assertRaisesRegex( __UpperCAmelCase , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained('''hf-internal-testing/config-no-model''' ) def lowerCamelCase ( self ): '''simple docstring''' # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__UpperCAmelCase ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(__UpperCAmelCase ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' , trust_remote_code=__UpperCAmelCase ) __lowerCamelCase = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' , trust_remote_code=__UpperCAmelCase ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(__UpperCAmelCase ) __lowerCamelCase = AutoFeatureExtractor.from_pretrained(__UpperCAmelCase , trust_remote_code=__UpperCAmelCase ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) def lowerCamelCase ( self ): '''simple docstring''' try: AutoConfig.register('''custom''' , __UpperCAmelCase ) AutoFeatureExtractor.register(__UpperCAmelCase , __UpperCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__UpperCAmelCase ): AutoFeatureExtractor.register(__UpperCAmelCase , __UpperCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API __lowerCamelCase = CustomFeatureExtractor.from_pretrained(__UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(__UpperCAmelCase ) __lowerCamelCase = AutoFeatureExtractor.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def lowerCamelCase ( self ): '''simple docstring''' class __lowerCAmelCase ( lowerCAmelCase__ ): lowerCAmelCase__ = True try: AutoConfig.register('''custom''' , __UpperCAmelCase ) AutoFeatureExtractor.register(__UpperCAmelCase , __UpperCAmelCase ) # If remote code is not set, the default is to use local __lowerCamelCase = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. __lowerCamelCase = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' , trust_remote_code=__UpperCAmelCase ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub __lowerCamelCase = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' , trust_remote_code=__UpperCAmelCase ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) self.assertTrue(not hasattr(__UpperCAmelCase , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
175
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging a_ = logging.get_logger(__name__) a_ = { """t5-small""": """https://huggingface.co/t5-small/resolve/main/config.json""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/config.json""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/config.json""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/config.json""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/config.json""", } class __lowerCAmelCase ( lowerCAmelCase__ ): lowerCAmelCase__ = """t5""" lowerCAmelCase__ = ["""past_key_values"""] lowerCAmelCase__ = {"""hidden_size""": """d_model""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers"""} def __init__( self , __UpperCAmelCase=32128 , __UpperCAmelCase=512 , __UpperCAmelCase=64 , __UpperCAmelCase=2048 , __UpperCAmelCase=6 , __UpperCAmelCase=None , __UpperCAmelCase=8 , __UpperCAmelCase=32 , __UpperCAmelCase=128 , __UpperCAmelCase=0.1 , __UpperCAmelCase=1E-6 , __UpperCAmelCase=1.0 , __UpperCAmelCase="relu" , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=0 , __UpperCAmelCase=1 , **__UpperCAmelCase , ): '''simple docstring''' __lowerCamelCase = vocab_size __lowerCamelCase = d_model __lowerCamelCase = d_kv __lowerCamelCase = d_ff __lowerCamelCase = num_layers __lowerCamelCase = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __lowerCamelCase = num_heads __lowerCamelCase = relative_attention_num_buckets __lowerCamelCase = relative_attention_max_distance __lowerCamelCase = dropout_rate __lowerCamelCase = layer_norm_epsilon __lowerCamelCase = initializer_factor __lowerCamelCase = feed_forward_proj __lowerCamelCase = use_cache __lowerCamelCase = self.feed_forward_proj.split('''-''' ) __lowerCamelCase = act_info[-1] __lowerCamelCase = act_info[0] == '''gated''' if len(__UpperCAmelCase ) > 1 and act_info[0] != "gated" or len(__UpperCAmelCase ) > 2: raise ValueError( F"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": __lowerCamelCase = '''gelu_new''' super().__init__( pad_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , **__UpperCAmelCase , ) class __lowerCAmelCase ( lowerCAmelCase__ ): @property def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = { '''input_ids''': {0: '''batch''', 1: '''encoder_sequence'''}, '''attention_mask''': {0: '''batch''', 1: '''encoder_sequence'''}, } if self.use_past: __lowerCamelCase = '''past_encoder_sequence + sequence''' __lowerCamelCase = {0: '''batch'''} __lowerCamelCase = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: __lowerCamelCase = {0: '''batch''', 1: '''decoder_sequence'''} __lowerCamelCase = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(__UpperCAmelCase , direction='''inputs''' ) return common_inputs @property def lowerCamelCase ( self ): '''simple docstring''' return 13
175
1
from math import sqrt def A_ ( snake_case : Tuple = 1000000 ) -> List[Any]: '''simple docstring''' __UpperCamelCase = 0 __UpperCamelCase = 0 __UpperCamelCase = 42 while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(UpperCAmelCase__ , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(F"{solution() = }")
714
import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() lowercase__ : Union[str, Any] = logging.get_logger(__name__) def A_ ( snake_case : List[str] ) -> List[str]: '''simple docstring''' print('''Loading config file...''' ) def flatten_yaml_as_dict(snake_case : Optional[int] , snake_case : List[Any]="" , snake_case : str="." ): __UpperCamelCase = [] for k, v in d.items(): __UpperCamelCase = parent_key + sep + k if parent_key else k if isinstance(snake_case , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(snake_case , snake_case , sep=snake_case ).items() ) else: items.append((new_key, v) ) return dict(snake_case ) __UpperCamelCase = argparse.Namespace() with open(snake_case , '''r''' ) as yaml_file: try: __UpperCamelCase = yaml.load(snake_case , Loader=yaml.FullLoader ) __UpperCamelCase = flatten_yaml_as_dict(snake_case ) for k, v in flat_cfg.items(): setattr(snake_case , snake_case , snake_case ) except yaml.YAMLError as exc: logger.error('''Error while loading config file: {}. Error message: {}'''.format(snake_case , str(snake_case ) ) ) return config def A_ ( snake_case : List[Any] , snake_case : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' __UpperCamelCase = MobileViTVaConfig() __UpperCamelCase = False # dataset if task_name.startswith('''imagenet1k_''' ): __UpperCamelCase = 1000 if int(task_name.strip().split('''_''' )[-1] ) == 384: __UpperCamelCase = 384 else: __UpperCamelCase = 256 __UpperCamelCase = '''imagenet-1k-id2label.json''' elif task_name.startswith('''imagenet21k_to_1k_''' ): __UpperCamelCase = 21000 if int(task_name.strip().split('''_''' )[-1] ) == 384: __UpperCamelCase = 384 else: __UpperCamelCase = 256 __UpperCamelCase = '''imagenet-22k-id2label.json''' elif task_name.startswith('''ade20k_''' ): __UpperCamelCase = 151 __UpperCamelCase = 512 __UpperCamelCase = '''ade20k-id2label.json''' __UpperCamelCase = True elif task_name.startswith('''voc_''' ): __UpperCamelCase = 21 __UpperCamelCase = 512 __UpperCamelCase = '''pascal-voc-id2label.json''' __UpperCamelCase = True # orig_config __UpperCamelCase = load_orig_config_file(snake_case ) assert getattr(snake_case , '''model.classification.name''' , -1 ) == "mobilevit_v2", "Invalid model" __UpperCamelCase = getattr(snake_case , '''model.classification.mitv2.width_multiplier''' , 1.0 ) assert ( getattr(snake_case , '''model.classification.mitv2.attn_norm_layer''' , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" __UpperCamelCase = getattr(snake_case , '''model.classification.activation.name''' , '''swish''' ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: __UpperCamelCase = getattr(snake_case , '''model.segmentation.output_stride''' , 16 ) if "_deeplabv3" in task_name: __UpperCamelCase = getattr(snake_case , '''model.segmentation.deeplabv3.aspp_rates''' , [12, 24, 36] ) __UpperCamelCase = getattr(snake_case , '''model.segmentation.deeplabv3.aspp_out_channels''' , 512 ) __UpperCamelCase = getattr(snake_case , '''model.segmentation.deeplabv3.aspp_dropout''' , 0.1 ) # id2label __UpperCamelCase = '''huggingface/label-files''' __UpperCamelCase = json.load(open(hf_hub_download(snake_case , snake_case , repo_type='''dataset''' ) , '''r''' ) ) __UpperCamelCase = {int(snake_case ): v for k, v in idalabel.items()} __UpperCamelCase = idalabel __UpperCamelCase = {v: k for k, v in idalabel.items()} return config def A_ ( snake_case : List[Any] , snake_case : int , snake_case : Any ) -> str: '''simple docstring''' __UpperCamelCase = dct.pop(snake_case ) __UpperCamelCase = val def A_ ( snake_case : int , snake_case : List[Any]=False ) -> Optional[Any]: '''simple docstring''' if base_model: __UpperCamelCase = '''''' else: __UpperCamelCase = '''mobilevitv2.''' __UpperCamelCase = [] for k in state_dict.keys(): if k[:8] == "encoder.": __UpperCamelCase = k[8:] else: __UpperCamelCase = k if ".block." in k: __UpperCamelCase = k_new.replace('''.block.''' , '''.''' ) if ".conv." in k: __UpperCamelCase = k_new.replace('''.conv.''' , '''.convolution.''' ) if ".norm." in k: __UpperCamelCase = k_new.replace('''.norm.''' , '''.normalization.''' ) if "conv_1." in k: __UpperCamelCase = k_new.replace('''conv_1.''' , f"{model_prefix}conv_stem." ) for i in [1, 2]: if f"layer_{i}." in k: __UpperCamelCase = k_new.replace(f"layer_{i}." , f"{model_prefix}encoder.layer.{i-1}.layer." ) if ".exp_1x1." in k: __UpperCamelCase = k_new.replace('''.exp_1x1.''' , '''.expand_1x1.''' ) if ".red_1x1." in k: __UpperCamelCase = k_new.replace('''.red_1x1.''' , '''.reduce_1x1.''' ) for i in [3, 4, 5]: if f"layer_{i}.0." in k: __UpperCamelCase = k_new.replace(f"layer_{i}.0." , f"{model_prefix}encoder.layer.{i-1}.downsampling_layer." ) if f"layer_{i}.1.local_rep.0." in k: __UpperCamelCase = k_new.replace(f"layer_{i}.1.local_rep.0." , f"{model_prefix}encoder.layer.{i-1}.conv_kxk." ) if f"layer_{i}.1.local_rep.1." in k: __UpperCamelCase = k_new.replace(f"layer_{i}.1.local_rep.1." , f"{model_prefix}encoder.layer.{i-1}.conv_1x1." ) for i in [3, 4, 5]: if i == 3: __UpperCamelCase = [0, 1] elif i == 4: __UpperCamelCase = [0, 1, 2, 3] elif i == 5: __UpperCamelCase = [0, 1, 2] for j in j_in: if f"layer_{i}.1.global_rep.{j}." in k: __UpperCamelCase = k_new.replace( f"layer_{i}.1.global_rep.{j}." , f"{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}." ) if f"layer_{i}.1.global_rep.{j+1}." in k: __UpperCamelCase = k_new.replace( f"layer_{i}.1.global_rep.{j+1}." , f"{model_prefix}encoder.layer.{i-1}.layernorm." ) if f"layer_{i}.1.conv_proj." in k: __UpperCamelCase = k_new.replace(f"layer_{i}.1.conv_proj." , f"{model_prefix}encoder.layer.{i-1}.conv_projection." ) if "pre_norm_attn.0." in k: __UpperCamelCase = k_new.replace('''pre_norm_attn.0.''' , '''layernorm_before.''' ) if "pre_norm_attn.1." in k: __UpperCamelCase = k_new.replace('''pre_norm_attn.1.''' , '''attention.''' ) if "pre_norm_ffn.0." in k: __UpperCamelCase = k_new.replace('''pre_norm_ffn.0.''' , '''layernorm_after.''' ) if "pre_norm_ffn.1." in k: __UpperCamelCase = k_new.replace('''pre_norm_ffn.1.''' , '''ffn.conv1.''' ) if "pre_norm_ffn.3." in k: __UpperCamelCase = k_new.replace('''pre_norm_ffn.3.''' , '''ffn.conv2.''' ) if "classifier.1." in k: __UpperCamelCase = k_new.replace('''classifier.1.''' , '''classifier.''' ) if "seg_head." in k: __UpperCamelCase = k_new.replace('''seg_head.''' , '''segmentation_head.''' ) if ".aspp_layer." in k: __UpperCamelCase = k_new.replace('''.aspp_layer.''' , '''.''' ) if ".aspp_pool." in k: __UpperCamelCase = k_new.replace('''.aspp_pool.''' , '''.''' ) rename_keys.append((k, k_new) ) return rename_keys def A_ ( snake_case : List[str] ) -> str: '''simple docstring''' __UpperCamelCase = [] for k in state_dict.keys(): if k.startswith('''seg_head.aux_head.''' ): keys_to_ignore.append(snake_case ) for k in keys_to_ignore: state_dict.pop(snake_case , snake_case ) def A_ ( ) -> str: '''simple docstring''' __UpperCamelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" __UpperCamelCase = Image.open(requests.get(snake_case , stream=snake_case ).raw ) return im @torch.no_grad() def A_ ( snake_case : Dict , snake_case : List[str] , snake_case : Optional[Any] , snake_case : Optional[int] ) -> int: '''simple docstring''' __UpperCamelCase = get_mobilevitva_config(snake_case , snake_case ) # load original state_dict __UpperCamelCase = torch.load(snake_case , map_location='''cpu''' ) # load huggingface model if task_name.startswith('''ade20k_''' ) or task_name.startswith('''voc_''' ): __UpperCamelCase = MobileViTVaForSemanticSegmentation(snake_case ).eval() __UpperCamelCase = False else: __UpperCamelCase = MobileViTVaForImageClassification(snake_case ).eval() __UpperCamelCase = False # remove and rename some keys of load the original model __UpperCamelCase = checkpoint remove_unused_keys(snake_case ) __UpperCamelCase = create_rename_keys(snake_case , base_model=snake_case ) for rename_key_src, rename_key_dest in rename_keys: rename_key(snake_case , snake_case , snake_case ) # load modified state_dict model.load_state_dict(snake_case ) # Check outputs on an image, prepared by MobileViTImageProcessor __UpperCamelCase = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) __UpperCamelCase = image_processor(images=prepare_img() , return_tensors='''pt''' ) __UpperCamelCase = model(**snake_case ) # verify classification model if task_name.startswith('''imagenet''' ): __UpperCamelCase = outputs.logits __UpperCamelCase = logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) if task_name.startswith('''imagenet1k_256''' ) and config.width_multiplier == 1.0: # expected_logits for base variant __UpperCamelCase = torch.tensor([-1.63_36e00, -7.32_04e-02, -5.18_83e-01] ) assert torch.allclose(logits[0, :3] , snake_case , atol=1e-4 ) Path(snake_case ).mkdir(exist_ok=snake_case ) print(f"Saving model {task_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(snake_case ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(snake_case ) if __name__ == "__main__": lowercase__ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="imagenet1k_256", type=str, help=( "Name of the task for which the MobileViTV2 model you'd like to convert is trained on . " "\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n " ), choices=[ "imagenet1k_256", "imagenet1k_384", "imagenet21k_to_1k_256", "imagenet21k_to_1k_384", "ade20k_deeplabv3", "voc_deeplabv3", ], ) parser.add_argument( "--orig_checkpoint_path", required=True, type=str, help="Path to the original state dict (.pt file)." ) parser.add_argument("--orig_config_path", required=True, type=str, help="Path to the original config file.") parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) lowercase__ : Tuple = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
451
0
from typing import TYPE_CHECKING from ..utils import _LazyModule __snake_case :int ={ 'config': [ 'EXTERNAL_DATA_FORMAT_SIZE_LIMIT', 'OnnxConfig', 'OnnxConfigWithPast', 'OnnxSeq2SeqConfigWithPast', 'PatchingSpec', ], 'convert': ['export', 'validate_model_outputs'], 'features': ['FeaturesManager'], 'utils': ['ParameterFormat', 'compute_serialized_parameters_size'], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys __snake_case :Union[str, Any] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
106
from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class lowerCAmelCase__ ( _lowerCamelCase ): def __init__( self : int , __UpperCamelCase : Callable , __UpperCamelCase : Optional[Features] = None , __UpperCamelCase : str = None , __UpperCamelCase : bool = False , __UpperCamelCase : bool = False , __UpperCamelCase : Optional[dict] = None , __UpperCamelCase : Optional[int] = None , **__UpperCamelCase : str , ) -> List[str]: super().__init__( features=__UpperCamelCase , cache_dir=__UpperCamelCase , keep_in_memory=__UpperCamelCase , streaming=__UpperCamelCase , num_proc=__UpperCamelCase , **__UpperCamelCase , ) A = Generator( cache_dir=__UpperCamelCase , features=__UpperCamelCase , generator=__UpperCamelCase , gen_kwargs=__UpperCamelCase , **__UpperCamelCase , ) def __UpperCamelCase ( self : Union[str, Any] ) -> Tuple: # Build iterable dataset if self.streaming: A = self.builder.as_streaming_dataset(split='train' ) # Build regular (map-style) dataset else: A = None A = None A = None A = None self.builder.download_and_prepare( download_config=__UpperCamelCase , download_mode=__UpperCamelCase , verification_mode=__UpperCamelCase , base_path=__UpperCamelCase , num_proc=self.num_proc , ) A = self.builder.as_dataset( split='train' , verification_mode=__UpperCamelCase , in_memory=self.keep_in_memory ) return dataset
106
1
"""simple docstring""" def _snake_case ( _snake_case : str , _snake_case : list[str] ) -> int: '''simple docstring''' _A = '' for word_or_phrase in separated: if not isinstance(snake_case__ , snake_case__ ): raise Exception('join() accepts only strings to be joined' ) joined += word_or_phrase + separator return joined.strip(snake_case__ ) if __name__ == "__main__": from doctest import testmod testmod()
700
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a = logging.get_logger(__name__) a = { '''facebook/deit-base-distilled-patch16-224''': ( '''https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json''' ), # See all DeiT models at https://huggingface.co/models?filter=deit } class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Dict = '''deit''' def __init__( self : Union[str, Any] , _UpperCAmelCase : Optional[Any]=768 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Optional[int]=12 , _UpperCAmelCase : int=3_072 , _UpperCAmelCase : Any="gelu" , _UpperCAmelCase : Union[str, Any]=0.0 , _UpperCAmelCase : Tuple=0.0 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Any=1E-1_2 , _UpperCAmelCase : Tuple=224 , _UpperCAmelCase : List[Any]=16 , _UpperCAmelCase : str=3 , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : int=16 , **_UpperCAmelCase : Union[str, Any] , ): super().__init__(**_UpperCAmelCase ) _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = initializer_range _A = layer_norm_eps _A = image_size _A = patch_size _A = num_channels _A = qkv_bias _A = encoder_stride class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : int = version.parse('''1.11''' ) @property def lowerCAmelCase_ ( self : Optional[int] ): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCAmelCase_ ( self : Any ): return 1E-4
505
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase: List[str] = logging.get_logger(__name__) _lowerCAmelCase: Tuple = torch.device('cpu') def _lowercase( ): a__ ='http://images.cocodataset.org/val2017/000000039769.jpg' a__ =Image.open(requests.get(__a , stream=__a ).raw ) return im def _lowercase( __a : Optional[Any] ): if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1703e00, 2.1107e00, -2.0811e00, 8.8685e-01, 2.4360e-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9636e-01, 2.3478e-01, -1.6963e00, -1.7381e00, -8.6337e-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2768e-01, -4.7429e-01, -1.0897e00, -1.0248e00, 3.5523e-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5330e-01, 2.4211e-01, -6.0185e-01, -8.2789e-01, -6.0446e-02] ) def _lowercase( __a : int , __a : int , __a : Optional[Any] ): a__ =dct.pop(__a ) a__ =val def _lowercase( __a : Optional[Any] ): a__ =[] for k in state_dict.keys(): a__ =k if ".pwconv" in k: a__ =k_new.replace('.pwconv' , '.point_wise_conv' ) if ".dwconv" in k: a__ =k_new.replace('.dwconv' , '.depth_wise_conv' ) if ".Proj." in k: a__ =k_new.replace('.Proj.' , '.proj.' ) if "patch_embed" in k_new: a__ =k_new.replace('patch_embed' , 'swiftformer.patch_embed.patch_embedding' ) if "network" in k_new: a__ =k_new.split('.' ) if ls[2].isdigit(): a__ ='swiftformer.encoder.network.' + ls[1] + '.blocks.' + ls[2] + '.' + '.'.join(ls[3:] ) else: a__ =k_new.replace('network' , 'swiftformer.encoder.network' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def _lowercase( __a : Union[str, Any] , __a : int , __a : str ): a__ =SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size a__ =1000 a__ ='huggingface/label-files' a__ ='imagenet-1k-id2label.json' a__ =json.load(open(hf_hub_download(__a , __a , repo_type='dataset' ) , 'r' ) ) a__ ={int(__a ): v for k, v in idalabel.items()} a__ =idalabel a__ ={v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": a__ =[3, 3, 6, 4] a__ =[48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": a__ =[3, 3, 9, 6] a__ =[48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": a__ =[4, 3, 10, 5] a__ =[48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": a__ =[4, 4, 12, 6] a__ =[64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('https' ): a__ =torch.hub.load_state_dict_from_url(__a , map_location='cpu' , check_hash=__a ) else: a__ =torch.load(__a , map_location='cpu' ) a__ =checkpoint a__ =create_rename_keys(__a ) for rename_key_src, rename_key_dest in rename_keys: rename_key(__a , __a , __a ) # load HuggingFace model a__ =SwiftFormerForImageClassification(__a ).eval() hf_model.load_state_dict(__a ) # prepare test inputs a__ =prepare_img() a__ =ViTImageProcessor.from_pretrained('preprocessor_config' ) a__ =processor(images=__a , return_tensors='pt' ) # compare outputs from both models a__ =get_expected_output(__a ) a__ =hf_model(inputs['pixel_values'] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5] , __a , atol=1e-3 ) Path(__a ).mkdir(exist_ok=__a ) print(f"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" ) hf_model.save_pretrained(__a ) if __name__ == "__main__": _lowerCAmelCase: Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--swiftformer_name', default='swiftformer_xs', choices=['swiftformer_xs', 'swiftformer_s', 'swiftformer_l1', 'swiftformer_l3'], type=str, help='Name of the SwiftFormer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default='./converted_outputs/', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--original_ckpt', default=None, type=str, help='Path to the original model checkpoint.') _lowerCAmelCase: Optional[int] = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
20
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets _lowerCAmelCase: Union[str, Any] = '\\n@inproceedings{lin-2004-rouge,\n title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",\n author = "Lin, Chin-Yew",\n booktitle = "Text Summarization Branches Out",\n month = jul,\n year = "2004",\n address = "Barcelona, Spain",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W04-1013",\n pages = "74--81",\n}\n' _lowerCAmelCase: Dict = '\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n' _lowerCAmelCase: List[Any] = '\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring,\n `"rougeL"`: Longest common subsequence based scoring.\n `"rougeLSum"`: rougeLsum splits text using `"\n"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric(\'rouge\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\']\n >>> print(results["rouge1"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results["rouge1"].mid.fmeasure)\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase_ (datasets.Metric ): def __UpperCamelCase ( self) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence'), 'references': datasets.Value('string' , id='sequence'), }) , codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'] , reference_urls=[ 'https://en.wikipedia.org/wiki/ROUGE_(metric)', 'https://github.com/google-research/google-research/tree/master/rouge', ] , ) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_=None , lowercase_=True , lowercase_=False) -> Any: if rouge_types is None: a__ =['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] a__ =rouge_scorer.RougeScorer(rouge_types=lowercase_ , use_stemmer=lowercase_) if use_aggregator: a__ =scoring.BootstrapAggregator() else: a__ =[] for ref, pred in zip(lowercase_ , lowercase_): a__ =scorer.score(lowercase_ , lowercase_) if use_aggregator: aggregator.add_scores(lowercase_) else: scores.append(lowercase_) if use_aggregator: a__ =aggregator.aggregate() else: a__ ={} for key in scores[0]: a__ =[score[key] for score in scores] return result
20
1
from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig UpperCamelCase__ : str = logging.get_logger(__name__) # General docstring UpperCamelCase__ : str = '''RegNetConfig''' # Base docstring UpperCamelCase__ : List[str] = '''facebook/regnet-y-040''' UpperCamelCase__ : Optional[int] = [1, 10_88, 7, 7] # Image classification docstring UpperCamelCase__ : Dict = '''facebook/regnet-y-040''' UpperCamelCase__ : List[str] = '''tabby, tabby cat''' UpperCamelCase__ : Any = [ '''facebook/regnet-y-040''', # See all regnet models at https://huggingface.co/models?filter=regnet ] class lowerCAmelCase_ ( tf.keras.layers.Layer ): def __init__( self ,snake_case__ ,snake_case__ = 3 ,snake_case__ = 1 ,snake_case__ = 1 ,snake_case__ = "relu" ,**snake_case__ ,): super().__init__(**snake_case__ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb SCREAMING_SNAKE_CASE_ : Dict = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) SCREAMING_SNAKE_CASE_ : Any = tf.keras.layers.ConvaD( filters=snake_case__ ,kernel_size=snake_case__ ,strides=snake_case__ ,padding='VALID' ,groups=snake_case__ ,use_bias=snake_case__ ,name='convolution' ,) SCREAMING_SNAKE_CASE_ : Optional[int] = tf.keras.layers.BatchNormalization(epsilon=1E-5 ,momentum=0.9 ,name='normalization' ) SCREAMING_SNAKE_CASE_ : int = ACTaFN[activation] if activation is not None else tf.identity def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : List[Any] = self.convolution(self.padding(snake_case__ ) ) SCREAMING_SNAKE_CASE_ : int = self.normalization(snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = self.activation(snake_case__ ) return hidden_state class lowerCAmelCase_ ( tf.keras.layers.Layer ): def __init__( self ,snake_case__ ,**snake_case__ ): super().__init__(**snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = config.num_channels SCREAMING_SNAKE_CASE_ : int = TFRegNetConvLayer( out_channels=config.embedding_size ,kernel_size=3 ,stride=2 ,activation=config.hidden_act ,name='embedder' ,) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : int = shape_list(snake_case__ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) SCREAMING_SNAKE_CASE_ : str = tf.transpose(snake_case__ ,perm=(0, 2, 3, 1) ) SCREAMING_SNAKE_CASE_ : Dict = self.embedder(snake_case__ ) return hidden_state class lowerCAmelCase_ ( tf.keras.layers.Layer ): def __init__( self ,snake_case__ ,snake_case__ = 2 ,**snake_case__ ): super().__init__(**snake_case__ ) SCREAMING_SNAKE_CASE_ : str = tf.keras.layers.ConvaD( filters=snake_case__ ,kernel_size=1 ,strides=snake_case__ ,use_bias=snake_case__ ,name='convolution' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.keras.layers.BatchNormalization(epsilon=1E-5 ,momentum=0.9 ,name='normalization' ) def snake_case ( self ,snake_case__ ,snake_case__ = False ): return self.normalization(self.convolution(snake_case__ ) ,training=snake_case__ ) class lowerCAmelCase_ ( tf.keras.layers.Layer ): def __init__( self ,snake_case__ ,snake_case__ ,**snake_case__ ): super().__init__(**snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=snake_case__ ,name='pooler' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = [ tf.keras.layers.ConvaD(filters=snake_case__ ,kernel_size=1 ,activation='relu' ,name='attention.0' ), tf.keras.layers.ConvaD(filters=snake_case__ ,kernel_size=1 ,activation='sigmoid' ,name='attention.2' ), ] def snake_case ( self ,snake_case__ ): # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] SCREAMING_SNAKE_CASE_ : Optional[int] = self.pooler(snake_case__ ) for layer_module in self.attention: SCREAMING_SNAKE_CASE_ : List[Any] = layer_module(snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_state * pooled return hidden_state class lowerCAmelCase_ ( tf.keras.layers.Layer ): def __init__( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ = 1 ,**snake_case__ ): super().__init__(**snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = in_channels != out_channels or stride != 1 SCREAMING_SNAKE_CASE_ : Tuple = max(1 ,out_channels // config.groups_width ) SCREAMING_SNAKE_CASE_ : Any = ( TFRegNetShortCut(snake_case__ ,stride=snake_case__ ,name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' ,name='shortcut' ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. SCREAMING_SNAKE_CASE_ : Any = [ TFRegNetConvLayer(snake_case__ ,kernel_size=1 ,activation=config.hidden_act ,name='layer.0' ), TFRegNetConvLayer( snake_case__ ,stride=snake_case__ ,groups=snake_case__ ,activation=config.hidden_act ,name='layer.1' ), TFRegNetConvLayer(snake_case__ ,kernel_size=1 ,activation=snake_case__ ,name='layer.2' ), ] SCREAMING_SNAKE_CASE_ : Dict = ACTaFN[config.hidden_act] def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : str = hidden_state for layer_module in self.layers: SCREAMING_SNAKE_CASE_ : Any = layer_module(snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = self.shortcut(snake_case__ ) hidden_state += residual SCREAMING_SNAKE_CASE_ : Any = self.activation(snake_case__ ) return hidden_state class lowerCAmelCase_ ( tf.keras.layers.Layer ): def __init__( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ = 1 ,**snake_case__ ): super().__init__(**snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = in_channels != out_channels or stride != 1 SCREAMING_SNAKE_CASE_ : Tuple = max(1 ,out_channels // config.groups_width ) SCREAMING_SNAKE_CASE_ : List[str] = ( TFRegNetShortCut(snake_case__ ,stride=snake_case__ ,name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' ,name='shortcut' ) ) SCREAMING_SNAKE_CASE_ : List[str] = [ TFRegNetConvLayer(snake_case__ ,kernel_size=1 ,activation=config.hidden_act ,name='layer.0' ), TFRegNetConvLayer( snake_case__ ,stride=snake_case__ ,groups=snake_case__ ,activation=config.hidden_act ,name='layer.1' ), TFRegNetSELayer(snake_case__ ,reduced_channels=int(round(in_channels / 4 ) ) ,name='layer.2' ), TFRegNetConvLayer(snake_case__ ,kernel_size=1 ,activation=snake_case__ ,name='layer.3' ), ] SCREAMING_SNAKE_CASE_ : int = ACTaFN[config.hidden_act] def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = hidden_state for layer_module in self.layers: SCREAMING_SNAKE_CASE_ : Dict = layer_module(snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = self.shortcut(snake_case__ ) hidden_state += residual SCREAMING_SNAKE_CASE_ : Tuple = self.activation(snake_case__ ) return hidden_state class lowerCAmelCase_ ( tf.keras.layers.Layer ): def __init__( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ = 2 ,snake_case__ = 2 ,**snake_case__ ): super().__init__(**snake_case__ ) SCREAMING_SNAKE_CASE_ : int = TFRegNetXLayer if config.layer_type == 'x' else TFRegNetYLayer SCREAMING_SNAKE_CASE_ : str = [ # downsampling is done in the first layer with stride of 2 layer(snake_case__ ,snake_case__ ,snake_case__ ,stride=snake_case__ ,name='layers.0' ), *[layer(snake_case__ ,snake_case__ ,snake_case__ ,name=F'layers.{i+1}' ) for i in range(depth - 1 )], ] def snake_case ( self ,snake_case__ ): for layer_module in self.layers: SCREAMING_SNAKE_CASE_ : Optional[Any] = layer_module(snake_case__ ) return hidden_state class lowerCAmelCase_ ( tf.keras.layers.Layer ): def __init__( self ,snake_case__ ,**snake_case__ ): super().__init__(**snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( snake_case__ ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,name='stages.0' ,) ) SCREAMING_SNAKE_CASE_ : Any = zip(config.hidden_sizes ,config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(snake_case__ ,config.depths[1:] ) ): self.stages.append(TFRegNetStage(snake_case__ ,snake_case__ ,snake_case__ ,depth=snake_case__ ,name=F'stages.{i+1}' ) ) def snake_case ( self ,snake_case__ ,snake_case__ = False ,snake_case__ = True ): SCREAMING_SNAKE_CASE_ : Optional[int] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: SCREAMING_SNAKE_CASE_ : Optional[Any] = hidden_states + (hidden_state,) SCREAMING_SNAKE_CASE_ : int = stage_module(snake_case__ ) if output_hidden_states: SCREAMING_SNAKE_CASE_ : List[Any] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=snake_case__ ,hidden_states=snake_case__ ) @keras_serializable class lowerCAmelCase_ ( tf.keras.layers.Layer ): __a : Tuple = RegNetConfig def __init__( self ,snake_case__ ,**snake_case__ ): super().__init__(**snake_case__ ) SCREAMING_SNAKE_CASE_ : str = config SCREAMING_SNAKE_CASE_ : Any = TFRegNetEmbeddings(snake_case__ ,name='embedder' ) SCREAMING_SNAKE_CASE_ : Dict = TFRegNetEncoder(snake_case__ ,name='encoder' ) SCREAMING_SNAKE_CASE_ : Dict = tf.keras.layers.GlobalAveragePoolingaD(keepdims=snake_case__ ,name='pooler' ) @unpack_inputs def snake_case ( self ,snake_case__ ,snake_case__ = None ,snake_case__ = None ,snake_case__ = False ,): SCREAMING_SNAKE_CASE_ : Union[str, Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE_ : int = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE_ : Tuple = self.embedder(snake_case__ ,training=snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = self.encoder( snake_case__ ,output_hidden_states=snake_case__ ,return_dict=snake_case__ ,training=snake_case__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = encoder_outputs[0] SCREAMING_SNAKE_CASE_ : int = self.pooler(snake_case__ ) # Change to NCHW output format have uniformity in the modules SCREAMING_SNAKE_CASE_ : Optional[int] = tf.transpose(snake_case__ ,perm=(0, 3, 1, 2) ) SCREAMING_SNAKE_CASE_ : Dict = tf.transpose(snake_case__ ,perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: SCREAMING_SNAKE_CASE_ : Optional[int] = tuple([tf.transpose(snake_case__ ,perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=snake_case__ ,pooler_output=snake_case__ ,hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states ,) class lowerCAmelCase_ ( lowerCamelCase_ ): __a : Union[str, Any] = RegNetConfig __a : Dict = "regnet" __a : Any = "pixel_values" @property def snake_case ( self ): return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) ,dtype=tf.floataa )} UpperCamelCase__ : Any = r''' Parameters: This model is a Tensorflow [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and behavior. config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. ''' UpperCamelCase__ : List[str] = r''' Args: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConveNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , lowerCamelCase_ , ) class lowerCAmelCase_ ( lowerCamelCase_ ): def __init__( self ,snake_case__ ,*snake_case__ ,**snake_case__ ): super().__init__(snake_case__ ,*snake_case__ ,**snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = TFRegNetMainLayer(snake_case__ ,name='regnet' ) @unpack_inputs @add_start_docstrings_to_model_forward(snake_case__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=snake_case__ ,config_class=_CONFIG_FOR_DOC ,modality='vision' ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def snake_case ( self ,snake_case__ ,snake_case__ = None ,snake_case__ = None ,snake_case__=False ,): SCREAMING_SNAKE_CASE_ : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE_ : Tuple = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE_ : List[Any] = self.regnet( pixel_values=snake_case__ ,output_hidden_states=snake_case__ ,return_dict=snake_case__ ,training=snake_case__ ,) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state ,pooler_output=outputs.pooler_output ,hidden_states=outputs.hidden_states ,) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , lowerCamelCase_ , ) class lowerCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ ): def __init__( self ,snake_case__ ,*snake_case__ ,**snake_case__ ): super().__init__(snake_case__ ,*snake_case__ ,**snake_case__ ) SCREAMING_SNAKE_CASE_ : str = config.num_labels SCREAMING_SNAKE_CASE_ : Optional[int] = TFRegNetMainLayer(snake_case__ ,name='regnet' ) # classification head SCREAMING_SNAKE_CASE_ : List[Any] = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels ,name='classifier.1' ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(snake_case__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=snake_case__ ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def snake_case ( self ,snake_case__ = None ,snake_case__ = None ,snake_case__ = None ,snake_case__ = None ,snake_case__=False ,): SCREAMING_SNAKE_CASE_ : Optional[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE_ : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE_ : int = self.regnet( snake_case__ ,output_hidden_states=snake_case__ ,return_dict=snake_case__ ,training=snake_case__ ) SCREAMING_SNAKE_CASE_ : int = outputs.pooler_output if return_dict else outputs[1] SCREAMING_SNAKE_CASE_ : List[str] = self.classifier[0](snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = self.classifier[1](snake_case__ ) SCREAMING_SNAKE_CASE_ : int = None if labels is None else self.hf_compute_loss(labels=snake_case__ ,logits=snake_case__ ) if not return_dict: SCREAMING_SNAKE_CASE_ : Optional[int] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=snake_case__ ,logits=snake_case__ ,hidden_states=outputs.hidden_states )
701
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : Dict = logging.get_logger(__name__) UpperCamelCase__ : Optional[int] = { '''uclanlp/visualbert-vqa''': '''https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json''', '''uclanlp/visualbert-vqa-pre''': '''https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json''', '''uclanlp/visualbert-vqa-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-vcr''': '''https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json''', '''uclanlp/visualbert-vcr-pre''': '''https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json''', '''uclanlp/visualbert-vcr-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-nlvr2''': '''https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-pre''': '''https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json''' ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class lowerCAmelCase_ ( lowerCamelCase_ ): __a : Optional[int] = "visual_bert" def __init__( self ,snake_case__=30522 ,snake_case__=768 ,snake_case__=512 ,snake_case__=12 ,snake_case__=12 ,snake_case__=3072 ,snake_case__="gelu" ,snake_case__=0.1 ,snake_case__=0.1 ,snake_case__=512 ,snake_case__=2 ,snake_case__=0.02 ,snake_case__=1E-12 ,snake_case__=False ,snake_case__=True ,snake_case__=1 ,snake_case__=0 ,snake_case__=2 ,**snake_case__ ,): super().__init__(pad_token_id=snake_case__ ,bos_token_id=snake_case__ ,eos_token_id=snake_case__ ,**snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = vocab_size SCREAMING_SNAKE_CASE_ : Dict = max_position_embeddings SCREAMING_SNAKE_CASE_ : str = hidden_size SCREAMING_SNAKE_CASE_ : Optional[Any] = visual_embedding_dim SCREAMING_SNAKE_CASE_ : Tuple = num_hidden_layers SCREAMING_SNAKE_CASE_ : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE_ : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE_ : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE_ : Any = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Optional[int] = initializer_range SCREAMING_SNAKE_CASE_ : Optional[Any] = type_vocab_size SCREAMING_SNAKE_CASE_ : Optional[Any] = layer_norm_eps SCREAMING_SNAKE_CASE_ : int = bypass_transformer SCREAMING_SNAKE_CASE_ : Optional[Any] = special_visual_initialize
685
0
'''simple docstring''' def __UpperCAmelCase ( a_: float, a_: float, a_: float, a_: float, a_: float, ): _UpperCAmelCase : Any = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError("All input parameters must be positive" ) if any(p > 1 for p in parameters[1:4] ): raise ValueError("Relative densities cannot be greater than one" ) else: _UpperCAmelCase : Optional[Any] = 1 - (matter_density + radiation_density + dark_energy) _UpperCAmelCase : Any = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) _UpperCAmelCase : Optional[int] = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation __a = 0.3 print( hubble_parameter( hubble_constant=6_8.3, radiation_density=1E-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
494
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'bigcode/gpt_bigcode-santacoder': 'https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json', } class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Dict = '''gpt_bigcode''' UpperCamelCase_ : Optional[Any] = ['''past_key_values'''] UpperCamelCase_ : int = { '''hidden_size''': '''n_embd''', '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Optional[int] , lowerCAmelCase__ : Union[str, Any]=5_0_2_5_7 , lowerCAmelCase__ : Optional[Any]=1_0_2_4 , lowerCAmelCase__ : int=7_6_8 , lowerCAmelCase__ : Any=1_2 , lowerCAmelCase__ : Any=1_2 , lowerCAmelCase__ : List[Any]=None , lowerCAmelCase__ : List[Any]="gelu_pytorch_tanh" , lowerCAmelCase__ : Tuple=0.1 , lowerCAmelCase__ : int=0.1 , lowerCAmelCase__ : Optional[Any]=0.1 , lowerCAmelCase__ : Tuple=1e-5 , lowerCAmelCase__ : Dict=0.02 , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : Union[str, Any]=5_0_2_5_6 , lowerCAmelCase__ : List[str]=5_0_2_5_6 , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : List[Any]=True , lowerCAmelCase__ : Tuple=True , **lowerCAmelCase__ : Any , ) -> Tuple: """simple docstring""" _UpperCAmelCase : Tuple = vocab_size _UpperCAmelCase : int = n_positions _UpperCAmelCase : int = n_embd _UpperCAmelCase : List[Any] = n_layer _UpperCAmelCase : Any = n_head _UpperCAmelCase : int = n_inner _UpperCAmelCase : Optional[Any] = activation_function _UpperCAmelCase : Optional[int] = resid_pdrop _UpperCAmelCase : Dict = embd_pdrop _UpperCAmelCase : Optional[int] = attn_pdrop _UpperCAmelCase : int = layer_norm_epsilon _UpperCAmelCase : Tuple = initializer_range _UpperCAmelCase : Dict = scale_attn_weights _UpperCAmelCase : Any = use_cache _UpperCAmelCase : Dict = attention_softmax_in_fpaa _UpperCAmelCase : str = scale_attention_softmax_in_fpaa _UpperCAmelCase : List[str] = multi_query _UpperCAmelCase : Any = bos_token_id _UpperCAmelCase : str = eos_token_id super().__init__(bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ )
494
1
import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def a ( _UpperCAmelCase : Features ): '''simple docstring''' __UpperCAmelCase : Optional[int] = np.inf def set_batch_size(_UpperCAmelCase : FeatureType ) -> None: nonlocal batch_size if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __UpperCAmelCase : List[Any] = min(_UpperCAmelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): __UpperCAmelCase : Dict = min(_UpperCAmelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ) and feature.dtype == "binary": __UpperCAmelCase : List[str] = min(_UpperCAmelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(_UpperCAmelCase , _UpperCAmelCase ) return None if batch_size is np.inf else batch_size class UpperCAmelCase__ ( __UpperCamelCase ): '''simple docstring''' def __init__( self : Optional[Any] , a_ : NestedDataStructureLike[PathLike] , a_ : Optional[NamedSplit] = None , a_ : Optional[Features] = None , a_ : str = None , a_ : bool = False , a_ : bool = False , a_ : Optional[int] = None , **a_ : Union[str, Any] , ): '''simple docstring''' super().__init__( a_ , split=a_ , features=a_ , cache_dir=a_ , keep_in_memory=a_ , streaming=a_ , num_proc=a_ , **a_ , ) __UpperCAmelCase : List[str] = path_or_paths if isinstance(a_ , a_ ) else {self.split: path_or_paths} __UpperCAmelCase : Union[str, Any] = _PACKAGED_DATASETS_MODULES['''parquet'''][1] __UpperCAmelCase : Optional[int] = Parquet( cache_dir=a_ , data_files=a_ , features=a_ , hash=a_ , **a_ , ) def snake_case__ ( self : str ): '''simple docstring''' if self.streaming: __UpperCAmelCase : Optional[int] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __UpperCAmelCase : List[str] = None __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : List[Any] = None __UpperCAmelCase : Optional[int] = None self.builder.download_and_prepare( download_config=a_ , download_mode=a_ , verification_mode=a_ , base_path=a_ , num_proc=self.num_proc , ) __UpperCAmelCase : List[Any] = self.builder.as_dataset( split=self.split , verification_mode=a_ , in_memory=self.keep_in_memory ) return dataset class UpperCAmelCase__ : '''simple docstring''' def __init__( self : List[Any] , a_ : Dataset , a_ : Union[PathLike, BinaryIO] , a_ : Optional[int] = None , **a_ : List[str] , ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = dataset __UpperCAmelCase : str = path_or_buf __UpperCAmelCase : Any = batch_size or get_writer_batch_size(dataset.features ) __UpperCAmelCase : List[Any] = parquet_writer_kwargs def snake_case__ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase : Optional[int] = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , '''wb+''' ) as buffer: __UpperCAmelCase : List[Any] = self._write(file_obj=a_ , batch_size=a_ , **self.parquet_writer_kwargs ) else: __UpperCAmelCase : int = self._write(file_obj=self.path_or_buf , batch_size=a_ , **self.parquet_writer_kwargs ) return written def snake_case__ ( self : Dict , a_ : BinaryIO , a_ : int , **a_ : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : List[str] = 0 __UpperCAmelCase : str = parquet_writer_kwargs.pop('''path_or_buf''' , a_ ) __UpperCAmelCase : Union[str, Any] = self.dataset.features.arrow_schema __UpperCAmelCase : List[Any] = pq.ParquetWriter(a_ , schema=a_ , **a_ ) for offset in logging.tqdm( range(0 , len(self.dataset ) , a_ ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating parquet from Arrow format''' , ): __UpperCAmelCase : Union[str, Any] = query_table( table=self.dataset._data , key=slice(a_ , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(a_ ) written += batch.nbytes writer.close() return written
241
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() __A =logging.get_logger(__name__) __A ={name: getattr(transformers, name + "Fast") for name in SLOW_TO_FAST_CONVERTERS} def a ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ): '''simple docstring''' if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(f'Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.' ) if tokenizer_name is None: __UpperCAmelCase : Optional[Any] = TOKENIZER_CLASSES else: __UpperCAmelCase : List[str] = {tokenizer_name: getattr(_UpperCAmelCase , tokenizer_name + '''Fast''' )} logger.info(f'Loading tokenizer classes: {tokenizer_names}' ) for tokenizer_name in tokenizer_names: __UpperCAmelCase : Any = TOKENIZER_CLASSES[tokenizer_name] __UpperCAmelCase : Any = True if checkpoint_name is None: __UpperCAmelCase : int = list(tokenizer_class.max_model_input_sizes.keys() ) else: __UpperCAmelCase : List[Any] = [checkpoint_name] logger.info(f'For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}' ) for checkpoint in checkpoint_names: logger.info(f'Loading {tokenizer_class.__class__.__name__} {checkpoint}' ) # Load tokenizer __UpperCAmelCase : Optional[Any] = tokenizer_class.from_pretrained(_UpperCAmelCase , force_download=_UpperCAmelCase ) # Save fast tokenizer logger.info(f'Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}' ) # For organization names we create sub-directories if "/" in checkpoint: __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = checkpoint.split('''/''' ) __UpperCAmelCase : List[str] = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) elif add_prefix: __UpperCAmelCase : List[str] = checkpoint __UpperCAmelCase : List[Any] = dump_path else: __UpperCAmelCase : Any = None __UpperCAmelCase : Tuple = dump_path logger.info(f'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: __UpperCAmelCase : Any = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] __UpperCAmelCase : str = file_path.split(_UpperCAmelCase )[-1][0] if next_char == "/": __UpperCAmelCase : Union[str, Any] = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = None logger.info(f'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' ) __UpperCAmelCase : Optional[int] = tokenizer.save_pretrained( _UpperCAmelCase , legacy_format=_UpperCAmelCase , filename_prefix=_UpperCAmelCase ) logger.info(f'=> File names {file_names}' ) for file_name in file_names: if not file_name.endswith('''tokenizer.json''' ): os.remove(_UpperCAmelCase ) logger.info(f'=> removing {file_name}' ) if __name__ == "__main__": __A =argparse.ArgumentParser() # Required parameters parser.add_argument( "--dump_path", default=None, type=str, required=True, help="Path to output generated fast tokenizer files." ) parser.add_argument( "--tokenizer_name", default=None, type=str, help=( f'''Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will ''' "download and convert all the checkpoints from AWS." ), ) parser.add_argument( "--checkpoint_name", default=None, type=str, help="Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.", ) parser.add_argument( "--force_download", action="store_true", help="Re-download checkpoints.", ) __A =parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
241
1
import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class _A ( __magic_name__ , unittest.TestCase): SCREAMING_SNAKE_CASE : Optional[int] = VideoToVideoSDPipeline SCREAMING_SNAKE_CASE : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({'''video'''}) - {'''image''', '''width''', '''height'''} SCREAMING_SNAKE_CASE : int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''video'''}) - {'''image'''} SCREAMING_SNAKE_CASE : int = PipelineTesterMixin.required_optional_params - {'''latents'''} SCREAMING_SNAKE_CASE : List[str] = False # No `output_type`. SCREAMING_SNAKE_CASE : Tuple = frozenset( [ '''num_inference_steps''', '''generator''', '''latents''', '''return_dict''', '''callback''', '''callback_steps''', ]) def UpperCAmelCase ( self ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Any = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'DownBlock3D') , up_block_types=('UpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D') , cross_attention_dim=32 , attention_head_dim=4 , ) SCREAMING_SNAKE_CASE_ : Dict = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=_SCREAMING_SNAKE_CASE , set_alpha_to_one=_SCREAMING_SNAKE_CASE , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='gelu' , projection_dim=512 , ) SCREAMING_SNAKE_CASE_ : Dict = CLIPTextModel(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[str] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) SCREAMING_SNAKE_CASE_ : List[Any] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0 ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = floats_tensor((1, 3, 3, 32, 32) , rng=random.Random(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE ) if str(_SCREAMING_SNAKE_CASE ).startswith('mps' ): SCREAMING_SNAKE_CASE_ : int = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: SCREAMING_SNAKE_CASE_ : Optional[int] = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'video': video, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'pt', } return inputs def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE_ : str = self.get_dummy_components() SCREAMING_SNAKE_CASE_ : str = VideoToVideoSDPipeline(**_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : int = sd_pipe.to(_SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : int = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : int = 'np' SCREAMING_SNAKE_CASE_ : Tuple = sd_pipe(**_SCREAMING_SNAKE_CASE ).frames SCREAMING_SNAKE_CASE_ : List[str] = frames[0][-3:, -3:, -1] assert frames[0].shape == (32, 32, 3) SCREAMING_SNAKE_CASE_ : Optional[Any] = np.array([106, 117, 113, 174, 137, 112, 148, 151, 131] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCAmelCase ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=_SCREAMING_SNAKE_CASE , expected_max_diff=5e-3 ) @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def UpperCAmelCase ( self ): """simple docstring""" pass @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def UpperCAmelCase ( self ): """simple docstring""" pass @unittest.skip(reason='`num_images_per_prompt` argument is not supported for this pipeline.' ) def UpperCAmelCase ( self ): """simple docstring""" pass def UpperCAmelCase ( self ): """simple docstring""" return super().test_progress_bar() @slow @skip_mps class _A ( unittest.TestCase): def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = VideoToVideoSDPipeline.from_pretrained('cerspense/zeroscope_v2_XL' , torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames SCREAMING_SNAKE_CASE_ : Any = torch.Generator(device='cpu' ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Dict = torch.randn((1, 10, 3, 1024, 576) , generator=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[Any] = video.to('cuda' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = 'Spiderman is surfing' SCREAMING_SNAKE_CASE_ : int = pipe(_SCREAMING_SNAKE_CASE , video=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=3 , output_type='pt' ).frames SCREAMING_SNAKE_CASE_ : Tuple = np.array([-1.0458984, -1.1279297, -0.9663086, -0.91503906, -0.75097656] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1e-2
511
import argparse import torch from transformers import GPTaLMHeadModel, RobertaForMaskedLM if __name__ == "__main__": lowerCAmelCase : Optional[int] = argparse.ArgumentParser( description=( 'Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='roberta', choices=['roberta', 'gpt2']) parser.add_argument('--model_name', default='roberta-large', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_roberta_048131723.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') lowerCAmelCase : Union[str, Any] = parser.parse_args() if args.model_type == "roberta": lowerCAmelCase : Optional[Any] = RobertaForMaskedLM.from_pretrained(args.model_name) lowerCAmelCase : Dict = 'roberta' elif args.model_type == "gpt2": lowerCAmelCase : List[Any] = GPTaLMHeadModel.from_pretrained(args.model_name) lowerCAmelCase : Union[str, Any] = 'transformer' lowerCAmelCase : int = model.state_dict() lowerCAmelCase : Tuple = {} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: lowerCAmelCase : Union[str, Any] = state_dict[F'{prefix}.{param_name}'] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: lowerCAmelCase : Any = F'{prefix}.embeddings.{w}.weight' lowerCAmelCase : Optional[int] = state_dict[param_name] for w in ["weight", "bias"]: lowerCAmelCase : Optional[Any] = F'{prefix}.embeddings.LayerNorm.{w}' lowerCAmelCase : str = state_dict[param_name] # Transformer Blocks # lowerCAmelCase : List[Any] = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: lowerCAmelCase : List[str] = state_dict[ F'{prefix}.h.{teacher_idx}.{layer}.{w}' ] lowerCAmelCase : Union[str, Any] = state_dict[F'{prefix}.h.{teacher_idx}.attn.bias'] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: lowerCAmelCase : Union[str, Any] = state_dict[ F'{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}' ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: lowerCAmelCase : Union[str, Any] = state_dict[F'{layer}'] if args.vocab_transform: for w in ["weight", "bias"]: lowerCAmelCase : Union[str, Any] = state_dict[F'lm_head.dense.{w}'] lowerCAmelCase : List[str] = state_dict[F'lm_head.layer_norm.{w}'] elif args.model_type == "gpt2": for w in ["weight", "bias"]: lowerCAmelCase : str = state_dict[F'{prefix}.ln_f.{w}'] lowerCAmelCase : int = state_dict['lm_head.weight'] print(F'N layers selected for distillation: {std_idx}') print(F'Number of params transferred for distillation: {len(compressed_sd.keys())}') print(F'Save transferred checkpoint to {args.dump_checkpoint}.') torch.save(compressed_sd, args.dump_checkpoint)
511
1
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self , lowercase , lowercase=7 , lowercase=3 , lowercase=30 , lowercase=400 , lowercase=True , lowercase=None , lowercase=True , lowercase=1 / 255 , lowercase=True , lowercase=[0.5, 0.5, 0.5] , lowercase=[0.5, 0.5, 0.5] , lowercase=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p _lowerCamelCase : Any = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333} _lowerCamelCase : Optional[int] = parent _lowerCamelCase : Any = batch_size _lowerCamelCase : int = num_channels _lowerCamelCase : Union[str, Any] = min_resolution _lowerCamelCase : List[Any] = max_resolution _lowerCamelCase : Union[str, Any] = do_resize _lowerCamelCase : str = size _lowerCamelCase : List[str] = do_rescale _lowerCamelCase : Optional[int] = rescale_factor _lowerCamelCase : str = do_normalize _lowerCamelCase : Optional[int] = image_mean _lowerCamelCase : Tuple = image_std _lowerCamelCase : Tuple = do_pad def A_ ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def A_ ( self , lowercase , lowercase=False ): if not batched: _lowerCamelCase : Union[str, Any] = image_inputs[0] if isinstance(lowercase , Image.Image ): _lowerCamelCase, _lowerCamelCase : Optional[Any] = image.size else: _lowerCamelCase, _lowerCamelCase : List[str] = image.shape[1], image.shape[2] if w < h: _lowerCamelCase : List[Any] = int(self.size['shortest_edge'] * h / w ) _lowerCamelCase : Union[str, Any] = self.size['shortest_edge'] elif w > h: _lowerCamelCase : List[str] = self.size['shortest_edge'] _lowerCamelCase : Optional[Any] = int(self.size['shortest_edge'] * w / h ) else: _lowerCamelCase : int = self.size['shortest_edge'] _lowerCamelCase : Optional[Any] = self.size['shortest_edge'] else: _lowerCamelCase : Union[str, Any] = [] for image in image_inputs: _lowerCamelCase, _lowerCamelCase : Tuple = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _lowerCamelCase : Tuple = max(lowercase , key=lambda lowercase : item[0] )[0] _lowerCamelCase : Any = max(lowercase , key=lambda lowercase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCAmelCase__ ( lowercase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = DetrImageProcessor if is_vision_available() else None def A_ ( self ): _lowerCamelCase : int = DetrImageProcessingTester(self ) @property def A_ ( self ): return self.image_processor_tester.prepare_image_processor_dict() def A_ ( self ): _lowerCamelCase : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase , 'image_mean' ) ) self.assertTrue(hasattr(lowercase , 'image_std' ) ) self.assertTrue(hasattr(lowercase , 'do_normalize' ) ) self.assertTrue(hasattr(lowercase , 'do_rescale' ) ) self.assertTrue(hasattr(lowercase , 'rescale_factor' ) ) self.assertTrue(hasattr(lowercase , 'do_resize' ) ) self.assertTrue(hasattr(lowercase , 'size' ) ) self.assertTrue(hasattr(lowercase , 'do_pad' ) ) def A_ ( self ): _lowerCamelCase : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1333} ) self.assertEqual(image_processor.do_pad , lowercase ) _lowerCamelCase : Union[str, Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowercase ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , lowercase ) def A_ ( self ): pass def A_ ( self ): # Initialize image_processing _lowerCamelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCamelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , Image.Image ) # Test not batched input _lowerCamelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values _lowerCamelCase, _lowerCamelCase : List[Any] = self.image_processor_tester.get_expected_values(lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase, _lowerCamelCase : str = self.image_processor_tester.get_expected_values(lowercase , batched=lowercase ) _lowerCamelCase : Union[str, Any] = image_processing(lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def A_ ( self ): # Initialize image_processing _lowerCamelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCamelCase : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase , numpify=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , np.ndarray ) # Test not batched input _lowerCamelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values _lowerCamelCase, _lowerCamelCase : List[Any] = self.image_processor_tester.get_expected_values(lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase : str = image_processing(lowercase , return_tensors='pt' ).pixel_values _lowerCamelCase, _lowerCamelCase : Union[str, Any] = self.image_processor_tester.get_expected_values(lowercase , batched=lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def A_ ( self ): # Initialize image_processing _lowerCamelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCamelCase : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase , torchify=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , torch.Tensor ) # Test not batched input _lowerCamelCase : int = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values _lowerCamelCase, _lowerCamelCase : Optional[Any] = self.image_processor_tester.get_expected_values(lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase : Dict = image_processing(lowercase , return_tensors='pt' ).pixel_values _lowerCamelCase, _lowerCamelCase : List[str] = self.image_processor_tester.get_expected_values(lowercase , batched=lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def A_ ( self ): # prepare image and target _lowerCamelCase : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: _lowerCamelCase : int = json.loads(f.read() ) _lowerCamelCase : str = {'image_id': 39769, 'annotations': target} # encode them _lowerCamelCase : str = DetrImageProcessor.from_pretrained('facebook/detr-resnet-50' ) _lowerCamelCase : int = image_processing(images=lowercase , annotations=lowercase , return_tensors='pt' ) # verify pixel values _lowerCamelCase : Optional[Any] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , lowercase ) _lowerCamelCase : List[str] = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , lowercase , atol=1E-4 ) ) # verify area _lowerCamelCase : Dict = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , lowercase ) ) # verify boxes _lowerCamelCase : int = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , lowercase ) _lowerCamelCase : Tuple = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , lowercase , atol=1E-3 ) ) # verify image_id _lowerCamelCase : List[Any] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , lowercase ) ) # verify is_crowd _lowerCamelCase : str = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , lowercase ) ) # verify class_labels _lowerCamelCase : Dict = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , lowercase ) ) # verify orig_size _lowerCamelCase : Optional[int] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , lowercase ) ) # verify size _lowerCamelCase : List[str] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , lowercase ) ) @slow def A_ ( self ): # prepare image, target and masks_path _lowerCamelCase : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: _lowerCamelCase : List[Any] = json.loads(f.read() ) _lowerCamelCase : str = {'file_name': '000000039769.png', 'image_id': 39769, 'segments_info': target} _lowerCamelCase : List[Any] = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them _lowerCamelCase : List[Any] = DetrImageProcessor.from_pretrained('facebook/detr-resnet-50-panoptic' ) _lowerCamelCase : Dict = image_processing(images=lowercase , annotations=lowercase , masks_path=lowercase , return_tensors='pt' ) # verify pixel values _lowerCamelCase : Optional[int] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , lowercase ) _lowerCamelCase : List[Any] = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , lowercase , atol=1E-4 ) ) # verify area _lowerCamelCase : Optional[Any] = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , lowercase ) ) # verify boxes _lowerCamelCase : Dict = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , lowercase ) _lowerCamelCase : Union[str, Any] = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , lowercase , atol=1E-3 ) ) # verify image_id _lowerCamelCase : List[str] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , lowercase ) ) # verify is_crowd _lowerCamelCase : Optional[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , lowercase ) ) # verify class_labels _lowerCamelCase : List[str] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , lowercase ) ) # verify masks _lowerCamelCase : List[str] = 822873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , lowercase ) # verify orig_size _lowerCamelCase : Optional[Any] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , lowercase ) ) # verify size _lowerCamelCase : List[str] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , lowercase ) )
492
"""simple docstring""" from pathlib import Path import fire def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : int = Path(lowercase__ ) _lowerCamelCase : List[Any] = Path(lowercase__ ) dest_dir.mkdir(exist_ok=lowercase__ ) for path in src_dir.iterdir(): _lowerCamelCase : str = [x.rstrip() for x in list(path.open().readlines() )][:n] _lowerCamelCase : Any = dest_dir.joinpath(path.name ) print(lowercase__ ) dest_path.open('w' ).write('\n'.join(lowercase__ ) ) if __name__ == "__main__": fire.Fire(minify)
492
1
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging _SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) # TODO: upload to AWS _SCREAMING_SNAKE_CASE : Any = { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json" ), } class _snake_case ( lowercase_ ): lowerCAmelCase_ : int = "retribert" def __init__( self , a__=30_522 , a__=768 , a__=8 , a__=12 , a__=3_072 , a__="gelu" , a__=0.1 , a__=0.1 , a__=512 , a__=2 , a__=0.0_2 , a__=1e-12 , a__=True , a__=128 , a__=0 , **a__ , ) -> Any: '''simple docstring''' super().__init__(pad_token_id=a__ , **a__ ) snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = hidden_act snake_case_ = intermediate_size snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = share_encoders snake_case_ = projection_dim
400
'''simple docstring''' import os import pytest from attr import dataclass _SCREAMING_SNAKE_CASE : Dict = "us-east-1" # defaults region @dataclass class _snake_case : lowerCAmelCase_ : str lowerCAmelCase_ : Tuple = "arn:aws:iam::558105141721:role/sagemaker_execution_role" lowerCAmelCase_ : Any = { "task_name": "mnli", "per_device_train_batch_size": 16, "per_device_eval_batch_size": 16, "do_train": True, "do_eval": True, "do_predict": True, "output_dir": "/opt/ml/model", "overwrite_output_dir": True, "max_steps": 500, "save_steps": 5500, } lowerCAmelCase_ : Any = {**hyperparameters, "max_steps": 1000} @property def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' return F'{self.framework}-transfromers-test' @property def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' return F'./tests/sagemaker/scripts/{self.framework}' @property def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope="class" ) def UpperCamelCase_( snake_case : Union[str, Any] ): '''simple docstring''' snake_case_ = SageMakerTestEnvironment(framework=request.cls.framework )
400
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE__ : List[str] = { """configuration_rembert""": ["""REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RemBertConfig""", """RemBertOnnxConfig"""] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : int = ["""RemBertTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : List[str] = ["""RemBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : str = [ """REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """RemBertForCausalLM""", """RemBertForMaskedLM""", """RemBertForMultipleChoice""", """RemBertForQuestionAnswering""", """RemBertForSequenceClassification""", """RemBertForTokenClassification""", """RemBertLayer""", """RemBertModel""", """RemBertPreTrainedModel""", """load_tf_weights_in_rembert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : List[str] = [ """TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRemBertForCausalLM""", """TFRemBertForMaskedLM""", """TFRemBertForMultipleChoice""", """TFRemBertForQuestionAnswering""", """TFRemBertForSequenceClassification""", """TFRemBertForTokenClassification""", """TFRemBertLayer""", """TFRemBertModel""", """TFRemBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
716
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ : Any = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ): SCREAMING_SNAKE_CASE_ :Tuple = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith('head' ): SCREAMING_SNAKE_CASE_ :Optional[Any] = 'segformer.encoder.' + key if key.startswith('backbone' ): SCREAMING_SNAKE_CASE_ :Any = key.replace('backbone' , 'segformer.encoder' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 SCREAMING_SNAKE_CASE_ :List[Any] = key[key.find('patch_embed' ) + len('patch_embed' )] SCREAMING_SNAKE_CASE_ :List[str] = key.replace(F'patch_embed{idx}' , F'patch_embeddings.{int(SCREAMING_SNAKE_CASE )-1}' ) if "norm" in key: SCREAMING_SNAKE_CASE_ :List[Any] = key.replace('norm' , 'layer_norm' ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 SCREAMING_SNAKE_CASE_ :Tuple = key[key.find('segformer.encoder.layer_norm' ) + len('segformer.encoder.layer_norm' )] SCREAMING_SNAKE_CASE_ :str = key.replace(F'layer_norm{idx}' , F'layer_norm.{int(SCREAMING_SNAKE_CASE )-1}' ) if "layer_norm1" in key: SCREAMING_SNAKE_CASE_ :Any = key.replace('layer_norm1' , 'layer_norm_1' ) if "layer_norm2" in key: SCREAMING_SNAKE_CASE_ :Optional[Any] = key.replace('layer_norm2' , 'layer_norm_2' ) if "block" in key: # replace for example block1 by block.0 SCREAMING_SNAKE_CASE_ :Optional[Any] = key[key.find('block' ) + len('block' )] SCREAMING_SNAKE_CASE_ :Any = key.replace(F'block{idx}' , F'block.{int(SCREAMING_SNAKE_CASE )-1}' ) if "attn.q" in key: SCREAMING_SNAKE_CASE_ :Union[str, Any] = key.replace('attn.q' , 'attention.self.query' ) if "attn.proj" in key: SCREAMING_SNAKE_CASE_ :Union[str, Any] = key.replace('attn.proj' , 'attention.output.dense' ) if "attn" in key: SCREAMING_SNAKE_CASE_ :List[str] = key.replace('attn' , 'attention.self' ) if "fc1" in key: SCREAMING_SNAKE_CASE_ :Optional[int] = key.replace('fc1' , 'dense1' ) if "fc2" in key: SCREAMING_SNAKE_CASE_ :Optional[int] = key.replace('fc2' , 'dense2' ) if "linear_pred" in key: SCREAMING_SNAKE_CASE_ :Dict = key.replace('linear_pred' , 'classifier' ) if "linear_fuse" in key: SCREAMING_SNAKE_CASE_ :Any = key.replace('linear_fuse.conv' , 'linear_fuse' ) SCREAMING_SNAKE_CASE_ :int = key.replace('linear_fuse.bn' , 'batch_norm' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 SCREAMING_SNAKE_CASE_ :Tuple = key[key.find('linear_c' ) + len('linear_c' )] SCREAMING_SNAKE_CASE_ :Union[str, Any] = key.replace(F'linear_c{idx}' , F'linear_c.{int(SCREAMING_SNAKE_CASE )-1}' ) if key.startswith('head' ): SCREAMING_SNAKE_CASE_ :int = key.replace('head' , 'classifier' ) SCREAMING_SNAKE_CASE_ :Tuple = value return new_state_dict def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) SCREAMING_SNAKE_CASE_ :Dict = state_dict.pop(F'segformer.encoder.block.{i}.{j}.attention.self.kv.weight' ) SCREAMING_SNAKE_CASE_ :str = state_dict.pop(F'segformer.encoder.block.{i}.{j}.attention.self.kv.bias' ) # next, add keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE_ :Optional[int] = kv_weight[ : config.hidden_sizes[i], : ] SCREAMING_SNAKE_CASE_ :List[Any] = kv_bias[: config.hidden_sizes[i]] SCREAMING_SNAKE_CASE_ :Optional[Any] = kv_weight[ config.hidden_sizes[i] :, : ] SCREAMING_SNAKE_CASE_ :Optional[int] = kv_bias[ config.hidden_sizes[i] : ] def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE_ :Union[str, Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' SCREAMING_SNAKE_CASE_ :int = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) return image @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ :List[str] = SegformerConfig() SCREAMING_SNAKE_CASE_ :Any = False # set attributes based on model_name SCREAMING_SNAKE_CASE_ :str = 'huggingface/label-files' if "segformer" in model_name: SCREAMING_SNAKE_CASE_ :Union[str, Any] = model_name[len('segformer.' ) : len('segformer.' ) + 2] if "ade" in model_name: SCREAMING_SNAKE_CASE_ :Optional[Any] = 150 SCREAMING_SNAKE_CASE_ :Tuple = 'ade20k-id2label.json' SCREAMING_SNAKE_CASE_ :Union[str, Any] = (1, 150, 128, 128) elif "city" in model_name: SCREAMING_SNAKE_CASE_ :Optional[int] = 19 SCREAMING_SNAKE_CASE_ :Union[str, Any] = 'cityscapes-id2label.json' SCREAMING_SNAKE_CASE_ :str = (1, 19, 128, 128) else: raise ValueError(F'Model {model_name} not supported' ) elif "mit" in model_name: SCREAMING_SNAKE_CASE_ :Dict = True SCREAMING_SNAKE_CASE_ :Tuple = model_name[4:6] SCREAMING_SNAKE_CASE_ :Union[str, Any] = 1000 SCREAMING_SNAKE_CASE_ :str = 'imagenet-1k-id2label.json' SCREAMING_SNAKE_CASE_ :Optional[Any] = (1, 1000) else: raise ValueError(F'Model {model_name} not supported' ) # set config attributes SCREAMING_SNAKE_CASE_ :List[Any] = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) SCREAMING_SNAKE_CASE_ :Union[str, Any] = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_ :int = idalabel SCREAMING_SNAKE_CASE_ :Tuple = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": SCREAMING_SNAKE_CASE_ :Union[str, Any] = [64, 128, 320, 512] SCREAMING_SNAKE_CASE_ :str = 256 elif size == "b2": SCREAMING_SNAKE_CASE_ :Optional[Any] = [64, 128, 320, 512] SCREAMING_SNAKE_CASE_ :List[Any] = 768 SCREAMING_SNAKE_CASE_ :Optional[Any] = [3, 4, 6, 3] elif size == "b3": SCREAMING_SNAKE_CASE_ :List[str] = [64, 128, 320, 512] SCREAMING_SNAKE_CASE_ :Optional[Any] = 768 SCREAMING_SNAKE_CASE_ :Any = [3, 4, 18, 3] elif size == "b4": SCREAMING_SNAKE_CASE_ :List[Any] = [64, 128, 320, 512] SCREAMING_SNAKE_CASE_ :Optional[Any] = 768 SCREAMING_SNAKE_CASE_ :Any = [3, 8, 27, 3] elif size == "b5": SCREAMING_SNAKE_CASE_ :str = [64, 128, 320, 512] SCREAMING_SNAKE_CASE_ :Optional[int] = 768 SCREAMING_SNAKE_CASE_ :str = [3, 6, 40, 3] else: raise ValueError(F'Size {size} not supported' ) # load image processor (only resize + normalize) SCREAMING_SNAKE_CASE_ :List[Any] = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=SCREAMING_SNAKE_CASE , align=SCREAMING_SNAKE_CASE , do_random_crop=SCREAMING_SNAKE_CASE ) # prepare image SCREAMING_SNAKE_CASE_ :Union[str, Any] = prepare_img() SCREAMING_SNAKE_CASE_ :List[str] = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values logger.info(F'Converting model {model_name}...' ) # load original state dict if encoder_only: SCREAMING_SNAKE_CASE_ :Any = torch.load(SCREAMING_SNAKE_CASE , map_location=torch.device('cpu' ) ) else: SCREAMING_SNAKE_CASE_ :Dict = torch.load(SCREAMING_SNAKE_CASE , map_location=torch.device('cpu' ) )['state_dict'] # rename keys SCREAMING_SNAKE_CASE_ :List[str] = rename_keys(SCREAMING_SNAKE_CASE , encoder_only=SCREAMING_SNAKE_CASE ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # create HuggingFace model and load state dict if encoder_only: SCREAMING_SNAKE_CASE_ :Any = False SCREAMING_SNAKE_CASE_ :Union[str, Any] = SegformerForImageClassification(SCREAMING_SNAKE_CASE ) else: SCREAMING_SNAKE_CASE_ :List[str] = SegformerForSemanticSegmentation(SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE ) model.eval() # forward pass SCREAMING_SNAKE_CASE_ :List[str] = model(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :List[Any] = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": SCREAMING_SNAKE_CASE_ :Union[str, Any] = torch.tensor( [ [[-4.6_3_1_0, -5.5_2_3_2, -6.2_3_5_6], [-5.1_9_2_1, -6.1_4_4_4, -6.5_9_9_6], [-5.4_4_2_4, -6.2_7_9_0, -6.7_5_7_4]], [[-1_2.1_3_9_1, -1_3.3_1_2_2, -1_3.9_5_5_4], [-1_2.8_7_3_2, -1_3.9_3_5_2, -1_4.3_5_6_3], [-1_2.9_4_3_8, -1_3.8_2_2_6, -1_4.2_5_1_3]], [[-1_2.5_1_3_4, -1_3.4_6_8_6, -1_4.4_9_1_5], [-1_2.8_6_6_9, -1_4.4_3_4_3, -1_4.7_7_5_8], [-1_3.2_5_2_3, -1_4.5_8_1_9, -1_5.0_6_9_4]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": SCREAMING_SNAKE_CASE_ :Union[str, Any] = torch.tensor( [ [[-7.5_8_2_0, -8.7_2_3_1, -8.3_2_1_5], [-8.0_6_0_0, -1_0.3_5_2_9, -1_0.0_3_0_4], [-7.5_2_0_8, -9.4_1_0_3, -9.6_2_3_9]], [[-1_2.6_9_1_8, -1_3.8_9_9_4, -1_3.7_1_3_7], [-1_3.3_1_9_6, -1_5.7_5_2_3, -1_5.4_7_8_9], [-1_2.9_3_4_3, -1_4.8_7_5_7, -1_4.9_6_8_9]], [[-1_1.1_9_1_1, -1_1.9_4_2_1, -1_1.3_2_4_3], [-1_1.3_3_4_2, -1_3.6_8_3_9, -1_3.3_5_8_1], [-1_0.3_9_0_9, -1_2.1_8_3_2, -1_2.4_8_5_8]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": SCREAMING_SNAKE_CASE_ :Optional[Any] = torch.tensor( [ [[-1_1.8_1_7_3, -1_4.3_8_5_0, -1_6.3_1_2_8], [-1_4.5_6_4_8, -1_6.5_8_0_4, -1_8.6_5_6_8], [-1_4.7_2_2_3, -1_5.7_3_8_7, -1_8.4_2_1_8]], [[-1_5.7_2_9_0, -1_7.9_1_7_1, -1_9.4_4_2_3], [-1_8.3_1_0_5, -1_9.9_4_4_8, -2_1.4_6_6_1], [-1_7.9_2_9_6, -1_8.6_4_9_7, -2_0.7_9_1_0]], [[-1_5.0_7_8_3, -1_7.0_3_3_6, -1_8.2_7_8_9], [-1_6.8_7_7_1, -1_8.6_8_7_0, -2_0.1_6_1_2], [-1_6.2_4_5_4, -1_7.1_4_2_6, -1_9.5_0_5_5]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": SCREAMING_SNAKE_CASE_ :Optional[int] = torch.tensor( [ [[-9.0_8_7_8, -1_0.2_0_8_1, -1_0.1_8_9_1], [-9.3_1_4_4, -1_0.7_9_4_1, -1_0.9_8_4_3], [-9.2_2_9_4, -1_0.3_8_5_5, -1_0.5_7_0_4]], [[-1_2.2_3_1_6, -1_3.9_0_6_8, -1_3.6_1_0_2], [-1_2.9_1_6_1, -1_4.3_7_0_2, -1_4.3_2_3_5], [-1_2.5_2_3_3, -1_3.7_1_7_4, -1_3.7_9_3_2]], [[-1_4.6_2_7_5, -1_5.2_4_9_0, -1_4.9_7_2_7], [-1_4.3_4_0_0, -1_5.9_6_8_7, -1_6.2_8_2_7], [-1_4.1_4_8_4, -1_5.4_0_3_3, -1_5.8_9_3_7]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": SCREAMING_SNAKE_CASE_ :str = torch.tensor( [ [[-1_2.3_1_4_4, -1_3.2_4_4_7, -1_4.0_8_0_2], [-1_3.3_6_1_4, -1_4.5_8_1_6, -1_5.6_1_1_7], [-1_3.3_3_4_0, -1_4.4_4_3_3, -1_6.2_2_1_9]], [[-1_9.2_7_8_1, -2_0.4_1_2_8, -2_0.7_5_0_6], [-2_0.6_1_5_3, -2_1.6_5_6_6, -2_2.0_9_9_8], [-1_9.9_8_0_0, -2_1.0_4_3_0, -2_2.1_4_9_4]], [[-1_8.8_7_3_9, -1_9.7_8_0_4, -2_1.1_8_3_4], [-2_0.1_2_3_3, -2_1.6_7_6_5, -2_3.2_9_4_4], [-2_0.0_3_1_5, -2_1.2_6_4_1, -2_3.6_9_4_4]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": SCREAMING_SNAKE_CASE_ :Tuple = torch.tensor( [ [[-9.5_5_2_4, -1_2.0_8_3_5, -1_1.7_3_4_8], [-1_0.5_2_2_9, -1_3.6_4_4_6, -1_4.5_6_6_2], [-9.5_8_4_2, -1_2.8_8_5_1, -1_3.9_4_1_4]], [[-1_5.3_4_3_2, -1_7.5_3_2_3, -1_7.0_8_1_8], [-1_6.3_3_3_0, -1_8.9_2_5_5, -1_9.2_1_0_1], [-1_5.1_3_4_0, -1_7.7_8_4_8, -1_8.3_9_7_1]], [[-1_2.6_0_7_2, -1_4.9_4_8_6, -1_4.6_6_3_1], [-1_3.7_6_2_9, -1_7.0_9_0_7, -1_7.7_7_4_5], [-1_2.7_8_9_9, -1_6.1_6_9_5, -1_7.1_6_7_1]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": SCREAMING_SNAKE_CASE_ :str = torch.tensor( [ [[-1_1.9_2_9_5, -1_3.4_0_5_7, -1_4.8_1_0_6], [-1_3.3_4_3_1, -1_4.8_1_7_9, -1_5.3_7_8_1], [-1_4.2_8_3_6, -1_5.5_9_4_2, -1_6.1_5_8_8]], [[-1_1.4_9_0_6, -1_2.8_0_6_7, -1_3.6_5_6_4], [-1_3.1_1_8_9, -1_4.0_5_0_0, -1_4.1_5_4_3], [-1_3.8_7_4_8, -1_4.5_1_3_6, -1_4.8_7_8_9]], [[0.5_3_7_4, 0.1_0_6_7, -0.4_7_4_2], [0.1_1_4_1, -0.2_2_5_5, -0.7_0_9_9], [-0.3_0_0_0, -0.5_9_2_4, -1.3_1_0_5]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": SCREAMING_SNAKE_CASE_ :List[str] = torch.tensor( [ [[-7.8_2_1_7, -9.8_7_6_7, -1_0.1_7_1_7], [-9.4_4_3_8, -1_0.9_0_5_8, -1_1.4_0_4_7], [-9.7_9_3_9, -1_2.3_4_9_5, -1_2.1_0_7_9]], [[-7.1_5_1_4, -9.5_3_3_6, -1_0.0_8_6_0], [-9.7_7_7_6, -1_1.6_8_2_2, -1_1.8_4_3_9], [-1_0.1_4_1_1, -1_2.7_6_5_5, -1_2.8_9_7_2]], [[0.3_0_2_1, 0.0_8_0_5, -0.2_3_1_0], [-0.0_3_2_8, -0.1_6_0_5, -0.2_7_1_4], [-0.1_4_0_8, -0.5_4_7_7, -0.6_9_7_6]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": SCREAMING_SNAKE_CASE_ :List[Any] = torch.tensor( [ [ [-1.1_372E01, -1.2_787E01, -1.3_477E01], [-1.2_536E01, -1.4_194E01, -1.4_409E01], [-1.3_217E01, -1.4_888E01, -1.5_327E01], ], [ [-1.4_791E01, -1.7_122E01, -1.8_277E01], [-1.7_163E01, -1.9_192E01, -1.9_533E01], [-1.7_897E01, -1.9_991E01, -2.0_315E01], ], [ [7.6_723E-01, 4.1_921E-01, -7.7_878E-02], [4.7_772E-01, 9.5_557E-03, -2.8_082E-01], [3.6_032E-01, -2.4_826E-01, -5.1_168E-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": SCREAMING_SNAKE_CASE_ :Optional[Any] = torch.tensor( [ [[-9.4_9_5_9, -1_1.3_0_8_7, -1_1.7_4_7_9], [-1_1.0_0_2_5, -1_2.6_5_4_0, -1_2.3_3_1_9], [-1_1.4_0_6_4, -1_3.0_4_8_7, -1_2.9_9_0_5]], [[-9.8_9_0_5, -1_1.3_0_8_4, -1_2.0_8_5_4], [-1_1.1_7_2_6, -1_2.7_6_9_8, -1_2.9_5_8_3], [-1_1.5_9_8_5, -1_3.3_2_7_8, -1_4.1_7_7_4]], [[0.2_2_1_3, 0.0_1_9_2, -0.2_4_6_6], [-0.1_7_3_1, -0.4_2_1_3, -0.4_8_7_4], [-0.3_1_2_6, -0.6_5_4_1, -1.1_3_8_9]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": SCREAMING_SNAKE_CASE_ :Optional[Any] = torch.tensor( [ [[-1_3.5_7_4_8, -1_3.9_1_1_1, -1_2.6_5_0_0], [-1_4.3_5_0_0, -1_5.3_6_8_3, -1_4.2_3_2_8], [-1_4.7_5_3_2, -1_6.0_4_2_4, -1_5.6_0_8_7]], [[-1_7.1_6_5_1, -1_5.8_7_2_5, -1_2.9_6_5_3], [-1_7.2_5_8_0, -1_7.3_7_1_8, -1_4.8_2_2_3], [-1_6.6_0_5_8, -1_6.8_7_8_3, -1_6.7_4_5_2]], [[-3.6_4_5_6, -3.0_2_0_9, -1.4_2_0_3], [-3.0_7_9_7, -3.1_9_5_9, -2.0_0_0_0], [-1.8_7_5_7, -1.9_2_1_7, -1.6_9_9_7]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": SCREAMING_SNAKE_CASE_ :List[Any] = torch.tensor( [ [[-1_6.0_9_7_6, -1_6.4_8_5_6, -1_7.3_9_6_2], [-1_6.6_2_3_4, -1_9.0_3_4_2, -1_9.7_6_8_5], [-1_6.0_9_0_0, -1_8.0_6_6_1, -1_9.1_1_8_0]], [[-1_8.4_7_5_0, -1_8.8_4_8_8, -1_9.5_0_7_4], [-1_9.4_0_3_0, -2_2.1_5_7_0, -2_2.5_9_7_7], [-1_9.1_1_9_1, -2_0.8_4_8_6, -2_2.3_7_8_3]], [[-4.5_1_7_8, -5.5_0_3_7, -6.5_1_0_9], [-5.0_8_8_4, -7.2_1_7_4, -8.0_3_3_4], [-4.4_1_5_6, -5.8_1_1_7, -7.2_9_7_0]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": SCREAMING_SNAKE_CASE_ :List[Any] = torch.tensor( [ [[-1_4.2_0_8_1, -1_4.4_7_3_2, -1_4.1_9_7_7], [-1_4.5_8_6_7, -1_6.4_4_2_3, -1_6.6_3_5_6], [-1_3.4_4_4_1, -1_4.9_6_8_5, -1_6.8_6_9_6]], [[-1_4.4_5_7_6, -1_4.7_0_7_3, -1_5.0_4_5_1], [-1_5.0_8_1_6, -1_7.6_2_3_7, -1_7.9_8_7_3], [-1_4.4_2_1_3, -1_6.0_1_9_9, -1_8.5_9_9_2]], [[-4.7_3_4_9, -4.9_5_8_8, -5.0_9_6_6], [-4.3_2_1_0, -6.9_3_2_5, -7.2_5_9_1], [-3.4_3_1_2, -4.7_4_8_4, -7.1_9_1_7]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": SCREAMING_SNAKE_CASE_ :Any = torch.tensor( [ [[-1_1.7_7_3_7, -1_1.9_5_2_6, -1_1.3_2_7_3], [-1_3.6_6_9_2, -1_4.4_5_7_4, -1_3.8_8_7_8], [-1_3.8_9_3_7, -1_4.6_9_2_4, -1_5.9_3_4_5]], [[-1_4.6_7_0_6, -1_4.5_3_3_0, -1_4.1_3_0_6], [-1_6.1_5_0_2, -1_6.8_1_8_0, -1_6.4_2_6_9], [-1_6.8_3_3_8, -1_7.8_9_3_9, -2_0.1_7_4_6]], [[1.0_4_9_1, 0.8_2_8_9, 1.0_3_1_0], [1.1_0_4_4, 0.5_2_1_9, 0.8_0_5_5], [1.0_8_9_9, 0.6_9_2_6, 0.5_5_9_0]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": SCREAMING_SNAKE_CASE_ :Optional[Any] = torch.tensor( [ [[-1_2.5_6_4_1, -1_3.4_7_7_7, -1_3.0_6_8_4], [-1_3.9_5_8_7, -1_5.8_9_8_3, -1_6.6_5_5_7], [-1_3.3_1_0_9, -1_5.7_3_5_0, -1_6.3_1_4_1]], [[-1_4.7_0_7_4, -1_5.4_3_5_2, -1_4.5_9_4_4], [-1_6.6_3_5_3, -1_8.1_6_6_3, -1_8.6_1_2_0], [-1_5.1_7_0_2, -1_8.0_3_2_9, -1_8.1_5_4_7]], [[-1.7_9_9_0, -2.0_9_5_1, -1.7_7_8_4], [-2.6_3_9_7, -3.8_2_4_5, -3.9_6_8_6], [-1.5_2_6_4, -2.8_1_2_6, -2.9_3_1_6]], ] ) else: SCREAMING_SNAKE_CASE_ :Dict = logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , SCREAMING_SNAKE_CASE , atol=1E-2 ) # finally, save model and image processor logger.info(F'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) model.save_pretrained(SCREAMING_SNAKE_CASE ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Optional[int] = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""segformer.b0.512x512.ade.160k""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) SCREAMING_SNAKE_CASE__ : Any = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
233
0
'''simple docstring''' import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase : str = [ 'word_embeddings_layernorm.weight', 'word_embeddings_layernorm.bias', 'input_layernorm.weight', 'input_layernorm.bias', 'post_attention_layernorm.weight', 'post_attention_layernorm.bias', 'self_attention.dense.bias', 'mlp.dense_4h_to_h.bias', 'ln_f.weight', 'ln_f.bias', ] UpperCamelCase : Tuple = [ 'mlp.dense_4h_to_h.weight', 'self_attention.dense.weight', ] def A__ ( __lowerCAmelCase : Any , __lowerCAmelCase : Any ): lowerCamelCase__ = { """word_embeddings.weight""": """word_embeddings.weight""", """word_embeddings.norm.weight""": """word_embeddings_layernorm.weight""", """word_embeddings.norm.bias""": """word_embeddings_layernorm.bias""", """weight""": """ln_f.weight""", """bias""": """ln_f.bias""", } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks lowerCamelCase__ = int(re.match(R""".*layer_(\d*).*""" , __lowerCAmelCase )[1] ) layer_number -= 3 return F'''h.{layer_number}.''' + key def A__ ( __lowerCAmelCase : Tuple ): if dtype == torch.bool: return 1 / 8 lowerCamelCase__ = re.search(R"""[^\d](\d+)$""" , str(__lowerCAmelCase ) ) if bit_search is None: raise ValueError(F'''`dtype` is not a valid dtype: {dtype}.''' ) lowerCamelCase__ = int(bit_search.groups()[0] ) return bit_size // 8 def A__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[Any] ): # Construct model if bloom_config_file == "": lowerCamelCase__ = BloomConfig() else: lowerCamelCase__ = BloomConfig.from_json_file(__lowerCAmelCase ) if shard_model: lowerCamelCase__ = os.listdir(__lowerCAmelCase ) lowerCamelCase__ = sorted(filter(lambda __lowerCAmelCase : s.startswith("""layer""" ) and "model_00" in s , __lowerCAmelCase ) ) lowerCamelCase__ = {"""weight_map""": {}, """metadata""": {}} lowerCamelCase__ = 0 lowerCamelCase__ = None lowerCamelCase__ = BloomConfig() for j, file in enumerate(__lowerCAmelCase ): print("""Processing file: {}""".format(__lowerCAmelCase ) ) lowerCamelCase__ = None for i in range(__lowerCAmelCase ): # load all TP files lowerCamelCase__ = file.replace("""model_00""" , F'''model_0{i}''' ) lowerCamelCase__ = torch.load(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , map_location="""cpu""" ) # Rename keys in the transformers names lowerCamelCase__ = list(temp.keys() ) for key in keys: lowerCamelCase__ = temp.pop(__lowerCAmelCase ) if tensors is None: lowerCamelCase__ = temp else: for key in tensors.keys(): if any(key.endswith(__lowerCAmelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel lowerCamelCase__ = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks lowerCamelCase__ = torch.cat([tensors[key], temp[key]] , dim=__lowerCAmelCase ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(__lowerCAmelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): lowerCamelCase__ = tensors[key] / pretraining_tp torch.save( __lowerCAmelCase , os.path.join( __lowerCAmelCase , """pytorch_model_{}-of-{}.bin""".format(str(j + 1 ).zfill(5 ) , str(len(__lowerCAmelCase ) ).zfill(5 ) ) , ) , ) for key in tensors.keys(): lowerCamelCase__ = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: lowerCamelCase__ = """pytorch_model_{}-of-{}.bin""".format( str(j + 1 ).zfill(5 ) , str(len(__lowerCAmelCase ) ).zfill(5 ) ) lowerCamelCase__ = BloomConfig() lowerCamelCase__ = pytorch_dump_folder_path + """/""" + CONFIG_NAME lowerCamelCase__ = total_size with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) with open(os.path.join(__lowerCAmelCase , WEIGHTS_NAME + """.index.json""" ) , """w""" , encoding="""utf-8""" ) as f: lowerCamelCase__ = json.dumps(__lowerCAmelCase , indent=2 , sort_keys=__lowerCAmelCase ) + """\n""" f.write(__lowerCAmelCase ) else: lowerCamelCase__ = BloomModel(__lowerCAmelCase ) lowerCamelCase__ = os.listdir(__lowerCAmelCase ) lowerCamelCase__ = sorted(filter(lambda __lowerCAmelCase : s.startswith("""layer""" ) and "model_00" in s , __lowerCAmelCase ) ) lowerCamelCase__ = None for i, file in enumerate(__lowerCAmelCase ): lowerCamelCase__ = None for i in range(__lowerCAmelCase ): # load all TP files lowerCamelCase__ = file.replace("""model_00""" , F'''model_0{i}''' ) lowerCamelCase__ = torch.load(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , map_location="""cpu""" ) # Rename keys in the transformers names lowerCamelCase__ = list(temp.keys() ) for key in keys: lowerCamelCase__ = temp.pop(__lowerCAmelCase ) if tensors is None: lowerCamelCase__ = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(__lowerCAmelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel lowerCamelCase__ = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks lowerCamelCase__ = torch.cat([tensors[key], temp[key]] , dim=__lowerCAmelCase ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(__lowerCAmelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): lowerCamelCase__ = tensors[key] / pretraining_tp lowerCamelCase__ = model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) assert not other_keys.unexpected_keys, F'''The keys {other_keys.unexpected_keys} are unexpected''' if missing_keys is None: lowerCamelCase__ = set(other_keys.missing_keys ) else: lowerCamelCase__ = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, F'''The keys {missing_keys} are missing''' # Save pytorch-model os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) lowerCamelCase__ = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME lowerCamelCase__ = pytorch_dump_folder_path + """/""" + CONFIG_NAME print(F'''Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}''' ) if config.torch_dtype is not None: lowerCamelCase__ = model.to(config.torch_dtype ) torch.save(model.state_dict() , __lowerCAmelCase ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": UpperCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--bloom_checkpoint_path', default=None, type=str, required=True, help='Path to the Megatron-LM checkpoint path.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--bloom_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--shard_model', action='store_true', help='An optional setting to shard the output model \nThis enables sharding the converted checkpoint', ) parser.add_argument( '--pretraining_tp', default=4, type=int, help='Pretraining TP rank that has been used when training the model in Megatron-LM \n', ) UpperCamelCase : Optional[Any] = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
50
'''simple docstring''' def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ): return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
50
1
"""simple docstring""" import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging A_ : List[str] =logging.get_logger(__name__) class __a ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : str = CLIPConfig SCREAMING_SNAKE_CASE__ : Dict = ["CLIPEncoderLayer"] def __init__( self , a__ ): super().__init__(__A ) _lowerCamelCase = CLIPVisionModelWithProjection(config.vision_config ) _lowerCamelCase = nn.Linear(config.vision_config.projection_dim , 1 ) _lowerCamelCase = nn.Linear(config.vision_config.projection_dim , 1 ) @torch.no_grad() def snake_case_ ( self , a__ , a__ , a__=0.5 , a__=0.5 ): _lowerCamelCase = self.vision_model(__A )[0] _lowerCamelCase = self.p_head(__A ) _lowerCamelCase = nsfw_detected.flatten() _lowerCamelCase = nsfw_detected > p_threshold _lowerCamelCase = nsfw_detected.tolist() if any(__A ): logger.warning( 'Potential NSFW content was detected in one or more images. A black image will be returned instead.' ' Try again with a different prompt and/or seed.' ) for idx, nsfw_detected_ in enumerate(__A ): if nsfw_detected_: _lowerCamelCase = np.zeros(images[idx].shape ) _lowerCamelCase = self.w_head(__A ) _lowerCamelCase = watermark_detected.flatten() _lowerCamelCase = watermark_detected > w_threshold _lowerCamelCase = watermark_detected.tolist() if any(__A ): logger.warning( 'Potential watermarked content was detected in one or more images. A black image will be returned instead.' ' Try again with a different prompt and/or seed.' ) for idx, watermark_detected_ in enumerate(__A ): if watermark_detected_: _lowerCamelCase = np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
718
"""simple docstring""" from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def SCREAMING_SNAKE_CASE_ ( )-> int: _lowerCamelCase = { 'repo_name': ['test_repo1', 'test_repo2', 'test_repo3'], 'path': ['test_1.py', 'test_2.py', 'unit_test.py'], 'content': ['a ' * 20, 'a ' * 30, 'b ' * 7], } _lowerCamelCase = Dataset.from_dict(snake_case ) return dataset class __a ( lowerCAmelCase__ ): def snake_case_ ( self ): _lowerCamelCase = get_dataset() _lowerCamelCase = make_duplicate_clusters(a__ , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def snake_case_ ( self ): _lowerCamelCase = get_dataset() _lowerCamelCase , _lowerCamelCase = deduplicate_dataset(a__ ) self.assertEqual(len(a__ ) , 2 ) print(a__ ) self.assertEqual(duplicate_clusters[0][0]['copies'] , 2 ) self.assertEqual(duplicate_clusters[0][0]['is_extreme'] , a__ )
222
0
import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class __UpperCamelCase : """simple docstring""" def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : List[str] = TaEncoderModel.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : str = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ '''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D''', ] , mid_block_type='''UNetMidBlock2DSimpleCrossAttn''' , up_block_types=['''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='''text''' , addition_embed_type_num_heads=2 , cross_attention_norm='''group_norm''' , resnet_time_scale_shift='''scale_shift''' , act_fn='''gelu''' , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Union[str, Any] = DDPMScheduler( num_train_timesteps=1000 , beta_schedule='''squaredcos_cap_v2''' , beta_start=0.00_01 , beta_end=0.02 , thresholding=_A , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='''epsilon''' , variance_type='''learned_range''' , ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Optional[int] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : str = TaEncoderModel.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Union[str, Any] = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ '''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D''', ] , mid_block_type='''UNetMidBlock2DSimpleCrossAttn''' , up_block_types=['''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='''text''' , addition_embed_type_num_heads=2 , cross_attention_norm='''group_norm''' , resnet_time_scale_shift='''scale_shift''' , act_fn='''gelu''' , class_embed_type='''timestep''' , mid_block_scale_factor=1.4_14 , time_embedding_act_fn='''gelu''' , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Union[str, Any] = DDPMScheduler( num_train_timesteps=1000 , beta_schedule='''squaredcos_cap_v2''' , beta_start=0.00_01 , beta_end=0.02 , thresholding=_A , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='''epsilon''' , variance_type='''learned_range''' , ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : int = DDPMScheduler( num_train_timesteps=1000 , beta_schedule='''squaredcos_cap_v2''' , beta_start=0.00_01 , beta_end=0.02 , ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : int = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def UpperCAmelCase__ ( self : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_components() __SCREAMING_SNAKE_CASE : str = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) __SCREAMING_SNAKE_CASE : int = self.get_dummy_inputs(_A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = inputs['''prompt'''] __SCREAMING_SNAKE_CASE : Dict = inputs['''generator'''] __SCREAMING_SNAKE_CASE : str = inputs['''num_inference_steps'''] __SCREAMING_SNAKE_CASE : List[str] = inputs['''output_type'''] if "image" in inputs: __SCREAMING_SNAKE_CASE : Any = inputs['''image'''] else: __SCREAMING_SNAKE_CASE : Optional[int] = None if "mask_image" in inputs: __SCREAMING_SNAKE_CASE : List[str] = inputs['''mask_image'''] else: __SCREAMING_SNAKE_CASE : List[Any] = None if "original_image" in inputs: __SCREAMING_SNAKE_CASE : Optional[int] = inputs['''original_image'''] else: __SCREAMING_SNAKE_CASE : str = None __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : int = pipe.encode_prompt(_A ) # inputs with prompt converted to embeddings __SCREAMING_SNAKE_CASE : List[Any] = { '''prompt_embeds''': prompt_embeds, '''negative_prompt_embeds''': negative_prompt_embeds, '''generator''': generator, '''num_inference_steps''': num_inference_steps, '''output_type''': output_type, } if image is not None: __SCREAMING_SNAKE_CASE : Optional[int] = image if mask_image is not None: __SCREAMING_SNAKE_CASE : Any = mask_image if original_image is not None: __SCREAMING_SNAKE_CASE : Optional[Any] = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(_A , _A , _A ) __SCREAMING_SNAKE_CASE : Any = pipe(**_A )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_A ) __SCREAMING_SNAKE_CASE : Tuple = self.pipeline_class.from_pretrained(_A ) pipe_loaded.to(_A ) pipe_loaded.set_progress_bar_config(disable=_A ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(_A , _A ) is None , F'''`{optional_component}` did not stay set to None after loading.''' , ) __SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_inputs(_A ) __SCREAMING_SNAKE_CASE : List[str] = inputs['''generator'''] __SCREAMING_SNAKE_CASE : Tuple = inputs['''num_inference_steps'''] __SCREAMING_SNAKE_CASE : Optional[Any] = inputs['''output_type'''] # inputs with prompt converted to embeddings __SCREAMING_SNAKE_CASE : List[str] = { '''prompt_embeds''': prompt_embeds, '''negative_prompt_embeds''': negative_prompt_embeds, '''generator''': generator, '''num_inference_steps''': num_inference_steps, '''output_type''': output_type, } if image is not None: __SCREAMING_SNAKE_CASE : Optional[int] = image if mask_image is not None: __SCREAMING_SNAKE_CASE : Optional[int] = mask_image if original_image is not None: __SCREAMING_SNAKE_CASE : str = original_image __SCREAMING_SNAKE_CASE : Tuple = pipe_loaded(**_A )[0] __SCREAMING_SNAKE_CASE : Optional[int] = np.abs(to_np(_A ) - to_np(_A ) ).max() self.assertLess(_A , 1e-4 ) def UpperCAmelCase__ ( self : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = self.get_dummy_components() __SCREAMING_SNAKE_CASE : Tuple = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) __SCREAMING_SNAKE_CASE : List[Any] = self.get_dummy_inputs(_A ) __SCREAMING_SNAKE_CASE : int = pipe(**_A )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_A ) __SCREAMING_SNAKE_CASE : List[Any] = self.pipeline_class.from_pretrained(_A ) pipe_loaded.to(_A ) pipe_loaded.set_progress_bar_config(disable=_A ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests __SCREAMING_SNAKE_CASE : str = self.get_dummy_inputs(_A ) __SCREAMING_SNAKE_CASE : List[Any] = pipe_loaded(**_A )[0] __SCREAMING_SNAKE_CASE : Any = np.abs(to_np(_A ) - to_np(_A ) ).max() self.assertLess(_A , 1e-4 )
74
import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) SCREAMING_SNAKE_CASE = "hf-internal-testing/tiny-random-bert" SCREAMING_SNAKE_CASE = os.path.join(TRANSFORMERS_CACHE, "models--hf-internal-testing--tiny-random-bert") SCREAMING_SNAKE_CASE = "9b8c223d42b2188cb49d29af482996f9d0f3e5a6" class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def A__ ( self ): UpperCAmelCase_ = cached_file(lowerCAmelCase , lowerCAmelCase ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(lowerCAmelCase ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(lowerCAmelCase , lowerCAmelCase ) ) ) with open(os.path.join(lowerCAmelCase , "refs" , "main" ) ) as f: UpperCAmelCase_ = f.read() self.assertEqual(lowerCAmelCase , os.path.join(lowerCAmelCase , "snapshots" , lowerCAmelCase , lowerCAmelCase ) ) self.assertTrue(os.path.isfile(lowerCAmelCase ) ) # File is cached at the same place the second time. UpperCAmelCase_ = cached_file(lowerCAmelCase , lowerCAmelCase ) self.assertEqual(lowerCAmelCase , lowerCAmelCase ) # Using a specific revision to test the full commit hash. UpperCAmelCase_ = cached_file(lowerCAmelCase , lowerCAmelCase , revision="9b8c223" ) self.assertEqual(lowerCAmelCase , os.path.join(lowerCAmelCase , "snapshots" , lowerCAmelCase , lowerCAmelCase ) ) def A__ ( self ): with self.assertRaisesRegex(lowerCAmelCase , "is not a valid model identifier" ): UpperCAmelCase_ = cached_file("tiny-random-bert" , lowerCAmelCase ) with self.assertRaisesRegex(lowerCAmelCase , "is not a valid git identifier" ): UpperCAmelCase_ = cached_file(lowerCAmelCase , lowerCAmelCase , revision="aaaa" ) with self.assertRaisesRegex(lowerCAmelCase , "does not appear to have a file named" ): UpperCAmelCase_ = cached_file(lowerCAmelCase , "conf" ) def A__ ( self ): with self.assertRaisesRegex(lowerCAmelCase , "does not appear to have a file named" ): UpperCAmelCase_ = cached_file(lowerCAmelCase , "conf" ) with open(os.path.join(lowerCAmelCase , "refs" , "main" ) ) as f: UpperCAmelCase_ = f.read() self.assertTrue(os.path.isfile(os.path.join(lowerCAmelCase , ".no_exist" , lowerCAmelCase , "conf" ) ) ) UpperCAmelCase_ = cached_file(lowerCAmelCase , "conf" , _raise_exceptions_for_missing_entries=lowerCAmelCase ) self.assertIsNone(lowerCAmelCase ) UpperCAmelCase_ = cached_file(lowerCAmelCase , "conf" , local_files_only=lowerCAmelCase , _raise_exceptions_for_missing_entries=lowerCAmelCase ) self.assertIsNone(lowerCAmelCase ) UpperCAmelCase_ = mock.Mock() UpperCAmelCase_ = 500 UpperCAmelCase_ = {} UpperCAmelCase_ = HTTPError UpperCAmelCase_ = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" , return_value=lowerCAmelCase ) as mock_head: UpperCAmelCase_ = cached_file(lowerCAmelCase , "conf" , _raise_exceptions_for_connection_errors=lowerCAmelCase ) self.assertIsNone(lowerCAmelCase ) # This check we did call the fake head request mock_head.assert_called() def A__ ( self ): self.assertTrue(has_file("hf-internal-testing/tiny-bert-pt-only" , lowerCAmelCase ) ) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only" , lowerCAmelCase ) ) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only" , lowerCAmelCase ) ) def A__ ( self ): # `get_file_from_repo` returns None if the file does not exist self.assertIsNone(get_file_from_repo("bert-base-cased" , "ahah.txt" ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(lowerCAmelCase , "is not a valid model identifier" ): get_file_from_repo("bert-base-case" , lowerCAmelCase ) # The function raises if the revision does not exist. with self.assertRaisesRegex(lowerCAmelCase , "is not a valid git identifier" ): get_file_from_repo("bert-base-cased" , lowerCAmelCase , revision="ahaha" ) UpperCAmelCase_ = get_file_from_repo("bert-base-cased" , lowerCAmelCase ) # The name is the cached name which is not very easy to test, so instead we load the content. UpperCAmelCase_ = json.loads(open(lowerCAmelCase , "r" ).read() ) self.assertEqual(config["hidden_size"] , 768 ) def A__ ( self ): with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ = Path(lowerCAmelCase ) / "a.txt" filename.touch() self.assertEqual(get_file_from_repo(lowerCAmelCase , "a.txt" ) , str(lowerCAmelCase ) ) self.assertIsNone(get_file_from_repo(lowerCAmelCase , "b.txt" ) )
579
0
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version(">=", FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType lowerCamelCase_ : Any = get_logger(__name__) def __lowercase( __snake_case : Optional[Any] ,__snake_case : Union[str, Any] ,__snake_case : Any ,__snake_case : Tuple ,__snake_case : int=0 ) -> str: os.makedirs(__snake_case ,exist_ok=__snake_case ) with FSDP.state_dict_type( __snake_case ,fsdp_plugin.state_dict_type ,fsdp_plugin.state_dict_config ,fsdp_plugin.optim_state_dict_config ): __snake_case = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __snake_case = f'''{MODEL_NAME}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}.bin''' __snake_case = os.path.join(__snake_case ,__snake_case ) if accelerator.process_index == 0: logger.info(f'''Saving model to {output_model_file}''' ) torch.save(__snake_case ,__snake_case ) logger.info(f'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __snake_case = ( f'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) __snake_case = os.path.join(__snake_case ,__snake_case ) logger.info(f'''Saving model to {output_model_file}''' ) torch.save(__snake_case ,__snake_case ) logger.info(f'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __snake_case = os.path.join(__snake_case ,f'''{MODEL_NAME}_{model_index}''' ) os.makedirs(__snake_case ,exist_ok=__snake_case ) logger.info(f'''Saving model to {ckpt_dir}''' ) __snake_case = {'model': state_dict} dist_cp.save_state_dict( state_dict=__snake_case ,storage_writer=dist_cp.FileSystemWriter(__snake_case ) ,planner=DefaultSavePlanner() ,) logger.info(f'''Model saved to {ckpt_dir}''' ) def __lowercase( __snake_case : int ,__snake_case : int ,__snake_case : Any ,__snake_case : Optional[int] ,__snake_case : Any=0 ) -> Dict: accelerator.wait_for_everyone() with FSDP.state_dict_type( __snake_case ,fsdp_plugin.state_dict_type ,fsdp_plugin.state_dict_config ,fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(__snake_case ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( 'Set the `sync_module_states` flag to `True` so that model states are synced across processes when ' 'initializing FSDP object' ) return __snake_case = f'''{MODEL_NAME}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}.bin''' __snake_case = os.path.join(__snake_case ,__snake_case ) logger.info(f'''Loading model from {input_model_file}''' ) __snake_case = torch.load(__snake_case ) logger.info(f'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __snake_case = ( f'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) __snake_case = os.path.join(__snake_case ,__snake_case ) logger.info(f'''Loading model from {input_model_file}''' ) __snake_case = torch.load(__snake_case ) logger.info(f'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __snake_case = ( os.path.join(__snake_case ,f'''{MODEL_NAME}_{model_index}''' ) if f'''{MODEL_NAME}''' not in input_dir else input_dir ) logger.info(f'''Loading model from {ckpt_dir}''' ) __snake_case = {'model': model.state_dict()} dist_cp.load_state_dict( state_dict=__snake_case ,storage_reader=dist_cp.FileSystemReader(__snake_case ) ,planner=DefaultLoadPlanner() ,) __snake_case = state_dict['model'] logger.info(f'''Model loaded from {ckpt_dir}''' ) model.load_state_dict(__snake_case ) def __lowercase( __snake_case : List[Any] ,__snake_case : Optional[Any] ,__snake_case : Union[str, Any] ,__snake_case : Optional[Any] ,__snake_case : Optional[int] ,__snake_case : Union[str, Any]=0 ) -> Dict: os.makedirs(__snake_case ,exist_ok=__snake_case ) with FSDP.state_dict_type( __snake_case ,fsdp_plugin.state_dict_type ,fsdp_plugin.state_dict_config ,fsdp_plugin.optim_state_dict_config ): __snake_case = FSDP.optim_state_dict(__snake_case ,__snake_case ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: __snake_case = ( f'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else f'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) __snake_case = os.path.join(__snake_case ,__snake_case ) logger.info(f'''Saving Optimizer state to {output_optimizer_file}''' ) torch.save(__snake_case ,__snake_case ) logger.info(f'''Optimizer state saved in {output_optimizer_file}''' ) else: __snake_case = os.path.join(__snake_case ,f'''{OPTIMIZER_NAME}_{optimizer_index}''' ) os.makedirs(__snake_case ,exist_ok=__snake_case ) logger.info(f'''Saving Optimizer state to {ckpt_dir}''' ) dist_cp.save_state_dict( state_dict={'optimizer': optim_state} ,storage_writer=dist_cp.FileSystemWriter(__snake_case ) ,planner=DefaultSavePlanner() ,) logger.info(f'''Optimizer state saved in {ckpt_dir}''' ) def __lowercase( __snake_case : List[Any] ,__snake_case : Optional[Any] ,__snake_case : Optional[int] ,__snake_case : List[str] ,__snake_case : int ,__snake_case : Union[str, Any]=0 ) -> int: accelerator.wait_for_everyone() with FSDP.state_dict_type( __snake_case ,fsdp_plugin.state_dict_type ,fsdp_plugin.state_dict_config ,fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __snake_case = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: __snake_case = ( f'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else f'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) __snake_case = os.path.join(__snake_case ,__snake_case ) logger.info(f'''Loading Optimizer state from {input_optimizer_file}''' ) __snake_case = torch.load(__snake_case ) logger.info(f'''Optimizer state loaded from {input_optimizer_file}''' ) else: __snake_case = ( os.path.join(__snake_case ,f'''{OPTIMIZER_NAME}_{optimizer_index}''' ) if f'''{OPTIMIZER_NAME}''' not in input_dir else input_dir ) logger.info(f'''Loading Optimizer from {ckpt_dir}''' ) __snake_case = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() ,optimizer_key='optimizer' ,storage_reader=dist_cp.FileSystemReader(__snake_case ) ,) __snake_case = optim_state['optimizer'] logger.info(f'''Optimizer loaded from {ckpt_dir}''' ) __snake_case = FSDP.optim_state_dict_to_load(__snake_case ,__snake_case ,__snake_case ) optimizer.load_state_dict(__snake_case )
345
import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _lowerCamelCase (lowerCamelCase ): def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): super().__init__() self.register_modules(vqvae=SCREAMING_SNAKE_CASE_ , unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ ) @torch.no_grad() def __call__( self , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = 50 , SCREAMING_SNAKE_CASE_ = "pil" , SCREAMING_SNAKE_CASE_ = True , **SCREAMING_SNAKE_CASE_ , ): __snake_case = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=SCREAMING_SNAKE_CASE_ , ) __snake_case = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __snake_case = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature __snake_case = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __snake_case = {} if accepts_eta: __snake_case = eta for t in self.progress_bar(self.scheduler.timesteps ): __snake_case = self.scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # predict the noise residual __snake_case = self.unet(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).sample # compute the previous noisy sample x_t -> x_t-1 __snake_case = self.scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).prev_sample # decode the image latents with the VAE __snake_case = self.vqvae.decode(SCREAMING_SNAKE_CASE_ ).sample __snake_case = (image / 2 + 0.5).clamp(0 , 1 ) __snake_case = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __snake_case = self.numpy_to_pil(SCREAMING_SNAKE_CASE_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE_ )
345
1
__lowerCamelCase : int = tuple[float, float, float] __lowerCamelCase : int = tuple[float, float, float] def _snake_case ( lowerCAmelCase : Pointad , lowerCAmelCase : Pointad ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = end_pointa[0] - end_pointa[0] SCREAMING_SNAKE_CASE_ : Union[str, Any] = end_pointa[1] - end_pointa[1] SCREAMING_SNAKE_CASE_ : Tuple = end_pointa[2] - end_pointa[2] return (x, y, z) def _snake_case ( lowerCAmelCase : Vectorad , lowerCAmelCase : Vectorad ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = ab[1] * ac[2] - ab[2] * ac[1] # *i SCREAMING_SNAKE_CASE_ : int = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j SCREAMING_SNAKE_CASE_ : Any = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def _snake_case ( lowerCAmelCase : Vectorad , lowerCAmelCase : int ): """simple docstring""" return tuple(round(lowerCAmelCase , lowerCAmelCase ) for x in vector ) == (0, 0, 0) def _snake_case ( lowerCAmelCase : Pointad , lowerCAmelCase : Pointad , lowerCAmelCase : Pointad , lowerCAmelCase : int = 1_0 ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = create_vector(lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[str] = create_vector(lowerCAmelCase , lowerCAmelCase ) return is_zero_vector(get_ad_vectors_cross(lowerCAmelCase , lowerCAmelCase ) , lowerCAmelCase )
216
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def _snake_case ( lowerCAmelCase : str , lowerCAmelCase : complex , lowerCAmelCase : str = "x" , lowerCAmelCase : float = 1_0**-1_0 , lowerCAmelCase : int = 1 , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = symbols(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[str] = lambdify(lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Any = lambdify(lowerCAmelCase , diff(lowerCAmelCase , lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ : Dict = starting_point while True: if diff_function(lowerCAmelCase ) != 0: SCREAMING_SNAKE_CASE_ : Tuple = prev_guess - multiplicity * func(lowerCAmelCase ) / diff_function( lowerCAmelCase ) else: raise ZeroDivisionError("Could not find root" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess SCREAMING_SNAKE_CASE_ : Union[str, Any] = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f'''The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}''') # Find root of polynomial # Find fourth Root of 5 print(f'''The root of x**4 - 5 = 0 is {newton_raphson('x**4 -5', 0.4 +5J)}''') # Find value of e print( '''The root of log(y) - 1 = 0 is ''', f'''{newton_raphson('log(y) - 1', 2, variable='y')}''', ) # Exponential Roots print( '''The root of exp(x) - 1 = 0 is''', f'''{newton_raphson('exp(x) - 1', 10, precision=0.005)}''', ) # Find root of cos(x) print(f'''The root of cos(x) = 0 is {newton_raphson('cos(x)', 0)}''')
216
1
'''simple docstring''' from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder UpperCAmelCase_ : Optional[Any] = datasets.utils.logging.get_logger(__name__) class a ( folder_based_builder.FolderBasedBuilderConfig ): '''simple docstring''' __lowerCAmelCase : bool = None __lowerCAmelCase : bool = None class a ( folder_based_builder.FolderBasedBuilder ): '''simple docstring''' __lowerCAmelCase : Any = datasets.Audio() __lowerCAmelCase : str = """audio""" __lowerCAmelCase : Dict = AudioFolderConfig __lowerCAmelCase : List[str] # definition at the bottom of the script __lowerCAmelCase : List[Any] = AudioClassification(audio_column="""audio""" , label_column="""label""" ) UpperCAmelCase_ : int = [ ".aiff", ".au", ".avr", ".caf", ".flac", ".htk", ".svx", ".mat4", ".mat5", ".mpc2k", ".ogg", ".paf", ".pvf", ".raw", ".rf64", ".sd2", ".sds", ".ircam", ".voc", ".w64", ".wav", ".nist", ".wavex", ".wve", ".xi", ".mp3", ".opus", ] UpperCAmelCase_ : Dict = AUDIO_EXTENSIONS
700
'''simple docstring''' import math import random from typing import Any from .hill_climbing import SearchProblem def UpperCAmelCase_ ( A , A = True , A = math.inf , A = -math.inf , A = math.inf , A = -math.inf , A = False , A = 1_0_0 , A = 0.01 , A = 1 , ): '''simple docstring''' _a : int = False _a : Optional[Any] = search_prob _a : List[Any] = start_temperate _a : Any = [] _a : List[Any] = 0 _a : Union[str, Any] = None while not search_end: _a : Optional[Any] = current_state.score() if best_state is None or current_score > best_state.score(): _a : Optional[Any] = current_state scores.append(A ) iterations += 1 _a : List[Any] = None _a : Union[str, Any] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to _a : Optional[Any] = random.randint(0 , len(A ) - 1 ) # picking a random neighbor _a : Optional[int] = neighbors.pop(A ) _a : Optional[Any] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: _a : Any = change * -1 # in case we are finding minimum if change > 0: # improves the solution _a : Tuple = picked_neighbor else: _a : Dict = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability _a : List[str] = picked_neighbor _a : Optional[int] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor _a : str = True else: _a : int = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(A ) , A ) plt.xlabel('Iterations' ) plt.ylabel('Function values' ) plt.show() return best_state if __name__ == "__main__": def UpperCAmelCase_ ( A , A ): '''simple docstring''' return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) UpperCAmelCase_ : Union[str, Any] = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) UpperCAmelCase_ : str = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( "The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 " f'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) # starting the problem with initial coordinates (12, 47) UpperCAmelCase_ : Union[str, Any] = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) UpperCAmelCase_ : Union[str, Any] = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( "The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 " f'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) def UpperCAmelCase_ ( A , A ): '''simple docstring''' return (3 * x**2) - (6 * y) UpperCAmelCase_ : List[str] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) UpperCAmelCase_ : Any = simulated_annealing(prob, find_max=False, visualization=True) print( "The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: " f'''{local_min.score()}''' ) UpperCAmelCase_ : List[Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) UpperCAmelCase_ : Dict = simulated_annealing(prob, find_max=True, visualization=True) print( "The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: " f'''{local_min.score()}''' )
424
0
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} # See all BART models at https://huggingface.co/models?filter=bart __UpperCAmelCase = { """vocab_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/vocab.json""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/vocab.json""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json""", }, """merges_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/merges.txt""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/merges.txt""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt""", }, """tokenizer_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json""", }, } __UpperCAmelCase = { """facebook/bart-base""": 1_024, """facebook/bart-large""": 1_024, """facebook/bart-large-mnli""": 1_024, """facebook/bart-large-cnn""": 1_024, """facebook/bart-large-xsum""": 1_024, """yjernite/bart_eli5""": 1_024, } class SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): """simple docstring""" lowerCamelCase : List[Any] =VOCAB_FILES_NAMES lowerCamelCase : Optional[Any] =PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : List[str] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Any =["input_ids", "attention_mask"] lowerCamelCase : Tuple =BartTokenizer def __init__( self : str , lowerCAmelCase : Any=None , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : int=None , lowerCAmelCase : Optional[int]="replace" , lowerCAmelCase : Dict="<s>" , lowerCAmelCase : Optional[Any]="</s>" , lowerCAmelCase : Dict="</s>" , lowerCAmelCase : Tuple="<s>" , lowerCAmelCase : Optional[Any]="<unk>" , lowerCAmelCase : List[str]="<pad>" , lowerCAmelCase : int="<mask>" , lowerCAmelCase : str=False , lowerCAmelCase : List[str]=True , **lowerCAmelCase : Dict , ) -> Union[str, Any]: """simple docstring""" super().__init__( _a , _a , tokenizer_file=_a , errors=_a , bos_token=_a , eos_token=_a , sep_token=_a , cls_token=_a , unk_token=_a , pad_token=_a , mask_token=_a , add_prefix_space=_a , trim_offsets=_a , **_a , ) __lowerCAmelCase : Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , _a ) != add_prefix_space: __lowerCAmelCase : List[str] = getattr(_a , pre_tok_state.pop("""type""" ) ) __lowerCAmelCase : Optional[int] = add_prefix_space __lowerCAmelCase : int = pre_tok_class(**_a ) __lowerCAmelCase : str = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` __lowerCAmelCase : str = """post_processor""" __lowerCAmelCase : List[Any] = getattr(self.backend_tokenizer , _a , _a ) if tokenizer_component_instance: __lowerCAmelCase : Tuple = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __lowerCAmelCase : Tuple = tuple(state["""sep"""] ) if "cls" in state: __lowerCAmelCase : Tuple = tuple(state["""cls"""] ) __lowerCAmelCase : List[str] = False if state.get("""add_prefix_space""" , _a ) != add_prefix_space: __lowerCAmelCase : Dict = add_prefix_space __lowerCAmelCase : Any = True if state.get("""trim_offsets""" , _a ) != trim_offsets: __lowerCAmelCase : Union[str, Any] = trim_offsets __lowerCAmelCase : List[Any] = True if changes_to_apply: __lowerCAmelCase : Optional[int] = getattr(_a , state.pop("""type""" ) ) __lowerCAmelCase : Tuple = component_class(**_a ) setattr(self.backend_tokenizer , _a , _a ) @property def SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: """simple docstring""" if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase : Any ) -> Tuple: """simple docstring""" __lowerCAmelCase : int = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else value __lowerCAmelCase : List[Any] = value def SCREAMING_SNAKE_CASE ( self : str , *lowerCAmelCase : str , **lowerCAmelCase : Optional[int] ) -> Optional[int]: """simple docstring""" __lowerCAmelCase : Optional[Any] = kwargs.get("""is_split_into_words""" , _a ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""" ) return super()._batch_encode_plus(*_a , **_a ) def SCREAMING_SNAKE_CASE ( self : str , *lowerCAmelCase : List[Any] , **lowerCAmelCase : str ) -> List[Any]: """simple docstring""" __lowerCAmelCase : List[str] = kwargs.get("""is_split_into_words""" , _a ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""" ) return super()._encode_plus(*_a , **_a ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None ) -> int: """simple docstring""" __lowerCAmelCase : str = self._tokenizer.model.save(_a , name=_a ) return tuple(_a ) def SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase : Optional[int] , lowerCAmelCase : int=None ) -> List[Any]: """simple docstring""" __lowerCAmelCase : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None ) -> Any: """simple docstring""" __lowerCAmelCase : Dict = [self.sep_token_id] __lowerCAmelCase : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
651
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' a_ = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING a_ = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def _a ( self : List[str] ,_a : int ,_a : Any ,_a : int ): '''simple docstring''' A_ : Dict = TextaTextGenerationPipeline(model=_a ,tokenizer=_a ) return generator, ["Something to write", "Something else"] def _a ( self : str ,_a : Union[str, Any] ,_a : int ): '''simple docstring''' A_ : Any = generator("""Something there""" ) self.assertEqual(_a ,[{"""generated_text""": ANY(_a )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["""generated_text"""].startswith("""Something there""" ) ) A_ : List[Any] = generator(["""This is great !""", """Something else"""] ,num_return_sequences=2 ,do_sample=_a ) self.assertEqual( _a ,[ [{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}], [{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}], ] ,) A_ : List[str] = generator( ["""This is great !""", """Something else"""] ,num_return_sequences=2 ,batch_size=2 ,do_sample=_a ) self.assertEqual( _a ,[ [{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}], [{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}], ] ,) with self.assertRaises(_a ): generator(4 ) @require_torch def _a ( self : Union[str, Any] ): '''simple docstring''' A_ : int = pipeline("""text2text-generation""" ,model="""patrickvonplaten/t5-tiny-random""" ,framework="""pt""" ) # do_sample=False necessary for reproducibility A_ : Tuple = generator("""Something there""" ,do_sample=_a ) self.assertEqual(_a ,[{"""generated_text""": """"""}] ) A_ : Optional[int] = 3 A_ : Tuple = generator( """Something there""" ,num_return_sequences=_a ,num_beams=_a ,) A_ : Optional[Any] = [ {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """"""}, ] self.assertEqual(_a ,_a ) A_ : Optional[int] = generator("""This is a test""" ,do_sample=_a ,num_return_sequences=2 ,return_tensors=_a ) self.assertEqual( _a ,[ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ] ,) A_ : Dict = generator.model.config.eos_token_id A_ : Optional[int] = """<pad>""" A_ : List[Any] = generator( ["""This is a test""", """This is a second test"""] ,do_sample=_a ,num_return_sequences=2 ,batch_size=2 ,return_tensors=_a ,) self.assertEqual( _a ,[ [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ], [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ], ] ,) @require_tf def _a ( self : List[Any] ): '''simple docstring''' A_ : Optional[int] = pipeline("""text2text-generation""" ,model="""patrickvonplaten/t5-tiny-random""" ,framework="""tf""" ) # do_sample=False necessary for reproducibility A_ : Dict = generator("""Something there""" ,do_sample=_a ) self.assertEqual(_a ,[{"""generated_text""": """"""}] )
665
0
"""simple docstring""" def UpperCamelCase_ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) SCREAMING_SNAKE_CASE = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b" SCREAMING_SNAKE_CASE = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b" SCREAMING_SNAKE_CASE = max(len(SCREAMING_SNAKE_CASE_ ), len(SCREAMING_SNAKE_CASE_ ) ) return "0b" + "".join( str(int(char_a == '1' and char_b == '1' ) ) for char_a, char_b in zip(a_binary.zfill(SCREAMING_SNAKE_CASE_ ), b_binary.zfill(SCREAMING_SNAKE_CASE_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
406
"""simple docstring""" import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin snake_case = get_tests_dir('fixtures/test_sentencepiece.model') if is_sentencepiece_available(): import sentencepiece as sp snake_case = 5 snake_case = 1_0 @require_sentencepiece @require_tokenizers class UpperCamelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : str = SpeechaTextTokenizer UpperCAmelCase_ : Tuple = False UpperCAmelCase_ : Optional[int] = True def A ( self ) -> List[str]: """simple docstring""" super().setUp() SCREAMING_SNAKE_CASE = sp.SentencePieceProcessor() spm_model.Load(lowercase__ ) SCREAMING_SNAKE_CASE = ['<s>', '<pad>', '</s>', '<unk>'] vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(lowercase__ ) )] SCREAMING_SNAKE_CASE = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) SCREAMING_SNAKE_CASE = Path(self.tmpdirname ) save_json(lowercase__ , save_dir / VOCAB_FILES_NAMES['vocab_file'] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(lowercase__ , save_dir / VOCAB_FILES_NAMES['spm_file'] ) SCREAMING_SNAKE_CASE = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def A ( self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE = '<pad>' SCREAMING_SNAKE_CASE = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase__ ) , lowercase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase__ ) , lowercase__ ) def A ( self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(lowercase__ ) , 1001 ) def A ( self ) -> Any: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1001 ) def A ( self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE = tokenizer.tokenize('This is a test' ) self.assertListEqual(lowercase__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase__ ) , [289, 50, 14, 174, 386] , ) SCREAMING_SNAKE_CASE = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( lowercase__ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , ) SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(lowercase__ ) self.assertListEqual(lowercase__ , [12, 25, 88, 59, 28, 23, 11, 4, 606, 351, 351, 351, 7, 16, 70, 50, 76, 84, 10, 4, 8] ) SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(lowercase__ ) self.assertListEqual( lowercase__ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , ) @slow def A ( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE = {'input_ids': [[3791, 797, 31, 11, 64, 797, 31, 2429, 433, 12, 1176, 12, 20, 786, 915, 142, 2413, 240, 37, 3238, 797, 31, 11, 35, 93, 915, 142, 2413, 240, 37, 5540, 567, 1276, 93, 37, 610, 40, 62, 455, 657, 1042, 123, 780, 177, 37, 309, 241, 1298, 514, 20, 292, 2737, 114, 2469, 241, 85, 64, 302, 548, 528, 423, 4, 509, 406, 423, 37, 601, 4, 777, 302, 548, 528, 423, 284, 4, 3388, 511, 459, 4, 3555, 40, 321, 302, 705, 4, 3388, 511, 583, 326, 5, 5, 5, 62, 3310, 560, 177, 2680, 217, 1508, 32, 31, 853, 418, 64, 583, 511, 1605, 62, 35, 93, 560, 177, 2680, 217, 1508, 1521, 64, 583, 511, 519, 62, 20, 1515, 764, 20, 149, 261, 5625, 7972, 20, 5540, 567, 1276, 93, 3925, 1675, 11, 15, 802, 7972, 576, 217, 1508, 11, 35, 93, 1253, 2441, 15, 289, 652, 31, 416, 321, 3842, 115, 40, 911, 8, 476, 619, 4, 380, 142, 423, 335, 240, 35, 93, 264, 8, 11, 335, 569, 420, 163, 5, 2], [260, 548, 528, 423, 20, 451, 20, 2681, 1153, 3434, 20, 5540, 37, 567, 126, 1253, 2441, 3376, 449, 210, 431, 1563, 177, 767, 5540, 11, 1203, 472, 11, 2953, 685, 285, 364, 706, 1153, 20, 6799, 20, 2869, 20, 4464, 126, 40, 2429, 20, 1040, 866, 2664, 418, 20, 318, 20, 1726, 186, 20, 265, 522, 35, 93, 2191, 4634, 20, 1040, 12, 6799, 15, 228, 2356, 142, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2575, 2666, 684, 1582, 1176, 12, 627, 149, 619, 20, 4902, 563, 11, 20, 149, 261, 3420, 2356, 174, 142, 4714, 131, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase__ , model_name='facebook/s2t-small-mustc-en-de-st' , revision='a14f04cf0776c02f62a8cb800cf7909e15ea23ad' , ) @require_sentencepiece class UpperCamelCase ( unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : List[Any] = "valhalla/s2t_mustc_multilinguial_medium" UpperCAmelCase_ : Optional[Any] = "C'est trop cool" UpperCAmelCase_ : List[str] = "Esto es genial" @classmethod def A ( cls ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name ) return cls def A ( self ) -> Tuple: """simple docstring""" self.assertEqual(self.tokenizer.lang_code_to_id['pt'] , 4 ) self.assertEqual(self.tokenizer.lang_code_to_id['ru'] , 6 ) self.assertEqual(self.tokenizer.lang_code_to_id['it'] , 9 ) self.assertEqual(self.tokenizer.lang_code_to_id['de'] , 11 ) def A ( self ) -> Any: """simple docstring""" self.assertEqual(self.tokenizer.vocab_size , 10000 ) def A ( self ) -> Union[str, Any]: """simple docstring""" self.assertIn(lowercase__ , self.tokenizer.all_special_ids ) SCREAMING_SNAKE_CASE = [ES_CODE, 4, 1601, 47, 7647, 2] SCREAMING_SNAKE_CASE = self.tokenizer.decode(lowercase__ , skip_special_tokens=lowercase__ ) SCREAMING_SNAKE_CASE = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) self.assertNotIn(self.tokenizer.eos_token , lowercase__ ) def A ( self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE = 'fr' SCREAMING_SNAKE_CASE = self.tokenizer(self.french_text ).input_ids self.assertEqual(encoded[0] , lowercase__ ) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id ) def A ( self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE = 'fr' self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] ) SCREAMING_SNAKE_CASE = 'es' self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
406
1
def _lowerCamelCase ( SCREAMING_SNAKE_CASE = 1000 ): '''simple docstring''' A_ = -1 A_ = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c A_ = (n * n - 2 * a * n) // (2 * n - 2 * a) A_ = n - a - b if c * c == (a * a + b * b): A_ = a * b * c if candidate >= product: A_ = candidate return product if __name__ == "__main__": print(f'{solution() = }')
203
from PIL import Image def lowerCamelCase__ ( __A :Image ): """simple docstring""" __snake_case , __snake_case = image.size __snake_case = 0 __snake_case = image.load() for i in range(__A ): for j in range(__A ): __snake_case = pixels[j, i] mean += pixel mean //= width * height for j in range(__A ): for i in range(__A ): __snake_case = 2_5_5 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": UpperCamelCase__ = mean_threshold(Image.open('''path_to_image''').convert('''L''')) image.save('''output_image_path''')
268
0
from math import factorial, radians def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 18 , SCREAMING_SNAKE_CASE__ = 10) -> float: __snake_case: Union[str, Any] = angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0) # Converting from degrees to radians __snake_case: Union[str, Any] = radians(SCREAMING_SNAKE_CASE__) __snake_case: Tuple = angle_in_radians __snake_case: Tuple = 3 __snake_case: int = -1 for _ in range(SCREAMING_SNAKE_CASE__): result += (b * (angle_in_radians**a)) / factorial(SCREAMING_SNAKE_CASE__) __snake_case: Union[str, Any] = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) if __name__ == "__main__": __import__("doctest").testmod()
707
import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) -> List[str]: # load base model __snake_case: str = StableDiffusionPipeline.from_pretrained(SCREAMING_SNAKE_CASE__ , torch_dtype=torch.floataa) # load LoRA weight from .safetensors __snake_case: Dict = load_file(SCREAMING_SNAKE_CASE__) __snake_case: List[str] = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: __snake_case: Optional[int] = key.split(""".""")[0].split(LORA_PREFIX_TEXT_ENCODER + """_""")[-1].split("""_""") __snake_case: Union[str, Any] = pipeline.text_encoder else: __snake_case: Optional[int] = key.split(""".""")[0].split(LORA_PREFIX_UNET + """_""")[-1].split("""_""") __snake_case: List[Any] = pipeline.unet # find the target layer __snake_case: Optional[Any] = layer_infos.pop(0) while len(SCREAMING_SNAKE_CASE__) > -1: try: __snake_case: Optional[Any] = curr_layer.__getattr__(SCREAMING_SNAKE_CASE__) if len(SCREAMING_SNAKE_CASE__) > 0: __snake_case: Optional[int] = layer_infos.pop(0) elif len(SCREAMING_SNAKE_CASE__) == 0: break except Exception: if len(SCREAMING_SNAKE_CASE__) > 0: temp_name += "_" + layer_infos.pop(0) else: __snake_case: Tuple = layer_infos.pop(0) __snake_case: Any = [] if "lora_down" in key: pair_keys.append(key.replace("""lora_down""" , """lora_up""")) pair_keys.append(SCREAMING_SNAKE_CASE__) else: pair_keys.append(SCREAMING_SNAKE_CASE__) pair_keys.append(key.replace("""lora_up""" , """lora_down""")) # update weight if len(state_dict[pair_keys[0]].shape) == 4: __snake_case: Union[str, Any] = state_dict[pair_keys[0]].squeeze(3).squeeze(2).to(torch.floataa) __snake_case: Dict = state_dict[pair_keys[1]].squeeze(3).squeeze(2).to(torch.floataa) curr_layer.weight.data += alpha * torch.mm(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__).unsqueeze(2).unsqueeze(3) else: __snake_case: List[Any] = state_dict[pair_keys[0]].to(torch.floataa) __snake_case: Dict = state_dict[pair_keys[1]].to(torch.floataa) curr_layer.weight.data += alpha * torch.mm(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) # update visited list for item in pair_keys: visited.append(SCREAMING_SNAKE_CASE__) return pipeline if __name__ == "__main__": __UpperCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( "--base_model_path", default=None, type=str, required=True, help="Path to the base model in diffusers format." ) parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument( "--lora_prefix_unet", default="lora_unet", type=str, help="The prefix of UNet weight in safetensors" ) parser.add_argument( "--lora_prefix_text_encoder", default="lora_te", type=str, help="The prefix of text encoder weight in safetensors", ) parser.add_argument("--alpha", default=0.75, type=float, help="The merging ratio in W = W0 + alpha * deltaW") parser.add_argument( "--to_safetensors", action="store_true", help="Whether to store pipeline in safetensors format or not." ) parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)") __UpperCAmelCase : str = parser.parse_args() __UpperCAmelCase : Union[str, Any] = args.base_model_path __UpperCAmelCase : str = args.checkpoint_path __UpperCAmelCase : List[str] = args.dump_path __UpperCAmelCase : Optional[int] = args.lora_prefix_unet __UpperCAmelCase : Optional[int] = args.lora_prefix_text_encoder __UpperCAmelCase : int = args.alpha __UpperCAmelCase : List[Any] = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) __UpperCAmelCase : Union[str, Any] = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
155
0
import pickle import numpy as np from matplotlib import pyplot as plt class _a : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=0.2 , _UpperCAmelCase=0.2 ) -> List[Any]: UpperCamelCase_ = bp_numa UpperCamelCase_ = bp_numa UpperCamelCase_ = bp_numa UpperCamelCase_ = conva_get[:2] UpperCamelCase_ = conva_get[2] UpperCamelCase_ = size_pa UpperCamelCase_ = rate_w UpperCamelCase_ = rate_t UpperCamelCase_ = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] UpperCamelCase_ = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) UpperCamelCase_ = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) UpperCamelCase_ = -2 * np.random.rand(self.conva[1] ) + 1 UpperCamelCase_ = -2 * np.random.rand(self.num_bpa ) + 1 UpperCamelCase_ = -2 * np.random.rand(self.num_bpa ) + 1 def _UpperCAmelCase ( self , _UpperCAmelCase ) -> int: # save model dict with pickle UpperCamelCase_ = { 'num_bp1': self.num_bpa, 'num_bp2': self.num_bpa, 'num_bp3': self.num_bpa, 'conv1': self.conva, 'step_conv1': self.step_conva, 'size_pooling1': self.size_poolinga, 'rate_weight': self.rate_weight, 'rate_thre': self.rate_thre, 'w_conv1': self.w_conva, 'wkj': self.wkj, 'vji': self.vji, 'thre_conv1': self.thre_conva, 'thre_bp2': self.thre_bpa, 'thre_bp3': self.thre_bpa, } with open(_UpperCAmelCase , 'wb' ) as f: pickle.dump(_UpperCAmelCase , _UpperCAmelCase ) print(f"""Model saved: {save_path}""" ) @classmethod def _UpperCAmelCase ( cls , _UpperCAmelCase ) -> Optional[Any]: # read saved model with open(_UpperCAmelCase , 'rb' ) as f: UpperCamelCase_ = pickle.load(_UpperCAmelCase ) # noqa: S301 UpperCamelCase_ = model_dic.get('conv1' ) conv_get.append(model_dic.get('step_conv1' ) ) UpperCamelCase_ = model_dic.get('size_pooling1' ) UpperCamelCase_ = model_dic.get('num_bp1' ) UpperCamelCase_ = model_dic.get('num_bp2' ) UpperCamelCase_ = model_dic.get('num_bp3' ) UpperCamelCase_ = model_dic.get('rate_weight' ) UpperCamelCase_ = model_dic.get('rate_thre' ) # create model instance UpperCamelCase_ = CNN(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # modify model parameter UpperCamelCase_ = model_dic.get('w_conv1' ) UpperCamelCase_ = model_dic.get('wkj' ) UpperCamelCase_ = model_dic.get('vji' ) UpperCamelCase_ = model_dic.get('thre_conv1' ) UpperCamelCase_ = model_dic.get('thre_bp2' ) UpperCamelCase_ = model_dic.get('thre_bp3' ) return conv_ins def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Tuple: return 1 / (1 + np.exp(-1 * x )) def _UpperCAmelCase ( self , _UpperCAmelCase ) -> str: return round(_UpperCAmelCase , 3 ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: # convolution process UpperCamelCase_ = convs[0] UpperCamelCase_ = convs[1] UpperCamelCase_ = np.shape(_UpperCAmelCase )[0] # get the data slice of original image data, data_focus UpperCamelCase_ = [] for i_focus in range(0 , size_data - size_conv + 1 , _UpperCAmelCase ): for j_focus in range(0 , size_data - size_conv + 1 , _UpperCAmelCase ): UpperCamelCase_ = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(_UpperCAmelCase ) # calculate the feature map of every single kernel, and saved as list of matrix UpperCamelCase_ = [] UpperCamelCase_ = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(_UpperCAmelCase ): UpperCamelCase_ = [] for i_focus in range(len(_UpperCAmelCase ) ): UpperCamelCase_ = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(_UpperCAmelCase ) ) UpperCamelCase_ = np.asmatrix(_UpperCAmelCase ).reshape( _UpperCAmelCase , _UpperCAmelCase ) data_featuremap.append(_UpperCAmelCase ) # expanding the data slice to One dimenssion UpperCamelCase_ = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(_UpperCAmelCase ) ) UpperCamelCase_ = np.asarray(_UpperCAmelCase ) return focus_list, data_featuremap def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase="average_pool" ) -> Tuple: # pooling process UpperCamelCase_ = len(featuremaps[0] ) UpperCamelCase_ = int(size_map / size_pooling ) UpperCamelCase_ = [] for i_map in range(len(_UpperCAmelCase ) ): UpperCamelCase_ = featuremaps[i_map] UpperCamelCase_ = [] for i_focus in range(0 , _UpperCAmelCase , _UpperCAmelCase ): for j_focus in range(0 , _UpperCAmelCase , _UpperCAmelCase ): UpperCamelCase_ = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(_UpperCAmelCase ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(_UpperCAmelCase ) ) UpperCamelCase_ = np.asmatrix(_UpperCAmelCase ).reshape(_UpperCAmelCase , _UpperCAmelCase ) featuremap_pooled.append(_UpperCAmelCase ) return featuremap_pooled def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Union[str, Any]: # expanding three dimension data to one dimension list UpperCamelCase_ = [] for i in range(len(_UpperCAmelCase ) ): UpperCamelCase_ = np.shape(data[i] ) UpperCamelCase_ = data[i].reshape(1 , shapes[0] * shapes[1] ) UpperCamelCase_ = data_listed.getA().tolist()[0] data_expanded.extend(_UpperCAmelCase ) UpperCamelCase_ = np.asarray(_UpperCAmelCase ) return data_expanded def _UpperCAmelCase ( self , _UpperCAmelCase ) -> List[str]: # expanding matrix to one dimension list UpperCamelCase_ = np.asarray(_UpperCAmelCase ) UpperCamelCase_ = np.shape(_UpperCAmelCase ) UpperCamelCase_ = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: UpperCamelCase_ = [] UpperCamelCase_ = 0 for i_map in range(_UpperCAmelCase ): UpperCamelCase_ = np.ones((size_map, size_map) ) for i in range(0 , _UpperCAmelCase , _UpperCAmelCase ): for j in range(0 , _UpperCAmelCase , _UpperCAmelCase ): UpperCamelCase_ = pd_pool[ i_pool ] UpperCamelCase_ = i_pool + 1 UpperCamelCase_ = np.multiply( _UpperCAmelCase , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(_UpperCAmelCase ) return pd_all def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=bool ) -> Any: # model traning print('----------------------Start Training-------------------------' ) print((' - - Shape: Train_Data ', np.shape(_UpperCAmelCase )) ) print((' - - Shape: Teach_Data ', np.shape(_UpperCAmelCase )) ) UpperCamelCase_ = 0 UpperCamelCase_ = [] UpperCamelCase_ = 10000 while rp < n_repeat and mse >= error_accuracy: UpperCamelCase_ = 0 print(f"""-------------Learning Time {rp}--------------""" ) for p in range(len(_UpperCAmelCase ) ): # print('------------Learning Image: %d--------------'%p) UpperCamelCase_ = np.asmatrix(datas_train[p] ) UpperCamelCase_ = np.asarray(datas_teach[p] ) UpperCamelCase_ , UpperCamelCase_ = self.convolute( _UpperCAmelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) UpperCamelCase_ = self.pooling(_UpperCAmelCase , self.size_poolinga ) UpperCamelCase_ = np.shape(_UpperCAmelCase ) UpperCamelCase_ = self._expand(_UpperCAmelCase ) UpperCamelCase_ = data_bp_input UpperCamelCase_ = np.dot(_UpperCAmelCase , self.vji.T ) - self.thre_bpa UpperCamelCase_ = self.sig(_UpperCAmelCase ) UpperCamelCase_ = np.dot(_UpperCAmelCase , self.wkj.T ) - self.thre_bpa UpperCamelCase_ = self.sig(_UpperCAmelCase ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- UpperCamelCase_ = np.multiply( (data_teach - bp_outa) , np.multiply(_UpperCAmelCase , (1 - bp_outa) ) ) UpperCamelCase_ = np.multiply( np.dot(_UpperCAmelCase , self.wkj ) , np.multiply(_UpperCAmelCase , (1 - bp_outa) ) ) UpperCamelCase_ = np.dot(_UpperCAmelCase , self.vji ) UpperCamelCase_ = pd_i_all / (self.size_poolinga * self.size_poolinga) UpperCamelCase_ = pd_conva_pooled.T.getA().tolist() UpperCamelCase_ = self._calculate_gradient_from_pool( _UpperCAmelCase , _UpperCAmelCase , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): UpperCamelCase_ = self._expand_mat(pd_conva_all[k_conv] ) UpperCamelCase_ = self.rate_weight * np.dot(_UpperCAmelCase , _UpperCAmelCase ) UpperCamelCase_ = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) UpperCamelCase_ = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer UpperCamelCase_ = self.wkj + pd_k_all.T * bp_outa * self.rate_weight UpperCamelCase_ = self.vji + pd_j_all.T * bp_outa * self.rate_weight UpperCamelCase_ = self.thre_bpa - pd_k_all * self.rate_thre UpperCamelCase_ = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image UpperCamelCase_ = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) UpperCamelCase_ = rp + 1 UpperCamelCase_ = error_count / patterns all_mse.append(_UpperCAmelCase ) def draw_error(): UpperCamelCase_ = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(_UpperCAmelCase , '+-' ) plt.plot(_UpperCAmelCase , 'r--' ) plt.xlabel('Learning Times' ) plt.ylabel('All_mse' ) plt.grid(_UpperCAmelCase , alpha=0.5 ) plt.show() print('------------------Training Complished---------------------' ) print((' - - Training epoch: ', rp, f""" - - Mse: {mse:.6f}""") ) if draw_e: draw_error() return mse def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Optional[Any]: # model predict UpperCamelCase_ = [] print('-------------------Start Testing-------------------------' ) print((' - - Shape: Test_Data ', np.shape(_UpperCAmelCase )) ) for p in range(len(_UpperCAmelCase ) ): UpperCamelCase_ = np.asmatrix(datas_test[p] ) UpperCamelCase_ , UpperCamelCase_ = self.convolute( _UpperCAmelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) UpperCamelCase_ = self.pooling(_UpperCAmelCase , self.size_poolinga ) UpperCamelCase_ = self._expand(_UpperCAmelCase ) UpperCamelCase_ = data_bp_input UpperCamelCase_ = bp_outa * self.vji.T - self.thre_bpa UpperCamelCase_ = self.sig(_UpperCAmelCase ) UpperCamelCase_ = bp_outa * self.wkj.T - self.thre_bpa UpperCamelCase_ = self.sig(_UpperCAmelCase ) produce_out.extend(bp_outa.getA().tolist() ) UpperCamelCase_ = [list(map(self.do_round , _UpperCAmelCase ) ) for each in produce_out] return np.asarray(_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Union[str, Any]: # return the data of image after convoluting process so we can check it out UpperCamelCase_ = np.asmatrix(_UpperCAmelCase ) UpperCamelCase_ , UpperCamelCase_ = self.convolute( _UpperCAmelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) UpperCamelCase_ = self.pooling(_UpperCAmelCase , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
23
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class __UpperCAmelCase ( snake_case__ ): """simple docstring""" lowercase = """naver-clova-ix/donut-base-finetuned-docvqa""" lowercase = ( """This is a tool that answers a question about an document (pdf). It takes an input named `document` which """ """should be the document containing the information, as well as a `question` that is the question about the """ """document. It returns a text that contains the answer to the question.""" ) lowercase = """document_qa""" lowercase = AutoProcessor lowercase = VisionEncoderDecoderModel lowercase = ["""image""", """text"""] lowercase = ["""text"""] def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" if not is_vision_available(): raise ValueError("Pillow must be installed to use the DocumentQuestionAnsweringTool." ) super().__init__(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" UpperCamelCase = "<s_docvqa><s_question>{user_input}</s_question><s_answer>" UpperCamelCase = task_prompt.replace("{user_input}" , SCREAMING_SNAKE_CASE ) UpperCamelCase = self.pre_processor.tokenizer( SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE , return_tensors="pt" ).input_ids UpperCamelCase = self.pre_processor(SCREAMING_SNAKE_CASE , return_tensors="pt" ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" return self.model.generate( inputs["pixel_values"].to(self.device ) , decoder_input_ids=inputs["decoder_input_ids"].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=SCREAMING_SNAKE_CASE , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=SCREAMING_SNAKE_CASE , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=SCREAMING_SNAKE_CASE , ).sequences def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" UpperCamelCase = self.pre_processor.batch_decode(SCREAMING_SNAKE_CASE )[0] UpperCamelCase = sequence.replace(self.pre_processor.tokenizer.eos_token , "" ) UpperCamelCase = sequence.replace(self.pre_processor.tokenizer.pad_token , "" ) UpperCamelCase = re.sub(R"<.*?>" , "" , SCREAMING_SNAKE_CASE , count=1 ).strip() # remove first task start token UpperCamelCase = self.pre_processor.tokenajson(SCREAMING_SNAKE_CASE ) return sequence["answer"]
606
0
'''simple docstring''' import math def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int ) -> bool: UpperCAmelCase_ : Optional[int] = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(SCREAMING_SNAKE_CASE__ ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : float = 1 / 12345 ) -> int: UpperCAmelCase_ : str = 0 UpperCAmelCase_ : int = 0 UpperCAmelCase_ : int = 3 while True: UpperCAmelCase_ : str = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(SCREAMING_SNAKE_CASE__ ): UpperCAmelCase_ : Tuple = int(SCREAMING_SNAKE_CASE__ ) total_partitions += 1 if check_partition_perfect(SCREAMING_SNAKE_CASE__ ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(SCREAMING_SNAKE_CASE__ ) integer += 1 if __name__ == "__main__": print(f'''{solution() = }''')
644
'''simple docstring''' import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class __a : def __init__( self : List[str] , __magic_name__ : List[str] , __magic_name__ : str=13 , __magic_name__ : Union[str, Any]=7 , __magic_name__ : Union[str, Any]=True , __magic_name__ : Any=True , __magic_name__ : List[str]=False , __magic_name__ : Optional[int]=True , __magic_name__ : Dict=99 , __magic_name__ : Tuple=32 , __magic_name__ : int=5 , __magic_name__ : Dict=4 , __magic_name__ : Tuple=37 , __magic_name__ : Optional[int]="gelu" , __magic_name__ : List[str]=0.1 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : str=5_12 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : int=2 , __magic_name__ : List[Any]=0.0_2 , __magic_name__ : Tuple=3 , __magic_name__ : Union[str, Any]=4 , __magic_name__ : Optional[int]=None , ) -> str: """simple docstring""" UpperCAmelCase_ : Any = parent UpperCAmelCase_ : Union[str, Any] = batch_size UpperCAmelCase_ : List[Any] = seq_length UpperCAmelCase_ : str = is_training UpperCAmelCase_ : Any = use_input_mask UpperCAmelCase_ : List[str] = use_token_type_ids UpperCAmelCase_ : Union[str, Any] = use_labels UpperCAmelCase_ : Dict = vocab_size UpperCAmelCase_ : Optional[Any] = hidden_size UpperCAmelCase_ : Dict = num_hidden_layers UpperCAmelCase_ : List[Any] = num_attention_heads UpperCAmelCase_ : Optional[int] = intermediate_size UpperCAmelCase_ : Union[str, Any] = hidden_act UpperCAmelCase_ : str = hidden_dropout_prob UpperCAmelCase_ : Optional[Any] = attention_probs_dropout_prob UpperCAmelCase_ : Any = max_position_embeddings UpperCAmelCase_ : str = type_vocab_size UpperCAmelCase_ : Optional[Any] = type_sequence_label_size UpperCAmelCase_ : List[Any] = initializer_range UpperCAmelCase_ : int = num_labels UpperCAmelCase_ : Optional[int] = num_choices UpperCAmelCase_ : Tuple = scope def UpperCAmelCase__ ( self : Union[str, Any] ) -> int: """simple docstring""" UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Union[str, Any] = None if self.use_input_mask: UpperCAmelCase_ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : str = None if self.use_token_type_ids: UpperCAmelCase_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ : Tuple = None UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Union[str, Any] = None if self.use_labels: UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ : int = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self : Any ) -> List[Any]: """simple docstring""" return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__magic_name__ , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : Tuple , __magic_name__ : str , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : Optional[Any] = BioGptModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() UpperCAmelCase_ : Dict = model(__magic_name__ , attention_mask=__magic_name__ ) UpperCAmelCase_ : Optional[Any] = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Any , __magic_name__ : Tuple , __magic_name__ : List[str] , __magic_name__ : Optional[int] , ) -> int: """simple docstring""" UpperCAmelCase_ : Dict = BioGptForCausalLM(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() UpperCAmelCase_ : List[Any] = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self : str , __magic_name__ : Optional[int] , __magic_name__ : Tuple , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : str , *__magic_name__ : Any ) -> int: """simple docstring""" UpperCAmelCase_ : Dict = BioGptModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() # create attention mask UpperCAmelCase_ : Optional[Any] = torch.ones(input_ids.shape , dtype=torch.long , device=__magic_name__ ) UpperCAmelCase_ : Any = self.seq_length // 2 UpperCAmelCase_ : Tuple = 0 # first forward pass UpperCAmelCase_ , UpperCAmelCase_ : Dict = model(__magic_name__ , attention_mask=__magic_name__ ).to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase_ : Tuple = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids UpperCAmelCase_ : List[str] = ids_tensor((1,) , __magic_name__ ).item() + 1 UpperCAmelCase_ : Tuple = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) UpperCAmelCase_ : str = random_other_next_tokens # append to next input_ids and attn_mask UpperCAmelCase_ : Tuple = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase_ : int = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=__magic_name__ )] , dim=1 , ) # get two different outputs UpperCAmelCase_ : Any = model(__magic_name__ , attention_mask=__magic_name__ )['''last_hidden_state'''] UpperCAmelCase_ : int = model(__magic_name__ , past_key_values=__magic_name__ , attention_mask=__magic_name__ )['''last_hidden_state'''] # select random slice UpperCAmelCase_ : Optional[int] = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase_ : Union[str, Any] = output_from_no_past[:, -1, random_slice_idx].detach() UpperCAmelCase_ : Dict = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) ) def UpperCAmelCase__ ( self : Dict , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : Dict , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , *__magic_name__ : str ) -> int: """simple docstring""" UpperCAmelCase_ : Dict = BioGptModel(config=__magic_name__ ).to(__magic_name__ ).eval() UpperCAmelCase_ : Optional[int] = torch.ones(input_ids.shape , dtype=torch.long , device=__magic_name__ ) # first forward pass UpperCAmelCase_ : Union[str, Any] = model(__magic_name__ , attention_mask=__magic_name__ , use_cache=__magic_name__ ) UpperCAmelCase_ , UpperCAmelCase_ : int = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase_ : Any = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase_ : Any = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and UpperCAmelCase_ : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase_ : List[str] = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) UpperCAmelCase_ : Any = model(__magic_name__ , attention_mask=__magic_name__ )['''last_hidden_state'''] UpperCAmelCase_ : Optional[Any] = model(__magic_name__ , attention_mask=__magic_name__ , past_key_values=__magic_name__ )[ '''last_hidden_state''' ] # select random slice UpperCAmelCase_ : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase_ : str = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase_ : Optional[int] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) ) def UpperCAmelCase__ ( self : List[str] , __magic_name__ : str , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , *__magic_name__ : Any , __magic_name__ : List[Any]=False ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : Any = BioGptForCausalLM(__magic_name__ ) model.to(__magic_name__ ) if gradient_checkpointing: model.gradient_checkpointing_enable() UpperCAmelCase_ : List[str] = model(__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Optional[int] , *__magic_name__ : List[str] ) -> str: """simple docstring""" UpperCAmelCase_ : int = BioGptModel(__magic_name__ ) UpperCAmelCase_ : Dict = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.0_0_1 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.0_1 ) def UpperCAmelCase__ ( self : int , __magic_name__ : Tuple , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] , *__magic_name__ : Any ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : str = self.num_labels UpperCAmelCase_ : Any = BioGptForTokenClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() UpperCAmelCase_ : Any = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase__ ( self : Optional[Any] ) -> str: """simple docstring""" UpperCAmelCase_ : List[Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : int = config_and_inputs UpperCAmelCase_ : Any = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __a (lowerCamelCase , lowerCamelCase , lowerCamelCase , unittest.TestCase ): __a : str = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) __a : List[Any] = (BioGptForCausalLM,) if is_torch_available() else () __a : Union[str, Any] = ( { "feature-extraction": BioGptModel, "text-classification": BioGptForSequenceClassification, "text-generation": BioGptForCausalLM, "token-classification": BioGptForTokenClassification, "zero-shot": BioGptForSequenceClassification, } if is_torch_available() else {} ) __a : List[str] = False def UpperCAmelCase__ ( self : Optional[Any] ) -> Dict: """simple docstring""" UpperCAmelCase_ : List[str] = BioGptModelTester(self ) UpperCAmelCase_ : Optional[Any] = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : List[str] ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def UpperCAmelCase__ ( self : Tuple ) -> List[str]: """simple docstring""" UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase_ : str = type self.model_tester.create_and_check_model(*__magic_name__ ) def UpperCAmelCase__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*__magic_name__ ) def UpperCAmelCase__ ( self : Tuple ) -> List[str]: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*__magic_name__ , gradient_checkpointing=__magic_name__ ) def UpperCAmelCase__ ( self : str ) -> List[str]: """simple docstring""" UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*__magic_name__ ) def UpperCAmelCase__ ( self : Dict ) -> Tuple: """simple docstring""" UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*__magic_name__ ) def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*__magic_name__ ) @slow def UpperCAmelCase__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : Tuple = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) model.to(__magic_name__ ) UpperCAmelCase_ : List[str] = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) UpperCAmelCase_ : Tuple = '''left''' # Define PAD Token = EOS Token = 50256 UpperCAmelCase_ : List[Any] = tokenizer.eos_token UpperCAmelCase_ : List[Any] = model.config.eos_token_id # use different length sentences to test batching UpperCAmelCase_ : Tuple = [ '''Hello, my dog is a little''', '''Today, I''', ] UpperCAmelCase_ : Optional[Any] = tokenizer(__magic_name__ , return_tensors='''pt''' , padding=__magic_name__ ) UpperCAmelCase_ : Optional[Any] = inputs['''input_ids'''].to(__magic_name__ ) UpperCAmelCase_ : Any = model.generate( input_ids=__magic_name__ , attention_mask=inputs['''attention_mask'''].to(__magic_name__ ) , ) UpperCAmelCase_ : Union[str, Any] = tokenizer(sentences[0] , return_tensors='''pt''' ).input_ids.to(__magic_name__ ) UpperCAmelCase_ : Tuple = model.generate(input_ids=__magic_name__ ) UpperCAmelCase_ : List[str] = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item() UpperCAmelCase_ : List[Any] = tokenizer(sentences[1] , return_tensors='''pt''' ).input_ids.to(__magic_name__ ) UpperCAmelCase_ : Tuple = model.generate(input_ids=__magic_name__ , max_length=model.config.max_length - num_paddings ) UpperCAmelCase_ : int = tokenizer.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ ) UpperCAmelCase_ : Dict = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__magic_name__ ) UpperCAmelCase_ : Union[str, Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=__magic_name__ ) UpperCAmelCase_ : Optional[Any] = [ '''Hello, my dog is a little bit bigger than a little bit.''', '''Today, I have a good idea of how to use the information''', ] self.assertListEqual(__magic_name__ , __magic_name__ ) self.assertListEqual(__magic_name__ , [non_padded_sentence, padded_sentence] ) @slow def UpperCAmelCase__ ( self : str ) -> Optional[Any]: """simple docstring""" for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : List[Any] = BioGptModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def UpperCAmelCase__ ( self : Tuple ) -> str: """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : List[str] = 3 UpperCAmelCase_ : Tuple = input_dict['''input_ids'''] UpperCAmelCase_ : Dict = input_ids.ne(1 ).to(__magic_name__ ) UpperCAmelCase_ : List[str] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase_ : Dict = BioGptForSequenceClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() UpperCAmelCase_ : int = model(__magic_name__ , attention_mask=__magic_name__ , labels=__magic_name__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]: """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : List[Any] = 3 UpperCAmelCase_ : Optional[int] = '''multi_label_classification''' UpperCAmelCase_ : int = input_dict['''input_ids'''] UpperCAmelCase_ : str = input_ids.ne(1 ).to(__magic_name__ ) UpperCAmelCase_ : Any = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCAmelCase_ : Union[str, Any] = BioGptForSequenceClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() UpperCAmelCase_ : str = model(__magic_name__ , attention_mask=__magic_name__ , labels=__magic_name__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class __a (unittest.TestCase ): @slow def UpperCAmelCase__ ( self : List[Any] ) -> str: """simple docstring""" UpperCAmelCase_ : str = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) UpperCAmelCase_ : List[str] = torch.tensor([[2, 48_05, 9, 6_56, 21]] ) UpperCAmelCase_ : str = model(__magic_name__ )[0] UpperCAmelCase_ : Optional[int] = 4_23_84 UpperCAmelCase_ : Tuple = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , __magic_name__ ) UpperCAmelCase_ : List[Any] = torch.tensor( [[[-9.5_2_3_6, -9.8_9_1_8, 1_0.4_5_5_7], [-1_1.0_4_6_9, -9.6_4_2_3, 8.1_0_2_2], [-8.8_6_6_4, -7.8_8_2_6, 5.5_3_2_5]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __magic_name__ , atol=1E-4 ) ) @slow def UpperCAmelCase__ ( self : Any ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Any = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) UpperCAmelCase_ : str = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) model.to(__magic_name__ ) torch.manual_seed(0 ) UpperCAmelCase_ : Optional[Any] = tokenizer('''COVID-19 is''' , return_tensors='''pt''' ).to(__magic_name__ ) UpperCAmelCase_ : Optional[int] = model.generate( **__magic_name__ , min_length=1_00 , max_length=10_24 , num_beams=5 , early_stopping=__magic_name__ , ) UpperCAmelCase_ : int = tokenizer.decode(output_ids[0] , skip_special_tokens=__magic_name__ ) UpperCAmelCase_ : Optional[Any] = ( '''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the''' ''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and''' ''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),''' ''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and''' ''' more than 800,000 deaths.''' ) self.assertEqual(__magic_name__ , __magic_name__ )
644
1
def lowerCAmelCase__(__snake_case ,__snake_case ) -> str: '''simple docstring''' lowerCamelCase__ = len(__snake_case ) lowerCamelCase__ = len(__snake_case ) lowerCamelCase__ = ( first_str_length if first_str_length > second_str_length else second_str_length ) lowerCamelCase__ = [] for char_count in range(__snake_case ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(__snake_case ) if __name__ == "__main__": print(alternative_string_arrange("AB", "XYZ"), end=" ")
481
import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( '''kwargs, expected''' ,[ ({'''num_shards''': 0, '''max_num_jobs''': 1}, []), ({'''num_shards''': 10, '''max_num_jobs''': 1}, [range(10 )]), ({'''num_shards''': 10, '''max_num_jobs''': 10}, [range(__snake_case ,i + 1 ) for i in range(10 )]), ({'''num_shards''': 1, '''max_num_jobs''': 10}, [range(1 )]), ({'''num_shards''': 10, '''max_num_jobs''': 3}, [range(0 ,4 ), range(4 ,7 ), range(7 ,10 )]), ({'''num_shards''': 3, '''max_num_jobs''': 10}, [range(0 ,1 ), range(1 ,2 ), range(2 ,3 )]), ] ,) def lowerCAmelCase__(__snake_case ,__snake_case ) -> Dict: '''simple docstring''' lowerCamelCase__ = _distribute_shards(**__snake_case ) assert out == expected @pytest.mark.parametrize( '''gen_kwargs, max_num_jobs, expected''' ,[ ({'''foo''': 0}, 10, [{'''foo''': 0}]), ({'''shards''': [0, 1, 2, 3]}, 1, [{'''shards''': [0, 1, 2, 3]}]), ({'''shards''': [0, 1, 2, 3]}, 4, [{'''shards''': [0]}, {'''shards''': [1]}, {'''shards''': [2]}, {'''shards''': [3]}]), ({'''shards''': [0, 1]}, 4, [{'''shards''': [0]}, {'''shards''': [1]}]), ({'''shards''': [0, 1, 2, 3]}, 2, [{'''shards''': [0, 1]}, {'''shards''': [2, 3]}]), ] ,) def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ) -> Dict: '''simple docstring''' lowerCamelCase__ = _split_gen_kwargs(__snake_case ,__snake_case ) assert out == expected @pytest.mark.parametrize( '''gen_kwargs, expected''' ,[ ({'''foo''': 0}, 1), ({'''shards''': [0]}, 1), ({'''shards''': [0, 1, 2, 3]}, 4), ({'''shards''': [0, 1, 2, 3], '''foo''': 0}, 4), ({'''shards''': [0, 1, 2, 3], '''other''': (0, 1)}, 4), ({'''shards''': [0, 1, 2, 3], '''shards2''': [0, 1]}, RuntimeError), ] ,) def lowerCAmelCase__(__snake_case ,__snake_case ) -> Union[str, Any]: '''simple docstring''' if expected is RuntimeError: with pytest.raises(__snake_case ): _number_of_shards_in_gen_kwargs(__snake_case ) else: lowerCamelCase__ = _number_of_shards_in_gen_kwargs(__snake_case ) assert out == expected
481
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ : Union[str, Any] = logging.get_logger(__name__) UpperCamelCase_ : Any = {'openai-gpt': 'https://huggingface.co/openai-gpt/resolve/main/config.json'} class __lowerCAmelCase ( snake_case__ ): """simple docstring""" snake_case = """openai-gpt""" snake_case = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Optional[int] , _snake_case : List[str]=40_478 , _snake_case : Dict=512 , _snake_case : Optional[int]=768 , _snake_case : Optional[Any]=12 , _snake_case : Optional[Any]=12 , _snake_case : Tuple="gelu" , _snake_case : List[str]=0.1 , _snake_case : int=0.1 , _snake_case : Dict=0.1 , _snake_case : List[Any]=1e-5 , _snake_case : List[str]=0.0_2 , _snake_case : Dict="cls_index" , _snake_case : Optional[Any]=True , _snake_case : Optional[int]=None , _snake_case : Any=True , _snake_case : Dict=0.1 , **_snake_case : Union[str, Any] , ) -> Dict: """simple docstring""" A_ = vocab_size A_ = n_positions A_ = n_embd A_ = n_layer A_ = n_head A_ = afn A_ = resid_pdrop A_ = embd_pdrop A_ = attn_pdrop A_ = layer_norm_epsilon A_ = initializer_range A_ = summary_type A_ = summary_use_proj A_ = summary_activation A_ = summary_first_dropout A_ = summary_proj_to_labels super().__init__(**UpperCAmelCase_ )
702
"""simple docstring""" import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class __lowerCAmelCase : """simple docstring""" @staticmethod def lowerCamelCase__ ( *_snake_case : int , **_snake_case : Optional[Any] ) -> str: """simple docstring""" pass def A_ (__a ): '''simple docstring''' A_ = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def A_ (__a ): '''simple docstring''' A_ = np.array(__a ) A_ = npimg.shape return {"hash": hashimage(__a ), "shape": shape} @is_pipeline_test @require_vision @require_torch class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" snake_case = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) snake_case = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def lowerCamelCase__ ( self : List[Any] , _snake_case : List[str] , _snake_case : Dict , _snake_case : int ) -> str: """simple docstring""" A_ = MaskGenerationPipeline(model=_snake_case , image_processor=_snake_case ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def lowerCamelCase__ ( self : int , _snake_case : int , _snake_case : Optional[Any] ) -> Dict: """simple docstring""" pass @require_tf @unittest.skip("Image segmentation not implemented in TF" ) def lowerCamelCase__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" pass @slow @require_torch def lowerCamelCase__ ( self : Tuple ) -> int: """simple docstring""" A_ = pipeline("mask-generation" , model="facebook/sam-vit-huge" ) A_ = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg" , points_per_batch=256 ) # Shortening by hashing A_ = [] for i, o in enumerate(outputs["masks"] ): new_outupt += [{"mask": mask_to_test_readable(_snake_case ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [ {"mask": {"hash": "115ad19f5f", "shape": (480, 640)}, "scores": 1.0_4_4_4}, {"mask": {"hash": "6affa964c6", "shape": (480, 640)}, "scores": 1.0_2_1}, {"mask": {"hash": "dfe28a0388", "shape": (480, 640)}, "scores": 1.0_1_6_7}, {"mask": {"hash": "c0a5f4a318", "shape": (480, 640)}, "scores": 1.0_1_3_2}, {"mask": {"hash": "fe8065c197", "shape": (480, 640)}, "scores": 1.0_0_5_3}, {"mask": {"hash": "e2d0b7a0b7", "shape": (480, 640)}, "scores": 0.9_9_6_7}, {"mask": {"hash": "453c7844bd", "shape": (480, 640)}, "scores": 0.9_9_3}, {"mask": {"hash": "3d44f2926d", "shape": (480, 640)}, "scores": 0.9_9_0_9}, {"mask": {"hash": "64033ddc3f", "shape": (480, 640)}, "scores": 0.9_8_7_9}, {"mask": {"hash": "801064ff79", "shape": (480, 640)}, "scores": 0.9_8_3_4}, {"mask": {"hash": "6172f276ef", "shape": (480, 640)}, "scores": 0.9_7_1_6}, {"mask": {"hash": "b49e60e084", "shape": (480, 640)}, "scores": 0.9_6_1_2}, {"mask": {"hash": "a811e775fd", "shape": (480, 640)}, "scores": 0.9_5_9_9}, {"mask": {"hash": "a6a8ebcf4b", "shape": (480, 640)}, "scores": 0.9_5_5_2}, {"mask": {"hash": "9d8257e080", "shape": (480, 640)}, "scores": 0.9_5_3_2}, {"mask": {"hash": "32de6454a8", "shape": (480, 640)}, "scores": 0.9_5_1_6}, {"mask": {"hash": "af3d4af2c8", "shape": (480, 640)}, "scores": 0.9_4_9_9}, {"mask": {"hash": "3c6db475fb", "shape": (480, 640)}, "scores": 0.9_4_8_3}, {"mask": {"hash": "c290813fb9", "shape": (480, 640)}, "scores": 0.9_4_6_4}, {"mask": {"hash": "b6f0b8f606", "shape": (480, 640)}, "scores": 0.9_4_3}, {"mask": {"hash": "92ce16bfdf", "shape": (480, 640)}, "scores": 0.9_4_3}, {"mask": {"hash": "c749b25868", "shape": (480, 640)}, "scores": 0.9_4_0_8}, {"mask": {"hash": "efb6cab859", "shape": (480, 640)}, "scores": 0.9_3_3_5}, {"mask": {"hash": "1ff2eafb30", "shape": (480, 640)}, "scores": 0.9_3_2_6}, {"mask": {"hash": "788b798e24", "shape": (480, 640)}, "scores": 0.9_2_6_2}, {"mask": {"hash": "abea804f0e", "shape": (480, 640)}, "scores": 0.8_9_9_9}, {"mask": {"hash": "7b9e8ddb73", "shape": (480, 640)}, "scores": 0.8_9_8_6}, {"mask": {"hash": "cd24047c8a", "shape": (480, 640)}, "scores": 0.8_9_8_4}, {"mask": {"hash": "6943e6bcbd", "shape": (480, 640)}, "scores": 0.8_8_7_3}, {"mask": {"hash": "b5f47c9191", "shape": (480, 640)}, "scores": 0.8_8_7_1} ] , ) # fmt: on @require_torch @slow def lowerCamelCase__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" A_ = "facebook/sam-vit-huge" A_ = pipeline("mask-generation" , model=_snake_case ) A_ = image_segmenter( "http://images.cocodataset.org/val2017/000000039769.jpg" , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing A_ = [] for i, o in enumerate(outputs["masks"] ): new_outupt += [{"mask": mask_to_test_readable(_snake_case ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [ {"mask": {"hash": "115ad19f5f", "shape": (480, 640)}, "scores": 1.0_4_4_4}, {"mask": {"hash": "6affa964c6", "shape": (480, 640)}, "scores": 1.0_2_1_0}, {"mask": {"hash": "dfe28a0388", "shape": (480, 640)}, "scores": 1.0_1_6_7}, {"mask": {"hash": "c0a5f4a318", "shape": (480, 640)}, "scores": 1.0_1_3_2}, {"mask": {"hash": "fe8065c197", "shape": (480, 640)}, "scores": 1.0_0_5_3}, ] , )
482
0
from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) UpperCAmelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase_ = """ Examples: ```py >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline >>> from diffusers.utils import load_image >>> import torch >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16 ... ) >>> pipe_prior.to(\"cuda\") >>> prompt = \"A red cartoon frog, 4k\" >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False) >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16 ... ) >>> pipe.to(\"cuda\") >>> init_image = load_image( ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\" ... \"/kandinsky/frog.png\" ... ) >>> image = pipe( ... image=init_image, ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=100, ... strength=0.2, ... ).images >>> image[0].save(\"red_frog.png\") ``` """ def SCREAMING_SNAKE_CASE_ ( _snake_case :Dict , _snake_case :List[Any] , _snake_case :str=8 ) -> str: _A = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _A = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def SCREAMING_SNAKE_CASE_ ( _snake_case :Dict , _snake_case :Tuple=512 , _snake_case :Any=512 ) -> Optional[Any]: _A = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) _A = np.array(pil_image.convert('''RGB''' ) ) _A = arr.astype(np.floataa ) / 127.5 - 1 _A = np.transpose(_snake_case , [2, 0, 1] ) _A = torch.from_numpy(_snake_case ).unsqueeze(0 ) return image class lowerCamelCase__ ( _A): """simple docstring""" def __init__( self : Optional[Any] , __lowerCAmelCase : UNetaDConditionModel , __lowerCAmelCase : DDPMScheduler , __lowerCAmelCase : VQModel , ) -> Tuple: super().__init__() self.register_modules( unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , movq=__lowerCAmelCase , ) _A = 2 ** (len(self.movq.config.block_out_channels ) - 1) def snake_case_ ( self : Dict , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[str] ) -> Dict: # get the original timestep using init_timestep _A = min(int(num_inference_steps * strength ) , __lowerCAmelCase ) _A = max(num_inference_steps - init_timestep , 0 ) _A = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def snake_case_ ( self : int , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : str , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str]=None ) -> List[Any]: if not isinstance(__lowerCAmelCase , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(__lowerCAmelCase )}''' ) _A = image.to(device=__lowerCAmelCase , dtype=__lowerCAmelCase ) _A = batch_size * num_images_per_prompt if image.shape[1] == 4: _A = image else: if isinstance(__lowerCAmelCase , __lowerCAmelCase ) and len(__lowerCAmelCase ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(__lowerCAmelCase )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): _A = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(__lowerCAmelCase ) ] _A = torch.cat(__lowerCAmelCase , dim=0 ) else: _A = self.movq.encode(__lowerCAmelCase ).latent_dist.sample(__lowerCAmelCase ) _A = self.movq.config.scaling_factor * init_latents _A = torch.cat([init_latents] , dim=0 ) _A = init_latents.shape _A = randn_tensor(__lowerCAmelCase , generator=__lowerCAmelCase , device=__lowerCAmelCase , dtype=__lowerCAmelCase ) # get latents _A = self.scheduler.add_noise(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _A = init_latents return latents def snake_case_ ( self : Optional[int] , __lowerCAmelCase : str=0 ) -> Tuple: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) _A = torch.device(f'''cuda:{gpu_id}''' ) _A = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__lowerCAmelCase , __lowerCAmelCase ) def snake_case_ ( self : int , __lowerCAmelCase : str=0 ) -> List[str]: if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) _A = torch.device(f'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=__lowerCAmelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _A = None for cpu_offloaded_model in [self.unet, self.movq]: _A , _A = cpu_offload_with_hook(__lowerCAmelCase , __lowerCAmelCase , prev_module_hook=__lowerCAmelCase ) # We'll offload the last model manually. _A = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def snake_case_ ( self : Union[str, Any] ) -> Any: if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(__lowerCAmelCase , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(__lowerCAmelCase ) def __call__( self : Any , __lowerCAmelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , __lowerCAmelCase : Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] , __lowerCAmelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , __lowerCAmelCase : int = 5_12 , __lowerCAmelCase : int = 5_12 , __lowerCAmelCase : int = 1_00 , __lowerCAmelCase : float = 4.0 , __lowerCAmelCase : float = 0.3 , __lowerCAmelCase : int = 1 , __lowerCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __lowerCAmelCase : Optional[str] = "pil" , __lowerCAmelCase : bool = True , ) -> List[Any]: _A = self._execution_device _A = guidance_scale > 1.0 if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _A = torch.cat(__lowerCAmelCase , dim=0 ) _A = image_embeds.shape[0] if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _A = torch.cat(__lowerCAmelCase , dim=0 ) if do_classifier_free_guidance: _A = image_embeds.repeat_interleave(__lowerCAmelCase , dim=0 ) _A = negative_image_embeds.repeat_interleave(__lowerCAmelCase , dim=0 ) _A = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=__lowerCAmelCase ) if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): _A = [image] if not all(isinstance(__lowerCAmelCase , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( f'''Input is in incorrect format: {[type(__lowerCAmelCase ) for i in image]}. Currently, we only support PIL image and pytorch tensor''' ) _A = torch.cat([prepare_image(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) for i in image] , dim=0 ) _A = image.to(dtype=image_embeds.dtype , device=__lowerCAmelCase ) _A = self.movq.encode(__lowerCAmelCase )['''latents'''] _A = latents.repeat_interleave(__lowerCAmelCase , dim=0 ) self.scheduler.set_timesteps(__lowerCAmelCase , device=__lowerCAmelCase ) _A , _A = self.get_timesteps(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _A = timesteps[:1].repeat(batch_size * num_images_per_prompt ) _A , _A = downscale_height_and_width(__lowerCAmelCase , __lowerCAmelCase , self.movq_scale_factor ) _A = self.prepare_latents( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , image_embeds.dtype , __lowerCAmelCase , __lowerCAmelCase ) for i, t in enumerate(self.progress_bar(__lowerCAmelCase ) ): # expand the latents if we are doing classifier free guidance _A = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _A = {'''image_embeds''': image_embeds} _A = self.unet( sample=__lowerCAmelCase , timestep=__lowerCAmelCase , encoder_hidden_states=__lowerCAmelCase , added_cond_kwargs=__lowerCAmelCase , return_dict=__lowerCAmelCase , )[0] if do_classifier_free_guidance: _A , _A = noise_pred.split(latents.shape[1] , dim=1 ) _A , _A = noise_pred.chunk(2 ) _A , _A = variance_pred.chunk(2 ) _A = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _A = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _A , _A = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _A = self.scheduler.step( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , generator=__lowerCAmelCase , )[0] # post-processing _A = self.movq.decode(__lowerCAmelCase , force_not_quantize=__lowerCAmelCase )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(f'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: _A = image * 0.5 + 0.5 _A = image.clamp(0 , 1 ) _A = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _A = self.numpy_to_pil(__lowerCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__lowerCAmelCase )
2
from torch import nn class __lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : Optional[int] , _snake_case : List[Any] , _snake_case : Tuple ): super().__init__() __lowercase : Any = class_size __lowercase : List[Any] = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) __lowercase : Dict = nn.Linear(_snake_case , _snake_case ) def snake_case_ ( self : Any , _snake_case : str ): # hidden_state = nn.functional.relu(self.mlp1(hidden_state)) # hidden_state = self.mlp2(hidden_state) __lowercase : Any = self.mlp(_snake_case ) return logits
509
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging _lowercase = logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Tuple = ['''pixel_values'''] def __init__( self : Union[str, Any] ,A_ : bool = True ,A_ : Dict[str, int] = None ,A_ : PILImageResampling = PILImageResampling.BICUBIC ,A_ : bool = True ,A_ : Dict[str, int] = None ,A_ : bool = True ,A_ : Union[int, float] = 1 / 255 ,A_ : bool = True ,A_ : Optional[Union[float, List[float]]] = None ,A_ : Optional[Union[float, List[float]]] = None ,A_ : bool = True ,**A_ : Optional[Any] ,) -> None: super().__init__(**A_ ) A = size if size is not None else {'shortest_edge': 224} A = get_size_dict(A_ ,default_to_square=A_ ) A = crop_size if crop_size is not None else {'height': 224, 'width': 224} A = get_size_dict(A_ ,default_to_square=A_ ,param_name='crop_size' ) A = do_resize A = size A = resample A = do_center_crop A = crop_size A = do_rescale A = rescale_factor A = do_normalize A = image_mean if image_mean is not None else OPENAI_CLIP_MEAN A = image_std if image_std is not None else OPENAI_CLIP_STD A = do_convert_rgb def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : np.ndarray ,A_ : Dict[str, int] ,A_ : PILImageResampling = PILImageResampling.BICUBIC ,A_ : Optional[Union[str, ChannelDimension]] = None ,**A_ : Union[str, Any] ,) -> np.ndarray: A = get_size_dict(A_ ,default_to_square=A_ ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) A = get_resize_output_image_size(A_ ,size=size['shortest_edge'] ,default_to_square=A_ ) return resize(A_ ,size=A_ ,resample=A_ ,data_format=A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : str ,A_ : np.ndarray ,A_ : Dict[str, int] ,A_ : Optional[Union[str, ChannelDimension]] = None ,**A_ : str ,) -> np.ndarray: A = get_size_dict(A_ ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(A_ ,size=(size['height'], size['width']) ,data_format=A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : np.ndarray ,A_ : Union[int, float] ,A_ : Optional[Union[str, ChannelDimension]] = None ,**A_ : Union[str, Any] ,) -> Union[str, Any]: return rescale(A_ ,scale=A_ ,data_format=A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : np.ndarray ,A_ : Union[float, List[float]] ,A_ : Union[float, List[float]] ,A_ : Optional[Union[str, ChannelDimension]] = None ,**A_ : List[Any] ,) -> np.ndarray: return normalize(A_ ,mean=A_ ,std=A_ ,data_format=A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : ImageInput ,A_ : bool = None ,A_ : Dict[str, int] = None ,A_ : PILImageResampling = None ,A_ : bool = None ,A_ : int = None ,A_ : bool = None ,A_ : float = None ,A_ : bool = None ,A_ : Optional[Union[float, List[float]]] = None ,A_ : Optional[Union[float, List[float]]] = None ,A_ : bool = None ,A_ : Optional[Union[str, TensorType]] = None ,A_ : Optional[ChannelDimension] = ChannelDimension.FIRST ,**A_ : Dict ,) -> PIL.Image.Image: A = do_resize if do_resize is not None else self.do_resize A = size if size is not None else self.size A = get_size_dict(A_ ,param_name='size' ,default_to_square=A_ ) A = resample if resample is not None else self.resample A = do_center_crop if do_center_crop is not None else self.do_center_crop A = crop_size if crop_size is not None else self.crop_size A = get_size_dict(A_ ,param_name='crop_size' ,default_to_square=A_ ) A = do_rescale if do_rescale is not None else self.do_rescale A = rescale_factor if rescale_factor is not None else self.rescale_factor A = do_normalize if do_normalize is not None else self.do_normalize A = image_mean if image_mean is not None else self.image_mean A = image_std if image_std is not None else self.image_std A = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb A = make_list_of_images(A_ ) if not valid_images(A_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: A = [convert_to_rgb(A_ ) for image in images] # All transformations expect numpy arrays. A = [to_numpy_array(A_ ) for image in images] if do_resize: A = [self.resize(image=A_ ,size=A_ ,resample=A_ ) for image in images] if do_center_crop: A = [self.center_crop(image=A_ ,size=A_ ) for image in images] if do_rescale: A = [self.rescale(image=A_ ,scale=A_ ) for image in images] if do_normalize: A = [self.normalize(image=A_ ,mean=A_ ,std=A_ ) for image in images] A = [to_channel_dimension_format(A_ ,A_ ) for image in images] A = {'pixel_values': images} return BatchFeature(data=A_ ,tensor_type=A_ )
22
"""simple docstring""" def _snake_case ( snake_case__ : list , snake_case__ : list , snake_case__ : int ): A = len(snake_case__ ) A = [[0] * n for i in range(snake_case__ )] for i in range(snake_case__ ): A = y_points[i] for i in range(2 , snake_case__ ): for j in range(snake_case__ , snake_case__ ): A = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
22
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import _LazyModule __lowerCAmelCase : List[Any] ={"""processing_wav2vec2_with_lm""": ["""Wav2Vec2ProcessorWithLM"""]} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys __lowerCAmelCase : Union[str, Any] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
359
"""simple docstring""" import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": __lowerCAmelCase : int =pd.read_csv("""sample_data.csv""", header=None) __lowerCAmelCase : Optional[Any] =df.shape[:1][0] # If you're using some other dataset input the target column __lowerCAmelCase : Optional[int] =df.iloc[:, 1:2] __lowerCAmelCase : List[str] =actual_data.values.reshape(len_data, 1) __lowerCAmelCase : int =MinMaxScaler().fit_transform(actual_data) __lowerCAmelCase : List[Any] =1_0 __lowerCAmelCase : int =5 __lowerCAmelCase : str =2_0 __lowerCAmelCase : Union[str, Any] =len_data - periods * look_back __lowerCAmelCase : Dict =actual_data[:division] __lowerCAmelCase : List[str] =actual_data[division - look_back :] __lowerCAmelCase , __lowerCAmelCase : List[str] =[], [] __lowerCAmelCase , __lowerCAmelCase : Optional[int] =[], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) __lowerCAmelCase : int =np.array(train_x) __lowerCAmelCase : List[str] =np.array(test_x) __lowerCAmelCase : Dict =np.array([list(i.ravel()) for i in train_y]) __lowerCAmelCase : str =np.array([list(i.ravel()) for i in test_y]) __lowerCAmelCase : Optional[Any] =Sequential() model.add(LSTM(1_2_8, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(6_4, input_shape=(1_2_8, 1))) model.add(Dense(forward_days)) model.compile(loss="""mean_squared_error""", optimizer="""adam""") __lowerCAmelCase : Optional[int] =model.fit( x_train, y_train, epochs=1_5_0, verbose=1, shuffle=True, batch_size=4 ) __lowerCAmelCase : Dict =model.predict(x_test)
359
1
import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'vocab_file': 'sentencepiece.model'} UpperCamelCase = { 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, } UpperCamelCase = { 'google/rembert': 256, } class _A ( UpperCAmelCase_ ): lowercase_ : Dict = VOCAB_FILES_NAMES lowercase_ : str = PRETRAINED_VOCAB_FILES_MAP lowercase_ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : List[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : List[Any]=False , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : Union[str, Any]="[CLS]" , lowerCamelCase__ : str="[SEP]" , lowerCamelCase__ : List[Any]="[UNK]" , lowerCamelCase__ : List[Any]="[SEP]" , lowerCamelCase__ : Any="[PAD]" , lowerCamelCase__ : Any="[CLS]" , lowerCamelCase__ : int="[MASK]" , **lowerCamelCase__ : Optional[Any] , ): """simple docstring""" super().__init__( do_lower_case=lowerCamelCase__ , remove_space=lowerCamelCase__ , keep_accents=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , **lowerCamelCase__ , ) __UpperCamelCase : Optional[Any] = do_lower_case __UpperCamelCase : Union[str, Any] = remove_space __UpperCamelCase : List[Any] = keep_accents __UpperCamelCase : List[str] = vocab_file __UpperCamelCase : Optional[int] = spm.SentencePieceProcessor() self.sp_model.Load(lowerCamelCase__ ) @property def a ( self : List[Any] ): """simple docstring""" return len(self.sp_model ) def a ( self : Dict ): """simple docstring""" __UpperCamelCase : Union[str, Any] = {self.convert_ids_to_tokens(lowerCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Any ): """simple docstring""" __UpperCamelCase : Tuple = self.__dict__.copy() __UpperCamelCase : Union[str, Any] = None return state def __setstate__( self : Dict , lowerCamelCase__ : List[Any] ): """simple docstring""" __UpperCamelCase : int = d __UpperCamelCase : Optional[Any] = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def a ( self : Optional[int] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Union[str, Any]=False ): """simple docstring""" __UpperCamelCase : List[Any] = self.sp_model.EncodeAsPieces(lowerCamelCase__ ) return pieces def a ( self : List[str] , lowerCamelCase__ : Dict ): """simple docstring""" return self.sp_model.PieceToId(lowerCamelCase__ ) def a ( self : Dict , lowerCamelCase__ : int ): """simple docstring""" return self.sp_model.IdToPiece(lowerCamelCase__ ) def a ( self : Optional[Any] , lowerCamelCase__ : Optional[int] ): """simple docstring""" __UpperCamelCase : Optional[Any] = self.sp_model.decode_pieces(lowerCamelCase__ ) return out_string def a ( self : Dict , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None ): """simple docstring""" __UpperCamelCase : Optional[int] = [self.sep_token_id] __UpperCamelCase : Dict = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def a ( self : Optional[int] , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None , lowerCamelCase__ : bool = False ): """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(lowerCamelCase__ )) + [1] + ([0] * len(lowerCamelCase__ )) + [1] return [1] + ([0] * len(lowerCamelCase__ )) + [1] def a ( self : Optional[int] , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None ): """simple docstring""" __UpperCamelCase : Optional[Any] = [self.sep_token_id] __UpperCamelCase : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a ( self : str , lowerCamelCase__ : str , lowerCamelCase__ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(lowerCamelCase__ ): logger.error("""Vocabulary path ({}) should be a directory""".format(lowerCamelCase__ ) ) return __UpperCamelCase : List[Any] = os.path.join( lowerCamelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase__ ): copyfile(self.vocab_file , lowerCamelCase__ ) return (out_vocab_file,)
701
from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError('To use the rich extension, install rich with `pip install rich`')
515
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase =logging.get_logger(__name__) UpperCAmelCase ={ '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class lowerCamelCase__ ( __lowerCamelCase ): '''simple docstring''' _lowerCamelCase = "rwkv" _lowerCamelCase = {"max_position_embeddings": "context_length"} def __init__( self ,lowerCamelCase_=5_0_2_7_7 ,lowerCamelCase_=1_0_2_4 ,lowerCamelCase_=4_0_9_6 ,lowerCamelCase_=3_2 ,lowerCamelCase_=None ,lowerCamelCase_=None ,lowerCamelCase_=1E-5 ,lowerCamelCase_=0 ,lowerCamelCase_=0 ,lowerCamelCase_=6 ,lowerCamelCase_=False ,lowerCamelCase_=True ,**lowerCamelCase_ ,) -> Union[str, Any]: A = vocab_size A = context_length A = hidden_size A = num_hidden_layers A = attention_hidden_size if attention_hidden_size is not None else hidden_size A = intermediate_size if intermediate_size is not None else 4 * hidden_size A = layer_norm_epsilon A = rescale_every A = use_cache A = bos_token_id A = eos_token_id super().__init__( tie_word_embeddings=__A ,bos_token_id=__A ,eos_token_id=__A ,**__A )
617
'''simple docstring''' import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml a__ : Union[str, Any] =logging.get_logger(__name__) def lowercase__ ( __lowercase : bool , __lowercase : bool ) -> Any: """simple docstring""" def run_func(__lowercase : Tuple ): @wraps(__lowercase ) def run_in_eager_mode(*__lowercase : Any , **__lowercase : Any ): return func(*__lowercase , **__lowercase ) @wraps(__lowercase ) @tf.function(experimental_compile=__lowercase ) def run_in_graph_mode(*__lowercase : List[str] , **__lowercase : Optional[int] ): return func(*__lowercase , **__lowercase ) if do_eager_mode is True: if use_xla is not False: raise ValueError( 'Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.' ) return run_in_eager_mode else: return run_in_graph_mode return run_func def lowercase__ ( __lowercase : int , __lowercase : int , __lowercase : int ) -> ["tf.Tensor"]: """simple docstring""" __UpperCamelCase = random.Random() __UpperCamelCase = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(__lowercase , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class snake_case ( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : TensorFlowBenchmarkArguments SCREAMING_SNAKE_CASE_ : PretrainedConfig SCREAMING_SNAKE_CASE_ : str ="TensorFlow" @property def _lowerCamelCase ( self : List[str] ): return tf.__version__ def _lowerCamelCase ( self : Union[str, Any] , __A : str , __A : int , __A : int ): # initialize GPU on separate process __UpperCamelCase = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) __UpperCamelCase = self._prepare_inference_func(__A , __A , __A ) return self._measure_speed(_inference ) def _lowerCamelCase ( self : Dict , __A : str , __A : int , __A : int ): __UpperCamelCase = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) __UpperCamelCase = self._prepare_train_func(__A , __A , __A ) return self._measure_speed(_train ) def _lowerCamelCase ( self : str , __A : str , __A : int , __A : int ): # initialize GPU on separate process if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , __A ) __UpperCamelCase = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) __UpperCamelCase = self._prepare_inference_func(__A , __A , __A ) return self._measure_memory(_inference ) def _lowerCamelCase ( self : Dict , __A : str , __A : int , __A : int ): if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , __A ) __UpperCamelCase = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) __UpperCamelCase = self._prepare_train_func(__A , __A , __A ) return self._measure_memory(_train ) def _lowerCamelCase ( self : Union[str, Any] , __A : str , __A : int , __A : int ): __UpperCamelCase = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError('Mixed precision is currently not supported.' ) __UpperCamelCase = ( hasattr(__A , 'architectures' ) and isinstance(config.architectures , __A ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: __UpperCamelCase = 'TF' + config.architectures[0] # prepend 'TF' for tensorflow model __UpperCamelCase = __import__('transformers' , fromlist=[model_class] ) __UpperCamelCase = getattr(__A , __A ) __UpperCamelCase = model_cls(__A ) except ImportError: raise ImportError( f'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' ' set `--only_pretrain_model` or `args.only_pretrain_model=True`.' ) else: __UpperCamelCase = TF_MODEL_MAPPING[config.__class__](__A ) # encoder-decoder has vocab size saved differently __UpperCamelCase = config.vocab_size if hasattr(__A , 'vocab_size' ) else config.encoder.vocab_size __UpperCamelCase = random_input_ids(__A , __A , __A ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(__A , decoder_input_ids=__A , training=__A ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(__A , training=__A ) __UpperCamelCase = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def _lowerCamelCase ( self : Any , __A : str , __A : int , __A : int ): __UpperCamelCase = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError('Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.' ) if self.args.fpaa: raise NotImplementedError('Mixed precision is currently not supported.' ) __UpperCamelCase = ( hasattr(__A , 'architectures' ) and isinstance(config.architectures , __A ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: __UpperCamelCase = 'TF' + config.architectures[0] # prepend 'TF' for tensorflow model __UpperCamelCase = __import__('transformers' , fromlist=[model_class] ) __UpperCamelCase = getattr(__A , __A ) __UpperCamelCase = model_cls(__A ) except ImportError: raise ImportError( f'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' ' set `--only_pretrain_model` or `args.only_pretrain_model=True`.' ) else: __UpperCamelCase = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](__A ) # encoder-decoder has vocab size saved differently __UpperCamelCase = config.vocab_size if hasattr(__A , 'vocab_size' ) else config.encoder.vocab_size __UpperCamelCase = random_input_ids(__A , __A , __A ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): __UpperCamelCase = model(__A , decoder_input_ids=__A , labels=__A , training=__A )[0] __UpperCamelCase = tf.gradients(__A , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): __UpperCamelCase = model(__A , labels=__A , training=__A )[0] __UpperCamelCase = tf.gradients(__A , model.trainable_variables ) return gradients __UpperCamelCase = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def _lowerCamelCase ( self : List[Any] , __A : List[Any] ): with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info('Do inference on TPU. Running model 5 times to stabilize compilation' ) timeit.repeat(__A , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average __UpperCamelCase = timeit.repeat( __A , repeat=self.args.repeat , number=1_0 , ) return min(__A ) / 10.0 except ResourceExhaustedError as e: self.print_fn(f'''Doesn\'t fit on GPU. {e}''' ) def _lowerCamelCase ( self : Optional[int] , __A : Callable[[], None] ): logger.info( 'Note that TensorFlow allocates more memory than ' 'it might need to speed up computation. ' 'The memory reported here corresponds to the memory ' 'reported by `nvidia-smi`, which can vary depending ' 'on total available memory on the GPU that is used.' ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( '`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory' ' consumption line by line.' ) __UpperCamelCase = start_memory_tracing('transformers' ) if self.args.is_tpu: # tpu raise NotImplementedError( 'Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking' ' with `args.memory=False`' ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( 'py3nvml not installed, we won\'t log GPU memory usage. ' 'Install py3nvml (pip install py3nvml) to log information about GPU.' ) __UpperCamelCase = 'N/A' else: logger.info( 'Measuring total GPU usage on GPU device. Make sure to not have additional processes' ' running on the same GPU.' ) # init nvml nvml.nvmlInit() func() __UpperCamelCase = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) __UpperCamelCase = nvml.nvmlDeviceGetMemoryInfo(__A ) __UpperCamelCase = meminfo.used __UpperCamelCase = Memory(__A ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( 'When enabling line by line tracing, the max peak memory for CPU is inaccurate in' ' TensorFlow.' ) __UpperCamelCase = None else: __UpperCamelCase = measure_peak_memory_cpu(__A ) __UpperCamelCase = Memory(__A ) if isinstance(__A , __A ) else memory_bytes if self.args.trace_memory_line_by_line: __UpperCamelCase = stop_memory_tracing(__A ) if memory is None: __UpperCamelCase = summary.total else: __UpperCamelCase = None return memory, summary except ResourceExhaustedError as e: self.print_fn(f'''Doesn\'t fit on GPU. {e}''' ) return "N/A", None
399
0
import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def snake_case ( UpperCAmelCase : List[Any] ): A = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(UpperCAmelCase, UpperCAmelCase ) def snake_case ( UpperCAmelCase : Union[str, Any] ): A = list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: A = s_dict.pop(UpperCAmelCase ) elif "subsample" in key: A = s_dict.pop(UpperCAmelCase ) def snake_case ( UpperCAmelCase : Union[str, Any] ): A , A = emb.weight.shape A = nn.Linear(UpperCAmelCase, UpperCAmelCase, bias=UpperCAmelCase ) A = emb.weight.data return lin_layer def snake_case ( UpperCAmelCase : str, UpperCAmelCase : str ): A = torch.load(UpperCAmelCase, map_location='cpu' ) A = mam_aaa['args'] A = mam_aaa['model'] A = state_dict['decoder.output_projection.weight'] remove_ignore_keys_(UpperCAmelCase ) rename_keys(UpperCAmelCase ) A = state_dict['decoder.embed_tokens.weight'].shape[0] A = args.share_decoder_input_output_embed A = [int(UpperCAmelCase ) for i in args.conv_kernel_sizes.split(',' )] A = SpeechaTextConfig( vocab_size=UpperCAmelCase, max_source_positions=args.max_source_positions, max_target_positions=args.max_target_positions, encoder_layers=args.encoder_layers, decoder_layers=args.decoder_layers, encoder_attention_heads=args.encoder_attention_heads, decoder_attention_heads=args.decoder_attention_heads, encoder_ffn_dim=args.encoder_ffn_embed_dim, decoder_ffn_dim=args.decoder_ffn_embed_dim, d_model=args.encoder_embed_dim, dropout=args.dropout, attention_dropout=args.attention_dropout, activation_dropout=args.activation_dropout, activation_function='relu', num_conv_layers=len(UpperCAmelCase ), conv_channels=args.conv_channels, conv_kernel_sizes=UpperCAmelCase, input_feat_per_channel=args.input_feat_per_channel, input_channels=args.input_channels, tie_word_embeddings=UpperCAmelCase, num_beams=5, max_length=2_00, use_cache=UpperCAmelCase, decoder_start_token_id=2, early_stopping=UpperCAmelCase, ) A = SpeechaTextForConditionalGeneration(UpperCAmelCase ) A , A = model.model.load_state_dict(UpperCAmelCase, strict=UpperCAmelCase ) if len(UpperCAmelCase ) > 0 and not set(UpperCAmelCase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( 'Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,' f' but all the following weights are missing {missing}' ) if tie_embeds: A = make_linear_from_emb(model.model.decoder.embed_tokens ) else: A = lm_head_weights model.save_pretrained(UpperCAmelCase ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument('--fairseq_path', type=str, help='Path to the fairseq model (.pt) file.') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') lowerCAmelCase_ = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
721
import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class UpperCamelCase ( unittest.TestCase ): """simple docstring""" snake_case = JukeboxTokenizer snake_case = { "artist": "Zac Brown Band", "genres": "Country", "lyrics": "I met a traveller from an antique land,\n Who said \"Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ", } @require_torch def A( self : Optional[int] ) -> Any: '''simple docstring''' import torch A = JukeboxTokenizer.from_pretrained('openai/jukebox-1b-lyrics' ) A = tokenizer(**self.metas )['input_ids'] # fmt: off A = [ torch.tensor([[ 0, 0, 0, 7_1_6_9, 5_0_7, 9, 7_6, 3_9, 3_1, 4_6, 7_6, 2_7, 7_6, 4_6, 4_4, 2_7, 4_8, 3_1, 3_8, 3_8, 3_1, 4_4, 7_6, 3_2, 4_4, 4_1, 3_9, 7_6, 2_7, 4_0, 7_6, 2_7, 4_0, 4_6, 3_5, 4_3, 4_7, 3_1, 7_6, 3_8, 2_7, 4_0, 3_0, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_3, 3_4, 4_1, 7_6, 4_5, 2_7, 3_5, 3_0, 7_6, 7_1, 2_0, 4_9, 4_1, 7_6, 4_8, 2_7, 4_5, 4_6, 7_6, 2_7, 4_0, 3_0, 7_6, 4_6, 4_4, 4_7, 4_0, 3_7, 3_8, 3_1, 4_5, 4_5, 7_6, 3_8, 3_1, 3_3, 4_5, 7_6, 4_1, 3_2, 7_6, 4_5, 4_6, 4_1, 4_0, 3_1, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_9, 4_6, 2_7, 4_0, 3_0, 7_6, 3_5, 4_0, 7_6, 4_6, 3_4, 3_1, 7_6, 3_0, 3_1, 4_5, 3_1, 4_4, 4_6, 6_3, 7_6, 6_3, 7_6, 6_3, 7_6, 6_3, 7_6, 1_4, 3_1, 2_7, 4_4, 7_6, 4_6, 3_4, 3_1, 3_9, 6_4, 7_6, 4_1, 4_0, 7_6, 4_6, 3_4, 3_1, 7_6, 4_5, 2_7, 4_0, 3_0, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 8, 2_7, 3_8, 3_2, 7_6, 4_5, 4_7, 4_0, 3_7, 7_6, 2_7, 7_6, 4_5, 3_4, 2_7, 4_6, 4_6, 3_1, 4_4, 3_1, 3_0, 7_6, 4_8, 3_5, 4_5, 2_7, 3_3, 3_1, 7_6, 3_8, 3_5, 3_1, 4_5, 6_4, 7_6, 4_9, 3_4, 4_1, 4_5, 3_1, 7_6, 3_2, 4_4, 4_1, 4_9, 4_0, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1, 4_0, 3_0, 7_6, 4_9, 4_4, 3_5, 4_0, 3_7, 3_8, 3_1, 3_0, 7_6, 3_8, 3_5, 4_2, 6_4, 7_6, 2_7, 4_0, 3_0, 7_6, 4_5, 4_0, 3_1, 3_1, 4_4, 7_6, 4_1, 3_2, 7_6, 2_9, 4_1, 3_8, 3_0, 7_6, 2_9, 4_1, 3_9, 3_9, 2_7, 4_0, 3_0, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_0, 3_1, 3_8, 3_8, 7_6, 4_6, 3_4, 2_7, 4_6, 7_6, 3_5, 4_6, 4_5, 7_6, 4_5, 2_9, 4_7, 3_8, 4_2, 4_6, 4_1, 4_4, 7_6, 4_9, 3_1, 3_8, 3_8, 7_6, 4_6, 3_4, 4_1, 4_5, 3_1, 7_6, 4_2, 2_7, 4_5, 4_5, 3_5, 4_1, 4_0, 4_5, 7_6, 4_4, 3_1, 2_7, 3_0, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_3, 3_4, 3_5, 2_9, 3_4, 7_6, 5_1, 3_1, 4_6, 7_6, 4_5, 4_7, 4_4, 4_8, 3_5, 4_8, 3_1, 6_4, 7_6, 4_5, 4_6, 2_7, 3_9, 4_2, 3_1, 3_0, 7_6, 4_1, 4_0, 7_6, 4_6, 3_4, 3_1, 4_5, 3_1, 7_6, 3_8, 3_5, 3_2, 3_1, 3_8, 3_1, 4_5, 4_5, 7_6, 4_6, 3_4, 3_5, 4_0, 3_3, 4_5, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_0, 3_4, 3_1, 7_6, 3_4, 2_7, 4_0, 3_0, 7_6, 4_6, 3_4, 2_7, 4_6, 7_6, 3_9, 4_1, 2_9, 3_7, 3_1, 3_0, 7_6, 4_6, 3_4, 3_1, 3_9, 6_4, 7_6, 2_7, 4_0, 3_0, 7_6, 4_6, 3_4, 3_1, 7_6, 3_4, 3_1, 2_7, 4_4, 4_6, 7_6, 4_6, 3_4, 2_7, 4_6, 7_6, 3_2, 3_1, 3_0, 6_6, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1, 4_0, 3_0, 7_6, 4_1, 4_0, 7_6, 4_6, 3_4, 3_1, 7_6, 4_2, 3_1, 3_0, 3_1, 4_5, 4_6, 2_7, 3_8, 6_4, 7_6, 4_6, 3_4, 3_1, 4_5, 3_1, 7_6, 4_9, 4_1, 4_4, 3_0, 4_5, 7_6, 2_7, 4_2, 4_2, 3_1, 2_7, 4_4, 6_5, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_3, 5_1, 7_6, 4_0, 2_7, 3_9, 3_1, 7_6, 3_5, 4_5, 7_6, 1_5, 5_2, 5_1, 3_9, 2_7, 4_0, 3_0, 3_5, 2_7, 4_5, 6_4, 7_6, 1_1, 3_5, 4_0, 3_3, 7_6, 4_1, 3_2, 7_6, 1_1, 3_5, 4_0, 3_3, 4_5, 6_6, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_2, 4_1, 4_1, 3_7, 7_6, 4_1, 4_0, 7_6, 3_9, 5_1, 7_6, 2_3, 4_1, 4_4, 3_7, 4_5, 6_4, 7_6, 5_1, 3_1, 7_6, 1_3, 3_5, 3_3, 3_4, 4_6, 5_1, 6_4, 7_6, 2_7, 4_0, 3_0, 7_6, 3_0, 3_1, 4_5, 4_2, 2_7, 3_5, 4_4, 6_7, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_4, 4_1, 4_6, 3_4, 3_5, 4_0, 3_3, 7_6, 2_8, 3_1, 4_5, 3_5, 3_0, 3_1, 7_6, 4_4, 3_1, 3_9, 2_7, 3_5, 4_0, 4_5, 6_3, 7_6, 1_8, 4_1, 4_7, 4_0, 3_0, 7_6, 4_6, 3_4, 3_1, 7_6, 3_0, 3_1, 2_9, 2_7, 5_1, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_5, 3_2, 7_6, 4_6, 3_4, 2_7, 4_6, 7_6, 2_9, 4_1, 3_8, 4_1, 4_5, 4_5, 2_7, 3_8, 7_6, 2_3, 4_4, 3_1, 2_9, 3_7, 6_4, 7_6, 2_8, 4_1, 4_7, 4_0, 3_0, 3_8, 3_1, 4_5, 4_5, 7_6, 2_7, 4_0, 3_0, 7_6, 2_8, 2_7, 4_4, 3_1, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_0, 3_4, 3_1, 7_6, 3_8, 4_1, 4_0, 3_1, 7_6, 2_7, 4_0, 3_0, 7_6, 3_8, 3_1, 4_8, 3_1, 3_8, 7_6, 4_5, 2_7, 4_0, 3_0, 4_5, 7_6, 4_5, 4_6, 4_4, 3_1, 4_6, 2_9, 3_4, 7_6, 3_2, 2_7, 4_4, 7_6, 2_7, 4_9, 2_7, 5_1, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6]] ), torch.tensor([[0, 0, 0, 1_0_6_9, 1_1]] ), torch.tensor([[0, 0, 0, 1_0_6_9, 1_1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] ,EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] ,EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] ,EXPECTED_OUTPUT[2] ) ) @require_torch def A( self : Tuple ) -> List[Any]: '''simple docstring''' import torch A = JukeboxTokenizer.from_pretrained('openai/jukebox-5b-lyrics' ) A = tokenizer(**self.metas )['input_ids'] # fmt: off A = [ torch.tensor([[ 0, 0, 0, 1_0_6_9, 1_1, -1, -1, -1, -1, 9, 7_7, 3_9, 3_1, 4_6, 7_7, 2_7, 7_7, 4_6, 4_4, 2_7, 4_8, 3_1, 3_8, 3_8, 3_1, 4_4, 7_7, 3_2, 4_4, 4_1, 3_9, 7_7, 2_7, 4_0, 7_7, 2_7, 4_0, 4_6, 3_5, 4_3, 4_7, 3_1, 7_7, 3_8, 2_7, 4_0, 3_0, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_3, 3_4, 4_1, 7_7, 4_5, 2_7, 3_5, 3_0, 7_7, 7_2, 2_0, 4_9, 4_1, 7_7, 4_8, 2_7, 4_5, 4_6, 7_7, 2_7, 4_0, 3_0, 7_7, 4_6, 4_4, 4_7, 4_0, 3_7, 3_8, 3_1, 4_5, 4_5, 7_7, 3_8, 3_1, 3_3, 4_5, 7_7, 4_1, 3_2, 7_7, 4_5, 4_6, 4_1, 4_0, 3_1, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_9, 4_6, 2_7, 4_0, 3_0, 7_7, 3_5, 4_0, 7_7, 4_6, 3_4, 3_1, 7_7, 3_0, 3_1, 4_5, 3_1, 4_4, 4_6, 6_3, 7_7, 6_3, 7_7, 6_3, 7_7, 6_3, 7_7, 1_4, 3_1, 2_7, 4_4, 7_7, 4_6, 3_4, 3_1, 3_9, 6_4, 7_7, 4_1, 4_0, 7_7, 4_6, 3_4, 3_1, 7_7, 4_5, 2_7, 4_0, 3_0, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 8, 2_7, 3_8, 3_2, 7_7, 4_5, 4_7, 4_0, 3_7, 7_7, 2_7, 7_7, 4_5, 3_4, 2_7, 4_6, 4_6, 3_1, 4_4, 3_1, 3_0, 7_7, 4_8, 3_5, 4_5, 2_7, 3_3, 3_1, 7_7, 3_8, 3_5, 3_1, 4_5, 6_4, 7_7, 4_9, 3_4, 4_1, 4_5, 3_1, 7_7, 3_2, 4_4, 4_1, 4_9, 4_0, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1, 4_0, 3_0, 7_7, 4_9, 4_4, 3_5, 4_0, 3_7, 3_8, 3_1, 3_0, 7_7, 3_8, 3_5, 4_2, 6_4, 7_7, 2_7, 4_0, 3_0, 7_7, 4_5, 4_0, 3_1, 3_1, 4_4, 7_7, 4_1, 3_2, 7_7, 2_9, 4_1, 3_8, 3_0, 7_7, 2_9, 4_1, 3_9, 3_9, 2_7, 4_0, 3_0, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_0, 3_1, 3_8, 3_8, 7_7, 4_6, 3_4, 2_7, 4_6, 7_7, 3_5, 4_6, 4_5, 7_7, 4_5, 2_9, 4_7, 3_8, 4_2, 4_6, 4_1, 4_4, 7_7, 4_9, 3_1, 3_8, 3_8, 7_7, 4_6, 3_4, 4_1, 4_5, 3_1, 7_7, 4_2, 2_7, 4_5, 4_5, 3_5, 4_1, 4_0, 4_5, 7_7, 4_4, 3_1, 2_7, 3_0, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_3, 3_4, 3_5, 2_9, 3_4, 7_7, 5_1, 3_1, 4_6, 7_7, 4_5, 4_7, 4_4, 4_8, 3_5, 4_8, 3_1, 6_4, 7_7, 4_5, 4_6, 2_7, 3_9, 4_2, 3_1, 3_0, 7_7, 4_1, 4_0, 7_7, 4_6, 3_4, 3_1, 4_5, 3_1, 7_7, 3_8, 3_5, 3_2, 3_1, 3_8, 3_1, 4_5, 4_5, 7_7, 4_6, 3_4, 3_5, 4_0, 3_3, 4_5, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_0, 3_4, 3_1, 7_7, 3_4, 2_7, 4_0, 3_0, 7_7, 4_6, 3_4, 2_7, 4_6, 7_7, 3_9, 4_1, 2_9, 3_7, 3_1, 3_0, 7_7, 4_6, 3_4, 3_1, 3_9, 6_4, 7_7, 2_7, 4_0, 3_0, 7_7, 4_6, 3_4, 3_1, 7_7, 3_4, 3_1, 2_7, 4_4, 4_6, 7_7, 4_6, 3_4, 2_7, 4_6, 7_7, 3_2, 3_1, 3_0, 6_6, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1, 4_0, 3_0, 7_7, 4_1, 4_0, 7_7, 4_6, 3_4, 3_1, 7_7, 4_2, 3_1, 3_0, 3_1, 4_5, 4_6, 2_7, 3_8, 6_4, 7_7, 4_6, 3_4, 3_1, 4_5, 3_1, 7_7, 4_9, 4_1, 4_4, 3_0, 4_5, 7_7, 2_7, 4_2, 4_2, 3_1, 2_7, 4_4, 6_5, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_3, 5_1, 7_7, 4_0, 2_7, 3_9, 3_1, 7_7, 3_5, 4_5, 7_7, 1_5, 5_2, 5_1, 3_9, 2_7, 4_0, 3_0, 3_5, 2_7, 4_5, 6_4, 7_7, 1_1, 3_5, 4_0, 3_3, 7_7, 4_1, 3_2, 7_7, 1_1, 3_5, 4_0, 3_3, 4_5, 6_6, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_2, 4_1, 4_1, 3_7, 7_7, 4_1, 4_0, 7_7, 3_9, 5_1, 7_7, 2_3, 4_1, 4_4, 3_7, 4_5, 6_4, 7_7, 5_1, 3_1, 7_7, 1_3, 3_5, 3_3, 3_4, 4_6, 5_1, 6_4, 7_7, 2_7, 4_0, 3_0, 7_7, 3_0, 3_1, 4_5, 4_2, 2_7, 3_5, 4_4, 6_7, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_4, 4_1, 4_6, 3_4, 3_5, 4_0, 3_3, 7_7, 2_8, 3_1, 4_5, 3_5, 3_0, 3_1, 7_7, 4_4, 3_1, 3_9, 2_7, 3_5, 4_0, 4_5, 6_3, 7_7, 1_8, 4_1, 4_7, 4_0, 3_0, 7_7, 4_6, 3_4, 3_1, 7_7, 3_0, 3_1, 2_9, 2_7, 5_1, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_5, 3_2, 7_7, 4_6, 3_4, 2_7, 4_6, 7_7, 2_9, 4_1, 3_8, 4_1, 4_5, 4_5, 2_7, 3_8, 7_7, 2_3, 4_4, 3_1, 2_9, 3_7, 6_4, 7_7, 2_8, 4_1, 4_7, 4_0, 3_0, 3_8, 3_1, 4_5, 4_5, 7_7, 2_7, 4_0, 3_0, 7_7, 2_8, 2_7, 4_4, 3_1, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_0, 3_4, 3_1, 7_7, 3_8, 4_1, 4_0, 3_1, 7_7, 2_7, 4_0, 3_0, 7_7, 3_8, 3_1, 4_8, 3_1, 3_8, 7_7, 4_5, 2_7, 4_0, 3_0, 4_5, 7_7, 4_5, 4_6, 4_4, 3_1, 4_6, 2_9, 3_4, 7_7, 3_2, 2_7, 4_4, 7_7, 2_7, 4_9, 2_7, 5_1, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7]] ), torch.tensor([[0, 0, 0, 1_0_6_9, 1_1, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1_0_6_9, 1_1, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] ,EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] ,EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] ,EXPECTED_OUTPUT[2] ) )
110
0
"""simple docstring""" def A_ ( __lowercase ): if num <= 0: raise ValueError('Input must be a positive integer' ) UpperCamelCase_ : List[str] =[True] * (num + 1) UpperCamelCase_ : Dict =2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , lowerCAmelCase_ ): UpperCamelCase_ : int =False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() __SCREAMING_SNAKE_CASE = int(input('Enter a positive integer: ').strip()) print(prime_sieve_eratosthenes(user_num))
357
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { """google/pix2struct-textcaps-base""": ( """https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json""" ), } class __lowercase ( __snake_case ): UpperCamelCase = '''pix2struct_text_model''' UpperCamelCase = ['''past_key_values'''] UpperCamelCase = { '''hidden_size''': '''hidden_size''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : Optional[Any] , __lowerCamelCase : Optional[int]=5_0_2_4_4 , __lowerCamelCase : int=7_6_8 , __lowerCamelCase : Union[str, Any]=6_4 , __lowerCamelCase : Dict=2_0_4_8 , __lowerCamelCase : int=1_2 , __lowerCamelCase : Any=1_2 , __lowerCamelCase : Union[str, Any]=3_2 , __lowerCamelCase : Any=1_2_8 , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : str=1e-6 , __lowerCamelCase : int=1.0 , __lowerCamelCase : Optional[int]="gelu_new" , __lowerCamelCase : int=0 , __lowerCamelCase : int=False , __lowerCamelCase : Optional[Any]=0 , __lowerCamelCase : Dict=1 , __lowerCamelCase : List[Any]=False , __lowerCamelCase : Optional[Any]=True , **__lowerCamelCase : Dict , ) -> int: """simple docstring""" UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = d_kv UpperCAmelCase = d_ff UpperCAmelCase = num_layers UpperCAmelCase = num_heads UpperCAmelCase = relative_attention_num_buckets UpperCAmelCase = relative_attention_max_distance UpperCAmelCase = dropout_rate UpperCAmelCase = layer_norm_epsilon UpperCAmelCase = initializer_factor UpperCAmelCase = use_cache UpperCAmelCase = eos_token_id UpperCAmelCase = decoder_start_token_id # for backwards compatibility UpperCAmelCase = dense_act_fn super().__init__( pad_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , decoder_start_token_id=__lowerCamelCase , tie_word_embeddings=__lowerCamelCase , is_decoder=__lowerCamelCase , **__lowerCamelCase , ) @classmethod def _lowercase ( cls : List[Any] , __lowerCamelCase : Union[str, os.PathLike] , **__lowerCamelCase : Any ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(__lowerCamelCase ) UpperCAmelCase , UpperCAmelCase = cls.get_config_dict(__lowerCamelCase , **__lowerCamelCase ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get("""model_type""" ) == "pix2struct": UpperCAmelCase = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__lowerCamelCase , **__lowerCamelCase ) class __lowercase ( __snake_case ): UpperCamelCase = '''pix2struct_vision_model''' def __init__( self : str , __lowerCamelCase : Any=7_6_8 , __lowerCamelCase : Dict=7_6_8 , __lowerCamelCase : List[Any]=2_0_4_8 , __lowerCamelCase : List[Any]=6_4 , __lowerCamelCase : Union[str, Any]=1_2 , __lowerCamelCase : Optional[int]=1_2 , __lowerCamelCase : Tuple="gelu_new" , __lowerCamelCase : Tuple=1e-6 , __lowerCamelCase : Any=0.0 , __lowerCamelCase : List[Any]=0.0 , __lowerCamelCase : int=1e-1_0 , __lowerCamelCase : Union[str, Any]=1.0 , __lowerCamelCase : Any=4_0_9_6 , __lowerCamelCase : Dict=3_2 , __lowerCamelCase : Any=1_2_8 , **__lowerCamelCase : Optional[int] , ) -> Optional[Any]: """simple docstring""" super().__init__(**__lowerCamelCase ) UpperCAmelCase = hidden_size UpperCAmelCase = patch_embed_hidden_size UpperCAmelCase = d_ff UpperCAmelCase = dropout_rate UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = initializer_range UpperCAmelCase = initializer_factor UpperCAmelCase = attention_dropout UpperCAmelCase = layer_norm_eps UpperCAmelCase = dense_act_fn UpperCAmelCase = seq_len UpperCAmelCase = relative_attention_num_buckets UpperCAmelCase = relative_attention_max_distance UpperCAmelCase = d_kv @classmethod def _lowercase ( cls : Any , __lowerCamelCase : Union[str, os.PathLike] , **__lowerCamelCase : int ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(__lowerCamelCase ) UpperCAmelCase , UpperCAmelCase = cls.get_config_dict(__lowerCamelCase , **__lowerCamelCase ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get("""model_type""" ) == "pix2struct": UpperCAmelCase = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__lowerCamelCase , **__lowerCamelCase ) class __lowercase ( __snake_case ): UpperCamelCase = '''pix2struct''' UpperCamelCase = True def __init__( self : str , __lowerCamelCase : str=None , __lowerCamelCase : Dict=None , __lowerCamelCase : Optional[Any]=1.0 , __lowerCamelCase : str=0.02 , __lowerCamelCase : Any=False , __lowerCamelCase : Tuple=False , __lowerCamelCase : str=True , **__lowerCamelCase : Dict , ) -> Optional[Any]: """simple docstring""" super().__init__(tie_word_embeddings=__lowerCamelCase , is_encoder_decoder=__lowerCamelCase , **__lowerCamelCase ) if text_config is None: UpperCAmelCase = {} logger.info("""text_config is None. Initializing the Pix2StructTextConfig with default values.""" ) if vision_config is None: UpperCAmelCase = {} logger.info("""vision_config is None. Initializing the Pix2StructVisionConfig with default values.""" ) UpperCAmelCase = PixaStructTextConfig(**__lowerCamelCase ) UpperCAmelCase = PixaStructVisionConfig(**__lowerCamelCase ) UpperCAmelCase = self.text_config.decoder_start_token_id UpperCAmelCase = self.text_config.pad_token_id UpperCAmelCase = self.text_config.eos_token_id UpperCAmelCase = initializer_factor UpperCAmelCase = initializer_range UpperCAmelCase = self.initializer_range UpperCAmelCase = self.initializer_range UpperCAmelCase = is_vqa @classmethod def _lowercase ( cls : List[Any] , __lowerCamelCase : PixaStructTextConfig , __lowerCamelCase : PixaStructVisionConfig , **__lowerCamelCase : Dict ) -> Union[str, Any]: """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__lowerCamelCase ) def _lowercase ( self : List[str] ) -> Optional[int]: """simple docstring""" UpperCAmelCase = copy.deepcopy(self.__dict__ ) UpperCAmelCase = self.text_config.to_dict() UpperCAmelCase = self.vision_config.to_dict() UpperCAmelCase = self.__class__.model_type return output
377
0
import os from datetime import datetime as dt from github import Github _A = [ """good first issue""", """good second issue""", """good difficult issue""", """enhancement""", """new pipeline/model""", """new scheduler""", """wip""", ] def lowercase_ ( ) -> Optional[Any]: """simple docstring""" snake_case = Github(os.environ["GITHUB_TOKEN"] ) snake_case = g.get_repo("huggingface/diffusers" ) snake_case = repo.get_issues(state="open" ) for issue in open_issues: snake_case = sorted(issue.get_comments() , key=lambda A__ : i.created_at , reverse=snake_case_ ) snake_case = comments[0] if len(snake_case_ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state="closed" ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state="open" ) issue.remove_from_labels("stale" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) " "are likely to be ignored." ) issue.add_to_labels("stale" ) if __name__ == "__main__": main()
703
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class lowerCamelCase ( unittest.TestCase ): def __init__(self : Optional[int] , _A : Dict , _A : Optional[int]=7 , _A : Union[str, Any]=3 , _A : Tuple=1_8 , _A : str=3_0 , _A : Union[str, Any]=4_0_0 , _A : Optional[Any]=True , _A : Union[str, Any]=None , _A : str=True , _A : Optional[int]=None , ) -> int: snake_case = size if size is not None else {"shortest_edge": 2_0} snake_case = crop_size if crop_size is not None else {"height": 1_8, "width": 1_8} snake_case = parent snake_case = batch_size snake_case = num_channels snake_case = image_size snake_case = min_resolution snake_case = max_resolution snake_case = do_resize snake_case = size snake_case = do_center_crop snake_case = crop_size def UpperCAmelCase(self : str ) -> int: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class lowerCamelCase ( A_ , unittest.TestCase ): UpperCAmelCase__ : Optional[int] = MobileNetVaImageProcessor if is_vision_available() else None def UpperCAmelCase(self : Dict ) -> List[Any]: snake_case = MobileNetVaImageProcessingTester(self ) @property def UpperCAmelCase(self : Union[str, Any] ) -> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase(self : Tuple ) -> Tuple: snake_case = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , "do_resize" ) ) self.assertTrue(hasattr(_A , "size" ) ) self.assertTrue(hasattr(_A , "do_center_crop" ) ) self.assertTrue(hasattr(_A , "crop_size" ) ) def UpperCAmelCase(self : int ) -> List[Any]: snake_case = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 2_0} ) self.assertEqual(image_processor.crop_size , {"height": 1_8, "width": 1_8} ) snake_case = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {"shortest_edge": 4_2} ) self.assertEqual(image_processor.crop_size , {"height": 8_4, "width": 8_4} ) def UpperCAmelCase(self : Any ) -> Tuple: pass def UpperCAmelCase(self : Tuple ) -> Tuple: # Initialize image_processing snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input snake_case = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched snake_case = image_processing(_A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def UpperCAmelCase(self : Tuple ) -> List[Any]: # Initialize image_processing snake_case = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input snake_case = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched snake_case = image_processing(_A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def UpperCAmelCase(self : List[str] ) -> List[str]: # Initialize image_processing snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input snake_case = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched snake_case = image_processing(_A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
294
0
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class SCREAMING_SNAKE_CASE ( lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : Tuple = UnCLIPImageVariationPipeline UpperCamelCase_ : Optional[int] = IMAGE_VARIATION_PARAMS - {'''height''', '''width''', '''guidance_scale'''} UpperCamelCase_ : int = IMAGE_VARIATION_BATCH_PARAMS UpperCamelCase_ : Optional[Any] = [ '''generator''', '''return_dict''', '''decoder_num_inference_steps''', '''super_res_num_inference_steps''', ] UpperCamelCase_ : Optional[int] = False @property def _A ( self : Optional[int] ): return 32 @property def _A ( self : Any ): return 32 @property def _A ( self : Dict ): return self.time_input_dim @property def _A ( self : Tuple ): return self.time_input_dim * 4 @property def _A ( self : Tuple ): return 100 @property def _A ( self : List[str] ): SCREAMING_SNAKE_CASE : Tuple = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) return tokenizer @property def _A ( self : List[Any] ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(UpperCAmelCase_ ) @property def _A ( self : Any ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) return CLIPVisionModelWithProjection(UpperCAmelCase_ ) @property def _A ( self : Optional[Any] ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[Any] = { "clip_embeddings_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "cross_attention_dim": self.cross_attention_dim, } SCREAMING_SNAKE_CASE : Optional[int] = UnCLIPTextProjModel(**UpperCAmelCase_ ) return model @property def _A ( self : Union[str, Any] ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Dict = { "sample_size": 32, # RGB in channels "in_channels": 3, # Out channels is double in channels because predicts mean and variance "out_channels": 6, "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": "identity", } SCREAMING_SNAKE_CASE : Dict = UNetaDConditionModel(**UpperCAmelCase_ ) return model @property def _A ( self : int ): return { "sample_size": 64, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def _A ( self : Tuple ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = UNetaDModel(**self.dummy_super_res_kwargs ) return model @property def _A ( self : List[str] ): # seeded differently to get different unet than `self.dummy_super_res_first` torch.manual_seed(1 ) SCREAMING_SNAKE_CASE : str = UNetaDModel(**self.dummy_super_res_kwargs ) return model def _A ( self : List[str] ): SCREAMING_SNAKE_CASE : List[Any] = self.dummy_decoder SCREAMING_SNAKE_CASE : str = self.dummy_text_proj SCREAMING_SNAKE_CASE : List[str] = self.dummy_text_encoder SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_tokenizer SCREAMING_SNAKE_CASE : int = self.dummy_super_res_first SCREAMING_SNAKE_CASE : List[str] = self.dummy_super_res_last SCREAMING_SNAKE_CASE : Optional[Any] = UnCLIPScheduler( variance_type="learned_range" , prediction_type="epsilon" , num_train_timesteps=1000 , ) SCREAMING_SNAKE_CASE : int = UnCLIPScheduler( variance_type="fixed_small_log" , prediction_type="epsilon" , num_train_timesteps=1000 , ) SCREAMING_SNAKE_CASE : Optional[Any] = CLIPImageProcessor(crop_size=32 , size=32 ) SCREAMING_SNAKE_CASE : List[Any] = self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def _A ( self : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str]=0 , UpperCAmelCase_ : List[str]=True ): SCREAMING_SNAKE_CASE : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) if str(UpperCAmelCase_ ).startswith("mps" ): SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(UpperCAmelCase_ ) else: SCREAMING_SNAKE_CASE : Optional[int] = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) if pil_image: SCREAMING_SNAKE_CASE : Optional[int] = input_image * 0.5 + 0.5 SCREAMING_SNAKE_CASE : Tuple = input_image.clamp(0 , 1 ) SCREAMING_SNAKE_CASE : str = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() SCREAMING_SNAKE_CASE : int = DiffusionPipeline.numpy_to_pil(UpperCAmelCase_ )[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def _A ( self : Optional[int] ): SCREAMING_SNAKE_CASE : Optional[Any] = "cpu" SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Any = self.pipeline_class(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Dict = self.get_dummy_inputs(UpperCAmelCase_ , pil_image=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = pipe(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = output.images SCREAMING_SNAKE_CASE : Any = self.get_dummy_inputs(UpperCAmelCase_ , pil_image=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : str = pipe( **UpperCAmelCase_ , return_dict=UpperCAmelCase_ , )[0] SCREAMING_SNAKE_CASE : str = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE : Tuple = np.array( [ 0.9_997, 0.0_002, 0.9_997, 0.9_997, 0.9_969, 0.0_023, 0.9_997, 0.9_969, 0.9_970, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _A ( self : Optional[Any] ): SCREAMING_SNAKE_CASE : Dict = "cpu" SCREAMING_SNAKE_CASE : int = self.get_dummy_components() SCREAMING_SNAKE_CASE : List[str] = self.pipeline_class(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = self.get_dummy_inputs(UpperCAmelCase_ , pil_image=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = pipe(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = output.images SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_inputs(UpperCAmelCase_ , pil_image=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = pipe( **UpperCAmelCase_ , return_dict=UpperCAmelCase_ , )[0] SCREAMING_SNAKE_CASE : Tuple = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE : Optional[int] = np.array([0.9_997, 0.0_003, 0.9_997, 0.9_997, 0.9_970, 0.0_024, 0.9_997, 0.9_971, 0.9_971] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _A ( self : List[Any] ): SCREAMING_SNAKE_CASE : Optional[Any] = "cpu" SCREAMING_SNAKE_CASE : Any = self.get_dummy_components() SCREAMING_SNAKE_CASE : str = self.pipeline_class(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : str = self.get_dummy_inputs(UpperCAmelCase_ , pil_image=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Any = [ pipeline_inputs["image"], pipeline_inputs["image"], ] SCREAMING_SNAKE_CASE : Optional[int] = pipe(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : str = output.images SCREAMING_SNAKE_CASE : List[Any] = self.get_dummy_inputs(UpperCAmelCase_ , pil_image=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = [ tuple_pipeline_inputs["image"], tuple_pipeline_inputs["image"], ] SCREAMING_SNAKE_CASE : Any = pipe( **UpperCAmelCase_ , return_dict=UpperCAmelCase_ , )[0] SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 64, 64, 3) SCREAMING_SNAKE_CASE : Any = np.array( [ 0.9_997, 0.9_989, 0.0_008, 0.0_021, 0.9_960, 0.0_018, 0.0_014, 0.0_002, 0.9_933, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _A ( self : Optional[int] ): SCREAMING_SNAKE_CASE : str = torch.device("cpu" ) class SCREAMING_SNAKE_CASE : '''simple docstring''' UpperCamelCase_ : Optional[int] = 1 SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Dict = self.pipeline_class(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Any = torch.Generator(device=UpperCAmelCase_ ).manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = pipe.decoder.dtype SCREAMING_SNAKE_CASE : int = 1 SCREAMING_SNAKE_CASE : Union[str, Any] = ( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) SCREAMING_SNAKE_CASE : List[Any] = pipe.prepare_latents( UpperCAmelCase_ , dtype=UpperCAmelCase_ , device=UpperCAmelCase_ , generator=UpperCAmelCase_ , latents=UpperCAmelCase_ , scheduler=DummyScheduler() ) SCREAMING_SNAKE_CASE : int = ( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) SCREAMING_SNAKE_CASE : List[str] = pipe.prepare_latents( UpperCAmelCase_ , dtype=UpperCAmelCase_ , device=UpperCAmelCase_ , generator=UpperCAmelCase_ , latents=UpperCAmelCase_ , scheduler=DummyScheduler() ) SCREAMING_SNAKE_CASE : Any = self.get_dummy_inputs(UpperCAmelCase_ , pil_image=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Dict = pipe( **UpperCAmelCase_ , decoder_latents=UpperCAmelCase_ , super_res_latents=UpperCAmelCase_ ).images SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_inputs(UpperCAmelCase_ , pil_image=UpperCAmelCase_ ) # Don't pass image, instead pass embedding SCREAMING_SNAKE_CASE : Tuple = pipeline_inputs.pop("image" ) SCREAMING_SNAKE_CASE : Any = pipe.image_encoder(UpperCAmelCase_ ).image_embeds SCREAMING_SNAKE_CASE : int = pipe( **UpperCAmelCase_ , decoder_latents=UpperCAmelCase_ , super_res_latents=UpperCAmelCase_ , image_embeddings=UpperCAmelCase_ , ).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a ).max() < 1E-4 @skip_mps def _A ( self : int ): SCREAMING_SNAKE_CASE : Optional[int] = torch_device == "cpu" # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor SCREAMING_SNAKE_CASE : Tuple = 1E-2 self._test_attention_slicing_forward_pass( test_max_difference=UpperCAmelCase_ , expected_max_diff=UpperCAmelCase_ ) @skip_mps def _A ( self : Optional[Any] ): SCREAMING_SNAKE_CASE : Optional[int] = torch_device == "cpu" SCREAMING_SNAKE_CASE : Optional[Any] = True SCREAMING_SNAKE_CASE : str = [ "decoder_num_inference_steps", "super_res_num_inference_steps", ] self._test_inference_batch_single_identical( test_max_difference=UpperCAmelCase_ , relax_max_difference=UpperCAmelCase_ , additional_params_copy_to_batched_inputs=UpperCAmelCase_ , ) def _A ( self : List[str] ): SCREAMING_SNAKE_CASE : List[str] = [ "decoder_num_inference_steps", "super_res_num_inference_steps", ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes SCREAMING_SNAKE_CASE : Optional[Any] = [2, 3] self._test_inference_batch_consistent( batch_sizes=UpperCAmelCase_ , additional_params_copy_to_batched_inputs=UpperCAmelCase_ , ) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=UpperCAmelCase_ ) @skip_mps def _A ( self : Optional[Any] ): return super().test_dict_tuple_outputs_equivalent() @skip_mps def _A ( self : int ): return super().test_save_load_local() @skip_mps def _A ( self : Tuple ): return super().test_save_load_optional_components() @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _A ( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _A ( self : str ): SCREAMING_SNAKE_CASE : Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png" ) SCREAMING_SNAKE_CASE : int = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/unclip/karlo_v1_alpha_cat_variation_fp16.npy" ) SCREAMING_SNAKE_CASE : Union[str, Any] = UnCLIPImageVariationPipeline.from_pretrained( "kakaobrain/karlo-v1-alpha-image-variations" , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE : List[str] = pipeline.to(UpperCAmelCase_ ) pipeline.set_progress_bar_config(disable=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = pipeline( UpperCAmelCase_ , generator=UpperCAmelCase_ , output_type="np" , ) SCREAMING_SNAKE_CASE : str = output.images[0] assert image.shape == (256, 256, 3) assert_mean_pixel_difference(UpperCAmelCase_ , UpperCAmelCase_ , 15 )
62
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowerCAmelCase : Tuple ={ """configuration_mobilenet_v2""": [ """MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MobileNetV2Config""", """MobileNetV2OnnxConfig""", ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Tuple =["""MobileNetV2FeatureExtractor"""] _lowerCAmelCase : Optional[int] =["""MobileNetV2ImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : List[str] =[ """MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST""", """MobileNetV2ForImageClassification""", """MobileNetV2ForSemanticSegmentation""", """MobileNetV2Model""", """MobileNetV2PreTrainedModel""", """load_tf_weights_in_mobilenet_v2""", ] if TYPE_CHECKING: from .configuration_mobilenet_va import ( MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileNetVaConfig, MobileNetVaOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor from .image_processing_mobilenet_va import MobileNetVaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilenet_va import ( MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel, MobileNetVaPreTrainedModel, load_tf_weights_in_mobilenet_va, ) else: import sys _lowerCAmelCase : Any =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
113
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input a_ : Optional[Any] = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine" def __lowerCAmelCase ( ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = _ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: SCREAMING_SNAKE_CASE = get_sagemaker_input() else: SCREAMING_SNAKE_CASE = get_cluster_input() return config def __lowerCAmelCase ( _UpperCamelCase : Any=None ) -> Dict: '''simple docstring''' if subparsers is not None: SCREAMING_SNAKE_CASE = subparsers.add_parser('config' , description=_UpperCamelCase ) else: SCREAMING_SNAKE_CASE = argparse.ArgumentParser('Accelerate config command' , description=_UpperCamelCase ) parser.add_argument( '--config_file' , default=_UpperCamelCase , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=_UpperCamelCase ) return parser def __lowerCAmelCase ( _UpperCamelCase : str ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = get_user_input() if args.config_file is not None: SCREAMING_SNAKE_CASE = args.config_file else: if not os.path.isdir(_UpperCamelCase ): os.makedirs(_UpperCamelCase ) SCREAMING_SNAKE_CASE = default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(_UpperCamelCase ) else: config.to_yaml_file(_UpperCamelCase ) print(f"""accelerate configuration saved at {config_file}""" ) def __lowerCAmelCase ( ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = config_command_parser() SCREAMING_SNAKE_CASE = parser.parse_args() config_command(_UpperCamelCase ) if __name__ == "__main__": main()
673
import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCamelCase ( SCREAMING_SNAKE_CASE , unittest.TestCase ): __UpperCamelCase =AudioLDMPipeline __UpperCamelCase =TEXT_TO_AUDIO_PARAMS __UpperCamelCase =TEXT_TO_AUDIO_BATCH_PARAMS __UpperCamelCase =frozenset( [ "num_inference_steps", "num_waveforms_per_prompt", "generator", "latents", "output_type", "return_dict", "callback", "callback_steps", ] ) def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=(3_2, 6_4) , class_embed_type='simple_projection' , projection_class_embeddings_input_dim=3_2 , class_embeddings_concat=snake_case__ , ) SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=1 , out_channels=1 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , projection_dim=3_2 , ) SCREAMING_SNAKE_CASE = ClapTextModelWithProjection(snake_case__ ) SCREAMING_SNAKE_CASE = RobertaTokenizer.from_pretrained('hf-internal-testing/tiny-random-roberta' , model_max_length=7_7 ) SCREAMING_SNAKE_CASE = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=1_6_0_0_0 , upsample_initial_channel=1_6 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=snake_case__ , ) SCREAMING_SNAKE_CASE = SpeechTaHifiGan(snake_case__ ) SCREAMING_SNAKE_CASE = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'vocoder': vocoder, } return components def UpperCamelCase ( self : Optional[int] , snake_case__ : int , snake_case__ : int=0 ): """simple docstring""" if str(snake_case__ ).startswith('mps' ): SCREAMING_SNAKE_CASE = torch.manual_seed(snake_case__ ) else: SCREAMING_SNAKE_CASE = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) SCREAMING_SNAKE_CASE = { 'prompt': 'A hammer hitting a wooden surface', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, } return inputs def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert audio.ndim == 1 assert len(snake_case__ ) == 2_5_6 SCREAMING_SNAKE_CASE = audio[:1_0] SCREAMING_SNAKE_CASE = np.array( [-0.0_050, 0.0_050, -0.0_060, 0.0_033, -0.0_026, 0.0_033, -0.0_027, 0.0_033, -0.0_028, 0.0_033] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 3 * [inputs['prompt']] # forward SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 3 * [inputs.pop('prompt' )] SCREAMING_SNAKE_CASE = audioldm_pipe.tokenizer( snake_case__ , padding='max_length' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=snake_case__ , return_tensors='pt' , ) SCREAMING_SNAKE_CASE = text_inputs['input_ids'].to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.text_encoder( snake_case__ , ) SCREAMING_SNAKE_CASE = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state SCREAMING_SNAKE_CASE = F.normalize(snake_case__ , dim=-1 ) SCREAMING_SNAKE_CASE = prompt_embeds # forward SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 3 * ['this is a negative prompt'] SCREAMING_SNAKE_CASE = negative_prompt SCREAMING_SNAKE_CASE = 3 * [inputs['prompt']] # forward SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 3 * [inputs.pop('prompt' )] SCREAMING_SNAKE_CASE = [] for p in [prompt, negative_prompt]: SCREAMING_SNAKE_CASE = audioldm_pipe.tokenizer( snake_case__ , padding='max_length' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=snake_case__ , return_tensors='pt' , ) SCREAMING_SNAKE_CASE = text_inputs['input_ids'].to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.text_encoder( snake_case__ , ) SCREAMING_SNAKE_CASE = text_embeds.text_embeds # additional L_2 normalization over each hidden-state SCREAMING_SNAKE_CASE = F.normalize(snake_case__ , dim=-1 ) embeds.append(snake_case__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = embeds # forward SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = PNDMScheduler(skip_prk_steps=snake_case__ ) SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 'egg cracking' SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ , negative_prompt=snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert audio.ndim == 1 assert len(snake_case__ ) == 2_5_6 SCREAMING_SNAKE_CASE = audio[:1_0] SCREAMING_SNAKE_CASE = np.array( [-0.0_051, 0.0_050, -0.0_060, 0.0_034, -0.0_026, 0.0_033, -0.0_027, 0.0_033, -0.0_028, 0.0_032] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = PNDMScheduler(skip_prk_steps=snake_case__ ) SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = 'A hammer hitting a wooden surface' # test num_waveforms_per_prompt=1 (default) SCREAMING_SNAKE_CASE = audioldm_pipe(snake_case__ , num_inference_steps=2 ).audios assert audios.shape == (1, 2_5_6) # test num_waveforms_per_prompt=1 (default) for batch of prompts SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 2_5_6) # test num_waveforms_per_prompt for single prompt SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = audioldm_pipe(snake_case__ , num_inference_steps=2 , num_waveforms_per_prompt=snake_case__ ).audios assert audios.shape == (num_waveforms_per_prompt, 2_5_6) # test num_waveforms_per_prompt for batch of prompts SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=snake_case__ ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 2_5_6) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.vocoder.config.sampling_rate SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe(audio_length_in_s=0.016 , **snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert audio.ndim == 1 assert len(snake_case__ ) / vocoder_sampling_rate == 0.016 SCREAMING_SNAKE_CASE = audioldm_pipe(audio_length_in_s=0.032 , **snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert audio.ndim == 1 assert len(snake_case__ ) / vocoder_sampling_rate == 0.032 def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = ['hey'] SCREAMING_SNAKE_CASE = audioldm_pipe(snake_case__ , num_inference_steps=1 ) SCREAMING_SNAKE_CASE = output.audios.shape assert audio_shape == (1, 2_5_6) SCREAMING_SNAKE_CASE = audioldm_pipe.vocoder.config config.model_in_dim *= 2 SCREAMING_SNAKE_CASE = SpeechTaHifiGan(snake_case__ ).to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe(snake_case__ , num_inference_steps=1 ) SCREAMING_SNAKE_CASE = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 2_5_6) def UpperCamelCase ( self : Tuple ): """simple docstring""" self._test_attention_slicing_forward_pass(test_mean_pixel_difference=snake_case__ ) def UpperCamelCase ( self : int ): """simple docstring""" self._test_inference_batch_single_identical(test_mean_pixel_difference=snake_case__ ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCamelCase ( self : Dict ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=snake_case__ ) @slow class UpperCamelCase ( unittest.TestCase ): def UpperCamelCase ( self : Any ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self : int , snake_case__ : int , snake_case__ : Tuple="cpu" , snake_case__ : List[str]=torch.floataa , snake_case__ : Optional[Any]=0 ): """simple docstring""" SCREAMING_SNAKE_CASE = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) SCREAMING_SNAKE_CASE = np.random.RandomState(snake_case__ ).standard_normal((1, 8, 1_2_8, 1_6) ) SCREAMING_SNAKE_CASE = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ ) SCREAMING_SNAKE_CASE = { 'prompt': 'A hammer hitting a wooden surface', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 2.5, } return inputs def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = AudioLDMPipeline.from_pretrained('cvssp/audioldm' ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 2_5 SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ).audios[0] assert audio.ndim == 1 assert len(snake_case__ ) == 8_1_9_2_0 SCREAMING_SNAKE_CASE = audio[7_7_2_3_0:7_7_2_4_0] SCREAMING_SNAKE_CASE = np.array( [-0.4_884, -0.4_607, 0.0_023, 0.5_007, 0.5_896, 0.5_151, 0.3_813, -0.0_208, -0.3_687, -0.4_315] ) SCREAMING_SNAKE_CASE = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1E-2 def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = AudioLDMPipeline.from_pretrained('cvssp/audioldm' ) SCREAMING_SNAKE_CASE = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ).audios[0] assert audio.ndim == 1 assert len(snake_case__ ) == 8_1_9_2_0 SCREAMING_SNAKE_CASE = audio[2_7_7_8_0:2_7_7_9_0] SCREAMING_SNAKE_CASE = np.array([-0.2_131, -0.0_873, -0.0_124, -0.0_189, 0.0_569, 0.1_373, 0.1_883, 0.2_886, 0.3_297, 0.2_212] ) SCREAMING_SNAKE_CASE = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3E-2
673
1
import json import os import torch from diffusers import UNetaDModel os.makedirs("""hub/hopper-medium-v2/unet/hor32""", exist_ok=True) os.makedirs("""hub/hopper-medium-v2/unet/hor128""", exist_ok=True) os.makedirs("""hub/hopper-medium-v2/value_function""", exist_ok=True) def __lowerCAmelCase ( A ): if hor == 128: UpperCAmelCase_ = ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D") UpperCAmelCase_ = (32, 128, 256) UpperCAmelCase_ = ("UpResnetBlock1D", "UpResnetBlock1D") elif hor == 32: UpperCAmelCase_ = ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D") UpperCAmelCase_ = (32, 64, 128, 256) UpperCAmelCase_ = ("UpResnetBlock1D", "UpResnetBlock1D", "UpResnetBlock1D") UpperCAmelCase_ = torch.load(F"/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch" ) UpperCAmelCase_ = model.state_dict() UpperCAmelCase_ = { "down_block_types": down_block_types, "block_out_channels": block_out_channels, "up_block_types": up_block_types, "layers_per_block": 1, "use_timestep_embedding": True, "out_block_type": "OutConv1DBlock", "norm_num_groups": 8, "downsample_each_block": False, "in_channels": 14, "out_channels": 14, "extra_in_channels": 0, "time_embedding_type": "positional", "flip_sin_to_cos": False, "freq_shift": 1, "sample_size": 65536, "mid_block_type": "MidResTemporalBlock1D", "act_fn": "mish", } UpperCAmelCase_ = UNetaDModel(**A ) print(F"length of state dict: {len(state_dict.keys() )}" ) print(F"length of value function dict: {len(hf_value_function.state_dict().keys() )}" ) UpperCAmelCase_ = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): UpperCAmelCase_ = state_dict.pop(A ) hf_value_function.load_state_dict(A ) torch.save(hf_value_function.state_dict() , F"hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin" ) with open(F"hub/hopper-medium-v2/unet/hor{hor}/config.json" , "w" ) as f: json.dump(A , A ) def __lowerCAmelCase ( ): UpperCAmelCase_ = { "in_channels": 14, "down_block_types": ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D"), "up_block_types": (), "out_block_type": "ValueFunction", "mid_block_type": "ValueFunctionMidBlock1D", "block_out_channels": (32, 64, 128, 256), "layers_per_block": 1, "downsample_each_block": True, "sample_size": 65536, "out_channels": 14, "extra_in_channels": 0, "time_embedding_type": "positional", "use_timestep_embedding": True, "flip_sin_to_cos": False, "freq_shift": 1, "norm_num_groups": 8, "act_fn": "mish", } UpperCAmelCase_ = torch.load("/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch" ) UpperCAmelCase_ = model UpperCAmelCase_ = UNetaDModel(**A ) print(F"length of state dict: {len(state_dict.keys() )}" ) print(F"length of value function dict: {len(hf_value_function.state_dict().keys() )}" ) UpperCAmelCase_ = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): UpperCAmelCase_ = state_dict.pop(A ) hf_value_function.load_state_dict(A ) torch.save(hf_value_function.state_dict() , "hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin" ) with open("hub/hopper-medium-v2/value_function/config.json" , "w" ) as f: json.dump(A , A ) if __name__ == "__main__": unet(32) # unet(128) value_function()
162
'''simple docstring''' import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() _a : Tuple = logging.get_logger(__name__) _a : Optional[int] = ["""model.decoder.embed_positions.weights"""] def _lowerCAmelCase ( lowercase ) -> Optional[Any]: if "emb" in name: __lowerCAmelCase = name.replace("""emb""" , """model.decoder.embed_tokens""" ) if "transformer" in name: __lowerCAmelCase = name.replace("""transformer""" , """model.decoder""" ) if "cross_attention" in name: __lowerCAmelCase = name.replace("""cross_attention""" , """encoder_attn""" ) if "linear1" in name: __lowerCAmelCase = name.replace("""linear1""" , """fc1""" ) if "linear2" in name: __lowerCAmelCase = name.replace("""linear2""" , """fc2""" ) if "norm1" in name: __lowerCAmelCase = name.replace("""norm1""" , """self_attn_layer_norm""" ) if "norm_cross" in name: __lowerCAmelCase = name.replace("""norm_cross""" , """encoder_attn_layer_norm""" ) if "norm2" in name: __lowerCAmelCase = name.replace("""norm2""" , """final_layer_norm""" ) if "out_norm" in name: __lowerCAmelCase = name.replace("""out_norm""" , """model.decoder.layer_norm""" ) if "linears" in name: __lowerCAmelCase = name.replace("""linears""" , """lm_heads""" ) if "condition_provider.conditioners.description.output_proj" in name: __lowerCAmelCase = name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" ) return name def _lowerCAmelCase ( lowercase , lowercase ) -> Tuple[Dict, Dict]: __lowerCAmelCase = list(state_dict.keys() ) __lowerCAmelCase = {} for key in keys: __lowerCAmelCase = state_dict.pop(lowercase ) __lowerCAmelCase = rename_keys(lowercase ) if "in_proj_weight" in key: # split fused qkv proj __lowerCAmelCase = val[:hidden_size, :] __lowerCAmelCase = val[hidden_size : 2 * hidden_size, :] __lowerCAmelCase = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: __lowerCAmelCase = val else: __lowerCAmelCase = val return state_dict, enc_dec_proj_state_dict def _lowerCAmelCase ( lowercase ) -> MusicgenDecoderConfig: if checkpoint == "small": # default config values __lowerCAmelCase = 1024 __lowerCAmelCase = 24 __lowerCAmelCase = 16 elif checkpoint == "medium": __lowerCAmelCase = 1536 __lowerCAmelCase = 48 __lowerCAmelCase = 24 elif checkpoint == "large": __lowerCAmelCase = 2048 __lowerCAmelCase = 48 __lowerCAmelCase = 32 else: raise ValueError(f'Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.' ) __lowerCAmelCase = MusicgenDecoderConfig( hidden_size=lowercase , ffn_dim=hidden_size * 4 , num_hidden_layers=lowercase , num_attention_heads=lowercase , ) return config @torch.no_grad() def _lowerCAmelCase ( lowercase , lowercase=None , lowercase=None , lowercase="cpu" ) -> Optional[Any]: __lowerCAmelCase = MusicGen.get_pretrained(lowercase , device=lowercase ) __lowerCAmelCase = decoder_config_from_checkpoint(lowercase ) __lowerCAmelCase = fairseq_model.lm.state_dict() __lowerCAmelCase , __lowerCAmelCase = rename_state_dict( lowercase , hidden_size=decoder_config.hidden_size ) __lowerCAmelCase = TaEncoderModel.from_pretrained("""t5-base""" ) __lowerCAmelCase = EncodecModel.from_pretrained("""facebook/encodec_32khz""" ) __lowerCAmelCase = MusicgenForCausalLM(lowercase ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection __lowerCAmelCase , __lowerCAmelCase = decoder.load_state_dict(lowercase , strict=lowercase ) for key in missing_keys.copy(): if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(lowercase ) if len(lowercase ) > 0: raise ValueError(f'Missing key(s) in state_dict: {missing_keys}' ) if len(lowercase ) > 0: raise ValueError(f'Unexpected key(s) in state_dict: {unexpected_keys}' ) # init the composite model __lowerCAmelCase = MusicgenForConditionalGeneration(text_encoder=lowercase , audio_encoder=lowercase , decoder=lowercase ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(lowercase ) # check we can do a forward pass __lowerCAmelCase = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) __lowerCAmelCase = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): __lowerCAmelCase = model(input_ids=lowercase , decoder_input_ids=lowercase ).logits if logits.shape != (8, 1, 2048): raise ValueError("""Incorrect shape for logits""" ) # now construct the processor __lowerCAmelCase = AutoTokenizer.from_pretrained("""t5-base""" ) __lowerCAmelCase = AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" ) __lowerCAmelCase = MusicgenProcessor(feature_extractor=lowercase , tokenizer=lowercase ) # set the appropriate bos/pad token ids __lowerCAmelCase = 2048 __lowerCAmelCase = 2048 # set other default generation config params __lowerCAmelCase = int(30 * audio_encoder.config.frame_rate ) __lowerCAmelCase = True __lowerCAmelCase = 3.0 if pytorch_dump_folder is not None: Path(lowercase ).mkdir(exist_ok=lowercase ) logger.info(f'Saving model {checkpoint} to {pytorch_dump_folder}' ) model.save_pretrained(lowercase ) processor.save_pretrained(lowercase ) if repo_id: logger.info(f'Pushing model {checkpoint} to {repo_id}' ) model.push_to_hub(lowercase ) processor.push_to_hub(lowercase ) if __name__ == "__main__": _a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint""", default="""small""", type=str, help="""Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.""", ) parser.add_argument( """--pytorch_dump_folder""", required=True, default=None, type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) parser.add_argument( """--device""", default="""cpu""", type=str, help="""Torch device to run the conversion, either cpu or cuda.""" ) _a : List[Any] = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
689
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase__ = { "configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["LlamaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["LlamaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "LlamaForCausalLM", "LlamaModel", "LlamaPreTrainedModel", "LlamaForSequenceClassification", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
639
import qiskit def A ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> qiskit.result.counts.Counts: '''simple docstring''' _UpperCAmelCase = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register _UpperCAmelCase = qiskit.QuantumCircuit(_UpperCAmelCase , _UpperCAmelCase ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator _UpperCAmelCase = qiskit.execute(_UpperCAmelCase , _UpperCAmelCase , shots=1_000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(_UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase__ = single_qubit_measure(2, 2) print(f"""Total count for various states are: {counts}""")
639
1
import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class __snake_case (_a ): lowerCAmelCase__ = "" lowerCAmelCase__ = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) lowerCAmelCase__ = None # compression type in fsspec. ex: "gzip" lowerCAmelCase__ = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self : Dict , _UpperCAmelCase : str = "" , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[dict] = None , **_UpperCAmelCase : Dict ) -> str: '''simple docstring''' super().__init__(self , **_UpperCAmelCase ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode _lowerCAmelCase : Union[str, Any] = fsspec.open( _UpperCAmelCase , mode="""rb""" , protocol=_UpperCAmelCase , compression=self.compression , client_kwargs={ """requote_redirect_url""": False, # see https://github.com/huggingface/datasets/pull/5459 """trust_env""": True, # Enable reading proxy env variables. **(target_options or {}).pop("""client_kwargs""" , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) _lowerCAmelCase : str = os.path.basename(self.file.path.split("""::""" )[0] ) _lowerCAmelCase : Optional[int] = ( self.compressed_name[: self.compressed_name.rindex(""".""" )] if """.""" in self.compressed_name else self.compressed_name ) _lowerCAmelCase : Tuple = None @classmethod def SCREAMING_SNAKE_CASE ( cls : List[str] , _UpperCAmelCase : List[Any] ) -> List[Any]: '''simple docstring''' return super()._strip_protocol(_UpperCAmelCase ).lstrip("""/""" ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: '''simple docstring''' if self.dir_cache is None: _lowerCAmelCase : int = {**self.file.fs.info(self.file.path ), """name""": self.uncompressed_name} _lowerCAmelCase : Tuple = {f["""name"""]: f} def SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCAmelCase : str ) -> List[Any]: '''simple docstring''' return self.file.open().read() def SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : str = "rb" , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Any=None , **_UpperCAmelCase : Optional[int] , ) -> Optional[int]: '''simple docstring''' _lowerCAmelCase : Any = self._strip_protocol(_UpperCAmelCase ) if mode != "rb": raise ValueError(f"Tried to read with mode {mode} on file {self.file.path} opened with mode 'rb'" ) return self.file.open() class __snake_case (_a ): lowerCAmelCase__ = "bz2" lowerCAmelCase__ = "bz2" lowerCAmelCase__ = ".bz2" class __snake_case (_a ): lowerCAmelCase__ = "gzip" lowerCAmelCase__ = "gzip" lowerCAmelCase__ = ".gz" class __snake_case (_a ): lowerCAmelCase__ = "lz4" lowerCAmelCase__ = "lz4" lowerCAmelCase__ = ".lz4" class __snake_case (_a ): lowerCAmelCase__ = "xz" lowerCAmelCase__ = "xz" lowerCAmelCase__ = ".xz" class __snake_case (_a ): lowerCAmelCase__ = "zstd" lowerCAmelCase__ = "zstd" lowerCAmelCase__ = ".zst" def __init__( self : int , _UpperCAmelCase : str , _UpperCAmelCase : str = "rb" , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[dict] = None , _UpperCAmelCase : int = DEFAULT_BLOCK_SIZE , **_UpperCAmelCase : str , ) -> List[str]: '''simple docstring''' super().__init__( fo=_UpperCAmelCase , mode=_UpperCAmelCase , target_protocol=_UpperCAmelCase , target_options=_UpperCAmelCase , block_size=_UpperCAmelCase , **_UpperCAmelCase , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 _lowerCAmelCase : Optional[Any] = self.file.__enter__ class __snake_case : def __init__( self : Dict , _UpperCAmelCase : int ) -> Tuple: '''simple docstring''' _lowerCAmelCase : Optional[int] = file_ def __enter__( self : int ) -> Optional[Any]: '''simple docstring''' self._file.__enter__() return self def __exit__( self : Union[str, Any] , *_UpperCAmelCase : Tuple , **_UpperCAmelCase : Dict ) -> Union[str, Any]: '''simple docstring''' self._file.__exit__(*_UpperCAmelCase , **_UpperCAmelCase ) def __iter__( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return iter(self._file ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: '''simple docstring''' return next(self._file ) def __getattr__( self : Optional[int] , _UpperCAmelCase : int ) -> Optional[int]: '''simple docstring''' return getattr(self._file , _UpperCAmelCase ) def fixed_enter(*_UpperCAmelCase : str , **_UpperCAmelCase : Optional[int] ): return WrappedFile(_enter(*_UpperCAmelCase , **_UpperCAmelCase ) ) _lowerCAmelCase : Optional[int] = fixed_enter
429
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=_a ) class __snake_case (_a ): lowerCAmelCase__ = field(default="audio-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) lowerCAmelCase__ = Features({"audio": Audio()} ) lowerCAmelCase__ = Features({"labels": ClassLabel} ) lowerCAmelCase__ = "audio" lowerCAmelCase__ = "labels" def SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCAmelCase : Tuple ) -> int: '''simple docstring''' if self.label_column not in features: raise ValueError(f"Column {self.label_column} is not present in features." ) if not isinstance(features[self.label_column] , _UpperCAmelCase ): raise ValueError(f"Column {self.label_column} is not a ClassLabel." ) _lowerCAmelCase : Any = copy.deepcopy(self ) _lowerCAmelCase : Tuple = self.label_schema.copy() _lowerCAmelCase : List[Any] = features[self.label_column] _lowerCAmelCase : Optional[Any] = label_schema return task_template @property def SCREAMING_SNAKE_CASE ( self : str ) -> Dict[str, str]: '''simple docstring''' return { self.audio_column: "audio", self.label_column: "labels", }
429
1
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process __magic_name__ = logging.getLogger(__name__) __magic_name__ = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) __magic_name__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class lowerCAmelCase__ : """simple docstring""" __UpperCAmelCase : Optional[str] = field( default=__lowerCamelCase, metadata={ '''help''': ( '''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.''' ) }, ) __UpperCAmelCase : Optional[str] = field( default=__lowerCamelCase, metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(__lowerCamelCase )}, ) __UpperCAmelCase : Optional[str] = field( default=__lowerCamelCase, metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) }, ) __UpperCAmelCase : Optional[str] = field( default=__lowerCamelCase, metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) __UpperCAmelCase : Optional[str] = field( default=__lowerCamelCase, metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) __UpperCAmelCase : Optional[str] = field( default=__lowerCamelCase, metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''}, ) __UpperCAmelCase : bool = field( default=__lowerCamelCase, metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''}, ) __UpperCAmelCase : str = field( default='''main''', metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''}, ) __UpperCAmelCase : bool = field( default=__lowerCamelCase, metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) }, ) def _UpperCamelCase ( self ): if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( "--config_overrides can't be used in combination with --config_name or --model_name_or_path" ) @dataclass class lowerCAmelCase__ : """simple docstring""" __UpperCAmelCase : Optional[str] = field( default=__lowerCamelCase, metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) __UpperCAmelCase : Optional[str] = field( default=__lowerCamelCase, metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) __UpperCAmelCase : Optional[str] = field(default=__lowerCamelCase, metadata={'''help''': '''The input training data file (a text file).'''} ) __UpperCAmelCase : Optional[str] = field( default=__lowerCamelCase, metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''}, ) __UpperCAmelCase : Optional[str] = field( default=__lowerCamelCase, metadata={'''help''': '''An optional input train ref data file for whole word masking in Chinese.'''}, ) __UpperCAmelCase : Optional[str] = field( default=__lowerCamelCase, metadata={'''help''': '''An optional input validation ref data file for whole word masking in Chinese.'''}, ) __UpperCAmelCase : bool = field( default=__lowerCamelCase, metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) __UpperCAmelCase : Optional[int] = field( default=5, metadata={ '''help''': '''The percentage of the train set used as validation set in case there\'s no validation split''' }, ) __UpperCAmelCase : Optional[int] = field( default=__lowerCamelCase, metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated. Default to the max input length of the model.''' ) }, ) __UpperCAmelCase : Optional[int] = field( default=__lowerCamelCase, metadata={'''help''': '''The number of processes to use for the preprocessing.'''}, ) __UpperCAmelCase : float = field( default=0.15, metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) __UpperCAmelCase : bool = field( default=__lowerCamelCase, metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) }, ) def _UpperCamelCase ( self ): if self.train_file is not None: lowerCamelCase_ : str = self.train_file.split("." )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: lowerCamelCase_ : Union[str, Any] = self.validation_file.split("." )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_): '''simple docstring''' with open(lowerCAmelCase_ , "r" , encoding="utf-8") as f: lowerCamelCase_ : Tuple = [json.loads(lowerCAmelCase_) for line in f.read().splitlines() if (len(lowerCAmelCase_) > 0 and not line.isspace())] assert len(lowerCAmelCase_) == len(lowerCAmelCase_) lowerCamelCase_ : Any = {c: dataset[c] for c in dataset.column_names} lowerCamelCase_ : List[Any] = refs return Dataset.from_dict(lowerCAmelCase_) def __magic_name__ ( ): '''simple docstring''' lowerCamelCase_ : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ : Optional[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ : str = parser.parse_args_into_dataclasses() # Detecting last checkpoint. lowerCamelCase_ : List[str] = None if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase_ : Dict = get_last_checkpoint(training_args.output_dir) if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome.") elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch.") # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout)] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN) # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fpaa}""") # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s" , lowerCAmelCase_) # Set seed before initializing model. set_seed(training_args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowerCamelCase_ : Optional[int] = load_dataset(data_args.dataset_name , data_args.dataset_config_name) if "validation" not in datasets.keys(): lowerCamelCase_ : Any = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"""train[:{data_args.validation_split_percentage}%]""" , ) lowerCamelCase_ : Optional[int] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"""train[{data_args.validation_split_percentage}%:]""" , ) else: lowerCamelCase_ : Dict = {} if data_args.train_file is not None: lowerCamelCase_ : str = data_args.train_file if data_args.validation_file is not None: lowerCamelCase_ : Any = data_args.validation_file lowerCamelCase_ : Any = data_args.train_file.split(".")[-1] if extension == "txt": lowerCamelCase_ : List[str] = "text" lowerCamelCase_ : Dict = load_dataset(lowerCAmelCase_ , data_files=lowerCAmelCase_) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase_ : Optional[Any] = { "cache_dir": model_args.cache_dir, "revision": model_args.model_revision, "use_auth_token": True if model_args.use_auth_token else None, } if model_args.config_name: lowerCamelCase_ : Optional[Any] = AutoConfig.from_pretrained(model_args.config_name , **lowerCAmelCase_) elif model_args.model_name_or_path: lowerCamelCase_ : str = AutoConfig.from_pretrained(model_args.model_name_or_path , **lowerCAmelCase_) else: lowerCamelCase_ : Optional[int] = CONFIG_MAPPING[model_args.model_type]() logger.warning("You are instantiating a new config instance from scratch.") if model_args.config_overrides is not None: logger.info(F"""Overriding config: {model_args.config_overrides}""") config.update_from_string(model_args.config_overrides) logger.info(F"""New config: {config}""") lowerCamelCase_ : List[str] = { "cache_dir": model_args.cache_dir, "use_fast": model_args.use_fast_tokenizer, "revision": model_args.model_revision, "use_auth_token": True if model_args.use_auth_token else None, } if model_args.tokenizer_name: lowerCamelCase_ : str = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **lowerCAmelCase_) elif model_args.model_name_or_path: lowerCamelCase_ : Dict = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **lowerCAmelCase_) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported by this script." "You can do it from another script, save it, and load it from here, using --tokenizer_name.") if model_args.model_name_or_path: lowerCamelCase_ : Union[str, Any] = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path) , config=lowerCAmelCase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("Training new model from scratch") lowerCamelCase_ : Dict = AutoModelForMaskedLM.from_config(lowerCAmelCase_) model.resize_token_embeddings(len(lowerCAmelCase_)) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: lowerCamelCase_ : Optional[Any] = datasets["train"].column_names else: lowerCamelCase_ : Dict = datasets["validation"].column_names lowerCamelCase_ : Union[str, Any] = "text" if "text" in column_names else column_names[0] lowerCamelCase_ : Optional[Any] = "max_length" if data_args.pad_to_max_length else False def tokenize_function(lowerCAmelCase_): # Remove empty lines lowerCamelCase_ : str = [line for line in examples["text"] if len(lowerCAmelCase_) > 0 and not line.isspace()] return tokenizer(examples["text"] , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=data_args.max_seq_length) lowerCamelCase_ : str = datasets.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: lowerCamelCase_ : List[Any] = add_chinese_references(tokenized_datasets["train"] , data_args.train_ref_file) if data_args.validation_ref_file is not None: lowerCamelCase_ : List[str] = add_chinese_references( tokenized_datasets["validation"] , data_args.validation_ref_file) # If we have ref files, need to avoid it removed by trainer lowerCamelCase_ : Optional[Any] = data_args.train_ref_file or data_args.validation_ref_file if has_ref: lowerCamelCase_ : Union[str, Any] = False # Data collator # This one will take care of randomly masking the tokens. lowerCamelCase_ : Optional[Any] = DataCollatorForWholeWordMask(tokenizer=lowerCAmelCase_ , mlm_probability=data_args.mlm_probability) # Initialize our Trainer lowerCamelCase_ : int = Trainer( model=lowerCAmelCase_ , args=lowerCAmelCase_ , train_dataset=tokenized_datasets["train"] if training_args.do_train else None , eval_dataset=tokenized_datasets["validation"] if training_args.do_eval else None , tokenizer=lowerCAmelCase_ , data_collator=lowerCAmelCase_ , ) # Training if training_args.do_train: if last_checkpoint is not None: lowerCamelCase_ : Dict = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path): lowerCamelCase_ : Dict = model_args.model_name_or_path else: lowerCamelCase_ : int = None lowerCamelCase_ : Optional[Any] = trainer.train(resume_from_checkpoint=lowerCAmelCase_) trainer.save_model() # Saves the tokenizer too for easy upload lowerCamelCase_ : Tuple = os.path.join(training_args.output_dir , "train_results.txt") if trainer.is_world_process_zero(): with open(lowerCAmelCase_ , "w") as writer: logger.info("***** Train results *****") for key, value in sorted(train_result.metrics.items()): logger.info(F""" {key} = {value}""") writer.write(F"""{key} = {value}\n""") # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , "trainer_state.json")) # Evaluation lowerCamelCase_ : Dict = {} if training_args.do_eval: logger.info("*** Evaluate ***") lowerCamelCase_ : Tuple = trainer.evaluate() lowerCamelCase_ : str = math.exp(eval_output["eval_loss"]) lowerCamelCase_ : Tuple = perplexity lowerCamelCase_ : int = os.path.join(training_args.output_dir , "eval_results_mlm_wwm.txt") if trainer.is_world_process_zero(): with open(lowerCAmelCase_ , "w") as writer: logger.info("***** Eval results *****") for key, value in sorted(results.items()): logger.info(F""" {key} = {value}""") writer.write(F"""{key} = {value}\n""") return results def __magic_name__ ( lowerCAmelCase_): '''simple docstring''' main() if __name__ == "__main__": main()
73
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCAmelCase__ ( __lowerCamelCase ): """simple docstring""" __UpperCAmelCase : Dict = '''ClapFeatureExtractor''' __UpperCAmelCase : List[str] = ('''RobertaTokenizer''', '''RobertaTokenizerFast''') def __init__( self , a_ , a_ ): super().__init__(a_ , a_ ) def __call__( self , a_=None , a_=None , a_=None , **a_ ): lowerCamelCase_ : Any = kwargs.pop("sampling_rate" , a_ ) if text is None and audios is None: raise ValueError("You have to specify either text or audios. Both cannot be none." ) if text is not None: lowerCamelCase_ : Any = self.tokenizer(a_ , return_tensors=a_ , **a_ ) if audios is not None: lowerCamelCase_ : List[str] = self.feature_extractor( a_ , sampling_rate=a_ , return_tensors=a_ , **a_ ) if text is not None and audios is not None: lowerCamelCase_ : List[str] = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a_ ) , tensor_type=a_ ) def _UpperCamelCase ( self , *a_ , **a_ ): return self.tokenizer.batch_decode(*a_ , **a_ ) def _UpperCamelCase ( self , *a_ , **a_ ): return self.tokenizer.decode(*a_ , **a_ ) @property def _UpperCamelCase ( self ): lowerCamelCase_ : int = self.tokenizer.model_input_names lowerCamelCase_ : Dict = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
73
1
from copy import deepcopy class lowercase_ : '''simple docstring''' def __init__( self : int , __UpperCAmelCase : list[int] | None = None , __UpperCAmelCase : int | None = None ) ->Any: """simple docstring""" if arr is None and size is not None: a = size a = [0] * size elif arr is not None: self.init(_a ) else: raise ValueError('''Either arr or size must be specified''' ) def __lowerCAmelCase ( self : Any , __UpperCAmelCase : list[int] ) ->Union[str, Any]: """simple docstring""" a = len(_a ) a = deepcopy(_a ) for i in range(1 , self.size ): a = self.next_(_a ) if j < self.size: self.tree[j] += self.tree[i] def __lowerCAmelCase ( self : Any ) ->Any: """simple docstring""" a = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): a = self.next_(_a ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def __lowerCAmelCase ( __UpperCAmelCase : int ) ->Union[str, Any]: """simple docstring""" return index + (index & (-index)) @staticmethod def __lowerCAmelCase ( __UpperCAmelCase : int ) ->Optional[Any]: """simple docstring""" return index - (index & (-index)) def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : int , __UpperCAmelCase : int ) ->List[Any]: """simple docstring""" if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value a = self.next_(_a ) def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : int , __UpperCAmelCase : int ) ->Tuple: """simple docstring""" self.add(_a , value - self.get(_a ) ) def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : int ) ->Any: """simple docstring""" if right == 0: return 0 a = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] a = self.prev(_a ) return result def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : int , __UpperCAmelCase : int ) ->Optional[Any]: """simple docstring""" return self.prefix(_a ) - self.prefix(_a ) def __lowerCAmelCase ( self : str , __UpperCAmelCase : int ) ->Union[str, Any]: """simple docstring""" return self.query(_a , index + 1 ) def __lowerCAmelCase ( self : str , __UpperCAmelCase : int ) ->Union[str, Any]: """simple docstring""" value -= self.tree[0] if value < 0: return -1 a = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 a = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
117
import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : List[str] = ['image_processor', 'tokenizer'] __lowercase : str = 'AutoImageProcessor' __lowercase : Dict = 'AutoTokenizer' def __init__( self:int , _a:List[str]=None , _a:Optional[Any]=None , **_a:List[str] ): snake_case__ = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _a , ) snake_case__ = kwargs.pop('''feature_extractor''' ) snake_case__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_a , _a ) snake_case__ = self.image_processor snake_case__ = False def __call__( self:Optional[int] , *_a:str , **_a:int ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_a , **_a ) snake_case__ = kwargs.pop('''images''' , _a ) snake_case__ = kwargs.pop('''text''' , _a ) if len(_a ) > 0: snake_case__ = args[0] snake_case__ = args[1:] if images is None and text is None: raise ValueError('''You need to specify either an `images` or `text` input to process.''' ) if images is not None: snake_case__ = self.image_processor(_a , *_a , **_a ) if text is not None: snake_case__ = self.tokenizer(_a , **_a ) if text is None: return inputs elif images is None: return encodings else: snake_case__ = encodings['''input_ids'''] return inputs def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] , *_a:Union[str, Any] , **_a:Any ): return self.tokenizer.batch_decode(*_a , **_a ) def SCREAMING_SNAKE_CASE__ ( self:Tuple , *_a:Union[str, Any] , **_a:Optional[int] ): return self.tokenizer.decode(*_a , **_a ) @contextmanager def SCREAMING_SNAKE_CASE__ ( self:Tuple ): warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your images inputs, or in a separate call.''' ) snake_case__ = True snake_case__ = self.tokenizer yield snake_case__ = self.image_processor snake_case__ = False def SCREAMING_SNAKE_CASE__ ( self:List[str] , _a:Dict , _a:Dict=False , _a:Optional[int]=None ): if added_vocab is None: snake_case__ = self.tokenizer.get_added_vocab() snake_case__ = {} while tokens: snake_case__ = re.search(r'''<s_(.*?)>''' , _a , re.IGNORECASE ) if start_token is None: break snake_case__ = start_token.group(1 ) snake_case__ = re.search(rF"""</s_{key}>""" , _a , re.IGNORECASE ) snake_case__ = start_token.group() if end_token is None: snake_case__ = tokens.replace(_a , '''''' ) else: snake_case__ = end_token.group() snake_case__ = re.escape(_a ) snake_case__ = re.escape(_a ) snake_case__ = re.search(F"""{start_token_escaped}(.*?){end_token_escaped}""" , _a , re.IGNORECASE ) if content is not None: snake_case__ = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node snake_case__ = self.tokenajson(_a , is_inner_value=_a , added_vocab=_a ) if value: if len(_a ) == 1: snake_case__ = value[0] snake_case__ = value else: # leaf nodes snake_case__ = [] for leaf in content.split(r'''<sep/>''' ): snake_case__ = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": snake_case__ = leaf[1:-2] # for categorical special tokens output[key].append(_a ) if len(output[key] ) == 1: snake_case__ = output[key][0] snake_case__ = tokens[tokens.find(_a ) + len(_a ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=_a , added_vocab=_a ) if len(_a ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _a , ) return self.image_processor_class @property def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _a , ) return self.image_processor
33
0
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): if discount_rate < 0: raise ValueError("Discount rate cannot be negative" ) if not cash_flows: raise ValueError("Cash flows list cannot be empty" ) _UpperCAmelCase : Optional[int] = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(__lowerCAmelCase ) ) return round(__lowerCAmelCase , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
719
'''simple docstring''' import os def __lowerCAmelCase (): _UpperCAmelCase : List[Any] = os.path.join(os.path.dirname(__lowerCAmelCase ) , "num.txt" ) with open(__lowerCAmelCase ) as file_hand: return str(sum(int(__lowerCAmelCase ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
40
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { """microsoft/markuplm-base""": """https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json""", """microsoft/markuplm-large""": """https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json""", } class _UpperCAmelCase ( _lowerCamelCase ): a = '''markuplm''' def __init__( self , a__=30522 , a__=768 , a__=12 , a__=12 , a__=3072 , a__="gelu" , a__=0.1 , a__=0.1 , a__=512 , a__=2 , a__=0.02 , a__=1E-12 , a__=0 , a__=0 , a__=2 , a__=256 , a__=1024 , a__=216 , a__=1001 , a__=32 , a__=50 , a__="absolute" , a__=True , a__=None , **a__ , ): super().__init__( pad_token_id=a__ , bos_token_id=a__ , eos_token_id=a__ , **a__ , ) A_ : Dict = vocab_size A_ : Union[str, Any] = hidden_size A_ : Any = num_hidden_layers A_ : Optional[int] = num_attention_heads A_ : Any = hidden_act A_ : Union[str, Any] = intermediate_size A_ : List[Any] = hidden_dropout_prob A_ : Tuple = attention_probs_dropout_prob A_ : Optional[Any] = max_position_embeddings A_ : Any = type_vocab_size A_ : Optional[Any] = initializer_range A_ : Union[str, Any] = layer_norm_eps A_ : List[str] = position_embedding_type A_ : Optional[Any] = use_cache A_ : int = classifier_dropout # additional properties A_ : Any = max_depth A_ : Tuple = max_xpath_tag_unit_embeddings A_ : List[Any] = max_xpath_subs_unit_embeddings A_ : Tuple = tag_pad_id A_ : Optional[int] = subs_pad_id A_ : List[str] = xpath_unit_hidden_size
569
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed _lowerCAmelCase = """true""" def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase=8_2 ,_lowerCAmelCase=1_6 ): '''simple docstring''' set_seed(4_2 ) A_ : List[Any] = RegressionModel() A_ : int = deepcopy(_lowerCAmelCase ) A_ : Union[str, Any] = RegressionDataset(length=_lowerCAmelCase ) A_ : Union[str, Any] = DataLoader(_lowerCAmelCase ,batch_size=_lowerCAmelCase ) model.to(accelerator.device ) A_ , A_ : int = accelerator.prepare(_lowerCAmelCase ,_lowerCAmelCase ) return model, ddp_model, dataloader def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase=False ): '''simple docstring''' A_ : List[Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/mrpc-bert-base-cased""" ) A_ : Tuple = load_dataset("""glue""" ,"""mrpc""" ,split="""validation""" ) def tokenize_function(_lowerCAmelCase ): A_ : Tuple = tokenizer(examples["""sentence1"""] ,examples["""sentence2"""] ,truncation=_lowerCAmelCase ,max_length=_lowerCAmelCase ) return outputs with accelerator.main_process_first(): A_ : List[Any] = dataset.map( _lowerCAmelCase ,batched=_lowerCAmelCase ,remove_columns=["""idx""", """sentence1""", """sentence2"""] ,) A_ : Union[str, Any] = tokenized_datasets.rename_column("""label""" ,"""labels""" ) def collate_fn(_lowerCAmelCase ): if use_longest: return tokenizer.pad(_lowerCAmelCase ,padding="""longest""" ,return_tensors="""pt""" ) return tokenizer.pad(_lowerCAmelCase ,padding="""max_length""" ,max_length=1_2_8 ,return_tensors="""pt""" ) return DataLoader(_lowerCAmelCase ,shuffle=_lowerCAmelCase ,collate_fn=_lowerCAmelCase ,batch_size=1_6 ) def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase ): '''simple docstring''' A_ : int = Accelerator(dispatch_batches=_lowerCAmelCase ,split_batches=_lowerCAmelCase ) A_ : List[Any] = get_dataloader(_lowerCAmelCase ,not dispatch_batches ) A_ : Any = AutoModelForSequenceClassification.from_pretrained( """hf-internal-testing/mrpc-bert-base-cased""" ,return_dict=_lowerCAmelCase ) A_ , A_ : int = accelerator.prepare(_lowerCAmelCase ,_lowerCAmelCase ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): '''simple docstring''' A_ : Optional[Any] = [] for batch in dataloader: A_ , A_ : List[str] = batch.values() with torch.no_grad(): A_ : Tuple = model(_lowerCAmelCase ) A_ , A_ : List[str] = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) A_ , A_ : int = [], [] for logit, targ in logits_and_targets: logits.append(_lowerCAmelCase ) targs.append(_lowerCAmelCase ) A_ , A_ : Optional[int] = torch.cat(_lowerCAmelCase ), torch.cat(_lowerCAmelCase ) return logits, targs def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase=8_2 ,_lowerCAmelCase=False ,_lowerCAmelCase=False ,_lowerCAmelCase=1_6 ): '''simple docstring''' A_ , A_ , A_ : Union[str, Any] = get_basic_setup(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) A_ , A_ : Union[str, Any] = generate_predictions(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) assert ( len(_lowerCAmelCase ) == num_samples ), f"""Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(_lowerCAmelCase )}""" def _lowerCAmelCase ( _lowerCAmelCase = False ,_lowerCAmelCase = False ): '''simple docstring''' A_ : Any = evaluate.load("""glue""" ,"""mrpc""" ) A_ , A_ : Optional[Any] = get_mrpc_setup(_lowerCAmelCase ,_lowerCAmelCase ) # First do baseline A_ , A_ , A_ : Any = setup["""no"""] model.to(_lowerCAmelCase ) model.eval() for batch in dataloader: batch.to(_lowerCAmelCase ) with torch.inference_mode(): A_ : List[str] = model(**_lowerCAmelCase ) A_ : int = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=_lowerCAmelCase ,references=batch["""labels"""] ) A_ : List[str] = metric.compute() # Then do distributed A_ , A_ , A_ : int = setup["""ddp"""] model.eval() for batch in dataloader: with torch.inference_mode(): A_ : Optional[Any] = model(**_lowerCAmelCase ) A_ : Any = outputs.logits.argmax(dim=-1 ) A_ : int = batch["""labels"""] A_ , A_ : Optional[Any] = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=_lowerCAmelCase ,references=_lowerCAmelCase ) A_ : str = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] ,distributed[key] ), f"""Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n""" def _lowerCAmelCase ( ): '''simple docstring''' A_ : str = Accelerator(split_batches=_lowerCAmelCase ,dispatch_batches=_lowerCAmelCase ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print("""**Testing gather_for_metrics**""" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(f"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`""" ) test_mrpc(_lowerCAmelCase ,_lowerCAmelCase ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("""**Test torch metrics**""" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: A_ : Optional[int] = Accelerator(split_batches=_lowerCAmelCase ,dispatch_batches=_lowerCAmelCase ) if accelerator.is_local_main_process: print(f"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99""" ) test_torch_metrics(_lowerCAmelCase ,9_9 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("""**Test last batch is not dropped when perfectly divisible**""" ) A_ : Union[str, Any] = Accelerator() test_torch_metrics(_lowerCAmelCase ,5_1_2 ) accelerator.state._reset_state() def _lowerCAmelCase ( _lowerCAmelCase ): '''simple docstring''' main() if __name__ == "__main__": main()
569
1
'''simple docstring''' import sys __snake_case = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def a ( __a ) -> int: '''simple docstring''' UpperCamelCase__ :Tuple = 1 for digit in s: product *= int(__a ) return product def a ( __a = N ) -> int: '''simple docstring''' UpperCamelCase__ :Tuple = -sys.maxsize - 1 UpperCamelCase__ :Dict = n[:13] UpperCamelCase__ :Dict = 13 while cur_index < len(__a ) - 13: if int(n[cur_index] ) >= int(substr[0] ): UpperCamelCase__ :Dict = substr[1:] + n[cur_index] cur_index += 1 else: UpperCamelCase__ :List[str] = max(__a , str_eval(__a ) ) UpperCamelCase__ :Union[str, Any] = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(F"""{solution() = }""")
709
'''simple docstring''' class lowercase : """simple docstring""" def __init__( self , UpperCamelCase_ = "" , UpperCamelCase_ = False ): '''simple docstring''' UpperCamelCase__ :dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word UpperCamelCase__ :List[Any] = is_leaf UpperCamelCase__ :Dict = prefix def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :Any = 0 for q, w in zip(self.prefix , UpperCamelCase_ ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' for word in words: self.insert(UpperCamelCase_ ) def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' if self.prefix == word: UpperCamelCase__ :Tuple = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: UpperCamelCase__ :Optional[Any] = RadixNode(prefix=UpperCamelCase_ , is_leaf=UpperCamelCase_ ) else: UpperCamelCase__ :Optional[Any] = self.nodes[word[0]] UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :List[Any] = incoming_node.match( UpperCamelCase_ ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(UpperCamelCase_ ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: UpperCamelCase__ :str = remaining_prefix UpperCamelCase__ :Optional[Any] = self.nodes[matching_string[0]] UpperCamelCase__ :Dict = RadixNode(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase__ :List[Any] = aux_node if remaining_word == "": UpperCamelCase__ :List[Any] = True else: self.nodes[matching_string[0]].insert(UpperCamelCase_ ) def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :List[Any] = self.nodes.get(word[0] , UpperCamelCase_ ) if not incoming_node: return False else: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Tuple = incoming_node.match( UpperCamelCase_ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(UpperCamelCase_ ) def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :str = self.nodes.get(word[0] , UpperCamelCase_ ) if not incoming_node: return False else: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Tuple = incoming_node.match( UpperCamelCase_ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(UpperCamelCase_ ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: UpperCamelCase__ :Tuple = list(self.nodes.values() )[0] UpperCamelCase__ :Union[str, Any] = merging_node.is_leaf self.prefix += merging_node.prefix UpperCamelCase__ :Dict = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: UpperCamelCase__ :List[str] = False # If there is 1 edge, we merge it with its child else: UpperCamelCase__ :Optional[int] = list(incoming_node.nodes.values() )[0] UpperCamelCase__ :int = merging_node.is_leaf incoming_node.prefix += merging_node.prefix UpperCamelCase__ :Optional[int] = merging_node.nodes return True def lowerCAmelCase__ ( self , UpperCamelCase_ = 0 ): '''simple docstring''' if self.prefix != "": print('''-''' * height , self.prefix , ''' (leaf)''' if self.is_leaf else '''''' ) for value in self.nodes.values(): value.print_tree(height + 1 ) def a ( ) -> bool: '''simple docstring''' UpperCamelCase__ :Tuple = '''banana bananas bandana band apple all beast'''.split() UpperCamelCase__ :Tuple = RadixNode() root.insert_many(__a ) assert all(root.find(__a ) for word in words ) assert not root.find('''bandanas''' ) assert not root.find('''apps''' ) root.delete('''all''' ) assert not root.find('''all''' ) root.delete('''banana''' ) assert not root.find('''banana''' ) assert root.find('''bananas''' ) return True def a ( ) -> None: '''simple docstring''' assert test_trie() def a ( ) -> None: '''simple docstring''' UpperCamelCase__ :List[Any] = RadixNode() UpperCamelCase__ :List[Any] = '''banana bananas bandanas bandana band apple all beast'''.split() root.insert_many(__a ) print('''Words:''' , __a ) print('''Tree:''' ) root.print_tree() if __name__ == "__main__": main()
280
0
import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters __A : List[Any] = logging.get_logger(__name__) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Dict: """simple docstring""" if "." in tensor_name: _A = tensor_name.split('.' ) for split in splits[:-1]: _A = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if new_module is None: raise ValueError(F"{module} has no attribute {split}." ) _A = new_module _A = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(F"{module} does not have a parameter or a buffer named {tensor_name}." ) _A = tensor_name in module._buffers _A = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if old_value.device == torch.device('meta' ) and device not in ["meta", torch.device('meta' )] and value is None: raise ValueError(F"{tensor_name} is on the meta device, we need a `value` to put in on {device}." ) _A = False _A = False if is_buffer or not is_bitsandbytes_available(): _A = False _A = False else: _A = hasattr(bnb.nn , 'Params4bit' ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) _A = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: _A = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: _A = old_value.to(_SCREAMING_SNAKE_CASE ) elif isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ): _A = value.to('cpu' ) if value.dtype == torch.inta: _A = version.parse(importlib.metadata.version('bitsandbytes' ) ) > version.parse( '0.37.2' ) if not is_abit_serializable: raise ValueError( 'Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. ' 'Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.' ) else: _A = torch.tensor(_SCREAMING_SNAKE_CASE , device='cpu' ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , _SCREAMING_SNAKE_CASE ) and fpaa_statistics is None: _A = new_value.T _A = old_value.__dict__ if is_abit: _A = bnb.nn.IntaParams(_SCREAMING_SNAKE_CASE , requires_grad=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) elif is_abit: _A = bnb.nn.Paramsabit(_SCREAMING_SNAKE_CASE , requires_grad=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) _A = new_value if fpaa_statistics is not None: setattr(module.weight , 'SCB' , fpaa_statistics.to(_SCREAMING_SNAKE_CASE ) ) else: if value is None: _A = old_value.to(_SCREAMING_SNAKE_CASE ) elif isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ): _A = value.to(_SCREAMING_SNAKE_CASE ) else: _A = torch.tensor(_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE ) if is_buffer: _A = new_value else: _A = nn.Parameter(_SCREAMING_SNAKE_CASE , requires_grad=old_value.requires_grad ) _A = new_value def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=False ) -> Dict: """simple docstring""" for name, module in model.named_children(): if current_key_name is None: _A = [] current_key_name.append(_SCREAMING_SNAKE_CASE ) if (isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) or isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in '.'.join(_SCREAMING_SNAKE_CASE ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A, _A = module.weight.shape else: _A = module.in_features _A = module.out_features if quantization_config.quantization_method() == "llm_int8": _A = bnb.nn.LinearabitLt( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) _A = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: _A = bnb.nn.Linearabit( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) _A = True # Store the module class in case we need to transpose the weight later _A = type(_SCREAMING_SNAKE_CASE ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(_SCREAMING_SNAKE_CASE ) if len(list(module.children() ) ) > 0: _A, _A = _replace_with_bnb_linear( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , has_been_replaced=_SCREAMING_SNAKE_CASE , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Tuple: """simple docstring""" _A = ['lm_head'] if modules_to_not_convert is None else modules_to_not_convert _A, _A = _replace_with_bnb_linear( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if not has_been_replaced: logger.warning( 'You are loading your model in 8bit or 4bit but no linear modules were found in your model.' ' Please double check your model architecture, or submit an issue on github if you think this is' ' a bug.' ) return model def __lowerCAmelCase( *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" warnings.warn( '`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead' , _SCREAMING_SNAKE_CASE , ) return replace_with_bnb_linear(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def __lowerCAmelCase( *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" warnings.warn( '`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead' , _SCREAMING_SNAKE_CASE , ) return set_module_quantized_tensor_to_device(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _A = deepcopy(_SCREAMING_SNAKE_CASE ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() _A = find_tied_parameters(_SCREAMING_SNAKE_CASE ) # For compatibility with Accelerate < 0.18 if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: _A = sum(_SCREAMING_SNAKE_CASE , [] ) _A = len(_SCREAMING_SNAKE_CASE ) > 0 # Check if it is a base model _A = not hasattr(_SCREAMING_SNAKE_CASE , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head _A = list(model.named_children() ) _A = [list_modules[-1][0]] # add last module together with tied weights _A = set(_SCREAMING_SNAKE_CASE ) - set(_SCREAMING_SNAKE_CASE ) _A = list(set(_SCREAMING_SNAKE_CASE ) ) + list(_SCREAMING_SNAKE_CASE ) # remove ".weight" from the keys _A = ['.weight', '.bias'] _A = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: _A = name.replace(_SCREAMING_SNAKE_CASE , '' ) filtered_module_names.append(_SCREAMING_SNAKE_CASE ) return filtered_module_names
27
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging a_ = logging.get_logger(__name__) a_ = '▁' a_ = { 'vocab_file': 'vocab.json', 'spm_file': 'sentencepiece.bpe.model', 'tokenizer_config_file': 'tokenizer_config.json', } a_ = { 'vocab_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json', }, 'spm_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_config_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json', }, } a_ = { 'facebook/m2m100_418M': 1_0_2_4, } # fmt: off a_ = { 'm2m100': ['af', 'am', 'ar', 'ast', 'az', 'ba', 'be', 'bg', 'bn', 'br', 'bs', 'ca', 'ceb', 'cs', 'cy', 'da', 'de', 'el', 'en', 'es', 'et', 'fa', 'ff', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl', 'gu', 'ha', 'he', 'hi', 'hr', 'ht', 'hu', 'hy', 'id', 'ig', 'ilo', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km', 'kn', 'ko', 'lb', 'lg', 'ln', 'lo', 'lt', 'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my', 'ne', 'nl', 'no', 'ns', 'oc', 'or', 'pa', 'pl', 'ps', 'pt', 'ro', 'ru', 'sd', 'si', 'sk', 'sl', 'so', 'sq', 'sr', 'ss', 'su', 'sv', 'sw', 'ta', 'th', 'tl', 'tn', 'tr', 'uk', 'ur', 'uz', 'vi', 'wo', 'xh', 'yi', 'yo', 'zh', 'zu'], 'wmt21': ['en', 'ha', 'is', 'ja', 'cs', 'ru', 'zh', 'de'] } class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = ["""input_ids""", """attention_mask"""] snake_case_ = [] snake_case_ = [] def __init__( self : Dict , __lowercase : str , __lowercase : Any , __lowercase : Optional[Any]=None , __lowercase : int=None , __lowercase : Any="<s>" , __lowercase : str="</s>" , __lowercase : List[str]="</s>" , __lowercase : Union[str, Any]="<pad>" , __lowercase : Union[str, Any]="<unk>" , __lowercase : Dict="m2m100" , __lowercase : Optional[Dict[str, Any]] = None , __lowercase : Optional[Any]=8 , **__lowercase : List[str] , ) -> None: SCREAMING_SNAKE_CASE__ : Optional[Any] ={} if sp_model_kwargs is None else sp_model_kwargs SCREAMING_SNAKE_CASE__ : Any =language_codes SCREAMING_SNAKE_CASE__ : Optional[int] =FAIRSEQ_LANGUAGE_CODES[language_codes] SCREAMING_SNAKE_CASE__ : Union[str, Any] ={lang_code: F"__{lang_code}__" for lang_code in fairseq_language_code} SCREAMING_SNAKE_CASE__ : str =kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(__lowercase ) for lang_code in fairseq_language_code if self.get_lang_token(__lowercase ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=__lowercase , tgt_lang=__lowercase , bos_token=__lowercase , eos_token=__lowercase , sep_token=__lowercase , unk_token=__lowercase , pad_token=__lowercase , language_codes=__lowercase , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=__lowercase , **__lowercase , ) SCREAMING_SNAKE_CASE__ : Optional[int] =vocab_file SCREAMING_SNAKE_CASE__ : Optional[Any] =load_json(__lowercase ) SCREAMING_SNAKE_CASE__ : List[str] ={v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE__ : List[str] =spm_file SCREAMING_SNAKE_CASE__ : Optional[Any] =load_spm(__lowercase , self.sp_model_kwargs ) SCREAMING_SNAKE_CASE__ : Optional[Any] =len(self.encoder ) SCREAMING_SNAKE_CASE__ : int ={ self.get_lang_token(__lowercase ): self.encoder_size + i for i, lang_code in enumerate(__lowercase ) } SCREAMING_SNAKE_CASE__ : Optional[int] ={lang_code: self.encoder_size + i for i, lang_code in enumerate(__lowercase )} SCREAMING_SNAKE_CASE__ : Optional[Any] ={v: k for k, v in self.lang_token_to_id.items()} SCREAMING_SNAKE_CASE__ : List[Any] =src_lang if src_lang is not None else '''en''' SCREAMING_SNAKE_CASE__ : Optional[Any] =tgt_lang SCREAMING_SNAKE_CASE__ : str =self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) SCREAMING_SNAKE_CASE__ : Optional[Any] =num_madeup_words @property def __magic_name__ ( self : str ) -> int: return len(self.encoder ) + len(self.lang_token_to_id ) @property def __magic_name__ ( self : Dict ) -> str: return self._src_lang @src_lang.setter def __magic_name__ ( self : Optional[int] , __lowercase : str ) -> None: SCREAMING_SNAKE_CASE__ : Union[str, Any] =new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __magic_name__ ( self : Any , __lowercase : str ) -> List[str]: return self.sp_model.encode(__lowercase , out_type=__lowercase ) def __magic_name__ ( self : Any , __lowercase : int ) -> List[Any]: if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(__lowercase , self.encoder[self.unk_token] ) def __magic_name__ ( self : List[str] , __lowercase : int ) -> str: if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(__lowercase , self.unk_token ) def __magic_name__ ( self : Any , __lowercase : int ) -> Dict: SCREAMING_SNAKE_CASE__ : int =[] SCREAMING_SNAKE_CASE__ : Union[str, Any] ='''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__lowercase ) + token SCREAMING_SNAKE_CASE__ : int =[] else: current_sub_tokens.append(__lowercase ) out_string += self.sp_model.decode(__lowercase ) return out_string.strip() def __magic_name__ ( self : Union[str, Any] , __lowercase : List[int] , __lowercase : Optional[List[int]] = None , __lowercase : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowercase , token_ids_a=__lowercase , already_has_special_tokens=__lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =[1] * len(self.prefix_tokens ) SCREAMING_SNAKE_CASE__ : Optional[Any] =[1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__lowercase )) + suffix_ones return prefix_ones + ([0] * len(__lowercase )) + ([0] * len(__lowercase )) + suffix_ones def __magic_name__ ( self : Any , __lowercase : List[int] , __lowercase : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __magic_name__ ( self : List[str] ) -> Dict: SCREAMING_SNAKE_CASE__ : Dict ={self.convert_ids_to_tokens(__lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[Any] ) -> Dict: SCREAMING_SNAKE_CASE__ : Dict =self.__dict__.copy() SCREAMING_SNAKE_CASE__ : Dict =None return state def __setstate__( self : Tuple , __lowercase : Dict ) -> None: SCREAMING_SNAKE_CASE__ : int =d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): SCREAMING_SNAKE_CASE__ : Optional[int] ={} SCREAMING_SNAKE_CASE__ : Union[str, Any] =load_spm(self.spm_file , self.sp_model_kwargs ) def __magic_name__ ( self : Optional[int] , __lowercase : str , __lowercase : Optional[str] = None ) -> Tuple[str]: SCREAMING_SNAKE_CASE__ : List[Any] =Path(__lowercase ) if not save_dir.is_dir(): raise OSError(F"{save_directory} should be a directory" ) SCREAMING_SNAKE_CASE__ : Any =save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''vocab_file'''] ) SCREAMING_SNAKE_CASE__ : Any =save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''spm_file'''] ) save_json(self.encoder , __lowercase ) if os.path.abspath(self.spm_file ) != os.path.abspath(__lowercase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , __lowercase ) elif not os.path.isfile(self.spm_file ): with open(__lowercase , '''wb''' ) as fi: SCREAMING_SNAKE_CASE__ : List[str] =self.sp_model.serialized_model_proto() fi.write(__lowercase ) return (str(__lowercase ), str(__lowercase )) def __magic_name__ ( self : Optional[int] , __lowercase : List[str] , __lowercase : str = "en" , __lowercase : Optional[List[str]] = None , __lowercase : str = "ro" , **__lowercase : Any , ) -> BatchEncoding: SCREAMING_SNAKE_CASE__ : Union[str, Any] =src_lang SCREAMING_SNAKE_CASE__ : List[str] =tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(__lowercase , __lowercase , **__lowercase ) def __magic_name__ ( self : str , __lowercase : Optional[Any] , __lowercase : Optional[str] , __lowercase : Optional[str] , **__lowercase : List[Any] ) -> int: if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) SCREAMING_SNAKE_CASE__ : Any =src_lang SCREAMING_SNAKE_CASE__ : List[Any] =self(__lowercase , add_special_tokens=__lowercase , **__lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] =self.get_lang_id(__lowercase ) SCREAMING_SNAKE_CASE__ : str =tgt_lang_id return inputs def __magic_name__ ( self : Any ) -> Tuple: self.set_src_lang_special_tokens(self.src_lang ) def __magic_name__ ( self : Any ) -> Any: self.set_tgt_lang_special_tokens(self.tgt_lang ) def __magic_name__ ( self : Optional[Any] , __lowercase : str ) -> None: SCREAMING_SNAKE_CASE__ : Dict =self.get_lang_token(__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] =self.lang_token_to_id[lang_token] SCREAMING_SNAKE_CASE__ : Optional[Any] =[self.cur_lang_id] SCREAMING_SNAKE_CASE__ : Optional[int] =[self.eos_token_id] def __magic_name__ ( self : Union[str, Any] , __lowercase : str ) -> None: SCREAMING_SNAKE_CASE__ : List[Any] =self.get_lang_token(__lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] =self.lang_token_to_id[lang_token] SCREAMING_SNAKE_CASE__ : str =[self.cur_lang_id] SCREAMING_SNAKE_CASE__ : Optional[Any] =[self.eos_token_id] def __magic_name__ ( self : Union[str, Any] , __lowercase : str ) -> str: return self.lang_code_to_token[lang] def __magic_name__ ( self : Any , __lowercase : str ) -> int: SCREAMING_SNAKE_CASE__ : Union[str, Any] =self.get_lang_token(__lowercase ) return self.lang_token_to_id[lang_token] def _a( UpperCamelCase__ : str, UpperCamelCase__ : Dict[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] =sentencepiece.SentencePieceProcessor(**UpperCamelCase__ ) spm.Load(str(UpperCamelCase__ ) ) return spm def _a( UpperCamelCase__ : str ): '''simple docstring''' with open(UpperCamelCase__, '''r''' ) as f: return json.load(UpperCamelCase__ ) def _a( UpperCamelCase__ : Optional[Any], UpperCamelCase__ : str ): '''simple docstring''' with open(UpperCamelCase__, '''w''' ) as f: json.dump(UpperCamelCase__, UpperCamelCase__, indent=2 )
296
0
'''simple docstring''' def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : Optional[int] = len(a_ ) for i in range(length - 1 ): _UpperCAmelCase : List[str] = i for k in range(i + 1, a_ ): if collection[k] < collection[least]: _UpperCAmelCase : int = k if least != i: _UpperCAmelCase : Optional[int] = (collection[i], collection[least]) return collection if __name__ == "__main__": __a = input('Enter numbers separated by a comma:\n').strip() __a = [int(item) for item in user_input.split(',')] print(selection_sort(unsorted))
709
'''simple docstring''' import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) __a = 'hf-internal-testing/tiny-random-bert' __a = os.path.join(TRANSFORMERS_CACHE, 'models--hf-internal-testing--tiny-random-bert') __a = '9b8c223d42b2188cb49d29af482996f9d0f3e5a6' class A__ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : List[str] ) -> str: """simple docstring""" _UpperCAmelCase : int = cached_file(lowerCAmelCase__ , lowerCAmelCase__ ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(lowerCAmelCase__ ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) ) ) with open(os.path.join(lowerCAmelCase__ , "refs" , "main" ) ) as f: _UpperCAmelCase : int = f.read() self.assertEqual(lowerCAmelCase__ , os.path.join(lowerCAmelCase__ , "snapshots" , lowerCAmelCase__ , lowerCAmelCase__ ) ) self.assertTrue(os.path.isfile(lowerCAmelCase__ ) ) # File is cached at the same place the second time. _UpperCAmelCase : Dict = cached_file(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # Using a specific revision to test the full commit hash. _UpperCAmelCase : Optional[int] = cached_file(lowerCAmelCase__ , lowerCAmelCase__ , revision="9b8c223" ) self.assertEqual(lowerCAmelCase__ , os.path.join(lowerCAmelCase__ , "snapshots" , lowerCAmelCase__ , lowerCAmelCase__ ) ) def _lowerCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" with self.assertRaisesRegex(lowerCAmelCase__ , "is not a valid model identifier" ): _UpperCAmelCase : Any = cached_file("tiny-random-bert" , lowerCAmelCase__ ) with self.assertRaisesRegex(lowerCAmelCase__ , "is not a valid git identifier" ): _UpperCAmelCase : List[Any] = cached_file(lowerCAmelCase__ , lowerCAmelCase__ , revision="aaaa" ) with self.assertRaisesRegex(lowerCAmelCase__ , "does not appear to have a file named" ): _UpperCAmelCase : Union[str, Any] = cached_file(lowerCAmelCase__ , "conf" ) def _lowerCAmelCase ( self : str ) -> int: """simple docstring""" with self.assertRaisesRegex(lowerCAmelCase__ , "does not appear to have a file named" ): _UpperCAmelCase : Dict = cached_file(lowerCAmelCase__ , "conf" ) with open(os.path.join(lowerCAmelCase__ , "refs" , "main" ) ) as f: _UpperCAmelCase : Dict = f.read() self.assertTrue(os.path.isfile(os.path.join(lowerCAmelCase__ , ".no_exist" , lowerCAmelCase__ , "conf" ) ) ) _UpperCAmelCase : Optional[int] = cached_file(lowerCAmelCase__ , "conf" , _raise_exceptions_for_missing_entries=lowerCAmelCase__ ) self.assertIsNone(lowerCAmelCase__ ) _UpperCAmelCase : str = cached_file(lowerCAmelCase__ , "conf" , local_files_only=lowerCAmelCase__ , _raise_exceptions_for_missing_entries=lowerCAmelCase__ ) self.assertIsNone(lowerCAmelCase__ ) _UpperCAmelCase : Any = mock.Mock() _UpperCAmelCase : str = 5_0_0 _UpperCAmelCase : Optional[Any] = {} _UpperCAmelCase : Tuple = HTTPError _UpperCAmelCase : Optional[int] = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" , return_value=lowerCAmelCase__ ) as mock_head: _UpperCAmelCase : Optional[Any] = cached_file(lowerCAmelCase__ , "conf" , _raise_exceptions_for_connection_errors=lowerCAmelCase__ ) self.assertIsNone(lowerCAmelCase__ ) # This check we did call the fake head request mock_head.assert_called() def _lowerCAmelCase ( self : int ) -> Any: """simple docstring""" self.assertTrue(has_file("hf-internal-testing/tiny-bert-pt-only" , lowerCAmelCase__ ) ) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only" , lowerCAmelCase__ ) ) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only" , lowerCAmelCase__ ) ) def _lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" self.assertIsNone(get_file_from_repo("bert-base-cased" , "ahah.txt" ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(lowerCAmelCase__ , "is not a valid model identifier" ): get_file_from_repo("bert-base-case" , lowerCAmelCase__ ) # The function raises if the revision does not exist. with self.assertRaisesRegex(lowerCAmelCase__ , "is not a valid git identifier" ): get_file_from_repo("bert-base-cased" , lowerCAmelCase__ , revision="ahaha" ) _UpperCAmelCase : Optional[Any] = get_file_from_repo("bert-base-cased" , lowerCAmelCase__ ) # The name is the cached name which is not very easy to test, so instead we load the content. _UpperCAmelCase : List[Any] = json.loads(open(lowerCAmelCase__ , "r" ).read() ) self.assertEqual(config["hidden_size"] , 7_6_8 ) def _lowerCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase : Union[str, Any] = Path(lowerCAmelCase__ ) / "a.txt" filename.touch() self.assertEqual(get_file_from_repo(lowerCAmelCase__ , "a.txt" ) , str(lowerCAmelCase__ ) ) self.assertIsNone(get_file_from_repo(lowerCAmelCase__ , "b.txt" ) )
257
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ : str = { '''configuration_git''': ['''GIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GitConfig''', '''GitVisionConfig'''], '''processing_git''': ['''GitProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Any = [ '''GIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GitForCausalLM''', '''GitModel''', '''GitPreTrainedModel''', '''GitVisionModel''', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys UpperCAmelCase_ : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
255
"""simple docstring""" import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : Optional[Any] = '''▁''' UpperCAmelCase_ : Union[str, Any] = {'''vocab_file''': '''vocab.txt''', '''sentencepiece_model_ckpt''': '''sentencepiece.bpe.model'''} UpperCAmelCase_ : List[Any] = { '''sentencepiece_model_file''': '''sentencepiece.bpe.model''', '''vocab_file''': '''vocab.txt''', } UpperCAmelCase_ : Any = { '''vocab_file''': { '''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''', '''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''', }, '''sentencepiece_model_file''': { '''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''', '''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''', }, } UpperCAmelCase_ : Optional[Any] = { '''ernie-m-base''': 5_1_4, '''ernie-m-large''': 5_1_4, } UpperCAmelCase_ : List[Any] = { '''ernie-m-base''': {'''do_lower_case''': False}, '''ernie-m-large''': {'''do_lower_case''': False}, } class __UpperCAmelCase ( _lowerCamelCase ): '''simple docstring''' lowercase : List[str] = ["input_ids"] lowercase : Tuple = VOCAB_FILES_NAMES lowercase : Optional[int] = PRETRAINED_INIT_CONFIGURATION lowercase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP lowercase : Optional[Any] = RESOURCE_FILES_NAMES def __init__( self , _A , _A=None , _A=False , _A="utf8" , _A="[UNK]" , _A="[SEP]" , _A="[PAD]" , _A="[CLS]" , _A="[MASK]" , _A = None , **_A , ): '''simple docstring''' _SCREAMING_SNAKE_CASE ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , vocab_file=_A , encoding=_A , sp_model_kwargs=self.sp_model_kwargs , **_A , ) _SCREAMING_SNAKE_CASE =do_lower_case _SCREAMING_SNAKE_CASE =sentencepiece_model_ckpt _SCREAMING_SNAKE_CASE =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_A ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: _SCREAMING_SNAKE_CASE =self.load_vocab(filepath=_A ) else: _SCREAMING_SNAKE_CASE ={self.sp_model.id_to_piece(_A ): id for id in range(self.sp_model.get_piece_size() )} _SCREAMING_SNAKE_CASE ={v: k for k, v in self.vocab.items()} def UpperCamelCase_ ( self , _A ): '''simple docstring''' if text is None: return None _SCREAMING_SNAKE_CASE =self.tokenize(_A ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ='''''', [] for i, ch in enumerate(_A ): if ch in self.SP_CHAR_MAPPING: _SCREAMING_SNAKE_CASE =self.SP_CHAR_MAPPING.get(_A ) else: _SCREAMING_SNAKE_CASE =unicodedata.normalize('''NFKC''' , _A ) if self.is_whitespace(_A ): continue normalized_text += ch char_mapping.extend([i] * len(_A ) ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =normalized_text, [], 0 if self.do_lower_case: _SCREAMING_SNAKE_CASE =text.lower() for token in split_tokens: if token[:1] == "▁": _SCREAMING_SNAKE_CASE =token[1:] _SCREAMING_SNAKE_CASE =text[offset:].index(_A ) + offset _SCREAMING_SNAKE_CASE =start + len(_A ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) _SCREAMING_SNAKE_CASE =end return token_mapping @property def UpperCamelCase_ ( self ): '''simple docstring''' return len(self.vocab ) def UpperCamelCase_ ( self ): '''simple docstring''' return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =self.__dict__.copy() _SCREAMING_SNAKE_CASE =None return state def __setstate__( self , _A ): '''simple docstring''' _SCREAMING_SNAKE_CASE =d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _SCREAMING_SNAKE_CASE ={} _SCREAMING_SNAKE_CASE =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def UpperCamelCase_ ( self , _A ): '''simple docstring''' return "".join((self.SP_CHAR_MAPPING.get(_A , _A ) for c in text) ) def UpperCamelCase_ ( self , _A , _A=False , _A=6_4 , _A=0.1 ): '''simple docstring''' if self.sp_model_kwargs.get('''enable_sampling''' ) is True: _SCREAMING_SNAKE_CASE =True if self.sp_model_kwargs.get('''alpha''' ) is not None: _SCREAMING_SNAKE_CASE =self.sp_model_kwargs.get('''alpha''' ) if self.sp_model_kwargs.get('''nbest_size''' ) is not None: _SCREAMING_SNAKE_CASE =self.sp_model_kwargs.get('''nbest_size''' ) if not enable_sampling: _SCREAMING_SNAKE_CASE =self.sp_model.EncodeAsPieces(_A ) else: _SCREAMING_SNAKE_CASE =self.sp_model.SampleEncodeAsPieces(_A , _A , _A ) _SCREAMING_SNAKE_CASE =[] for pi, piece in enumerate(_A ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(_A ) and pi != 0: new_pieces.append(_A ) continue else: continue _SCREAMING_SNAKE_CASE =0 for i, chunk in enumerate(_A ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(_A ) or self.is_punct(_A ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(_A ) _SCREAMING_SNAKE_CASE =i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) _SCREAMING_SNAKE_CASE =i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) _SCREAMING_SNAKE_CASE =i if len(_A ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def UpperCamelCase_ ( self , _A ): '''simple docstring''' _SCREAMING_SNAKE_CASE =''''''.join(_A ).replace(_A , ''' ''' ).strip() return out_string def UpperCamelCase_ ( self , _A ): '''simple docstring''' _SCREAMING_SNAKE_CASE =self.convert_ids_to_tokens(_A ) _SCREAMING_SNAKE_CASE =''''''.join(_A ).replace(_A , ''' ''' ).strip() return out_string def UpperCamelCase_ ( self , _A ): '''simple docstring''' return self.vocab.get(_A , self.vocab.get(self.unk_token ) ) def UpperCamelCase_ ( self , _A ): '''simple docstring''' return self.reverse_vocab.get(_A , self.unk_token ) def UpperCamelCase_ ( self , _A , _A=None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _SCREAMING_SNAKE_CASE =[self.cls_token_id] _SCREAMING_SNAKE_CASE =[self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def UpperCamelCase_ ( self , _A , _A=None ): '''simple docstring''' if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def UpperCamelCase_ ( self , _A , _A=None , _A=False ): '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_A )) + [1, 1] + ([0] * len(_A )) + [1] return [1] + ([0] * len(_A )) + [1] def UpperCamelCase_ ( self , _A , _A = None ): '''simple docstring''' if token_ids_a is None: # [CLS] X [SEP] return (len(_A ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(_A ) + 1) + [1] * (len(_A ) + 3) def UpperCamelCase_ ( self , _A ): '''simple docstring''' if "\u4e00" <= char <= "\u9fff": return True return False def UpperCamelCase_ ( self , _A ): '''simple docstring''' if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def UpperCamelCase_ ( self , _A ): '''simple docstring''' if char in ",;:.?!~,;:。?!《》【】": return True return False def UpperCamelCase_ ( self , _A ): '''simple docstring''' if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(_A ) == 1: _SCREAMING_SNAKE_CASE =unicodedata.category(_A ) if cat == "Zs": return True return False def UpperCamelCase_ ( self , _A ): '''simple docstring''' _SCREAMING_SNAKE_CASE ={} with io.open(_A , '''r''' , encoding='''utf-8''' ) as f: for index, line in enumerate(_A ): _SCREAMING_SNAKE_CASE =line.rstrip('''\n''' ) _SCREAMING_SNAKE_CASE =int(_A ) return token_to_idx def UpperCamelCase_ ( self , _A , _A = None ): '''simple docstring''' _SCREAMING_SNAKE_CASE =0 if os.path.isdir(_A ): _SCREAMING_SNAKE_CASE =os.path.join( _A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: _SCREAMING_SNAKE_CASE =(filename_prefix + '''-''' if filename_prefix else '''''') + save_directory with open(_A , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda _A : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ''' Please check that the vocabulary is not corrupted!''' ) _SCREAMING_SNAKE_CASE =token_index writer.write(token + '''\n''' ) index += 1 _SCREAMING_SNAKE_CASE =os.path.join(_A , '''sentencepiece.bpe.model''' ) with open(_A , '''wb''' ) as fi: _SCREAMING_SNAKE_CASE =self.sp_model.serialized_model_proto() fi.write(_A ) return (vocab_file,)
255
1
'''simple docstring''' import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings lowercase =logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class __magic_name__ ( SCREAMING_SNAKE_CASE__ ): UpperCAmelCase =field(default=SCREAMING_SNAKE_CASE__ ,metadata={"help": "Whether to use SortishSampler or not."} ) UpperCAmelCase =field( default=SCREAMING_SNAKE_CASE__ ,metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) UpperCAmelCase =field( default=SCREAMING_SNAKE_CASE__ ,metadata={ "help": ( "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `max_length` value of the model configuration." ) } ,) UpperCAmelCase =field( default=SCREAMING_SNAKE_CASE__ ,metadata={ "help": ( "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `num_beams` value of the model configuration." ) } ,) UpperCAmelCase =field( default=SCREAMING_SNAKE_CASE__ ,metadata={ "help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction." } ,) def lowerCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCAmelCase : List[Any] =super().to_dict() for k, v in d.items(): if isinstance(_lowercase , _lowercase): _UpperCAmelCase : Union[str, Any] =v.to_dict() return d
721
'''simple docstring''' import os # Precomputes a list of the 100 first triangular numbers lowercase =[int(0.5 * n * (n + 1)) for n in range(1, 101)] def lowerCamelCase__ ( ): '''simple docstring''' _UpperCAmelCase : int =os.path.dirname(os.path.realpath(__lowerCamelCase ) ) _UpperCAmelCase : List[Any] =os.path.join(__lowerCamelCase , 'words.txt' ) _UpperCAmelCase : int ='' with open(__lowerCamelCase ) as f: _UpperCAmelCase : Tuple =f.readline() _UpperCAmelCase : List[str] =[word.strip('"' ) for word in words.strip('\r\n' ).split(',' )] _UpperCAmelCase : Dict =[ word for word in [sum(ord(__lowerCamelCase ) - 6_4 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(__lowerCamelCase ) if __name__ == "__main__": print(solution())
331
0
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class _UpperCAmelCase ( unittest.TestCase): def _snake_case ( self : Optional[Any] , lowercase_ : Dict ): for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ): snake_case_ : Tuple = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(__lowercase ) def _snake_case ( self : Optional[int] ): snake_case_ : Dict = '''sshleifer/tiny-gpt2''' snake_case_ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__lowercase , inference=__lowercase , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__lowercase , multi_process=__lowercase , ) snake_case_ : Tuple = TensorFlowBenchmark(__lowercase ) snake_case_ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _snake_case ( self : List[str] ): snake_case_ : str = '''sgugger/tiny-distilbert-classification''' snake_case_ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__lowercase , inference=__lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowercase , only_pretrain_model=__lowercase , ) snake_case_ : Tuple = TensorFlowBenchmark(__lowercase ) snake_case_ : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _snake_case ( self : int ): snake_case_ : Union[str, Any] = '''sshleifer/tiny-gpt2''' snake_case_ : Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__lowercase , inference=__lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowercase , ) snake_case_ : str = TensorFlowBenchmark(__lowercase ) snake_case_ : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _snake_case ( self : Union[str, Any] ): snake_case_ : Optional[int] = '''sshleifer/tiny-gpt2''' snake_case_ : Dict = AutoConfig.from_pretrained(__lowercase ) snake_case_ : Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__lowercase , inference=__lowercase , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__lowercase , multi_process=__lowercase , ) snake_case_ : List[Any] = TensorFlowBenchmark(__lowercase , [config] ) snake_case_ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _snake_case ( self : Union[str, Any] ): snake_case_ : Optional[int] = '''sshleifer/tiny-gpt2''' snake_case_ : Optional[Any] = AutoConfig.from_pretrained(__lowercase ) snake_case_ : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__lowercase , inference=__lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowercase , ) snake_case_ : Union[str, Any] = TensorFlowBenchmark(__lowercase , [config] ) snake_case_ : Any = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _snake_case ( self : int ): snake_case_ : List[str] = '''sshleifer/tiny-gpt2''' snake_case_ : Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__lowercase , inference=__lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowercase , ) snake_case_ : int = TensorFlowBenchmark(__lowercase ) snake_case_ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _snake_case ( self : str ): snake_case_ : Optional[Any] = '''sshleifer/tiny-gpt2''' snake_case_ : List[str] = AutoConfig.from_pretrained(__lowercase ) snake_case_ : Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__lowercase , inference=__lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowercase , ) snake_case_ : List[str] = TensorFlowBenchmark(__lowercase , [config] ) snake_case_ : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _snake_case ( self : Any ): snake_case_ : Optional[int] = '''patrickvonplaten/t5-tiny-random''' snake_case_ : Union[str, Any] = AutoConfig.from_pretrained(__lowercase ) snake_case_ : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__lowercase , inference=__lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowercase , ) snake_case_ : Tuple = TensorFlowBenchmark(__lowercase , configs=[config] ) snake_case_ : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , '''Cannot do xla on CPU.''' ) def _snake_case ( self : List[str] ): snake_case_ : Union[str, Any] = '''sshleifer/tiny-gpt2''' snake_case_ : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__lowercase , inference=__lowercase , sequence_lengths=[8] , batch_sizes=[1] , use_xla=__lowercase , multi_process=__lowercase , ) snake_case_ : str = TensorFlowBenchmark(__lowercase ) snake_case_ : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _snake_case ( self : Union[str, Any] ): snake_case_ : int = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=__lowercase , save_to_csv=__lowercase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__lowercase , '''inf_time.csv''' ) , inference_memory_csv_file=os.path.join(__lowercase , '''inf_mem.csv''' ) , env_info_csv_file=os.path.join(__lowercase , '''env.csv''' ) , multi_process=__lowercase , ) snake_case_ : Dict = TensorFlowBenchmark(__lowercase ) benchmark.run() self.assertTrue(Path(os.path.join(__lowercase , '''inf_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(__lowercase , '''inf_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(__lowercase , '''env.csv''' ) ).exists() ) def _snake_case ( self : Any ): snake_case_ : List[str] = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(lowercase_ : str ): self.assertTrue(hasattr(__lowercase , '''sequential''' ) ) self.assertTrue(hasattr(__lowercase , '''cumulative''' ) ) self.assertTrue(hasattr(__lowercase , '''current''' ) ) self.assertTrue(hasattr(__lowercase , '''total''' ) ) with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=__lowercase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__lowercase , '''log.txt''' ) , log_print=__lowercase , trace_memory_line_by_line=__lowercase , eager_mode=__lowercase , multi_process=__lowercase , ) snake_case_ : Tuple = TensorFlowBenchmark(__lowercase ) snake_case_ : Any = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(__lowercase , '''log.txt''' ) ).exists() )
123
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer lowercase__ :Optional[int] = logging.get_logger(__name__) lowercase__ :Union[str, Any] = {'vocab_file': 'vocab.txt'} lowercase__ :int = { 'vocab_file': { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt', } } lowercase__ :Dict = { 'YituTech/conv-bert-base': 5_1_2, 'YituTech/conv-bert-medium-small': 5_1_2, 'YituTech/conv-bert-small': 5_1_2, } lowercase__ :List[str] = { 'YituTech/conv-bert-base': {'do_lower_case': True}, 'YituTech/conv-bert-medium-small': {'do_lower_case': True}, 'YituTech/conv-bert-small': {'do_lower_case': True}, } class snake_case ( __UpperCAmelCase ): '''simple docstring''' _A : Union[str, Any] = VOCAB_FILES_NAMES _A : int = PRETRAINED_VOCAB_FILES_MAP _A : str = PRETRAINED_INIT_CONFIGURATION _A : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : List[Any] = ConvBertTokenizer def __init__( self : int , __lowercase : List[Any]=None , __lowercase : int=None , __lowercase : Any=True , __lowercase : Dict="[UNK]" , __lowercase : Dict="[SEP]" , __lowercase : Dict="[PAD]" , __lowercase : int="[CLS]" , __lowercase : int="[MASK]" , __lowercase : List[str]=True , __lowercase : Optional[int]=None , **__lowercase : Any , ): '''simple docstring''' super().__init__( __lowercase , tokenizer_file=__lowercase , do_lower_case=__lowercase , unk_token=__lowercase , sep_token=__lowercase , pad_token=__lowercase , cls_token=__lowercase , mask_token=__lowercase , tokenize_chinese_chars=__lowercase , strip_accents=__lowercase , **__lowercase , ) __UpperCAmelCase : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , __lowercase ) != do_lower_case or normalizer_state.get('''strip_accents''' , __lowercase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , __lowercase ) != tokenize_chinese_chars ): __UpperCAmelCase : Optional[Any] = getattr(__lowercase , normalizer_state.pop('''type''' ) ) __UpperCAmelCase : Any = do_lower_case __UpperCAmelCase : int = strip_accents __UpperCAmelCase : List[str] = tokenize_chinese_chars __UpperCAmelCase : Optional[Any] = normalizer_class(**__lowercase ) __UpperCAmelCase : Any = do_lower_case def A_ ( self : Optional[int] , __lowercase : Optional[int] , __lowercase : Dict=None ): '''simple docstring''' __UpperCAmelCase : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A_ ( self : Union[str, Any] , __lowercase : List[int] , __lowercase : Optional[List[int]] = None ): '''simple docstring''' __UpperCAmelCase : List[Any] = [self.sep_token_id] __UpperCAmelCase : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A_ ( self : Optional[int] , __lowercase : str , __lowercase : Optional[str] = None ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = self._tokenizer.model.save(__lowercase , name=__lowercase ) return tuple(__lowercase )
522
0
import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError("""At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training""") # TF training parameters __snake_case : Tuple = False __snake_case : Optional[int] = False def _UpperCamelCase ( UpperCamelCase_ : Namespace ) -> Optional[Any]: """simple docstring""" return TrainCommand(UpperCamelCase_ ) class __SCREAMING_SNAKE_CASE ( __lowercase): @staticmethod def UpperCamelCase__ ( _UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = parser.add_parser('train' , help='CLI tool to train a model on a task.' ) train_parser.add_argument( '--train_data' , type=_UpperCamelCase , required=_UpperCamelCase , help='path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.' , ) train_parser.add_argument( '--column_label' , type=_UpperCamelCase , default=0 , help='Column of the dataset csv file with example labels.' ) train_parser.add_argument( '--column_text' , type=_UpperCamelCase , default=1 , help='Column of the dataset csv file with example texts.' ) train_parser.add_argument( '--column_id' , type=_UpperCamelCase , default=2 , help='Column of the dataset csv file with example ids.' ) train_parser.add_argument( '--skip_first_row' , action='store_true' , help='Skip the first row of the csv file (headers).' ) train_parser.add_argument('--validation_data' , type=_UpperCamelCase , default='' , help='path to validation dataset.' ) train_parser.add_argument( '--validation_split' , type=_UpperCamelCase , default=0.1 , help='if validation dataset is not provided, fraction of train dataset to use as validation dataset.' , ) train_parser.add_argument('--output' , type=_UpperCamelCase , default='./' , help='path to saved the trained model.' ) train_parser.add_argument( '--task' , type=_UpperCamelCase , default='text_classification' , help='Task to train the model on.' ) train_parser.add_argument( '--model' , type=_UpperCamelCase , default='bert-base-uncased' , help='Model\'s name or path to stored model.' ) train_parser.add_argument('--train_batch_size' , type=_UpperCamelCase , default=32 , help='Batch size for training.' ) train_parser.add_argument('--valid_batch_size' , type=_UpperCamelCase , default=64 , help='Batch size for validation.' ) train_parser.add_argument('--learning_rate' , type=_UpperCamelCase , default=3E-5 , help='Learning rate.' ) train_parser.add_argument('--adam_epsilon' , type=_UpperCamelCase , default=1E-08 , help='Epsilon for Adam optimizer.' ) train_parser.set_defaults(func=_UpperCamelCase ) def __init__( self , _UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = logging.get_logger('transformers-cli/training' ) lowerCAmelCase__ = 'tf' if is_tf_available() else 'torch' os.makedirs(args.output , exist_ok=_UpperCamelCase ) lowerCAmelCase__ = args.output lowerCAmelCase__ = args.column_label lowerCAmelCase__ = args.column_text lowerCAmelCase__ = args.column_id self.logger.info(F"Loading {args.task} pipeline for {args.model}" ) if args.task == "text_classification": lowerCAmelCase__ = TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(F"Loading dataset from {args.train_data}" ) lowerCAmelCase__ = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) lowerCAmelCase__ = None if args.validation_data: self.logger.info(F"Loading validation dataset from {args.validation_data}" ) lowerCAmelCase__ = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) lowerCAmelCase__ = args.validation_split lowerCAmelCase__ = args.train_batch_size lowerCAmelCase__ = args.valid_batch_size lowerCAmelCase__ = args.learning_rate lowerCAmelCase__ = args.adam_epsilon def UpperCamelCase__ ( self ): """simple docstring""" if self.framework == "tf": return self.run_tf() return self.run_torch() def UpperCamelCase__ ( self ): """simple docstring""" raise NotImplementedError def UpperCamelCase__ ( self ): """simple docstring""" self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
365
import numpy as np from PIL import Image def _UpperCamelCase ( UpperCamelCase_ : np.ndarray , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> np.ndarray: """simple docstring""" lowerCAmelCase__ = np.array(UpperCamelCase_ ) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix' ) lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 # compute the shape of the output matrix lowerCAmelCase__ = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape lowerCAmelCase__ = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix lowerCAmelCase__ = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 return updated_arr def _UpperCamelCase ( UpperCamelCase_ : np.ndarray , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> np.ndarray: """simple docstring""" lowerCAmelCase__ = np.array(UpperCamelCase_ ) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix' ) lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 # compute the shape of the output matrix lowerCAmelCase__ = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape lowerCAmelCase__ = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix lowerCAmelCase__ = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name="""avgpooling""", verbose=True) # Loading the image __snake_case : List[str] = Image.open("""path_to_image""") # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
365
1
'''simple docstring''' import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class _lowerCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , UpperCAmelCase=0.01 , UpperCAmelCase=1000 ) -> str: _snake_case = p_stop _snake_case = max_length def __iter__(self ) -> Union[str, Any]: _snake_case = 0 _snake_case = False while not stop and count < self.max_length: yield count count += 1 _snake_case = random.random() < self.p_stop class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False , UpperCAmelCase=True ) -> int: _snake_case = [ BatchSamplerShard(UpperCAmelCase , 2 , UpperCAmelCase , split_batches=UpperCAmelCase , even_batches=UpperCAmelCase ) for i in range(2 ) ] _snake_case = [list(UpperCAmelCase ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(UpperCAmelCase ) for shard in batch_sampler_shards] , [len(UpperCAmelCase ) for e in expected] ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def lowercase (self ) -> List[str]: # Check the shards when the dataset is a round multiple of total batch size. _snake_case = BatchSampler(range(24 ) , batch_size=3 , drop_last=UpperCAmelCase ) _snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(UpperCAmelCase , UpperCAmelCase ) _snake_case = BatchSampler(range(24 ) , batch_size=3 , drop_last=UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(UpperCAmelCase , UpperCAmelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. _snake_case = BatchSampler(range(21 ) , batch_size=3 , drop_last=UpperCAmelCase ) _snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(UpperCAmelCase , UpperCAmelCase ) _snake_case = BatchSampler(range(21 ) , batch_size=3 , drop_last=UpperCAmelCase ) _snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCAmelCase , UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. _snake_case = BatchSampler(range(22 ) , batch_size=3 , drop_last=UpperCAmelCase ) _snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(UpperCAmelCase , UpperCAmelCase ) _snake_case = BatchSampler(range(22 ) , batch_size=3 , drop_last=UpperCAmelCase ) _snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCAmelCase , UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. _snake_case = BatchSampler(range(20 ) , batch_size=3 , drop_last=UpperCAmelCase ) _snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(UpperCAmelCase , UpperCAmelCase ) _snake_case = BatchSampler(range(20 ) , batch_size=3 , drop_last=UpperCAmelCase ) _snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCAmelCase , UpperCAmelCase ) # Check the shards when the dataset is very small. _snake_case = BatchSampler(range(2 ) , batch_size=3 , drop_last=UpperCAmelCase ) _snake_case = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(UpperCAmelCase , UpperCAmelCase ) _snake_case = BatchSampler(range(2 ) , batch_size=3 , drop_last=UpperCAmelCase ) _snake_case = [[], []] self.check_batch_sampler_shards(UpperCAmelCase , UpperCAmelCase ) def lowercase (self ) -> Union[str, Any]: # Check the shards when the dataset is a round multiple of batch size. _snake_case = BatchSampler(range(24 ) , batch_size=4 , drop_last=UpperCAmelCase ) _snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(UpperCAmelCase , UpperCAmelCase , split_batches=UpperCAmelCase ) _snake_case = BatchSampler(range(24 ) , batch_size=4 , drop_last=UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(UpperCAmelCase , UpperCAmelCase , split_batches=UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size. _snake_case = BatchSampler(range(22 ) , batch_size=4 , drop_last=UpperCAmelCase ) _snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(UpperCAmelCase , UpperCAmelCase , split_batches=UpperCAmelCase ) _snake_case = BatchSampler(range(22 ) , batch_size=4 , drop_last=UpperCAmelCase ) _snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(UpperCAmelCase , UpperCAmelCase , split_batches=UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. _snake_case = BatchSampler(range(21 ) , batch_size=4 , drop_last=UpperCAmelCase ) _snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(UpperCAmelCase , UpperCAmelCase , split_batches=UpperCAmelCase ) _snake_case = BatchSampler(range(21 ) , batch_size=4 , drop_last=UpperCAmelCase ) _snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(UpperCAmelCase , UpperCAmelCase , split_batches=UpperCAmelCase ) # Check the shards when the dataset is very small. _snake_case = BatchSampler(range(2 ) , batch_size=4 , drop_last=UpperCAmelCase ) _snake_case = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(UpperCAmelCase , UpperCAmelCase , split_batches=UpperCAmelCase ) _snake_case = BatchSampler(range(2 ) , batch_size=4 , drop_last=UpperCAmelCase ) _snake_case = [[], []] self.check_batch_sampler_shards(UpperCAmelCase , UpperCAmelCase , split_batches=UpperCAmelCase ) def lowercase (self ) -> Tuple: # Check the shards when the dataset is a round multiple of total batch size. _snake_case = BatchSampler(range(24 ) , batch_size=3 , drop_last=UpperCAmelCase ) _snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(UpperCAmelCase , UpperCAmelCase , even_batches=UpperCAmelCase ) _snake_case = BatchSampler(range(24 ) , batch_size=3 , drop_last=UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(UpperCAmelCase , UpperCAmelCase , even_batches=UpperCAmelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. _snake_case = BatchSampler(range(21 ) , batch_size=3 , drop_last=UpperCAmelCase ) _snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCAmelCase , UpperCAmelCase , even_batches=UpperCAmelCase ) _snake_case = BatchSampler(range(21 ) , batch_size=3 , drop_last=UpperCAmelCase ) _snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCAmelCase , UpperCAmelCase , even_batches=UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. _snake_case = BatchSampler(range(22 ) , batch_size=3 , drop_last=UpperCAmelCase ) _snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(UpperCAmelCase , UpperCAmelCase , even_batches=UpperCAmelCase ) _snake_case = BatchSampler(range(22 ) , batch_size=3 , drop_last=UpperCAmelCase ) _snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCAmelCase , UpperCAmelCase , even_batches=UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. _snake_case = BatchSampler(range(20 ) , batch_size=3 , drop_last=UpperCAmelCase ) _snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCAmelCase , UpperCAmelCase , even_batches=UpperCAmelCase ) _snake_case = BatchSampler(range(20 ) , batch_size=3 , drop_last=UpperCAmelCase ) _snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCAmelCase , UpperCAmelCase , even_batches=UpperCAmelCase ) # Check the shards when the dataset is very small. _snake_case = BatchSampler(range(2 ) , batch_size=3 , drop_last=UpperCAmelCase ) _snake_case = [[[0, 1]], []] self.check_batch_sampler_shards(UpperCAmelCase , UpperCAmelCase , even_batches=UpperCAmelCase ) _snake_case = BatchSampler(range(2 ) , batch_size=3 , drop_last=UpperCAmelCase ) _snake_case = [[], []] self.check_batch_sampler_shards(UpperCAmelCase , UpperCAmelCase , even_batches=UpperCAmelCase ) def lowercase (self ) -> List[Any]: # Check the shards when the dataset is a round multiple of batch size. _snake_case = BatchSampler(range(24 ) , batch_size=4 , drop_last=UpperCAmelCase ) _snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(UpperCAmelCase , UpperCAmelCase , split_batches=UpperCAmelCase , even_batches=UpperCAmelCase ) _snake_case = BatchSampler(range(24 ) , batch_size=4 , drop_last=UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(UpperCAmelCase , UpperCAmelCase , split_batches=UpperCAmelCase , even_batches=UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size. _snake_case = BatchSampler(range(22 ) , batch_size=4 , drop_last=UpperCAmelCase ) _snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(UpperCAmelCase , UpperCAmelCase , split_batches=UpperCAmelCase , even_batches=UpperCAmelCase ) _snake_case = BatchSampler(range(22 ) , batch_size=4 , drop_last=UpperCAmelCase ) _snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(UpperCAmelCase , UpperCAmelCase , split_batches=UpperCAmelCase , even_batches=UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. _snake_case = BatchSampler(range(21 ) , batch_size=4 , drop_last=UpperCAmelCase ) _snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(UpperCAmelCase , UpperCAmelCase , split_batches=UpperCAmelCase , even_batches=UpperCAmelCase ) _snake_case = BatchSampler(range(21 ) , batch_size=4 , drop_last=UpperCAmelCase ) _snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(UpperCAmelCase , UpperCAmelCase , split_batches=UpperCAmelCase , even_batches=UpperCAmelCase ) # Check the shards when the dataset is very small. _snake_case = BatchSampler(range(2 ) , batch_size=4 , drop_last=UpperCAmelCase ) _snake_case = [[[0, 1]], []] self.check_batch_sampler_shards(UpperCAmelCase , UpperCAmelCase , split_batches=UpperCAmelCase , even_batches=UpperCAmelCase ) _snake_case = BatchSampler(range(2 ) , batch_size=4 , drop_last=UpperCAmelCase ) _snake_case = [[], []] self.check_batch_sampler_shards(UpperCAmelCase , UpperCAmelCase , split_batches=UpperCAmelCase , even_batches=UpperCAmelCase ) def lowercase (self ) -> Union[str, Any]: _snake_case = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] _snake_case = [BatchSamplerShard(UpperCAmelCase , 2 , UpperCAmelCase , even_batches=UpperCAmelCase ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False , UpperCAmelCase=2 , UpperCAmelCase=False ) -> Optional[Any]: random.seed(UpperCAmelCase ) _snake_case = list(UpperCAmelCase ) _snake_case = [ IterableDatasetShard( UpperCAmelCase , batch_size=UpperCAmelCase , drop_last=UpperCAmelCase , num_processes=UpperCAmelCase , process_index=UpperCAmelCase , split_batches=UpperCAmelCase , ) for i in range(UpperCAmelCase ) ] _snake_case = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(UpperCAmelCase ) iterable_dataset_lists.append(list(UpperCAmelCase ) ) _snake_case = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size _snake_case = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) self.assertTrue(len(UpperCAmelCase ) % shard_batch_size == 0 ) _snake_case = [] for idx in range(0 , len(UpperCAmelCase ) , UpperCAmelCase ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(UpperCAmelCase ) < len(UpperCAmelCase ): reference += reference self.assertListEqual(UpperCAmelCase , reference[: len(UpperCAmelCase )] ) def lowercase (self ) -> Optional[int]: _snake_case = 42 _snake_case = RandomIterableDataset() self.check_iterable_dataset_shards(UpperCAmelCase , UpperCAmelCase , batch_size=4 , drop_last=UpperCAmelCase , split_batches=UpperCAmelCase ) self.check_iterable_dataset_shards(UpperCAmelCase , UpperCAmelCase , batch_size=4 , drop_last=UpperCAmelCase , split_batches=UpperCAmelCase ) self.check_iterable_dataset_shards(UpperCAmelCase , UpperCAmelCase , batch_size=4 , drop_last=UpperCAmelCase , split_batches=UpperCAmelCase ) self.check_iterable_dataset_shards(UpperCAmelCase , UpperCAmelCase , batch_size=4 , drop_last=UpperCAmelCase , split_batches=UpperCAmelCase ) # Edge case with a very small dataset _snake_case = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(UpperCAmelCase , UpperCAmelCase , batch_size=4 , drop_last=UpperCAmelCase , split_batches=UpperCAmelCase ) self.check_iterable_dataset_shards(UpperCAmelCase , UpperCAmelCase , batch_size=4 , drop_last=UpperCAmelCase , split_batches=UpperCAmelCase ) self.check_iterable_dataset_shards(UpperCAmelCase , UpperCAmelCase , batch_size=4 , drop_last=UpperCAmelCase , split_batches=UpperCAmelCase ) self.check_iterable_dataset_shards(UpperCAmelCase , UpperCAmelCase , batch_size=4 , drop_last=UpperCAmelCase , split_batches=UpperCAmelCase ) def lowercase (self ) -> Tuple: _snake_case = BatchSampler(range(16 ) , batch_size=4 , drop_last=UpperCAmelCase ) _snake_case = SkipBatchSampler(UpperCAmelCase , 2 ) self.assertListEqual(list(UpperCAmelCase ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowercase (self ) -> str: _snake_case = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowercase (self ) -> Dict: _snake_case = DataLoader(list(range(16 ) ) , batch_size=4 ) _snake_case = skip_first_batches(UpperCAmelCase , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowercase (self ) -> Dict: _snake_case = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def lowercase (self ) -> int: Accelerator() _snake_case = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
585
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowerCAmelCase = { 'configuration_wav2vec2': ['WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Wav2Vec2Config'], 'feature_extraction_wav2vec2': ['Wav2Vec2FeatureExtractor'], 'processing_wav2vec2': ['Wav2Vec2Processor'], 'tokenization_wav2vec2': ['Wav2Vec2CTCTokenizer', 'Wav2Vec2Tokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Wav2Vec2ForAudioFrameClassification', 'Wav2Vec2ForCTC', 'Wav2Vec2ForMaskedLM', 'Wav2Vec2ForPreTraining', 'Wav2Vec2ForSequenceClassification', 'Wav2Vec2ForXVector', 'Wav2Vec2Model', 'Wav2Vec2PreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWav2Vec2ForCTC', 'TFWav2Vec2Model', 'TFWav2Vec2PreTrainedModel', 'TFWav2Vec2ForSequenceClassification', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'FlaxWav2Vec2ForCTC', 'FlaxWav2Vec2ForPreTraining', 'FlaxWav2Vec2Model', 'FlaxWav2Vec2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
585
1
"""simple docstring""" class lowerCAmelCase_ : '''simple docstring''' def __init__( self , snake_case_ = "" , snake_case_ = False ) -> None: # Mapping from the first character of the prefix of the node __lowerCAmelCase = {} # A node will be a leaf if the tree contains its word __lowerCAmelCase = is_leaf __lowerCAmelCase = prefix def A__ ( self , snake_case_ ) -> tuple[str, str, str]: __lowerCAmelCase = 0 for q, w in zip(self.prefix , snake_case_ ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def A__ ( self , snake_case_ ) -> None: for word in words: self.insert(snake_case_ ) def A__ ( self , snake_case_ ) -> None: # Case 1: If the word is the prefix of the node # Solution: We set the current node as leaf if self.prefix == word: __lowerCAmelCase = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: __lowerCAmelCase = RadixNode(prefix=snake_case_ , is_leaf=snake_case_ ) else: __lowerCAmelCase = self.nodes[word[0]] __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = incoming_node.match( snake_case_ ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(snake_case_ ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: __lowerCAmelCase = remaining_prefix __lowerCAmelCase = self.nodes[matching_string[0]] __lowerCAmelCase = RadixNode(snake_case_ , snake_case_ ) __lowerCAmelCase = aux_node if remaining_word == "": __lowerCAmelCase = True else: self.nodes[matching_string[0]].insert(snake_case_ ) def A__ ( self , snake_case_ ) -> bool: __lowerCAmelCase = self.nodes.get(word[0] , snake_case_ ) if not incoming_node: return False else: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = incoming_node.match( snake_case_ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(snake_case_ ) def A__ ( self , snake_case_ ) -> bool: __lowerCAmelCase = self.nodes.get(word[0] , snake_case_ ) if not incoming_node: return False else: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = incoming_node.match( snake_case_ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(snake_case_ ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: __lowerCAmelCase = list(self.nodes.values() )[0] __lowerCAmelCase = merging_node.is_leaf self.prefix += merging_node.prefix __lowerCAmelCase = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: __lowerCAmelCase = False # If there is 1 edge, we merge it with its child else: __lowerCAmelCase = list(incoming_node.nodes.values() )[0] __lowerCAmelCase = merging_node.is_leaf incoming_node.prefix += merging_node.prefix __lowerCAmelCase = merging_node.nodes return True def A__ ( self , snake_case_ = 0 ) -> None: if self.prefix != "": print("""-""" * height , self.prefix , """ (leaf)""" if self.is_leaf else """""" ) for value in self.nodes.values(): value.print_tree(height + 1 ) def lowercase (): __lowerCAmelCase = """banana bananas bandana band apple all beast""".split() __lowerCAmelCase = RadixNode() root.insert_many(_lowerCAmelCase ) assert all(root.find(_lowerCAmelCase ) for word in words ) assert not root.find("""bandanas""" ) assert not root.find("""apps""" ) root.delete("""all""" ) assert not root.find("""all""" ) root.delete("""banana""" ) assert not root.find("""banana""" ) assert root.find("""bananas""" ) return True def lowercase (): assert test_trie() def lowercase (): __lowerCAmelCase = RadixNode() __lowerCAmelCase = """banana bananas bandanas bandana band apple all beast""".split() root.insert_many(_lowerCAmelCase ) print("""Words:""" , _lowerCAmelCase ) print("""Tree:""" ) root.print_tree() if __name__ == "__main__": main()
573
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase_ ( A__ , unittest.TestCase ): '''simple docstring''' _snake_case = MgpstrTokenizer _snake_case = False _snake_case = {} _snake_case = False def A__ ( self ) -> List[Any]: super().setUp() # fmt: off __lowerCAmelCase = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on __lowerCAmelCase = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(snake_case_ ) + """\n""" ) def A__ ( self , **snake_case_ ) -> int: return MgpstrTokenizer.from_pretrained(self.tmpdirname , **snake_case_ ) def A__ ( self , snake_case_ ) -> List[Any]: __lowerCAmelCase = """tester""" __lowerCAmelCase = """tester""" return input_text, output_text @unittest.skip("""MGP-STR always lower cases letters.""" ) def A__ ( self ) -> List[str]: pass def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.get_tokenizers(do_lower_case=snake_case_ ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): __lowerCAmelCase = """[SPECIAL_TOKEN]""" tokenizer.add_special_tokens({"""cls_token""": special_token} ) __lowerCAmelCase = tokenizer.encode([special_token] , add_special_tokens=snake_case_ ) self.assertEqual(len(snake_case_ ) , 1 ) __lowerCAmelCase = tokenizer.decode(snake_case_ , skip_special_tokens=snake_case_ ) self.assertTrue(special_token not in decoded ) def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): __lowerCAmelCase , __lowerCAmelCase = self.get_input_output_texts(snake_case_ ) __lowerCAmelCase = tokenizer.tokenize(snake_case_ ) __lowerCAmelCase = tokenizer.convert_tokens_to_ids(snake_case_ ) __lowerCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertNotEqual(len(snake_case_ ) , 0 ) __lowerCAmelCase = tokenizer.decode(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) self.assertEqual(text_a.replace(""" """ , """""" ) , snake_case_ ) @unittest.skip("""MGP-STR tokenizer only handles one sequence.""" ) def A__ ( self ) -> Any: pass @unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" ) def A__ ( self ) -> List[Any]: pass
573
1
"""simple docstring""" import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) set_seed(7_70) lowerCAmelCase = { """c_attn""": """att_proj""", """c_proj""": """out_proj""", """c_fc""": """in_proj""", """transformer.""": """""", """h.""": """layers.""", """ln_1""": """layernorm_1""", """ln_2""": """layernorm_2""", """ln_f""": """layernorm_final""", """wpe""": """position_embeds_layer""", """wte""": """input_embeds_layer""", } lowerCAmelCase = { """text_small""": { """repo_id""": """suno/bark""", """file_name""": """text.pt""", }, """coarse_small""": { """repo_id""": """suno/bark""", """file_name""": """coarse.pt""", }, """fine_small""": { """repo_id""": """suno/bark""", """file_name""": """fine.pt""", }, """text""": { """repo_id""": """suno/bark""", """file_name""": """text_2.pt""", }, """coarse""": { """repo_id""": """suno/bark""", """file_name""": """coarse_2.pt""", }, """fine""": { """repo_id""": """suno/bark""", """file_name""": """fine_2.pt""", }, } lowerCAmelCase = os.path.dirname(os.path.abspath(__file__)) lowerCAmelCase = os.path.join(os.path.expanduser("""~"""), """.cache""") lowerCAmelCase = os.path.join(os.getenv("""XDG_CACHE_HOME""", default_cache_dir), """suno""", """bark_v0""") def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : str=False ) ->Tuple: lowerCamelCase__ : List[str] =model_type if use_small: key += "_small" return os.path.join(snake_case_ , REMOTE_MODEL_PATHS[key]['file_name'] ) def lowerCAmelCase_ ( snake_case_ : List[Any] , snake_case_ : str ) ->Union[str, Any]: os.makedirs(snake_case_ , exist_ok=snake_case_ ) hf_hub_download(repo_id=snake_case_ , filename=snake_case_ , local_dir=snake_case_ ) def lowerCAmelCase_ ( snake_case_ : Optional[Any] , snake_case_ : Union[str, Any] , snake_case_ : List[str]=False , snake_case_ : Any="text" ) ->List[Any]: if model_type == "text": lowerCamelCase__ : Tuple =BarkSemanticModel lowerCamelCase__ : str =BarkSemanticConfig lowerCamelCase__ : str =BarkSemanticGenerationConfig elif model_type == "coarse": lowerCamelCase__ : Optional[Any] =BarkCoarseModel lowerCamelCase__ : List[Any] =BarkCoarseConfig lowerCamelCase__ : Union[str, Any] =BarkCoarseGenerationConfig elif model_type == "fine": lowerCamelCase__ : int =BarkFineModel lowerCamelCase__ : Dict =BarkFineConfig lowerCamelCase__ : Union[str, Any] =BarkFineGenerationConfig else: raise NotImplementedError() lowerCamelCase__ : int =f"""{model_type}_small""" if use_small else model_type lowerCamelCase__ : int =REMOTE_MODEL_PATHS[model_key] if not os.path.exists(snake_case_ ): logger.info(f"""{model_type} model not found, downloading into `{CACHE_DIR}`.""" ) _download(model_info['repo_id'] , model_info['file_name'] ) lowerCamelCase__ : List[str] =torch.load(snake_case_ , map_location=snake_case_ ) # this is a hack lowerCamelCase__ : Union[str, Any] =checkpoint['model_args'] if "input_vocab_size" not in model_args: lowerCamelCase__ : Tuple =model_args['vocab_size'] lowerCamelCase__ : Optional[Any] =model_args['vocab_size'] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments lowerCamelCase__ : str =model_args.pop('n_head' ) lowerCamelCase__ : List[Any] =model_args.pop('n_embd' ) lowerCamelCase__ : Any =model_args.pop('n_layer' ) lowerCamelCase__ : List[str] =ConfigClass(**checkpoint['model_args'] ) lowerCamelCase__ : str =ModelClass(config=snake_case_ ) lowerCamelCase__ : Optional[int] =GenerationConfigClass() lowerCamelCase__ : Optional[Any] =model_generation_config lowerCamelCase__ : Optional[Any] =checkpoint['model'] # fixup checkpoint lowerCamelCase__ : List[Any] ='_orig_mod.' for k, v in list(state_dict.items() ): if k.startswith(snake_case_ ): # replace part of the key with corresponding layer name in HF implementation lowerCamelCase__ : int =k[len(snake_case_ ) :] for old_layer_name in new_layer_name_dict: lowerCamelCase__ : Dict =new_k.replace(snake_case_ , new_layer_name_dict[old_layer_name] ) lowerCamelCase__ : Union[str, Any] =state_dict.pop(snake_case_ ) lowerCamelCase__ : Optional[Any] =set(state_dict.keys() ) - set(model.state_dict().keys() ) lowerCamelCase__ : Tuple ={k for k in extra_keys if not k.endswith('.attn.bias' )} lowerCamelCase__ : Any =set(model.state_dict().keys() ) - set(state_dict.keys() ) lowerCamelCase__ : Any ={k for k in missing_keys if not k.endswith('.attn.bias' )} if len(snake_case_ ) != 0: raise ValueError(f"""extra keys found: {extra_keys}""" ) if len(snake_case_ ) != 0: raise ValueError(f"""missing keys: {missing_keys}""" ) model.load_state_dict(snake_case_ , strict=snake_case_ ) lowerCamelCase__ : str =model.num_parameters(exclude_embeddings=snake_case_ ) lowerCamelCase__ : Union[str, Any] =checkpoint['best_val_loss'].item() logger.info(f"""model loaded: {round(n_params/1E6 , 1 )}M params, {round(snake_case_ , 3 )} loss""" ) model.eval() model.to(snake_case_ ) del checkpoint, state_dict return model def lowerCAmelCase_ ( snake_case_ : Optional[Any] , snake_case_ : str=False , snake_case_ : int="text" ) ->Tuple: if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() lowerCamelCase__ : Dict ='cpu' # do conversion on cpu lowerCamelCase__ : Union[str, Any] =_get_ckpt_path(snake_case_ , use_small=snake_case_ ) lowerCamelCase__ : Union[str, Any] =_load_model(snake_case_ , snake_case_ , model_type=snake_case_ , use_small=snake_case_ ) # load bark initial model lowerCamelCase__ : Optional[Any] =_bark_load_model(snake_case_ , 'cpu' , model_type=snake_case_ , use_small=snake_case_ ) if model_type == "text": lowerCamelCase__ : List[Any] =bark_model['model'] if model.num_parameters(exclude_embeddings=snake_case_ ) != bark_model.get_num_params(): raise ValueError('initial and new models don\'t have the same number of parameters' ) # check if same output as the bark model lowerCamelCase__ : int =5 lowerCamelCase__ : Optional[int] =1_0 if model_type in ["text", "coarse"]: lowerCamelCase__ : Tuple =torch.randint(2_5_6 , (batch_size, sequence_length) , dtype=torch.int ) lowerCamelCase__ : Optional[Any] =bark_model(snake_case_ )[0] lowerCamelCase__ : Tuple =model(snake_case_ ) # take last logits lowerCamelCase__ : Union[str, Any] =output_new_model_total.logits[:, [-1], :] else: lowerCamelCase__ : Union[str, Any] =3 lowerCamelCase__ : Tuple =8 lowerCamelCase__ : Union[str, Any] =torch.randint(2_5_6 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) lowerCamelCase__ : List[Any] =model(snake_case_ , snake_case_ ) lowerCamelCase__ : int =bark_model(snake_case_ , snake_case_ ) lowerCamelCase__ : str =output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError('initial and new outputs don\'t have the same shape' ) if (output_new_model - output_old_model).abs().max().item() > 1E-3: raise ValueError('initial and new outputs are not equal' ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) model.save_pretrained(snake_case_ ) def lowerCAmelCase_ ( snake_case_ : str , snake_case_ : Optional[int] , snake_case_ : Any , snake_case_ : Optional[Any] , snake_case_ : Any , snake_case_ : List[str] , ) ->str: lowerCamelCase__ : Optional[int] =os.path.join(snake_case_ , snake_case_ ) lowerCamelCase__ : Tuple =BarkSemanticConfig.from_pretrained(os.path.join(snake_case_ , 'config.json' ) ) lowerCamelCase__ : Optional[int] =BarkCoarseConfig.from_pretrained(os.path.join(snake_case_ , 'config.json' ) ) lowerCamelCase__ : Optional[Any] =BarkFineConfig.from_pretrained(os.path.join(snake_case_ , 'config.json' ) ) lowerCamelCase__ : Dict =EncodecConfig.from_pretrained('facebook/encodec_24khz' ) lowerCamelCase__ : Union[str, Any] =BarkSemanticModel.from_pretrained(snake_case_ ) lowerCamelCase__ : Tuple =BarkCoarseModel.from_pretrained(snake_case_ ) lowerCamelCase__ : Optional[Any] =BarkFineModel.from_pretrained(snake_case_ ) lowerCamelCase__ : int =EncodecModel.from_pretrained('facebook/encodec_24khz' ) lowerCamelCase__ : Optional[Any] =BarkConfig.from_sub_model_configs( snake_case_ , snake_case_ , snake_case_ , snake_case_ ) lowerCamelCase__ : Optional[Any] =BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) lowerCamelCase__ : List[Any] =BarkModel(snake_case_ ) lowerCamelCase__ : Union[str, Any] =semantic lowerCamelCase__ : Dict =coarseAcoustic lowerCamelCase__ : int =fineAcoustic lowerCamelCase__ : List[Any] =codec lowerCamelCase__ : int =bark_generation_config Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) bark.save_pretrained(snake_case_ , repo_id=snake_case_ , push_to_hub=snake_case_ ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument("""model_type""", type=str, help="""text, coarse or fine.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--is_small""", action="""store_true""", help="""convert the small version instead of the large.""") lowerCAmelCase = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
174
"""simple docstring""" import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = {name: getattr(transformers, name + """Fast""") for name in SLOW_TO_FAST_CONVERTERS} def lowerCAmelCase_ ( snake_case_ : Optional[int] , snake_case_ : List[str] , snake_case_ : List[Any] , snake_case_ : Tuple ) ->Dict: if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(f"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" ) if tokenizer_name is None: lowerCamelCase__ : Optional[Any] =TOKENIZER_CLASSES else: lowerCamelCase__ : Any ={tokenizer_name: getattr(snake_case_ , tokenizer_name + 'Fast' )} logger.info(f"""Loading tokenizer classes: {tokenizer_names}""" ) for tokenizer_name in tokenizer_names: lowerCamelCase__ : Any =TOKENIZER_CLASSES[tokenizer_name] lowerCamelCase__ : List[Any] =True if checkpoint_name is None: lowerCamelCase__ : Union[str, Any] =list(tokenizer_class.max_model_input_sizes.keys() ) else: lowerCamelCase__ : Optional[Any] =[checkpoint_name] logger.info(f"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" ) for checkpoint in checkpoint_names: logger.info(f"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" ) # Load tokenizer lowerCamelCase__ : Dict =tokenizer_class.from_pretrained(snake_case_ , force_download=snake_case_ ) # Save fast tokenizer logger.info(f"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" ) # For organization names we create sub-directories if "/" in checkpoint: lowerCamelCase__ , lowerCamelCase__ : List[str] =checkpoint.split('/' ) lowerCamelCase__ : Optional[int] =os.path.join(snake_case_ , snake_case_ ) elif add_prefix: lowerCamelCase__ : Union[str, Any] =checkpoint lowerCamelCase__ : List[Any] =dump_path else: lowerCamelCase__ : str =None lowerCamelCase__ : Dict =dump_path logger.info(f"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: lowerCamelCase__ : int =list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] lowerCamelCase__ : Union[str, Any] =file_path.split(snake_case_ )[-1][0] if next_char == "/": lowerCamelCase__ : Optional[int] =os.path.join(snake_case_ , snake_case_ ) lowerCamelCase__ : int =None logger.info(f"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) lowerCamelCase__ : Optional[Any] =tokenizer.save_pretrained( snake_case_ , legacy_format=snake_case_ , filename_prefix=snake_case_ ) logger.info(f"""=> File names {file_names}""" ) for file_name in file_names: if not file_name.endswith('tokenizer.json' ): os.remove(snake_case_ ) logger.info(f"""=> removing {file_name}""" ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output generated fast tokenizer files.""" ) parser.add_argument( """--tokenizer_name""", default=None, type=str, help=( f"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ """download and convert all the checkpoints from AWS.""" ), ) parser.add_argument( """--checkpoint_name""", default=None, type=str, help="""Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.""", ) parser.add_argument( """--force_download""", action="""store_true""", help="""Re-download checkpoints.""", ) lowerCAmelCase = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
174
1
'''simple docstring''' from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class snake_case__ ( __A): def A ( self : Tuple ) -> str: UpperCAmelCase_ : Optional[int] = SMALL_MODEL_IDENTIFIER UpperCAmelCase_ : int = '''pt''' UpperCAmelCase_ : Tuple = '''tf''' def A ( self : Any , _A : Optional[int] ) -> int: UpperCAmelCase_ : List[Any] = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(_A ) def A ( self : List[str] , _A : Optional[Any] ) -> int: UpperCAmelCase_ : Tuple = TFAutoModel.from_pretrained(self.test_model , from_pt=_A ) model_tf.save_pretrained(_A ) def A ( self : List[Any] ) -> Dict: UpperCAmelCase_ : Optional[Any] = '''mock_framework''' # Framework provided - return whatever the user provides UpperCAmelCase_ : Optional[int] = FeaturesManager.determine_framework(self.test_model , _A ) self.assertEqual(_A , _A ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_A ) UpperCAmelCase_ : Union[str, Any] = FeaturesManager.determine_framework(_A , _A ) self.assertEqual(_A , _A ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_A ) UpperCAmelCase_ : Optional[Any] = FeaturesManager.determine_framework(_A , _A ) self.assertEqual(_A , _A ) def A ( self : int ) -> List[str]: with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_A ) UpperCAmelCase_ : List[str] = FeaturesManager.determine_framework(_A ) self.assertEqual(_A , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_A ) UpperCAmelCase_ : Optional[Any] = FeaturesManager.determine_framework(_A ) self.assertEqual(_A , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(_A ): UpperCAmelCase_ : Union[str, Any] = FeaturesManager.determine_framework(_A ) def A ( self : List[Any] ) -> Tuple: UpperCAmelCase_ : List[str] = MagicMock(return_value=_A ) with patch('''transformers.onnx.features.is_tf_available''' , _A ): UpperCAmelCase_ : List[Any] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_A , self.framework_pt ) # PyTorch not in environment -> use TensorFlow UpperCAmelCase_ : Optional[int] = MagicMock(return_value=_A ) with patch('''transformers.onnx.features.is_torch_available''' , _A ): UpperCAmelCase_ : Tuple = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_A , self.framework_tf ) # Both in environment -> use PyTorch UpperCAmelCase_ : List[str] = MagicMock(return_value=_A ) UpperCAmelCase_ : List[str] = MagicMock(return_value=_A ) with patch('''transformers.onnx.features.is_tf_available''' , _A ), patch( '''transformers.onnx.features.is_torch_available''' , _A ): UpperCAmelCase_ : Tuple = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_A , self.framework_pt ) # Both not in environment -> raise error UpperCAmelCase_ : str = MagicMock(return_value=_A ) UpperCAmelCase_ : str = MagicMock(return_value=_A ) with patch('''transformers.onnx.features.is_tf_available''' , _A ), patch( '''transformers.onnx.features.is_torch_available''' , _A ): with self.assertRaises(_A ): UpperCAmelCase_ : List[str] = FeaturesManager.determine_framework(self.test_model )
708
'''simple docstring''' from pathlib import Path import numpy as np from PIL import Image def __UpperCAmelCase ( A : np.ndarray ) -> np.ndarray: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2989 * r + 0.5870 * g + 0.1140 * b def __UpperCAmelCase ( A : np.ndarray ) -> np.ndarray: return (gray > 1_2_7) & (gray <= 2_5_5) def __UpperCAmelCase ( A : np.ndarray , A : np.ndarray ) -> np.ndarray: UpperCAmelCase_ : List[Any] = np.zeros_like(A ) UpperCAmelCase_ : Dict = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image UpperCAmelCase_ : Optional[Any] = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): UpperCAmelCase_ : List[Any] = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() UpperCAmelCase_ : List[Any] = int(summation > 0 ) return output if __name__ == "__main__": # read original image _UpperCamelCase : str = Path(__file__).resolve().parent / 'image_data' / 'lena.jpg' _UpperCamelCase : List[Any] = np.array(Image.open(lena_path)) # kernel to be applied _UpperCamelCase : int = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) _UpperCamelCase : Optional[Any] = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image _UpperCamelCase : int = Image.fromarray(output).convert('RGB') pil_img.save('result_dilation.png')
216
0
'''simple docstring''' def __snake_case ( lowercase : Optional[Any] ): snake_case_ = len(lowercase ) snake_case_ = sum(lowercase ) snake_case_ = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): snake_case_ = True for i in range(1 , s + 1 ): snake_case_ = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): snake_case_ = dp[i][j - 1] if arr[i - 1] <= j: snake_case_ = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: snake_case_ = s - 2 * j break return diff
508
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class UpperCAmelCase_ : """simple docstring""" def __init__( self , UpperCAmelCase_ , ): snake_case_ = parent snake_case_ = 13 snake_case_ = 7 snake_case_ = True snake_case_ = True snake_case_ = False snake_case_ = True snake_case_ = 99 snake_case_ = 32 snake_case_ = 2 snake_case_ = 4 snake_case_ = 37 snake_case_ = "gelu" snake_case_ = 0.1 snake_case_ = 0.1 snake_case_ = 5_12 snake_case_ = 16 snake_case_ = 2 snake_case_ = 0.02 snake_case_ = 3 snake_case_ = 4 snake_case_ = None def _lowercase ( self ): snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = None if self.use_input_mask: snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = None snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): snake_case_ = TFDistilBertModel(config=UpperCAmelCase_ ) snake_case_ = {"input_ids": input_ids, "attention_mask": input_mask} snake_case_ = model(UpperCAmelCase_ ) snake_case_ = [input_ids, input_mask] snake_case_ = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): snake_case_ = TFDistilBertForMaskedLM(config=UpperCAmelCase_ ) snake_case_ = {"input_ids": input_ids, "attention_mask": input_mask} snake_case_ = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): snake_case_ = TFDistilBertForQuestionAnswering(config=UpperCAmelCase_ ) snake_case_ = { "input_ids": input_ids, "attention_mask": input_mask, } snake_case_ = model(UpperCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowercase ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): snake_case_ = self.num_labels snake_case_ = TFDistilBertForSequenceClassification(UpperCAmelCase_ ) snake_case_ = {"input_ids": input_ids, "attention_mask": input_mask} snake_case_ = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): snake_case_ = self.num_choices snake_case_ = TFDistilBertForMultipleChoice(UpperCAmelCase_ ) snake_case_ = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) snake_case_ = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) snake_case_ = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, } snake_case_ = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowercase ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): snake_case_ = self.num_labels snake_case_ = TFDistilBertForTokenClassification(UpperCAmelCase_ ) snake_case_ = {"input_ids": input_ids, "attention_mask": input_mask} snake_case_ = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowercase ( self ): snake_case_ = self.prepare_config_and_inputs() ((snake_case_) , (snake_case_) , (snake_case_) , (snake_case_) , (snake_case_) , (snake_case_)) = config_and_inputs snake_case_ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" snake_case = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) snake_case = ( { """feature-extraction""": TFDistilBertModel, """fill-mask""": TFDistilBertForMaskedLM, """question-answering""": TFDistilBertForQuestionAnswering, """text-classification""": TFDistilBertForSequenceClassification, """token-classification""": TFDistilBertForTokenClassification, """zero-shot""": TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) snake_case = False snake_case = False def _lowercase ( self ): snake_case_ = TFDistilBertModelTester(self ) snake_case_ = ConfigTester(self , config_class=UpperCAmelCase_ , dim=37 ) def _lowercase ( self ): self.config_tester.run_common_tests() def _lowercase ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*UpperCAmelCase_ ) def _lowercase ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*UpperCAmelCase_ ) def _lowercase ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*UpperCAmelCase_ ) def _lowercase ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*UpperCAmelCase_ ) def _lowercase ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*UpperCAmelCase_ ) def _lowercase ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*UpperCAmelCase_ ) @slow def _lowercase ( self ): for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): snake_case_ = TFDistilBertModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def _lowercase ( self ): snake_case_ = TFDistilBertModel.from_pretrained("distilbert-base-uncased" ) snake_case_ = tf.constant([[0, 1, 2, 3, 4, 5]] ) snake_case_ = model(UpperCAmelCase_ )[0] snake_case_ = [1, 6, 7_68] self.assertEqual(output.shape , UpperCAmelCase_ ) snake_case_ = tf.constant( [ [ [0.19_261_885, -0.13_732_955, 0.4_119_799], [0.22_150_156, -0.07_422_661, 0.39_037_204], [0.22_756_018, -0.0_896_414, 0.3_701_467], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase_ , atol=1e-4 )
508
1
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) UpperCAmelCase__ : str = pytest.mark.integration @pytest.mark.parametrize("""path""" , ["""paws""", """csv"""] ) def __lowercase ( _A , _A ) -> List[str]: inspect_dataset(_A , _A ) SCREAMING_SNAKE_CASE : Union[str, Any] = path + """.py""" assert script_name in os.listdir(_A ) assert "__pycache__" not in os.listdir(_A ) @pytest.mark.filterwarnings("""ignore:inspect_metric is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.parametrize("""path""" , ["""accuracy"""] ) def __lowercase ( _A , _A ) -> Optional[Any]: inspect_metric(_A , _A ) SCREAMING_SNAKE_CASE : Optional[int] = path + """.py""" assert script_name in os.listdir(_A ) assert "__pycache__" not in os.listdir(_A ) @pytest.mark.parametrize( """path, config_name, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def __lowercase ( _A , _A , _A ) -> Union[str, Any]: SCREAMING_SNAKE_CASE : Dict = get_dataset_config_info(_A , config_name=_A ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def __lowercase ( _A , _A , _A ) -> List[str]: with pytest.raises(_A ): get_dataset_config_info(_A , config_name=_A ) @pytest.mark.parametrize( """path, expected""" , [ ("""squad""", """plain_text"""), ("""acronym_identification""", """default"""), ("""lhoestq/squad""", """plain_text"""), ("""lhoestq/test""", """default"""), ("""lhoestq/demo1""", """lhoestq--demo1"""), ("""dalle-mini/wit""", """dalle-mini--wit"""), ] , ) def __lowercase ( _A , _A ) -> Optional[Any]: SCREAMING_SNAKE_CASE : Dict = get_dataset_config_names(_A ) assert expected in config_names @pytest.mark.parametrize( """path, expected_configs, expected_splits_in_first_config""" , [ ("""squad""", ["""plain_text"""], ["""train""", """validation"""]), ("""dalle-mini/wit""", ["""dalle-mini--wit"""], ["""train"""]), ("""paws""", ["""labeled_final""", """labeled_swap""", """unlabeled_final"""], ["""train""", """test""", """validation"""]), ] , ) def __lowercase ( _A , _A , _A ) -> List[str]: SCREAMING_SNAKE_CASE : Optional[int] = get_dataset_infos(_A ) assert list(infos.keys() ) == expected_configs SCREAMING_SNAKE_CASE : Any = expected_configs[0] assert expected_config in infos SCREAMING_SNAKE_CASE : Tuple = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( """path, expected_config, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def __lowercase ( _A , _A , _A ) -> Dict: SCREAMING_SNAKE_CASE : Tuple = get_dataset_infos(_A ) assert expected_config in infos SCREAMING_SNAKE_CASE : Dict = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def __lowercase ( _A , _A , _A ) -> Optional[Any]: with pytest.raises(_A ): get_dataset_split_names(_A , config_name=_A )
446
import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel UpperCAmelCase__ : Optional[Any] = False UpperCAmelCase__ : Union[str, Any] = True UpperCAmelCase__ : int = False if __name__ == "__main__": UpperCAmelCase__ : List[Any] = argparse.ArgumentParser() parser.add_argument( """--repo_path""", default=None, type=str, required=True, help="""The config json file corresponding to the architecture.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") UpperCAmelCase__ : List[str] = parser.parse_args() UpperCAmelCase__ : Dict = { """image_size""": """sample_size""", """num_res_blocks""": """layers_per_block""", """block_channels""": """block_out_channels""", """down_blocks""": """down_block_types""", """up_blocks""": """up_block_types""", """downscale_freq_shift""": """freq_shift""", """resnet_num_groups""": """norm_num_groups""", """resnet_act_fn""": """act_fn""", """resnet_eps""": """norm_eps""", """num_head_channels""": """attention_head_dim""", } UpperCAmelCase__ : str = { """time_steps""": """time_proj""", """mid""": """mid_block""", """downsample_blocks""": """down_blocks""", """upsample_blocks""": """up_blocks""", } UpperCAmelCase__ : Union[str, Any] = """""" if has_file(args.repo_path, """config.json""") else """unet""" with open(os.path.join(args.repo_path, subfolder, """config.json"""), """r""", encoding="""utf-8""") as reader: UpperCAmelCase__ : Union[str, Any] = reader.read() UpperCAmelCase__ : Any = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, """config.json"""): UpperCAmelCase__ : int = UNetaDModel(**config) else: UpperCAmelCase__ : Optional[Any] = UNetaDConditionModel if """ldm-text2im-large-256""" in args.repo_path else UNetaDModel UpperCAmelCase__ : int = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) UpperCAmelCase__ : Optional[Any] = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: UpperCAmelCase__ : str = config[key] del config[key] UpperCAmelCase__ : Optional[int] = [k.replace("""UNetRes""", """""") for k in config["""down_block_types"""]] UpperCAmelCase__ : Optional[int] = [k.replace("""UNetRes""", """""") for k in config["""up_block_types"""]] if do_only_weights: UpperCAmelCase__ : Dict = torch.load(os.path.join(args.repo_path, subfolder, """diffusion_pytorch_model.bin""")) UpperCAmelCase__ : Optional[Any] = {} for param_key, param_value in state_dict.items(): if param_key.endswith(""".op.bias""") or param_key.endswith(""".op.weight"""): continue UpperCAmelCase__ : Union[str, Any] = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split(""".""")[0] == key: UpperCAmelCase__ : List[Any] = param_value UpperCAmelCase__ : List[str] = True if not has_changed: UpperCAmelCase__ : Any = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
446
1
import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class A_ ( __UpperCamelCase ): '''simple docstring''' def __init__( self: int , a: List[str] , a: Optional[Any] , a: int ): __lowerCamelCase : List[Any] = dataset __lowerCamelCase : List[Any] = process __lowerCamelCase : Optional[int] = params def __len__( self: Dict ): return len(self.dataset ) def __getitem__( self: Optional[int] , a: Tuple ): __lowerCamelCase : List[str] = self.dataset[i] __lowerCamelCase : Optional[Any] = self.process(__lowerCAmelCase , **self.params ) return processed class A_ ( __UpperCamelCase ): '''simple docstring''' def __init__( self: str , a: Optional[int] , a: Tuple , a: Any , a: str=None ): __lowerCamelCase : Any = loader __lowerCamelCase : Optional[Any] = infer __lowerCamelCase : List[str] = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether __lowerCamelCase : List[str] = None __lowerCamelCase : Tuple = loader_batch_size # Internal bookkeeping __lowerCamelCase : Any = None __lowerCamelCase : Optional[Any] = None def __len__( self: Optional[Any] ): return len(self.loader ) def __iter__( self: Union[str, Any] ): __lowerCamelCase : int = iter(self.loader ) return self def _snake_case ( self: Any ): if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice __lowerCamelCase : Optional[Any] = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) __lowerCamelCase : int = {} for k, element in self._loader_batch_data.items(): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): # Convert ModelOutput to tuple first __lowerCamelCase : Any = element.to_tuple() if isinstance(element[0] , torch.Tensor ): __lowerCamelCase : Tuple = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): __lowerCamelCase : int = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(__lowerCAmelCase , __lowerCAmelCase ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): __lowerCamelCase : Union[str, Any] = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): __lowerCamelCase : List[Any] = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around __lowerCamelCase : Any = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers __lowerCamelCase : str = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers __lowerCamelCase : Union[str, Any] = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. __lowerCamelCase : Optional[int] = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 __lowerCamelCase : Union[str, Any] = self._loader_batch_data.__class__(__lowerCAmelCase ) self._loader_batch_index += 1 return result def _snake_case ( self: List[Any] ): if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch __lowerCamelCase : Dict = next(self.iterator ) __lowerCamelCase : Optional[Any] = self.infer(__lowerCAmelCase , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(__lowerCAmelCase , torch.Tensor ): __lowerCamelCase : Optional[Any] = processed else: __lowerCamelCase : List[str] = list(processed.keys() )[0] __lowerCamelCase : List[str] = processed[key] if isinstance(__lowerCAmelCase , __lowerCAmelCase ): __lowerCamelCase : Tuple = len(__lowerCAmelCase ) else: __lowerCamelCase : Optional[Any] = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. __lowerCamelCase : int = observed_batch_size # Setting internal index to unwrap the batch __lowerCamelCase : Optional[Any] = processed __lowerCamelCase : Optional[int] = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class A_ ( __UpperCamelCase ): '''simple docstring''' def __init__( self: Optional[Any] , a: Union[str, Any] , a: Optional[Any] , a: Dict , a: List[Any]=None ): super().__init__(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def __iter__( self: str ): __lowerCamelCase : str = iter(self.loader ) __lowerCamelCase : int = None return self def _snake_case ( self: str ): if self.subiterator is None: __lowerCamelCase : Tuple = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item __lowerCamelCase : List[Any] = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators __lowerCamelCase : Optional[Any] = self.infer(next(self.iterator ) , **self.params ) __lowerCamelCase : int = next(self.subiterator ) return processed class A_ ( __UpperCamelCase ): '''simple docstring''' def __iter__( self: str ): __lowerCamelCase : List[str] = iter(self.loader ) return self def _snake_case ( self: List[str] ): # Extremely similar to PipelineIterator in its unpacking mechanism # BUT, we have an extra required item which is the presence of `is_last` # That is because everything is flattened by `PipelineChunkIterator` we # need to keep track of how to regroup here in the original `process` # boundaries so that `process` and `postprocess` see the same data. # This iterator accumulates items (possibly while unbatching) until it # its a `is_last` and then just passes it on to the caller. __lowerCamelCase : Optional[Any] = False __lowerCamelCase : Any = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: __lowerCamelCase : Optional[Any] = self.loader_batch_item() __lowerCamelCase : Union[str, Any] = item.pop('is_last' ) accumulator.append(__lowerCAmelCase ) if is_last: return accumulator while not is_last: __lowerCamelCase : Any = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(__lowerCAmelCase , torch.Tensor ): __lowerCamelCase : List[str] = processed else: __lowerCamelCase : Optional[Any] = list(processed.keys() )[0] __lowerCamelCase : List[str] = processed[key] if isinstance(__lowerCAmelCase , __lowerCAmelCase ): __lowerCamelCase : Union[str, Any] = len(__lowerCAmelCase ) else: __lowerCamelCase : Any = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. __lowerCamelCase : List[Any] = observed_batch_size __lowerCamelCase : Dict = processed __lowerCamelCase : Any = 0 while self._loader_batch_index < self.loader_batch_size: __lowerCamelCase : str = self.loader_batch_item() __lowerCamelCase : int = item.pop('is_last' ) accumulator.append(__lowerCAmelCase ) if is_last: return accumulator else: __lowerCamelCase : int = processed __lowerCamelCase : Union[str, Any] = item.pop('is_last' ) accumulator.append(__lowerCAmelCase ) return accumulator class A_ ( __UpperCamelCase ): '''simple docstring''' def __init__( self: Tuple , a: str , a: Union[str, Any] ): __lowerCamelCase : Optional[int] = dataset __lowerCamelCase : Optional[Any] = key def __len__( self: Any ): return len(self.dataset ) def __getitem__( self: str , a: List[Any] ): return self.dataset[i][self.key] class A_ ( __UpperCamelCase ): '''simple docstring''' def __init__( self: Dict , a: Any , a: Any , a: List[str] ): __lowerCamelCase : Union[str, Any] = dataset __lowerCamelCase : Optional[int] = keya __lowerCamelCase : Optional[int] = keya def __len__( self: Any ): return len(self.dataset ) def __getitem__( self: Any , a: str ): return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
669
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__: Any = logging.get_logger(__name__) lowerCAmelCase__: Union[str, Any] = "https://openaipublic.azureedge.net/jukebox/models/" lowerCAmelCase__: Union[str, Any] = { "jukebox-1b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "1b_lyrics/prior_level_2.pth.tar", ], "jukebox-5b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "5b_lyrics/prior_level_2.pth.tar", ], } def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ) -> Tuple: if key.endswith('.model.1.bias' ) and len(key.split('.' ) ) > 10: SCREAMING_SNAKE_CASE_ : Dict = key.replace('.model.1.bias' , '.conv1d_1.bias' ) elif key.endswith('.model.1.weight' ) and len(key.split('.' ) ) > 10: SCREAMING_SNAKE_CASE_ : List[str] = key.replace('.model.1.weight' , '.conv1d_1.weight' ) elif key.endswith('.model.3.bias' ) and len(key.split('.' ) ) > 10: SCREAMING_SNAKE_CASE_ : Optional[int] = key.replace('.model.3.bias' , '.conv1d_2.bias' ) elif key.endswith('.model.3.weight' ) and len(key.split('.' ) ) > 10: SCREAMING_SNAKE_CASE_ : Tuple = key.replace('.model.3.weight' , '.conv1d_2.weight' ) if "conditioner_blocks.0." in key: SCREAMING_SNAKE_CASE_ : Any = key.replace('conditioner_blocks.0' , 'conditioner_blocks' ) if "prime_prior" in key: SCREAMING_SNAKE_CASE_ : List[Any] = key.replace('prime_prior' , 'encoder' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: SCREAMING_SNAKE_CASE_ : str = key.replace('.emb.' , '.' ) if key.endswith('k' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('.k' , '.codebook' ) if "y_emb." in key: return key.replace('y_emb.' , 'metadata_embedding.' ) if "x_emb.emb." in key: SCREAMING_SNAKE_CASE_ : List[str] = key.replace('0.x_emb.emb' , 'embed_tokens' ) if "prime_state_ln" in key: return key.replace('prime_state_ln' , 'encoder.final_layer_norm' ) if ".ln" in key: return key.replace('.ln' , '.layer_norm' ) if "_ln" in key: return key.replace('_ln' , '_layer_norm' ) if "prime_state_proj" in key: return key.replace('prime_state_proj' , 'encoder.proj_in' ) if "prime_x_out" in key: return key.replace('prime_x_out' , 'encoder.lm_head' ) if "prior.x_out" in key: return key.replace('x_out' , 'fc_proj_out' ) if "x_emb" in key: return key.replace('x_emb' , 'embed_tokens' ) return key def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: SCREAMING_SNAKE_CASE_ : Union[str, Any] = {} import re SCREAMING_SNAKE_CASE_ : Dict = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) SCREAMING_SNAKE_CASE_ : str = re.compile( R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) SCREAMING_SNAKE_CASE_ : Dict = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) SCREAMING_SNAKE_CASE_ : List[Any] = re.compile( R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) SCREAMING_SNAKE_CASE_ : Tuple = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) SCREAMING_SNAKE_CASE_ : List[Any] = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)' ) SCREAMING_SNAKE_CASE_ : List[str] = re.compile( R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) SCREAMING_SNAKE_CASE_ : List[str] = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : Any = re_encoder_block_conv_in.match(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[str] = regex_match.groups() SCREAMING_SNAKE_CASE_ : Union[str, Any] = int(groups[2] ) * 2 + int(groups[3] ) SCREAMING_SNAKE_CASE_ : List[str] = f'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}' SCREAMING_SNAKE_CASE_ : Any = re_encoder_block_conv_in.sub(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) elif re_encoder_block_resnet.fullmatch(SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : Any = re_encoder_block_resnet.match(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = regex_match.groups() SCREAMING_SNAKE_CASE_ : int = int(groups[2] ) * 2 + int(groups[3] ) SCREAMING_SNAKE_CASE_ : Tuple = {'1': 1, '3': 2}[groups[-2]] SCREAMING_SNAKE_CASE_ : int = f'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.' SCREAMING_SNAKE_CASE_ : Optional[Any] = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' SCREAMING_SNAKE_CASE_ : int = prefix + resnet_block SCREAMING_SNAKE_CASE_ : Dict = re_encoder_block_resnet.sub(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) elif re_encoder_block_proj_out.fullmatch(SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : Dict = re_encoder_block_proj_out.match(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Optional[Any] = regex_match.groups() SCREAMING_SNAKE_CASE_ : Tuple = f'encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}' SCREAMING_SNAKE_CASE_ : Optional[Any] = re_encoder_block_proj_out.sub(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : int = re_decoder_block_conv_out.match(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Dict = regex_match.groups() SCREAMING_SNAKE_CASE_ : List[str] = int(groups[2] ) * 2 + int(groups[3] ) - 2 SCREAMING_SNAKE_CASE_ : Dict = f'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}' SCREAMING_SNAKE_CASE_ : str = re_decoder_block_conv_out.sub(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) elif re_decoder_block_resnet.fullmatch(SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : str = re_decoder_block_resnet.match(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[Any] = regex_match.groups() SCREAMING_SNAKE_CASE_ : Dict = int(groups[2] ) * 2 + int(groups[3] ) - 2 SCREAMING_SNAKE_CASE_ : Tuple = {'1': 1, '3': 2}[groups[-2]] SCREAMING_SNAKE_CASE_ : str = f'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.' SCREAMING_SNAKE_CASE_ : Optional[int] = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' SCREAMING_SNAKE_CASE_ : Union[str, Any] = prefix + resnet_block SCREAMING_SNAKE_CASE_ : str = re_decoder_block_resnet.sub(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) elif re_decoder_block_proj_in.fullmatch(SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : Optional[int] = re_decoder_block_proj_in.match(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = regex_match.groups() SCREAMING_SNAKE_CASE_ : int = f'decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}' SCREAMING_SNAKE_CASE_ : Tuple = re_decoder_block_proj_in.sub(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : Tuple = re_prior_cond_conv_out.match(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : int = regex_match.groups() SCREAMING_SNAKE_CASE_ : Any = int(groups[1] ) * 2 + int(groups[2] ) - 2 SCREAMING_SNAKE_CASE_ : Dict = f'conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}' SCREAMING_SNAKE_CASE_ : str = re_prior_cond_conv_out.sub(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) elif re_prior_cond_resnet.fullmatch(SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = re_prior_cond_resnet.match(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Optional[int] = regex_match.groups() SCREAMING_SNAKE_CASE_ : Optional[int] = int(groups[1] ) * 2 + int(groups[2] ) - 2 SCREAMING_SNAKE_CASE_ : str = {'1': 1, '3': 2}[groups[-2]] SCREAMING_SNAKE_CASE_ : Optional[int] = f'conditioner_blocks.upsampler.upsample_block.{block_index}.' SCREAMING_SNAKE_CASE_ : Any = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' SCREAMING_SNAKE_CASE_ : List[Any] = prefix + resnet_block SCREAMING_SNAKE_CASE_ : Tuple = re_prior_cond_resnet.sub(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) elif re_prior_cond_proj_in.fullmatch(SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : str = re_prior_cond_proj_in.match(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : str = regex_match.groups() SCREAMING_SNAKE_CASE_ : Tuple = f'conditioner_blocks.upsampler.proj_in.{groups[-1]}' SCREAMING_SNAKE_CASE_ : Union[str, Any] = re_prior_cond_proj_in.sub(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # keep original key else: SCREAMING_SNAKE_CASE_ : List[Any] = original_key SCREAMING_SNAKE_CASE_ : Optional[int] = replace_key(SCREAMING_SNAKE_CASE ) if f'{key_prefix}.{key}' not in model_state_dict or key is None: print(f'failed converting {original_key} to {key}, does not match' ) # handle missmatched shape elif value.shape != model_state_dict[f'{key_prefix}.{key}'].shape: SCREAMING_SNAKE_CASE_ : List[str] = model_state_dict[f'{key_prefix}.{key}'] print(f'{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match' ) SCREAMING_SNAKE_CASE_ : int = original_key SCREAMING_SNAKE_CASE_ : Any = original_key SCREAMING_SNAKE_CASE_ : Any = value return new_dict @torch.no_grad() def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None ) -> Optional[Any]: for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' ): SCREAMING_SNAKE_CASE_ : List[str] = requests.get(f'{PREFIX}{file}' , allow_redirects=SCREAMING_SNAKE_CASE ) os.makedirs(f'{pytorch_dump_folder_path}/' , exist_ok=SCREAMING_SNAKE_CASE ) open(f'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' , 'wb' ).write(r.content ) SCREAMING_SNAKE_CASE_ : List[str] = MODEL_MAPPING[model_name.split('/' )[-1]] SCREAMING_SNAKE_CASE_ : str = JukeboxConfig.from_pretrained(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[Any] = JukeboxModel(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[Any] = [] SCREAMING_SNAKE_CASE_ : str = {} for i, dict_name in enumerate(SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : List[Any] = torch.load(f'{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}' )['model'] SCREAMING_SNAKE_CASE_ : List[Any] = {} for k in old_dic.keys(): if k.endswith('.b' ): SCREAMING_SNAKE_CASE_ : int = old_dic[k] elif k.endswith('.w' ): SCREAMING_SNAKE_CASE_ : Tuple = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: SCREAMING_SNAKE_CASE_ : List[Any] = old_dic[k] else: SCREAMING_SNAKE_CASE_ : int = old_dic[k] SCREAMING_SNAKE_CASE_ : Tuple = 'vqvae' if i == 0 else f'priors.{3 - i}' SCREAMING_SNAKE_CASE_ : Union[str, Any] = fix_jukebox_keys(SCREAMING_SNAKE_CASE , model.state_dict() , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) weight_dict.append(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[Any] = weight_dict.pop(0 ) model.vqvae.load_state_dict(SCREAMING_SNAKE_CASE ) for i in range(len(SCREAMING_SNAKE_CASE ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) with open(f'{pytorch_dump_folder_path}/mapping.json' , 'w' ) as txtfile: json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE ) return weight_dict if __name__ == "__main__": lowerCAmelCase__: Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="jukebox-5b-lyrics", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="jukebox-5b-lyrics-converted", type=str, help="Path to the output PyTorch model directory.", ) lowerCAmelCase__: List[Any] = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
345
0
'''simple docstring''' from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class __lowerCAmelCase( lowerCAmelCase__ ): @slow @require_torch def _lowercase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ :List[Any] = EncoderDecoderModel.from_encoder_decoder_pretrained('prajjwal1/bert-tiny' , 'prajjwal1/bert-tiny' ) SCREAMING_SNAKE_CASE_ :List[str] = BertTokenizer.from_pretrained('bert-base-uncased' ) SCREAMING_SNAKE_CASE_ :Tuple = bertabert.config.encoder.vocab_size SCREAMING_SNAKE_CASE_ :str = tokenizer.sep_token_id SCREAMING_SNAKE_CASE_ :Optional[int] = tokenizer.cls_token_id SCREAMING_SNAKE_CASE_ :Any = 128 SCREAMING_SNAKE_CASE_ :Any = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='train[:1%]' ) SCREAMING_SNAKE_CASE_ :Tuple = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='validation[:1%]' ) SCREAMING_SNAKE_CASE_ :List[str] = train_dataset.select(range(32 ) ) SCREAMING_SNAKE_CASE_ :Any = val_dataset.select(range(16 ) ) SCREAMING_SNAKE_CASE_ :Optional[int] = 4 def _map_to_encoder_decoder_inputs(SCREAMING_SNAKE_CASE : Tuple ): # Tokenizer will automatically set [BOS] <text> [EOS] SCREAMING_SNAKE_CASE_ :Any = tokenizer(batch['article'] , padding='max_length' , truncation=SCREAMING_SNAKE_CASE , max_length=512 ) SCREAMING_SNAKE_CASE_ :int = tokenizer(batch['highlights'] , padding='max_length' , truncation=SCREAMING_SNAKE_CASE , max_length=128 ) SCREAMING_SNAKE_CASE_ :Any = inputs.input_ids SCREAMING_SNAKE_CASE_ :Tuple = inputs.attention_mask SCREAMING_SNAKE_CASE_ :str = outputs.input_ids SCREAMING_SNAKE_CASE_ :Optional[Any] = outputs.input_ids.copy() SCREAMING_SNAKE_CASE_ :Union[str, Any] = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['labels'] ] SCREAMING_SNAKE_CASE_ :List[str] = outputs.attention_mask assert all(len(SCREAMING_SNAKE_CASE ) == 512 for x in inputs.input_ids ) assert all(len(SCREAMING_SNAKE_CASE ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(SCREAMING_SNAKE_CASE : Dict ): SCREAMING_SNAKE_CASE_ :List[Any] = pred.label_ids SCREAMING_SNAKE_CASE_ :Dict = pred.predictions # all unnecessary tokens are removed SCREAMING_SNAKE_CASE_ :int = tokenizer.batch_decode(SCREAMING_SNAKE_CASE , skip_special_tokens=SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :Optional[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE , skip_special_tokens=SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :Optional[int] = sum([int(pred_str[i] == label_str[i] ) for i in range(len(SCREAMING_SNAKE_CASE ) )] ) / len(SCREAMING_SNAKE_CASE ) return {"accuracy": accuracy} # map train dataset SCREAMING_SNAKE_CASE_ :Optional[Any] = train_dataset.map( _map_to_encoder_decoder_inputs , batched=SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE , remove_columns=['article', 'highlights'] , ) train_dataset.set_format( type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , ) # same for validation dataset SCREAMING_SNAKE_CASE_ :List[str] = val_dataset.map( _map_to_encoder_decoder_inputs , batched=SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE , remove_columns=['article', 'highlights'] , ) val_dataset.set_format( type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , ) SCREAMING_SNAKE_CASE_ :Optional[Any] = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE_ :int = SeqaSeqTrainingArguments( output_dir=SCREAMING_SNAKE_CASE , per_device_train_batch_size=SCREAMING_SNAKE_CASE , per_device_eval_batch_size=SCREAMING_SNAKE_CASE , predict_with_generate=SCREAMING_SNAKE_CASE , evaluation_strategy='steps' , do_train=SCREAMING_SNAKE_CASE , do_eval=SCREAMING_SNAKE_CASE , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer SCREAMING_SNAKE_CASE_ :Tuple = SeqaSeqTrainer( model=SCREAMING_SNAKE_CASE , args=SCREAMING_SNAKE_CASE , compute_metrics=_compute_metrics , train_dataset=SCREAMING_SNAKE_CASE , eval_dataset=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE , ) # start training trainer.train()
702
'''simple docstring''' import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed SCREAMING_SNAKE_CASE__ : Optional[Any] = { """distilbert""": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), """roberta""": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), """bert""": (BertConfig, BertForMaskedLM, BertTokenizer), """gpt2""": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE ): assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): if args.student_type == "roberta": SCREAMING_SNAKE_CASE_ :Any = False elif args.student_type == "gpt2": SCREAMING_SNAKE_CASE_ :List[Any] = False def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): if args.student_type == "roberta": SCREAMING_SNAKE_CASE_ :int = False def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE_ :Dict = argparse.ArgumentParser(description='Training' ) parser.add_argument('--force' , action='store_true' , help='Overwrite dump_path if it already exists.' ) parser.add_argument( '--dump_path' , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help='The output directory (log, checkpoints, parameters, etc.)' ) parser.add_argument( '--data_file' , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help='The binarized file (tokenized + tokens_to_ids) and grouped by sequence.' , ) parser.add_argument( '--student_type' , type=SCREAMING_SNAKE_CASE , choices=['distilbert', 'roberta', 'gpt2'] , required=SCREAMING_SNAKE_CASE , help='The student type (DistilBERT, RoBERTa).' , ) parser.add_argument('--student_config' , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help='Path to the student configuration.' ) parser.add_argument( '--student_pretrained_weights' , default=SCREAMING_SNAKE_CASE , type=SCREAMING_SNAKE_CASE , help='Load student initialization checkpoint.' ) parser.add_argument( '--teacher_type' , choices=['bert', 'roberta', 'gpt2'] , required=SCREAMING_SNAKE_CASE , help='Teacher type (BERT, RoBERTa).' ) parser.add_argument('--teacher_name' , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help='The teacher model.' ) parser.add_argument('--temperature' , default=2.0 , type=SCREAMING_SNAKE_CASE , help='Temperature for the softmax temperature.' ) parser.add_argument( '--alpha_ce' , default=0.5 , type=SCREAMING_SNAKE_CASE , help='Linear weight for the distillation loss. Must be >=0.' ) parser.add_argument( '--alpha_mlm' , default=0.0 , type=SCREAMING_SNAKE_CASE , help='Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.' , ) parser.add_argument('--alpha_clm' , default=0.5 , type=SCREAMING_SNAKE_CASE , help='Linear weight for the CLM loss. Must be >=0.' ) parser.add_argument('--alpha_mse' , default=0.0 , type=SCREAMING_SNAKE_CASE , help='Linear weight of the MSE loss. Must be >=0.' ) parser.add_argument( '--alpha_cos' , default=0.0 , type=SCREAMING_SNAKE_CASE , help='Linear weight of the cosine embedding loss. Must be >=0.' ) parser.add_argument( '--mlm' , action='store_true' , help='The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.' ) parser.add_argument( '--mlm_mask_prop' , default=0.1_5 , type=SCREAMING_SNAKE_CASE , help='Proportion of tokens for which we need to make a prediction.' , ) parser.add_argument('--word_mask' , default=0.8 , type=SCREAMING_SNAKE_CASE , help='Proportion of tokens to mask out.' ) parser.add_argument('--word_keep' , default=0.1 , type=SCREAMING_SNAKE_CASE , help='Proportion of tokens to keep.' ) parser.add_argument('--word_rand' , default=0.1 , type=SCREAMING_SNAKE_CASE , help='Proportion of tokens to randomly replace.' ) parser.add_argument( '--mlm_smoothing' , default=0.7 , type=SCREAMING_SNAKE_CASE , help='Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).' , ) parser.add_argument('--token_counts' , type=SCREAMING_SNAKE_CASE , help='The token counts in the data_file for MLM.' ) parser.add_argument( '--restrict_ce_to_mask' , action='store_true' , help='If true, compute the distillation loss only the [MLM] prediction distribution.' , ) parser.add_argument( '--freeze_pos_embs' , action='store_true' , help='Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.' , ) parser.add_argument( '--freeze_token_type_embds' , action='store_true' , help='Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.' , ) parser.add_argument('--n_epoch' , type=SCREAMING_SNAKE_CASE , default=3 , help='Number of pass on the whole dataset.' ) parser.add_argument('--batch_size' , type=SCREAMING_SNAKE_CASE , default=5 , help='Batch size (for each process).' ) parser.add_argument( '--group_by_size' , action='store_false' , help='If true, group sequences that have similar length into the same batch. Default is true.' , ) parser.add_argument( '--gradient_accumulation_steps' , type=SCREAMING_SNAKE_CASE , default=50 , help='Gradient accumulation for larger training batches.' , ) parser.add_argument('--warmup_prop' , default=0.0_5 , type=SCREAMING_SNAKE_CASE , help='Linear warmup proportion.' ) parser.add_argument('--weight_decay' , default=0.0 , type=SCREAMING_SNAKE_CASE , help='Weight decay if we apply some.' ) parser.add_argument('--learning_rate' , default=5E-4 , type=SCREAMING_SNAKE_CASE , help='The initial learning rate for Adam.' ) parser.add_argument('--adam_epsilon' , default=1E-6 , type=SCREAMING_SNAKE_CASE , help='Epsilon for Adam optimizer.' ) parser.add_argument('--max_grad_norm' , default=5.0 , type=SCREAMING_SNAKE_CASE , help='Max gradient norm.' ) parser.add_argument('--initializer_range' , default=0.0_2 , type=SCREAMING_SNAKE_CASE , help='Random initialization range.' ) parser.add_argument( '--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , ) parser.add_argument( '--fp16_opt_level' , type=SCREAMING_SNAKE_CASE , default='O1' , help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ) , ) parser.add_argument('--n_gpu' , type=SCREAMING_SNAKE_CASE , default=1 , help='Number of GPUs in the node.' ) parser.add_argument('--local_rank' , type=SCREAMING_SNAKE_CASE , default=-1 , help='Distributed training - Local rank' ) parser.add_argument('--seed' , type=SCREAMING_SNAKE_CASE , default=56 , help='Random seed' ) parser.add_argument('--log_interval' , type=SCREAMING_SNAKE_CASE , default=500 , help='Tensorboard logging interval.' ) parser.add_argument('--checkpoint_interval' , type=SCREAMING_SNAKE_CASE , default=4000 , help='Checkpoint interval.' ) SCREAMING_SNAKE_CASE_ :List[Any] = parser.parse_args() sanity_checks(SCREAMING_SNAKE_CASE ) # ARGS # init_gpu_params(SCREAMING_SNAKE_CASE ) set_seed(SCREAMING_SNAKE_CASE ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F'Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite' ' itUse `--force` if you want to overwrite it' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F'Experiment will be dumped and logged in {args.dump_path}' ) # SAVE PARAMS # logger.info(F'Param: {args}' ) with open(os.path.join(args.dump_path , 'parameters.json' ) , 'w' ) as f: json.dump(vars(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE , indent=4 ) git_log(args.dump_path ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ :Any = MODEL_CLASSES[args.student_type] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ :Union[str, Any] = MODEL_CLASSES[args.teacher_type] # TOKENIZER # SCREAMING_SNAKE_CASE_ :Union[str, Any] = teacher_tokenizer_class.from_pretrained(args.teacher_name ) SCREAMING_SNAKE_CASE_ :Union[str, Any] = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): SCREAMING_SNAKE_CASE_ :Union[str, Any] = tokenizer.all_special_tokens.index(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :int = tokenizer.all_special_ids[idx] logger.info(F'Special tokens {special_tok_ids}' ) SCREAMING_SNAKE_CASE_ :Dict = special_tok_ids SCREAMING_SNAKE_CASE_ :Union[str, Any] = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F'Loading data from {args.data_file}' ) with open(args.data_file , 'rb' ) as fp: SCREAMING_SNAKE_CASE_ :Any = pickle.load(SCREAMING_SNAKE_CASE ) if args.mlm: logger.info(F'Loading token counts from {args.token_counts} (already pre-computed)' ) with open(args.token_counts , 'rb' ) as fp: SCREAMING_SNAKE_CASE_ :Tuple = pickle.load(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :str = np.maximum(SCREAMING_SNAKE_CASE , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): SCREAMING_SNAKE_CASE_ :Tuple = 0.0 # do not predict special tokens SCREAMING_SNAKE_CASE_ :int = torch.from_numpy(SCREAMING_SNAKE_CASE ) else: SCREAMING_SNAKE_CASE_ :List[Any] = None SCREAMING_SNAKE_CASE_ :List[str] = LmSeqsDataset(params=SCREAMING_SNAKE_CASE , data=SCREAMING_SNAKE_CASE ) logger.info('Data loader created.' ) # STUDENT # logger.info(F'Loading student config from {args.student_config}' ) SCREAMING_SNAKE_CASE_ :Tuple = student_config_class.from_pretrained(args.student_config ) SCREAMING_SNAKE_CASE_ :Optional[int] = True if args.student_pretrained_weights is not None: logger.info(F'Loading pretrained weights from {args.student_pretrained_weights}' ) SCREAMING_SNAKE_CASE_ :List[Any] = student_model_class.from_pretrained(args.student_pretrained_weights , config=SCREAMING_SNAKE_CASE ) else: SCREAMING_SNAKE_CASE_ :str = student_model_class(SCREAMING_SNAKE_CASE ) if args.n_gpu > 0: student.to(F'cuda:{args.local_rank}' ) logger.info('Student loaded.' ) # TEACHER # SCREAMING_SNAKE_CASE_ :Union[str, Any] = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=SCREAMING_SNAKE_CASE ) if args.n_gpu > 0: teacher.to(F'cuda:{args.local_rank}' ) logger.info(F'Teacher loaded from {args.teacher_name}.' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if args.freeze_token_type_embds: freeze_token_type_embeddings(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() SCREAMING_SNAKE_CASE_ :List[Any] = Distiller( params=SCREAMING_SNAKE_CASE , dataset=SCREAMING_SNAKE_CASE , token_probs=SCREAMING_SNAKE_CASE , student=SCREAMING_SNAKE_CASE , teacher=SCREAMING_SNAKE_CASE ) distiller.train() logger.info('Let\'s go get some drinks.' ) if __name__ == "__main__": main()
233
0