code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class _lowercase ( __lowercase ): def __init__( self : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any]=0.0_1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1000 ) -> Tuple: __snake_case = p_stop __snake_case = max_length def __iter__( self : Any ) -> Union[str, Any]: __snake_case = 0 __snake_case = False while not stop and count < self.max_length: yield count count += 1 __snake_case = random.random() < self.p_stop class _lowercase ( unittest.TestCase ): def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : str=False , SCREAMING_SNAKE_CASE_ : str=True ) -> Union[str, Any]: __snake_case = [ BatchSamplerShard(SCREAMING_SNAKE_CASE_ , 2 , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) for i in range(2 ) ] __snake_case = [list(SCREAMING_SNAKE_CASE_ ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(SCREAMING_SNAKE_CASE_ ) for shard in batch_sampler_shards] , [len(SCREAMING_SNAKE_CASE_ ) for e in expected] ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Tuple ) -> str: # Check the shards when the dataset is a round multiple of total batch size. __snake_case = BatchSampler(range(24 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(24 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) # Expected shouldn't change self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __snake_case = BatchSampler(range(21 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(21 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __snake_case = BatchSampler(range(22 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(22 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __snake_case = BatchSampler(range(20 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(20 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is very small. __snake_case = BatchSampler(range(2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] ) -> Union[str, Any]: # Check the shards when the dataset is a round multiple of batch size. __snake_case = BatchSampler(range(24 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(24 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) # Expected shouldn't change self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size. __snake_case = BatchSampler(range(22 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(22 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __snake_case = BatchSampler(range(21 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(21 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is very small. __snake_case = BatchSampler(range(2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) def a ( self : str ) -> str: # Check the shards when the dataset is a round multiple of total batch size. __snake_case = BatchSampler(range(24 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(24 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) # Expected shouldn't change self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __snake_case = BatchSampler(range(21 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(21 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __snake_case = BatchSampler(range(22 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(22 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __snake_case = BatchSampler(range(20 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(20 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is very small. __snake_case = BatchSampler(range(2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[[0, 1]], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) def a ( self : int ) -> Tuple: # Check the shards when the dataset is a round multiple of batch size. __snake_case = BatchSampler(range(24 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(24 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) # Expected shouldn't change self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size. __snake_case = BatchSampler(range(22 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(22 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __snake_case = BatchSampler(range(21 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(21 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is very small. __snake_case = BatchSampler(range(2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[[0, 1]], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[int] ) -> Tuple: __snake_case = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] __snake_case = [BatchSamplerShard(SCREAMING_SNAKE_CASE_ , 2 , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def a ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int=False , SCREAMING_SNAKE_CASE_ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE_ : int=False ) -> List[Any]: random.seed(SCREAMING_SNAKE_CASE_ ) __snake_case = list(SCREAMING_SNAKE_CASE_ ) __snake_case = [ IterableDatasetShard( SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ , drop_last=SCREAMING_SNAKE_CASE_ , num_processes=SCREAMING_SNAKE_CASE_ , process_index=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , ) for i in range(SCREAMING_SNAKE_CASE_ ) ] __snake_case = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(SCREAMING_SNAKE_CASE_ ) iterable_dataset_lists.append(list(SCREAMING_SNAKE_CASE_ ) ) __snake_case = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size __snake_case = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) self.assertTrue(len(SCREAMING_SNAKE_CASE_ ) % shard_batch_size == 0 ) __snake_case = [] for idx in range(0 , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(SCREAMING_SNAKE_CASE_ ) < len(SCREAMING_SNAKE_CASE_ ): reference += reference self.assertListEqual(SCREAMING_SNAKE_CASE_ , reference[: len(SCREAMING_SNAKE_CASE_ )] ) def a ( self : Dict ) -> Tuple: __snake_case = 42 __snake_case = RandomIterableDataset() self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) # Edge case with a very small dataset __snake_case = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] ) -> str: __snake_case = BatchSampler(range(16 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = SkipBatchSampler(SCREAMING_SNAKE_CASE_ , 2 ) self.assertListEqual(list(SCREAMING_SNAKE_CASE_ ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def a ( self : str ) -> Union[str, Any]: __snake_case = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def a ( self : Any ) -> str: __snake_case = DataLoader(list(range(16 ) ) , batch_size=4 ) __snake_case = skip_first_batches(SCREAMING_SNAKE_CASE_ , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def a ( self : Dict ) -> Optional[Any]: __snake_case = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(SCREAMING_SNAKE_CASE_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(SCREAMING_SNAKE_CASE_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def a ( self : Tuple ) -> Dict: Accelerator() __snake_case = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(SCREAMING_SNAKE_CASE_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(SCREAMING_SNAKE_CASE_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
56
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A_ (a_ , unittest.TestCase ): UpperCAmelCase__ = KandinskyVaaImgaImgPipeline UpperCAmelCase__ = ['''image_embeds''', '''negative_image_embeds''', '''image'''] UpperCAmelCase__ = [ '''image_embeds''', '''negative_image_embeds''', '''image''', ] UpperCAmelCase__ = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] UpperCAmelCase__ = False @property def _lowercase ( self ): '''simple docstring''' return 3_2 @property def _lowercase ( self ): '''simple docstring''' return 3_2 @property def _lowercase ( self ): '''simple docstring''' return self.time_input_dim @property def _lowercase ( self ): '''simple docstring''' return self.time_input_dim * 4 @property def _lowercase ( self ): '''simple docstring''' return 1_0_0 @property def _lowercase ( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } UpperCAmelCase = UNetaDConditionModel(**_A ) return model @property def _lowercase ( self ): '''simple docstring''' return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _lowercase ( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase = VQModel(**self.dummy_movq_kwargs ) return model def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.dummy_unet UpperCAmelCase = self.dummy_movq UpperCAmelCase = { '''num_train_timesteps''': 1_0_0_0, '''beta_schedule''': '''linear''', '''beta_start''': 0.0_00_85, '''beta_end''': 0.0_12, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } UpperCAmelCase = DDIMScheduler(**_A ) UpperCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def _lowercase ( self , _A , _A=0 ): '''simple docstring''' UpperCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_A ) ).to(_A ) UpperCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _A ) # create init_image UpperCAmelCase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(_A ) ).to(_A ) UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase = Image.fromarray(np.uinta(_A ) ).convert('''RGB''' ).resize((2_5_6, 2_5_6) ) if str(_A ).startswith('''mps''' ): UpperCAmelCase = torch.manual_seed(_A ) else: UpperCAmelCase = torch.Generator(device=_A ).manual_seed(_A ) UpperCAmelCase = { '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 6_4, '''width''': 6_4, '''num_inference_steps''': 1_0, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = '''cpu''' UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = self.pipeline_class(**_A ) UpperCAmelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase = pipe(**self.get_dummy_inputs(_A ) ) UpperCAmelCase = output.images UpperCAmelCase = pipe( **self.get_dummy_inputs(_A ) , return_dict=_A , )[0] UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) UpperCAmelCase = np.array( [0.6_19_97_78, 0.63_98_44_06, 0.46_14_57_85, 0.62_94_49_84, 0.5_62_22_15, 0.47_30_61_32, 0.47_44_14_56, 0.4_60_76_06, 0.48_71_92_63] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class A_ (unittest.TestCase ): def _lowercase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_img2img_frog.npy''' ) UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) UpperCAmelCase = '''A red cartoon frog, 4k''' UpperCAmelCase = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_A ) UpperCAmelCase = KandinskyVaaImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder''' , torch_dtype=torch.floataa ) UpperCAmelCase = pipeline.to(_A ) pipeline.set_progress_bar_config(disable=_A ) UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) UpperCAmelCase , UpperCAmelCase = pipe_prior( _A , generator=_A , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() UpperCAmelCase = pipeline( image=_A , image_embeds=_A , negative_image_embeds=_A , generator=_A , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , strength=0.2 , output_type='''np''' , ) UpperCAmelCase = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(_A , _A )
130
0
from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def snake_case ( snake_case__ :Optional[int] , snake_case__ :Dict) -> Optional[int]: _A = k_size // 2 _A , _A = mgrid[0 - center : k_size - center, 0 - center : k_size - center] _A = 1 / (2 * pi * sigma) * exp(-(square(UpperCamelCase__) + square(UpperCamelCase__)) / (2 * square(UpperCamelCase__))) return g def snake_case ( snake_case__ :List[str] , snake_case__ :List[str] , snake_case__ :List[Any]) -> Dict: _A , _A = image.shape[0], image.shape[1] # dst image height and width _A = height - k_size + 1 _A = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows _A = zeros((dst_height * dst_width, k_size * k_size)) _A = 0 for i, j in product(range(UpperCamelCase__) , range(UpperCamelCase__)): _A = ravel(image[i : i + k_size, j : j + k_size]) _A = window row += 1 # turn the kernel into shape(k*k, 1) _A = gen_gaussian_kernel(UpperCamelCase__ , UpperCamelCase__) _A = ravel(UpperCamelCase__) # reshape and get the dst image _A = dot(UpperCamelCase__ , UpperCamelCase__).reshape(UpperCamelCase__ , UpperCamelCase__).astype(UpperCamelCase__) return dst if __name__ == "__main__": # read original image _SCREAMING_SNAKE_CASE = imread(R'../image_data/lena.jpg') # turn image in gray scale value _SCREAMING_SNAKE_CASE = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size _SCREAMING_SNAKE_CASE = gaussian_filter(gray, 3, sigma=1) _SCREAMING_SNAKE_CASE = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow('gaussian filter with 3x3 mask', gaussianaxa) imshow('gaussian filter with 5x5 mask', gaussianaxa) waitKey()
715
from __future__ import annotations from collections.abc import Callable def snake_case ( snake_case__ :Callable[[int | float], int | float] , snake_case__ :int | float , snake_case__ :int | float , snake_case__ :int = 100 , ) -> float: _A = x_start _A = fnc(snake_case__) _A = 0.0 for _ in range(snake_case__): # Approximates small segments of curve as linear and solve # for trapezoidal area _A = (x_end - x_start) / steps + xa _A = fnc(snake_case__) area += abs(fxa + fxa) * (xa - xa) / 2 # Increment step _A = xa _A = fxa return area if __name__ == "__main__": def snake_case ( snake_case__ :Tuple) -> List[str]: return x**3 + x**2 print('f(x) = x^3 + x^2') print('The area between the curve, x = -5, x = 5 and the x axis is:') _SCREAMING_SNAKE_CASE = 10 while i <= 100_000: print(F'''with {i} steps: {trapezoidal_area(f, -5, 5, i)}''') i *= 10
83
0
from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class a : lowercase_ : int = BlenderbotConfig lowercase_ : Tuple = {} lowercase_ : List[Any] = 'gelu' def __init__( self : List[Any] , snake_case__ : Tuple , snake_case__ : Any=13 , snake_case__ : Union[str, Any]=7 , snake_case__ : Optional[int]=True , snake_case__ : Tuple=False , snake_case__ : Union[str, Any]=99 , snake_case__ : Union[str, Any]=32 , snake_case__ : List[Any]=2 , snake_case__ : int=4 , snake_case__ : Tuple=37 , snake_case__ : Tuple=0.1 , snake_case__ : str=0.1 , snake_case__ : Optional[Any]=20 , snake_case__ : Union[str, Any]=2 , snake_case__ : List[Any]=1 , snake_case__ : Optional[int]=0 , ): """simple docstring""" __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = eos_token_id __lowerCAmelCase = pad_token_id __lowerCAmelCase = bos_token_id def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __lowerCAmelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __lowerCAmelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __lowerCAmelCase = prepare_blenderbot_inputs_dict(snake_case__ , snake_case__ , snake_case__ ) return config, inputs_dict def UpperCAmelCase__ ( self : Dict , snake_case__ : Dict , snake_case__ : Union[str, Any] ): """simple docstring""" __lowerCAmelCase = TFBlenderbotModel(config=snake_case__ ).get_decoder() __lowerCAmelCase = inputs_dict["input_ids"] __lowerCAmelCase = input_ids[:1, :] __lowerCAmelCase = inputs_dict["attention_mask"][:1, :] __lowerCAmelCase = inputs_dict["head_mask"] __lowerCAmelCase = 1 # first forward pass __lowerCAmelCase = model(snake_case__ , attention_mask=snake_case__ , head_mask=snake_case__ , use_cache=snake_case__ ) __lowerCAmelCase , __lowerCAmelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __lowerCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) __lowerCAmelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __lowerCAmelCase = tf.concat([input_ids, next_tokens] , axis=-1 ) __lowerCAmelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __lowerCAmelCase = model(snake_case__ , attention_mask=snake_case__ )[0] __lowerCAmelCase = model(snake_case__ , attention_mask=snake_case__ , past_key_values=snake_case__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __lowerCAmelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __lowerCAmelCase = output_from_no_past[:, -3:, random_slice_idx] __lowerCAmelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(snake_case__ , snake_case__ , rtol=1E-3 ) def _UpperCAmelCase ( UpperCamelCase: Tuple , UpperCamelCase: Union[str, Any] , UpperCamelCase: Tuple , UpperCamelCase: Optional[Any]=None , UpperCamelCase: int=None , UpperCamelCase: List[str]=None , UpperCamelCase: List[str]=None , UpperCamelCase: List[Any]=None , ): """simple docstring""" if attention_mask is None: __lowerCAmelCase = tf.cast(tf.math.not_equal(UpperCamelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __lowerCAmelCase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __lowerCAmelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __lowerCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __lowerCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class a ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): lowercase_ : Dict = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () lowercase_ : Tuple = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () lowercase_ : str = ( { 'conversational': TFBlenderbotForConditionalGeneration, 'feature-extraction': TFBlenderbotModel, 'summarization': TFBlenderbotForConditionalGeneration, 'text2text-generation': TFBlenderbotForConditionalGeneration, 'translation': TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) lowercase_ : Optional[Any] = True lowercase_ : Any = False lowercase_ : Optional[Any] = False def UpperCAmelCase__ ( self : str ): """simple docstring""" __lowerCAmelCase = TFBlenderbotModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=snake_case__ ) def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : str ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*snake_case__ ) @require_tokenizers @require_tf class a ( unittest.TestCase ): lowercase_ : Tuple = ['My friends are cool but they eat too many carbs.'] lowercase_ : Optional[Any] = 'facebook/blenderbot-400M-distill' @cached_property def UpperCAmelCase__ ( self : int ): """simple docstring""" return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __lowerCAmelCase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __lowerCAmelCase = self.tokenizer(self.src_text , return_tensors="tf" ) __lowerCAmelCase = self.model.generate( model_inputs.input_ids , ) __lowerCAmelCase = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=snake_case__ )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
611
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger(__name__) def _UpperCAmelCase ( UpperCamelCase: str , UpperCamelCase: Any=False ): """simple docstring""" __lowerCAmelCase = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith("head" ): __lowerCAmelCase = "segformer.encoder." + key if key.startswith("backbone" ): __lowerCAmelCase = key.replace("backbone" , "segformer.encoder" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 __lowerCAmelCase = key[key.find("patch_embed" ) + len("patch_embed" )] __lowerCAmelCase = key.replace(F"patch_embed{idx}" , F"patch_embeddings.{int(UpperCamelCase )-1}" ) if "norm" in key: __lowerCAmelCase = key.replace("norm" , "layer_norm" ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 __lowerCAmelCase = key[key.find("segformer.encoder.layer_norm" ) + len("segformer.encoder.layer_norm" )] __lowerCAmelCase = key.replace(F"layer_norm{idx}" , F"layer_norm.{int(UpperCamelCase )-1}" ) if "layer_norm1" in key: __lowerCAmelCase = key.replace("layer_norm1" , "layer_norm_1" ) if "layer_norm2" in key: __lowerCAmelCase = key.replace("layer_norm2" , "layer_norm_2" ) if "block" in key: # replace for example block1 by block.0 __lowerCAmelCase = key[key.find("block" ) + len("block" )] __lowerCAmelCase = key.replace(F"block{idx}" , F"block.{int(UpperCamelCase )-1}" ) if "attn.q" in key: __lowerCAmelCase = key.replace("attn.q" , "attention.self.query" ) if "attn.proj" in key: __lowerCAmelCase = key.replace("attn.proj" , "attention.output.dense" ) if "attn" in key: __lowerCAmelCase = key.replace("attn" , "attention.self" ) if "fc1" in key: __lowerCAmelCase = key.replace("fc1" , "dense1" ) if "fc2" in key: __lowerCAmelCase = key.replace("fc2" , "dense2" ) if "linear_pred" in key: __lowerCAmelCase = key.replace("linear_pred" , "classifier" ) if "linear_fuse" in key: __lowerCAmelCase = key.replace("linear_fuse.conv" , "linear_fuse" ) __lowerCAmelCase = key.replace("linear_fuse.bn" , "batch_norm" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 __lowerCAmelCase = key[key.find("linear_c" ) + len("linear_c" )] __lowerCAmelCase = key.replace(F"linear_c{idx}" , F"linear_c.{int(UpperCamelCase )-1}" ) if key.startswith("head" ): __lowerCAmelCase = key.replace("head" , "classifier" ) __lowerCAmelCase = value return new_state_dict def _UpperCAmelCase ( UpperCamelCase: Optional[Any] , UpperCamelCase: Optional[Any] ): """simple docstring""" for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) __lowerCAmelCase = state_dict.pop(F"segformer.encoder.block.{i}.{j}.attention.self.kv.weight" ) __lowerCAmelCase = state_dict.pop(F"segformer.encoder.block.{i}.{j}.attention.self.kv.bias" ) # next, add keys and values (in that order) to the state dict __lowerCAmelCase = kv_weight[ : config.hidden_sizes[i], : ] __lowerCAmelCase = kv_bias[: config.hidden_sizes[i]] __lowerCAmelCase = kv_weight[ config.hidden_sizes[i] :, : ] __lowerCAmelCase = kv_bias[ config.hidden_sizes[i] : ] def _UpperCAmelCase ( ): """simple docstring""" __lowerCAmelCase = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowerCAmelCase = Image.open(requests.get(UpperCamelCase , stream=UpperCamelCase ).raw ) return image @torch.no_grad() def _UpperCAmelCase ( UpperCamelCase: Any , UpperCamelCase: str , UpperCamelCase: Optional[int] ): """simple docstring""" __lowerCAmelCase = SegformerConfig() __lowerCAmelCase = False # set attributes based on model_name __lowerCAmelCase = "huggingface/label-files" if "segformer" in model_name: __lowerCAmelCase = model_name[len("segformer." ) : len("segformer." ) + 2] if "ade" in model_name: __lowerCAmelCase = 1_5_0 __lowerCAmelCase = "ade20k-id2label.json" __lowerCAmelCase = (1, 1_5_0, 1_2_8, 1_2_8) elif "city" in model_name: __lowerCAmelCase = 1_9 __lowerCAmelCase = "cityscapes-id2label.json" __lowerCAmelCase = (1, 1_9, 1_2_8, 1_2_8) else: raise ValueError(F"Model {model_name} not supported" ) elif "mit" in model_name: __lowerCAmelCase = True __lowerCAmelCase = model_name[4:6] __lowerCAmelCase = 1_0_0_0 __lowerCAmelCase = "imagenet-1k-id2label.json" __lowerCAmelCase = (1, 1_0_0_0) else: raise ValueError(F"Model {model_name} not supported" ) # set config attributes __lowerCAmelCase = json.load(open(hf_hub_download(UpperCamelCase , UpperCamelCase , repo_type="dataset" ) , "r" ) ) __lowerCAmelCase = {int(UpperCamelCase ): v for k, v in idalabel.items()} __lowerCAmelCase = idalabel __lowerCAmelCase = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": __lowerCAmelCase = [6_4, 1_2_8, 3_2_0, 5_1_2] __lowerCAmelCase = 2_5_6 elif size == "b2": __lowerCAmelCase = [6_4, 1_2_8, 3_2_0, 5_1_2] __lowerCAmelCase = 7_6_8 __lowerCAmelCase = [3, 4, 6, 3] elif size == "b3": __lowerCAmelCase = [6_4, 1_2_8, 3_2_0, 5_1_2] __lowerCAmelCase = 7_6_8 __lowerCAmelCase = [3, 4, 1_8, 3] elif size == "b4": __lowerCAmelCase = [6_4, 1_2_8, 3_2_0, 5_1_2] __lowerCAmelCase = 7_6_8 __lowerCAmelCase = [3, 8, 2_7, 3] elif size == "b5": __lowerCAmelCase = [6_4, 1_2_8, 3_2_0, 5_1_2] __lowerCAmelCase = 7_6_8 __lowerCAmelCase = [3, 6, 4_0, 3] else: raise ValueError(F"Size {size} not supported" ) # load image processor (only resize + normalize) __lowerCAmelCase = SegformerImageProcessor( image_scale=(5_1_2, 5_1_2) , keep_ratio=UpperCamelCase , align=UpperCamelCase , do_random_crop=UpperCamelCase ) # prepare image __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=UpperCamelCase , return_tensors="pt" ).pixel_values logger.info(F"Converting model {model_name}..." ) # load original state dict if encoder_only: __lowerCAmelCase = torch.load(UpperCamelCase , map_location=torch.device("cpu" ) ) else: __lowerCAmelCase = torch.load(UpperCamelCase , map_location=torch.device("cpu" ) )["state_dict"] # rename keys __lowerCAmelCase = rename_keys(UpperCamelCase , encoder_only=UpperCamelCase ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(UpperCamelCase , UpperCamelCase ) # create HuggingFace model and load state dict if encoder_only: __lowerCAmelCase = False __lowerCAmelCase = SegformerForImageClassification(UpperCamelCase ) else: __lowerCAmelCase = SegformerForSemanticSegmentation(UpperCamelCase ) model.load_state_dict(UpperCamelCase ) model.eval() # forward pass __lowerCAmelCase = model(UpperCamelCase ) __lowerCAmelCase = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": __lowerCAmelCase = torch.tensor( [ [[-4.6_310, -5.5_232, -6.2_356], [-5.1_921, -6.1_444, -6.5_996], [-5.4_424, -6.2_790, -6.7_574]], [[-12.1_391, -13.3_122, -13.9_554], [-12.8_732, -13.9_352, -14.3_563], [-12.9_438, -13.8_226, -14.2_513]], [[-12.5_134, -13.4_686, -14.4_915], [-12.8_669, -14.4_343, -14.7_758], [-13.2_523, -14.5_819, -15.0_694]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": __lowerCAmelCase = torch.tensor( [ [[-7.5_820, -8.7_231, -8.3_215], [-8.0_600, -10.3_529, -10.0_304], [-7.5_208, -9.4_103, -9.6_239]], [[-12.6_918, -13.8_994, -13.7_137], [-13.3_196, -15.7_523, -15.4_789], [-12.9_343, -14.8_757, -14.9_689]], [[-11.1_911, -11.9_421, -11.3_243], [-11.3_342, -13.6_839, -13.3_581], [-10.3_909, -12.1_832, -12.4_858]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": __lowerCAmelCase = torch.tensor( [ [[-11.8_173, -14.3_850, -16.3_128], [-14.5_648, -16.5_804, -18.6_568], [-14.7_223, -15.7_387, -18.4_218]], [[-15.7_290, -17.9_171, -19.4_423], [-18.3_105, -19.9_448, -21.4_661], [-17.9_296, -18.6_497, -20.7_910]], [[-15.0_783, -17.0_336, -18.2_789], [-16.8_771, -18.6_870, -20.1_612], [-16.2_454, -17.1_426, -19.5_055]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": __lowerCAmelCase = torch.tensor( [ [[-9.0_878, -10.2_081, -10.1_891], [-9.3_144, -10.7_941, -10.9_843], [-9.2_294, -10.3_855, -10.5_704]], [[-12.2_316, -13.9_068, -13.6_102], [-12.9_161, -14.3_702, -14.3_235], [-12.5_233, -13.7_174, -13.7_932]], [[-14.6_275, -15.2_490, -14.9_727], [-14.3_400, -15.9_687, -16.2_827], [-14.1_484, -15.4_033, -15.8_937]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": __lowerCAmelCase = torch.tensor( [ [[-12.3_144, -13.2_447, -14.0_802], [-13.3_614, -14.5_816, -15.6_117], [-13.3_340, -14.4_433, -16.2_219]], [[-19.2_781, -20.4_128, -20.7_506], [-20.6_153, -21.6_566, -22.0_998], [-19.9_800, -21.0_430, -22.1_494]], [[-18.8_739, -19.7_804, -21.1_834], [-20.1_233, -21.6_765, -23.2_944], [-20.0_315, -21.2_641, -23.6_944]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": __lowerCAmelCase = torch.tensor( [ [[-9.5_524, -12.0_835, -11.7_348], [-10.5_229, -13.6_446, -14.5_662], [-9.5_842, -12.8_851, -13.9_414]], [[-15.3_432, -17.5_323, -17.0_818], [-16.3_330, -18.9_255, -19.2_101], [-15.1_340, -17.7_848, -18.3_971]], [[-12.6_072, -14.9_486, -14.6_631], [-13.7_629, -17.0_907, -17.7_745], [-12.7_899, -16.1_695, -17.1_671]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": __lowerCAmelCase = torch.tensor( [ [[-11.9_295, -13.4_057, -14.8_106], [-13.3_431, -14.8_179, -15.3_781], [-14.2_836, -15.5_942, -16.1_588]], [[-11.4_906, -12.8_067, -13.6_564], [-13.1_189, -14.0_500, -14.1_543], [-13.8_748, -14.5_136, -14.8_789]], [[0.5_374, 0.1_067, -0.4_742], [0.1_141, -0.2_255, -0.7_099], [-0.3_000, -0.5_924, -1.3_105]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": __lowerCAmelCase = torch.tensor( [ [[-7.8_217, -9.8_767, -10.1_717], [-9.4_438, -10.9_058, -11.4_047], [-9.7_939, -12.3_495, -12.1_079]], [[-7.1_514, -9.5_336, -10.0_860], [-9.7_776, -11.6_822, -11.8_439], [-10.1_411, -12.7_655, -12.8_972]], [[0.3_021, 0.0_805, -0.2_310], [-0.0_328, -0.1_605, -0.2_714], [-0.1_408, -0.5_477, -0.6_976]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": __lowerCAmelCase = torch.tensor( [ [ [-1.13_72e01, -1.27_87e01, -1.34_77e01], [-1.25_36e01, -1.41_94e01, -1.44_09e01], [-1.32_17e01, -1.48_88e01, -1.53_27e01], ], [ [-1.47_91e01, -1.71_22e01, -1.82_77e01], [-1.71_63e01, -1.91_92e01, -1.95_33e01], [-1.78_97e01, -1.99_91e01, -2.03_15e01], ], [ [7.67_23e-01, 4.19_21e-01, -7.78_78e-02], [4.77_72e-01, 9.55_57e-03, -2.80_82e-01], [3.60_32e-01, -2.48_26e-01, -5.11_68e-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": __lowerCAmelCase = torch.tensor( [ [[-9.4_959, -11.3_087, -11.7_479], [-11.0_025, -12.6_540, -12.3_319], [-11.4_064, -13.0_487, -12.9_905]], [[-9.8_905, -11.3_084, -12.0_854], [-11.1_726, -12.7_698, -12.9_583], [-11.5_985, -13.3_278, -14.1_774]], [[0.2_213, 0.0_192, -0.2_466], [-0.1_731, -0.4_213, -0.4_874], [-0.3_126, -0.6_541, -1.1_389]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": __lowerCAmelCase = torch.tensor( [ [[-13.5_748, -13.9_111, -12.6_500], [-14.3_500, -15.3_683, -14.2_328], [-14.7_532, -16.0_424, -15.6_087]], [[-17.1_651, -15.8_725, -12.9_653], [-17.2_580, -17.3_718, -14.8_223], [-16.6_058, -16.8_783, -16.7_452]], [[-3.6_456, -3.0_209, -1.4_203], [-3.0_797, -3.1_959, -2.0_000], [-1.8_757, -1.9_217, -1.6_997]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": __lowerCAmelCase = torch.tensor( [ [[-16.0_976, -16.4_856, -17.3_962], [-16.6_234, -19.0_342, -19.7_685], [-16.0_900, -18.0_661, -19.1_180]], [[-18.4_750, -18.8_488, -19.5_074], [-19.4_030, -22.1_570, -22.5_977], [-19.1_191, -20.8_486, -22.3_783]], [[-4.5_178, -5.5_037, -6.5_109], [-5.0_884, -7.2_174, -8.0_334], [-4.4_156, -5.8_117, -7.2_970]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": __lowerCAmelCase = torch.tensor( [ [[-14.2_081, -14.4_732, -14.1_977], [-14.5_867, -16.4_423, -16.6_356], [-13.4_441, -14.9_685, -16.8_696]], [[-14.4_576, -14.7_073, -15.0_451], [-15.0_816, -17.6_237, -17.9_873], [-14.4_213, -16.0_199, -18.5_992]], [[-4.7_349, -4.9_588, -5.0_966], [-4.3_210, -6.9_325, -7.2_591], [-3.4_312, -4.7_484, -7.1_917]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": __lowerCAmelCase = torch.tensor( [ [[-11.7_737, -11.9_526, -11.3_273], [-13.6_692, -14.4_574, -13.8_878], [-13.8_937, -14.6_924, -15.9_345]], [[-14.6_706, -14.5_330, -14.1_306], [-16.1_502, -16.8_180, -16.4_269], [-16.8_338, -17.8_939, -20.1_746]], [[1.0_491, 0.8_289, 1.0_310], [1.1_044, 0.5_219, 0.8_055], [1.0_899, 0.6_926, 0.5_590]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": __lowerCAmelCase = torch.tensor( [ [[-12.5_641, -13.4_777, -13.0_684], [-13.9_587, -15.8_983, -16.6_557], [-13.3_109, -15.7_350, -16.3_141]], [[-14.7_074, -15.4_352, -14.5_944], [-16.6_353, -18.1_663, -18.6_120], [-15.1_702, -18.0_329, -18.1_547]], [[-1.7_990, -2.0_951, -1.7_784], [-2.6_397, -3.8_245, -3.9_686], [-1.5_264, -2.8_126, -2.9_316]], ] ) else: __lowerCAmelCase = logits.argmax(-1 ).item() print("Predicted class:" , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , UpperCamelCase , atol=1e-2 ) # finally, save model and image processor logger.info(F"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(UpperCamelCase ).mkdir(exist_ok=UpperCamelCase ) model.save_pretrained(UpperCamelCase ) image_processor.save_pretrained(UpperCamelCase ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument( "--model_name", default="segformer.b0.512x512.ade.160k", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original PyTorch checkpoint (.pth file)." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) UpperCamelCase_ = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
611
1
import re from filelock import FileLock try: import nltk __lowerCamelCase = True except (ImportError, ModuleNotFoundError): __lowerCamelCase = False if NLTK_AVAILABLE: with FileLock('.lock') as lock: nltk.download('punkt', quiet=True) def UpperCamelCase__ ( UpperCAmelCase ) -> str: """simple docstring""" re.sub('''<n>''' , '''''' , UpperCAmelCase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(UpperCAmelCase ) )
307
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCamelCase = { 'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ 'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST', 'PegasusXForConditionalGeneration', 'PegasusXModel', 'PegasusXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
307
1
import argparse import os import re UpperCamelCase = "src/diffusers" # Pattern that looks at the indentation in a line. UpperCamelCase = re.compile(r"^(\s*)\S") # Pattern that matches `"key":" and puts `key` in group 0. UpperCamelCase = re.compile(r"^\s*\"([^\"]+)\":") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. UpperCamelCase = re.compile(r"^\s*_import_structure\[\"([^\"]+)\"\]") # Pattern that matches `"key",` and puts `key` in group 0. UpperCamelCase = re.compile(r"^\s*\"([^\"]+)\",\s*$") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. UpperCamelCase = re.compile(r"\[([^\]]+)\]") def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> int: _lowercase : List[str] = _re_indent.search(SCREAMING_SNAKE_CASE ) return "" if search is None else search.groups()[0] def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE="" , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None ) -> Tuple: _lowercase : List[Any] = 0 _lowercase : List[Any] = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(SCREAMING_SNAKE_CASE ): index += 1 _lowercase : List[str] = ['\n'.join(lines[:index] )] else: _lowercase : Union[str, Any] = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). _lowercase : List[str] = [lines[index]] index += 1 while index < len(SCREAMING_SNAKE_CASE ) and (end_prompt is None or not lines[index].startswith(SCREAMING_SNAKE_CASE )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(SCREAMING_SNAKE_CASE ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(SCREAMING_SNAKE_CASE ) ) if index < len(SCREAMING_SNAKE_CASE ) - 1: _lowercase : List[str] = [lines[index + 1]] index += 1 else: _lowercase : Optional[Any] = [] else: blocks.append('\n'.join(SCREAMING_SNAKE_CASE ) ) _lowercase : str = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(SCREAMING_SNAKE_CASE ) > 0: blocks.append('\n'.join(SCREAMING_SNAKE_CASE ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(SCREAMING_SNAKE_CASE ): blocks.append('\n'.join(lines[index:] ) ) return blocks def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> int: def _inner(SCREAMING_SNAKE_CASE ): return key(SCREAMING_SNAKE_CASE ).lower().replace('_' , '' ) return _inner def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None ) -> Optional[int]: # If no key is provided, we use a noop. def noop(SCREAMING_SNAKE_CASE ): return x if key is None: _lowercase : Optional[int] = noop # Constants are all uppercase, they go first. _lowercase : Dict = [obj for obj in objects if key(SCREAMING_SNAKE_CASE ).isupper()] # Classes are not all uppercase but start with a capital, they go second. _lowercase : List[Any] = [obj for obj in objects if key(SCREAMING_SNAKE_CASE )[0].isupper() and not key(SCREAMING_SNAKE_CASE ).isupper()] # Functions begin with a lowercase, they go last. _lowercase : Optional[int] = [obj for obj in objects if not key(SCREAMING_SNAKE_CASE )[0].isupper()] _lowercase : Optional[int] = ignore_underscore(SCREAMING_SNAKE_CASE ) return sorted(SCREAMING_SNAKE_CASE , key=SCREAMING_SNAKE_CASE ) + sorted(SCREAMING_SNAKE_CASE , key=SCREAMING_SNAKE_CASE ) + sorted(SCREAMING_SNAKE_CASE , key=SCREAMING_SNAKE_CASE ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Tuple: # This inner function sort imports between [ ]. def _replace(SCREAMING_SNAKE_CASE ): _lowercase : List[Any] = match.groups()[0] if "," not in imports: return F"""[{imports}]""" _lowercase : Tuple = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowercase : List[str] = keys[:-1] return "[" + ", ".join([F"""\"{k}\"""" for k in sort_objects(SCREAMING_SNAKE_CASE )] ) + "]" _lowercase : Dict = import_statement.split('\n' ) if len(SCREAMING_SNAKE_CASE ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. _lowercase : Any = 2 if lines[1].strip() == '[' else 1 _lowercase : Optional[int] = [(i, _re_strip_line.search(SCREAMING_SNAKE_CASE ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] _lowercase : Optional[Any] = sort_objects(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : x[1] ) _lowercase : int = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(SCREAMING_SNAKE_CASE ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: _lowercase : Any = _re_bracket_content.sub(_replace , lines[1] ) else: _lowercase : Union[str, Any] = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowercase : Any = keys[:-1] _lowercase : Optional[int] = get_indent(lines[1] ) + ', '.join([F"""\"{k}\"""" for k in sort_objects(SCREAMING_SNAKE_CASE )] ) return "\n".join(SCREAMING_SNAKE_CASE ) else: # Finally we have to deal with imports fitting on one line _lowercase : int = _re_bracket_content.sub(_replace , SCREAMING_SNAKE_CASE ) return import_statement def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True ) -> Optional[Any]: with open(SCREAMING_SNAKE_CASE , 'r' ) as f: _lowercase : Optional[int] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 _lowercase : Optional[int] = split_code_in_indented_blocks( SCREAMING_SNAKE_CASE , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(SCREAMING_SNAKE_CASE ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. _lowercase : Dict = main_blocks[block_idx] _lowercase : Dict = block.split('\n' ) # Get to the start of the imports. _lowercase : Optional[Any] = 0 while line_idx < len(SCREAMING_SNAKE_CASE ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: _lowercase : Optional[int] = len(SCREAMING_SNAKE_CASE ) else: line_idx += 1 if line_idx >= len(SCREAMING_SNAKE_CASE ): continue # Ignore beginning and last line: they don't contain anything. _lowercase : List[Any] = '\n'.join(block_lines[line_idx:-1] ) _lowercase : Any = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. _lowercase : List[str] = split_code_in_indented_blocks(SCREAMING_SNAKE_CASE , indent_level=SCREAMING_SNAKE_CASE ) # We have two categories of import key: list or _import_structure[key].append/extend _lowercase : List[str] = _re_direct_key if '_import_structure' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. _lowercase : List[Any] = [(pattern.search(SCREAMING_SNAKE_CASE ).groups()[0] if pattern.search(SCREAMING_SNAKE_CASE ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. _lowercase : List[str] = [(i, key) for i, key in enumerate(SCREAMING_SNAKE_CASE ) if key is not None] _lowercase : List[Any] = [x[0] for x in sorted(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. _lowercase : Dict = 0 _lowercase : Tuple = [] for i in range(len(SCREAMING_SNAKE_CASE ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: _lowercase : List[str] = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(SCREAMING_SNAKE_CASE ) count += 1 # And we put our main block back together with its first and last line. _lowercase : str = '\n'.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(SCREAMING_SNAKE_CASE ): if check_only: return True else: print(F"""Overwriting {file}.""" ) with open(SCREAMING_SNAKE_CASE , 'w' ) as f: f.write('\n'.join(SCREAMING_SNAKE_CASE ) ) def __magic_name__ ( SCREAMING_SNAKE_CASE=True ) -> Optional[Any]: _lowercase : Union[str, Any] = [] for root, _, files in os.walk(SCREAMING_SNAKE_CASE ): if "__init__.py" in files: _lowercase : Optional[int] = sort_imports(os.path.join(SCREAMING_SNAKE_CASE , '__init__.py' ) , check_only=SCREAMING_SNAKE_CASE ) if result: _lowercase : Optional[int] = [os.path.join(SCREAMING_SNAKE_CASE , '__init__.py' )] if len(SCREAMING_SNAKE_CASE ) > 0: raise ValueError(F"""Would overwrite {len(SCREAMING_SNAKE_CASE )} files, run `make style`.""" ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.") UpperCamelCase = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
66
from functools import lru_cache def UpperCAmelCase__ (UpperCamelCase_ ): """simple docstring""" snake_case = 2 snake_case = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(UpperCamelCase_ ) if n > 1: factors.add(UpperCamelCase_ ) return factors @lru_cache def UpperCAmelCase__ (UpperCamelCase_ ): """simple docstring""" return len(unique_prime_factors(UpperCamelCase_ ) ) def UpperCAmelCase__ (UpperCamelCase_ ): """simple docstring""" return len(set(UpperCamelCase_ ) ) in (0, 1) def UpperCAmelCase__ (UpperCamelCase_ ): """simple docstring""" snake_case = 2 while True: # Increment each value of a generated range snake_case = [base + i for i in range(UpperCamelCase_ )] # Run elements through out unique_prime_factors function # Append our target number to the end. snake_case = [upf_len(UpperCamelCase_ ) for x in group] checker.append(UpperCamelCase_ ) # If all numbers in the list are equal, return the group variable. if equality(UpperCamelCase_ ): return group # Increment our base variable by 1 base += 1 def UpperCAmelCase__ (UpperCamelCase_ = 4 ): """simple docstring""" snake_case = run(UpperCamelCase_ ) return results[0] if len(UpperCamelCase_ ) else None if __name__ == "__main__": print(solution())
550
0
'''simple docstring''' import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase__ : Any = '''โ–''' UpperCamelCase__ : Dict = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class _UpperCamelCase ( lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' _A : Dict = BertGenerationTokenizer _A : List[Any] = False _A : Union[str, Any] = True def UpperCamelCase__ ( self : Optional[Any] ): """simple docstring""" super().setUp() __SCREAMING_SNAKE_CASE : Dict = BertGenerationTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase__ ( self : Optional[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = """<s>""" __SCREAMING_SNAKE_CASE : Optional[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ ) def UpperCamelCase__ ( self : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(lowerCAmelCase__ ) , 1_0_0_2 ) def UpperCamelCase__ ( self : Optional[int] ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_0 ) def UpperCamelCase__ ( self : Optional[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = BertGenerationTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowerCAmelCase__ , ["""โ–This""", """โ–is""", """โ–a""", """โ–t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2] , ) __SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.tokenize("""I was born in 92000, and this is falsรฉ.""" ) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """รฉ""", """.""", ] , ) __SCREAMING_SNAKE_CASE : Any = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) self.assertListEqual( lowerCAmelCase__ , [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 0, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 0, 4] , ) __SCREAMING_SNAKE_CASE : Any = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def UpperCamelCase__ ( self : List[str] ): """simple docstring""" return BertGenerationTokenizer.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) @slow def UpperCamelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = """Hello World!""" __SCREAMING_SNAKE_CASE : Dict = [1_8_5_3_6, 2_2_6_0, 1_0_1] self.assertListEqual(lowerCAmelCase__ , self.big_tokenizer.encode(lowerCAmelCase__ ) ) @slow def UpperCamelCase__ ( self : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) __SCREAMING_SNAKE_CASE : Optional[int] = [ 8_7_1, 4_1_9, 3_5_8, 9_4_6, 9_9_1, 2_5_2_1, 4_5_2, 3_5_8, 1_3_5_7, 3_8_7, 7_7_5_1, 3_5_3_6, 1_1_2, 9_8_5, 4_5_6, 1_2_6, 8_6_5, 9_3_8, 5_4_0_0, 5_7_3_4, 4_5_8, 1_3_6_8, 4_6_7, 7_8_6, 2_4_6_2, 5_2_4_6, 1_1_5_9, 6_3_3, 8_6_5, 4_5_1_9, 4_5_7, 5_8_2, 8_5_2, 2_5_5_7, 4_2_7, 9_1_6, 5_0_8, 4_0_5, 3_4_3_2_4, 4_9_7, 3_9_1, 4_0_8, 1_1_3_4_2, 1_2_4_4, 3_8_5, 1_0_0, 9_3_8, 9_8_5, 4_5_6, 5_7_4, 3_6_2, 1_2_5_9_7, 3_2_0_0, 3_1_2_9, 1_1_7_2, ] self.assertListEqual(lowerCAmelCase__ , self.big_tokenizer.encode(lowerCAmelCase__ ) ) @require_torch @slow def UpperCamelCase__ ( self : str ): """simple docstring""" import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence __SCREAMING_SNAKE_CASE : List[Any] = list(self.big_tokenizer.get_vocab().keys() )[:1_0] __SCREAMING_SNAKE_CASE : int = """ """.join(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self.big_tokenizer.encode_plus(lowerCAmelCase__ , return_tensors="""pt""" , return_token_type_ids=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = self.big_tokenizer.batch_encode_plus( [sequence + """ """ + sequence] , return_tensors="""pt""" , return_token_type_ids=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = BertGenerationConfig() __SCREAMING_SNAKE_CASE : Any = BertGenerationEncoder(lowerCAmelCase__ ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**lowerCAmelCase__ ) model(**lowerCAmelCase__ ) @slow def UpperCamelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = {"""input_ids""": [[3_9_2_8_6, 4_5_8, 3_6_3_3_5, 2_0_0_1, 4_5_6, 1_3_0_7_3, 1_3_2_6_6, 4_5_5, 1_1_3, 7_7_4_6, 1_7_4_1, 1_1_1_5_7, 3_9_1, 1_3_0_7_3, 1_3_2_6_6, 4_5_5, 1_1_3, 3_9_6_7, 3_5_4_1_2, 1_1_3, 4_9_3_6, 1_0_9, 3_8_7_0, 2_3_7_7, 1_1_3, 3_0_0_8_4, 4_5_7_2_0, 4_5_8, 1_3_4, 1_7_4_9_6, 1_1_2, 5_0_3, 1_1_6_7_2, 1_1_3, 1_1_8, 1_1_2, 5_6_6_5, 1_3_3_4_7, 3_8_6_8_7, 1_1_2, 1_4_9_6, 3_1_3_8_9, 1_1_2, 3_2_6_8, 4_7_2_6_4, 1_3_4, 9_6_2, 1_1_2, 1_6_3_7_7, 8_0_3_5, 2_3_1_3_0, 4_3_0, 1_2_1_6_9, 1_5_5_1_8, 2_8_5_9_2, 4_5_8, 1_4_6, 4_1_6_9_7, 1_0_9, 3_9_1, 1_2_1_6_9, 1_5_5_1_8, 1_6_6_8_9, 4_5_8, 1_4_6, 4_1_3_5_8, 1_0_9, 4_5_2, 7_2_6, 4_0_3_4, 1_1_1, 7_6_3, 3_5_4_1_2, 5_0_8_2, 3_8_8, 1_9_0_3, 1_1_1, 9_0_5_1, 3_9_1, 2_8_7_0, 4_8_9_1_8, 1_9_0_0, 1_1_2_3, 5_5_0, 9_9_8, 1_1_2, 9_5_8_6, 1_5_9_8_5, 4_5_5, 3_9_1, 4_1_0, 2_2_9_5_5, 3_7_6_3_6, 1_1_4], [4_4_8, 1_7_4_9_6, 4_1_9, 3_6_6_3, 3_8_5, 7_6_3, 1_1_3, 2_7_5_3_3, 2_8_7_0, 3_2_8_3, 1_3_0_4_3, 1_6_3_9, 2_4_7_1_3, 5_2_3, 6_5_6, 2_4_0_1_3, 1_8_5_5_0, 2_5_2_1, 5_1_7, 2_7_0_1_4, 2_1_2_4_4, 4_2_0, 1_2_1_2, 1_4_6_5, 3_9_1, 9_2_7, 4_8_3_3, 3_8_8, 5_7_8, 1_1_7_8_6, 1_1_4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_8_4, 2_1_6_9, 7_6_8_7, 2_1_9_3_2, 1_8_1_4_6, 7_2_6, 3_6_3, 1_7_0_3_2, 3_3_9_1, 1_1_4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name="""google/bert_for_seq_generation_L-24_bbc_encoder""" , revision="""c817d1fd1be2ffa69431227a1fe320544943d4db""" , )
709
'''simple docstring''' import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor UpperCamelCase__ : List[str] = logging.get_logger(__name__) class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' def __init__( self : Union[str, Any] , *lowerCAmelCase__ : str , **lowerCAmelCase__ : Any ): """simple docstring""" warnings.warn( """The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DeiTImageProcessor instead.""" , lowerCAmelCase__ , ) super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ )
178
0
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE_ = {"""configuration_mra""": ["""MRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MraConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ """MRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MraForMaskedLM""", """MraForMultipleChoice""", """MraForQuestionAnswering""", """MraForSequenceClassification""", """MraForTokenClassification""", """MraLayer""", """MraModel""", """MraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
237
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {"""vocab_file""": """sentencepiece.bpe.model"""} SCREAMING_SNAKE_CASE_ = { """vocab_file""": { """camembert-base""": """https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model""", } } SCREAMING_SNAKE_CASE_ = { """camembert-base""": 5_12, } SCREAMING_SNAKE_CASE_ = """โ–""" class snake_case_ ( a_ ): __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = ["input_ids", "attention_mask"] def __init__( self , a_ , a_="<s>" , a_="</s>" , a_="</s>" , a_="<s>" , a_="<unk>" , a_="<pad>" , a_="<mask>" , a_=["<s>NOTUSED", "</s>NOTUSED"] , a_ = None , **a_ , ): # Mask token behave like a normal word, i.e. include the space before it a_ : Tuple = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else mask_token a_ : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=a_ , eos_token=a_ , unk_token=a_ , sep_token=a_ , cls_token=a_ , pad_token=a_ , mask_token=a_ , additional_special_tokens=a_ , sp_model_kwargs=self.sp_model_kwargs , **a_ , ) a_ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(a_ ) ) a_ : Union[str, Any] = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> a_ : Union[str, Any] = {"<s>NOTUSED": 0, "<pad>": 1, "</s>NOTUSED": 2, "<unk>": 3} a_ : List[Any] = len(self.fairseq_tokens_to_ids ) a_ : List[Any] = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) a_ : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def snake_case_ ( self , a_ , a_ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] a_ : Tuple = [self.cls_token_id] a_ : int = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case_ ( self , a_ , a_ = None , a_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a_ , token_ids_a=a_ , already_has_special_tokens=a_ ) if token_ids_a is None: return [1] + ([0] * len(a_ )) + [1] return [1] + ([0] * len(a_ )) + [1, 1] + ([0] * len(a_ )) + [1] def snake_case_ ( self , a_ , a_ = None ): a_ : List[str] = [self.sep_token_id] a_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def snake_case_ ( self ): return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def snake_case_ ( self ): a_ : Any = {self.convert_ids_to_tokens(a_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def snake_case_ ( self , a_ ): return self.sp_model.encode(a_ , out_type=a_ ) def snake_case_ ( self , a_ ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(a_ ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(a_ ) def snake_case_ ( self , a_ ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def snake_case_ ( self , a_ ): a_ : Any = [] a_ : int = "" a_ : Dict = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(a_ ) + token a_ : Union[str, Any] = True a_ : Optional[Any] = [] else: current_sub_tokens.append(a_ ) a_ : Dict = False out_string += self.sp_model.decode(a_ ) return out_string.strip() def __getstate__( self ): a_ : Any = self.__dict__.copy() a_ : Union[str, Any] = None return state def __setstate__( self , a_ ): a_ : Any = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): a_ : Optional[int] = {} a_ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def snake_case_ ( self , a_ , a_ = None ): if not os.path.isdir(a_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return a_ : List[Any] = os.path.join( a_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a_ ) elif not os.path.isfile(self.vocab_file ): with open(a_ , "wb" ) as fi: a_ : Dict = self.sp_model.serialized_model_proto() fi.write(a_ ) return (out_vocab_file,)
237
1
'''simple docstring''' import argparse import torch from transformers import GPTaLMHeadModel, RobertaForMaskedLM if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser( description=( 'Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='roberta', choices=['roberta', 'gpt2']) parser.add_argument('--model_name', default='roberta-large', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_roberta_048131723.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') UpperCAmelCase = parser.parse_args() if args.model_type == "roberta": UpperCAmelCase = RobertaForMaskedLM.from_pretrained(args.model_name) UpperCAmelCase = 'roberta' elif args.model_type == "gpt2": UpperCAmelCase = GPTaLMHeadModel.from_pretrained(args.model_name) UpperCAmelCase = 'transformer' UpperCAmelCase = model.state_dict() UpperCAmelCase = {} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: UpperCAmelCase = state_dict[F'''{prefix}.{param_name}'''] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: UpperCAmelCase = F'''{prefix}.embeddings.{w}.weight''' UpperCAmelCase = state_dict[param_name] for w in ["weight", "bias"]: UpperCAmelCase = F'''{prefix}.embeddings.LayerNorm.{w}''' UpperCAmelCase = state_dict[param_name] # Transformer Blocks # UpperCAmelCase = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: UpperCAmelCase = state_dict[ F'''{prefix}.h.{teacher_idx}.{layer}.{w}''' ] UpperCAmelCase = state_dict[F'''{prefix}.h.{teacher_idx}.attn.bias'''] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: UpperCAmelCase = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}''' ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: UpperCAmelCase = state_dict[F'''{layer}'''] if args.vocab_transform: for w in ["weight", "bias"]: UpperCAmelCase = state_dict[F'''lm_head.dense.{w}'''] UpperCAmelCase = state_dict[F'''lm_head.layer_norm.{w}'''] elif args.model_type == "gpt2": for w in ["weight", "bias"]: UpperCAmelCase = state_dict[F'''{prefix}.ln_f.{w}'''] UpperCAmelCase = state_dict['lm_head.weight'] print(F'''N layers selected for distillation: {std_idx}''') print(F'''Number of params transferred for distillation: {len(compressed_sd.keys())}''') print(F'''Save transferred checkpoint to {args.dump_checkpoint}.''') torch.save(compressed_sd, args.dump_checkpoint)
344
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase = { 'configuration_blenderbot': [ 'BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlenderbotConfig', 'BlenderbotOnnxConfig', ], 'tokenization_blenderbot': ['BlenderbotTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = ['BlenderbotTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ 'BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlenderbotForCausalLM', 'BlenderbotForConditionalGeneration', 'BlenderbotModel', 'BlenderbotPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ 'TFBlenderbotForConditionalGeneration', 'TFBlenderbotModel', 'TFBlenderbotPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ 'FlaxBlenderbotForConditionalGeneration', 'FlaxBlenderbotModel', 'FlaxBlenderbotPreTrainedModel', ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
344
1
'''simple docstring''' lowerCAmelCase_ : Optional[int] = 8.3144598 def _lowerCamelCase (__lowerCamelCase : List[Any] , __lowerCamelCase : Optional[Any] ) -> str: if temperature < 0: raise Exception("Temperature cannot be less than 0 K" ) if molar_mass <= 0: raise Exception("Molar mass cannot be less than or equal to 0 kg/mol" ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example lowerCAmelCase_ : Any = 300 lowerCAmelCase_ : List[Any] = 28 lowerCAmelCase_ : Tuple = rms_speed_of_molecule(temperature, molar_mass) print(f"""Vrms of Nitrogen gas at 300 K is {vrms} m/s""")
489
import operator as op def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = lambda __UpperCamelCase , __UpperCamelCase : int(x / y ) # noqa: E731 integer division operation SCREAMING_SNAKE_CASE_ = { "^": op.pow, "*": op.mul, "/": div, "+": op.add, "-": op.sub, } # operators & their respective operation # print table header print("Symbol".center(8 ) , "Action".center(1_2 ) , "Stack" , sep=" | " ) print("-" * (3_0 + len(__UpperCamelCase )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(__UpperCamelCase ) # append x to stack # output in tabular format print(x.rjust(8 ) , ("push(" + x + ")").ljust(1_2 ) , ",".join(__UpperCamelCase ) , sep=" | " ) else: SCREAMING_SNAKE_CASE_ = stack.pop() # pop stack # output in tabular format print("".rjust(8 ) , ("pop(" + b + ")").ljust(1_2 ) , ",".join(__UpperCamelCase ) , sep=" | " ) SCREAMING_SNAKE_CASE_ = stack.pop() # pop stack # output in tabular format print("".rjust(8 ) , ("pop(" + a + ")").ljust(1_2 ) , ",".join(__UpperCamelCase ) , sep=" | " ) stack.append( str(opr[x](int(__UpperCamelCase ) , int(__UpperCamelCase ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ("push(" + a + x + b + ")").ljust(1_2 ) , ",".join(__UpperCamelCase ) , sep=" | " , ) return int(stack[0] ) if __name__ == "__main__": A : str = input("\n\nEnter a Postfix Equation (space separated) = ").split(" ") print("\n\tResult = ", solve(Postfix))
140
0
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. __lowerCAmelCase : Tuple = {"LayoutLMv2Config", "LayoutLMv3Config"} @is_pipeline_test class a_ ( unittest.TestCase ): UpperCamelCase_ : Optional[int] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING UpperCamelCase_ : Optional[int] = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: UpperCamelCase_ : Any = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: UpperCamelCase_ : int = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def _SCREAMING_SNAKE_CASE ( self : str ): lowerCAmelCase__ = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" ) lowerCAmelCase__ = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(snake_case__ ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) lowerCAmelCase__ = text_classifier("""This is great !""" , top_k=2 ) self.assertEqual( nested_simplify(snake_case__ ) , [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}] ) lowerCAmelCase__ = text_classifier(["""This is great !""", """This is bad"""] , top_k=2 ) self.assertEqual( nested_simplify(snake_case__ ) , [ [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], ] , ) lowerCAmelCase__ = text_classifier("""This is great !""" , top_k=1 ) self.assertEqual(nested_simplify(snake_case__ ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) # Legacy behavior lowerCAmelCase__ = text_classifier("""This is great !""" , return_all_scores=snake_case__ ) self.assertEqual(nested_simplify(snake_case__ ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) lowerCAmelCase__ = text_classifier("""This is great !""" , return_all_scores=snake_case__ ) self.assertEqual( nested_simplify(snake_case__ ) , [[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}]] ) lowerCAmelCase__ = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=snake_case__ ) self.assertEqual( nested_simplify(snake_case__ ) , [ [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], ] , ) lowerCAmelCase__ = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=snake_case__ ) self.assertEqual( nested_simplify(snake_case__ ) , [ {"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_0""", """score""": 0.504}, ] , ) @require_torch def _SCREAMING_SNAKE_CASE ( self : str ): import torch lowerCAmelCase__ = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" , device=torch.device("""cpu""" ) , ) lowerCAmelCase__ = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(snake_case__ ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) @require_tf def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""tf""" ) lowerCAmelCase__ = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(snake_case__ ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) @slow @require_torch def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): lowerCAmelCase__ = pipeline("""text-classification""" ) lowerCAmelCase__ = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(snake_case__ ) , [{"""label""": """POSITIVE""", """score""": 1.0}] ) lowerCAmelCase__ = text_classifier("""This is bad !""" ) self.assertEqual(nested_simplify(snake_case__ ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] ) lowerCAmelCase__ = text_classifier("""Birds are a type of animal""" ) self.assertEqual(nested_simplify(snake_case__ ) , [{"""label""": """POSITIVE""", """score""": 0.988}] ) @slow @require_tf def _SCREAMING_SNAKE_CASE ( self : str ): lowerCAmelCase__ = pipeline("""text-classification""" , framework="""tf""" ) lowerCAmelCase__ = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(snake_case__ ) , [{"""label""": """POSITIVE""", """score""": 1.0}] ) lowerCAmelCase__ = text_classifier("""This is bad !""" ) self.assertEqual(nested_simplify(snake_case__ ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] ) lowerCAmelCase__ = text_classifier("""Birds are a type of animal""" ) self.assertEqual(nested_simplify(snake_case__ ) , [{"""label""": """POSITIVE""", """score""": 0.988}] ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : List[str] ): lowerCAmelCase__ = TextClassificationPipeline(model=snake_case__ , tokenizer=snake_case__ ) return text_classifier, ["HuggingFace is in", "This is another test"] def _SCREAMING_SNAKE_CASE ( self : Optional[int] , snake_case__ : Tuple , snake_case__ : Dict ): lowerCAmelCase__ = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 lowerCAmelCase__ = """HuggingFace is in""" lowerCAmelCase__ = text_classifier(snake_case__ ) self.assertEqual(nested_simplify(snake_case__ ) , [{"""label""": ANY(snake_case__ ), """score""": ANY(snake_case__ )}] ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() ) lowerCAmelCase__ = ["""HuggingFace is in """, """Paris is in France"""] lowerCAmelCase__ = text_classifier(snake_case__ ) self.assertEqual( nested_simplify(snake_case__ ) , [{"""label""": ANY(snake_case__ ), """score""": ANY(snake_case__ )}, {"""label""": ANY(snake_case__ ), """score""": ANY(snake_case__ )}] , ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() ) self.assertTrue(outputs[1]["""label"""] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format lowerCAmelCase__ = text_classifier(snake_case__ , top_k=snake_case__ ) lowerCAmelCase__ = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(snake_case__ ) , [[{"""label""": ANY(snake_case__ ), """score""": ANY(snake_case__ )}] * N, [{"""label""": ANY(snake_case__ ), """score""": ANY(snake_case__ )}] * N] , ) lowerCAmelCase__ = {"""text""": """HuggingFace is in """, """text_pair""": """Paris is in France"""} lowerCAmelCase__ = text_classifier(snake_case__ ) self.assertEqual( nested_simplify(snake_case__ ) , {"""label""": ANY(snake_case__ ), """score""": ANY(snake_case__ )} , ) self.assertTrue(outputs["""label"""] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. lowerCAmelCase__ = [["""HuggingFace is in """, """Paris is in France"""]] with self.assertRaises(snake_case__ ): text_classifier(snake_case__ ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility lowerCAmelCase__ = text_classifier([[["""HuggingFace is in """, """Paris is in France"""]]] ) self.assertEqual( nested_simplify(snake_case__ ) , [{"""label""": ANY(snake_case__ ), """score""": ANY(snake_case__ )}] , ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
701
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue_model_parallelism.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1600, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1600, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, ] ) class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : int ): if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="""utf-8""" , check=snake_case__ , ) assert hasattr(self , """env""" ) def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : Optional[Any] ): # configuration for running training on smdistributed Model Parallel lowerCAmelCase__ = { """enabled""": True, """processes_per_host""": 8, } lowerCAmelCase__ = { """enabled""": True, """parameters""": { """microbatches""": 4, """placement_strategy""": """spread""", """pipeline""": """interleaved""", """optimize""": """speed""", """partitions""": 4, """ddp""": True, }, } lowerCAmelCase__ = {"""smdistributed""": {"""modelparallel""": smp_options}, """mpi""": mpi_options} lowerCAmelCase__ = """trainer""" if self.script == """run_glue.py""" else """smtrainer""" # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""" , instance_count=snake_case__ , instance_type=self.instance_type , debugger_hook_config=snake_case__ , hyperparameters={ **self.env.hyperparameters, """model_name_or_path""": self.model_name_or_path, """max_steps""": 500, } , metric_definitions=self.env.metric_definitions , distribution=snake_case__ , py_version="""py36""" , ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : str ): TrainingJobAnalytics(snake_case__ ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(1,)] ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : List[str] ): # create estimator lowerCAmelCase__ = self.create_estimator(snake_case__ ) # run training estimator.fit() # result dataframe lowerCAmelCase__ = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis lowerCAmelCase__ = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) lowerCAmelCase__ = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowerCAmelCase__ = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 999999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""" , """w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , snake_case__ )
674
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def __magic_name__ ( lowerCAmelCase_=None): '''simple docstring''' if subparsers is not None: lowerCamelCase_ : Any = subparsers.add_parser("test") else: lowerCamelCase_ : Union[str, Any] = argparse.ArgumentParser("Accelerate test command") parser.add_argument( "--config_file" , default=lowerCAmelCase_ , help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) , ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase_) return parser def __magic_name__ ( lowerCAmelCase_): '''simple docstring''' lowerCamelCase_ : Optional[int] = os.path.sep.join(__file__.split(os.path.sep)[:-2] + ["test_utils", "scripts", "test_script.py"]) if args.config_file is None: lowerCamelCase_ : Any = script_name else: lowerCamelCase_ : Optional[int] = F"""--config_file={args.config_file} {script_name}""" lowerCamelCase_ : Any = ["accelerate-launch"] + test_args.split() lowerCamelCase_ : List[Any] = execute_subprocess_async(lowerCAmelCase_ , env=os.environ.copy()) if result.returncode == 0: print("Test is a success! You are ready for your distributed training!") def __magic_name__ ( ): '''simple docstring''' lowerCamelCase_ : int = test_command_parser() lowerCamelCase_ : Optional[Any] = parser.parse_args() test_command(lowerCAmelCase_) if __name__ == "__main__": main()
250
import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" __UpperCAmelCase : int = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __UpperCAmelCase : Union[str, Any] = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def _UpperCamelCase ( self , a_ , a_ , a_ ): lowerCamelCase_ : Any = TextaTextGenerationPipeline(model=a_ , tokenizer=a_ ) return generator, ["Something to write", "Something else"] def _UpperCamelCase ( self , a_ , a_ ): lowerCamelCase_ : Tuple = generator("Something there" ) self.assertEqual(a_ , [{"generated_text": ANY(a_ )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["generated_text"].startswith("Something there" ) ) lowerCamelCase_ : str = generator(["This is great !", "Something else"] , num_return_sequences=2 , do_sample=a_ ) self.assertEqual( a_ , [ [{"generated_text": ANY(a_ )}, {"generated_text": ANY(a_ )}], [{"generated_text": ANY(a_ )}, {"generated_text": ANY(a_ )}], ] , ) lowerCamelCase_ : List[str] = generator( ["This is great !", "Something else"] , num_return_sequences=2 , batch_size=2 , do_sample=a_ ) self.assertEqual( a_ , [ [{"generated_text": ANY(a_ )}, {"generated_text": ANY(a_ )}], [{"generated_text": ANY(a_ )}, {"generated_text": ANY(a_ )}], ] , ) with self.assertRaises(a_ ): generator(4 ) @require_torch def _UpperCamelCase ( self ): lowerCamelCase_ : Optional[int] = pipeline("text2text-generation" , model="patrickvonplaten/t5-tiny-random" , framework="pt" ) # do_sample=False necessary for reproducibility lowerCamelCase_ : Tuple = generator("Something there" , do_sample=a_ ) self.assertEqual(a_ , [{"generated_text": ""}] ) lowerCamelCase_ : Optional[Any] = 3 lowerCamelCase_ : str = generator( "Something there" , num_return_sequences=a_ , num_beams=a_ , ) lowerCamelCase_ : Dict = [ {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide Beide"}, {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide"}, {"generated_text": ""}, ] self.assertEqual(a_ , a_ ) lowerCamelCase_ : Any = generator("This is a test" , do_sample=a_ , num_return_sequences=2 , return_tensors=a_ ) self.assertEqual( a_ , [ {"generated_token_ids": ANY(torch.Tensor )}, {"generated_token_ids": ANY(torch.Tensor )}, ] , ) lowerCamelCase_ : Tuple = generator.model.config.eos_token_id lowerCamelCase_ : List[str] = "<pad>" lowerCamelCase_ : Tuple = generator( ["This is a test", "This is a second test"] , do_sample=a_ , num_return_sequences=2 , batch_size=2 , return_tensors=a_ , ) self.assertEqual( a_ , [ [ {"generated_token_ids": ANY(torch.Tensor )}, {"generated_token_ids": ANY(torch.Tensor )}, ], [ {"generated_token_ids": ANY(torch.Tensor )}, {"generated_token_ids": ANY(torch.Tensor )}, ], ] , ) @require_tf def _UpperCamelCase ( self ): lowerCamelCase_ : Optional[Any] = pipeline("text2text-generation" , model="patrickvonplaten/t5-tiny-random" , framework="tf" ) # do_sample=False necessary for reproducibility lowerCamelCase_ : Any = generator("Something there" , do_sample=a_ ) self.assertEqual(a_ , [{"generated_text": ""}] )
250
1
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __UpperCAmelCase : @staticmethod def UpperCamelCase ( *UpperCAmelCase_: Tuple , **UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' pass @is_pipeline_test @require_vision @require_timm @require_torch class __UpperCAmelCase (unittest.TestCase ): __snake_case : str = MODEL_FOR_OBJECT_DETECTION_MAPPING def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: List[str] , UpperCAmelCase_: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ObjectDetectionPipeline(model=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def UpperCamelCase ( self: Optional[int] , UpperCAmelCase_: Dict , UpperCAmelCase_: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = object_detector("""./tests/fixtures/tests_samples/COCO/000000039769.png""" , threshold=0.0 ) self.assertGreater(len(UpperCAmelCase_ ) , 0 ) for detected_object in outputs: self.assertEqual( UpperCAmelCase_ , { """score""": ANY(UpperCAmelCase_ ), """label""": ANY(UpperCAmelCase_ ), """box""": {"""xmin""": ANY(UpperCAmelCase_ ), """ymin""": ANY(UpperCAmelCase_ ), """xmax""": ANY(UpperCAmelCase_ ), """ymax""": ANY(UpperCAmelCase_ )}, } , ) import datasets _SCREAMING_SNAKE_CASE = datasets.load_dataset("""hf-internal-testing/fixtures_image_utils""" , """image""" , split="""test""" ) _SCREAMING_SNAKE_CASE = [ Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ), """http://images.cocodataset.org/val2017/000000039769.jpg""", # RGBA dataset[0]["""file"""], # LA dataset[1]["""file"""], # L dataset[2]["""file"""], ] _SCREAMING_SNAKE_CASE = object_detector(UpperCAmelCase_ , threshold=0.0 ) self.assertEqual(len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) ) for outputs in batch_outputs: self.assertGreater(len(UpperCAmelCase_ ) , 0 ) for detected_object in outputs: self.assertEqual( UpperCAmelCase_ , { """score""": ANY(UpperCAmelCase_ ), """label""": ANY(UpperCAmelCase_ ), """box""": {"""xmin""": ANY(UpperCAmelCase_ ), """ymin""": ANY(UpperCAmelCase_ ), """xmax""": ANY(UpperCAmelCase_ ), """ymax""": ANY(UpperCAmelCase_ )}, } , ) @require_tf @unittest.skip("""Object detection not implemented in TF""" ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' pass @require_torch def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = """hf-internal-testing/tiny-detr-mobilenetsv3""" _SCREAMING_SNAKE_CASE = AutoModelForObjectDetection.from_pretrained(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = AutoFeatureExtractor.from_pretrained(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = ObjectDetectionPipeline(model=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" , threshold=0.0 ) self.assertEqual( nested_simplify(UpperCAmelCase_ , decimals=4 ) , [ {"""score""": 0.33_76, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, {"""score""": 0.33_76, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, ] , ) _SCREAMING_SNAKE_CASE = object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] , threshold=0.0 , ) self.assertEqual( nested_simplify(UpperCAmelCase_ , decimals=4 ) , [ [ {"""score""": 0.33_76, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, {"""score""": 0.33_76, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, ], [ {"""score""": 0.33_76, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, {"""score""": 0.33_76, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, ], ] , ) @require_torch @slow def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = """facebook/detr-resnet-50""" _SCREAMING_SNAKE_CASE = AutoModelForObjectDetection.from_pretrained(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = AutoFeatureExtractor.from_pretrained(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = ObjectDetectionPipeline(model=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" ) self.assertEqual( nested_simplify(UpperCAmelCase_ , decimals=4 ) , [ {"""score""": 0.99_82, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.99_60, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.99_55, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.99_88, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.99_87, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ] , ) _SCREAMING_SNAKE_CASE = object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] ) self.assertEqual( nested_simplify(UpperCAmelCase_ , decimals=4 ) , [ [ {"""score""": 0.99_82, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.99_60, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.99_55, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.99_88, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.99_87, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ], [ {"""score""": 0.99_82, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.99_60, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.99_55, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.99_88, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.99_87, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ], ] , ) @require_torch @slow def UpperCamelCase ( self: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = """facebook/detr-resnet-50""" _SCREAMING_SNAKE_CASE = pipeline("""object-detection""" , model=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" ) self.assertEqual( nested_simplify(UpperCAmelCase_ , decimals=4 ) , [ {"""score""": 0.99_82, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.99_60, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.99_55, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.99_88, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.99_87, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ] , ) _SCREAMING_SNAKE_CASE = object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] ) self.assertEqual( nested_simplify(UpperCAmelCase_ , decimals=4 ) , [ [ {"""score""": 0.99_82, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.99_60, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.99_55, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.99_88, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.99_87, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ], [ {"""score""": 0.99_82, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.99_60, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.99_55, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.99_88, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.99_87, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ], ] , ) @require_torch @slow def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = 0.99_85 _SCREAMING_SNAKE_CASE = """facebook/detr-resnet-50""" _SCREAMING_SNAKE_CASE = pipeline("""object-detection""" , model=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" , threshold=UpperCAmelCase_ ) self.assertEqual( nested_simplify(UpperCAmelCase_ , decimals=4 ) , [ {"""score""": 0.99_88, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.99_87, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ] , ) @require_torch @require_pytesseract @slow def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = """Narsil/layoutlmv3-finetuned-funsd""" _SCREAMING_SNAKE_CASE = 0.99_93 _SCREAMING_SNAKE_CASE = pipeline("""object-detection""" , model=UpperCAmelCase_ , threshold=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = object_detector( """https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png""" ) self.assertEqual( nested_simplify(UpperCAmelCase_ , decimals=4 ) , [ {"""score""": 0.99_93, """label""": """I-ANSWER""", """box""": {"""xmin""": 294, """ymin""": 254, """xmax""": 343, """ymax""": 264}}, {"""score""": 0.99_93, """label""": """I-ANSWER""", """box""": {"""xmin""": 294, """ymin""": 254, """xmax""": 343, """ymax""": 264}}, ] , )
569
import argparse import json import os import torch from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) -> List[str]: """simple docstring""" with open(snake_case__ ) as metadata_file: _SCREAMING_SNAKE_CASE = json.load(snake_case__ ) _SCREAMING_SNAKE_CASE = LukeConfig(use_entity_aware_attention=snake_case__ ,**metadata["""model_config"""] ) # Load in the weights from the checkpoint_path _SCREAMING_SNAKE_CASE = torch.load(snake_case__ ,map_location="""cpu""" ) # Load the entity vocab file _SCREAMING_SNAKE_CASE = load_entity_vocab(snake_case__ ) _SCREAMING_SNAKE_CASE = RobertaTokenizer.from_pretrained(metadata["""model_config"""]["""bert_model_name"""] ) # Add special tokens to the token vocabulary for downstream tasks _SCREAMING_SNAKE_CASE = AddedToken("""<ent>""" ,lstrip=snake_case__ ,rstrip=snake_case__ ) _SCREAMING_SNAKE_CASE = AddedToken("""<ent2>""" ,lstrip=snake_case__ ,rstrip=snake_case__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(snake_case__ ) with open(os.path.join(snake_case__ ,LukeTokenizer.vocab_files_names["""entity_vocab_file"""] ) ,"""w""" ) as f: json.dump(snake_case__ ,snake_case__ ) _SCREAMING_SNAKE_CASE = LukeTokenizer.from_pretrained(snake_case__ ) # Initialize the embeddings of the special tokens _SCREAMING_SNAKE_CASE = state_dict["""embeddings.word_embeddings.weight"""] _SCREAMING_SNAKE_CASE = word_emb[tokenizer.convert_tokens_to_ids(["""@"""] )[0]].unsqueeze(0 ) _SCREAMING_SNAKE_CASE = word_emb[tokenizer.convert_tokens_to_ids(["""#"""] )[0]].unsqueeze(0 ) _SCREAMING_SNAKE_CASE = torch.cat([word_emb, ent_emb, enta_emb] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _SCREAMING_SNAKE_CASE = F'encoder.layer.{layer_index}.attention.self.' _SCREAMING_SNAKE_CASE = state_dict[prefix + matrix_name] _SCREAMING_SNAKE_CASE = state_dict[prefix + matrix_name] _SCREAMING_SNAKE_CASE = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _SCREAMING_SNAKE_CASE = state_dict["""entity_embeddings.entity_embeddings.weight"""] _SCREAMING_SNAKE_CASE = entity_emb[entity_vocab["""[MASK]"""]] _SCREAMING_SNAKE_CASE = LukeModel(config=snake_case__ ).eval() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = model.load_state_dict(snake_case__ ,strict=snake_case__ ) if not (len(snake_case__ ) == 1 and missing_keys[0] == "embeddings.position_ids"): raise ValueError(F'Missing keys {", ".join(snake_case__ )}. Expected only missing embeddings.position_ids' ) if not (all(key.startswith("""entity_predictions""" ) or key.startswith("""lm_head""" ) for key in unexpected_keys )): raise ValueError( """Unexpected keys""" F' {", ".join([key for key in unexpected_keys if not (key.startswith("entity_predictions" ) or key.startswith("lm_head" ))] )}' ) # Check outputs _SCREAMING_SNAKE_CASE = LukeTokenizer.from_pretrained(snake_case__ ,task="""entity_classification""" ) _SCREAMING_SNAKE_CASE = ( """Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the""" """ new world number one avoid a humiliating second- round exit at Wimbledon .""" ) _SCREAMING_SNAKE_CASE = (39, 42) _SCREAMING_SNAKE_CASE = tokenizer(snake_case__ ,entity_spans=[span] ,add_prefix_space=snake_case__ ,return_tensors="""pt""" ) _SCREAMING_SNAKE_CASE = model(**snake_case__ ) # Verify word hidden states if model_size == "large": _SCREAMING_SNAKE_CASE = torch.Size((1, 42, 10_24) ) _SCREAMING_SNAKE_CASE = torch.tensor( [[0.0_133, 0.0_865, 0.0_095], [0.3_093, -0.2_576, -0.7_418], [-0.1_720, -0.2_117, -0.2_869]] ) else: # base _SCREAMING_SNAKE_CASE = torch.Size((1, 42, 7_68) ) _SCREAMING_SNAKE_CASE = torch.tensor([[0.0_037, 0.1_368, -0.0_091], [0.1_099, 0.3_329, -0.1_095], [0.0_765, 0.5_335, 0.1_179]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] ,snake_case__ ,atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": _SCREAMING_SNAKE_CASE = torch.Size((1, 1, 10_24) ) _SCREAMING_SNAKE_CASE = torch.tensor([[0.0_466, -0.0_106, -0.0_179]] ) else: # base _SCREAMING_SNAKE_CASE = torch.Size((1, 1, 7_68) ) _SCREAMING_SNAKE_CASE = torch.tensor([[0.1_457, 0.1_044, 0.0_174]] ) if not (outputs.entity_last_hidden_state.shape != expected_shape): raise ValueError( F'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' F' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] ,snake_case__ ,atol=1e-4 ): raise ValueError # Finally, save our PyTorch model and tokenizer print("""Saving PyTorch model to {}""".format(snake_case__ ) ) model.save_pretrained(snake_case__ ) def __lowerCamelCase ( snake_case__ ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = {} with open(snake_case__ ,"""r""" ,encoding="""utf-8""" ) as f: for index, line in enumerate(snake_case__ ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = line.rstrip().split("""\t""" ) _SCREAMING_SNAKE_CASE = index return entity_vocab if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) UpperCamelCase = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
569
1
import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def _A ( _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: """simple docstring""" def get_masked_lm_array(_lowercase ): __UpperCamelCase = f'''masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE''' __UpperCamelCase = tf.train.load_variable(_lowercase , _lowercase ) if "kernel" in name: __UpperCamelCase = array.transpose() return torch.from_numpy(_lowercase ) def get_encoder_array(_lowercase ): __UpperCamelCase = f'''encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE''' __UpperCamelCase = tf.train.load_variable(_lowercase , _lowercase ) if "kernel" in name: __UpperCamelCase = array.transpose() return torch.from_numpy(_lowercase ) def get_encoder_layer_array(_lowercase , _lowercase ): __UpperCamelCase = f'''encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE''' __UpperCamelCase = tf.train.load_variable(_lowercase , _lowercase ) if "kernel" in name: __UpperCamelCase = array.transpose() return torch.from_numpy(_lowercase ) def get_encoder_attention_layer_array(_lowercase , _lowercase , _lowercase ): __UpperCamelCase = f'''encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE''' __UpperCamelCase = tf.train.load_variable(_lowercase , _lowercase ) __UpperCamelCase = array.reshape(_lowercase ) if "kernel" in name: __UpperCamelCase = array.transpose() return torch.from_numpy(_lowercase ) print(f'''Loading model based on config from {config_path}...''' ) __UpperCamelCase = BertConfig.from_json_file(_lowercase ) __UpperCamelCase = BertForMaskedLM(_lowercase ) # Layers for layer_index in range(0 , config.num_hidden_layers ): __UpperCamelCase = model.bert.encoder.layer[layer_index] # Self-attention __UpperCamelCase = layer.attention.self __UpperCamelCase = get_encoder_attention_layer_array( _lowercase , '_query_dense/kernel' , self_attn.query.weight.data.shape ) __UpperCamelCase = get_encoder_attention_layer_array( _lowercase , '_query_dense/bias' , self_attn.query.bias.data.shape ) __UpperCamelCase = get_encoder_attention_layer_array( _lowercase , '_key_dense/kernel' , self_attn.key.weight.data.shape ) __UpperCamelCase = get_encoder_attention_layer_array( _lowercase , '_key_dense/bias' , self_attn.key.bias.data.shape ) __UpperCamelCase = get_encoder_attention_layer_array( _lowercase , '_value_dense/kernel' , self_attn.value.weight.data.shape ) __UpperCamelCase = get_encoder_attention_layer_array( _lowercase , '_value_dense/bias' , self_attn.value.bias.data.shape ) # Self-attention Output __UpperCamelCase = layer.attention.output __UpperCamelCase = get_encoder_attention_layer_array( _lowercase , '_output_dense/kernel' , self_output.dense.weight.data.shape ) __UpperCamelCase = get_encoder_attention_layer_array( _lowercase , '_output_dense/bias' , self_output.dense.bias.data.shape ) __UpperCamelCase = get_encoder_layer_array(_lowercase , '_attention_layer_norm/gamma' ) __UpperCamelCase = get_encoder_layer_array(_lowercase , '_attention_layer_norm/beta' ) # Intermediate __UpperCamelCase = layer.intermediate __UpperCamelCase = get_encoder_layer_array(_lowercase , '_intermediate_dense/kernel' ) __UpperCamelCase = get_encoder_layer_array(_lowercase , '_intermediate_dense/bias' ) # Output __UpperCamelCase = layer.output __UpperCamelCase = get_encoder_layer_array(_lowercase , '_output_dense/kernel' ) __UpperCamelCase = get_encoder_layer_array(_lowercase , '_output_dense/bias' ) __UpperCamelCase = get_encoder_layer_array(_lowercase , '_output_layer_norm/gamma' ) __UpperCamelCase = get_encoder_layer_array(_lowercase , '_output_layer_norm/beta' ) # Embeddings __UpperCamelCase = get_encoder_array('_position_embedding_layer/embeddings' ) __UpperCamelCase = get_encoder_array('_type_embedding_layer/embeddings' ) __UpperCamelCase = get_encoder_array('_embedding_norm_layer/gamma' ) __UpperCamelCase = get_encoder_array('_embedding_norm_layer/beta' ) # LM Head __UpperCamelCase = model.cls.predictions.transform __UpperCamelCase = get_masked_lm_array('dense/kernel' ) __UpperCamelCase = get_masked_lm_array('dense/bias' ) __UpperCamelCase = get_masked_lm_array('layer_norm/gamma' ) __UpperCamelCase = get_masked_lm_array('layer_norm/beta' ) __UpperCamelCase = get_masked_lm_array('embedding_table' ) # Pooling __UpperCamelCase = BertPooler(config=_lowercase ) __UpperCamelCase = get_encoder_array('_pooler_layer/kernel' ) __UpperCamelCase = get_encoder_array('_pooler_layer/bias' ) # Export final model model.save_pretrained(_lowercase ) # Integration test - should load without any errors ;) __UpperCamelCase = BertForMaskedLM.from_pretrained(_lowercase ) print(new_model.eval() ) print('Model conversion was done sucessfully!' ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument( '''--tf_checkpoint_path''', type=str, required=True, help='''Path to the TensorFlow Token Dropping checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', type=str, required=True, help='''The config json file corresponding to the BERT model. This specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', type=str, required=True, help='''Path to the output PyTorch model.''', ) __snake_case = parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
1
import pytest import datasets # Import fixture modules as plugins __snake_case = ['''tests.fixtures.files''', '''tests.fixtures.hub''', '''tests.fixtures.fsspec'''] def _A ( _lowercase , _lowercase ) -> Tuple: """simple docstring""" for item in items: if any(marker in item.keywords for marker in ['integration', 'unit'] ): continue item.add_marker(pytest.mark.unit ) def _A ( _lowercase ) -> str: """simple docstring""" config.addinivalue_line('markers' , 'torchaudio_latest: mark test to run with torchaudio>=0.12' ) @pytest.fixture(autouse=_lowercase ) def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" __UpperCamelCase = tmp_path_factory.getbasetemp() / 'cache' __UpperCamelCase = test_hf_cache_home / 'datasets' __UpperCamelCase = test_hf_cache_home / 'metrics' __UpperCamelCase = test_hf_cache_home / 'modules' monkeypatch.setattr('datasets.config.HF_DATASETS_CACHE' , str(_lowercase ) ) monkeypatch.setattr('datasets.config.HF_METRICS_CACHE' , str(_lowercase ) ) monkeypatch.setattr('datasets.config.HF_MODULES_CACHE' , str(_lowercase ) ) __UpperCamelCase = test_hf_datasets_cache / 'downloads' monkeypatch.setattr('datasets.config.DOWNLOADED_DATASETS_PATH' , str(_lowercase ) ) __UpperCamelCase = test_hf_datasets_cache / 'downloads' / 'extracted' monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH' , str(_lowercase ) ) @pytest.fixture(autouse=_lowercase , scope='session' ) def _A ( ) -> Dict: """simple docstring""" datasets.disable_progress_bar() @pytest.fixture(autouse=_lowercase ) def _A ( _lowercase ) -> Tuple: """simple docstring""" monkeypatch.setattr('datasets.config.HF_UPDATE_DOWNLOAD_COUNTS' , _lowercase ) @pytest.fixture def _A ( _lowercase ) -> Any: """simple docstring""" monkeypatch.setattr('sqlalchemy.util.deprecations.SILENCE_UBER_WARNING' , _lowercase )
1
1
import argparse import importlib from pathlib import Path # Test all the extensions added in the setup a__ = [ """kernels/rwkv/wkv_cuda.cu""", """kernels/rwkv/wkv_op.cpp""", """kernels/deformable_detr/ms_deform_attn.h""", """kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh""", """models/graphormer/algos_graphormer.pyx""", ] def _UpperCAmelCase ( a : Optional[Any] ): # Test all the extensions added in the setup for file in FILES_TO_FIND: if not (transformers_path / file).exists(): return False return True if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument("""--check_lib""", action="""store_true""", help="""Whether to check the build or the actual package.""") a__ = parser.parse_args() if args.check_lib: a__ = importlib.import_module("""transformers""") a__ = Path(transformers_module.__file__).parent else: a__ = Path.cwd() / """build/lib/transformers""" if not test_custom_files_are_present(transformers_path): raise ValueError("""The built release does not contain the custom files. Fix this before going further!""")
719
from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging a__ = logging.get_logger(__name__) def _UpperCAmelCase ( a : Union[tf.Tensor, np.ndarray] ): if isinstance(a , np.ndarray ): return list(tensor.shape ) snake_case__ = tf.shape(a ) if tensor.shape == tf.TensorShape(a ): return dynamic snake_case__ = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(a )] def _UpperCAmelCase ( a : tf.Tensor , a : Optional[int] = None , a : Optional[str] = None ): return tf.nn.softmax(logits=logits + 1e-9 , axis=a , name=a ) def _UpperCAmelCase ( a : Optional[int] , a : Union[str, Any] , a : Dict , a : int=1e-5 , a : Dict=-1 ): # This is a very simplified functional layernorm, designed to duplicate # the functionality of PyTorch nn.functional.layer_norm when this is needed to port # models in Transformers. if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(a , a ): raise NotImplementedError("""Only 1D weight and bias tensors are supported for now, with only a single axis.""" ) # Get mean and variance on the axis to be normalized snake_case__ , snake_case__ = tf.nn.moments(a , axes=[axis] , keepdims=a ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis snake_case__ = [1] * inputs.shape.rank snake_case__ = shape_list(a )[axis] snake_case__ = tf.reshape(a , a ) snake_case__ = tf.reshape(a , a ) # Compute layer normalization using the batch_normalization # function. snake_case__ = tf.nn.batch_normalization( a , a , a , offset=a , scale=a , variance_epsilon=a , ) return outputs def _UpperCAmelCase ( a : Optional[int] , a : Dict=0 , a : List[Any]=-1 ): # Replicates the behavior of torch.flatten in TF # If end_dim or start_dim is negative, count them from the end if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input snake_case__ = tf.shape(a ) snake_case__ = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) snake_case__ = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(a , a ) def _UpperCAmelCase ( a : tf.Tensor ): if not isinstance(a , tf.Tensor ): snake_case__ = tf.convert_to_tensor(a ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: snake_case__ = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: snake_case__ = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) snake_case__ = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def _UpperCAmelCase ( a : tf.Tensor , a : int , a : str = "input_ids" ): tf.debugging.assert_less( a , tf.cast(a , dtype=tensor.dtype ) , message=( F'''The maximum value of {tensor_name} ({tf.math.reduce_max(a )}) must be smaller than the embedding ''' F'''layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.''' ) , ) def _UpperCAmelCase ( a : str , a : Tuple , a : Optional[int] ): snake_case__ = 6_4512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. snake_case__ = [x for x in data if len(a ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( """The following attributes cannot be saved to HDF5 file because """ F'''they are larger than {HDF5_OBJECT_HEADER_LIMIT} ''' F'''bytes: {bad_attributes}''' ) snake_case__ = np.asarray(a ) snake_case__ = 1 snake_case__ = np.array_split(a , a ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 snake_case__ = np.array_split(a , a ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(a ): snake_case__ = chunk_data else: snake_case__ = data def _UpperCAmelCase ( a : List[Any] , a : Optional[int] ): if name in group.attrs: snake_case__ = [n.decode("""utf8""" ) if hasattr(a , """decode""" ) else n for n in group.attrs[name]] else: snake_case__ = [] snake_case__ = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode("""utf8""" ) if hasattr(a , """decode""" ) else n for n in group.attrs["""%s%d""" % (name, chunk_id)]] ) chunk_id += 1 return data def _UpperCAmelCase ( a : Optional[int] ): def _expand_single_ad_tensor(a : Any ): if isinstance(a , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(a , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , a )
99
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowerCamelCase_ = [ '''small''', '''small-base''', '''medium''', '''medium-base''', '''intermediate''', '''intermediate-base''', '''large''', '''large-base''', '''xlarge''', '''xlarge-base''', ] lowerCamelCase_ = { '''vocab_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt''', '''funnel-transformer/small-base''': '''https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt''', '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt''', '''funnel-transformer/large-base''': '''https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt''', '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json''', '''funnel-transformer/small-base''': ( '''https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json''', '''funnel-transformer/large-base''': ( '''https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json''' ), }, } lowerCamelCase_ = {f'funnel-transformer/{name}': 512 for name in _model_names} lowerCamelCase_ = {f'funnel-transformer/{name}': {'''do_lower_case''': True} for name in _model_names} class UpperCamelCase_ (__A ): __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = PRETRAINED_INIT_CONFIGURATION __magic_name__ = FunnelTokenizer __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = 2 def __init__( self : Union[str, Any] , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : Any="<unk>" , lowerCAmelCase_ : Tuple="<sep>" , lowerCAmelCase_ : Tuple="<pad>" , lowerCAmelCase_ : Optional[Any]="<cls>" , lowerCAmelCase_ : Tuple="<mask>" , lowerCAmelCase_ : int="<s>" , lowerCAmelCase_ : Dict="</s>" , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Union[str, Any]="##" , **lowerCAmelCase_ : str , ) -> int: super().__init__( lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , clean_text=lowerCAmelCase_ , tokenize_chinese_chars=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ , wordpieces_prefix=lowerCAmelCase_ , **lowerCAmelCase_ , ) UpperCAmelCase_ : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , lowerCAmelCase_ ) != do_lower_case or normalizer_state.get("strip_accents" , lowerCAmelCase_ ) != strip_accents or normalizer_state.get("handle_chinese_chars" , lowerCAmelCase_ ) != tokenize_chinese_chars ): UpperCAmelCase_ : str = getattr(lowerCAmelCase_ , normalizer_state.pop("type" ) ) UpperCAmelCase_ : List[Any] = do_lower_case UpperCAmelCase_ : List[Any] = strip_accents UpperCAmelCase_ : Dict = tokenize_chinese_chars UpperCAmelCase_ : Optional[Any] = normalizer_class(**lowerCAmelCase_ ) UpperCAmelCase_ : Optional[Any] = do_lower_case def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int]=None ) -> Optional[Any]: UpperCAmelCase_ : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: UpperCAmelCase_ : Tuple = [self.sep_token_id] UpperCAmelCase_ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: UpperCAmelCase_ : Union[str, Any] = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_ ) return tuple(lowerCAmelCase_ )
95
"""simple docstring""" import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class UpperCamelCase_ (enum.Enum ): __magic_name__ = 0 __magic_name__ = 1 __magic_name__ = 2 @add_end_docstrings(__A ) class UpperCamelCase_ (__A ): __magic_name__ = ''' In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The voice of Nicholas\'s young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision and denounces one of the men as a horse thief. Although his father initially slaps him for making such an accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing. <eod> </s> <eos> ''' def __init__( self : List[Any] , *lowerCAmelCase_ : List[str] , **lowerCAmelCase_ : List[Any] ) -> Optional[int]: super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == "tf" else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. UpperCAmelCase_ : Any = None if self.model.config.prefix is not None: UpperCAmelCase_ : Any = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. UpperCAmelCase_ : Optional[int] = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self._sanitize_parameters(prefix=lowerCAmelCase_ , **self._forward_params ) UpperCAmelCase_ : List[Any] = {**self._preprocess_params, **preprocess_params} UpperCAmelCase_ : Optional[int] = {**self._forward_params, **forward_params} def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : List[str]=None , **lowerCAmelCase_ : Optional[Any] , ) -> int: UpperCAmelCase_ : Union[str, Any] = {} if prefix is not None: UpperCAmelCase_ : Tuple = prefix if prefix: UpperCAmelCase_ : Optional[Any] = self.tokenizer( lowerCAmelCase_ , padding=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_tensors=self.framework ) UpperCAmelCase_ : List[str] = prefix_inputs["input_ids"].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( f"""{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected""" " [None, 'hole']" ) UpperCAmelCase_ : Dict = handle_long_generation preprocess_params.update(lowerCAmelCase_ ) UpperCAmelCase_ : Dict = generate_kwargs UpperCAmelCase_ : Dict = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError("`return_text` is mutually exclusive with `return_full_text`" ) if return_tensors is not None: raise ValueError("`return_full_text` is mutually exclusive with `return_tensors`" ) UpperCAmelCase_ : Tuple = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError("`return_text` is mutually exclusive with `return_tensors`" ) UpperCAmelCase_ : int = ReturnType.TENSORS if return_type is not None: UpperCAmelCase_ : int = return_type if clean_up_tokenization_spaces is not None: UpperCAmelCase_ : Tuple = clean_up_tokenization_spaces if stop_sequence is not None: UpperCAmelCase_ : Union[str, Any] = self.tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) if len(lowerCAmelCase_ ) > 1: warnings.warn( "Stopping on a multiple token sequence is not yet supported on transformers. The first token of" " the stop sequence will be used as the stop sequence string in the interim." ) UpperCAmelCase_ : Optional[int] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , *lowerCAmelCase_ : Dict , **lowerCAmelCase_ : Dict ) -> Union[str, Any]: # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({"add_space_before_punct_symbol": True} ) return super()._parse_and_tokenize(*lowerCAmelCase_ , **lowerCAmelCase_ ) def __call__( self : List[Any] , lowerCAmelCase_ : Any , **lowerCAmelCase_ : Union[str, Any] ) -> Dict: return super().__call__(lowerCAmelCase_ , **lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str]="" , lowerCAmelCase_ : Any=None , **lowerCAmelCase_ : Optional[Any] ) -> Dict: UpperCAmelCase_ : Tuple = self.tokenizer( prefix + prompt_text , padding=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_tensors=self.framework ) UpperCAmelCase_ : Any = prompt_text if handle_long_generation == "hole": UpperCAmelCase_ : Optional[Any] = inputs["input_ids"].shape[-1] if "max_new_tokens" in generate_kwargs: UpperCAmelCase_ : Dict = generate_kwargs["max_new_tokens"] else: UpperCAmelCase_ : List[str] = generate_kwargs.get("max_length" , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError("We cannot infer how many new tokens are expected" ) if cur_len + new_tokens > self.tokenizer.model_max_length: UpperCAmelCase_ : Tuple = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( "We cannot use `hole` to handle this generation the number of desired tokens exceeds the" " models max length" ) UpperCAmelCase_ : Dict = inputs["input_ids"][:, -keep_length:] if "attention_mask" in inputs: UpperCAmelCase_ : Union[str, Any] = inputs["attention_mask"][:, -keep_length:] return inputs def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : str ) -> Dict: UpperCAmelCase_ : Optional[Any] = model_inputs["input_ids"] UpperCAmelCase_ : str = model_inputs.get("attention_mask" , lowerCAmelCase_ ) # Allow empty prompts if input_ids.shape[1] == 0: UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : str = 1 else: UpperCAmelCase_ : Union[str, Any] = input_ids.shape[0] UpperCAmelCase_ : Any = model_inputs.pop("prompt_text" ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. UpperCAmelCase_ : Any = generate_kwargs.pop("prefix_length" , 0 ) if prefix_length > 0: UpperCAmelCase_ : str = "max_new_tokens" in generate_kwargs or ( "generation_config" in generate_kwargs and generate_kwargs["generation_config"].max_new_tokens is not None ) if not has_max_new_tokens: UpperCAmelCase_ : Tuple = generate_kwargs.get("max_length" ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length UpperCAmelCase_ : Optional[int] = "min_new_tokens" in generate_kwargs or ( "generation_config" in generate_kwargs and generate_kwargs["generation_config"].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL UpperCAmelCase_ : int = self.model.generate(input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , **lowerCAmelCase_ ) UpperCAmelCase_ : Dict = generated_sequence.shape[0] if self.framework == "pt": UpperCAmelCase_ : Optional[int] = generated_sequence.reshape(lowerCAmelCase_ , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": UpperCAmelCase_ : List[Any] = tf.reshape(lowerCAmelCase_ , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str]=ReturnType.FULL_TEXT , lowerCAmelCase_ : Dict=True ) -> List[str]: UpperCAmelCase_ : List[Any] = model_outputs["generated_sequence"][0] UpperCAmelCase_ : int = model_outputs["input_ids"] UpperCAmelCase_ : List[str] = model_outputs["prompt_text"] UpperCAmelCase_ : Union[str, Any] = generated_sequence.numpy().tolist() UpperCAmelCase_ : int = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: UpperCAmelCase_ : Optional[Any] = {"generated_token_ids": sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text UpperCAmelCase_ : str = self.tokenizer.decode( lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: UpperCAmelCase_ : List[Any] = 0 else: UpperCAmelCase_ : str = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ , ) ) if return_type == ReturnType.FULL_TEXT: UpperCAmelCase_ : Union[str, Any] = prompt_text + text[prompt_length:] else: UpperCAmelCase_ : Dict = text[prompt_length:] UpperCAmelCase_ : int = {"generated_text": all_text} records.append(lowerCAmelCase_ ) return records
95
1
"""simple docstring""" import requests from bsa import BeautifulSoup def SCREAMING_SNAKE_CASE ( lowerCamelCase_ = "https://www.worldometers.info/coronavirus"): a__ = BeautifulSoup(requests.get(lowerCamelCase_).text , '''html.parser''') a__ = soup.findAll('''h1''') a__ = soup.findAll('''div''' , {'''class''': '''maincounter-number'''}) keys += soup.findAll('''span''' , {'''class''': '''panel-title'''}) values += soup.findAll('''div''' , {'''class''': '''number-table-main'''}) return {key.text.strip(): value.text.strip() for key, value in zip(lowerCamelCase_ , lowerCamelCase_)} if __name__ == "__main__": print('\033[1m' + 'COVID-19 Status of the World' + '\033[0m\n') for key, value in world_covidaa_stats().items(): print(F'''{key}\n{value}\n''')
200
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __a : Any = logging.get_logger(__name__) __a : Union[str, Any] = { 'caidas/swin2sr-classicalsr-x2-64': ( 'https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json' ), } class _SCREAMING_SNAKE_CASE ( __snake_case ): """simple docstring""" _SCREAMING_SNAKE_CASE ='swin2sr' _SCREAMING_SNAKE_CASE ={ 'hidden_size': 'embed_dim', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self: Union[str, Any] , __A: List[Any]=64 , __A: int=1 , __A: Dict=3 , __A: List[Any]=180 , __A: int=[6, 6, 6, 6, 6, 6] , __A: Tuple=[6, 6, 6, 6, 6, 6] , __A: int=8 , __A: Optional[int]=2.0 , __A: Optional[int]=True , __A: int=0.0 , __A: Any=0.0 , __A: Optional[Any]=0.1 , __A: Optional[Any]="gelu" , __A: Dict=False , __A: List[Any]=0.0_2 , __A: List[Any]=1e-5 , __A: List[str]=2 , __A: int=1.0 , __A: Dict="1conv" , __A: Optional[Any]="pixelshuffle" , **__A: Dict , ): '''simple docstring''' super().__init__(**__A ) a__ = image_size a__ = patch_size a__ = num_channels a__ = embed_dim a__ = depths a__ = len(__A ) a__ = num_heads a__ = window_size a__ = mlp_ratio a__ = qkv_bias a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = drop_path_rate a__ = hidden_act a__ = use_absolute_embeddings a__ = layer_norm_eps a__ = initializer_range a__ = upscale a__ = img_range a__ = resi_connection a__ = upsampler
200
1
'''simple docstring''' from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class a_ : def __init__( self : Union[str, Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple=1_3 , __lowerCAmelCase : Any=7 , __lowerCAmelCase : Any=True , __lowerCAmelCase : str=True , __lowerCAmelCase : str=True , __lowerCAmelCase : List[Any]=True , __lowerCAmelCase : Tuple=9_9 , __lowerCAmelCase : Optional[Any]=3_2 , __lowerCAmelCase : Optional[int]=2 , __lowerCAmelCase : Union[str, Any]=4 , __lowerCAmelCase : Optional[Any]=3_7 , __lowerCAmelCase : Any="gelu" , __lowerCAmelCase : Tuple=0.1 , __lowerCAmelCase : List[Any]=0.1 , __lowerCAmelCase : Optional[Any]=5_1_2 , __lowerCAmelCase : Tuple=1_6 , __lowerCAmelCase : Optional[int]=2 , __lowerCAmelCase : Any=0.02 , __lowerCAmelCase : Tuple=3 , __lowerCAmelCase : Optional[int]=4 , __lowerCAmelCase : Union[str, Any]=None , __lowerCAmelCase : List[Any]=1_0_0_0 , ): __snake_case = parent __snake_case = batch_size __snake_case = seq_length __snake_case = is_training __snake_case = use_input_mask __snake_case = use_token_type_ids __snake_case = use_labels __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = type_sequence_label_size __snake_case = initializer_range __snake_case = num_labels __snake_case = num_choices __snake_case = scope __snake_case = range_bbox def lowercase__ ( self : str ): __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment __snake_case = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __snake_case = bbox[i, j, 3] __snake_case = bbox[i, j, 1] __snake_case = t if bbox[i, j, 2] < bbox[i, j, 0]: __snake_case = bbox[i, j, 2] __snake_case = bbox[i, j, 0] __snake_case = t __snake_case = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE ) __snake_case = None if self.use_input_mask: __snake_case = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case = None if self.use_token_type_ids: __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case = None __snake_case = None __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case = ids_tensor([self.batch_size] , self.num_choices ) __snake_case = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : Optional[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : int ): __snake_case = TFLayoutLMModel(config=__SCREAMING_SNAKE_CASE ) __snake_case = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE ) __snake_case = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE ) __snake_case = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase__ ( self : Union[str, Any] , __lowerCAmelCase : int , __lowerCAmelCase : List[str] , __lowerCAmelCase : str , __lowerCAmelCase : Any , __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any , __lowerCAmelCase : List[str] ): __snake_case = TFLayoutLMForMaskedLM(config=__SCREAMING_SNAKE_CASE ) __snake_case = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : Tuple , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : int , __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[int] ): __snake_case = self.num_labels __snake_case = TFLayoutLMForSequenceClassification(config=__SCREAMING_SNAKE_CASE ) __snake_case = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] ): __snake_case = self.num_labels __snake_case = TFLayoutLMForTokenClassification(config=__SCREAMING_SNAKE_CASE ) __snake_case = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : int , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : int , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Any ): __snake_case = TFLayoutLMForQuestionAnswering(config=__SCREAMING_SNAKE_CASE ) __snake_case = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : List[str] ): __snake_case = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) = config_and_inputs __snake_case = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class a_ ( a_ , a_ , unittest.TestCase ): lowercase_ : Tuple = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) lowercase_ : Tuple = ( { '''feature-extraction''': TFLayoutLMModel, '''fill-mask''': TFLayoutLMForMaskedLM, '''text-classification''': TFLayoutLMForSequenceClassification, '''token-classification''': TFLayoutLMForTokenClassification, '''zero-shot''': TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) lowercase_ : Optional[Any] = False lowercase_ : Dict = True lowercase_ : Dict = 10 def lowercase__ ( self : List[str] ): __snake_case = TFLayoutLMModelTester(self ) __snake_case = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , hidden_size=3_7 ) def lowercase__ ( self : Any ): self.config_tester.run_common_tests() def lowercase__ ( self : str ): __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def lowercase__ ( self : int ): __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__SCREAMING_SNAKE_CASE ) def lowercase__ ( self : Optional[Any] ): __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__SCREAMING_SNAKE_CASE ) def lowercase__ ( self : Any ): __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__SCREAMING_SNAKE_CASE ) def lowercase__ ( self : Dict ): __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__SCREAMING_SNAKE_CASE ) @slow def lowercase__ ( self : Tuple ): for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = TFLayoutLMModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) @unittest.skip('Onnx compliancy broke with TF 2.10' ) def lowercase__ ( self : Dict ): pass def lowerCamelCase__ ( ): __snake_case = tf.convert_to_tensor([[101,1019,1014,1016,1037,12849,4747,1004,14246,2278,5439,4524,5002,2930,2193,2930,4341,3208,1005,1055,2171,2848,11300,3531,102],[101,4070,4034,7020,1024,3058,1015,1013,2861,1013,6070,19274,2772,6205,27814,16147,16147,4343,2047,10283,10969,14389,1012,2338,102]] ) # noqa: E231 __snake_case = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 __snake_case = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1000,1000,1000,1000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1000,1000,1000,1000]]] ) # noqa: E231 __snake_case = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) __snake_case = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class a_ ( unittest.TestCase ): @slow def lowercase__ ( self : Dict ): __snake_case = TFLayoutLMModel.from_pretrained('microsoft/layoutlm-base-uncased' ) __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = prepare_layoutlm_batch_inputs() # forward pass __snake_case = model(input_ids=__SCREAMING_SNAKE_CASE , bbox=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE ) # test the sequence output on [0, :3, :3] __snake_case = tf.convert_to_tensor( [[0.1785, -0.1947, -0.0425], [-0.3254, -0.2807, 0.2553], [-0.5391, -0.3322, 0.3364]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1E-3 ) ) # test the pooled output on [1, :3] __snake_case = tf.convert_to_tensor([-0.6580, -0.0214, 0.8552] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , __SCREAMING_SNAKE_CASE , atol=1E-3 ) ) @slow def lowercase__ ( self : Any ): # initialize model with randomly initialized sequence classification head __snake_case = TFLayoutLMForSequenceClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=2 ) __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = prepare_layoutlm_batch_inputs() # forward pass __snake_case = model( input_ids=__SCREAMING_SNAKE_CASE , bbox=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar __snake_case = outputs.loss __snake_case = (2,) self.assertEqual(loss.shape , __SCREAMING_SNAKE_CASE ) # test the shape of the logits __snake_case = outputs.logits __snake_case = (2, 2) self.assertEqual(logits.shape , __SCREAMING_SNAKE_CASE ) @slow def lowercase__ ( self : Tuple ): # initialize model with randomly initialized token classification head __snake_case = TFLayoutLMForTokenClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=1_3 ) __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = prepare_layoutlm_batch_inputs() # forward pass __snake_case = model( input_ids=__SCREAMING_SNAKE_CASE , bbox=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) # test the shape of the logits __snake_case = outputs.logits __snake_case = tf.convert_to_tensor((2, 2_5, 1_3) ) self.assertEqual(logits.shape , __SCREAMING_SNAKE_CASE ) @slow def lowercase__ ( self : Any ): # initialize model with randomly initialized token classification head __snake_case = TFLayoutLMForQuestionAnswering.from_pretrained('microsoft/layoutlm-base-uncased' ) __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = prepare_layoutlm_batch_inputs() # forward pass __snake_case = model(input_ids=__SCREAMING_SNAKE_CASE , bbox=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE ) # test the shape of the logits __snake_case = tf.convert_to_tensor((2, 2_5) ) self.assertEqual(outputs.start_logits.shape , __SCREAMING_SNAKE_CASE ) self.assertEqual(outputs.end_logits.shape , __SCREAMING_SNAKE_CASE )
356
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Union[str, Any] = """https://openaipublic.azureedge.net/jukebox/models/""" SCREAMING_SNAKE_CASE : int = { """jukebox-1b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """1b_lyrics/prior_level_2.pth.tar""", ], """jukebox-5b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """5b_lyrics/prior_level_2.pth.tar""", ], } def __A ( _A ): """simple docstring""" if key.endswith(".model.1.bias" ) and len(key.split("." ) ) > 10: __a = key.replace(".model.1.bias" , ".conv1d_1.bias" ) elif key.endswith(".model.1.weight" ) and len(key.split("." ) ) > 10: __a = key.replace(".model.1.weight" , ".conv1d_1.weight" ) elif key.endswith(".model.3.bias" ) and len(key.split("." ) ) > 10: __a = key.replace(".model.3.bias" , ".conv1d_2.bias" ) elif key.endswith(".model.3.weight" ) and len(key.split("." ) ) > 10: __a = key.replace(".model.3.weight" , ".conv1d_2.weight" ) if "conditioner_blocks.0." in key: __a = key.replace("conditioner_blocks.0" , "conditioner_blocks" ) if "prime_prior" in key: __a = key.replace("prime_prior" , "encoder" ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: __a = key.replace(".emb." , "." ) if key.endswith("k" ): # replace vqvae.X.k with vqvae.X.codebook return key.replace(".k" , ".codebook" ) if "y_emb." in key: return key.replace("y_emb." , "metadata_embedding." ) if "x_emb.emb." in key: __a = key.replace("0.x_emb.emb" , "embed_tokens" ) if "prime_state_ln" in key: return key.replace("prime_state_ln" , "encoder.final_layer_norm" ) if ".ln" in key: return key.replace(".ln" , ".layer_norm" ) if "_ln" in key: return key.replace("_ln" , "_layer_norm" ) if "prime_state_proj" in key: return key.replace("prime_state_proj" , "encoder.proj_in" ) if "prime_x_out" in key: return key.replace("prime_x_out" , "encoder.lm_head" ) if "prior.x_out" in key: return key.replace("x_out" , "fc_proj_out" ) if "x_emb" in key: return key.replace("x_emb" , "embed_tokens" ) return key def __A ( _A , _A , _A , _A ): """simple docstring""" __a = {} import re __a = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) __a = re.compile( r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) __a = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) __a = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) __a = re.compile( r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) __a = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) __a = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)" ) __a = re.compile( r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) __a = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)" ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_A ): __a = re_encoder_block_conv_in.match(_A ) __a = regex_match.groups() __a = int(groups[2] ) * 2 + int(groups[3] ) __a = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}""" __a = re_encoder_block_conv_in.sub(_A , _A ) elif re_encoder_block_resnet.fullmatch(_A ): __a = re_encoder_block_resnet.match(_A ) __a = regex_match.groups() __a = int(groups[2] ) * 2 + int(groups[3] ) __a = {"1": 1, "3": 2}[groups[-2]] __a = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.""" __a = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" __a = prefix + resnet_block __a = re_encoder_block_resnet.sub(_A , _A ) elif re_encoder_block_proj_out.fullmatch(_A ): __a = re_encoder_block_proj_out.match(_A ) __a = regex_match.groups() __a = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}""" __a = re_encoder_block_proj_out.sub(_A , _A ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_A ): __a = re_decoder_block_conv_out.match(_A ) __a = regex_match.groups() __a = int(groups[2] ) * 2 + int(groups[3] ) - 2 __a = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}""" __a = re_decoder_block_conv_out.sub(_A , _A ) elif re_decoder_block_resnet.fullmatch(_A ): __a = re_decoder_block_resnet.match(_A ) __a = regex_match.groups() __a = int(groups[2] ) * 2 + int(groups[3] ) - 2 __a = {"1": 1, "3": 2}[groups[-2]] __a = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.""" __a = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" __a = prefix + resnet_block __a = re_decoder_block_resnet.sub(_A , _A ) elif re_decoder_block_proj_in.fullmatch(_A ): __a = re_decoder_block_proj_in.match(_A ) __a = regex_match.groups() __a = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}""" __a = re_decoder_block_proj_in.sub(_A , _A ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_A ): __a = re_prior_cond_conv_out.match(_A ) __a = regex_match.groups() __a = int(groups[1] ) * 2 + int(groups[2] ) - 2 __a = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}""" __a = re_prior_cond_conv_out.sub(_A , _A ) elif re_prior_cond_resnet.fullmatch(_A ): __a = re_prior_cond_resnet.match(_A ) __a = regex_match.groups() __a = int(groups[1] ) * 2 + int(groups[2] ) - 2 __a = {"1": 1, "3": 2}[groups[-2]] __a = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.""" __a = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" __a = prefix + resnet_block __a = re_prior_cond_resnet.sub(_A , _A ) elif re_prior_cond_proj_in.fullmatch(_A ): __a = re_prior_cond_proj_in.match(_A ) __a = regex_match.groups() __a = f"""conditioner_blocks.upsampler.proj_in.{groups[-1]}""" __a = re_prior_cond_proj_in.sub(_A , _A ) # keep original key else: __a = original_key __a = replace_key(_A ) if f"""{key_prefix}.{key}""" not in model_state_dict or key is None: print(f"""failed converting {original_key} to {key}, does not match""" ) # handle missmatched shape elif value.shape != model_state_dict[f"""{key_prefix}.{key}"""].shape: __a = model_state_dict[f"""{key_prefix}.{key}"""] print(f"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""" ) __a = original_key __a = original_key __a = value return new_dict @torch.no_grad() def __A ( _A=None , _A=None ): """simple docstring""" for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" ): __a = requests.get(f"""{PREFIX}{file}""" , allow_redirects=_A ) os.makedirs(f"""{pytorch_dump_folder_path}/""" , exist_ok=_A ) open(f"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" , "wb" ).write(r.content ) __a = MODEL_MAPPING[model_name.split("/" )[-1]] __a = JukeboxConfig.from_pretrained(_A ) __a = JukeboxModel(_A ) __a = [] __a = {} for i, dict_name in enumerate(_A ): __a = torch.load(f"""{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}""" )["model"] __a = {} for k in old_dic.keys(): if k.endswith(".b" ): __a = old_dic[k] elif k.endswith(".w" ): __a = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: __a = old_dic[k] else: __a = old_dic[k] __a = "vqvae" if i == 0 else f"""priors.{3 - i}""" __a = fix_jukebox_keys(_A , model.state_dict() , _A , _A ) weight_dict.append(_A ) __a = weight_dict.pop(0 ) model.vqvae.load_state_dict(_A ) for i in range(len(_A ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_A ).mkdir(exist_ok=_A ) with open(f"""{pytorch_dump_folder_path}/mapping.json""" , "w" ) as txtfile: json.dump(_A , _A ) print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_A ) return weight_dict if __name__ == "__main__": SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""jukebox-5b-lyrics""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""jukebox-5b-lyrics-converted""", type=str, help="""Path to the output PyTorch model directory.""", ) SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
197
0
'''simple docstring''' def lowercase__( __UpperCamelCase: list[list[int]] ,__UpperCamelCase: int ,__UpperCamelCase: int ,__UpperCamelCase: set ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = len(__UpperCamelCase ), len(grid[0] ) if ( min(__UpperCamelCase ,__UpperCamelCase ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) SCREAMING_SNAKE_CASE : Dict = 0 count += depth_first_search(__UpperCamelCase ,row + 1 ,__UpperCamelCase ,__UpperCamelCase ) count += depth_first_search(__UpperCamelCase ,row - 1 ,__UpperCamelCase ,__UpperCamelCase ) count += depth_first_search(__UpperCamelCase ,__UpperCamelCase ,col + 1 ,__UpperCamelCase ) count += depth_first_search(__UpperCamelCase ,__UpperCamelCase ,col - 1 ,__UpperCamelCase ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
719
'''simple docstring''' def lowercase__( __UpperCamelCase: list[list[int]] ,__UpperCamelCase: int ,__UpperCamelCase: int ,__UpperCamelCase: set ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = len(__UpperCamelCase ), len(grid[0] ) if ( min(__UpperCamelCase ,__UpperCamelCase ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) SCREAMING_SNAKE_CASE : Dict = 0 count += depth_first_search(__UpperCamelCase ,row + 1 ,__UpperCamelCase ,__UpperCamelCase ) count += depth_first_search(__UpperCamelCase ,row - 1 ,__UpperCamelCase ,__UpperCamelCase ) count += depth_first_search(__UpperCamelCase ,__UpperCamelCase ,col + 1 ,__UpperCamelCase ) count += depth_first_search(__UpperCamelCase ,__UpperCamelCase ,col - 1 ,__UpperCamelCase ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
508
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig class SCREAMING_SNAKE_CASE__ ( _a ): _a = 'bert-generation' def __init__( self : List[Any] , lowerCAmelCase : Tuple=5_0358 , lowerCAmelCase : List[Any]=1024 , lowerCAmelCase : Any=24 , lowerCAmelCase : Union[str, Any]=16 , lowerCAmelCase : Dict=4096 , lowerCAmelCase : Optional[Any]="gelu" , lowerCAmelCase : Any=0.1 , lowerCAmelCase : List[Any]=0.1 , lowerCAmelCase : List[Any]=512 , lowerCAmelCase : Tuple=0.02 , lowerCAmelCase : List[Any]=1e-12 , lowerCAmelCase : Optional[int]=0 , lowerCAmelCase : Tuple=2 , lowerCAmelCase : Any=1 , lowerCAmelCase : Optional[int]="absolute" , lowerCAmelCase : Any=True , **lowerCAmelCase : List[str] , ): super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase ) lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = hidden_act lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = initializer_range lowerCAmelCase = layer_norm_eps lowerCAmelCase = position_embedding_type lowerCAmelCase = use_cache
169
"""simple docstring""" import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class SCREAMING_SNAKE_CASE__ ( _a , unittest.TestCase ): _a = BertJapaneseTokenizer _a = False _a = True def __lowercase ( self : Any ): super().setUp() lowerCAmelCase = [ """[UNK]""", """[CLS]""", """[SEP]""", """ใ“ใ‚“ใซใกใฏ""", """ใ“ใ‚“""", """ใซใกใฏ""", """ใฐใ‚“ใฏ""", """##ใ“ใ‚“""", """##ใซใกใฏ""", """##ใฐใ‚“ใฏ""", """ไธ–็•Œ""", """##ไธ–็•Œ""", """ใ€""", """##ใ€""", """ใ€‚""", """##ใ€‚""", ] lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def __lowercase ( self : int , lowerCAmelCase : List[Any] ): lowerCAmelCase = """ใ“ใ‚“ใซใกใฏใ€ไธ–็•Œใ€‚ \nใ“ใ‚“ใฐใ‚“ใฏใ€ไธ–็•Œใ€‚""" lowerCAmelCase = """ใ“ใ‚“ใซใกใฏ ใ€ ไธ–็•Œ ใ€‚ ใ“ใ‚“ใฐใ‚“ใฏ ใ€ ไธ–็•Œ ใ€‚""" return input_text, output_text def __lowercase ( self : Optional[Any] , lowerCAmelCase : List[Any] ): lowerCAmelCase , lowerCAmelCase = self.get_input_output_texts(lowerCAmelCase ) lowerCAmelCase = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) lowerCAmelCase = tokenizer.decode(lowerCAmelCase , clean_up_tokenization_spaces=lowerCAmelCase ) return text, ids def __lowercase ( self : List[str] ): pass # TODO add if relevant def __lowercase ( self : Optional[Any] ): pass # TODO add if relevant def __lowercase ( self : Any ): pass # TODO add if relevant def __lowercase ( self : List[Any] ): lowerCAmelCase = self.tokenizer_class(self.vocab_file ) lowerCAmelCase = tokenizer.tokenize("""ใ“ใ‚“ใซใกใฏใ€ไธ–็•Œใ€‚\nใ“ใ‚“ใฐใ‚“ใฏใ€ไธ–็•Œใ€‚""" ) self.assertListEqual(lowerCAmelCase , ["""ใ“ใ‚“ใซใกใฏ""", """ใ€""", """ไธ–็•Œ""", """ใ€‚""", """ใ“ใ‚“""", """##ใฐใ‚“ใฏ""", """ใ€""", """ไธ–็•Œ""", """ใ€‚"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) def __lowercase ( self : int ): lowerCAmelCase = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""mecab""" ) self.assertIsNotNone(lowerCAmelCase ) lowerCAmelCase = """ใ“ใ‚“ใซใกใฏใ€ไธ–็•Œใ€‚\nใ“ใ‚“ใฐใ‚“ใฏใ€ไธ–็•Œใ€‚""" lowerCAmelCase = tokenizer.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , ["""ใ“ใ‚“ใซใกใฏ""", """ใ€""", """ไธ–็•Œ""", """ใ€‚""", """ใ“ใ‚“""", """##ใฐใ‚“ใฏ""", """ใ€""", """ไธ–็•Œ""", """ใ€‚"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) lowerCAmelCase = os.path.join(self.tmpdirname , """tokenizer.bin""" ) with open(lowerCAmelCase , """wb""" ) as handle: pickle.dump(lowerCAmelCase , lowerCAmelCase ) with open(lowerCAmelCase , """rb""" ) as handle: lowerCAmelCase = pickle.load(lowerCAmelCase ) lowerCAmelCase = tokenizer_new.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) def __lowercase ( self : str ): lowerCAmelCase = MecabTokenizer(mecab_dic="""ipadic""" ) self.assertListEqual( tokenizer.tokenize(""" \t๏ฝฑ๏ฝฏ๏พŒ๏พŸ๏พ™ใ‚นใƒˆใ‚ขใงiPhone๏ผ˜ ใŒ \n ็™บๅฃฒใ•ใ‚ŒใŸใ€€ใ€‚ """ ) , ["""ใ‚ขใƒƒใƒ—ใƒซใ‚นใƒˆใ‚ข""", """ใง""", """iPhone""", """8""", """ใŒ""", """็™บๅฃฒ""", """ใ•""", """ใ‚Œ""", """ใŸ""", """ใ€‚"""] , ) def __lowercase ( self : int ): try: lowerCAmelCase = MecabTokenizer(mecab_dic="""unidic_lite""" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(""" \t๏ฝฑ๏ฝฏ๏พŒ๏พŸ๏พ™ใ‚นใƒˆใ‚ขใงiPhone๏ผ˜ ใŒ \n ็™บๅฃฒใ•ใ‚ŒใŸใ€€ใ€‚ """ ) , ["""ใ‚ขใƒƒใƒ—ใƒซ""", """ใ‚นใƒˆใ‚ข""", """ใง""", """iPhone""", """8""", """ใŒ""", """็™บๅฃฒ""", """ใ•""", """ใ‚Œ""", """ใŸ""", """ใ€‚"""] , ) def __lowercase ( self : Optional[int] ): try: lowerCAmelCase = MecabTokenizer(mecab_dic="""unidic""" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(""" \t๏ฝฑ๏ฝฏ๏พŒ๏พŸ๏พ™ใ‚นใƒˆใ‚ขใงiPhone๏ผ˜ ใŒ \n ็™บๅฃฒใ•ใ‚ŒใŸใ€€ใ€‚ """ ) , ["""ใ‚ขใƒƒใƒ—ใƒซ""", """ใ‚นใƒˆใ‚ข""", """ใง""", """iPhone""", """8""", """ใŒ""", """็™บๅฃฒ""", """ใ•""", """ใ‚Œ""", """ใŸ""", """ใ€‚"""] , ) def __lowercase ( self : Any ): lowerCAmelCase = MecabTokenizer(do_lower_case=lowerCAmelCase , mecab_dic="""ipadic""" ) self.assertListEqual( tokenizer.tokenize(""" \t๏ฝฑ๏ฝฏ๏พŒ๏พŸ๏พ™ใ‚นใƒˆใ‚ขใงiPhone๏ผ˜ ใŒ \n ็™บๅฃฒใ•ใ‚ŒใŸใ€€ใ€‚ """ ) , ["""ใ‚ขใƒƒใƒ—ใƒซใ‚นใƒˆใ‚ข""", """ใง""", """iphone""", """8""", """ใŒ""", """็™บๅฃฒ""", """ใ•""", """ใ‚Œ""", """ใŸ""", """ใ€‚"""] , ) def __lowercase ( self : Optional[int] ): try: lowerCAmelCase = MecabTokenizer( do_lower_case=lowerCAmelCase , normalize_text=lowerCAmelCase , mecab_option="""-d /usr/local/lib/mecab/dic/jumandic""" ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(""" \t๏ฝฑ๏ฝฏ๏พŒ๏พŸ๏พ™ใ‚นใƒˆใ‚ขใงiPhone๏ผ˜ ใŒ \n ็™บๅฃฒใ•ใ‚ŒใŸใ€€ใ€‚ """ ) , ["""๏ฝฑ๏ฝฏ๏พŒ๏พŸ๏พ™ใ‚นใƒˆใ‚ข""", """ใง""", """iPhone""", """๏ผ˜""", """ใŒ""", """็™บๅฃฒ""", """ใ•""", """ใ‚ŒใŸ""", """\u3000""", """ใ€‚"""] , ) def __lowercase ( self : int ): lowerCAmelCase = MecabTokenizer(normalize_text=lowerCAmelCase , mecab_dic="""ipadic""" ) self.assertListEqual( tokenizer.tokenize(""" \t๏ฝฑ๏ฝฏ๏พŒ๏พŸ๏พ™ใ‚นใƒˆใ‚ขใงiPhone๏ผ˜ ใŒ \n ็™บๅฃฒใ•ใ‚ŒใŸใ€€ใ€‚ """ ) , ["""๏ฝฑ๏ฝฏ๏พŒ๏พŸ๏พ™ใ‚นใƒˆใ‚ข""", """ใง""", """iPhone""", """๏ผ˜""", """ใŒ""", """็™บๅฃฒ""", """ใ•""", """ใ‚Œ""", """ใŸ""", """ใ€€""", """ใ€‚"""] , ) @require_sudachi def __lowercase ( self : List[Any] ): lowerCAmelCase = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""sudachi""" ) self.assertIsNotNone(lowerCAmelCase ) lowerCAmelCase = """ใ“ใ‚“ใซใกใฏใ€ไธ–็•Œใ€‚\nใ“ใ‚“ใฐใ‚“ใฏใ€ไธ–็•Œใ€‚""" lowerCAmelCase = tokenizer.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , ["""ใ“ใ‚“ใซใกใฏ""", """ใ€""", """ไธ–็•Œ""", """ใ€‚""", """ใ“ใ‚“""", """##ใฐใ‚“ใฏ""", """ใ€""", """ไธ–็•Œ""", """ใ€‚"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) lowerCAmelCase = os.path.join(self.tmpdirname , """tokenizer.bin""" ) with open(lowerCAmelCase , """wb""" ) as handle: pickle.dump(lowerCAmelCase , lowerCAmelCase ) with open(lowerCAmelCase , """rb""" ) as handle: lowerCAmelCase = pickle.load(lowerCAmelCase ) lowerCAmelCase = tokenizer_new.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) @require_sudachi def __lowercase ( self : str ): lowerCAmelCase = SudachiTokenizer(sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \t๏ฝฑ๏ฝฏ๏พŒ๏พŸ๏พ™ใ‚นใƒˆใ‚ขใงiPhone๏ผ˜ ใŒ \n ็™บๅฃฒใ•ใ‚ŒใŸใ€€ใ€‚ """ ) , [""" """, """\t""", """ใ‚ขใƒƒใƒ—ใƒซ""", """ใ‚นใƒˆใ‚ข""", """ใง""", """iPhone""", """8""", """ """, """ใŒ""", """ """, """ """, """\n """, """็™บๅฃฒ""", """ใ•""", """ใ‚Œ""", """ใŸ""", """ """, """ใ€‚""", """ """, """ """] , ) @require_sudachi def __lowercase ( self : str ): lowerCAmelCase = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""A""" ) self.assertListEqual(tokenizer.tokenize("""ๅค–ๅ›ฝไบบๅ‚ๆ”ฟๆจฉ""" ) , ["""ๅค–ๅ›ฝ""", """ไบบ""", """ๅ‚ๆ”ฟ""", """ๆจฉ"""] ) @require_sudachi def __lowercase ( self : Dict ): lowerCAmelCase = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""B""" ) self.assertListEqual(tokenizer.tokenize("""ๅค–ๅ›ฝไบบๅ‚ๆ”ฟๆจฉ""" ) , ["""ๅค–ๅ›ฝไบบ""", """ๅ‚ๆ”ฟๆจฉ"""] ) @require_sudachi def __lowercase ( self : int ): lowerCAmelCase = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""C""" ) self.assertListEqual(tokenizer.tokenize("""ๅค–ๅ›ฝไบบๅ‚ๆ”ฟๆจฉ""" ) , ["""ๅค–ๅ›ฝไบบๅ‚ๆ”ฟๆจฉ"""] ) @require_sudachi def __lowercase ( self : str ): lowerCAmelCase = SudachiTokenizer(do_lower_case=lowerCAmelCase , sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \t๏ฝฑ๏ฝฏ๏พŒ๏พŸ๏พ™ใ‚นใƒˆใ‚ขใงiPhone๏ผ˜ ใŒ \n ็™บๅฃฒใ•ใ‚ŒใŸใ€€ใ€‚ """ ) , [""" """, """\t""", """ใ‚ขใƒƒใƒ—ใƒซ""", """ใ‚นใƒˆใ‚ข""", """ใง""", """iphone""", """8""", """ """, """ใŒ""", """ """, """ """, """\n """, """็™บๅฃฒ""", """ใ•""", """ใ‚Œ""", """ใŸ""", """ """, """ใ€‚""", """ """, """ """] , ) @require_sudachi def __lowercase ( self : Tuple ): lowerCAmelCase = SudachiTokenizer(normalize_text=lowerCAmelCase , sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \t๏ฝฑ๏ฝฏ๏พŒ๏พŸ๏พ™ใ‚นใƒˆใ‚ขใงiPhone๏ผ˜ ใŒ \n ็™บๅฃฒใ•ใ‚ŒใŸใ€€ใ€‚ """ ) , [""" """, """\t""", """๏ฝฑ๏ฝฏ๏พŒ๏พŸ๏พ™""", """ใ‚นใƒˆใ‚ข""", """ใง""", """iPhone""", """๏ผ˜""", """ """, """ใŒ""", """ """, """ """, """\n """, """็™บๅฃฒ""", """ใ•""", """ใ‚Œ""", """ใŸ""", """\u3000""", """ใ€‚""", """ """, """ """] , ) @require_sudachi def __lowercase ( self : List[Any] ): lowerCAmelCase = SudachiTokenizer(trim_whitespace=lowerCAmelCase , sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \t๏ฝฑ๏ฝฏ๏พŒ๏พŸ๏พ™ใ‚นใƒˆใ‚ขใงiPhone๏ผ˜ ใŒ \n ็™บๅฃฒใ•ใ‚ŒใŸใ€€ใ€‚ """ ) , ["""ใ‚ขใƒƒใƒ—ใƒซ""", """ใ‚นใƒˆใ‚ข""", """ใง""", """iPhone""", """8""", """ใŒ""", """็™บๅฃฒ""", """ใ•""", """ใ‚Œ""", """ใŸ""", """ใ€‚"""] , ) @require_jumanpp def __lowercase ( self : List[Any] ): lowerCAmelCase = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""jumanpp""" ) self.assertIsNotNone(lowerCAmelCase ) lowerCAmelCase = """ใ“ใ‚“ใซใกใฏใ€ไธ–็•Œใ€‚\nใ“ใ‚“ใฐใ‚“ใฏใ€ไธ–็•Œใ€‚""" lowerCAmelCase = tokenizer.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , ["""ใ“ใ‚“ใซใกใฏ""", """ใ€""", """ไธ–็•Œ""", """ใ€‚""", """ใ“ใ‚“""", """##ใฐใ‚“ใฏ""", """ใ€""", """ไธ–็•Œ""", """ใ€‚"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) lowerCAmelCase = os.path.join(self.tmpdirname , """tokenizer.bin""" ) with open(lowerCAmelCase , """wb""" ) as handle: pickle.dump(lowerCAmelCase , lowerCAmelCase ) with open(lowerCAmelCase , """rb""" ) as handle: lowerCAmelCase = pickle.load(lowerCAmelCase ) lowerCAmelCase = tokenizer_new.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) @require_jumanpp def __lowercase ( self : Optional[Any] ): lowerCAmelCase = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(""" \t๏ฝฑ๏ฝฏ๏พŒ๏พŸ๏พ™ใ‚นใƒˆใ‚ขใงiPhone๏ผ˜ ใŒ \n ็™บๅฃฒใ•ใ‚ŒใŸใ€€ใ€‚ """ ) , ["""ใ‚ขใƒƒใƒ—ใƒซ""", """ใ‚นใƒˆใ‚ข""", """ใง""", """iPhone""", """8""", """\u3000""", """ใŒ""", """\u3000""", """\u3000""", """\u3000""", """็™บๅฃฒ""", """ใ•""", """ใ‚ŒใŸ""", """\u3000""", """ใ€‚"""] , ) @require_jumanpp def __lowercase ( self : Optional[Any] ): lowerCAmelCase = JumanppTokenizer(do_lower_case=lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \t๏ฝฑ๏ฝฏ๏พŒ๏พŸ๏พ™ใ‚นใƒˆใ‚ขใงiPhone๏ผ˜ ใŒ \n ็™บๅฃฒใ•ใ‚ŒใŸใ€€ใ€‚ """ ) , ["""ใ‚ขใƒƒใƒ—ใƒซ""", """ใ‚นใƒˆใ‚ข""", """ใง""", """iphone""", """8""", """\u3000""", """ใŒ""", """\u3000""", """\u3000""", """\u3000""", """็™บๅฃฒ""", """ใ•""", """ใ‚ŒใŸ""", """\u3000""", """ใ€‚"""] , ) @require_jumanpp def __lowercase ( self : int ): lowerCAmelCase = JumanppTokenizer(normalize_text=lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \t๏ฝฑ๏ฝฏ๏พŒ๏พŸ๏พ™ใ‚นใƒˆใ‚ขใงiPhone๏ผ˜ ใŒ \n ็™บๅฃฒใ•ใ‚ŒใŸใ€€ใ€‚ """ ) , ["""๏ฝฑ""", """๏ฝฏ""", """๏พŒ""", """๏พŸ""", """๏พ™""", """ใ‚นใƒˆใ‚ข""", """ใง""", """iPhone""", """๏ผ˜""", """\u3000""", """ใŒ""", """\u3000""", """\u3000""", """\u3000""", """็™บๅฃฒ""", """ใ•""", """ใ‚ŒใŸ""", """\u3000""", """ใ€‚"""] , ) @require_jumanpp def __lowercase ( self : Any ): lowerCAmelCase = JumanppTokenizer(trim_whitespace=lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \t๏ฝฑ๏ฝฏ๏พŒ๏พŸ๏พ™ใ‚นใƒˆใ‚ขใงiPhone๏ผ˜ ใŒ \n ็™บๅฃฒใ•ใ‚ŒใŸใ€€ใ€‚ """ ) , ["""ใ‚ขใƒƒใƒ—ใƒซ""", """ใ‚นใƒˆใ‚ข""", """ใง""", """iPhone""", """8""", """ใŒ""", """็™บๅฃฒ""", """ใ•""", """ใ‚ŒใŸ""", """ใ€‚"""] , ) @require_jumanpp def __lowercase ( self : Tuple ): lowerCAmelCase = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize("""ใ‚ใ‚ŠใŒใจใ†ใ”ใ–ใ„ใพใ™m(_ _)๏ฝ่ฆ‹ใคใ‘ใ‚‹ใฎใŒๅคงๅค‰ใงใ™ใ€‚""" ) , ["""ใ‚ใ‚ŠใŒใจใ†""", """ใ”ใ–ใ„ใพใ™""", """m(_ _)m""", """่ฆ‹ใคใ‘ใ‚‹""", """ใฎ""", """ใŒ""", """ๅคงๅค‰ใงใ™""", """ใ€‚"""] , ) def __lowercase ( self : str ): lowerCAmelCase = ["""[UNK]""", """[CLS]""", """[SEP]""", """ใ“ใ‚“ใซใกใฏ""", """ใ“ใ‚“""", """ใซใกใฏ""", """ใฐใ‚“ใฏ""", """##ใ“ใ‚“""", """##ใซใกใฏ""", """##ใฐใ‚“ใฏ"""] lowerCAmelCase = {} for i, token in enumerate(lowerCAmelCase ): lowerCAmelCase = i lowerCAmelCase = WordpieceTokenizer(vocab=lowerCAmelCase , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""ใ“ใ‚“ใซใกใฏ""" ) , ["""ใ“ใ‚“ใซใกใฏ"""] ) self.assertListEqual(tokenizer.tokenize("""ใ“ใ‚“ใฐใ‚“ใฏ""" ) , ["""ใ“ใ‚“""", """##ใฐใ‚“ใฏ"""] ) self.assertListEqual(tokenizer.tokenize("""ใ“ใ‚“ใฐใ‚“ใฏ ใ“ใ‚“ใฐใ‚“ใซใกใฏ ใ“ใ‚“ใซใกใฏ""" ) , ["""ใ“ใ‚“""", """##ใฐใ‚“ใฏ""", """[UNK]""", """ใ“ใ‚“ใซใกใฏ"""] ) def __lowercase ( self : Dict ): lowerCAmelCase = BertJapaneseTokenizer.from_pretrained("""nlp-waseda/roberta-base-japanese-with-auto-jumanpp""" ) lowerCAmelCase = tokenizer.subword_tokenizer lowerCAmelCase = subword_tokenizer.tokenize("""ๅ›ฝๅขƒ ใฎ ้•ทใ„ ใƒˆใƒณใƒใƒซ ใ‚’ ๆŠœใ‘ใ‚‹ ใจ ้›ชๅ›ฝ ใงใ‚ใฃใŸ ใ€‚""" ) self.assertListEqual(lowerCAmelCase , ["""โ–ๅ›ฝๅขƒ""", """โ–ใฎ""", """โ–้•ทใ„""", """โ–ใƒˆใƒณใƒใƒซ""", """โ–ใ‚’""", """โ–ๆŠœใ‘ใ‚‹""", """โ–ใจ""", """โ–้›ช""", """ๅ›ฝ""", """โ–ใงใ‚ใฃใŸ""", """โ–ใ€‚"""] ) lowerCAmelCase = subword_tokenizer.tokenize("""ใ“ใ‚“ใฐใ‚“ใฏ ใ“ใ‚“ใฐใ‚“ ใซใก ใฏ ใ“ใ‚“ใซใกใฏ""" ) self.assertListEqual(lowerCAmelCase , ["""โ–ใ“ใ‚“""", """ใฐใ‚“""", """ใฏ""", """โ–ใ“ใ‚“""", """ใฐใ‚“""", """โ–ใซ""", """ใก""", """โ–ใฏ""", """โ–ใ“ใ‚“ใซใกใฏ"""] ) def __lowercase ( self : str ): lowerCAmelCase = self.tokenizer_class.from_pretrained("""cl-tohoku/bert-base-japanese""" ) lowerCAmelCase = tokenizer.encode("""ใ‚ใ‚ŠใŒใจใ†ใ€‚""" , add_special_tokens=lowerCAmelCase ) lowerCAmelCase = tokenizer.encode("""ใฉใ†ใ„ใŸใ—ใพใ—ใฆใ€‚""" , add_special_tokens=lowerCAmelCase ) lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase ) lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase , lowerCAmelCase ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class SCREAMING_SNAKE_CASE__ ( _a , unittest.TestCase ): _a = BertJapaneseTokenizer _a = False def __lowercase ( self : Union[str, Any] ): super().setUp() lowerCAmelCase = ["""[UNK]""", """[CLS]""", """[SEP]""", """ใ“""", """ใ‚“""", """ใซ""", """ใก""", """ใฏ""", """ใฐ""", """ไธ–""", """็•Œ""", """ใ€""", """ใ€‚"""] lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def __lowercase ( self : Optional[int] , **lowerCAmelCase : Optional[Any] ): return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type="""character""" , **lowerCAmelCase ) def __lowercase ( self : List[str] , lowerCAmelCase : Union[str, Any] ): lowerCAmelCase = """ใ“ใ‚“ใซใกใฏใ€ไธ–็•Œใ€‚ \nใ“ใ‚“ใฐใ‚“ใฏใ€ไธ–็•Œใ€‚""" lowerCAmelCase = """ใ“ ใ‚“ ใซ ใก ใฏ ใ€ ไธ– ็•Œ ใ€‚ ใ“ ใ‚“ ใฐ ใ‚“ ใฏ ใ€ ไธ– ็•Œ ใ€‚""" return input_text, output_text def __lowercase ( self : List[Any] ): pass # TODO add if relevant def __lowercase ( self : Optional[Any] ): pass # TODO add if relevant def __lowercase ( self : int ): pass # TODO add if relevant def __lowercase ( self : Union[str, Any] ): lowerCAmelCase = self.tokenizer_class(self.vocab_file , subword_tokenizer_type="""character""" ) lowerCAmelCase = tokenizer.tokenize("""ใ“ใ‚“ใซใกใฏใ€ไธ–็•Œใ€‚ \nใ“ใ‚“ใฐใ‚“ใฏใ€ไธ–็•Œใ€‚""" ) self.assertListEqual( lowerCAmelCase , ["""ใ“""", """ใ‚“""", """ใซ""", """ใก""", """ใฏ""", """ใ€""", """ไธ–""", """็•Œ""", """ใ€‚""", """ใ“""", """ใ‚“""", """ใฐ""", """ใ‚“""", """ใฏ""", """ใ€""", """ไธ–""", """็•Œ""", """ใ€‚"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase ) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] ) def __lowercase ( self : Any ): lowerCAmelCase = ["""[UNK]""", """[CLS]""", """[SEP]""", """ใ“""", """ใ‚“""", """ใซ""", """ใก""", """ใฏ""", """ใฐ""", """ไธ–""", """็•Œ""", """ใ€""", """ใ€‚"""] lowerCAmelCase = {} for i, token in enumerate(lowerCAmelCase ): lowerCAmelCase = i lowerCAmelCase = CharacterTokenizer(vocab=lowerCAmelCase , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""ใ“ใ‚“ใซใกใฏ""" ) , ["""ใ“""", """ใ‚“""", """ใซ""", """ใก""", """ใฏ"""] ) self.assertListEqual(tokenizer.tokenize("""ใ“ใ‚“ใซใกใป""" ) , ["""ใ“""", """ใ‚“""", """ใซ""", """ใก""", """[UNK]"""] ) def __lowercase ( self : Tuple ): lowerCAmelCase = self.tokenizer_class.from_pretrained("""cl-tohoku/bert-base-japanese-char""" ) lowerCAmelCase = tokenizer.encode("""ใ‚ใ‚ŠใŒใจใ†ใ€‚""" , add_special_tokens=lowerCAmelCase ) lowerCAmelCase = tokenizer.encode("""ใฉใ†ใ„ใŸใ—ใพใ—ใฆใ€‚""" , add_special_tokens=lowerCAmelCase ) lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase ) lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase , lowerCAmelCase ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __lowercase ( self : Optional[int] ): lowerCAmelCase = """cl-tohoku/bert-base-japanese""" lowerCAmelCase = AutoTokenizer.from_pretrained(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __lowercase ( self : List[str] ): lowerCAmelCase = """cl-tohoku/bert-base-japanese""" with self.assertLogs("""transformers""" , level="""WARNING""" ) as cm: BertTokenizer.from_pretrained(lowerCAmelCase ) self.assertTrue( cm.records[0].message.startswith( """The tokenizer class you load from this checkpoint is not the same type as the class this function""" """ is called from.""" ) ) lowerCAmelCase = """bert-base-cased""" with self.assertLogs("""transformers""" , level="""WARNING""" ) as cm: BertJapaneseTokenizer.from_pretrained(lowerCAmelCase ) self.assertTrue( cm.records[0].message.startswith( """The tokenizer class you load from this checkpoint is not the same type as the class this function""" """ is called from.""" ) )
169
1
from ...processing_utils import ProcessorMixin class lowercase__ ( __A ): __UpperCamelCase = """SpeechT5FeatureExtractor""" __UpperCamelCase = """SpeechT5Tokenizer""" def __init__( self , _lowercase , _lowercase ): super().__init__(_lowercase , _lowercase ) def __call__( self , *_lowercase , **_lowercase ): lowerCAmelCase_ : Optional[Any] = kwargs.pop("""audio""" , _lowercase ) lowerCAmelCase_ : List[Any] = kwargs.pop("""text""" , _lowercase ) lowerCAmelCase_ : Optional[int] = kwargs.pop("""text_target""" , _lowercase ) lowerCAmelCase_ : int = kwargs.pop("""audio_target""" , _lowercase ) lowerCAmelCase_ : Optional[Any] = kwargs.pop("""sampling_rate""" , _lowercase ) if audio is not None and text is not None: raise ValueError( """Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?""" ) if audio_target is not None and text_target is not None: raise ValueError( """Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?""" ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( """You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.""" ) if audio is not None: lowerCAmelCase_ : Optional[int] = self.feature_extractor(_lowercase , *_lowercase , sampling_rate=_lowercase , **_lowercase ) elif text is not None: lowerCAmelCase_ : Union[str, Any] = self.tokenizer(_lowercase , **_lowercase ) else: lowerCAmelCase_ : Dict = None if audio_target is not None: lowerCAmelCase_ : Dict = self.feature_extractor(audio_target=_lowercase , *_lowercase , sampling_rate=_lowercase , **_lowercase ) lowerCAmelCase_ : str = targets["""input_values"""] elif text_target is not None: lowerCAmelCase_ : str = self.tokenizer(_lowercase , **_lowercase ) lowerCAmelCase_ : List[str] = targets["""input_ids"""] else: lowerCAmelCase_ : Dict = None if inputs is None: return targets if targets is not None: lowerCAmelCase_ : int = labels lowerCAmelCase_ : List[Any] = targets.get("""attention_mask""" ) if decoder_attention_mask is not None: lowerCAmelCase_ : Tuple = decoder_attention_mask return inputs def UpperCAmelCase__ ( self , *_lowercase , **_lowercase ): lowerCAmelCase_ : List[Any] = kwargs.pop("""input_values""" , _lowercase ) lowerCAmelCase_ : Tuple = kwargs.pop("""input_ids""" , _lowercase ) lowerCAmelCase_ : str = kwargs.pop("""labels""" , _lowercase ) if input_values is not None and input_ids is not None: raise ValueError("""Cannot process both `input_values` and `input_ids` inputs.""" ) if input_values is None and input_ids is None and labels is None: raise ValueError( """You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.""" ) if input_values is not None: lowerCAmelCase_ : Optional[int] = self.feature_extractor.pad(_lowercase , *_lowercase , **_lowercase ) elif input_ids is not None: lowerCAmelCase_ : Tuple = self.tokenizer.pad(_lowercase , **_lowercase ) else: lowerCAmelCase_ : Optional[Any] = None if labels is not None: if "input_ids" in labels or (isinstance(_lowercase , _lowercase ) and "input_ids" in labels[0]): lowerCAmelCase_ : Union[str, Any] = self.tokenizer.pad(_lowercase , **_lowercase ) lowerCAmelCase_ : List[str] = targets["""input_ids"""] else: lowerCAmelCase_ : Optional[Any] = self.feature_extractor.feature_size lowerCAmelCase_ : Optional[int] = self.feature_extractor.num_mel_bins lowerCAmelCase_ : List[str] = self.feature_extractor.pad(_lowercase , *_lowercase , **_lowercase ) lowerCAmelCase_ : Union[str, Any] = feature_size_hack lowerCAmelCase_ : Any = targets["""input_values"""] else: lowerCAmelCase_ : str = None if inputs is None: return targets if targets is not None: lowerCAmelCase_ : Dict = labels lowerCAmelCase_ : str = targets.get("""attention_mask""" ) if decoder_attention_mask is not None: lowerCAmelCase_ : Any = decoder_attention_mask return inputs def UpperCAmelCase__ ( self , *_lowercase , **_lowercase ): return self.tokenizer.batch_decode(*_lowercase , **_lowercase ) def UpperCAmelCase__ ( self , *_lowercase , **_lowercase ): return self.tokenizer.decode(*_lowercase , **_lowercase )
440
from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase_ : Any = { """deepmind/language-perceiver""": """https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json""", # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class lowercase__ ( __A ): __UpperCamelCase = """perceiver""" def __init__( self , _lowercase=256 , _lowercase=1_280 , _lowercase=768 , _lowercase=1 , _lowercase=26 , _lowercase=8 , _lowercase=8 , _lowercase=None , _lowercase=None , _lowercase="kv" , _lowercase=1 , _lowercase=1 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.02 , _lowercase=1e-12 , _lowercase=True , _lowercase=262 , _lowercase=2_048 , _lowercase=56 , _lowercase=[368, 496] , _lowercase=16 , _lowercase=1_920 , _lowercase=16 , _lowercase=[1, 16, 224, 224] , **_lowercase , ): super().__init__(**_lowercase ) lowerCAmelCase_ : Optional[int] = num_latents lowerCAmelCase_ : List[str] = d_latents lowerCAmelCase_ : int = d_model lowerCAmelCase_ : Dict = num_blocks lowerCAmelCase_ : Union[str, Any] = num_self_attends_per_block lowerCAmelCase_ : List[str] = num_self_attention_heads lowerCAmelCase_ : List[str] = num_cross_attention_heads lowerCAmelCase_ : List[Any] = qk_channels lowerCAmelCase_ : Optional[Any] = v_channels lowerCAmelCase_ : Optional[Any] = cross_attention_shape_for_attention lowerCAmelCase_ : Optional[int] = self_attention_widening_factor lowerCAmelCase_ : int = cross_attention_widening_factor lowerCAmelCase_ : Union[str, Any] = hidden_act lowerCAmelCase_ : int = attention_probs_dropout_prob lowerCAmelCase_ : int = initializer_range lowerCAmelCase_ : Optional[Any] = layer_norm_eps lowerCAmelCase_ : Optional[Any] = use_query_residual # masked language modeling attributes lowerCAmelCase_ : Tuple = vocab_size lowerCAmelCase_ : List[Any] = max_position_embeddings # image classification attributes lowerCAmelCase_ : List[Any] = image_size # flow attributes lowerCAmelCase_ : Dict = train_size # multimodal autoencoding attributes lowerCAmelCase_ : Optional[Any] = num_frames lowerCAmelCase_ : int = audio_samples_per_frame lowerCAmelCase_ : Any = samples_per_patch lowerCAmelCase_ : Any = output_shape class lowercase__ ( __A ): @property def UpperCAmelCase__ ( self ): if self.task == "multiple-choice": lowerCAmelCase_ : Optional[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowerCAmelCase_ : Optional[int] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""inputs""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] ) @property def UpperCAmelCase__ ( self ): return 1e-4 def UpperCAmelCase__ ( self , _lowercase , _lowercase = -1 , _lowercase = -1 , _lowercase = -1 , _lowercase = False , _lowercase = None , _lowercase = 3 , _lowercase = 40 , _lowercase = 40 , ): # copied from `transformers.onnx.config.OnnxConfig` and slightly altered/simplified if isinstance(_lowercase , _lowercase ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowerCAmelCase_ : Union[str, Any] = compute_effective_axis_dimension( _lowercase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowerCAmelCase_ : int = preprocessor.num_special_tokens_to_add(_lowercase ) lowerCAmelCase_ : int = compute_effective_axis_dimension( _lowercase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_lowercase ) # Generate dummy inputs according to compute batch and sequence lowerCAmelCase_ : Optional[int] = [""" """.join(["""a"""] ) * seq_length] * batch_size lowerCAmelCase_ : Optional[Any] = dict(preprocessor(_lowercase , return_tensors=_lowercase ) ) lowerCAmelCase_ : Optional[Any] = inputs.pop("""input_ids""" ) return inputs elif isinstance(_lowercase , _lowercase ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowerCAmelCase_ : Any = compute_effective_axis_dimension(_lowercase , fixed_dimension=OnnxConfig.default_fixed_batch ) lowerCAmelCase_ : str = self._generate_dummy_images(_lowercase , _lowercase , _lowercase , _lowercase ) lowerCAmelCase_ : List[str] = dict(preprocessor(images=_lowercase , return_tensors=_lowercase ) ) lowerCAmelCase_ : Tuple = inputs.pop("""pixel_values""" ) return inputs else: raise ValueError( """Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.""" )
440
1
from pathlib import Path import numpy as np from PIL import Image def _a ( lowercase__ : np.ndarray ): '''simple docstring''' SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2989 * r + 0.5870 * g + 0.1140 * b def _a ( lowercase__ : np.ndarray ): '''simple docstring''' return (gray > 1_27) & (gray <= 2_55) def _a ( lowercase__ : np.ndarray , lowercase__ : np.ndarray ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = np.zeros_like(lowercase__ ) SCREAMING_SNAKE_CASE__ : str = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image SCREAMING_SNAKE_CASE__ : Optional[Any] = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): SCREAMING_SNAKE_CASE__ : List[Any] = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() SCREAMING_SNAKE_CASE__ : List[str] = int(summation > 0 ) return output if __name__ == "__main__": # read original image SCREAMING_SNAKE_CASE__ : int = Path(__file__).resolve().parent / "image_data" / "lena.jpg" SCREAMING_SNAKE_CASE__ : int = np.array(Image.open(lena_path)) # kernel to be applied SCREAMING_SNAKE_CASE__ : str = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) SCREAMING_SNAKE_CASE__ : Optional[int] = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image SCREAMING_SNAKE_CASE__ : Optional[int] = Image.fromarray(output).convert("RGB") pil_img.save("result_dilation.png")
85
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable SCREAMING_SNAKE_CASE__ : Any = {"configuration_dpt": ["DPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DPTConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : List[str] = ["DPTFeatureExtractor"] SCREAMING_SNAKE_CASE__ : Tuple = ["DPTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Optional[Any] = [ "DPT_PRETRAINED_MODEL_ARCHIVE_LIST", "DPTForDepthEstimation", "DPTForSemanticSegmentation", "DPTModel", "DPTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
85
1
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
713
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class lowercase : def __init__( self : Any , _UpperCamelCase : Any , _UpperCamelCase : Dict=13 , _UpperCamelCase : List[Any]=64 , _UpperCamelCase : Union[str, Any]=2 , _UpperCamelCase : int=3 , _UpperCamelCase : Union[str, Any]=True , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : Tuple=32 , _UpperCamelCase : str=5 , _UpperCamelCase : Tuple=4 , _UpperCamelCase : Any=37 , _UpperCamelCase : List[str]="gelu" , _UpperCamelCase : int=0.1 , _UpperCamelCase : int=0.1 , _UpperCamelCase : Optional[int]=10 , _UpperCamelCase : Tuple=0.0_2 , _UpperCamelCase : Union[str, Any]=[1, 16, 4, 4] , _UpperCamelCase : Optional[Any]=None , ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = type_sequence_label_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = scope SCREAMING_SNAKE_CASE = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size SCREAMING_SNAKE_CASE = (self.image_size // 32) ** 2 SCREAMING_SNAKE_CASE = num_patches + 1 def __snake_case( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def __snake_case( self : Dict ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, "hidden_sizes": [4, 8, 16, 32], "num_groups": 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=_UpperCamelCase , ) def __snake_case( self : Dict , _UpperCamelCase : int , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[int] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = ViTHybridModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __snake_case( self : Any , _UpperCamelCase : List[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : Tuple ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.type_sequence_label_size SCREAMING_SNAKE_CASE = ViTHybridForImageClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __snake_case( self : str ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = config_and_inputs SCREAMING_SNAKE_CASE = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowercase ( a , a , unittest.TestCase ): lowercase__ : Optional[int] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () lowercase__ : List[Any] = ( {"""feature-extraction""": ViTHybridModel, """image-classification""": ViTHybridForImageClassification} if is_torch_available() else {} ) lowercase__ : int = False lowercase__ : Any = False lowercase__ : Optional[int] = False def __snake_case( self : Union[str, Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = ViTHybridModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=_UpperCamelCase , has_text_modality=_UpperCamelCase , hidden_size=37 ) def __snake_case( self : Optional[Any] ) -> Any: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def __snake_case( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' pass def __snake_case( self : List[Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(_UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) SCREAMING_SNAKE_CASE = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCamelCase , nn.Linear ) ) def __snake_case( self : Optional[int] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(_UpperCamelCase ) SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE = ["pixel_values"] self.assertListEqual(arg_names[:1] , _UpperCamelCase ) def __snake_case( self : List[str] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def __snake_case( self : Dict ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCamelCase ) def __snake_case( self : Optional[int] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = _config_zero_init(_UpperCamelCase ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(config=_UpperCamelCase ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": SCREAMING_SNAKE_CASE = [F"{name}.{key}" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) @slow def __snake_case( self : Any ) -> List[Any]: '''simple docstring''' for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = ViTHybridModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def __lowerCamelCase (): SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): @cached_property def __snake_case( self : List[Any] ) -> Any: '''simple docstring''' return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __snake_case( self : Tuple ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( _UpperCamelCase ) SCREAMING_SNAKE_CASE = self.default_image_processor SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=_UpperCamelCase , return_tensors="pt" ).to(_UpperCamelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**_UpperCamelCase ) # verify the logits SCREAMING_SNAKE_CASE = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , _UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.tensor([-1.9_0_9_0, -0.4_9_9_3, -0.2_3_8_9] ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCamelCase , atol=1e-4 ) ) @slow @require_accelerate def __snake_case( self : Optional[Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = ViTHybridImageProcessor.from_pretrained("google/vit-hybrid-base-bit-384" ) SCREAMING_SNAKE_CASE = ViTHybridForImageClassification.from_pretrained("google/vit-hybrid-base-bit-384" , device_map="auto" ) SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=_UpperCamelCase , return_tensors="pt" ) SCREAMING_SNAKE_CASE = model(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = outputs.logits # model predicts one of the 1000 ImageNet classes SCREAMING_SNAKE_CASE = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , "tabby, tabby cat" )
647
0
import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' def run_func(lowerCamelCase ): @wraps(lowerCamelCase ) def run_in_eager_mode(*lowerCamelCase , **lowerCamelCase ): return func(*lowerCamelCase , **lowerCamelCase ) @wraps(lowerCamelCase ) @tf.function(experimental_compile=lowerCamelCase ) def run_in_graph_mode(*lowerCamelCase , **lowerCamelCase ): return func(*lowerCamelCase , **lowerCamelCase ) if do_eager_mode is True: if use_xla is not False: raise ValueError( """Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.""" ) return run_in_eager_mode else: return run_in_graph_mode return run_func def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = random.Random() __lowercase = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(lowerCamelCase , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :TensorFlowBenchmarkArguments __snake_case :PretrainedConfig __snake_case :str = "TensorFlow" @property def _a ( self : str ) -> Any: """simple docstring""" return tf.__version__ def _a ( self : List[str] , _lowerCAmelCase : str , _lowerCAmelCase : int , _lowerCAmelCase : int ) -> float: """simple docstring""" __lowercase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) __lowercase = self._prepare_inference_func(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return self._measure_speed(_inference ) def _a ( self : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : int , _lowerCAmelCase : int ) -> float: """simple docstring""" __lowercase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) __lowercase = self._prepare_train_func(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return self._measure_speed(_train ) def _a ( self : Dict , _lowerCAmelCase : str , _lowerCAmelCase : int , _lowerCAmelCase : int ) -> [Memory, Optional[MemorySummary]]: """simple docstring""" if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , _lowerCAmelCase ) __lowercase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) __lowercase = self._prepare_inference_func(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return self._measure_memory(_inference ) def _a ( self : Optional[int] , _lowerCAmelCase : str , _lowerCAmelCase : int , _lowerCAmelCase : int ) -> [Memory, Optional[MemorySummary]]: """simple docstring""" if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , _lowerCAmelCase ) __lowercase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) __lowercase = self._prepare_train_func(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return self._measure_memory(_train ) def _a ( self : Tuple , _lowerCAmelCase : str , _lowerCAmelCase : int , _lowerCAmelCase : int ) -> Callable[[], None]: """simple docstring""" __lowercase = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) __lowercase = ( hasattr(_lowerCAmelCase , """architectures""" ) and isinstance(config.architectures , _lowerCAmelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: __lowercase = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model __lowercase = __import__("""transformers""" , fromlist=[model_class] ) __lowercase = getattr(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = model_cls(_lowerCAmelCase ) except ImportError: raise ImportError( F'{model_class} does not exist. If you just want to test the pretrained model, you might want to' """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: __lowercase = TF_MODEL_MAPPING[config.__class__](_lowerCAmelCase ) # encoder-decoder has vocab size saved differently __lowercase = config.vocab_size if hasattr(_lowerCAmelCase , """vocab_size""" ) else config.encoder.vocab_size __lowercase = random_input_ids(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(_lowerCAmelCase , decoder_input_ids=_lowerCAmelCase , training=_lowerCAmelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(_lowerCAmelCase , training=_lowerCAmelCase ) __lowercase = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def _a ( self : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : int , _lowerCAmelCase : int ) -> Callable[[], None]: """simple docstring""" __lowercase = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError("""Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.""" ) if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) __lowercase = ( hasattr(_lowerCAmelCase , """architectures""" ) and isinstance(config.architectures , _lowerCAmelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: __lowercase = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model __lowercase = __import__("""transformers""" , fromlist=[model_class] ) __lowercase = getattr(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = model_cls(_lowerCAmelCase ) except ImportError: raise ImportError( F'{model_class} does not exist. If you just want to test the pretrained model, you might want to' """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: __lowercase = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](_lowerCAmelCase ) # encoder-decoder has vocab size saved differently __lowercase = config.vocab_size if hasattr(_lowerCAmelCase , """vocab_size""" ) else config.encoder.vocab_size __lowercase = random_input_ids(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): __lowercase = model(_lowerCAmelCase , decoder_input_ids=_lowerCAmelCase , labels=_lowerCAmelCase , training=_lowerCAmelCase )[0] __lowercase = tf.gradients(_lowerCAmelCase , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): __lowercase = model(_lowerCAmelCase , labels=_lowerCAmelCase , training=_lowerCAmelCase )[0] __lowercase = tf.gradients(_lowerCAmelCase , model.trainable_variables ) return gradients __lowercase = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def _a ( self : Dict , _lowerCAmelCase : Any ) -> float: """simple docstring""" with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info("""Do inference on TPU. Running model 5 times to stabilize compilation""" ) timeit.repeat(_lowerCAmelCase , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average __lowercase = timeit.repeat( _lowerCAmelCase , repeat=self.args.repeat , number=10 , ) return min(_lowerCAmelCase ) / 10.0 except ResourceExhaustedError as e: self.print_fn(F'Doesn\'t fit on GPU. {e}' ) def _a ( self : str , _lowerCAmelCase : Callable[[], None] ) -> [Memory, MemorySummary]: """simple docstring""" logger.info( """Note that TensorFlow allocates more memory than """ """it might need to speed up computation. """ """The memory reported here corresponds to the memory """ """reported by `nvidia-smi`, which can vary depending """ """on total available memory on the GPU that is used.""" ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( """`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory""" """ consumption line by line.""" ) __lowercase = start_memory_tracing("""transformers""" ) if self.args.is_tpu: # tpu raise NotImplementedError( """Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking""" """ with `args.memory=False`""" ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( """py3nvml not installed, we won't log GPU memory usage. """ """Install py3nvml (pip install py3nvml) to log information about GPU.""" ) __lowercase = """N/A""" else: logger.info( """Measuring total GPU usage on GPU device. Make sure to not have additional processes""" """ running on the same GPU.""" ) # init nvml nvml.nvmlInit() func() __lowercase = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) __lowercase = nvml.nvmlDeviceGetMemoryInfo(_lowerCAmelCase ) __lowercase = meminfo.used __lowercase = Memory(_lowerCAmelCase ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( """When enabling line by line tracing, the max peak memory for CPU is inaccurate in""" """ TensorFlow.""" ) __lowercase = None else: __lowercase = measure_peak_memory_cpu(_lowerCAmelCase ) __lowercase = Memory(_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else memory_bytes if self.args.trace_memory_line_by_line: __lowercase = stop_memory_tracing(_lowerCAmelCase ) if memory is None: __lowercase = summary.total else: __lowercase = None return memory, summary except ResourceExhaustedError as e: self.print_fn(F'Doesn\'t fit on GPU. {e}' ) return "N/A", None
80
class _A ( __UpperCamelCase ): pass class _A ( __UpperCamelCase ): pass class _A : def __init__(self ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = [ [], [], [], ] def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None: '''simple docstring''' try: if len(self.queues[priority] ) >= 100: raise OverflowError('''Maximum queue size is 100''' ) self.queues[priority].append(SCREAMING_SNAKE_CASE_ ) except IndexError: raise ValueError('''Valid priorities are 0, 1, and 2''' ) def _a (self ) -> int: '''simple docstring''' for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError('''All queues are empty''' ) def __str__(self ) -> str: '''simple docstring''' return "\n".join(F"Priority {i}: {q}" for i, q in enumerate(self.queues ) ) class _A : def __init__(self ) -> str: '''simple docstring''' UpperCamelCase__ = [] def _a (self , SCREAMING_SNAKE_CASE_ ) -> None: '''simple docstring''' if len(self.queue ) == 100: raise OverFlowError('''Maximum queue size is 100''' ) self.queue.append(SCREAMING_SNAKE_CASE_ ) def _a (self ) -> int: '''simple docstring''' if not self.queue: raise UnderFlowError('''The queue is empty''' ) else: UpperCamelCase__ = min(self.queue ) self.queue.remove(SCREAMING_SNAKE_CASE_ ) return data def __str__(self ) -> str: '''simple docstring''' return str(self.queue ) def __UpperCamelCase ( ): UpperCamelCase__ = FixedPriorityQueue() fpq.enqueue(0 , 10 ) fpq.enqueue(1 , 70 ) fpq.enqueue(0 , 100 ) fpq.enqueue(2 , 1 ) fpq.enqueue(2 , 5 ) fpq.enqueue(1 , 7 ) fpq.enqueue(2 , 4 ) fpq.enqueue(1 , 64 ) fpq.enqueue(0 , 128 ) print(A ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(A ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def __UpperCamelCase ( ): UpperCamelCase__ = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(100 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(128 ) print(A ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(A ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
415
0
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging UpperCamelCase__ : Optional[int] = logging.get_logger(__name__) UpperCamelCase__ : Any = {'''vocab_file''': '''spiece.model'''} UpperCamelCase__ : Optional[Any] = { '''vocab_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model''', } } UpperCamelCase__ : Optional[Any] = { '''xlnet-base-cased''': None, '''xlnet-large-cased''': None, } # Segments (not really needed) UpperCamelCase__ : int = 0 UpperCamelCase__ : Tuple = 1 UpperCamelCase__ : Tuple = 2 UpperCamelCase__ : List[Any] = 3 UpperCamelCase__ : Tuple = 4 class lowerCAmelCase_ ( __lowerCamelCase ): __a : Tuple = VOCAB_FILES_NAMES __a : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __a : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a : Optional[int] = '''left''' def __init__( self ,snake_case__ ,snake_case__=False ,snake_case__=True ,snake_case__=False ,snake_case__="<s>" ,snake_case__="</s>" ,snake_case__="<unk>" ,snake_case__="<sep>" ,snake_case__="<pad>" ,snake_case__="<cls>" ,snake_case__="<mask>" ,snake_case__=["<eop>", "<eod>"] ,snake_case__ = None ,**snake_case__ ,): # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE_ : str = AddedToken(a_ ,lstrip=a_ ,rstrip=a_ ) if isinstance(a_ ,a_ ) else mask_token SCREAMING_SNAKE_CASE_ : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=a_ ,remove_space=a_ ,keep_accents=a_ ,bos_token=a_ ,eos_token=a_ ,unk_token=a_ ,sep_token=a_ ,pad_token=a_ ,cls_token=a_ ,mask_token=a_ ,additional_special_tokens=a_ ,sp_model_kwargs=self.sp_model_kwargs ,**a_ ,) SCREAMING_SNAKE_CASE_ : str = 3 SCREAMING_SNAKE_CASE_ : Dict = do_lower_case SCREAMING_SNAKE_CASE_ : str = remove_space SCREAMING_SNAKE_CASE_ : Tuple = keep_accents SCREAMING_SNAKE_CASE_ : Dict = vocab_file SCREAMING_SNAKE_CASE_ : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(a_ ) @property def snake_case ( self ): return len(self.sp_model ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[str] = {self.convert_ids_to_tokens(a_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): SCREAMING_SNAKE_CASE_ : Any = self.__dict__.copy() SCREAMING_SNAKE_CASE_ : Optional[int] = None return state def __setstate__( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): SCREAMING_SNAKE_CASE_ : int = {} SCREAMING_SNAKE_CASE_ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def snake_case ( self ,snake_case__ ): if self.remove_space: SCREAMING_SNAKE_CASE_ : Optional[int] = " ".join(inputs.strip().split() ) else: SCREAMING_SNAKE_CASE_ : str = inputs SCREAMING_SNAKE_CASE_ : Any = outputs.replace('``' ,'\"' ).replace('\'\'' ,'\"' ) if not self.keep_accents: SCREAMING_SNAKE_CASE_ : Dict = unicodedata.normalize('NFKD' ,a_ ) SCREAMING_SNAKE_CASE_ : int = "".join([c for c in outputs if not unicodedata.combining(a_ )] ) if self.do_lower_case: SCREAMING_SNAKE_CASE_ : Any = outputs.lower() return outputs def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : List[Any] = self.preprocess_text(a_ ) SCREAMING_SNAKE_CASE_ : Optional[int] = self.sp_model.encode(a_ ,out_type=a_ ) SCREAMING_SNAKE_CASE_ : List[str] = [] for piece in pieces: if len(a_ ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit(): SCREAMING_SNAKE_CASE_ : Tuple = self.sp_model.EncodeAsPieces(piece[:-1].replace(a_ ,'' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: SCREAMING_SNAKE_CASE_ : int = cur_pieces[1:] else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(a_ ) else: new_pieces.append(a_ ) return new_pieces def snake_case ( self ,snake_case__ ): return self.sp_model.PieceToId(a_ ) def snake_case ( self ,snake_case__ ): return self.sp_model.IdToPiece(a_ ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Dict = "".join(a_ ).replace(a_ ,' ' ).strip() return out_string def snake_case ( self ,snake_case__ ,snake_case__ = False ,snake_case__ = None ,snake_case__ = True ,**snake_case__ ,): SCREAMING_SNAKE_CASE_ : int = kwargs.pop('use_source_tokenizer' ,a_ ) SCREAMING_SNAKE_CASE_ : List[str] = self.convert_ids_to_tokens(a_ ,skip_special_tokens=a_ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 SCREAMING_SNAKE_CASE_ : Optional[int] = [] SCREAMING_SNAKE_CASE_ : List[str] = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(a_ ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = [] sub_texts.append(a_ ) else: current_sub_text.append(a_ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(a_ ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens SCREAMING_SNAKE_CASE_ : Union[str, Any] = "".join(a_ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: SCREAMING_SNAKE_CASE_ : List[Any] = self.clean_up_tokenization(a_ ) return clean_text else: return text def snake_case ( self ,snake_case__ ,snake_case__ = None ): SCREAMING_SNAKE_CASE_ : Optional[Any] = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def snake_case ( self ,snake_case__ ,snake_case__ = None ,snake_case__ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a_ ,token_ids_a=a_ ,already_has_special_tokens=a_ ) if token_ids_a is not None: return ([0] * len(a_ )) + [1] + ([0] * len(a_ )) + [1, 1] return ([0] * len(a_ )) + [1, 1] def snake_case ( self ,snake_case__ ,snake_case__ = None ): SCREAMING_SNAKE_CASE_ : Optional[Any] = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : Union[str, Any] = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def snake_case ( self ,snake_case__ ,snake_case__ = None ): if not os.path.isdir(a_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return SCREAMING_SNAKE_CASE_ : Any = os.path.join( a_ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,a_ ) elif not os.path.isfile(self.vocab_file ): with open(a_ ,'wb' ) as fi: SCREAMING_SNAKE_CASE_ : Dict = self.sp_model.serialized_model_proto() fi.write(a_ ) return (out_vocab_file,)
707
class lowerCAmelCase_ ( lowerCamelCase_ ): pass class lowerCAmelCase_ ( lowerCamelCase_ ): pass class lowerCAmelCase_ : def __init__( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = [ [], [], [], ] def snake_case ( self ,snake_case__ ,snake_case__ ): try: if len(self.queues[priority] ) >= 100: raise OverflowError('Maximum queue size is 100' ) self.queues[priority].append(snake_case__ ) except IndexError: raise ValueError('Valid priorities are 0, 1, and 2' ) def snake_case ( self ): for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError('All queues are empty' ) def __str__( self ): return "\n".join(F'Priority {i}: {q}' for i, q in enumerate(self.queues ) ) class lowerCAmelCase_ : def __init__( self ): SCREAMING_SNAKE_CASE_ : List[str] = [] def snake_case ( self ,snake_case__ ): if len(self.queue ) == 100: raise OverFlowError('Maximum queue size is 100' ) self.queue.append(snake_case__ ) def snake_case ( self ): if not self.queue: raise UnderFlowError('The queue is empty' ) else: SCREAMING_SNAKE_CASE_ : List[Any] = min(self.queue ) self.queue.remove(snake_case__ ) return data def __str__( self ): return str(self.queue ) def __UpperCAmelCase ( ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = FixedPriorityQueue() fpq.enqueue(0 , 10 ) fpq.enqueue(1 , 70 ) fpq.enqueue(0 , 1_00 ) fpq.enqueue(2 , 1 ) fpq.enqueue(2 , 5 ) fpq.enqueue(1 , 7 ) fpq.enqueue(2 , 4 ) fpq.enqueue(1 , 64 ) fpq.enqueue(0 , 1_28 ) print(lowerCamelCase_ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(lowerCamelCase_ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def __UpperCAmelCase ( ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(1_00 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(1_28 ) print(lowerCamelCase_ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(lowerCamelCase_ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
685
0
"""simple docstring""" class a : def __init__( self , _snake_case ): """simple docstring""" lowerCAmelCase = set_counts lowerCAmelCase = max(_snake_case ) lowerCAmelCase = len(_snake_case ) lowerCAmelCase = [1] * num_sets lowerCAmelCase = list(range(_snake_case ) ) def UpperCamelCase__ ( self , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = self.get_parent(_snake_case ) lowerCAmelCase = self.get_parent(_snake_case ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] lowerCAmelCase = 0 lowerCAmelCase = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 lowerCAmelCase = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] lowerCAmelCase = 0 lowerCAmelCase = src_parent lowerCAmelCase = self.set_counts[src_parent] lowerCAmelCase = max(self.max_set , _snake_case ) return True def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if self.parents[disj_set] == disj_set: return disj_set lowerCAmelCase = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
4
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __a = { "configuration_gpt_bigcode": ["GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTBigCodeConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTBigCodeForSequenceClassification", "GPTBigCodeForTokenClassification", "GPTBigCodeForCausalLM", "GPTBigCodeModel", "GPTBigCodePreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
374
0
"""simple docstring""" # flake8: noqa # Lint as: python3 SCREAMING_SNAKE_CASE__ : Dict =[ 'VerificationMode', 'Version', 'disable_progress_bar', 'enable_progress_bar', 'is_progress_bar_enabled', 'experimental', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
558
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ : str =logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : List[Any] ={ 'asapp/sew-d-tiny-100k': 'https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class _UpperCAmelCase ( a_ ): """simple docstring""" __snake_case = """sew-d""" def __init__( self , _lowercase=32 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3072 , _lowercase=2 , _lowercase=512 , _lowercase=256 , _lowercase=True , _lowercase=True , _lowercase=("p2c", "c2p") , _lowercase="layer_norm" , _lowercase="gelu_python" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.0 , _lowercase=0.1 , _lowercase=0.02 , _lowercase=1E-7 , _lowercase=1E-5 , _lowercase="group" , _lowercase="gelu" , _lowercase=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , _lowercase=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , _lowercase=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , _lowercase=False , _lowercase=128 , _lowercase=16 , _lowercase=True , _lowercase=0.05 , _lowercase=10 , _lowercase=2 , _lowercase=0.0 , _lowercase=10 , _lowercase=0 , _lowercase="mean" , _lowercase=False , _lowercase=False , _lowercase=256 , _lowercase=0 , _lowercase=1 , _lowercase=2 , **_lowercase , ) -> str: super().__init__(**_lowercase , pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase ) _lowerCamelCase : Optional[Any] = hidden_size _lowerCamelCase : str = feat_extract_norm _lowerCamelCase : int = feat_extract_activation _lowerCamelCase : Optional[int] = list(_lowercase ) _lowerCamelCase : Any = list(_lowercase ) _lowerCamelCase : Dict = list(_lowercase ) _lowerCamelCase : List[Any] = conv_bias _lowerCamelCase : Dict = num_conv_pos_embeddings _lowerCamelCase : Optional[int] = num_conv_pos_embedding_groups _lowerCamelCase : Dict = len(self.conv_dim ) _lowerCamelCase : Dict = num_hidden_layers _lowerCamelCase : Dict = intermediate_size _lowerCamelCase : Optional[int] = squeeze_factor _lowerCamelCase : List[str] = max_position_embeddings _lowerCamelCase : Any = position_buckets _lowerCamelCase : str = share_att_key _lowerCamelCase : Optional[int] = relative_attention _lowerCamelCase : Tuple = norm_rel_ebd _lowerCamelCase : Union[str, Any] = list(_lowercase ) _lowerCamelCase : int = hidden_act _lowerCamelCase : Dict = num_attention_heads _lowerCamelCase : str = hidden_dropout _lowerCamelCase : int = attention_dropout _lowerCamelCase : str = activation_dropout _lowerCamelCase : Union[str, Any] = feat_proj_dropout _lowerCamelCase : int = final_dropout _lowerCamelCase : int = layer_norm_eps _lowerCamelCase : Dict = feature_layer_norm_eps _lowerCamelCase : Any = initializer_range _lowerCamelCase : str = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' F'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)''' F'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCamelCase : Union[str, Any] = apply_spec_augment _lowerCamelCase : Optional[Any] = mask_time_prob _lowerCamelCase : List[Any] = mask_time_length _lowerCamelCase : List[str] = mask_time_min_masks _lowerCamelCase : Optional[int] = mask_feature_prob _lowerCamelCase : List[str] = mask_feature_length _lowerCamelCase : int = mask_feature_min_masks # ctc loss _lowerCamelCase : int = ctc_loss_reduction _lowerCamelCase : List[Any] = ctc_zero_infinity # sequence classification _lowerCamelCase : Optional[int] = use_weighted_layer_sum _lowerCamelCase : List[Any] = classifier_proj_size @property def a__ ( self ) -> Optional[Any]: return functools.reduce(operator.mul , self.conv_stride , 1 )
558
1
"""simple docstring""" import os def _lowercase ( __snake_case = "input.txt" ) -> int: with open(os.path.join(os.path.dirname(__snake_case ) ,__snake_case ) ) as input_file: __lowerCAmelCase : Union[str, Any] = [ [int(__snake_case ) for element in line.split("," )] for line in input_file.readlines() ] __lowerCAmelCase : Optional[Any] = len(__snake_case ) __lowerCAmelCase : List[str] = len(matrix[0] ) __lowerCAmelCase : Union[str, Any] = [[-1 for _ in range(__snake_case )] for _ in range(__snake_case )] for i in range(__snake_case ): __lowerCAmelCase : Dict = matrix[i][0] for j in range(1 ,__snake_case ): for i in range(__snake_case ): __lowerCAmelCase : List[Any] = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 ,__snake_case ): __lowerCAmelCase : Any = min( minimal_path_sums[i][j] ,minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 ,-1 ,-1 ): __lowerCAmelCase : str = min( minimal_path_sums[i][j] ,minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(F"""{solution() = }""")
293
"""simple docstring""" def _lowercase ( __snake_case ,__snake_case ) -> Tuple: # "extended trapezoidal rule" # int(f) = dx/2 * (f1 + 2f2 + ... + fn) __lowerCAmelCase : Optional[Any] = (boundary[1] - boundary[0]) / steps __lowerCAmelCase : List[Any] = boundary[0] __lowerCAmelCase : Any = boundary[1] __lowerCAmelCase : Dict = make_points(__snake_case ,__snake_case ,__snake_case ) __lowerCAmelCase : List[str] = 0.0 y += (h / 2.0) * f(__snake_case ) for i in x_i: # print(i) y += h * f(__snake_case ) y += (h / 2.0) * f(__snake_case ) return y def _lowercase ( __snake_case ,__snake_case ,__snake_case ) -> Union[str, Any]: __lowerCAmelCase : int = a + h while x < (b - h): yield x __lowerCAmelCase : List[str] = x + h def _lowercase ( __snake_case ) -> Tuple: # enter your function here __lowerCAmelCase : int = (x - 0) * (x - 0) return y def _lowercase ( ) -> int: __lowerCAmelCase : Tuple = 0.0 # Lower bound of integration __lowerCAmelCase : Union[str, Any] = 1.0 # Upper bound of integration __lowerCAmelCase : Dict = 10.0 # define number of steps or resolution __lowerCAmelCase : Optional[Any] = [a, b] # define boundary of integration __lowerCAmelCase : Optional[int] = method_a(__snake_case ,__snake_case ) print(F"""y = {y}""" ) if __name__ == "__main__": main()
293
1
'''simple docstring''' from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar lowercase = TypeVar("T") class UpperCamelCase_ ( Generic[T] ): '''simple docstring''' def __init__( self , a , a ) -> None: snake_case_ = None snake_case_ = len(lowercase__ ) snake_case_ = [any_type for _ in range(self.N )] + arr snake_case_ = fnc self.build() def _UpperCamelCase ( self ) -> None: for p in range(self.N - 1 , 0 , -1 ): snake_case_ = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def _UpperCamelCase ( self , a , a ) -> None: p += self.N snake_case_ = v while p > 1: snake_case_ = p // 2 snake_case_ = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def _UpperCamelCase ( self , a , a ) -> T | None: # noqa: E741 snake_case_ = l + self.N, r + self.N snake_case_ = None while l <= r: if l % 2 == 1: snake_case_ = self.st[l] if res is None else self.fn(lowercase__ , self.st[l] ) if r % 2 == 0: snake_case_ = self.st[r] if res is None else self.fn(lowercase__ , self.st[r] ) snake_case_ = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce lowercase = [1, 10, -2, 9, -3, 8, 4, -7, 5, 6, 11, -12] lowercase = { 0: 7, 1: 2, 2: 6, 3: -14, 4: 5, 5: 4, 6: 7, 7: -10, 8: 9, 9: 10, 10: 12, 11: 1, } lowercase = SegmentTree(test_array, min) lowercase = SegmentTree(test_array, max) lowercase = SegmentTree(test_array, lambda a, b: a + b) def __UpperCAmelCase ( ): for i in range(len(lowerCAmelCase_)): for j in range(lowerCAmelCase_ , len(lowerCAmelCase_)): snake_case_ = reduce(lowerCAmelCase_ , test_array[i : j + 1]) snake_case_ = reduce(lowerCAmelCase_ , test_array[i : j + 1]) snake_case_ = reduce(lambda a_ , a_: a + b , test_array[i : j + 1]) assert min_range == min_segment_tree.query(lowerCAmelCase_ , lowerCAmelCase_) assert max_range == max_segment_tree.query(lowerCAmelCase_ , lowerCAmelCase_) assert sum_range == sum_segment_tree.query(lowerCAmelCase_ , lowerCAmelCase_) test_all_segments() for index, value in test_updates.items(): lowercase = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
703
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class UpperCamelCase_ ( snake_case_ ): '''simple docstring''' lowerCAmelCase = 42 class UpperCamelCase_ ( snake_case_ , snake_case_ ): '''simple docstring''' @register_to_config def __init__( self , a = 3 , a = 3 , a = ("DownEncoderBlock2D",) , a = ("UpDecoderBlock2D",) , a = (64,) , a = 1 , a = "silu" , a = 3 , a = 32 , a = 2_56 , a = 32 , a = None , a = 0.18_215 , a = "group" , ) -> Any: super().__init__() # pass init params to Encoder snake_case_ = Encoder( in_channels=a , out_channels=a , down_block_types=a , block_out_channels=a , layers_per_block=a , act_fn=a , norm_num_groups=a , double_z=a , ) snake_case_ = vq_embed_dim if vq_embed_dim is not None else latent_channels snake_case_ = nn.Convad(a , a , 1 ) snake_case_ = VectorQuantizer(a , a , beta=0.25 , remap=a , sane_index_shape=a ) snake_case_ = nn.Convad(a , a , 1 ) # pass init params to Decoder snake_case_ = Decoder( in_channels=a , out_channels=a , up_block_types=a , block_out_channels=a , layers_per_block=a , act_fn=a , norm_num_groups=a , norm_type=a , ) @apply_forward_hook def _UpperCamelCase ( self , a , a = True ) -> VQEncoderOutput: snake_case_ = self.encoder(a ) snake_case_ = self.quant_conv(a ) if not return_dict: return (h,) return VQEncoderOutput(latents=a ) @apply_forward_hook def _UpperCamelCase ( self , a , a = False , a = True ) -> Union[DecoderOutput, torch.FloatTensor]: # also go through quantization layer if not force_not_quantize: snake_case_ , snake_case_ , snake_case_ = self.quantize(a ) else: snake_case_ = h snake_case_ = self.post_quant_conv(a ) snake_case_ = self.decoder(a , quant if self.config.norm_type == 'spatial' else None ) if not return_dict: return (dec,) return DecoderOutput(sample=a ) def _UpperCamelCase ( self , a , a = True ) -> Union[DecoderOutput, torch.FloatTensor]: snake_case_ = sample snake_case_ = self.encode(a ).latents snake_case_ = self.decode(a ).sample if not return_dict: return (dec,) return DecoderOutput(sample=a )
607
0
import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class UpperCAmelCase ( A_ ): A__ : Optional[Any] = "char" A__ : Any = "bpe" A__ : Optional[int] = "wp" __lowerCamelCase = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class UpperCAmelCase ( A_ ): A__ : int = ["image_processor", "char_tokenizer"] A__ : int = "ViTImageProcessor" A__ : Any = "MgpstrTokenizer" def __init__(self : str , snake_case__ : Dict=None , snake_case__ : int=None , **snake_case__ : Any ) -> Optional[Any]: '''simple docstring''' snake_case : Tuple = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , snake_case__ , ) snake_case : Optional[Any] = kwargs.pop("feature_extractor" ) snake_case : Tuple = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) snake_case : List[str] = tokenizer snake_case : Any = AutoTokenizer.from_pretrained("gpt2" ) snake_case : List[str] = AutoTokenizer.from_pretrained("bert-base-uncased" ) super().__init__(snake_case__ , snake_case__ ) def __call__(self : Dict , snake_case__ : int=None , snake_case__ : Dict=None , snake_case__ : Optional[int]=None , **snake_case__ : int ) -> Optional[Any]: '''simple docstring''' if images is None and text is None: raise ValueError("You need to specify either an `images` or `text` input to process." ) if images is not None: snake_case : List[Any] = self.image_processor(snake_case__ , return_tensors=snake_case__ , **snake_case__ ) if text is not None: snake_case : Optional[int] = self.char_tokenizer(snake_case__ , return_tensors=snake_case__ , **snake_case__ ) if text is None: return inputs elif images is None: return encodings else: snake_case : Dict = encodings["input_ids"] return inputs def _SCREAMING_SNAKE_CASE (self : Optional[Any] , snake_case__ : Optional[int] ) -> Optional[int]: '''simple docstring''' snake_case , snake_case , snake_case : Dict = sequences snake_case : List[Any] = char_preds.size(0 ) snake_case , snake_case : List[Any] = self._decode_helper(snake_case__ , "char" ) snake_case , snake_case : Optional[int] = self._decode_helper(snake_case__ , "bpe" ) snake_case , snake_case : Any = self._decode_helper(snake_case__ , "wp" ) snake_case : List[str] = [] snake_case : List[str] = [] for i in range(snake_case__ ): snake_case : Optional[Any] = [char_scores[i], bpe_scores[i], wp_scores[i]] snake_case : Optional[int] = [char_strs[i], bpe_strs[i], wp_strs[i]] snake_case : Dict = scores.index(max(snake_case__ ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) snake_case : Union[str, Any] = {} snake_case : Optional[int] = final_strs snake_case : str = final_scores snake_case : Optional[Any] = char_strs snake_case : List[str] = bpe_strs snake_case : int = wp_strs return out def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : List[Any] , snake_case__ : Optional[int] ) -> Tuple: '''simple docstring''' if format == DecodeType.CHARACTER: snake_case : List[Any] = self.char_decode snake_case : List[str] = 1 snake_case : int = "[s]" elif format == DecodeType.BPE: snake_case : List[str] = self.bpe_decode snake_case : Dict = 2 snake_case : Union[str, Any] = "#" elif format == DecodeType.WORDPIECE: snake_case : Optional[Any] = self.wp_decode snake_case : str = 1_02 snake_case : Any = "[SEP]" else: raise ValueError(f"""Format {format} is not supported.""" ) snake_case , snake_case : Optional[Any] = [], [] snake_case : Tuple = pred_logits.size(0 ) snake_case : List[Any] = pred_logits.size(1 ) snake_case , snake_case : int = pred_logits.topk(1 , dim=-1 , largest=snake_case__ , sorted=snake_case__ ) snake_case : str = preds_index.view(-1 , snake_case__ )[:, 1:] snake_case : Tuple = decoder(snake_case__ ) snake_case , snake_case : str = torch.nn.functional.softmax(snake_case__ , dim=2 ).max(dim=2 ) snake_case : Dict = preds_max_prob[:, 1:] for index in range(snake_case__ ): snake_case : Optional[Any] = preds_str[index].find(snake_case__ ) snake_case : List[str] = preds_str[index][:pred_eos] snake_case : List[str] = preds_index[index].cpu().tolist() snake_case : Optional[Any] = pred_index.index(snake_case__ ) if eos_token in pred_index else -1 snake_case : Tuple = preds_max_prob[index][: pred_eos_index + 1] snake_case : Optional[Any] = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(snake_case__ ) conf_scores.append(snake_case__ ) return dec_strs, conf_scores def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : Optional[int] ) -> Tuple: '''simple docstring''' snake_case : str = [seq.replace(" " , "" ) for seq in self.char_tokenizer.batch_decode(snake_case__ )] return decode_strs def _SCREAMING_SNAKE_CASE (self : Optional[Any] , snake_case__ : int ) -> List[Any]: '''simple docstring''' return self.bpe_tokenizer.batch_decode(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : List[str] ) -> Any: '''simple docstring''' snake_case : Optional[int] = [seq.replace(" " , "" ) for seq in self.wp_tokenizer.batch_decode(snake_case__ )] return decode_strs
204
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase ( __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any] ): # Initialise PyTorch model snake_case : Optional[int] = BertConfig.from_json_file(__lowerCamelCase ) print(f"""Building PyTorch model from configuration: {config}""" ) snake_case : Any = BertForPreTraining(__lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_bert(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , __lowerCamelCase ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--bert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __lowerCamelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
204
1
def _SCREAMING_SNAKE_CASE ( snake_case_ : bytes ): return "".join([hex(snake_case_ )[2:].zfill(2 ).upper() for byte in list(snake_case_ )] ) def _SCREAMING_SNAKE_CASE ( snake_case_ : str ): # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(snake_case_ ) % 2) != 0: raise ValueError( '''Base16 encoded data is invalid: Data does not have an even number of hex digits.''' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(snake_case_ ) <= set('''0123456789ABCDEF''' ): raise ValueError( '''Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.''' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(snake_case_ ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
701
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
678
0
"""simple docstring""" import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class lowercase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self , snake_case , snake_case=7 , snake_case=3 , snake_case=18 , snake_case=30 , snake_case=400 , snake_case=True , snake_case=None , snake_case=True , snake_case=[0.5, 0.5, 0.5] , snake_case=[0.5, 0.5, 0.5] , ) -> Dict: _UpperCAmelCase = size if size is not None else {'height': 18, 'width': 18} _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = num_channels _UpperCAmelCase = image_size _UpperCAmelCase = min_resolution _UpperCAmelCase = max_resolution _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean _UpperCAmelCase = image_std def lowerCamelCase_ ( self ) -> List[Any]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class lowercase__ ( A, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = DPTImageProcessor if is_vision_available() else None def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = DPTImageProcessingTester(self ) @property def lowerCamelCase_ ( self ) -> Any: return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase_ ( self ) -> Optional[Any]: _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case , 'image_mean' ) ) self.assertTrue(hasattr(snake_case , 'image_std' ) ) self.assertTrue(hasattr(snake_case , 'do_normalize' ) ) self.assertTrue(hasattr(snake_case , 'do_resize' ) ) self.assertTrue(hasattr(snake_case , 'size' ) ) def lowerCamelCase_ ( self ) -> List[Any]: _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def lowerCamelCase_ ( self ) -> Dict: # Initialize image_processing _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , Image.Image ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def lowerCamelCase_ ( self ) -> Dict: # Initialize image_processing _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case , numpify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , np.ndarray ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def lowerCamelCase_ ( self ) -> Dict: # Initialize image_processing _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case , torchify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , torch.Tensor ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , )
573
"""simple docstring""" def UpperCAmelCase ( A : list[int] , A : list[int] ): '''simple docstring''' if not len(A ) == len(A ) == 3: raise ValueError('Please enter a valid equation.' ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError('Both a & b of two equations can\'t be zero.' ) # Extract the coefficients _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = equationa _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = equationa # Calculate the determinants of the matrices _UpperCAmelCase = aa * ba - aa * ba _UpperCAmelCase = ca * ba - ca * ba _UpperCAmelCase = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError('Infinite solutions. (Consistent system)' ) else: raise ValueError('No solution. (Inconsistent system)' ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: _UpperCAmelCase = determinant_x / determinant _UpperCAmelCase = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
573
1
'''simple docstring''' from __future__ import annotations def __magic_name__( _A ): '''simple docstring''' return [ord(_A ) - 96 for elem in plain] def __magic_name__( _A ): '''simple docstring''' return "".join(chr(elem + 96 ) for elem in encoded ) def __magic_name__( ): '''simple docstring''' UpperCamelCase__ = encode(input("""-> """ ).strip().lower() ) print("""Encoded: """ , _A ) print("""Decoded:""" , decode(_A ) ) if __name__ == "__main__": main()
709
'''simple docstring''' from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class _SCREAMING_SNAKE_CASE ( yaml.SafeLoader ): '''simple docstring''' def A ( self : List[str] , lowercase : List[Any] ) -> int: '''simple docstring''' UpperCamelCase__ = [self.constructed_objects[key_node] for key_node, _ in node.value] UpperCamelCase__ = [tuple(lowercase ) if isinstance(lowercase , lowercase ) else key for key in keys] UpperCamelCase__ = Counter(lowercase ) UpperCamelCase__ = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(f"Got duplicate yaml keys: {duplicate_keys}" ) def A ( self : List[str] , lowercase : int , lowercase : str=False ) -> Any: '''simple docstring''' UpperCamelCase__ = super().construct_mapping(lowercase , deep=lowercase ) self._check_no_duplicates_on_constructed_node(lowercase ) return mapping def __magic_name__( _A ): '''simple docstring''' UpperCamelCase__ = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: UpperCamelCase__ = full_content[1:].index("""---""" ) + 1 UpperCamelCase__ = """\n""".join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(_A ) class _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __a : Tuple = {"train_eval_index"} # train-eval-index in the YAML metadata @classmethod def A ( cls : int , lowercase : Path ) -> "DatasetMetadata": '''simple docstring''' with open(lowercase , encoding="""utf-8""" ) as readme_file: UpperCamelCase__ , UpperCamelCase__ = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(lowercase ) else: return cls() def A ( self : int , lowercase : Path ) -> Dict: '''simple docstring''' if path.exists(): with open(lowercase , encoding="""utf-8""" ) as readme_file: UpperCamelCase__ = readme_file.read() else: UpperCamelCase__ = None UpperCamelCase__ = self._to_readme(lowercase ) with open(lowercase , """w""" , encoding="""utf-8""" ) as readme_file: readme_file.write(lowercase ) def A ( self : Any , lowercase : Optional[str] = None ) -> str: '''simple docstring''' if readme_content is not None: UpperCamelCase__ , UpperCamelCase__ = _split_yaml_from_readme(lowercase ) UpperCamelCase__ = """---\n""" + self.to_yaml_string() + """---\n""" + content else: UpperCamelCase__ = """---\n""" + self.to_yaml_string() + """---\n""" return full_content @classmethod def A ( cls : Tuple , lowercase : str ) -> "DatasetMetadata": '''simple docstring''' UpperCamelCase__ = yaml.load(lowercase , Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields UpperCamelCase__ = { (key.replace("""-""" , """_""" ) if key.replace("""-""" , """_""" ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**lowercase ) def A ( self : Dict ) -> str: '''simple docstring''' return yaml.safe_dump( { (key.replace("""_""" , """-""" ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=lowercase , allow_unicode=lowercase , encoding="""utf-8""" , ).decode("""utf-8""" ) lowerCamelCase_ : str = { '''image-classification''': [], '''translation''': [], '''image-segmentation''': [], '''fill-mask''': [], '''automatic-speech-recognition''': [], '''token-classification''': [], '''sentence-similarity''': [], '''audio-classification''': [], '''question-answering''': [], '''summarization''': [], '''zero-shot-classification''': [], '''table-to-text''': [], '''feature-extraction''': [], '''other''': [], '''multiple-choice''': [], '''text-classification''': [], '''text-to-image''': [], '''text2text-generation''': [], '''zero-shot-image-classification''': [], '''tabular-classification''': [], '''tabular-regression''': [], '''image-to-image''': [], '''tabular-to-text''': [], '''unconditional-image-generation''': [], '''text-retrieval''': [], '''text-to-speech''': [], '''object-detection''': [], '''audio-to-audio''': [], '''text-generation''': [], '''conversational''': [], '''table-question-answering''': [], '''visual-question-answering''': [], '''image-to-text''': [], '''reinforcement-learning''': [], '''voice-activity-detection''': [], '''time-series-forecasting''': [], '''document-question-answering''': [], } if __name__ == "__main__": from argparse import ArgumentParser lowerCamelCase_ : Tuple = ArgumentParser(usage='''Validate the yaml metadata block of a README.md file.''') ap.add_argument('''readme_filepath''') lowerCamelCase_ : str = ap.parse_args() lowerCamelCase_ : List[str] = Path(args.readme_filepath) lowerCamelCase_ : Tuple = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
265
0
import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor _snake_case : Dict = logging.get_logger(__name__) class UpperCamelCase_ ( _lowercase ): '''simple docstring''' def __init__( self :Optional[int] , *lowerCAmelCase__ :Optional[int] , **lowerCAmelCase__ :Optional[int] ) ->None: warnings.warn( "The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DPTImageProcessor instead." , _snake_case , ) super().__init__(*_snake_case , **_snake_case )
441
"""simple docstring""" import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder UpperCamelCase_ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCamelCase_ : List[Any] = 256 class __lowerCAmelCase ( _lowercase ): """simple docstring""" snake_case = ["melgan"] def __init__( self : Dict , _snake_case : SpectrogramNotesEncoder , _snake_case : SpectrogramContEncoder , _snake_case : TaFilmDecoder , _snake_case : DDPMScheduler , _snake_case : OnnxRuntimeModel if is_onnx_available() else Any , ) -> None: """simple docstring""" super().__init__() # From MELGAN A_ = math.log(1e-5 ) # Matches MelGAN training. A_ = 4.0 # Largest value for most examples A_ = 128 self.register_modules( notes_encoder=_snake_case , continuous_encoder=_snake_case , decoder=_snake_case , scheduler=_snake_case , melgan=_snake_case , ) def lowerCamelCase__ ( self : Union[str, Any] , _snake_case : Tuple , _snake_case : str=(-1.0, 1.0) , _snake_case : int=False ) -> str: """simple docstring""" A_ , A_ = output_range if clip: A_ = torch.clip(_snake_case , self.min_value , self.max_value ) # Scale to [0, 1]. A_ = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def lowerCamelCase__ ( self : Dict , _snake_case : Tuple , _snake_case : Optional[Any]=(-1.0, 1.0) , _snake_case : List[str]=False ) -> List[str]: """simple docstring""" A_ , A_ = input_range A_ = torch.clip(_snake_case , _snake_case , _snake_case ) if clip else outputs # Scale to [0, 1]. A_ = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def lowerCamelCase__ ( self : Union[str, Any] , _snake_case : str , _snake_case : List[Any] , _snake_case : Union[str, Any] ) -> List[str]: """simple docstring""" A_ = input_tokens > 0 A_ , A_ = self.notes_encoder( encoder_input_tokens=_snake_case , encoder_inputs_mask=_snake_case ) A_ , A_ = self.continuous_encoder( encoder_inputs=_snake_case , encoder_inputs_mask=_snake_case ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def lowerCamelCase__ ( self : List[Any] , _snake_case : List[Any] , _snake_case : int , _snake_case : Tuple ) -> Optional[int]: """simple docstring""" A_ = noise_time if not torch.is_tensor(_snake_case ): A_ = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(_snake_case ) and len(timesteps.shape ) == 0: A_ = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML A_ = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) A_ = self.decoder( encodings_and_masks=_snake_case , decoder_input_tokens=_snake_case , decoder_noise_time=_snake_case ) return logits @torch.no_grad() def __call__( self : List[Any] , _snake_case : List[List[int]] , _snake_case : Optional[torch.Generator] = None , _snake_case : int = 100 , _snake_case : bool = True , _snake_case : str = "numpy" , _snake_case : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , _snake_case : int = 1 , ) -> Union[AudioPipelineOutput, Tuple]: """simple docstring""" if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_snake_case , _snake_case ) or callback_steps <= 0) ): raise ValueError( F'`callback_steps` has to be a positive integer but is {callback_steps} of type' F' {type(_snake_case )}.' ) A_ = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) A_ = np.zeros([1, 0, self.n_dims] , np.floataa ) A_ = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=_snake_case , device=self.device ) for i, encoder_input_tokens in enumerate(_snake_case ): if i == 0: A_ = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. A_ = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=_snake_case , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. A_ = ones A_ = self.scale_features( _snake_case , output_range=[-1.0, 1.0] , clip=_snake_case ) A_ = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=_snake_case , continuous_mask=_snake_case , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop A_ = randn_tensor( shape=encoder_continuous_inputs.shape , generator=_snake_case , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(_snake_case ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): A_ = self.decode( encodings_and_masks=_snake_case , input_tokens=_snake_case , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 A_ = self.scheduler.step(_snake_case , _snake_case , _snake_case , generator=_snake_case ).prev_sample A_ = self.scale_to_features(_snake_case , input_range=[-1.0, 1.0] ) A_ = mel[:1] A_ = mel.cpu().float().numpy() A_ = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_snake_case , _snake_case ) logger.info("Generated segment" , _snake_case ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( "Cannot return output in 'np' format if ONNX is not available. Make sure to have ONNX installed or set 'output_type' to 'mel'." ) elif output_type == "numpy" and self.melgan is None: raise ValueError( "Cannot return output in 'np' format if melgan component is not defined. Make sure to define `self.melgan` or set 'output_type' to 'mel'." ) if output_type == "numpy": A_ = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: A_ = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=_snake_case )
115
0
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings lowerCAmelCase : Tuple = r"""\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `\" / \"`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `\" // \"`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `\"train\"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `\"compressed\"`)\n The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and\n `\"compressed\"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a \"dummy\" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n""" @add_start_docstrings(__snake_case ) class UpperCamelCase__ ( __snake_case ): """simple docstring""" __magic_name__ = "rag" __magic_name__ = True def __init__( self , snake_case__=None , snake_case__=True , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=" / " , snake_case__=" // " , snake_case__=5 , snake_case__=300 , snake_case__=768 , snake_case__=8 , snake_case__="wiki_dpr" , snake_case__="train" , snake_case__="compressed" , snake_case__=None , snake_case__=None , snake_case__=False , snake_case__=False , snake_case__=0.0 , snake_case__=True , snake_case__=False , snake_case__=False , snake_case__=False , snake_case__=True , snake_case__=None , **snake_case__ , ): '''simple docstring''' super().__init__( bos_token_id=_lowercase , pad_token_id=_lowercase , eos_token_id=_lowercase , decoder_start_token_id=_lowercase , forced_eos_token_id=_lowercase , is_encoder_decoder=_lowercase , prefix=_lowercase , vocab_size=_lowercase , **_lowercase , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" _lowerCAmelCase : Optional[int] = kwargs.pop('question_encoder' ) _lowerCAmelCase : List[str] = question_encoder_config.pop('model_type' ) _lowerCAmelCase : List[Any] = kwargs.pop('generator' ) _lowerCAmelCase : List[Any] = decoder_config.pop('model_type' ) from ..auto.configuration_auto import AutoConfig _lowerCAmelCase : Optional[Any] = AutoConfig.for_model(_lowercase , **_lowercase ) _lowerCAmelCase : Optional[Any] = AutoConfig.for_model(_lowercase , **_lowercase ) _lowerCAmelCase : Dict = reduce_loss _lowerCAmelCase : Tuple = label_smoothing _lowerCAmelCase : List[Any] = exclude_bos_score _lowerCAmelCase : Optional[int] = do_marginalize _lowerCAmelCase : int = title_sep _lowerCAmelCase : Any = doc_sep _lowerCAmelCase : str = n_docs _lowerCAmelCase : int = max_combined_length _lowerCAmelCase : List[str] = dataset _lowerCAmelCase : Optional[int] = dataset_split _lowerCAmelCase : Optional[Any] = index_name _lowerCAmelCase : Tuple = retrieval_vector_size _lowerCAmelCase : Dict = retrieval_batch_size _lowerCAmelCase : Optional[int] = passages_path _lowerCAmelCase : Optional[Any] = index_path _lowerCAmelCase : int = use_dummy_dataset _lowerCAmelCase : List[str] = output_retrieved _lowerCAmelCase : List[Any] = do_deduplication _lowerCAmelCase : int = use_cache if self.forced_eos_token_id is None: _lowerCAmelCase : str = getattr(self.generator , 'forced_eos_token_id' , _lowercase ) @classmethod def a ( cls , snake_case__ , snake_case__ , **snake_case__ ): '''simple docstring''' return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **_lowercase ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = copy.deepcopy(self.__dict__ ) _lowerCAmelCase : List[str] = self.question_encoder.to_dict() _lowerCAmelCase : Any = self.generator.to_dict() _lowerCAmelCase : Optional[Any] = self.__class__.model_type return output
719
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) lowerCAmelCase : int = { """configuration_trocr""": ["""TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrOCRConfig"""], """processing_trocr""": ["""TrOCRProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[Any] = [ """TROCR_PRETRAINED_MODEL_ARCHIVE_LIST""", """TrOCRForCausalLM""", """TrOCRPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys lowerCAmelCase : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
630
0
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() a__ : Union[str, Any] = logging.get_logger(__name__) def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = original_name.split('.' )[0] _lowerCAmelCase = key.split('.' ) _lowerCAmelCase = int(key_list[key_list.index(_UpperCamelCase ) - 2] ) _lowerCAmelCase = int(key_list[key_list.index(_UpperCamelCase ) - 1] ) _lowerCAmelCase = orig_block_num - offset _lowerCAmelCase = key.replace(F'''{orig_block_num}.{layer_num}.{original_name}''', F'''block.{new_block_num}.{layer_num}.{new_name}''' ) return key def A__ ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = OrderedDict() _lowerCAmelCase , _lowerCAmelCase = 0, 0 for key, value in state_dict.items(): if key.startswith('network' ): _lowerCAmelCase = key.replace('network', 'poolformer.encoder' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('bias' ) and "patch_embed" not in key: patch_emb_offset += 1 _lowerCAmelCase = key[: key.find('proj' )] _lowerCAmelCase = key.replace(_UpperCamelCase, F'''patch_embeddings.{total_embed_found}.''' ) _lowerCAmelCase = key.replace('proj', 'projection' ) if key.endswith('bias' ): total_embed_found += 1 if "patch_embeddings" in key: _lowerCAmelCase = 'poolformer.encoder.' + key if "mlp.fc1" in key: _lowerCAmelCase = replace_key_with_offset(_UpperCamelCase, _UpperCamelCase, 'mlp.fc1', 'output.conv1' ) if "mlp.fc2" in key: _lowerCAmelCase = replace_key_with_offset(_UpperCamelCase, _UpperCamelCase, 'mlp.fc2', 'output.conv2' ) if "norm1" in key: _lowerCAmelCase = replace_key_with_offset(_UpperCamelCase, _UpperCamelCase, 'norm1', 'before_norm' ) if "norm2" in key: _lowerCAmelCase = replace_key_with_offset(_UpperCamelCase, _UpperCamelCase, 'norm2', 'after_norm' ) if "layer_scale_1" in key: _lowerCAmelCase = replace_key_with_offset(_UpperCamelCase, _UpperCamelCase, 'layer_scale_1', 'layer_scale_1' ) if "layer_scale_2" in key: _lowerCAmelCase = replace_key_with_offset(_UpperCamelCase, _UpperCamelCase, 'layer_scale_2', 'layer_scale_2' ) if "head" in key: _lowerCAmelCase = key.replace('head', 'classifier' ) _lowerCAmelCase = value return new_state_dict def A__ ( ): """simple docstring""" _lowerCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' _lowerCAmelCase = Image.open(requests.get(_UpperCamelCase, stream=_UpperCamelCase ).raw ) return image @torch.no_grad() def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = PoolFormerConfig() # set attributes based on model_name _lowerCAmelCase = 'huggingface/label-files' _lowerCAmelCase = model_name[-3:] _lowerCAmelCase = 1_0_0_0 _lowerCAmelCase = 'imagenet-1k-id2label.json' _lowerCAmelCase = (1, 1_0_0_0) # set config attributes _lowerCAmelCase = json.load(open(hf_hub_download(_UpperCamelCase, _UpperCamelCase, repo_type='dataset' ), 'r' ) ) _lowerCAmelCase = {int(_UpperCamelCase ): v for k, v in idalabel.items()} _lowerCAmelCase = idalabel _lowerCAmelCase = {v: k for k, v in idalabel.items()} if size == "s12": _lowerCAmelCase = [2, 2, 6, 2] _lowerCAmelCase = [6_4, 1_2_8, 3_2_0, 5_1_2] _lowerCAmelCase = 4.0 _lowerCAmelCase = 0.9 elif size == "s24": _lowerCAmelCase = [4, 4, 1_2, 4] _lowerCAmelCase = [6_4, 1_2_8, 3_2_0, 5_1_2] _lowerCAmelCase = 4.0 _lowerCAmelCase = 0.9 elif size == "s36": _lowerCAmelCase = [6, 6, 1_8, 6] _lowerCAmelCase = [6_4, 1_2_8, 3_2_0, 5_1_2] _lowerCAmelCase = 4.0 _lowerCAmelCase = 1e-6 _lowerCAmelCase = 0.9 elif size == "m36": _lowerCAmelCase = [6, 6, 1_8, 6] _lowerCAmelCase = [9_6, 1_9_2, 3_8_4, 7_6_8] _lowerCAmelCase = 4.0 _lowerCAmelCase = 1e-6 _lowerCAmelCase = 0.95 elif size == "m48": _lowerCAmelCase = [8, 8, 2_4, 8] _lowerCAmelCase = [9_6, 1_9_2, 3_8_4, 7_6_8] _lowerCAmelCase = 4.0 _lowerCAmelCase = 1e-6 _lowerCAmelCase = 0.95 else: raise ValueError(F'''Size {size} not supported''' ) # load image processor _lowerCAmelCase = PoolFormerImageProcessor(crop_pct=_UpperCamelCase ) # Prepare image _lowerCAmelCase = prepare_img() _lowerCAmelCase = image_processor(images=_UpperCamelCase, return_tensors='pt' ).pixel_values logger.info(F'''Converting model {model_name}...''' ) # load original state dict _lowerCAmelCase = torch.load(_UpperCamelCase, map_location=torch.device('cpu' ) ) # rename keys _lowerCAmelCase = rename_keys(_UpperCamelCase ) # create HuggingFace model and load state dict _lowerCAmelCase = PoolFormerForImageClassification(_UpperCamelCase ) model.load_state_dict(_UpperCamelCase ) model.eval() # Define image processor _lowerCAmelCase = PoolFormerImageProcessor(crop_pct=_UpperCamelCase ) _lowerCAmelCase = image_processor(images=prepare_img(), return_tensors='pt' ).pixel_values # forward pass _lowerCAmelCase = model(_UpperCamelCase ) _lowerCAmelCase = outputs.logits # define expected logit slices for different models if size == "s12": _lowerCAmelCase = torch.tensor([-0.3045, -0.6758, -0.4869] ) elif size == "s24": _lowerCAmelCase = torch.tensor([0.4402, -0.1374, -0.8045] ) elif size == "s36": _lowerCAmelCase = torch.tensor([-0.6080, -0.5133, -0.5898] ) elif size == "m36": _lowerCAmelCase = torch.tensor([0.3952, 0.2263, -1.2668] ) elif size == "m48": _lowerCAmelCase = torch.tensor([0.1167, -0.0656, -0.3423] ) else: raise ValueError(F'''Size {size} not supported''' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3], _UpperCamelCase, atol=1e-2 ) # finally, save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase ) model.save_pretrained(_UpperCamelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": a__ : Dict = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""poolformer_s12""", type=str, help="""Name of the model you\'d like to convert.""", ) parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) a__ : Union[str, Any] = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
589
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): __magic_name__ : Any = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right __magic_name__ : Optional[Any] = 12_8022 __magic_name__ : Dict = 12_8028 @require_sentencepiece class A__ ( __snake_case , unittest.TestCase ): '''simple docstring''' snake_case__ = MaMaaaTokenizer snake_case__ = False snake_case__ = False snake_case__ = True def _SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" super().setUp() UpperCamelCase = ['</s>', '<unk>', 'โ–This', 'โ–is', 'โ–a', 'โ–t', 'est', '\u0120', '<pad>'] UpperCamelCase = dict(zip(_SCREAMING_SNAKE_CASE , range(len(_SCREAMING_SNAKE_CASE ) ) ) ) UpperCamelCase = Path(self.tmpdirname ) save_json(_SCREAMING_SNAKE_CASE , save_dir / VOCAB_FILES_NAMES['vocab_file'] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(_SCREAMING_SNAKE_CASE , save_dir / VOCAB_FILES_NAMES['spm_file'] ) UpperCamelCase = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def _SCREAMING_SNAKE_CASE ( self : str , **_SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _SCREAMING_SNAKE_CASE : Optional[Any] ): """simple docstring""" return ( "This is a test", "This is a test", ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" UpperCamelCase = '</s>' UpperCamelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = self.get_tokenizer() UpperCamelCase = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '</s>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '<s>' ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip('Skip this test while all models are still to be uploaded.' ) def _SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" pass def _SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" UpperCamelCase = self.get_tokenizer() UpperCamelCase = tokenizer.tokenize('This is a test' ) self.assertListEqual(_SCREAMING_SNAKE_CASE , ['โ–This', 'โ–is', 'โ–a', 'โ–t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) , [2, 3, 4, 5, 6] , ) UpperCamelCase = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(_SCREAMING_SNAKE_CASE , ['โ–This', 'โ–is', 'โ–a', 'โ–t', 'est'] ) UpperCamelCase = tokenizer.convert_tokens_to_string(_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , 'This is a test' ) @slow def _SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" UpperCamelCase = {'input_ids': [[12_8022, 11_0108, 397, 11, 3_8272, 2247, 12_4811, 285, 1_8105, 1586, 207, 7, 3_9534, 4428, 397, 1019, 1_8105, 1586, 207, 7, 4_1337, 1_6786, 241, 7, 2_0214, 17, 12_5690, 1_0398, 7, 4_4378, 5_8069, 6_8342, 7798, 7343, 11, 299, 3_3310, 4, 158, 3_7350, 9_4077, 4569, 299, 3_3310, 90, 4, 5_2840, 290, 4, 3_1270, 112, 299, 682, 4, 5_2840, 3_9953, 1_4079, 193, 5_2519, 9_0894, 1_7894, 12_0697, 11, 4_0445, 551, 17, 1019, 5_2519, 9_0894, 1_7756, 963, 11, 4_0445, 480, 17, 9792, 1120, 5173, 1393, 6240, 1_6786, 241, 12_0996, 28, 1245, 1393, 11_8240, 1_1123, 1019, 9_3612, 2691, 1_0618, 9_8058, 12_0409, 1928, 279, 4, 4_0683, 367, 178, 207, 1019, 103, 10_3121, 506, 6_5296, 5, 2], [12_8022, 2_1217, 367, 117, 12_5450, 128, 719, 7, 7308, 40, 9_3612, 1_2669, 1116, 1_6704, 71, 1_7785, 3699, 1_5592, 35, 144, 9584, 241, 1_1943, 713, 950, 799, 2247, 8_8427, 150, 149, 11_8813, 12_0706, 1019, 10_6906, 8_1518, 28, 1224, 2_2799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [12_8022, 1658, 12_3311, 5155, 5578, 4722, 279, 1_4947, 2366, 1120, 1197, 14, 1348, 9232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_SCREAMING_SNAKE_CASE , model_name='facebook/m2m100_418M' , revision='c168bae485c864188cf9aa0e4108b0b6934dc91e' , ) @require_torch @require_sentencepiece @require_tokenizers class A__ ( unittest.TestCase ): '''simple docstring''' snake_case__ = """facebook/m2m100_418M""" snake_case__ = [ """In my opinion, there are two levels of response from the French government.""", """NSA Affair Emphasizes Complete Lack of Debate on Intelligence""", ] snake_case__ = [ """Selon moi, il y a deux niveaux de rรฉponse de la part du gouvernement franรงais.""", """L'affaire NSA souligne l'absence totale de dรฉbat sur le renseignement""", ] # fmt: off snake_case__ = [EN_CODE, 5_93, 19_49, 11_57_81, 4, 7_15_86, 42_34, 6_06_33, 12_62_33, 4_32, 12_38_08, 1_55_92, 11_97, 11_71_32, 12_06_18, 5, 2] @classmethod def _SCREAMING_SNAKE_CASE ( cls : Any ): """simple docstring""" UpperCamelCase = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='en' , tgt_lang='fr' ) UpperCamelCase = 1 return cls def _SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" self.assertEqual(self.tokenizer.get_lang_id('ar' ) , 12_8006 ) self.assertEqual(self.tokenizer.get_lang_id('en' ) , 12_8022 ) self.assertEqual(self.tokenizer.get_lang_id('ro' ) , 12_8076 ) self.assertEqual(self.tokenizer.get_lang_id('mr' ) , 12_8063 ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" UpperCamelCase = self.tokenizer.get_vocab() self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , self.tokenizer.vocab_size ) self.assertEqual(vocab['<unk>'] , 3 ) self.assertIn(self.tokenizer.get_lang_token('en' ) , _SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = 'en' UpperCamelCase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , _SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" self.assertIn(_SCREAMING_SNAKE_CASE , self.tokenizer.all_special_ids ) # fmt: off UpperCamelCase = [FR_CODE, 5364, 82, 8642, 4, 294, 47, 8, 1_4028, 136, 3286, 9706, 6, 9_0797, 6, 14_4012, 162, 8_8128, 3_0061, 5, 2] # fmt: on UpperCamelCase = self.tokenizer.decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE ) UpperCamelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertNotIn(self.tokenizer.eos_token , _SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = tempfile.mkdtemp() UpperCamelCase = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCamelCase = MaMaaaTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertDictEqual(new_tok.lang_token_to_id , _SCREAMING_SNAKE_CASE ) @require_torch def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = 'en' UpperCamelCase = 'fr' UpperCamelCase = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_SCREAMING_SNAKE_CASE , return_tensors='pt' ) UpperCamelCase = shift_tokens_right( batch['labels'] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: UpperCamelCase = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def _SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" UpperCamelCase = 'mr' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('mr' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) UpperCamelCase = 'zh' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('zh' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def _SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" UpperCamelCase = 'mr' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('mr' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) UpperCamelCase = 'zh' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('zh' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def _SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" UpperCamelCase = self.tokenizer._build_translation_inputs('A test' , return_tensors='pt' , src_lang='en' , tgt_lang='ar' ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE ) , { # en_XX, A, test, EOS 'input_ids': [[12_8022, 58, 4183, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 12_8006, } , )
280
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { "facebook/data2vec-vision-base-ft": ( "https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json" ), } class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = 'data2vec-vision' def __init__( self , SCREAMING_SNAKE_CASE_=768 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=3072 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_=224 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=[3, 5, 7, 11] , SCREAMING_SNAKE_CASE_=[1, 2, 3, 6] , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=0.4 , SCREAMING_SNAKE_CASE_=256 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=255 , **SCREAMING_SNAKE_CASE_ , ) -> Any: '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = initializer_range lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = image_size lowerCamelCase_ = patch_size lowerCamelCase_ = num_channels lowerCamelCase_ = use_mask_token lowerCamelCase_ = use_absolute_position_embeddings lowerCamelCase_ = use_relative_position_bias lowerCamelCase_ = use_shared_relative_position_bias lowerCamelCase_ = layer_scale_init_value lowerCamelCase_ = drop_path_rate lowerCamelCase_ = use_mean_pooling # decode head attributes (semantic segmentation) lowerCamelCase_ = out_indices lowerCamelCase_ = pool_scales # auxiliary head attributes (semantic segmentation) lowerCamelCase_ = use_auxiliary_head lowerCamelCase_ = auxiliary_loss_weight lowerCamelCase_ = auxiliary_channels lowerCamelCase_ = auxiliary_num_convs lowerCamelCase_ = auxiliary_concat_input lowerCamelCase_ = semantic_loss_ignore_index class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = version.parse('1.11' ) @property def UpperCamelCase( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def UpperCamelCase( self ) -> float: '''simple docstring''' return 1E-4
701
'''simple docstring''' import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def _UpperCamelCase ( __UpperCamelCase ) -> str: # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def _UpperCamelCase ( ) -> str: with parallel_backend('spark' ): assert ParallelBackendConfig.backend_name == "spark" lowerCamelCase_ = [1, 2, 3] with pytest.raises(__UpperCamelCase ): with parallel_backend('unsupported backend' ): map_nested(__UpperCamelCase ,__UpperCamelCase ,num_proc=2 ) with pytest.raises(__UpperCamelCase ): with parallel_backend('unsupported backend' ): map_nested(__UpperCamelCase ,__UpperCamelCase ,num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize('num_proc' ,[2, -1] ) def _UpperCamelCase ( __UpperCamelCase ) -> Optional[int]: lowerCamelCase_ = [1, 2] lowerCamelCase_ = {'a': 1, 'b': 2} lowerCamelCase_ = {'a': [1, 2], 'b': [3, 4]} lowerCamelCase_ = {'a': {'1': 1}, 'b': 2} lowerCamelCase_ = {'a': 1, 'b': 2, 'c': 3, 'd': 4} lowerCamelCase_ = [2, 3] lowerCamelCase_ = {'a': 2, 'b': 3} lowerCamelCase_ = {'a': [2, 3], 'b': [4, 5]} lowerCamelCase_ = {'a': {'1': 2}, 'b': 3} lowerCamelCase_ = {'a': 2, 'b': 3, 'c': 4, 'd': 5} with parallel_backend('spark' ): assert map_nested(__UpperCamelCase ,__UpperCamelCase ,num_proc=__UpperCamelCase ) == expected_map_nested_sa assert map_nested(__UpperCamelCase ,__UpperCamelCase ,num_proc=__UpperCamelCase ) == expected_map_nested_sa assert map_nested(__UpperCamelCase ,__UpperCamelCase ,num_proc=__UpperCamelCase ) == expected_map_nested_sa assert map_nested(__UpperCamelCase ,__UpperCamelCase ,num_proc=__UpperCamelCase ) == expected_map_nested_sa assert map_nested(__UpperCamelCase ,__UpperCamelCase ,num_proc=__UpperCamelCase ) == expected_map_nested_sa
384
0
"""simple docstring""" def _snake_case ( __snake_case : float , __snake_case : float , __snake_case : int ): """simple docstring""" if principal <= 0: raise Exception("""Principal borrowed must be > 0""" ) if rate_per_annum < 0: raise Exception("""Rate of interest must be >= 0""" ) if years_to_repay <= 0 or not isinstance(__snake_case , __snake_case ): raise Exception("""Years to repay must be an integer > 0""" ) # Yearly rate is divided by 12 to get monthly rate _lowerCamelCase : Tuple = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly _lowerCamelCase : str = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
88
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE : List[Any] = { "configuration_funnel": ["FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP", "FunnelConfig"], "convert_funnel_original_tf_checkpoint_to_pytorch": [], "tokenization_funnel": ["FunnelTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[int] = ["FunnelTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : List[Any] = [ "FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "FunnelBaseModel", "FunnelForMaskedLM", "FunnelForMultipleChoice", "FunnelForPreTraining", "FunnelForQuestionAnswering", "FunnelForSequenceClassification", "FunnelForTokenClassification", "FunnelModel", "FunnelPreTrainedModel", "load_tf_weights_in_funnel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Dict = [ "TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFFunnelBaseModel", "TFFunnelForMaskedLM", "TFFunnelForMultipleChoice", "TFFunnelForPreTraining", "TFFunnelForQuestionAnswering", "TFFunnelForSequenceClassification", "TFFunnelForTokenClassification", "TFFunnelModel", "TFFunnelPreTrainedModel", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
400
0
"""simple docstring""" from datetime import datetime import requests def lowercase_ ( _lowerCamelCase: str ) -> bytes: '''simple docstring''' __lowerCamelCase : Dict = "https://downloadgram.net/wp-json/wppress/video-downloader/video?url=" __lowerCamelCase : Dict = requests.get(base_url + url ).json()[0]["urls"][0]["src"] return requests.get(_lowerCamelCase ).content if __name__ == "__main__": __A = input('''Enter Video/IGTV url: ''').strip() __A = F"""{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4""" with open(file_name, '''wb''') as fp: fp.write(download_video(url)) print(F"""Done. Video saved to disk as {file_name}.""")
366
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class _snake_case ( unittest.TestCase ): def __init__( self : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[int]=7 , UpperCAmelCase : Any=3 , UpperCAmelCase : str=18 , UpperCAmelCase : str=30 , UpperCAmelCase : Any=400 , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Dict=None , UpperCAmelCase : List[str]=True , UpperCAmelCase : int=[0.5, 0.5, 0.5] , UpperCAmelCase : Tuple=[0.5, 0.5, 0.5] , ): __lowerCamelCase : Any = size if size is not None else {"shortest_edge": 18} __lowerCamelCase : Dict = crop_size if crop_size is not None else {"height": 18, "width": 18} __lowerCamelCase : List[str] = parent __lowerCamelCase : int = batch_size __lowerCamelCase : Any = num_channels __lowerCamelCase : Tuple = image_size __lowerCamelCase : int = min_resolution __lowerCamelCase : List[Any] = max_resolution __lowerCamelCase : List[str] = do_resize __lowerCamelCase : str = size __lowerCamelCase : Tuple = do_center_crop __lowerCamelCase : Optional[int] = crop_size __lowerCamelCase : Optional[Any] = do_normalize __lowerCamelCase : Optional[Any] = image_mean __lowerCamelCase : List[Any] = image_std def lowerCamelCase__ ( self : int ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class _snake_case ( a__ , unittest.TestCase ): snake_case__ = LevitImageProcessor if is_vision_available() else None def lowerCamelCase__ ( self : Any ): __lowerCamelCase : Optional[int] = LevitImageProcessingTester(self ) @property def lowerCamelCase__ ( self : Union[str, Any] ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase__ ( self : List[str] ): __lowerCamelCase : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase , "image_mean" ) ) self.assertTrue(hasattr(UpperCAmelCase , "image_std" ) ) self.assertTrue(hasattr(UpperCAmelCase , "do_normalize" ) ) self.assertTrue(hasattr(UpperCAmelCase , "do_resize" ) ) self.assertTrue(hasattr(UpperCAmelCase , "do_center_crop" ) ) self.assertTrue(hasattr(UpperCAmelCase , "size" ) ) def lowerCamelCase__ ( self : int ): __lowerCamelCase : str = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) __lowerCamelCase : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def lowerCamelCase__ ( self : Dict ): pass def lowerCamelCase__ ( self : Any ): # Initialize image_processing __lowerCamelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCamelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , Image.Image ) # Test not batched input __lowerCamelCase : Dict = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __lowerCamelCase : int = image_processing(UpperCAmelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def lowerCamelCase__ ( self : Any ): # Initialize image_processing __lowerCamelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCamelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , numpify=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , np.ndarray ) # Test not batched input __lowerCamelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __lowerCamelCase : Dict = image_processing(UpperCAmelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def lowerCamelCase__ ( self : Union[str, Any] ): # Initialize image_processing __lowerCamelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCamelCase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , torchify=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , torch.Tensor ) # Test not batched input __lowerCamelCase : List[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __lowerCamelCase : List[str] = image_processing(UpperCAmelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
366
1
'''simple docstring''' import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class a_ ( unittest.TestCase ): '''simple docstring''' def __init__( self , A , A=13 , A=7 , A=True , A=True , A=True , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.02 , A=4 , ) -> List[str]: _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_attention_mask _SCREAMING_SNAKE_CASE = use_token_type_ids _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = num_choices def snake_case_( self ) -> Tuple: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_attention_mask: _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _SCREAMING_SNAKE_CASE = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def snake_case_( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def snake_case_( self ) -> Any: _SCREAMING_SNAKE_CASE = FlaxAlbertModelTester(self ) @slow def snake_case_( self ) -> Optional[Any]: for model_class_name in self.all_model_classes: _SCREAMING_SNAKE_CASE = model_class_name.from_pretrained("""albert-base-v2""" ) _SCREAMING_SNAKE_CASE = model(np.ones((1, 1) ) ) self.assertIsNotNone(A ) @require_flax class a_ ( unittest.TestCase ): '''simple docstring''' @slow def snake_case_( self ) -> Any: _SCREAMING_SNAKE_CASE = FlaxAlbertModel.from_pretrained("""albert-base-v2""" ) _SCREAMING_SNAKE_CASE = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) _SCREAMING_SNAKE_CASE = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _SCREAMING_SNAKE_CASE = model(A , attention_mask=A )[0] _SCREAMING_SNAKE_CASE = (1, 11, 768) self.assertEqual(output.shape , A ) _SCREAMING_SNAKE_CASE = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , A , atol=1e-4 ) )
314
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """distilbert-base-uncased""": """https://huggingface.co/distilbert-base-uncased/resolve/main/config.json""", """distilbert-base-uncased-distilled-squad""": ( """https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json""" ), """distilbert-base-cased""": """https://huggingface.co/distilbert-base-cased/resolve/main/config.json""", """distilbert-base-cased-distilled-squad""": ( """https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json""" ), """distilbert-base-german-cased""": """https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json""", """distilbert-base-multilingual-cased""": ( """https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json""" ), """distilbert-base-uncased-finetuned-sst-2-english""": ( """https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json""" ), } class a_ ( snake_case_ ): '''simple docstring''' UpperCamelCase = '''distilbert''' UpperCamelCase = { '''hidden_size''': '''dim''', '''num_attention_heads''': '''n_heads''', '''num_hidden_layers''': '''n_layers''', } def __init__( self , A=3_0522 , A=512 , A=False , A=6 , A=12 , A=768 , A=4 * 768 , A=0.1 , A=0.1 , A="gelu" , A=0.02 , A=0.1 , A=0.2 , A=0 , **A , ) -> Dict: _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = sinusoidal_pos_embds _SCREAMING_SNAKE_CASE = n_layers _SCREAMING_SNAKE_CASE = n_heads _SCREAMING_SNAKE_CASE = dim _SCREAMING_SNAKE_CASE = hidden_dim _SCREAMING_SNAKE_CASE = dropout _SCREAMING_SNAKE_CASE = attention_dropout _SCREAMING_SNAKE_CASE = activation _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = qa_dropout _SCREAMING_SNAKE_CASE = seq_classif_dropout super().__init__(**A , pad_token_id=A ) class a_ ( snake_case_ ): '''simple docstring''' @property def snake_case_( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _SCREAMING_SNAKE_CASE = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _SCREAMING_SNAKE_CASE = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
314
1
from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize("repo_id" ,["canonical_dataset_name", "org-name/dataset-name"] ) @pytest.mark.parametrize("path" ,["filename.csv", "filename with blanks.csv"] ) @pytest.mark.parametrize("revision" ,[None, "v2"] ) def lowercase ( _a ,_a ,_a ) -> List[Any]: UpperCAmelCase_: List[str] = hf_hub_url(repo_id=_a ,path=_a ,revision=_a ) assert url == f"https://huggingface.co/datasets/{repo_id}/resolve/{revision or 'main'}/{quote(_a )}"
306
class UpperCAmelCase__ : def __init__( self , A__ ): """simple docstring""" UpperCAmelCase_: Tuple = arr.split("," ) def snake_case_ ( self ): """simple docstring""" UpperCAmelCase_: str = [int(self.array[0] )] * len(self.array ) UpperCAmelCase_: List[str] = [int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): UpperCAmelCase_: Dict = max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) UpperCAmelCase_: Tuple = max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": _lowerCAmelCase = input("""please input some numbers:""") _lowerCAmelCase = SubArray(whole_array) _lowerCAmelCase = array.solve_sub_array() print(("""the results is:""", re))
306
1
"""simple docstring""" import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class _UpperCAmelCase: def __init__( self , __a , __a=13 , __a=10 , __a=3 , __a=2 , __a=2 , __a=True , __a=True , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=10 , __a=0.02 , __a="divided_space_time" , __a=None , ) -> List[str]: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = image_size _UpperCamelCase = num_channels _UpperCamelCase = patch_size _UpperCamelCase = num_frames _UpperCamelCase = is_training _UpperCamelCase = use_labels _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = attention_type _UpperCamelCase = initializer_range _UpperCamelCase = scope _UpperCamelCase = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token _UpperCamelCase = (image_size // patch_size) ** 2 _UpperCamelCase = (num_frames) * self.num_patches_per_frame + 1 def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size]) _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.num_labels) _UpperCamelCase = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) _UpperCamelCase = self.num_labels return config def UpperCAmelCase ( self , __a , __a , __a) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = TimesformerModel(config=__a) model.to(__a) model.eval() _UpperCamelCase = model(__a) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCAmelCase ( self , __a , __a , __a) -> Dict: '''simple docstring''' _UpperCamelCase = TimesformerForVideoClassification(__a) model.to(__a) model.eval() _UpperCamelCase = model(__a) # verify the logits shape _UpperCamelCase = torch.Size((self.batch_size, self.num_labels)) self.parent.assertEqual(result.logits.shape , __a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () lowercase__ = ( {'feature-extraction': TimesformerModel, 'video-classification': TimesformerForVideoClassification} if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = TimesformerModelTester(self) _UpperCamelCase = ConfigTester( self , config_class=__a , has_text_modality=__a , hidden_size=37) def UpperCAmelCase ( self , __a , __a , __a=False) -> List[str]: '''simple docstring''' _UpperCamelCase = copy.deepcopy(__a) if return_labels: if model_class in get_values(__a): _UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__a) return inputs_dict def UpperCAmelCase ( self) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''TimeSformer does not use inputs_embeds''') def UpperCAmelCase ( self) -> Any: '''simple docstring''' pass def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(__a) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) _UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , nn.Linear)) def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(__a) _UpperCamelCase = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase = [*signature.parameters.keys()] _UpperCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __a) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*__a) @slow def UpperCAmelCase ( self) -> int: '''simple docstring''' for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TimesformerModel.from_pretrained(__a) self.assertIsNotNone(__a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' if not self.has_attentions: pass else: _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = True for model_class in self.all_model_classes: _UpperCamelCase = self.model_tester.seq_length _UpperCamelCase = self.model_tester.num_frames _UpperCamelCase = True _UpperCamelCase = False _UpperCamelCase = True _UpperCamelCase = model_class(__a) model.to(__a) model.eval() with torch.no_grad(): _UpperCamelCase = model(**self._prepare_for_class(__a , __a)) _UpperCamelCase = outputs.attentions self.assertEqual(len(__a) , self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] _UpperCamelCase = True _UpperCamelCase = model_class(__a) model.to(__a) model.eval() with torch.no_grad(): _UpperCamelCase = model(**self._prepare_for_class(__a , __a)) _UpperCamelCase = outputs.attentions self.assertEqual(len(__a) , self.model_tester.num_hidden_layers) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) _UpperCamelCase = len(__a) # Check attention is always last and order is fine _UpperCamelCase = True _UpperCamelCase = True _UpperCamelCase = model_class(__a) model.to(__a) model.eval() with torch.no_grad(): _UpperCamelCase = model(**self._prepare_for_class(__a , __a)) self.assertEqual(out_len + 1 , len(__a)) _UpperCamelCase = outputs.attentions self.assertEqual(len(__a) , self.model_tester.num_hidden_layers) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def UpperCAmelCase ( self) -> int: '''simple docstring''' def check_hidden_states_output(__a , __a , __a): _UpperCamelCase = model_class(__a) model.to(__a) model.eval() with torch.no_grad(): _UpperCamelCase = model(**self._prepare_for_class(__a , __a)) _UpperCamelCase = outputs.hidden_states _UpperCamelCase = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(__a) , __a) _UpperCamelCase = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , ) _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = True check_hidden_states_output(__a , __a , __a) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCamelCase = True check_hidden_states_output(__a , __a , __a) def lowerCamelCase__ ( ) -> List[Any]: """simple docstring""" _UpperCamelCase = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''', filename='''eating_spaghetti.npy''', repo_type='''dataset''' ) _UpperCamelCase = np.load(__snake_case ) return list(__snake_case ) @require_torch @require_vision class _UpperCAmelCase( unittest.TestCase ): @cached_property def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5]) if is_vision_available() else None ) @slow def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = TimesformerForVideoClassification.from_pretrained('''facebook/timesformer-base-finetuned-k400''').to( __a) _UpperCamelCase = self.default_image_processor _UpperCamelCase = prepare_video() _UpperCamelCase = image_processor(video[:8] , return_tensors='''pt''').to(__a) # forward pass with torch.no_grad(): _UpperCamelCase = model(**__a) # verify the logits _UpperCamelCase = torch.Size((1, 4_00)) self.assertEqual(outputs.logits.shape , __a) _UpperCamelCase = torch.tensor([-0.3016, -0.7713, -0.4205]).to(__a) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1e-4))
19
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" a_ = """pixel_values""" a_ = False a_ = TimmBackboneConfig def __init__( self : Tuple , lowerCAmelCase_ : Any , **lowerCAmelCase_ : Optional[int] ) -> Optional[Any]: requires_backends(self , 'timm' ) super().__init__(lowerCAmelCase_ ) __lowerCAmelCase = config if config.backbone is None: raise ValueError('backbone is not set in the config. Please set it to a timm model name.' ) if config.backbone not in timm.list_models(): raise ValueError(f"""backbone {config.backbone} is not supported by timm.""" ) if hasattr(lowerCAmelCase_ , 'out_features' ) and config.out_features is not None: raise ValueError('out_features is not supported by TimmBackbone. Please use out_indices instead.' ) __lowerCAmelCase = getattr(lowerCAmelCase_ , 'use_pretrained_backbone' , lowerCAmelCase_ ) if pretrained is None: raise ValueError('use_pretrained_backbone is not set in the config. Please set it to True or False.' ) # We just take the final layer by default. This matches the default for the transformers models. __lowerCAmelCase = config.out_indices if getattr(lowerCAmelCase_ , 'out_indices' , lowerCAmelCase_ ) is not None else (-1,) __lowerCAmelCase = timm.create_model( config.backbone , pretrained=lowerCAmelCase_ , features_only=config.features_only , in_chans=config.num_channels , out_indices=lowerCAmelCase_ , **lowerCAmelCase_ , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. __lowerCAmelCase = self._backbone.return_layers __lowerCAmelCase = {layer['module']: str(lowerCAmelCase_ ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(lowerCAmelCase_ ) @classmethod def lowercase ( cls : int , lowerCAmelCase_ : Dict , *lowerCAmelCase_ : Dict , **lowerCAmelCase_ : Union[str, Any] ) -> Optional[int]: requires_backends(cls , ['vision', 'timm'] ) from ...models.timm_backbone import TimmBackboneConfig __lowerCAmelCase = kwargs.pop('config' , TimmBackboneConfig() ) __lowerCAmelCase = kwargs.pop('use_timm_backbone' , lowerCAmelCase_ ) if not use_timm: raise ValueError('use_timm_backbone must be True for timm backbones' ) __lowerCAmelCase = kwargs.pop('num_channels' , config.num_channels ) __lowerCAmelCase = kwargs.pop('features_only' , config.features_only ) __lowerCAmelCase = kwargs.pop('use_pretrained_backbone' , config.use_pretrained_backbone ) __lowerCAmelCase = kwargs.pop('out_indices' , config.out_indices ) __lowerCAmelCase = TimmBackboneConfig( backbone=lowerCAmelCase_ , num_channels=lowerCAmelCase_ , features_only=lowerCAmelCase_ , use_pretrained_backbone=lowerCAmelCase_ , out_indices=lowerCAmelCase_ , ) return super()._from_config(lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : Tuple , lowerCAmelCase_ : int ) -> Dict: pass def lowercase ( self : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Any=None , **lowerCAmelCase_ : Dict ) -> Union[BackboneOutput, Tuple[Tensor, ...]]: __lowerCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict __lowerCAmelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCAmelCase = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError('Cannot output attentions for timm backbones at the moment' ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone __lowerCAmelCase = self._all_layers __lowerCAmelCase = self._backbone(lowerCAmelCase_ , **lowerCAmelCase_ ) __lowerCAmelCase = self._return_layers __lowerCAmelCase = tuple(hidden_states[i] for i in self.out_indices ) else: __lowerCAmelCase = self._backbone(lowerCAmelCase_ , **lowerCAmelCase_ ) __lowerCAmelCase = None __lowerCAmelCase = tuple(lowerCAmelCase_ ) __lowerCAmelCase = tuple(lowerCAmelCase_ ) if hidden_states is not None else None if not return_dict: __lowerCAmelCase = (feature_maps,) if output_hidden_states: __lowerCAmelCase = output + (hidden_states,) return output return BackboneOutput(feature_maps=lowerCAmelCase_ , hidden_states=lowerCAmelCase_ , attentions=lowerCAmelCase_ )
53
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = {"""vocab_file""": """sentencepiece.bpe.model"""} snake_case_ = { """vocab_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model""" ), }, } snake_case_ = { """moussaKam/mbarthez""": 1024, """moussaKam/barthez""": 1024, """moussaKam/barthez-orangesum-title""": 1024, } snake_case_ = """โ–""" class a__ ( _lowercase ): __magic_name__ : int = VOCAB_FILES_NAMES __magic_name__ : Tuple = PRETRAINED_VOCAB_FILES_MAP __magic_name__ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ : Optional[int] = ["input_ids", "attention_mask"] def __init__(self : int, __UpperCAmelCase : Any, __UpperCAmelCase : List[str]="<s>", __UpperCAmelCase : int="</s>", __UpperCAmelCase : Optional[Any]="</s>", __UpperCAmelCase : int="<s>", __UpperCAmelCase : str="<unk>", __UpperCAmelCase : str="<pad>", __UpperCAmelCase : Dict="<mask>", __UpperCAmelCase : Optional[Dict[str, Any]] = None, **__UpperCAmelCase : int, ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = AddedToken(__UpperCAmelCase, lstrip=__UpperCAmelCase, rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase, __UpperCAmelCase ) else mask_token SCREAMING_SNAKE_CASE : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__UpperCAmelCase, eos_token=__UpperCAmelCase, unk_token=__UpperCAmelCase, sep_token=__UpperCAmelCase, cls_token=__UpperCAmelCase, pad_token=__UpperCAmelCase, mask_token=__UpperCAmelCase, sp_model_kwargs=self.sp_model_kwargs, **__UpperCAmelCase, ) SCREAMING_SNAKE_CASE : str = vocab_file SCREAMING_SNAKE_CASE : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__UpperCAmelCase ) ) SCREAMING_SNAKE_CASE : Optional[int] = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} SCREAMING_SNAKE_CASE : int = len(self.sp_model ) - 1 SCREAMING_SNAKE_CASE : Optional[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def lowercase__ (self : List[str], __UpperCAmelCase : List[int], __UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] SCREAMING_SNAKE_CASE : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase__ (self : List[str], __UpperCAmelCase : List[int], __UpperCAmelCase : Optional[List[int]] = None, __UpperCAmelCase : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase, token_ids_a=__UpperCAmelCase, already_has_special_tokens=__UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(__UpperCAmelCase )) + [1] return [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] + ([0] * len(__UpperCAmelCase )) + [1] def lowercase__ (self : Tuple, __UpperCAmelCase : List[int], __UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = [self.sep_token_id] SCREAMING_SNAKE_CASE : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowercase__ (self : Tuple ) -> Dict: """simple docstring""" return len(self.sp_model ) def lowercase__ (self : Optional[int] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = {self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowercase__ (self : List[str], __UpperCAmelCase : str ) -> List[str]: """simple docstring""" return self.sp_model.encode(__UpperCAmelCase, out_type=__UpperCAmelCase ) def lowercase__ (self : int, __UpperCAmelCase : int ) -> Optional[int]: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] SCREAMING_SNAKE_CASE : Union[str, Any] = self.sp_model.PieceToId(__UpperCAmelCase ) return spm_id if spm_id else self.unk_token_id def lowercase__ (self : Optional[Any], __UpperCAmelCase : str ) -> int: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(__UpperCAmelCase ) def lowercase__ (self : Any, __UpperCAmelCase : str ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = [] SCREAMING_SNAKE_CASE : str = '''''' SCREAMING_SNAKE_CASE : Dict = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__UpperCAmelCase ) + token SCREAMING_SNAKE_CASE : int = True SCREAMING_SNAKE_CASE : int = [] else: current_sub_tokens.append(__UpperCAmelCase ) SCREAMING_SNAKE_CASE : List[str] = False out_string += self.sp_model.decode(__UpperCAmelCase ) return out_string.strip() def __getstate__(self : List[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.__dict__.copy() SCREAMING_SNAKE_CASE : List[str] = None return state def __setstate__(self : Tuple, __UpperCAmelCase : Tuple ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = d # for backward compatibility if not hasattr(self, '''sp_model_kwargs''' ): SCREAMING_SNAKE_CASE : Union[str, Any] = {} SCREAMING_SNAKE_CASE : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase__ (self : Union[str, Any], __UpperCAmelCase : str, __UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(__UpperCAmelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return SCREAMING_SNAKE_CASE : Any = os.path.join( __UpperCAmelCase, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, __UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase, '''wb''' ) as fi: SCREAMING_SNAKE_CASE : Any = self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (out_vocab_file,)
714
'''simple docstring''' import pickle import numpy as np from matplotlib import pyplot as plt class a__ : def __init__(self : Any, __UpperCAmelCase : int, __UpperCAmelCase : Optional[Any], __UpperCAmelCase : List[Any], __UpperCAmelCase : Optional[int], __UpperCAmelCase : int, __UpperCAmelCase : List[str]=0.2, __UpperCAmelCase : Dict=0.2 ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : int = bp_numa SCREAMING_SNAKE_CASE : Optional[Any] = bp_numa SCREAMING_SNAKE_CASE : str = bp_numa SCREAMING_SNAKE_CASE : Dict = conva_get[:2] SCREAMING_SNAKE_CASE : Union[str, Any] = conva_get[2] SCREAMING_SNAKE_CASE : int = size_pa SCREAMING_SNAKE_CASE : int = rate_w SCREAMING_SNAKE_CASE : int = rate_t SCREAMING_SNAKE_CASE : int = [ np.mat(-1 * np.random.rand(self.conva[0], self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] SCREAMING_SNAKE_CASE : List[Any] = np.mat(-1 * np.random.rand(self.num_bpa, self.num_bpa ) + 0.5 ) SCREAMING_SNAKE_CASE : Dict = np.mat(-1 * np.random.rand(self.num_bpa, self.num_bpa ) + 0.5 ) SCREAMING_SNAKE_CASE : List[str] = -2 * np.random.rand(self.conva[1] ) + 1 SCREAMING_SNAKE_CASE : Optional[int] = -2 * np.random.rand(self.num_bpa ) + 1 SCREAMING_SNAKE_CASE : Optional[int] = -2 * np.random.rand(self.num_bpa ) + 1 def lowercase__ (self : Union[str, Any], __UpperCAmelCase : Optional[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = { '''num_bp1''': self.num_bpa, '''num_bp2''': self.num_bpa, '''num_bp3''': self.num_bpa, '''conv1''': self.conva, '''step_conv1''': self.step_conva, '''size_pooling1''': self.size_poolinga, '''rate_weight''': self.rate_weight, '''rate_thre''': self.rate_thre, '''w_conv1''': self.w_conva, '''wkj''': self.wkj, '''vji''': self.vji, '''thre_conv1''': self.thre_conva, '''thre_bp2''': self.thre_bpa, '''thre_bp3''': self.thre_bpa, } with open(__UpperCAmelCase, '''wb''' ) as f: pickle.dump(__UpperCAmelCase, __UpperCAmelCase ) print(F'''Model saved๏ผš {save_path}''' ) @classmethod def lowercase__ (cls : str, __UpperCAmelCase : List[str] ) -> int: """simple docstring""" with open(__UpperCAmelCase, '''rb''' ) as f: SCREAMING_SNAKE_CASE : int = pickle.load(__UpperCAmelCase ) # noqa: S301 SCREAMING_SNAKE_CASE : List[str] = model_dic.get('''conv1''' ) conv_get.append(model_dic.get('''step_conv1''' ) ) SCREAMING_SNAKE_CASE : Dict = model_dic.get('''size_pooling1''' ) SCREAMING_SNAKE_CASE : Tuple = model_dic.get('''num_bp1''' ) SCREAMING_SNAKE_CASE : Optional[Any] = model_dic.get('''num_bp2''' ) SCREAMING_SNAKE_CASE : List[str] = model_dic.get('''num_bp3''' ) SCREAMING_SNAKE_CASE : Any = model_dic.get('''rate_weight''' ) SCREAMING_SNAKE_CASE : Any = model_dic.get('''rate_thre''' ) # create model instance SCREAMING_SNAKE_CASE : List[Any] = CNN(__UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) # modify model parameter SCREAMING_SNAKE_CASE : Optional[Any] = model_dic.get('''w_conv1''' ) SCREAMING_SNAKE_CASE : Tuple = model_dic.get('''wkj''' ) SCREAMING_SNAKE_CASE : Any = model_dic.get('''vji''' ) SCREAMING_SNAKE_CASE : Optional[Any] = model_dic.get('''thre_conv1''' ) SCREAMING_SNAKE_CASE : List[str] = model_dic.get('''thre_bp2''' ) SCREAMING_SNAKE_CASE : Optional[Any] = model_dic.get('''thre_bp3''' ) return conv_ins def lowercase__ (self : Optional[Any], __UpperCAmelCase : Dict ) -> Optional[Any]: """simple docstring""" return 1 / (1 + np.exp(-1 * x )) def lowercase__ (self : Optional[int], __UpperCAmelCase : List[str] ) -> str: """simple docstring""" return round(__UpperCAmelCase, 3 ) def lowercase__ (self : Union[str, Any], __UpperCAmelCase : Union[str, Any], __UpperCAmelCase : Optional[Any], __UpperCAmelCase : Optional[int], __UpperCAmelCase : Any, __UpperCAmelCase : int ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = convs[0] SCREAMING_SNAKE_CASE : int = convs[1] SCREAMING_SNAKE_CASE : List[str] = np.shape(__UpperCAmelCase )[0] # get the data slice of original image data, data_focus SCREAMING_SNAKE_CASE : Union[str, Any] = [] for i_focus in range(0, size_data - size_conv + 1, __UpperCAmelCase ): for j_focus in range(0, size_data - size_conv + 1, __UpperCAmelCase ): SCREAMING_SNAKE_CASE : Optional[Any] = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(__UpperCAmelCase ) # calculate the feature map of every single kernel, and saved as list of matrix SCREAMING_SNAKE_CASE : Optional[Any] = [] SCREAMING_SNAKE_CASE : Optional[int] = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(__UpperCAmelCase ): SCREAMING_SNAKE_CASE : Optional[int] = [] for i_focus in range(len(__UpperCAmelCase ) ): SCREAMING_SNAKE_CASE : Any = ( np.sum(np.multiply(data_focus[i_focus], w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(__UpperCAmelCase ) ) SCREAMING_SNAKE_CASE : Dict = np.asmatrix(__UpperCAmelCase ).reshape( __UpperCAmelCase, __UpperCAmelCase ) data_featuremap.append(__UpperCAmelCase ) # expanding the data slice to One dimenssion SCREAMING_SNAKE_CASE : Optional[int] = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(__UpperCAmelCase ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = np.asarray(__UpperCAmelCase ) return focus_list, data_featuremap def lowercase__ (self : Any, __UpperCAmelCase : Optional[int], __UpperCAmelCase : Tuple, __UpperCAmelCase : List[str]="average_pool" ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = len(featuremaps[0] ) SCREAMING_SNAKE_CASE : str = int(size_map / size_pooling ) SCREAMING_SNAKE_CASE : Tuple = [] for i_map in range(len(__UpperCAmelCase ) ): SCREAMING_SNAKE_CASE : str = featuremaps[i_map] SCREAMING_SNAKE_CASE : Any = [] for i_focus in range(0, __UpperCAmelCase, __UpperCAmelCase ): for j_focus in range(0, __UpperCAmelCase, __UpperCAmelCase ): SCREAMING_SNAKE_CASE : str = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(__UpperCAmelCase ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(__UpperCAmelCase ) ) SCREAMING_SNAKE_CASE : Tuple = np.asmatrix(__UpperCAmelCase ).reshape(__UpperCAmelCase, __UpperCAmelCase ) featuremap_pooled.append(__UpperCAmelCase ) return featuremap_pooled def lowercase__ (self : Any, __UpperCAmelCase : List[str] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : int = [] for i in range(len(__UpperCAmelCase ) ): SCREAMING_SNAKE_CASE : Union[str, Any] = np.shape(data[i] ) SCREAMING_SNAKE_CASE : str = data[i].reshape(1, shapes[0] * shapes[1] ) SCREAMING_SNAKE_CASE : int = data_listed.getA().tolist()[0] data_expanded.extend(__UpperCAmelCase ) SCREAMING_SNAKE_CASE : List[Any] = np.asarray(__UpperCAmelCase ) return data_expanded def lowercase__ (self : Any, __UpperCAmelCase : Optional[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = np.asarray(__UpperCAmelCase ) SCREAMING_SNAKE_CASE : Dict = np.shape(__UpperCAmelCase ) SCREAMING_SNAKE_CASE : Tuple = data_mat.reshape(1, shapes[0] * shapes[1] ) return data_expanded def lowercase__ (self : Tuple, __UpperCAmelCase : List[Any], __UpperCAmelCase : Dict, __UpperCAmelCase : Any, __UpperCAmelCase : Optional[int], __UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = [] SCREAMING_SNAKE_CASE : List[str] = 0 for i_map in range(__UpperCAmelCase ): SCREAMING_SNAKE_CASE : Dict = np.ones((size_map, size_map) ) for i in range(0, __UpperCAmelCase, __UpperCAmelCase ): for j in range(0, __UpperCAmelCase, __UpperCAmelCase ): SCREAMING_SNAKE_CASE : str = pd_pool[ i_pool ] SCREAMING_SNAKE_CASE : Dict = i_pool + 1 SCREAMING_SNAKE_CASE : List[Any] = np.multiply( __UpperCAmelCase, np.multiply(out_map[i_map], (1 - out_map[i_map]) ) ) pd_all.append(__UpperCAmelCase ) return pd_all def lowercase__ (self : Optional[int], __UpperCAmelCase : Optional[int], __UpperCAmelCase : Union[str, Any], __UpperCAmelCase : List[Any], __UpperCAmelCase : List[str], __UpperCAmelCase : Union[str, Any], __UpperCAmelCase : Optional[int]=bool ) -> List[Any]: """simple docstring""" print('''----------------------Start Training-------------------------''' ) print((''' - - Shape: Train_Data ''', np.shape(__UpperCAmelCase )) ) print((''' - - Shape: Teach_Data ''', np.shape(__UpperCAmelCase )) ) SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : str = [] SCREAMING_SNAKE_CASE : Any = 10000 while rp < n_repeat and mse >= error_accuracy: SCREAMING_SNAKE_CASE : int = 0 print(F'''-------------Learning Time {rp}--------------''' ) for p in range(len(__UpperCAmelCase ) ): # print('------------Learning Image: %d--------------'%p) SCREAMING_SNAKE_CASE : Union[str, Any] = np.asmatrix(datas_train[p] ) SCREAMING_SNAKE_CASE : Tuple = np.asarray(datas_teach[p] ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.convolute( __UpperCAmelCase, self.conva, self.w_conva, self.thre_conva, conv_step=self.step_conva, ) SCREAMING_SNAKE_CASE : Dict = self.pooling(__UpperCAmelCase, self.size_poolinga ) SCREAMING_SNAKE_CASE : Dict = np.shape(__UpperCAmelCase ) SCREAMING_SNAKE_CASE : str = self._expand(__UpperCAmelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = data_bp_input SCREAMING_SNAKE_CASE : Tuple = np.dot(__UpperCAmelCase, self.vji.T ) - self.thre_bpa SCREAMING_SNAKE_CASE : List[Any] = self.sig(__UpperCAmelCase ) SCREAMING_SNAKE_CASE : Dict = np.dot(__UpperCAmelCase, self.wkj.T ) - self.thre_bpa SCREAMING_SNAKE_CASE : Optional[Any] = self.sig(__UpperCAmelCase ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- SCREAMING_SNAKE_CASE : Union[str, Any] = np.multiply( (data_teach - bp_outa), np.multiply(__UpperCAmelCase, (1 - bp_outa) ) ) SCREAMING_SNAKE_CASE : List[Any] = np.multiply( np.dot(__UpperCAmelCase, self.wkj ), np.multiply(__UpperCAmelCase, (1 - bp_outa) ) ) SCREAMING_SNAKE_CASE : Dict = np.dot(__UpperCAmelCase, self.vji ) SCREAMING_SNAKE_CASE : Dict = pd_i_all / (self.size_poolinga * self.size_poolinga) SCREAMING_SNAKE_CASE : Optional[Any] = pd_conva_pooled.T.getA().tolist() SCREAMING_SNAKE_CASE : Optional[Any] = self._calculate_gradient_from_pool( __UpperCAmelCase, __UpperCAmelCase, shape_featuremapa[0], shape_featuremapa[1], self.size_poolinga, ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): SCREAMING_SNAKE_CASE : Optional[Any] = self._expand_mat(pd_conva_all[k_conv] ) SCREAMING_SNAKE_CASE : Any = self.rate_weight * np.dot(__UpperCAmelCase, __UpperCAmelCase ) SCREAMING_SNAKE_CASE : List[Any] = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) SCREAMING_SNAKE_CASE : Union[str, Any] = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer SCREAMING_SNAKE_CASE : Optional[int] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight SCREAMING_SNAKE_CASE : List[str] = self.vji + pd_j_all.T * bp_outa * self.rate_weight SCREAMING_SNAKE_CASE : List[Any] = self.thre_bpa - pd_k_all * self.rate_thre SCREAMING_SNAKE_CASE : int = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image SCREAMING_SNAKE_CASE : List[Any] = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) SCREAMING_SNAKE_CASE : Union[str, Any] = rp + 1 SCREAMING_SNAKE_CASE : Union[str, Any] = error_count / patterns all_mse.append(__UpperCAmelCase ) def draw_error(): SCREAMING_SNAKE_CASE : Tuple = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(__UpperCAmelCase, '''+-''' ) plt.plot(__UpperCAmelCase, '''r--''' ) plt.xlabel('''Learning Times''' ) plt.ylabel('''All_mse''' ) plt.grid(__UpperCAmelCase, alpha=0.5 ) plt.show() print('''------------------Training Complished---------------------''' ) print((''' - - Training epoch: ''', rp, F''' - - Mse: {mse:.6f}''') ) if draw_e: draw_error() return mse def lowercase__ (self : List[str], __UpperCAmelCase : List[str] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = [] print('''-------------------Start Testing-------------------------''' ) print((''' - - Shape: Test_Data ''', np.shape(__UpperCAmelCase )) ) for p in range(len(__UpperCAmelCase ) ): SCREAMING_SNAKE_CASE : Union[str, Any] = np.asmatrix(datas_test[p] ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.convolute( __UpperCAmelCase, self.conva, self.w_conva, self.thre_conva, conv_step=self.step_conva, ) SCREAMING_SNAKE_CASE : List[Any] = self.pooling(__UpperCAmelCase, self.size_poolinga ) SCREAMING_SNAKE_CASE : str = self._expand(__UpperCAmelCase ) SCREAMING_SNAKE_CASE : Any = data_bp_input SCREAMING_SNAKE_CASE : Optional[Any] = bp_outa * self.vji.T - self.thre_bpa SCREAMING_SNAKE_CASE : Dict = self.sig(__UpperCAmelCase ) SCREAMING_SNAKE_CASE : Any = bp_outa * self.wkj.T - self.thre_bpa SCREAMING_SNAKE_CASE : Optional[Any] = self.sig(__UpperCAmelCase ) produce_out.extend(bp_outa.getA().tolist() ) SCREAMING_SNAKE_CASE : List[str] = [list(map(self.do_round, __UpperCAmelCase ) ) for each in produce_out] return np.asarray(__UpperCAmelCase ) def lowercase__ (self : Optional[Any], __UpperCAmelCase : Union[str, Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = np.asmatrix(__UpperCAmelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self.convolute( __UpperCAmelCase, self.conva, self.w_conva, self.thre_conva, conv_step=self.step_conva, ) SCREAMING_SNAKE_CASE : List[Any] = self.pooling(__UpperCAmelCase, self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
355
0
"""simple docstring""" from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract __SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) def lowerCAmelCase_( lowercase_ : Optional[Any] , lowercase_ : List[Any] , lowercase_ : Union[str, Any] ) -> Optional[Any]: return [ int(10_00 * (box[0] / width) ), int(10_00 * (box[1] / height) ), int(10_00 * (box[2] / width) ), int(10_00 * (box[3] / height) ), ] def lowerCAmelCase_( lowercase_ : np.ndarray , lowercase_ : Optional[str] , lowercase_ : Optional[str] = None ) -> Union[str, Any]: _lowerCamelCase = tesseract_config if tesseract_config is not None else '''''' # apply OCR _lowerCamelCase = to_pil_image(lowercase_ ) _lowerCamelCase , _lowerCamelCase = pil_image.size _lowerCamelCase = pytesseract.image_to_data(lowercase_ , lang=lowercase_ , output_type='''dict''' , config=lowercase_ ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates _lowerCamelCase = [idx for idx, word in enumerate(lowercase_ ) if not word.strip()] _lowerCamelCase = [word for idx, word in enumerate(lowercase_ ) if idx not in irrelevant_indices] _lowerCamelCase = [coord for idx, coord in enumerate(lowercase_ ) if idx not in irrelevant_indices] _lowerCamelCase = [coord for idx, coord in enumerate(lowercase_ ) if idx not in irrelevant_indices] _lowerCamelCase = [coord for idx, coord in enumerate(lowercase_ ) if idx not in irrelevant_indices] _lowerCamelCase = [coord for idx, coord in enumerate(lowercase_ ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format _lowerCamelCase = [] for x, y, w, h in zip(lowercase_ , lowercase_ , lowercase_ , lowercase_ ): _lowerCamelCase = [x, y, x + w, y + h] actual_boxes.append(lowercase_ ) # finally, normalize the bounding boxes _lowerCamelCase = [] for box in actual_boxes: normalized_boxes.append(normalize_box(lowercase_ , lowercase_ , lowercase_ ) ) assert len(lowercase_ ) == len(lowercase_ ), "Not as many words as there are bounding boxes" return words, normalized_boxes class lowerCamelCase_( A__ ): '''simple docstring''' lowercase__ : Dict = ['pixel_values'] def __init__( self , lowerCamelCase__ = True , lowerCamelCase__ = None , lowerCamelCase__ = PILImageResampling.BILINEAR , lowerCamelCase__ = True , lowerCamelCase__ = None , lowerCamelCase__ = "" , **lowerCamelCase__ , ): super().__init__(**lowerCamelCase__ ) _lowerCamelCase = size if size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} _lowerCamelCase = get_size_dict(lowerCamelCase__ ) _lowerCamelCase = do_resize _lowerCamelCase = size _lowerCamelCase = resample _lowerCamelCase = apply_ocr _lowerCamelCase = ocr_lang _lowerCamelCase = tesseract_config def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = PILImageResampling.BILINEAR , lowerCamelCase__ = None , **lowerCamelCase__ , ): _lowerCamelCase = get_size_dict(lowerCamelCase__ ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) _lowerCamelCase = (size['''height'''], size['''width''']) return resize(lowerCamelCase__ , size=lowerCamelCase__ , resample=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = ChannelDimension.FIRST , **lowerCamelCase__ , ): _lowerCamelCase = do_resize if do_resize is not None else self.do_resize _lowerCamelCase = size if size is not None else self.size _lowerCamelCase = get_size_dict(lowerCamelCase__ ) _lowerCamelCase = resample if resample is not None else self.resample _lowerCamelCase = apply_ocr if apply_ocr is not None else self.apply_ocr _lowerCamelCase = ocr_lang if ocr_lang is not None else self.ocr_lang _lowerCamelCase = tesseract_config if tesseract_config is not None else self.tesseract_config _lowerCamelCase = make_list_of_images(lowerCamelCase__ ) if not valid_images(lowerCamelCase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) # All transformations expect numpy arrays. _lowerCamelCase = [to_numpy_array(lowerCamelCase__ ) for image in images] if apply_ocr: requires_backends(self , '''pytesseract''' ) _lowerCamelCase = [] _lowerCamelCase = [] for image in images: _lowerCamelCase , _lowerCamelCase = apply_tesseract(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) words_batch.append(lowerCamelCase__ ) boxes_batch.append(lowerCamelCase__ ) if do_resize: _lowerCamelCase = [self.resize(image=lowerCamelCase__ , size=lowerCamelCase__ , resample=lowerCamelCase__ ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) _lowerCamelCase = [flip_channel_order(lowerCamelCase__ ) for image in images] _lowerCamelCase = [to_channel_dimension_format(lowerCamelCase__ , lowerCamelCase__ ) for image in images] _lowerCamelCase = BatchFeature(data={'''pixel_values''': images} , tensor_type=lowerCamelCase__ ) if apply_ocr: _lowerCamelCase = words_batch _lowerCamelCase = boxes_batch return data
661
"""simple docstring""" from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run __SCREAMING_SNAKE_CASE : List[Any] = True except (ImportError, AttributeError): __SCREAMING_SNAKE_CASE : List[Any] = object def lowerCAmelCase_( *lowercase_ : Dict , **lowercase_ : str ) -> str: pass __SCREAMING_SNAKE_CASE : Tuple = False __SCREAMING_SNAKE_CASE : Any = logging.get_logger('''transformers-cli/serving''') def lowerCAmelCase_( lowercase_ : Namespace ) -> List[Any]: _lowerCamelCase = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) return ServeCommand(lowercase_ , args.host , args.port , args.workers ) class lowerCamelCase_( A__ ): '''simple docstring''' lowercase__ : dict class lowerCamelCase_( A__ ): '''simple docstring''' lowercase__ : List[str] lowercase__ : Optional[List[int]] class lowerCamelCase_( A__ ): '''simple docstring''' lowercase__ : str class lowerCamelCase_( A__ ): '''simple docstring''' lowercase__ : Any class lowerCamelCase_( A__ ): '''simple docstring''' @staticmethod def snake_case__ ( lowerCamelCase__ ): _lowerCamelCase = parser.add_parser( '''serve''' , help='''CLI tool to run inference requests through REST and GraphQL endpoints.''' ) serve_parser.add_argument( '''--task''' , type=lowerCamelCase__ , choices=get_supported_tasks() , help='''The task to run the pipeline on''' , ) serve_parser.add_argument('''--host''' , type=lowerCamelCase__ , default='''localhost''' , help='''Interface the server will listen on.''' ) serve_parser.add_argument('''--port''' , type=lowerCamelCase__ , default=8_8_8_8 , help='''Port the serving will listen to.''' ) serve_parser.add_argument('''--workers''' , type=lowerCamelCase__ , default=1 , help='''Number of http workers''' ) serve_parser.add_argument('''--model''' , type=lowerCamelCase__ , help='''Model\'s name or path to stored model.''' ) serve_parser.add_argument('''--config''' , type=lowerCamelCase__ , help='''Model\'s config name or path to stored model.''' ) serve_parser.add_argument('''--tokenizer''' , type=lowerCamelCase__ , help='''Tokenizer name to use.''' ) serve_parser.add_argument( '''--device''' , type=lowerCamelCase__ , default=-1 , help='''Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)''' , ) serve_parser.set_defaults(func=lowerCamelCase__ ) def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): _lowerCamelCase = pipeline _lowerCamelCase = host _lowerCamelCase = port _lowerCamelCase = workers if not _serve_dependencies_installed: raise RuntimeError( '''Using serve command requires FastAPI and uvicorn. ''' '''Please install transformers with [serving]: pip install "transformers[serving]".''' '''Or install FastAPI and uvicorn separately.''' ) else: logger.info(F"""Serving model over {host}:{port}""" ) _lowerCamelCase = FastAPI( routes=[ APIRoute( '''/''' , self.model_info , response_model=lowerCamelCase__ , response_class=lowerCamelCase__ , methods=['''GET'''] , ), APIRoute( '''/tokenize''' , self.tokenize , response_model=lowerCamelCase__ , response_class=lowerCamelCase__ , methods=['''POST'''] , ), APIRoute( '''/detokenize''' , self.detokenize , response_model=lowerCamelCase__ , response_class=lowerCamelCase__ , methods=['''POST'''] , ), APIRoute( '''/forward''' , self.forward , response_model=lowerCamelCase__ , response_class=lowerCamelCase__ , methods=['''POST'''] , ), ] , timeout=6_0_0 , ) def snake_case__ ( self ): run(self._app , host=self.host , port=self.port , workers=self.workers ) def snake_case__ ( self ): return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) ) def snake_case__ ( self , lowerCamelCase__ = Body(lowerCamelCase__ , embed=lowerCamelCase__ ) , lowerCamelCase__ = Body(lowerCamelCase__ , embed=lowerCamelCase__ ) ): try: _lowerCamelCase = self._pipeline.tokenizer.tokenize(lowerCamelCase__ ) if return_ids: _lowerCamelCase = self._pipeline.tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) return ServeTokenizeResult(tokens=lowerCamelCase__ , tokens_ids=lowerCamelCase__ ) else: return ServeTokenizeResult(tokens=lowerCamelCase__ ) except Exception as e: raise HTTPException(status_code=5_0_0 , detail={'''model''': '''''', '''error''': str(lowerCamelCase__ )} ) def snake_case__ ( self , lowerCamelCase__ = Body(lowerCamelCase__ , embed=lowerCamelCase__ ) , lowerCamelCase__ = Body(lowerCamelCase__ , embed=lowerCamelCase__ ) , lowerCamelCase__ = Body(lowerCamelCase__ , embed=lowerCamelCase__ ) , ): try: _lowerCamelCase = self._pipeline.tokenizer.decode(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) return ServeDeTokenizeResult(model='''''' , text=lowerCamelCase__ ) except Exception as e: raise HTTPException(status_code=5_0_0 , detail={'''model''': '''''', '''error''': str(lowerCamelCase__ )} ) async def snake_case__ ( self , lowerCamelCase__=Body(lowerCamelCase__ , embed=lowerCamelCase__ ) ): # Check we don't have empty string if len(lowerCamelCase__ ) == 0: return ServeForwardResult(output=[] , attention=[] ) try: # Forward through the model _lowerCamelCase = self._pipeline(lowerCamelCase__ ) return ServeForwardResult(output=lowerCamelCase__ ) except Exception as e: raise HTTPException(5_0_0 , {'''error''': str(lowerCamelCase__ )} )
661
1
from ..utils import DummyObject, requires_backends class lowercase__( metaclass=UpperCAmelCase ): """simple docstring""" a :str = ['torch', 'transformers', 'onnx'] def __init__( self : List[str] , *SCREAMING_SNAKE_CASE_ : Optional[Any] , **SCREAMING_SNAKE_CASE_ : Any ) -> Optional[Any]: requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def _lowercase ( cls : Union[str, Any] , *SCREAMING_SNAKE_CASE_ : Any , **SCREAMING_SNAKE_CASE_ : List[Any] ) -> Union[str, Any]: requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def _lowercase ( cls : List[str] , *SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> List[Any]: requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class lowercase__( metaclass=UpperCAmelCase ): """simple docstring""" a :Union[str, Any] = ['torch', 'transformers', 'onnx'] def __init__( self : List[str] , *SCREAMING_SNAKE_CASE_ : List[str] , **SCREAMING_SNAKE_CASE_ : Any ) -> List[str]: requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def _lowercase ( cls : Optional[Any] , *SCREAMING_SNAKE_CASE_ : Tuple , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Tuple: requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def _lowercase ( cls : Tuple , *SCREAMING_SNAKE_CASE_ : Dict , **SCREAMING_SNAKE_CASE_ : str ) -> Optional[int]: requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class lowercase__( metaclass=UpperCAmelCase ): """simple docstring""" a :Optional[Any] = ['torch', 'transformers', 'onnx'] def __init__( self : List[Any] , *SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : int ) -> int: requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def _lowercase ( cls : str , *SCREAMING_SNAKE_CASE_ : Optional[int] , **SCREAMING_SNAKE_CASE_ : List[str] ) -> Optional[Any]: requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def _lowercase ( cls : Optional[Any] , *SCREAMING_SNAKE_CASE_ : Union[str, Any] , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Optional[Any]: requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class lowercase__( metaclass=UpperCAmelCase ): """simple docstring""" a :str = ['torch', 'transformers', 'onnx'] def __init__( self : Any , *SCREAMING_SNAKE_CASE_ : int , **SCREAMING_SNAKE_CASE_ : int ) -> Tuple: requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def _lowercase ( cls : Any , *SCREAMING_SNAKE_CASE_ : Union[str, Any] , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> str: requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def _lowercase ( cls : Any , *SCREAMING_SNAKE_CASE_ : Optional[int] , **SCREAMING_SNAKE_CASE_ : str ) -> Any: requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class lowercase__( metaclass=UpperCAmelCase ): """simple docstring""" a :List[Any] = ['torch', 'transformers', 'onnx'] def __init__( self : Any , *SCREAMING_SNAKE_CASE_ : Optional[int] , **SCREAMING_SNAKE_CASE_ : List[str] ) -> Any: requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def _lowercase ( cls : Any , *SCREAMING_SNAKE_CASE_ : Tuple , **SCREAMING_SNAKE_CASE_ : int ) -> str: requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def _lowercase ( cls : List[str] , *SCREAMING_SNAKE_CASE_ : Any , **SCREAMING_SNAKE_CASE_ : List[str] ) -> List[Any]: requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class lowercase__( metaclass=UpperCAmelCase ): """simple docstring""" a :List[str] = ['torch', 'transformers', 'onnx'] def __init__( self : Optional[int] , *SCREAMING_SNAKE_CASE_ : Optional[Any] , **SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> str: requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def _lowercase ( cls : Any , *SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : int ) -> Optional[Any]: requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def _lowercase ( cls : List[str] , *SCREAMING_SNAKE_CASE_ : Optional[int] , **SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Optional[int]: requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
409
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor __a = logging.get_logger(__name__) class lowercase__( UpperCAmelCase ): """simple docstring""" def __init__( self : List[str] , *SCREAMING_SNAKE_CASE_ : Dict , **SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> None: warnings.warn( '''The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use VideoMAEImageProcessor instead.''' , SCREAMING_SNAKE_CASE_ , ) super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
409
1
def lowerCAmelCase__(__snake_case ,__snake_case ) -> None: '''simple docstring''' lowerCamelCase__ = len(__snake_case ) print('''The following activities are selected:''' ) # The first activity is always selected lowerCamelCase__ = 0 print(__snake_case ,end=''',''' ) # Consider rest of the activities for j in range(__snake_case ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(__snake_case ,end=''',''' ) lowerCamelCase__ = j if __name__ == "__main__": import doctest doctest.testmod() _a = [1, 3, 0, 5, 8, 5] _a = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
481
from __future__ import annotations _a = { "A": ["B", "C", "E"], "B": ["A", "D", "E"], "C": ["A", "F", "G"], "D": ["B"], "E": ["A", "B", "D"], "F": ["C"], "G": ["C"], } class __A : '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = graph # mapping node to its parent in resulting breadth first tree lowerCamelCase__ = {} lowerCamelCase__ = source_vertex def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = {self.source_vertex} lowerCamelCase__ = None lowerCamelCase__ = [self.source_vertex] # first in first out queue while queue: lowerCamelCase__ = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(__lowerCAmelCase ) lowerCamelCase__ = vertex queue.append(__lowerCAmelCase ) def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' if target_vertex == self.source_vertex: return self.source_vertex lowerCamelCase__ = self.parent.get(__lowerCAmelCase ) if target_vertex_parent is None: lowerCamelCase__ = ( F'No path from vertex: {self.source_vertex} to vertex: {target_vertex}' ) raise ValueError(__lowerCAmelCase ) return self.shortest_path(__lowerCAmelCase ) + F'->{target_vertex}' if __name__ == "__main__": _a = Graph(graph, "G") g.breath_first_search() print(g.shortest_path("D")) print(g.shortest_path("G")) print(g.shortest_path("Foo"))
481
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __magic_name__( __lowerCAmelCase , unittest.TestCase ): UpperCAmelCase_ : Any = ShapEImgaImgPipeline UpperCAmelCase_ : Any = ["""image"""] UpperCAmelCase_ : Union[str, Any] = ["""image"""] UpperCAmelCase_ : Optional[int] = [ """num_images_per_prompt""", """num_inference_steps""", """generator""", """latents""", """guidance_scale""", """frame_size""", """output_type""", """return_dict""", ] UpperCAmelCase_ : Tuple = False @property def __lowerCAmelCase( self : Union[str, Any] ): '''simple docstring''' return 3_2 @property def __lowerCAmelCase( self : Optional[int] ): '''simple docstring''' return 3_2 @property def __lowerCAmelCase( self : Any ): '''simple docstring''' return self.time_input_dim * 4 @property def __lowerCAmelCase( self : int ): '''simple docstring''' return 8 @property def __lowerCAmelCase( self : Optional[int] ): '''simple docstring''' torch.manual_seed(0 ) snake_case__ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=6_4 , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) snake_case__ = CLIPVisionModel(__UpperCamelCase ) return model @property def __lowerCAmelCase( self : int ): '''simple docstring''' snake_case__ = CLIPImageProcessor( crop_size=2_2_4 , do_center_crop=__UpperCamelCase , do_normalize=__UpperCamelCase , do_resize=__UpperCamelCase , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=2_2_4 , ) return image_processor @property def __lowerCAmelCase( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) snake_case__ = { """num_attention_heads""": 2, """attention_head_dim""": 1_6, """embedding_dim""": self.time_input_dim, """num_embeddings""": 3_2, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """embedding_proj_norm_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } snake_case__ = PriorTransformer(**__UpperCamelCase ) return model @property def __lowerCAmelCase( self : Optional[int] ): '''simple docstring''' torch.manual_seed(0 ) snake_case__ = { """param_shapes""": ( (self.renderer_dim, 9_3), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 1_2, """background""": ( 0.1, 0.1, 0.1, ), } snake_case__ = ShapERenderer(**__UpperCamelCase ) return model def __lowerCAmelCase( self : List[str] ): '''simple docstring''' snake_case__ = self.dummy_prior snake_case__ = self.dummy_image_encoder snake_case__ = self.dummy_image_processor snake_case__ = self.dummy_renderer snake_case__ = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1_0_2_4 , prediction_type="""sample""" , use_karras_sigmas=__UpperCamelCase , clip_sample=__UpperCamelCase , clip_sample_range=1.0 , ) snake_case__ = { """prior""": prior, """image_encoder""": image_encoder, """image_processor""": image_processor, """renderer""": renderer, """scheduler""": scheduler, } return components def __lowerCAmelCase( self : str , __UpperCamelCase : Any , __UpperCamelCase : int=0 ): '''simple docstring''' snake_case__ = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) if str(__UpperCamelCase ).startswith("""mps""" ): snake_case__ = torch.manual_seed(__UpperCamelCase ) else: snake_case__ = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) snake_case__ = { """image""": input_image, """generator""": generator, """num_inference_steps""": 1, """frame_size""": 3_2, """output_type""": """np""", } return inputs def __lowerCAmelCase( self : List[str] ): '''simple docstring''' snake_case__ = """cpu""" snake_case__ = self.get_dummy_components() snake_case__ = self.pipeline_class(**__UpperCamelCase ) snake_case__ = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) snake_case__ = pipe(**self.get_dummy_inputs(__UpperCamelCase ) ) snake_case__ = output.images[0] snake_case__ = image[0, -3:, -3:, -1] assert image.shape == (2_0, 3_2, 3_2, 3) snake_case__ = np.array( [ 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCAmelCase( self : Optional[Any] ): '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __lowerCAmelCase( self : Tuple ): '''simple docstring''' snake_case__ = torch_device == """cpu""" snake_case__ = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=__UpperCamelCase , relax_max_difference=__UpperCamelCase , ) def __lowerCAmelCase( self : List[Any] ): '''simple docstring''' snake_case__ = self.get_dummy_components() snake_case__ = self.pipeline_class(**__UpperCamelCase ) snake_case__ = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) snake_case__ = 1 snake_case__ = 2 snake_case__ = self.get_dummy_inputs(__UpperCamelCase ) for key in inputs.keys(): if key in self.batch_params: snake_case__ = batch_size * [inputs[key]] snake_case__ = pipe(**__UpperCamelCase , num_images_per_prompt=__UpperCamelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __magic_name__( unittest.TestCase ): def __lowerCAmelCase( self : Optional[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase( self : Optional[Any] ): '''simple docstring''' snake_case__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/corgi.png""" ) snake_case__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_img2img_out.npy""" ) snake_case__ = ShapEImgaImgPipeline.from_pretrained("""openai/shap-e-img2img""" ) snake_case__ = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) snake_case__ = torch.Generator(device=__UpperCamelCase ).manual_seed(0 ) snake_case__ = pipe( __UpperCamelCase , generator=__UpperCamelCase , guidance_scale=3.0 , num_inference_steps=6_4 , frame_size=6_4 , output_type="""np""" , ).images[0] assert images.shape == (2_0, 6_4, 6_4, 3) assert_mean_pixel_difference(__UpperCamelCase , __UpperCamelCase )
709
'''simple docstring''' import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin a__ = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class __magic_name__( __lowerCAmelCase , unittest.TestCase ): UpperCAmelCase_ : Tuple = DebertaVaTokenizer UpperCAmelCase_ : Any = DebertaVaTokenizerFast UpperCAmelCase_ : Union[str, Any] = True UpperCAmelCase_ : Tuple = True def __lowerCAmelCase( self : List[str] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing snake_case__ = DebertaVaTokenizer(__UpperCamelCase , unk_token="""<unk>""" ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase( self : Optional[int] , __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case__ = """this is a test""" snake_case__ = """this is a test""" return input_text, output_text def __lowerCAmelCase( self : int ): '''simple docstring''' snake_case__ = """<pad>""" snake_case__ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCamelCase ) , __UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCamelCase ) , __UpperCamelCase ) def __lowerCAmelCase( self : Tuple ): '''simple docstring''' snake_case__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """[PAD]""" ) self.assertEqual(len(__UpperCamelCase ) , 3_0_0_0_1 ) def __lowerCAmelCase( self : Union[str, Any] ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 3_0_0_0_0 ) def __lowerCAmelCase( self : Union[str, Any] ): '''simple docstring''' snake_case__ = """ \tHeLLo!how \n Are yoU? """ snake_case__ = ["""โ–hello""", """!""", """how""", """โ–are""", """โ–you""", """?"""] # fmt: on snake_case__ = DebertaVaTokenizer(__UpperCamelCase , do_lower_case=__UpperCamelCase ) snake_case__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) snake_case__ = DebertaVaTokenizerFast(__UpperCamelCase , do_lower_case=__UpperCamelCase ) snake_case__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def __lowerCAmelCase( self : List[Any] ): '''simple docstring''' pass @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def __lowerCAmelCase( self : Optional[int] ): '''simple docstring''' pass def __lowerCAmelCase( self : Union[str, Any] ): '''simple docstring''' snake_case__ = """I was born in 92000, and this is falsรฉ.""" snake_case__ = ["""โ–""", """<unk>""", """โ–was""", """โ–born""", """โ–in""", """โ–9""", """2000""", """โ–""", """,""", """โ–and""", """โ–this""", """โ–is""", """โ–fal""", """s""", """<unk>""", """โ–""", """.""", ] # fmt: on snake_case__ = DebertaVaTokenizer(__UpperCamelCase , split_by_punct=__UpperCamelCase ) snake_case__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) snake_case__ = DebertaVaTokenizerFast(__UpperCamelCase , split_by_punct=__UpperCamelCase ) snake_case__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) def __lowerCAmelCase( self : List[Any] ): '''simple docstring''' snake_case__ = """I was born in 92000, and this is falsรฉ.""" snake_case__ = ["""โ–i""", """โ–was""", """โ–born""", """โ–in""", """โ–9""", """2000""", """โ–""", """,""", """โ–and""", """โ–this""", """โ–is""", """โ–fal""", """s""", """<unk>""", """โ–""", """.""", ] # fmt: on snake_case__ = DebertaVaTokenizer(__UpperCamelCase , do_lower_case=__UpperCamelCase , split_by_punct=__UpperCamelCase ) snake_case__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) snake_case__ = DebertaVaTokenizerFast(__UpperCamelCase , do_lower_case=__UpperCamelCase , split_by_punct=__UpperCamelCase ) snake_case__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) def __lowerCAmelCase( self : Dict ): '''simple docstring''' snake_case__ = """I was born in 92000, and this is falsรฉ.""" snake_case__ = ["""โ–i""", """โ–was""", """โ–born""", """โ–in""", """โ–9""", """2000""", """,""", """โ–and""", """โ–this""", """โ–is""", """โ–fal""", """s""", """<unk>""", """.""", ] # fmt: on snake_case__ = DebertaVaTokenizer(__UpperCamelCase , do_lower_case=__UpperCamelCase , split_by_punct=__UpperCamelCase ) snake_case__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) snake_case__ = DebertaVaTokenizerFast(__UpperCamelCase , do_lower_case=__UpperCamelCase , split_by_punct=__UpperCamelCase ) snake_case__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) def __lowerCAmelCase( self : int ): '''simple docstring''' snake_case__ = """I was born in 92000, and this is falsรฉ.""" snake_case__ = ["""โ–""", """<unk>""", """โ–was""", """โ–born""", """โ–in""", """โ–9""", """2000""", """โ–""", """,""", """โ–and""", """โ–this""", """โ–is""", """โ–fal""", """s""", """<unk>""", """โ–""", """.""", ] # fmt: on snake_case__ = DebertaVaTokenizer(__UpperCamelCase , do_lower_case=__UpperCamelCase , split_by_punct=__UpperCamelCase ) snake_case__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) snake_case__ = DebertaVaTokenizerFast(__UpperCamelCase , do_lower_case=__UpperCamelCase , split_by_punct=__UpperCamelCase ) snake_case__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) def __lowerCAmelCase( self : Dict ): '''simple docstring''' snake_case__ = """ \tHeLLo!how \n Are yoU? """ snake_case__ = ["""โ–""", """<unk>""", """e""", """<unk>""", """o""", """!""", """how""", """โ–""", """<unk>""", """re""", """โ–yo""", """<unk>""", """?"""] # fmt: on snake_case__ = DebertaVaTokenizer(__UpperCamelCase , do_lower_case=__UpperCamelCase , split_by_punct=__UpperCamelCase ) snake_case__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) snake_case__ = DebertaVaTokenizerFast(__UpperCamelCase , do_lower_case=__UpperCamelCase , split_by_punct=__UpperCamelCase ) snake_case__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) def __lowerCAmelCase( self : Optional[int] ): '''simple docstring''' snake_case__ = self.get_tokenizer() snake_case__ = self.get_rust_tokenizer() snake_case__ = """I was born in 92000, and this is falsรฉ.""" snake_case__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) ) snake_case__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) snake_case__ = tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) snake_case__ = rust_tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) snake_case__ = self.get_rust_tokenizer() snake_case__ = tokenizer.encode(__UpperCamelCase ) snake_case__ = rust_tokenizer.encode(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) def __lowerCAmelCase( self : Optional[int] ): '''simple docstring''' snake_case__ = """This is a test""" snake_case__ = [1_3, 1, 4_3_9_8, 2_5, 2_1, 1_2_8_9] snake_case__ = ["""โ–""", """T""", """his""", """โ–is""", """โ–a""", """โ–test"""] snake_case__ = ["""โ–""", """<unk>""", """his""", """โ–is""", """โ–a""", """โ–test"""] snake_case__ = DebertaVaTokenizer(__UpperCamelCase , keep_accents=__UpperCamelCase ) snake_case__ = DebertaVaTokenizerFast(__UpperCamelCase , keep_accents=__UpperCamelCase ) snake_case__ = tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) snake_case__ = tokenizer.tokenize(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) snake_case__ = tokenizer.convert_ids_to_tokens(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) snake_case__ = rust_tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) snake_case__ = rust_tokenizer.tokenize(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) snake_case__ = rust_tokenizer.convert_ids_to_tokens(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) # fmt: off snake_case__ = """I was born in 92000, and this is falsรฉ.""" snake_case__ = [1_3, 1, 2_3, 3_8_6, 1_9, 5_6_1, 3_0_5_0, 1_5, 1_7, 4_8, 2_5, 8_2_5_6, 1_8, 1, 9] snake_case__ = ["""โ–""", """I""", """โ–was""", """โ–born""", """โ–in""", """โ–9""", """2000""", """,""", """โ–and""", """โ–this""", """โ–is""", """โ–fal""", """s""", """รฉ""", """.""", ] snake_case__ = ["""โ–""", """<unk>""", """โ–was""", """โ–born""", """โ–in""", """โ–9""", """2000""", """,""", """โ–and""", """โ–this""", """โ–is""", """โ–fal""", """s""", """<unk>""", """.""", ] # fmt: on snake_case__ = tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) snake_case__ = tokenizer.tokenize(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) snake_case__ = tokenizer.convert_ids_to_tokens(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) snake_case__ = rust_tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) snake_case__ = rust_tokenizer.tokenize(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) snake_case__ = rust_tokenizer.convert_ids_to_tokens(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) def __lowerCAmelCase( self : Tuple ): '''simple docstring''' snake_case__ = DebertaVaTokenizer(__UpperCamelCase ) snake_case__ = tokenizer.encode("""sequence builders""" ) snake_case__ = tokenizer.encode("""multi-sequence build""" ) snake_case__ = tokenizer.build_inputs_with_special_tokens(__UpperCamelCase ) snake_case__ = tokenizer.build_inputs_with_special_tokens(__UpperCamelCase , __UpperCamelCase ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , __UpperCamelCase ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , __UpperCamelCase , ) @slow def __lowerCAmelCase( self : Dict ): '''simple docstring''' snake_case__ = {"""input_ids""": [[1, 3_9_8_6_7, 3_6, 1_9_3_9_0, 4_8_6, 2_7, 3_5_0_5_2, 8_1_4_3_6, 1_8, 6_0_6_8_5, 1_2_2_5, 7, 3_5_0_5_2, 8_1_4_3_6, 1_8, 9_3_6_7, 1_6_8_9_9, 1_8, 1_5_9_3_7, 5_3, 5_9_4, 7_7_3, 1_8, 1_6_2_8_7, 3_0_4_6_5, 3_6, 1_5_9_3_7, 6, 4_1_1_3_9, 3_8, 3_6_9_7_9, 6_0_7_6_3, 1_9_1, 6, 3_4_1_3_2, 9_9, 6, 5_0_5_3_8, 3_9_0, 4_3_2_3_0, 6, 3_4_1_3_2, 2_7_7_9, 2_0_8_5_0, 1_4, 6_9_9, 1_0_7_2, 1_1_9_4, 3_6, 3_8_2, 1_0_9_0_1, 5_3, 7, 6_9_9, 1_0_7_2, 2_0_8_4, 3_6, 2_0_4_2_2, 6_3_0, 5_3, 1_9, 1_0_5, 3_0_4_9, 1_8_9_6, 1_0_5_3, 1_6_8_9_9, 1_5_0_6, 1_1, 3_7_9_7_8, 4_2_4_3, 7, 1_2_3_7, 3_1_8_6_9, 2_0_0, 1_6_5_6_6, 6_5_4, 6, 3_5_0_5_2, 8_1_4_3_6, 7, 5_5_6_3_0, 1_3_5_9_3, 4, 2], [1, 2_6, 1_5_0_1_1, 1_3, 6_6_7, 8, 1_0_5_3, 1_8, 2_3_6_1_1, 1_2_3_7, 7_2_3_5_6, 1_2_8_2_0, 3_4, 1_0_4_1_3_4, 1_2_0_9, 3_5, 1_3_3_1_3, 6_6_2_7, 2_1, 2_0_2, 3_4_7, 7, 1_6_4, 2_3_9_9, 1_1, 4_6, 4_4_8_5, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1_2_3_2, 2_8_6_4, 1_5_7_8_5, 1_4_9_5_1, 1_0_5, 5, 8_5_8_1, 1_2_5_0, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCamelCase , model_name="""microsoft/deberta-v2-xlarge""" , revision="""ad6e42c1532ddf3a15c39246b63f5559d558b670""" , )
566
0
import doctest from collections import deque import numpy as np class __snake_case : def __init__( self : List[str] ) -> Optional[Any]: '''simple docstring''' _lowerCAmelCase : List[Any] = [2, 1, 2, -1] _lowerCAmelCase : List[str] = [1, 2, 3, 4] def SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: '''simple docstring''' _lowerCAmelCase : List[str] = len(self.first_signal ) _lowerCAmelCase : int = len(self.second_signal ) _lowerCAmelCase : Optional[int] = max(lowercase__ , lowercase__ ) # create a zero matrix of max_length x max_length _lowerCAmelCase : Optional[int] = [[0] * max_length for i in range(lowercase__ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(lowercase__ ): _lowerCAmelCase : Any = deque(self.second_signal ) rotated_signal.rotate(lowercase__ ) for j, item in enumerate(lowercase__ ): matrix[i][j] += item # multiply the matrix with the first signal _lowerCAmelCase : int = np.matmul(np.transpose(lowercase__ ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(lowercase__ , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
429
from __future__ import annotations import requests lowerCAmelCase = set( """approved_at_utc approved_by author_flair_background_color author_flair_css_class author_flair_richtext author_flair_template_id author_fullname author_premium can_mod_post category clicked content_categories created_utc downs edited gilded gildings hidden hide_score is_created_from_ads_ui is_meta is_original_content is_reddit_media_domain is_video link_flair_css_class link_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title name permalink pwls quarantine saved score secure_media secure_media_embed selftext subreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type total_awards_received ups upvote_ratio url user_reports""".split() ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ = 1 , lowercase_ = "new" , lowercase_ = None ) -> dict: '''simple docstring''' __UpperCAmelCase : Tuple = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(lowercase_ ) - valid_terms ) ): __UpperCAmelCase : List[Any] = f"Invalid search term: {invalid_search_terms}" raise ValueError(lowercase_ ) __UpperCAmelCase : Optional[int] = requests.get( f"https://reddit.com/r/{subreddit}/{age}.json?limit={limit}" , headers={'''User-agent''': '''A random string'''} , ) if response.status_code == 429: raise requests.HTTPError __UpperCAmelCase : List[str] = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(lowercase_ )} __UpperCAmelCase : List[Any] = {} for id_ in range(lowercase_ ): __UpperCAmelCase : str = { item: data['''data''']['''children'''][id_]['''data'''][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data("""learnpython""", wanted_data=["""title""", """url""", """selftext"""]))
462
0
import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("Googling.....") SCREAMING_SNAKE_CASE : Optional[int] = "https://www.google.com/search?q=" + " ".join(sys.argv[1:]) SCREAMING_SNAKE_CASE : Dict = requests.get(url, headers={"UserAgent": UserAgent().random}) # res.raise_for_status() with open("project1a.html", "wb") as out_file: # only for knowing the class for data in res.iter_content(10000): out_file.write(data) SCREAMING_SNAKE_CASE : List[Any] = BeautifulSoup(res.text, "html.parser") SCREAMING_SNAKE_CASE : Dict = list(soup.select(".eZt8xd"))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("href")) else: webbrowser.open(F"https://google.com{link.get('href')}")
354
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class _lowerCamelCase( _a ): lowercase_ : List[Any] = (DPMSolverSinglestepScheduler,) lowercase_ : List[str] = (("""num_inference_steps""", 25),) def UpperCamelCase ( self, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" _lowercase : Optional[Any] = { 'num_train_timesteps': 10_00, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', 'solver_order': 2, 'prediction_type': 'epsilon', 'thresholding': False, 'sample_max_value': 1.0, 'algorithm_type': 'dpmsolver++', 'solver_type': 'midpoint', 'lambda_min_clipped': -float('inf'), 'variance_type': None, } config.update(**lowerCamelCase) return config def UpperCamelCase ( self, lowerCamelCase=0, **lowerCamelCase) -> Any: """simple docstring""" _lowercase : Dict = dict(self.forward_default_kwargs) _lowercase : Union[str, Any] = kwargs.pop('num_inference_steps', lowerCamelCase) _lowercase : Optional[int] = self.dummy_sample _lowercase : Optional[int] = 0.1 * sample _lowercase : Optional[int] = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: _lowercase : Any = self.get_scheduler_config(**lowerCamelCase) _lowercase : List[Any] = scheduler_class(**lowerCamelCase) scheduler.set_timesteps(lowerCamelCase) # copy over dummy past residuals _lowercase : List[str] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase) _lowercase : Optional[Any] = scheduler_class.from_pretrained(lowerCamelCase) new_scheduler.set_timesteps(lowerCamelCase) # copy over dummy past residuals _lowercase : List[Any] = dummy_past_residuals[: new_scheduler.config.solver_order] _lowercase , _lowercase : List[Any] = sample, sample for t in range(lowerCamelCase, time_step + scheduler.config.solver_order + 1): _lowercase : Dict = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase).prev_sample _lowercase : int = new_scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" pass def UpperCamelCase ( self, lowerCamelCase=0, **lowerCamelCase) -> str: """simple docstring""" _lowercase : Optional[int] = dict(self.forward_default_kwargs) _lowercase : List[str] = kwargs.pop('num_inference_steps', lowerCamelCase) _lowercase : List[str] = self.dummy_sample _lowercase : str = 0.1 * sample _lowercase : Optional[Any] = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: _lowercase : Any = self.get_scheduler_config() _lowercase : List[str] = scheduler_class(**lowerCamelCase) scheduler.set_timesteps(lowerCamelCase) # copy over dummy past residuals (must be after setting timesteps) _lowercase : List[str] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase) _lowercase : List[Any] = scheduler_class.from_pretrained(lowerCamelCase) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCamelCase) # copy over dummy past residual (must be after setting timesteps) _lowercase : List[str] = dummy_past_residuals[: new_scheduler.config.solver_order] _lowercase : Optional[int] = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase).prev_sample _lowercase : List[Any] = new_scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase ( self, lowerCamelCase=None, **lowerCamelCase) -> Optional[Any]: """simple docstring""" if scheduler is None: _lowercase : str = self.scheduler_classes[0] _lowercase : int = self.get_scheduler_config(**lowerCamelCase) _lowercase : Optional[Any] = scheduler_class(**lowerCamelCase) _lowercase : List[Any] = self.scheduler_classes[0] _lowercase : Optional[int] = self.get_scheduler_config(**lowerCamelCase) _lowercase : Optional[Any] = scheduler_class(**lowerCamelCase) _lowercase : List[Any] = 10 _lowercase : List[str] = self.dummy_model() _lowercase : Dict = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase) for i, t in enumerate(scheduler.timesteps): _lowercase : Optional[int] = model(lowerCamelCase, lowerCamelCase) _lowercase : Optional[int] = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase).prev_sample return sample def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Dict = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) _lowercase : Optional[int] = 50 _lowercase : Union[str, Any] = self.dummy_model() _lowercase : Tuple = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:]): _lowercase : Optional[Any] = model(lowerCamelCase, lowerCamelCase) _lowercase : int = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase).prev_sample _lowercase : Optional[int] = torch.mean(torch.abs(lowerCamelCase)) assert abs(result_mean.item() - 0.2_5_7_4) < 1E-3 def UpperCamelCase ( self) -> Tuple: """simple docstring""" for timesteps in [25, 50, 1_00, 9_99, 10_00]: self.check_over_configs(num_train_timesteps=lowerCamelCase) def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : List[str] = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) _lowercase : List[str] = self.full_loop(scheduler=lowerCamelCase) _lowercase : str = torch.mean(torch.abs(lowerCamelCase)) assert abs(result_mean.item() - 0.2_7_9_1) < 1E-3 _lowercase : str = DEISMultistepScheduler.from_config(scheduler.config) _lowercase : List[str] = DPMSolverMultistepScheduler.from_config(scheduler.config) _lowercase : Tuple = UniPCMultistepScheduler.from_config(scheduler.config) _lowercase : Any = DPMSolverSinglestepScheduler.from_config(scheduler.config) _lowercase : Any = self.full_loop(scheduler=lowerCamelCase) _lowercase : Optional[int] = torch.mean(torch.abs(lowerCamelCase)) assert abs(result_mean.item() - 0.2_7_9_1) < 1E-3 def UpperCamelCase ( self) -> List[str]: """simple docstring""" self.check_over_configs(thresholding=lowerCamelCase) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=lowerCamelCase, prediction_type=lowerCamelCase, sample_max_value=lowerCamelCase, algorithm_type='dpmsolver++', solver_order=lowerCamelCase, solver_type=lowerCamelCase, ) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase) def UpperCamelCase ( self) -> List[Any]: """simple docstring""" for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=lowerCamelCase, solver_type=lowerCamelCase, prediction_type=lowerCamelCase, algorithm_type=lowerCamelCase, ) _lowercase : Optional[Any] = self.full_loop( solver_order=lowerCamelCase, solver_type=lowerCamelCase, prediction_type=lowerCamelCase, algorithm_type=lowerCamelCase, ) assert not torch.isnan(lowerCamelCase).any(), "Samples have nan numbers" def UpperCamelCase ( self) -> str: """simple docstring""" self.check_over_configs(lower_order_final=lowerCamelCase) self.check_over_configs(lower_order_final=lowerCamelCase) def UpperCamelCase ( self) -> List[str]: """simple docstring""" self.check_over_configs(lambda_min_clipped=-float('inf')) self.check_over_configs(lambda_min_clipped=-5.1) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" self.check_over_configs(variance_type=lowerCamelCase) self.check_over_configs(variance_type='learned_range') def UpperCamelCase ( self) -> Dict: """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 10, 50, 1_00, 9_99, 10_00]: self.check_over_forward(num_inference_steps=lowerCamelCase, time_step=0) def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : int = self.full_loop() _lowercase : Union[str, Any] = torch.mean(torch.abs(lowerCamelCase)) assert abs(result_mean.item() - 0.2_7_9_1) < 1E-3 def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : Tuple = self.full_loop(use_karras_sigmas=lowerCamelCase) _lowercase : List[str] = torch.mean(torch.abs(lowerCamelCase)) assert abs(result_mean.item() - 0.2_2_4_8) < 1E-3 def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Tuple = self.full_loop(prediction_type='v_prediction') _lowercase : str = torch.mean(torch.abs(lowerCamelCase)) assert abs(result_mean.item() - 0.1_4_5_3) < 1E-3 def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Tuple = self.full_loop(prediction_type='v_prediction', use_karras_sigmas=lowerCamelCase) _lowercase : str = torch.mean(torch.abs(lowerCamelCase)) assert abs(result_mean.item() - 0.0_6_4_9) < 1E-3 def UpperCamelCase ( self) -> Dict: """simple docstring""" _lowercase : List[Any] = self.scheduler_classes[0] _lowercase : Optional[int] = self.get_scheduler_config(thresholding=lowerCamelCase, dynamic_thresholding_ratio=0) _lowercase : Any = scheduler_class(**lowerCamelCase) _lowercase : str = 10 _lowercase : List[str] = self.dummy_model() _lowercase : Tuple = self.dummy_sample_deter.half() scheduler.set_timesteps(lowerCamelCase) for i, t in enumerate(scheduler.timesteps): _lowercase : Tuple = model(lowerCamelCase, lowerCamelCase) _lowercase : Dict = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase).prev_sample assert sample.dtype == torch.floataa
354
1
import os import re import shutil import sys import tempfile import unittest import black _UpperCamelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. _UpperCamelCase = """ def __init__(self, config): super().__init__() self.transform = BertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states """ class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' __snake_case : Optional[Any] = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , "models/bert/" ) ) __snake_case : List[Any] = self.transformer_dir shutil.copy( os.path.join(UpperCamelCase__ , "src/transformers/models/bert/modeling_bert.py" ) , os.path.join(self.transformer_dir , "models/bert/modeling_bert.py" ) , ) def UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' __snake_case : Union[str, Any] = "src/transformers" shutil.rmtree(self.transformer_dir ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None ) -> Any: '''simple docstring''' __snake_case : Any = comment + F"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: __snake_case : List[str] = comment + F"""\nclass {class_name}(nn.Module):\n""" + overwrite_result __snake_case : List[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) __snake_case : Tuple = black.format_str(UpperCamelCase__ , mode=UpperCamelCase__ ) __snake_case : List[Any] = os.path.join(self.transformer_dir , "new_code.py" ) with open(UpperCamelCase__ , "w" , newline="\n" ) as f: f.write(UpperCamelCase__ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(UpperCamelCase__ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=UpperCamelCase__ ) with open(UpperCamelCase__ , "r" ) as f: self.assertTrue(f.read() , UpperCamelCase__ ) def UpperCAmelCase ( self ) -> str: '''simple docstring''' __snake_case : Any = check_copies.find_code_in_transformers("models.bert.modeling_bert.BertLMPredictionHead" ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) def UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead" , "BertLMPredictionHead" , REFERENCE_CODE + "\n" , ) # With no empty line at the end self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead" , "BertLMPredictionHead" , UpperCamelCase__ , ) # Copy consistency with rename self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel" , "TestModelLMPredictionHead" , re.sub("Bert" , "TestModel" , UpperCamelCase__ ) , ) # Copy consistency with a really long name __snake_case : List[Any] = "TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( F"""# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}""" , F"""{long_class_name}LMPredictionHead""" , re.sub("Bert" , UpperCamelCase__ , UpperCamelCase__ ) , ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel" , "TestModelLMPredictionHead" , UpperCamelCase__ , overwrite_result=re.sub("Bert" , "TestModel" , UpperCamelCase__ ) , ) def UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' __snake_case : str = check_copies.LOCALIZED_READMES["README_zh-hans.md"] __snake_case : Optional[int] = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the" " Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for" " Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong" " Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1." " **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace)," " released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and" " lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same" " method has been applied to compress GPT2 into" " [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into" " [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation)," " Multilingual BERT into" " [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German" " version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**" " (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders" " as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang" " Luong, Quoc V. Le, Christopher D. Manning." ) __snake_case : Union[str, Any] = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (ๆฅ่‡ช Google Research and the" " Toyota Technological Institute at Chicago) ไผด้š่ฎบๆ–‡ [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), ็”ฑ Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut ๅ‘ๅธƒใ€‚\n" ) __snake_case : str = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (ๆฅ่‡ช Google Research and the" " Toyota Technological Institute at Chicago) ไผด้š่ฎบๆ–‡ [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), ็”ฑ Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut ๅ‘ๅธƒใ€‚\n1." " **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (ๆฅ่‡ช HuggingFace) ไผด้š่ฎบๆ–‡" " [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and" " lighter](https://arxiv.org/abs/1910.01108) ็”ฑ Victor Sanh, Lysandre Debut and Thomas Wolf ๅ‘ๅธƒใ€‚ The same" " method has been applied to compress GPT2 into" " [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into" " [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation)," " Multilingual BERT into" " [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German" " version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (ๆฅ่‡ช" " Google Research/Stanford University) ไผด้š่ฎบๆ–‡ [ELECTRA: Pre-training text encoders as discriminators rather" " than generators](https://arxiv.org/abs/2003.10555) ็”ฑ Kevin Clark, Minh-Thang Luong, Quoc V. Le," " Christopher D. Manning ๅ‘ๅธƒใ€‚\n" ) __snake_case , __snake_case : Union[str, Any] = check_copies.convert_to_localized_md( UpperCamelCase__ , UpperCamelCase__ , localized_readme["format_model_list"] ) self.assertFalse(UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) __snake_case , __snake_case : Union[str, Any] = check_copies.convert_to_localized_md( UpperCamelCase__ , UpperCamelCase__ , localized_readme["format_model_list"] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(UpperCamelCase__ ) __snake_case : Optional[Any] = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the" " Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for" " Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong" " Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut." ) __snake_case : Tuple = ( "1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (ๆฅ่‡ช Google Research and" " the Toyota Technological Institute at Chicago) ไผด้š่ฎบๆ–‡ [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), ็”ฑ Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut ๅ‘ๅธƒใ€‚\n" ) __snake_case : Tuple = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (ๆฅ่‡ช Google Research and the" " Toyota Technological Institute at Chicago) ไผด้š่ฎบๆ–‡ [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), ็”ฑ Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut ๅ‘ๅธƒใ€‚\n" ) __snake_case , __snake_case : Union[str, Any] = check_copies.convert_to_localized_md( UpperCamelCase__ , UpperCamelCase__ , localized_readme["format_model_list"] ) # Check if the model link is synchronized. self.assertEqual(UpperCamelCase__ , UpperCamelCase__ )
243
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase : int = 6_0_0_8_5_1_4_7_5_1_4_3 ): try: lowerCamelCase_ = int(_lowerCamelCase ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) lowerCamelCase_ = 1 lowerCamelCase_ = 2 while i * i <= n: while n % i == 0: lowerCamelCase_ = i n //= i i += 1 if n > 1: lowerCamelCase_ = n return int(_lowerCamelCase ) if __name__ == "__main__": print(f'''{solution() = }''')
142
0
'''simple docstring''' import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def _lowercase ( lowerCamelCase__ : int ): assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def _lowercase ( ): assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def _lowercase ( ): _a = "mock-s3-bucket" _a = F'''s3://{mock_bucket}''' _a = extract_path_from_uri(lowerCamelCase__ ) assert dataset_path.startswith("s3://" ) is False _a = "./local/path" _a = extract_path_from_uri(lowerCamelCase__ ) assert dataset_path == new_dataset_path def _lowercase ( lowerCamelCase__ : List[Any] ): _a = is_remote_filesystem(lowerCamelCase__ ) assert is_remote is True _a = fsspec.filesystem("file" ) _a = is_remote_filesystem(lowerCamelCase__ ) assert is_remote is False @pytest.mark.parametrize("compression_fs_class", lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : str, lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : Dict, lowerCamelCase__ : int, lowerCamelCase__ : int, lowerCamelCase__ : List[Any], lowerCamelCase__ : Optional[int] ): _a = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_file, "bz2": bza_file, "lz4": lza_file} _a = input_paths[compression_fs_class.protocol] if input_path is None: _a = F'''for \'{compression_fs_class.protocol}\' compression protocol, ''' if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(lowerCamelCase__ ) _a = fsspec.filesystem(compression_fs_class.protocol, fo=lowerCamelCase__ ) assert isinstance(lowerCamelCase__, lowerCamelCase__ ) _a = os.path.basename(lowerCamelCase__ ) _a = expected_filename[: expected_filename.rindex("." )] assert fs.glob("*" ) == [expected_filename] with fs.open(lowerCamelCase__, "r", encoding="utf-8" ) as f, open(lowerCamelCase__, encoding="utf-8" ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize("protocol", ["zip", "gzip"] ) def _lowercase ( lowerCamelCase__ : List[str], lowerCamelCase__ : int, lowerCamelCase__ : str ): _a = {"zip": zip_jsonl_path, "gzip": jsonl_gz_path} _a = compressed_file_paths[protocol] _a = "dataset.jsonl" _a = F'''{protocol}://{member_file_path}::{compressed_file_path}''' _a , *_a = fsspec.get_fs_token_paths(lowerCamelCase__ ) assert fs.isfile(lowerCamelCase__ ) assert not fs.isfile("non_existing_" + member_file_path ) @pytest.mark.integration def _lowercase ( lowerCamelCase__ : Optional[Any], lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : Optional[int], lowerCamelCase__ : List[Any] ): _a = hf_api.dataset_info(lowerCamelCase__, token=lowerCamelCase__ ) _a = HfFileSystem(repo_info=lowerCamelCase__, token=lowerCamelCase__ ) assert sorted(hffs.glob("*" ) ) == [".gitattributes", "data"] assert hffs.isdir("data" ) assert hffs.isfile(".gitattributes" ) and hffs.isfile("data/text_data.txt" ) with open(lowerCamelCase__ ) as f: assert hffs.open("data/text_data.txt", "r" ).read() == f.read() def _lowercase ( ): _a = "bz2" # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(lowerCamelCase__, lowerCamelCase__, clobber=lowerCamelCase__ ) with pytest.warns(lowerCamelCase__ ) as warning_info: importlib.reload(datasets.filesystems ) assert len(lowerCamelCase__ ) == 1 assert ( str(warning_info[0].message ) == F'''A filesystem protocol was already set for {protocol} and will be overwritten.''' )
691
'''simple docstring''' import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) __snake_case : Tuple = "\\n Text data.\n Second line of data." __snake_case : int = "file" @pytest.fixture(scope="session" ) def _lowercase ( lowerCamelCase__ : Optional[Any] ): _a = tmp_path_factory.mktemp("data" ) / (FILE_PATH + ".zstd") _a = bytes(lowerCamelCase__, "utf-8" ) with zstd.open(lowerCamelCase__, "wb" ) as f: f.write(lowerCamelCase__ ) return path @pytest.fixture def _lowercase ( lowerCamelCase__ : int ): with open(os.path.join(tmpfs.local_root_dir, lowerCamelCase__ ), "w" ) as f: f.write(lowerCamelCase__ ) return FILE_PATH @pytest.mark.parametrize("compression_format", ["gzip", "xz", "zstd"] ) def _lowercase ( lowerCamelCase__ : str, lowerCamelCase__ : Optional[int], lowerCamelCase__ : Optional[int], lowerCamelCase__ : List[str], lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : Dict ): _a = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_path} _a = input_paths[compression_format] _a = tmp_path / "cache" _a = DownloadConfig(cache_dir=lowerCamelCase__, extract_compressed_file=lowerCamelCase__ ) _a = cached_path(lowerCamelCase__, download_config=lowerCamelCase__ ) with open(lowerCamelCase__ ) as f: _a = f.read() with open(lowerCamelCase__ ) as f: _a = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("default_extracted", [True, False] ) @pytest.mark.parametrize("default_cache_dir", [True, False] ) def _lowercase ( lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : List[Any], lowerCamelCase__ : List[str], lowerCamelCase__ : List[str], lowerCamelCase__ : List[str] ): _a = "custom_cache" _a = "custom_extracted_dir" _a = tmp_path / "custom_extracted_path" if default_extracted: _a = ("downloads" if default_cache_dir else custom_cache_dir, "extracted") else: monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_DIR", lowerCamelCase__ ) monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH", str(lowerCamelCase__ ) ) _a = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) _a = xz_file _a = ( DownloadConfig(extract_compressed_file=lowerCamelCase__ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir, extract_compressed_file=lowerCamelCase__ ) ) _a = cached_path(lowerCamelCase__, download_config=lowerCamelCase__ ) assert Path(lowerCamelCase__ ).parent.parts[-2:] == expected def _lowercase ( lowerCamelCase__ : Union[str, Any] ): # absolute path _a = str(Path(lowerCamelCase__ ).resolve() ) assert cached_path(lowerCamelCase__ ) == text_file # relative path _a = str(Path(lowerCamelCase__ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(lowerCamelCase__ ) == text_file def _lowercase ( lowerCamelCase__ : Dict ): # absolute path _a = str(tmp_path.resolve() / "__missing_file__.txt" ) with pytest.raises(lowerCamelCase__ ): cached_path(lowerCamelCase__ ) # relative path _a = "./__missing_file__.txt" with pytest.raises(lowerCamelCase__ ): cached_path(lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Union[str, Any] ): _a = get_from_cache(F'''tmp://{tmpfs_file}''' ) with open(lowerCamelCase__ ) as f: _a = f.read() assert output_file_content == FILE_CONTENT @patch("datasets.config.HF_DATASETS_OFFLINE", lowerCamelCase__ ) def _lowercase ( ): with pytest.raises(lowerCamelCase__ ): cached_path("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE", lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Union[str, Any] ): _a = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(lowerCamelCase__ ): http_get("https://huggingface.co", temp_file=lowerCamelCase__ ) with pytest.raises(lowerCamelCase__ ): http_head("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE", lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Union[str, Any] ): _a = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(lowerCamelCase__ ): ftp_get("ftp://huggingface.co", temp_file=lowerCamelCase__ ) with pytest.raises(lowerCamelCase__ ): ftp_head("ftp://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE", lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Optional[Any] ): _a = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(lowerCamelCase__ ): fsspec_get("s3://huggingface.co", temp_file=lowerCamelCase__ ) with pytest.raises(lowerCamelCase__ ): fsspec_head("s3://huggingface.co" )
691
1
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = { "configuration_mctct": ["MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MCTCTConfig"], "feature_extraction_mctct": ["MCTCTFeatureExtractor"], "processing_mctct": ["MCTCTProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ "MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST", "MCTCTForCTC", "MCTCTModel", "MCTCTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
18
def lowerCamelCase_ ( UpperCAmelCase__ ): """simple docstring""" a_ = int(UpperCAmelCase__ ) if n_element < 1: a_ = ValueError("""a should be a positive number""" ) raise my_error a_ = [1] a_ , a_ , a_ = (0, 0, 0) a_ = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": A_ : int =input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") A_ : Any =hamming(int(n)) print("""-----------------------------------------------------""") print(F'''The list with nth numbers is: {hamming_numbers}''') print("""-----------------------------------------------------""")
483
0
'''simple docstring''' from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo SCREAMING_SNAKE_CASE_: List[str] ='\\n@misc{wu2016googles,\n title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and ลukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n' SCREAMING_SNAKE_CASE_: Dict ='\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe \'GLEU score\'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore\'s range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n' SCREAMING_SNAKE_CASE_: Any ='\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n \'google_bleu\': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): def _lowercase (self : List[Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , ) def _lowercase (self : Optional[int] , __a : List[List[List[str]]] , __a : List[List[str]] , __a : int = 1 , __a : int = 4 , ): return { "google_bleu": gleu_score.corpus_gleu( list_of_references=__a , hypotheses=__a , min_len=__a , max_len=__a ) }
713
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): SCREAMING_SNAKE_CASE_: Dict ='pt' elif is_tf_available(): SCREAMING_SNAKE_CASE_: str ='tf' else: SCREAMING_SNAKE_CASE_: str ='jax' class __A ( UpperCamelCase__ , unittest.TestCase ): a__ : Optional[Any] = PerceiverTokenizer a__ : Union[str, Any] = False def _lowercase (self : int ): super().setUp() UpperCAmelCase_ = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowercase (self : Dict ): return PerceiverTokenizer.from_pretrained("deepmind/language-perceiver" ) def _lowercase (self : List[str] , **__a : Dict ): return self.tokenizer_class.from_pretrained(self.tmpdirname , **__a ) def _lowercase (self : str , __a : Dict , __a : Dict=False , __a : List[str]=20 , __a : Optional[int]=5 ): # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. UpperCAmelCase_ = [] for i in range(len(__a ) ): try: UpperCAmelCase_ = tokenizer.decode([i] , clean_up_tokenization_spaces=__a ) except UnicodeDecodeError: pass toks.append((i, tok) ) UpperCAmelCase_ = list(filter(lambda __a : re.match(r"^[ a-zA-Z]+$" , t[1] ) , __a ) ) UpperCAmelCase_ = list(filter(lambda __a : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=__a ) , __a ) ) if max_length is not None and len(__a ) > max_length: UpperCAmelCase_ = toks[:max_length] if min_length is not None and len(__a ) < min_length and len(__a ) > 0: while len(__a ) < min_length: UpperCAmelCase_ = toks + toks # toks_str = [t[1] for t in toks] UpperCAmelCase_ = [t[0] for t in toks] # Ensure consistency UpperCAmelCase_ = tokenizer.decode(__a , clean_up_tokenization_spaces=__a ) if " " not in output_txt and len(__a ) > 1: UpperCAmelCase_ = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=__a ) + " " + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=__a ) ) if with_prefix_space: UpperCAmelCase_ = " " + output_txt UpperCAmelCase_ = tokenizer.encode(__a , add_special_tokens=__a ) return output_txt, output_ids def _lowercase (self : Dict ): UpperCAmelCase_ = self.perceiver_tokenizer UpperCAmelCase_ = "Unicode โ‚ฌ." UpperCAmelCase_ = tokenizer(__a ) UpperCAmelCase_ = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded["input_ids"] , __a ) # decoding UpperCAmelCase_ = tokenizer.decode(__a ) self.assertEqual(__a , "[CLS]Unicode โ‚ฌ.[SEP]" ) UpperCAmelCase_ = tokenizer("e รจ รฉ รช รซ" ) UpperCAmelCase_ = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded["input_ids"] , __a ) # decoding UpperCAmelCase_ = tokenizer.decode(__a ) self.assertEqual(__a , "[CLS]e รจ รฉ รช รซ[SEP]" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("e รจ รฉ รช รซ" ) ) , "[CLS]e รจ รฉ รช รซ[SEP]" ) def _lowercase (self : Union[str, Any] ): UpperCAmelCase_ = self.perceiver_tokenizer UpperCAmelCase_ = ["A long paragraph for summarization.", "Another paragraph for summarization."] # fmt: off UpperCAmelCase_ = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on UpperCAmelCase_ = tokenizer(__a , padding=__a , return_tensors=__a ) self.assertIsInstance(__a , __a ) if FRAMEWORK != "jax": UpperCAmelCase_ = list(batch.input_ids.numpy()[0] ) else: UpperCAmelCase_ = list(batch.input_ids.tolist()[0] ) self.assertListEqual(__a , __a ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def _lowercase (self : List[Any] ): UpperCAmelCase_ = self.perceiver_tokenizer UpperCAmelCase_ = ["A long paragraph for summarization.", "Another paragraph for summarization."] UpperCAmelCase_ = tokenizer(__a , padding=__a , return_tensors=__a ) # check if input_ids are returned and no decoder_input_ids self.assertIn("input_ids" , __a ) self.assertIn("attention_mask" , __a ) self.assertNotIn("decoder_input_ids" , __a ) self.assertNotIn("decoder_attention_mask" , __a ) def _lowercase (self : List[str] ): UpperCAmelCase_ = self.perceiver_tokenizer UpperCAmelCase_ = [ "Summary of the text.", "Another summary.", ] UpperCAmelCase_ = tokenizer( text_target=__a , max_length=32 , padding="max_length" , truncation=__a , return_tensors=__a ) self.assertEqual(32 , targets["input_ids"].shape[1] ) def _lowercase (self : Any ): # safety check on max_len default value so we are sure the test works UpperCAmelCase_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test UpperCAmelCase_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = " He is very happy, UNwant\u00E9d,running" UpperCAmelCase_ = tokenizer.encode(__a , add_special_tokens=__a ) tokenizer.save_pretrained(__a ) UpperCAmelCase_ = tokenizer.__class__.from_pretrained(__a ) UpperCAmelCase_ = after_tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) shutil.rmtree(__a ) UpperCAmelCase_ = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = " He is very happy, UNwant\u00E9d,running" tokenizer.add_tokens(["bim", "bambam"] ) UpperCAmelCase_ = tokenizer.additional_special_tokens additional_special_tokens.append("new_additional_special_token" ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) UpperCAmelCase_ = tokenizer.encode(__a , add_special_tokens=__a ) tokenizer.save_pretrained(__a ) UpperCAmelCase_ = tokenizer.__class__.from_pretrained(__a ) UpperCAmelCase_ = after_tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) self.assertIn("new_additional_special_token" , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) UpperCAmelCase_ = tokenizer.__class__.from_pretrained(__a , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(__a ) def _lowercase (self : List[Any] ): UpperCAmelCase_ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__a ) with open(os.path.join(__a , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: UpperCAmelCase_ = json.load(__a ) with open(os.path.join(__a , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: UpperCAmelCase_ = json.load(__a ) UpperCAmelCase_ = [f"""<extra_id_{i}>""" for i in range(125 )] UpperCAmelCase_ = added_tokens_extra_ids + [ "an_additional_special_token" ] UpperCAmelCase_ = added_tokens_extra_ids + [ "an_additional_special_token" ] with open(os.path.join(__a , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(__a , __a ) with open(os.path.join(__a , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(__a , __a ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files UpperCAmelCase_ = tokenizer_class.from_pretrained( __a , ) self.assertIn( "an_additional_special_token" , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ["an_additional_special_token"] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained UpperCAmelCase_ = added_tokens_extra_ids + [AddedToken("a_new_additional_special_token" , lstrip=__a )] UpperCAmelCase_ = tokenizer_class.from_pretrained( __a , additional_special_tokens=__a , ) self.assertIn("a_new_additional_special_token" , tokenizer.additional_special_tokens ) self.assertEqual( ["a_new_additional_special_token"] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"] ) ) , ) def _lowercase (self : int ): UpperCAmelCase_ = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , "๏ฟฝ" ) def _lowercase (self : Optional[int] ): pass def _lowercase (self : List[str] ): pass def _lowercase (self : Tuple ): pass def _lowercase (self : List[Any] ): pass def _lowercase (self : int ): # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens UpperCAmelCase_ = self.get_tokenizers(fast=__a , do_lower_case=__a ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): UpperCAmelCase_ = ["[CLS]", "t", "h", "i", "s", " ", "i", "s", " ", "a", " ", "t", "e", "s", "t", "[SEP]"] UpperCAmelCase_ = tokenizer.convert_tokens_to_string(__a ) self.assertIsInstance(__a , __a )
415
0
import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: _SCREAMING_SNAKE_CASE : Optional[int] = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class A ( unittest.TestCase ): '''simple docstring''' def __init__( self : Any , _UpperCamelCase : Tuple , _UpperCamelCase : int=7 , _UpperCamelCase : Optional[Any]=3 , _UpperCamelCase : Dict=18 , _UpperCamelCase : Optional[int]=30 , _UpperCamelCase : List[Any]=400 , _UpperCamelCase : Tuple=None , _UpperCamelCase : Any=True , _UpperCamelCase : Tuple=True , _UpperCamelCase : Optional[int]=None , ): _lowercase: str = size if size is not None else {'height': 20, 'width': 20} _lowercase: List[Any] = parent _lowercase: int = batch_size _lowercase: int = num_channels _lowercase: Any = image_size _lowercase: Any = min_resolution _lowercase: Optional[Any] = max_resolution _lowercase: Dict = size _lowercase: Dict = do_normalize _lowercase: str = do_convert_rgb _lowercase: Any = [512, 1_024, 2_048, 4_096] _lowercase: Dict = patch_size if patch_size is not None else {'height': 16, 'width': 16} def UpperCAmelCase__ ( self : Tuple): return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def UpperCAmelCase__ ( self : Any): _lowercase: List[str] = 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg' _lowercase: Tuple = Image.open(requests.get(__snake_case , stream=__snake_case).raw).convert("RGB") return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="""`Pix2StructImageProcessor` requires `torch>=1.11.0`.""" , ) @require_torch @require_vision class A ( lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase : Optional[Any] = PixaStructImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self : Tuple): _lowercase: int = PixaStructImageProcessingTester(self) @property def UpperCAmelCase__ ( self : str): return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self : Any): _lowercase: str = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(__snake_case , "do_normalize")) self.assertTrue(hasattr(__snake_case , "do_convert_rgb")) def UpperCAmelCase__ ( self : str): _lowercase: Optional[int] = self.image_processor_tester.prepare_dummy_image() _lowercase: Any = self.image_processing_class(**self.image_processor_dict) _lowercase: List[Any] = 2_048 _lowercase: List[Any] = image_processor(__snake_case , return_tensors="pt" , max_patches=__snake_case) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0_6_0_6) , atol=1e-3 , rtol=1e-3)) def UpperCAmelCase__ ( self : Dict): # Initialize image_processor _lowercase: int = self.image_processing_class(**self.image_processor_dict) # create random PIL images _lowercase: Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case) for image in image_inputs: self.assertIsInstance(__snake_case , Image.Image) # Test not batched input _lowercase: Union[str, Any] = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _lowercase: Any = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=__snake_case).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _lowercase: str = image_processor( __snake_case , return_tensors="pt" , max_patches=__snake_case).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def UpperCAmelCase__ ( self : Optional[Any]): # Initialize image_processor _lowercase: List[Any] = self.image_processing_class(**self.image_processor_dict) # create random PIL images _lowercase: Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case) for image in image_inputs: self.assertIsInstance(__snake_case , Image.Image) # Test not batched input _lowercase: Dict = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 _lowercase: Union[str, Any] = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(__snake_case): _lowercase: int = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=__snake_case).flattened_patches _lowercase: Union[str, Any] = 'Hello' _lowercase: int = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=__snake_case , header_text=__snake_case).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _lowercase: Any = image_processor( __snake_case , return_tensors="pt" , max_patches=__snake_case , header_text=__snake_case).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def UpperCAmelCase__ ( self : Optional[int]): # Initialize image_processor _lowercase: Tuple = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors _lowercase: str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , numpify=__snake_case) for image in image_inputs: self.assertIsInstance(__snake_case , np.ndarray) _lowercase: int = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _lowercase: List[str] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=__snake_case).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _lowercase: Any = image_processor( __snake_case , return_tensors="pt" , max_patches=__snake_case).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def UpperCAmelCase__ ( self : int): # Initialize image_processor _lowercase: List[str] = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors _lowercase: List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , torchify=__snake_case) for image in image_inputs: self.assertIsInstance(__snake_case , torch.Tensor) # Test not batched input _lowercase: str = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _lowercase: List[str] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=__snake_case).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _lowercase: Union[str, Any] = image_processor( __snake_case , return_tensors="pt" , max_patches=__snake_case).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="""`Pix2StructImageProcessor` requires `torch>=1.11.0`.""" , ) @require_torch @require_vision class A ( lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase : List[Any] = PixaStructImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self : Dict): _lowercase: Any = PixaStructImageProcessingTester(self , num_channels=4) _lowercase: Union[str, Any] = 3 @property def UpperCAmelCase__ ( self : int): return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self : Tuple): _lowercase: Union[str, Any] = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(__snake_case , "do_normalize")) self.assertTrue(hasattr(__snake_case , "do_convert_rgb")) def UpperCAmelCase__ ( self : Optional[Any]): # Initialize image_processor _lowercase: Dict = self.image_processing_class(**self.image_processor_dict) # create random PIL images _lowercase: Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case) for image in image_inputs: self.assertIsInstance(__snake_case , Image.Image) # Test not batched input _lowercase: Optional[Any] = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _lowercase: Tuple = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=__snake_case).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _lowercase: Optional[Any] = image_processor( __snake_case , return_tensors="pt" , max_patches=__snake_case).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
226
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase: Tuple = logging.get_logger(__name__) lowerCAmelCase: Any = { 'google/pegasus-large': 'https://huggingface.co/google/pegasus-large/resolve/main/config.json', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class a__( lowerCamelCase__ ): lowercase__ = """pegasus""" lowercase__ = ["""past_key_values"""] lowercase__ = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : Union[str, Any] , __snake_case : Tuple=5_02_65 , __snake_case : List[Any]=10_24 , __snake_case : Optional[Any]=12 , __snake_case : Tuple=40_96 , __snake_case : str=16 , __snake_case : int=12 , __snake_case : Tuple=40_96 , __snake_case : int=16 , __snake_case : Tuple=0.0 , __snake_case : Any=0.0 , __snake_case : Any=True , __snake_case : Optional[int]=True , __snake_case : Any="gelu" , __snake_case : str=10_24 , __snake_case : Dict=0.1 , __snake_case : List[Any]=0.0 , __snake_case : str=0.0 , __snake_case : str=0.02 , __snake_case : Union[str, Any]=0 , __snake_case : List[Any]=False , __snake_case : Optional[Any]=0 , __snake_case : str=1 , __snake_case : Any=1 , **__snake_case : int , ): a : Optional[int] = vocab_size a : List[str] = max_position_embeddings a : List[Any] = d_model a : Tuple = encoder_ffn_dim a : List[str] = encoder_layers a : str = encoder_attention_heads a : str = decoder_ffn_dim a : Optional[int] = decoder_layers a : Optional[int] = decoder_attention_heads a : Optional[int] = dropout a : Any = attention_dropout a : str = activation_dropout a : List[Any] = activation_function a : Union[str, Any] = init_std a : List[Any] = encoder_layerdrop a : Union[str, Any] = decoder_layerdrop a : List[Any] = use_cache a : Any = encoder_layers a : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=__snake_case , eos_token_id=__snake_case , is_encoder_decoder=__snake_case , decoder_start_token_id=__snake_case , forced_eos_token_id=__snake_case , **__snake_case , ) @property def lowercase_ ( self : int ): return self.encoder_attention_heads @property def lowercase_ ( self : int ): return self.d_model
526
0
import argparse from collections import defaultdict import yaml A__: str = '''docs/source/en/_toctree.yml''' def lowerCAmelCase_ ( A_): UpperCamelCase__: Dict = defaultdict(A_) UpperCamelCase__: Dict = [] UpperCamelCase__: str = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({"local": doc["local"], "title": doc["title"]}) else: new_doc_list.append(A_) UpperCamelCase__: str = new_doc_list UpperCamelCase__: List[Any] = [key for key, value in counts.items() if value > 1] UpperCamelCase__: Optional[Any] = [] for duplicate_key in duplicates: UpperCamelCase__: Dict = list({doc["title"] for doc in doc_list if doc["local"] == duplicate_key}) if len(A_) > 1: raise ValueError( F"{duplicate_key} is present several times in the documentation table of content at " "`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the " "others.") # Only add this once new_doc.append({"local": duplicate_key, "title": titles[0]}) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if "local" not in counts or counts[doc["local"]] == 1]) UpperCamelCase__: Dict = sorted(A_ ,key=lambda A_: s["title"].lower()) # "overview" gets special treatment and is always first if len(A_) > 1: raise ValueError("{doc_list} has two 'overview' docs which is not allowed.") overview_doc.extend(A_) # Sort return overview_doc def lowerCAmelCase_ ( A_=False): with open(A_ ,encoding="utf-8") as f: UpperCamelCase__: List[str] = yaml.safe_load(f.read()) # Get to the API doc UpperCamelCase__: Dict = 0 while content[api_idx]["title"] != "API": api_idx += 1 UpperCamelCase__: Dict = content[api_idx]["sections"] # Then to the model doc UpperCamelCase__: int = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 UpperCamelCase__: Optional[int] = api_doc[scheduler_idx]["sections"] UpperCamelCase__: Optional[int] = clean_doc_toc(A_) UpperCamelCase__: Tuple = False if new_scheduler_doc != scheduler_doc: UpperCamelCase__: Dict = True if overwrite: UpperCamelCase__: Tuple = new_scheduler_doc if diff: if overwrite: UpperCamelCase__: Optional[int] = api_doc with open(A_ ,"w" ,encoding="utf-8") as f: f.write(yaml.dump(A_ ,allow_unicode=A_)) else: raise ValueError( "The model doc part of the table of content is not properly sorted, run `make style` to fix this.") def lowerCAmelCase_ ( A_=False): with open(A_ ,encoding="utf-8") as f: UpperCamelCase__: List[str] = yaml.safe_load(f.read()) # Get to the API doc UpperCamelCase__: List[Any] = 0 while content[api_idx]["title"] != "API": api_idx += 1 UpperCamelCase__: Union[str, Any] = content[api_idx]["sections"] # Then to the model doc UpperCamelCase__: str = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 UpperCamelCase__: Any = False UpperCamelCase__: Tuple = api_doc[pipeline_idx]["sections"] UpperCamelCase__: int = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: UpperCamelCase__: List[Any] = pipeline_doc["section"] UpperCamelCase__: Optional[int] = clean_doc_toc(A_) if overwrite: UpperCamelCase__: str = new_sub_pipeline_doc new_pipeline_docs.append(A_) # sort overall pipeline doc UpperCamelCase__: Any = clean_doc_toc(A_) if new_pipeline_docs != pipeline_docs: UpperCamelCase__: List[Any] = True if overwrite: UpperCamelCase__: Optional[Any] = new_pipeline_docs if diff: if overwrite: UpperCamelCase__: Any = api_doc with open(A_ ,"w" ,encoding="utf-8") as f: f.write(yaml.dump(A_ ,allow_unicode=A_)) else: raise ValueError( "The model doc part of the table of content is not properly sorted, run `make style` to fix this.") if __name__ == "__main__": A__: int = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') A__: int = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
221
import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize("dataset_size" ,[None, 4_00 * 2**20, 6_00 * 2**20]) @pytest.mark.parametrize("input_in_memory_max_size" ,["default", 0, 1_00 * 2**20, 9_00 * 2**20]) def lowerCAmelCase_ ( A_ ,A_ ,A_): if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config ,"IN_MEMORY_MAX_SIZE" ,A_) UpperCamelCase__: List[str] = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: UpperCamelCase__: List[Any] = dataset_size < in_memory_max_size else: UpperCamelCase__: int = False UpperCamelCase__: int = is_small_dataset(A_) assert result == expected
221
1
import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def __UpperCAmelCase ( lowerCamelCase_ : Dict , lowerCamelCase_ : Any , lowerCamelCase_ : int , lowerCamelCase_ : List[Any] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = FunnelConfig.from_json_file(lowerCamelCase_ ) print(F'Building PyTorch model from configuration: {config}' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = FunnelBaseModel(lowerCamelCase_ ) if base_model else FunnelModel(lowerCamelCase_ ) # Load weights from tf checkpoint load_tf_weights_in_funnel(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , lowerCamelCase_ ) if __name__ == "__main__": UpperCamelCase__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--base_model''', action='''store_true''', help='''Whether you want just the base model (no decoder) or not.''' ) UpperCamelCase__ : Tuple = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
105
'''simple docstring''' def UpperCAmelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : int): return [sentence[i : i + ngram_size] for i in range(len(UpperCAmelCase__) - ngram_size + 1)] if __name__ == "__main__": from doctest import testmod testmod()
320
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __magic_name__ ( lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,unittest.TestCase ): UpperCAmelCase =StableDiffusionInpaintPipeline UpperCAmelCase =TEXT_GUIDED_IMAGE_INPAINTING_PARAMS UpperCAmelCase =TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCAmelCase =frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCAmelCase =frozenset([] ) def lowerCAmelCase ( self) -> Tuple: '''simple docstring''' torch.manual_seed(0) _UpperCAmelCase : Tuple =UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=9 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=snake_case , ) _UpperCAmelCase : int =PNDMScheduler(skip_prk_steps=snake_case) torch.manual_seed(0) _UpperCAmelCase : Optional[int] =AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0) _UpperCAmelCase : Optional[Any] =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='gelu' , projection_dim=5_1_2 , ) _UpperCAmelCase : Any =CLIPTextModel(snake_case) _UpperCAmelCase : Dict =CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') _UpperCAmelCase : int ={ 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def lowerCAmelCase ( self , snake_case , snake_case=0) -> Tuple: '''simple docstring''' # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched _UpperCAmelCase : Dict =floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(snake_case)).to(snake_case) _UpperCAmelCase : Tuple =image.cpu().permute(0 , 2 , 3 , 1)[0] _UpperCAmelCase : Any =Image.fromarray(np.uinta(snake_case)).convert('RGB').resize((6_4, 6_4)) _UpperCAmelCase : int =Image.fromarray(np.uinta(image + 4)).convert('RGB').resize((6_4, 6_4)) if str(snake_case).startswith('mps'): _UpperCAmelCase : Union[str, Any] =torch.manual_seed(snake_case) else: _UpperCAmelCase : str =torch.Generator(device=snake_case).manual_seed(snake_case) _UpperCAmelCase : Optional[int] ={ 'prompt': 'A painting of a squirrel eating a burger', 'image': init_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowerCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCAmelCase : Optional[int] ='cpu' # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Optional[int] =self.get_dummy_components() _UpperCAmelCase : List[str] =StableDiffusionInpaintPipeline(**snake_case) _UpperCAmelCase : List[str] =sd_pipe.to(snake_case) sd_pipe.set_progress_bar_config(disable=snake_case) _UpperCAmelCase : List[str] =self.get_dummy_inputs(snake_case) _UpperCAmelCase : List[str] =sd_pipe(**snake_case).images _UpperCAmelCase : str =image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) _UpperCAmelCase : List[Any] =np.array([0.47_27, 0.57_35, 0.39_41, 0.54_46, 0.59_26, 0.43_94, 0.50_62, 0.46_54, 0.44_76]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def lowerCAmelCase ( self) -> Optional[Any]: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3) @slow @require_torch_gpu class __magic_name__ ( unittest.TestCase ): def lowerCAmelCase ( self) -> Dict: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCAmelCase : int =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png') _UpperCAmelCase : str =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png') _UpperCAmelCase : List[Any] =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench.npy') _UpperCAmelCase : int ='stabilityai/stable-diffusion-2-inpainting' _UpperCAmelCase : Tuple =StableDiffusionInpaintPipeline.from_pretrained(snake_case , safety_checker=snake_case) pipe.to(snake_case) pipe.set_progress_bar_config(disable=snake_case) pipe.enable_attention_slicing() _UpperCAmelCase : int ='Face of a yellow cat, high resolution, sitting on a park bench' _UpperCAmelCase : Optional[Any] =torch.manual_seed(0) _UpperCAmelCase : List[str] =pipe( prompt=snake_case , image=snake_case , mask_image=snake_case , generator=snake_case , output_type='np' , ) _UpperCAmelCase : List[Any] =output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image).max() < 9E-3 def lowerCAmelCase ( self) -> str: '''simple docstring''' _UpperCAmelCase : Optional[int] =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png') _UpperCAmelCase : Optional[int] =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png') _UpperCAmelCase : List[str] =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench_fp16.npy') _UpperCAmelCase : str ='stabilityai/stable-diffusion-2-inpainting' _UpperCAmelCase : Optional[Any] =StableDiffusionInpaintPipeline.from_pretrained( snake_case , torch_dtype=torch.floataa , safety_checker=snake_case , ) pipe.to(snake_case) pipe.set_progress_bar_config(disable=snake_case) pipe.enable_attention_slicing() _UpperCAmelCase : Any ='Face of a yellow cat, high resolution, sitting on a park bench' _UpperCAmelCase : Optional[Any] =torch.manual_seed(0) _UpperCAmelCase : Dict =pipe( prompt=snake_case , image=snake_case , mask_image=snake_case , generator=snake_case , output_type='np' , ) _UpperCAmelCase : int =output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image).max() < 5E-1 def lowerCAmelCase ( self) -> List[str]: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _UpperCAmelCase : Dict =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png') _UpperCAmelCase : int =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png') _UpperCAmelCase : List[Any] ='stabilityai/stable-diffusion-2-inpainting' _UpperCAmelCase : int =PNDMScheduler.from_pretrained(snake_case , subfolder='scheduler') _UpperCAmelCase : int =StableDiffusionInpaintPipeline.from_pretrained( snake_case , safety_checker=snake_case , scheduler=snake_case , torch_dtype=torch.floataa , ) pipe.to(snake_case) pipe.set_progress_bar_config(disable=snake_case) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() _UpperCAmelCase : List[str] ='Face of a yellow cat, high resolution, sitting on a park bench' _UpperCAmelCase : Optional[int] =torch.manual_seed(0) _UpperCAmelCase : Tuple =pipe( prompt=snake_case , image=snake_case , mask_image=snake_case , generator=snake_case , num_inference_steps=2 , output_type='np' , ) _UpperCAmelCase : int =torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 1_0**9
331
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer lowercase =logging.get_logger(__name__) lowercase ={'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} # See all MVP models at https://huggingface.co/models?filter=mvp lowercase ={ 'vocab_file': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json', }, 'added_tokens.json': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json', }, 'merges_file': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt', }, 'tokenizer_file': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json', }, } lowercase ={ 'RUCAIBox/mvp': 1024, } class __magic_name__ ( lowerCAmelCase ): UpperCAmelCase =VOCAB_FILES_NAMES UpperCAmelCase =PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase =["input_ids", "attention_mask"] UpperCAmelCase =MvpTokenizer def __init__( self , snake_case=None , snake_case=None , snake_case=None , snake_case="replace" , snake_case="<s>" , snake_case="</s>" , snake_case="</s>" , snake_case="<s>" , snake_case="<unk>" , snake_case="<pad>" , snake_case="<mask>" , snake_case=False , snake_case=True , **snake_case , ) -> str: '''simple docstring''' super().__init__( snake_case , snake_case , tokenizer_file=snake_case , errors=snake_case , bos_token=snake_case , eos_token=snake_case , sep_token=snake_case , cls_token=snake_case , unk_token=snake_case , pad_token=snake_case , mask_token=snake_case , add_prefix_space=snake_case , trim_offsets=snake_case , **snake_case , ) _UpperCAmelCase : Union[str, Any] =json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('add_prefix_space' , snake_case) != add_prefix_space: _UpperCAmelCase : List[str] =getattr(snake_case , pre_tok_state.pop('type')) _UpperCAmelCase : Union[str, Any] =add_prefix_space _UpperCAmelCase : Optional[Any] =pre_tok_class(**snake_case) _UpperCAmelCase : Union[str, Any] =add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _UpperCAmelCase : List[Any] ='post_processor' _UpperCAmelCase : Optional[int] =getattr(self.backend_tokenizer , snake_case , snake_case) if tokenizer_component_instance: _UpperCAmelCase : int =json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _UpperCAmelCase : Any =tuple(state['sep']) if "cls" in state: _UpperCAmelCase : List[str] =tuple(state['cls']) _UpperCAmelCase : str =False if state.get('add_prefix_space' , snake_case) != add_prefix_space: _UpperCAmelCase : List[str] =add_prefix_space _UpperCAmelCase : Optional[int] =True if state.get('trim_offsets' , snake_case) != trim_offsets: _UpperCAmelCase : Union[str, Any] =trim_offsets _UpperCAmelCase : Tuple =True if changes_to_apply: _UpperCAmelCase : str =getattr(snake_case , state.pop('type')) _UpperCAmelCase : List[Any] =component_class(**snake_case) setattr(self.backend_tokenizer , snake_case , snake_case) @property def lowerCAmelCase ( self) -> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.') return None return str(self._mask_token) @mask_token.setter def lowerCAmelCase ( self , snake_case) -> Dict: '''simple docstring''' _UpperCAmelCase : List[Any] =AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case) if isinstance(snake_case , snake_case) else value _UpperCAmelCase : Any =value def lowerCAmelCase ( self , *snake_case , **snake_case) -> BatchEncoding: '''simple docstring''' _UpperCAmelCase : Union[str, Any] =kwargs.get('is_split_into_words' , snake_case) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " 'to use it with pretokenized inputs.') return super()._batch_encode_plus(*snake_case , **snake_case) def lowerCAmelCase ( self , *snake_case , **snake_case) -> BatchEncoding: '''simple docstring''' _UpperCAmelCase : Any =kwargs.get('is_split_into_words' , snake_case) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " 'to use it with pretokenized inputs.') return super()._encode_plus(*snake_case , **snake_case) def lowerCAmelCase ( self , snake_case , snake_case = None) -> Tuple[str]: '''simple docstring''' _UpperCAmelCase : str =self._tokenizer.model.save(snake_case , name=snake_case) return tuple(snake_case) def lowerCAmelCase ( self , snake_case , snake_case=None) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] =[self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCAmelCase ( self , snake_case , snake_case = None) -> List[int]: '''simple docstring''' _UpperCAmelCase : List[str] =[self.sep_token_id] _UpperCAmelCase : Dict =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
331
1
'''simple docstring''' import os import jsonlines import numpy as np from tqdm import tqdm a : int = 2_048 a : Optional[int] = 4_096 a : Dict = 42 a : Optional[int] = os.environ.pop('''PROCESS_TRAIN''', '''false''') a : List[str] = {'''null''': 0, '''short''': 1, '''long''': 2, '''yes''': 3, '''no''': 4} def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: def choose_first(_UpperCAmelCase : str , _UpperCAmelCase : int=False ): assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) if len(_UpperCAmelCase ) == 1: __snake_case = answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: __snake_case = {k: [a[k]] for k in a} if len(a["start_token"] ) > 0: break return a __snake_case = {"id": example["id"]} __snake_case = example["annotations"] __snake_case = annotation["yes_no_answer"] if 0 in yes_no_answer or 1 in yes_no_answer: __snake_case = ["yes"] if 1 in yes_no_answer else ["no"] __snake_case = __snake_case = [] __snake_case = __snake_case = [] __snake_case = ["<cls>"] else: __snake_case = ["short"] __snake_case = choose_first(annotation["short_answers"] ) if len(out["start_token"] ) == 0: # answer will be long if short is not available __snake_case = ["long"] __snake_case = choose_first(annotation["long_answer"] , is_long_answer=_UpperCAmelCase ) __snake_case = [] answer.update(_UpperCAmelCase ) # disregard some samples if len(answer["start_token"] ) > 1 or answer["start_token"] == answer["end_token"]: __snake_case = True else: __snake_case = False __snake_case = ["start_token", "end_token", "start_byte", "end_byte", "text"] if not all(isinstance(answer[k] , _UpperCAmelCase ) for k in cols ): raise ValueError("Issue in ID" , example["id"] ) return answer def __UpperCAmelCase ( _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any]=False ) -> List[Any]: __snake_case = _get_single_answer(_UpperCAmelCase ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element __snake_case = example["document"]["tokens"] __snake_case = [] for i in range(len(doc["token"] ) ): if not doc["is_html"][i]: context.append(doc["token"][i] ) return { "context": " ".join(_UpperCAmelCase ), "answer": { "start_token": -1_00, # ignore index in cross-entropy "end_token": -1_00, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples __snake_case = ["start_token", "end_token"] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 __snake_case = example["document"]["tokens"] __snake_case = answer["start_token"] __snake_case = answer["end_token"] __snake_case = [] for i in range(len(doc["token"] ) ): if not doc["is_html"][i]: context.append(doc["token"][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 __snake_case = " ".join(context[start_token:end_token] ) # checking above code if assertion: __snake_case = doc["is_html"][answer["start_token"] : answer["end_token"]] __snake_case = doc["token"][answer["start_token"] : answer["end_token"]] __snake_case = " ".join([old[i] for i in range(len(_UpperCAmelCase ) ) if not is_html[i]] ) if new != old: print("ID:" , example["id"] ) print("New:" , _UpperCAmelCase , end="\n" ) print("Old:" , _UpperCAmelCase , end="\n\n" ) return { "context": " ".join(_UpperCAmelCase ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any=20_48 , _UpperCAmelCase : str=40_96 , _UpperCAmelCase : Any=True ) -> Optional[Any]: # overlap will be of doc_stride - q_len __snake_case = get_context_and_ans(_UpperCAmelCase , assertion=_UpperCAmelCase ) __snake_case = out["answer"] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } __snake_case = tokenizer(example["question"]["text"] , out["context"] ).input_ids __snake_case = input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element __snake_case = [] __snake_case = [] __snake_case = input_ids[:q_len] __snake_case = range(_UpperCAmelCase , len(_UpperCAmelCase ) , max_length - doc_stride ) for i in doc_start_indices: __snake_case = i + max_length - q_len __snake_case = input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer["category"][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-1_00] * len(_UpperCAmelCase ), "end_token": [-1_00] * len(_UpperCAmelCase ), "category": category, }, } __snake_case = out["context"].split() __snake_case = splitted_context[answer["end_token"]] __snake_case = len( tokenizer( " ".join(splitted_context[: answer["start_token"]] ) , add_special_tokens=_UpperCAmelCase , ).input_ids ) __snake_case = len( tokenizer(" ".join(splitted_context[: answer["end_token"]] ) , add_special_tokens=_UpperCAmelCase ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token __snake_case = len(tokenizer(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 __snake_case = input_ids[answer["start_token"] : answer["end_token"] + 1] # right & left are inclusive __snake_case = answer["start_token"] __snake_case = answer["end_token"] if assertion: __snake_case = tokenizer.decode(_UpperCAmelCase ) if answer["span"] != new: print("ISSUE IN TOKENIZATION" ) print("OLD:" , answer["span"] ) print("NEW:" , _UpperCAmelCase , end="\n\n" ) if len(_UpperCAmelCase ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } __snake_case = input_ids[:q_len] __snake_case = range(_UpperCAmelCase , len(_UpperCAmelCase ) , max_length - doc_stride ) __snake_case = [] __snake_case = [] __snake_case = [] __snake_case = [] # null, yes, no, long, short for i in doc_start_indices: __snake_case = i + max_length - q_len __snake_case = input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: __snake_case = start_token - i + q_len __snake_case = end_token - i + q_len answers_category.append(answer["category"][0] ) # ["short"] -> "short" else: __snake_case = -1_00 __snake_case = -1_00 answers_category.append("null" ) __snake_case = inputs[-1][start_token : end_token + 1] answers_start_token.append(_UpperCAmelCase ) answers_end_token.append(_UpperCAmelCase ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print("ISSUE in strided for ID:" , example["id"] ) print("New:" , tokenizer.decode(_UpperCAmelCase ) ) print("Old:" , tokenizer.decode(_UpperCAmelCase ) , end="\n\n" ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def __UpperCAmelCase ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str=20_48 , _UpperCAmelCase : List[Any]=40_96 , _UpperCAmelCase : Optional[Any]=False ) -> Tuple: __snake_case = get_strided_contexts_and_ans( _UpperCAmelCase , _UpperCAmelCase , doc_stride=_UpperCAmelCase , max_length=_UpperCAmelCase , assertion=_UpperCAmelCase , ) return example def __UpperCAmelCase ( _UpperCAmelCase : Any , _UpperCAmelCase : Dict ) -> int: with jsonlines.open(_UpperCAmelCase , "a" ) as writer: for example in tqdm(_UpperCAmelCase , total=len(_UpperCAmelCase ) , desc="Saving samples ... " ): __snake_case = example["labels"] for ids, start, end, cat in zip( example["input_ids"] , labels["start_token"] , labels["end_token"] , labels["category"] , ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { "input_ids": ids, "start_token": start, "end_token": end, "category": CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer a : Dict = load_dataset('''natural_questions''') a : List[str] = BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''') a : Optional[Any] = data['''train''' if PROCESS_TRAIN == '''true''' else '''validation'''] a : Union[str, Any] = { '''tokenizer''': tokenizer, '''doc_stride''': DOC_STRIDE, '''max_length''': MAX_LENGTH, '''assertion''': False, } a : Tuple = data.map(prepare_inputs, fn_kwargs=fn_kwargs) a : int = data.remove_columns(['''annotations''', '''document''', '''id''', '''question''']) print(data) np.random.seed(SEED) a : Union[str, Any] = '''nq-training.jsonl''' if PROCESS_TRAIN == '''true''' else '''nq-validation.jsonl''' save_to_disk(data, file_name=cache_file_name)
69
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A__: Optional[Any] = { '''configuration_roberta_prelayernorm''': [ '''ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RobertaPreLayerNormConfig''', '''RobertaPreLayerNormOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__: Optional[Any] = [ '''ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RobertaPreLayerNormForCausalLM''', '''RobertaPreLayerNormForMaskedLM''', '''RobertaPreLayerNormForMultipleChoice''', '''RobertaPreLayerNormForQuestionAnswering''', '''RobertaPreLayerNormForSequenceClassification''', '''RobertaPreLayerNormForTokenClassification''', '''RobertaPreLayerNormModel''', '''RobertaPreLayerNormPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__: Tuple = [ '''TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRobertaPreLayerNormForCausalLM''', '''TFRobertaPreLayerNormForMaskedLM''', '''TFRobertaPreLayerNormForMultipleChoice''', '''TFRobertaPreLayerNormForQuestionAnswering''', '''TFRobertaPreLayerNormForSequenceClassification''', '''TFRobertaPreLayerNormForTokenClassification''', '''TFRobertaPreLayerNormMainLayer''', '''TFRobertaPreLayerNormModel''', '''TFRobertaPreLayerNormPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__: Dict = [ '''FlaxRobertaPreLayerNormForCausalLM''', '''FlaxRobertaPreLayerNormForMaskedLM''', '''FlaxRobertaPreLayerNormForMultipleChoice''', '''FlaxRobertaPreLayerNormForQuestionAnswering''', '''FlaxRobertaPreLayerNormForSequenceClassification''', '''FlaxRobertaPreLayerNormForTokenClassification''', '''FlaxRobertaPreLayerNormModel''', '''FlaxRobertaPreLayerNormPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys A__: Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
380
0
"""simple docstring""" import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class __A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): @register_to_config def __init__( self , a__ = 128 , a__ = 256 , a__ = 2000.0 , a__ = 768 , a__ = 12 , a__ = 12 , a__ = 64 , a__ = 2048 , a__ = 0.1 , ): super().__init__() _lowerCAmelCase : str = nn.Sequential( nn.Linear(a__ , d_model * 4 , bias=a__ ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=a__ ) , nn.SiLU() , ) _lowerCAmelCase : Optional[Any] = nn.Embedding(a__ , a__ ) _lowerCAmelCase : str = False _lowerCAmelCase : Optional[int] = nn.Linear(a__ , a__ , bias=a__ ) _lowerCAmelCase : int = nn.Dropout(p=a__ ) _lowerCAmelCase : str = nn.ModuleList() for lyr_num in range(a__ ): # FiLM conditional T5 decoder _lowerCAmelCase : Optional[int] = DecoderLayer(d_model=a__ , d_kv=a__ , num_heads=a__ , d_ff=a__ , dropout_rate=a__ ) self.decoders.append(a__ ) _lowerCAmelCase : Union[str, Any] = TaLayerNorm(a__ ) _lowerCAmelCase : List[str] = nn.Dropout(p=a__ ) _lowerCAmelCase : Dict = nn.Linear(a__ , a__ , bias=a__ ) def __A ( self , a__ , a__ ): _lowerCAmelCase : int = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def __A ( self , a__ , a__ , a__ ): _lowerCAmelCase : Optional[int] = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. _lowerCAmelCase : Tuple = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) _lowerCAmelCase : List[Any] = self.conditioning_emb(a__ ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) _lowerCAmelCase : Tuple = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. _lowerCAmelCase : str = torch.broadcast_to( torch.arange(a__ , device=decoder_input_tokens.device ) , (batch, seq_length) , ) _lowerCAmelCase : List[Any] = self.position_encoding(a__ ) _lowerCAmelCase : Dict = self.continuous_inputs_projection(a__ ) inputs += position_encodings _lowerCAmelCase : int = self.dropout(a__ ) # decoder: No padding present. _lowerCAmelCase : List[Any] = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. _lowerCAmelCase : Any = [(x, self.encoder_decoder_mask(a__ , a__ )) for x, y in encodings_and_masks] # cross attend style: concat encodings _lowerCAmelCase : Dict = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) _lowerCAmelCase : Any = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: _lowerCAmelCase : Optional[int] = lyr( a__ , conditioning_emb=a__ , encoder_hidden_states=a__ , encoder_attention_mask=a__ , )[0] _lowerCAmelCase : List[str] = self.decoder_norm(a__ ) _lowerCAmelCase : Optional[int] = self.post_dropout(a__ ) _lowerCAmelCase : int = self.spec_out(a__ ) return spec_out class __A ( nn.Module ): def __init__( self , a__ , a__ , a__ , a__ , a__ , a__=1e-6 ): super().__init__() _lowerCAmelCase : Any = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=a__ , d_kv=a__ , num_heads=a__ , dropout_rate=a__ ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=a__ , d_kv=a__ , num_heads=a__ , dropout_rate=a__ , layer_norm_epsilon=a__ , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=a__ , d_ff=a__ , dropout_rate=a__ , layer_norm_epsilon=a__ ) ) def __A ( self , a__ , a__=None , a__=None , a__=None , a__=None , a__=None , ): _lowerCAmelCase : List[Any] = self.layer[0]( a__ , conditioning_emb=a__ , attention_mask=a__ , ) if encoder_hidden_states is not None: _lowerCAmelCase : Dict = torch.where(encoder_attention_mask > 0 , 0 , -1e10 ).to( encoder_hidden_states.dtype ) _lowerCAmelCase : str = self.layer[1]( a__ , key_value_states=a__ , attention_mask=a__ , ) # Apply Film Conditional Feed Forward layer _lowerCAmelCase : Optional[Any] = self.layer[-1](a__ , a__ ) return (hidden_states,) class __A ( nn.Module ): def __init__( self , a__ , a__ , a__ , a__ ): super().__init__() _lowerCAmelCase : Tuple = TaLayerNorm(a__ ) _lowerCAmelCase : Optional[Any] = TaFiLMLayer(in_features=d_model * 4 , out_features=a__ ) _lowerCAmelCase : Tuple = Attention(query_dim=a__ , heads=a__ , dim_head=a__ , out_bias=a__ , scale_qk=a__ ) _lowerCAmelCase : Union[str, Any] = nn.Dropout(a__ ) def __A ( self , a__ , a__=None , a__=None , ): # pre_self_attention_layer_norm _lowerCAmelCase : List[str] = self.layer_norm(a__ ) if conditioning_emb is not None: _lowerCAmelCase : Tuple = self.FiLMLayer(a__ , a__ ) # Self-attention block _lowerCAmelCase : List[str] = self.attention(a__ ) _lowerCAmelCase : str = hidden_states + self.dropout(a__ ) return hidden_states class __A ( nn.Module ): def __init__( self , a__ , a__ , a__ , a__ , a__ ): super().__init__() _lowerCAmelCase : Tuple = Attention(query_dim=a__ , heads=a__ , dim_head=a__ , out_bias=a__ , scale_qk=a__ ) _lowerCAmelCase : Any = TaLayerNorm(a__ , eps=a__ ) _lowerCAmelCase : Tuple = nn.Dropout(a__ ) def __A ( self , a__ , a__=None , a__=None , ): _lowerCAmelCase : int = self.layer_norm(a__ ) _lowerCAmelCase : List[str] = self.attention( a__ , encoder_hidden_states=a__ , attention_mask=attention_mask.squeeze(1 ) , ) _lowerCAmelCase : Dict = hidden_states + self.dropout(a__ ) return layer_output class __A ( nn.Module ): def __init__( self , a__ , a__ , a__ , a__ ): super().__init__() _lowerCAmelCase : Optional[int] = TaDenseGatedActDense(d_model=a__ , d_ff=a__ , dropout_rate=a__ ) _lowerCAmelCase : str = TaFiLMLayer(in_features=d_model * 4 , out_features=a__ ) _lowerCAmelCase : Dict = TaLayerNorm(a__ , eps=a__ ) _lowerCAmelCase : int = nn.Dropout(a__ ) def __A ( self , a__ , a__=None ): _lowerCAmelCase : Optional[int] = self.layer_norm(a__ ) if conditioning_emb is not None: _lowerCAmelCase : Any = self.film(a__ , a__ ) _lowerCAmelCase : Optional[int] = self.DenseReluDense(a__ ) _lowerCAmelCase : Tuple = hidden_states + self.dropout(a__ ) return hidden_states class __A ( nn.Module ): def __init__( self , a__ , a__ , a__ ): super().__init__() _lowerCAmelCase : int = nn.Linear(a__ , a__ , bias=a__ ) _lowerCAmelCase : List[str] = nn.Linear(a__ , a__ , bias=a__ ) _lowerCAmelCase : Any = nn.Linear(a__ , a__ , bias=a__ ) _lowerCAmelCase : Dict = nn.Dropout(a__ ) _lowerCAmelCase : Any = NewGELUActivation() def __A ( self , a__ ): _lowerCAmelCase : Tuple = self.act(self.wi_a(a__ ) ) _lowerCAmelCase : Dict = self.wi_a(a__ ) _lowerCAmelCase : Any = hidden_gelu * hidden_linear _lowerCAmelCase : Optional[Any] = self.dropout(a__ ) _lowerCAmelCase : List[str] = self.wo(a__ ) return hidden_states class __A ( nn.Module ): def __init__( self , a__ , a__=1e-6 ): super().__init__() _lowerCAmelCase : Optional[Any] = nn.Parameter(torch.ones(a__ ) ) _lowerCAmelCase : str = eps def __A ( self , a__ ): # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 _lowerCAmelCase : List[str] = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=a__ ) _lowerCAmelCase : Optional[Any] = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: _lowerCAmelCase : Optional[int] = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class __A ( nn.Module ): def __A ( self , a__ ): return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.0_4_4_7_1_5 * torch.pow(a__ , 3.0 )) )) class __A ( nn.Module ): def __init__( self , a__ , a__ ): super().__init__() _lowerCAmelCase : List[Any] = nn.Linear(a__ , out_features * 2 , bias=a__ ) def __A ( self , a__ , a__ ): _lowerCAmelCase : Optional[int] = self.scale_bias(a__ ) _lowerCAmelCase : str = torch.chunk(a__ , 2 , -1 ) _lowerCAmelCase : str = x * (1 + scale) + shift return x
717
"""simple docstring""" import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor _a : Tuple = logging.get_logger(__name__) class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , *a__ , **a__ ): warnings.warn( """The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use SegformerImageProcessor instead.""" , a__ , ) super().__init__(*a__ , **a__ )
663
0
import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : List[Any] = RobertaPreLayerNormConfig.from_pretrained( snake_case_,architectures=["""RobertaPreLayerNormForMaskedLM"""] ) # convert state_dict _A : List[str] = torch.load(hf_hub_download(repo_id=snake_case_,filename="""pytorch_model.bin""" ) ) _A : Dict = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith("""roberta.""" ): _A : Optional[Any] = """roberta_prelayernorm.""" + tensor_key[len("""roberta.""" ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith(""".self.LayerNorm.weight""" ) or tensor_key.endswith(""".self.LayerNorm.bias""" ): continue _A : Dict = tensor_value _A : Union[str, Any] = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=snake_case_,config=snake_case_,state_dict=snake_case_ ) model.save_pretrained(snake_case_ ) # convert tokenizer _A : Union[str, Any] = AutoTokenizer.from_pretrained(snake_case_ ) tokenizer.save_pretrained(snake_case_ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint-repo", default=None, type=str, required=True, help="Path the official PyTorch dump, e.g. 'andreasmadsen/efficient_mlm_m0.40'.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _snake_case = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
307
from __future__ import annotations _snake_case = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] _snake_case = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def lowerCAmelCase_ ( snake_case_ ): _A : str = [] _A : int = len(snake_case_ ) for i in range(snake_case_ ): _A : float = -1 for j in range(i + 1,snake_case_ ): if arr[i] < arr[j]: _A : Dict = arr[j] break result.append(snake_case_ ) return result def lowerCAmelCase_ ( snake_case_ ): _A : Optional[int] = [] for i, outer in enumerate(snake_case_ ): _A : float = -1 for inner in arr[i + 1 :]: if outer < inner: _A : List[str] = inner break result.append(snake_case_ ) return result def lowerCAmelCase_ ( snake_case_ ): _A : int = len(snake_case_ ) _A : list[float] = [] _A : list[float] = [-1] * arr_size for index in reversed(range(snake_case_ ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: _A : Optional[int] = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) _snake_case = ( "from __main__ import arr, next_greatest_element_slow, " "next_greatest_element_fast, next_greatest_element" ) print( "next_greatest_element_slow():", timeit("next_greatest_element_slow(arr)", setup=setup), ) print( "next_greatest_element_fast():", timeit("next_greatest_element_fast(arr)", setup=setup), ) print( " next_greatest_element():", timeit("next_greatest_element(arr)", setup=setup), )
307
1
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase = { '''configuration_informer''': [ '''INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ '''INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InformerForPrediction''', '''InformerModel''', '''InformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
714
"""simple docstring""" import argparse import copy def lowerCamelCase (a_ :Union[str, Any]) -> Tuple: lowercase :Dict = {} with open(a_) as f: for line in f: if line.split()[0] not in dict_of_neighbours: lowercase :List[str] = [] _list.append([line.split()[1], line.split()[2]]) lowercase :Any = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]]) if line.split()[1] not in dict_of_neighbours: lowercase :List[Any] = [] _list.append([line.split()[0], line.split()[2]]) lowercase :Dict = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]]) return dict_of_neighbours def lowerCamelCase (a_ :Any , a_ :Dict) -> Any: with open(a_) as f: lowercase :Any = f.read(1) lowercase :Any = start_node lowercase :Any = [] lowercase :Union[str, Any] = start_node lowercase :int = 0 while visiting not in first_solution: lowercase :int = 1_0000 for k in dict_of_neighbours[visiting]: if int(k[1]) < int(a_) and k[0] not in first_solution: lowercase :str = k[1] lowercase :str = k[0] first_solution.append(a_) lowercase :int = distance_of_first_solution + int(a_) lowercase :Dict = best_node first_solution.append(a_) lowercase :int = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 lowercase :List[str] = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1]) - 1_0000 ) return first_solution, distance_of_first_solution def lowerCamelCase (a_ :List[str] , a_ :str) -> str: lowercase :Any = [] for n in solution[1:-1]: lowercase :int = solution.index(a_) for kn in solution[1:-1]: lowercase :Union[str, Any] = solution.index(a_) if n == kn: continue lowercase :int = copy.deepcopy(a_) lowercase :str = kn lowercase :List[Any] = n lowercase :int = 0 for k in _tmp[:-1]: lowercase :Tuple = _tmp[_tmp.index(a_) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: lowercase :Tuple = distance + int(i[1]) _tmp.append(a_) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp) lowercase :Dict = len(neighborhood_of_solution[0]) - 1 neighborhood_of_solution.sort(key=lambda a_: x[index_of_last_item_in_the_list]) return neighborhood_of_solution def lowerCamelCase (a_ :int , a_ :Optional[int] , a_ :List[Any] , a_ :Any , a_ :Optional[Any]) -> List[Any]: lowercase :Union[str, Any] = 1 lowercase :str = first_solution lowercase :int = [] lowercase :int = distance_of_first_solution lowercase :List[str] = solution while count <= iters: lowercase :Optional[Any] = find_neighborhood(a_ , a_) lowercase :Any = 0 lowercase :Optional[Any] = neighborhood[index_of_best_solution] lowercase :int = len(a_) - 1 lowercase :Dict = False while not found: lowercase :List[str] = 0 while i < len(a_): if best_solution[i] != solution[i]: lowercase :Tuple = best_solution[i] lowercase :Tuple = solution[i] break lowercase :List[str] = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node]) lowercase :Tuple = True lowercase :Optional[int] = best_solution[:-1] lowercase :Any = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: lowercase :Union[str, Any] = cost lowercase :Optional[Any] = solution else: lowercase :Dict = index_of_best_solution + 1 lowercase :int = neighborhood[index_of_best_solution] if len(a_) >= size: tabu_list.pop(0) lowercase :int = count + 1 return best_solution_ever, best_cost def lowerCamelCase (a_ :Tuple=None) -> Any: lowercase :Tuple = generate_neighbours(args.File) lowercase , lowercase :List[str] = generate_first_solution( args.File , a_) lowercase , lowercase :Union[str, Any] = tabu_search( a_ , a_ , a_ , args.Iterations , args.Size , ) print(F"""Best solution: {best_sol}, with total distance: {best_cost}.""") if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser(description='''Tabu Search''') parser.add_argument( '''-f''', '''--File''', type=str, help='''Path to the file containing the data''', required=True, ) parser.add_argument( '''-i''', '''--Iterations''', type=int, help='''How many iterations the algorithm should perform''', required=True, ) parser.add_argument( '''-s''', '''--Size''', type=int, help='''Size of the tabu list''', required=True ) # Pass the arguments to main method main(parser.parse_args())
475
0
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ : Tuple = { "configuration_vivit": ["VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "VivitConfig"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : List[Any] = ["VivitImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Any = [ "VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "VivitModel", "VivitPreTrainedModel", "VivitForVideoClassification", ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys lowerCAmelCase_ : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
489
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase_ : Tuple = logging.get_logger(__name__) def _lowerCamelCase (__lowerCamelCase : str , __lowerCamelCase : Any ) -> Optional[Any]: a__ = b.T a__ = np.sum(np.square(__lowerCamelCase ) , axis=1 ) a__ = np.sum(np.square(__lowerCamelCase ) , axis=0 ) a__ = np.matmul(__lowerCamelCase , __lowerCamelCase ) a__ = aa[:, None] - 2 * ab + ba[None, :] return d def _lowerCamelCase (__lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] ) -> Tuple: a__ = x.reshape(-1 , 3 ) a__ = squared_euclidean_distance(__lowerCamelCase , __lowerCamelCase ) return np.argmin(__lowerCamelCase , axis=1 ) class UpperCamelCase__ ( __lowerCAmelCase ): lowerCAmelCase__ : List[str] = ["pixel_values"] def __init__( self : str , lowerCamelCase : Optional[Union[List[List[int]], np.ndarray]] = None , lowerCamelCase : bool = True , lowerCamelCase : Dict[str, int] = None , lowerCamelCase : PILImageResampling = PILImageResampling.BILINEAR , lowerCamelCase : bool = True , lowerCamelCase : bool = True , **lowerCamelCase : Any , ): '''simple docstring''' super().__init__(**lowerCamelCase ) a__ = size if size is not None else {"height": 2_5_6, "width": 2_5_6} a__ = get_size_dict(lowerCamelCase ) a__ = np.array(lowerCamelCase ) if clusters is not None else None a__ = do_resize a__ = size a__ = resample a__ = do_normalize a__ = do_color_quantize def __a ( self : List[Any] , lowerCamelCase : np.ndarray , lowerCamelCase : Dict[str, int] , lowerCamelCase : PILImageResampling = PILImageResampling.BILINEAR , lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase : Any , ): '''simple docstring''' a__ = get_size_dict(lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F'''Size dictionary must contain both height and width keys. Got {size.keys()}''' ) return resize( lowerCamelCase , size=(size["height"], size["width"]) , resample=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def __a ( self : str , lowerCamelCase : np.ndarray , lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , ): '''simple docstring''' a__ = rescale(image=lowerCamelCase , scale=1 / 127.5 , data_format=lowerCamelCase ) a__ = image - 1 return image def __a ( self : str , lowerCamelCase : ImageInput , lowerCamelCase : bool = None , lowerCamelCase : Dict[str, int] = None , lowerCamelCase : PILImageResampling = None , lowerCamelCase : bool = None , lowerCamelCase : Optional[bool] = None , lowerCamelCase : Optional[Union[List[List[int]], np.ndarray]] = None , lowerCamelCase : Optional[Union[str, TensorType]] = None , lowerCamelCase : Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST , **lowerCamelCase : Union[str, Any] , ): '''simple docstring''' a__ = do_resize if do_resize is not None else self.do_resize a__ = size if size is not None else self.size a__ = get_size_dict(lowerCamelCase ) a__ = resample if resample is not None else self.resample a__ = do_normalize if do_normalize is not None else self.do_normalize a__ = do_color_quantize if do_color_quantize is not None else self.do_color_quantize a__ = clusters if clusters is not None else self.clusters a__ = np.array(lowerCamelCase ) a__ = make_list_of_images(lowerCamelCase ) if not valid_images(lowerCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_color_quantize and clusters is None: raise ValueError("Clusters must be specified if do_color_quantize is True." ) # All transformations expect numpy arrays. a__ = [to_numpy_array(lowerCamelCase ) for image in images] if do_resize: a__ = [self.resize(image=lowerCamelCase , size=lowerCamelCase , resample=lowerCamelCase ) for image in images] if do_normalize: a__ = [self.normalize(image=lowerCamelCase ) for image in images] if do_color_quantize: a__ = [to_channel_dimension_format(lowerCamelCase , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) a__ = np.array(lowerCamelCase ) a__ = color_quantize(lowerCamelCase , lowerCamelCase ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) a__ = images.shape[0] a__ = images.reshape(lowerCamelCase , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. a__ = list(lowerCamelCase ) else: a__ = [to_channel_dimension_format(lowerCamelCase , lowerCamelCase ) for image in images] a__ = {"input_ids": images} return BatchFeature(data=lowerCamelCase , tensor_type=lowerCamelCase )
489
1
import numpy class UpperCAmelCase : def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. _lowerCAmelCase = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. _lowerCAmelCase = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. _lowerCAmelCase = numpy.random.rand(3 , 1 ) # Real output values provided. _lowerCAmelCase = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. _lowerCAmelCase = numpy.zeros(output_array.shape ) def __lowerCAmelCase ( self ): _lowerCAmelCase = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. _lowerCAmelCase = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. _lowerCAmelCase = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def __lowerCAmelCase ( self ): _lowerCAmelCase = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) _lowerCAmelCase = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) _lowerCAmelCase = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): for iteration in range(1 , iterations + 1 ): _lowerCAmelCase = self.feedforward() self.back_propagation() if give_loss: _lowerCAmelCase = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F'''Iteration {iteration} Loss: {loss}''' ) def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = input_arr _lowerCAmelCase = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) _lowerCAmelCase = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) _lowerCAmelCase = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : numpy.ndarray )->numpy.ndarray: return 1 / (1 + numpy.exp(-value )) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : numpy.ndarray )->numpy.ndarray: return (value) * (1 - (value)) def UpperCAmelCase__ ( )->int: _lowerCAmelCase = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. _lowerCAmelCase = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. _lowerCAmelCase = TwoHiddenLayerNeuralNetwork( input_array=_SCREAMING_SNAKE_CASE , output_array=_SCREAMING_SNAKE_CASE ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=_SCREAMING_SNAKE_CASE , iterations=1_0 , give_loss=_SCREAMING_SNAKE_CASE ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
664
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
664
1
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForMaskedImageModeling, HfArgumentParser, Trainer, TrainingArguments, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version UpperCAmelCase__ : int = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt") UpperCAmelCase__ : List[Any] = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys()) UpperCAmelCase__ : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class A : snake_case__ :Optional[str] = field( default='cifar10' , metadata={'help': 'Name of a dataset from the datasets package'} ) snake_case__ :Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) snake_case__ :Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'The column name of the images in the files. If not set, will try to use \'image\' or \'img\'.'} , ) snake_case__ :Optional[str] = field(default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'A folder containing the training data.'} ) snake_case__ :Optional[str] = field(default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'A folder containing the validation data.'} ) snake_case__ :Optional[float] = field( default=0.15 , metadata={'help': 'Percent to split off of train for validation.'} ) snake_case__ :int = field(default=32 , metadata={'help': 'The size of the square patches to use for masking.'} ) snake_case__ :float = field( default=0.6 , metadata={'help': 'Percentage of patches to mask.'} , ) snake_case__ :Optional[int] = field( default=SCREAMING_SNAKE_CASE__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) snake_case__ :Optional[int] = field( default=SCREAMING_SNAKE_CASE__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def __SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" lowerCAmelCase__ = {} if self.train_dir is not None: lowerCAmelCase__ = self.train_dir if self.validation_dir is not None: lowerCAmelCase__ = self.validation_dir lowerCAmelCase__ = data_files if data_files else None @dataclass class A : snake_case__ :str = field( default=SCREAMING_SNAKE_CASE__ , metadata={ 'help': ( 'The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a ' 'checkpoint identifier on the hub. ' 'Don\'t set if you want to train a model from scratch.' ) } , ) snake_case__ :Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(SCREAMING_SNAKE_CASE__ )} , ) snake_case__ :Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) snake_case__ :Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={ 'help': ( 'Override some existing default config settings when a model is trained from scratch. Example: ' 'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index' ) } , ) snake_case__ :Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Where do you want to store (cache) the pretrained models/datasets downloaded from the hub'} , ) snake_case__ :str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) snake_case__ :str = field(default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Name or path of preprocessor config.'} ) snake_case__ :bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) snake_case__ :Optional[int] = field( default=SCREAMING_SNAKE_CASE__ , metadata={ 'help': ( 'The size (resolution) of each image. If not specified, will use `image_size` of the configuration.' ) } , ) snake_case__ :Optional[int] = field( default=SCREAMING_SNAKE_CASE__ , metadata={ 'help': ( 'The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration.' ) } , ) snake_case__ :Optional[int] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Stride to use for the encoder.'} , ) class A : def __init__( self : Any , __magic_name__ : List[Any]=192 , __magic_name__ : int=32 , __magic_name__ : Dict=4 , __magic_name__ : List[Any]=0.6 ): """simple docstring""" lowerCAmelCase__ = input_size lowerCAmelCase__ = mask_patch_size lowerCAmelCase__ = model_patch_size lowerCAmelCase__ = mask_ratio if self.input_size % self.mask_patch_size != 0: raise ValueError("Input size must be divisible by mask patch size" ) if self.mask_patch_size % self.model_patch_size != 0: raise ValueError("Mask patch size must be divisible by model patch size" ) lowerCAmelCase__ = self.input_size // self.mask_patch_size lowerCAmelCase__ = self.mask_patch_size // self.model_patch_size lowerCAmelCase__ = self.rand_size**2 lowerCAmelCase__ = int(np.ceil(self.token_count * self.mask_ratio ) ) def __call__( self : Optional[int] ): """simple docstring""" lowerCAmelCase__ = np.random.permutation(self.token_count )[: self.mask_count] lowerCAmelCase__ = np.zeros(self.token_count , dtype=__magic_name__ ) lowerCAmelCase__ = 1 lowerCAmelCase__ = mask.reshape((self.rand_size, self.rand_size) ) lowerCAmelCase__ = mask.repeat(self.scale , axis=0 ).repeat(self.scale , axis=1 ) return torch.tensor(mask.flatten() ) def A ( UpperCamelCase_ : Union[str, Any] ) -> List[str]: '''simple docstring''' lowerCAmelCase__ = torch.stack([example["pixel_values"] for example in examples] ) lowerCAmelCase__ = torch.stack([example["mask"] for example in examples] ) return {"pixel_values": pixel_values, "bool_masked_pos": mask} def A ( ) -> Tuple: '''simple docstring''' lowerCAmelCase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_mim" , UpperCamelCase_ , UpperCamelCase_ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCAmelCase__ = training_args.get_process_log_level() logger.setLevel(UpperCamelCase_ ) transformers.utils.logging.set_verbosity(UpperCamelCase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. lowerCAmelCase__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCAmelCase__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Initialize our dataset. lowerCAmelCase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. lowerCAmelCase__ = None if "validation" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , UpperCamelCase_ ) and data_args.train_val_split > 0.0: lowerCAmelCase__ = ds["train"].train_test_split(data_args.train_val_split ) lowerCAmelCase__ = split["train"] lowerCAmelCase__ = split["test"] # Create config # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCAmelCase__ = { "cache_dir": model_args.cache_dir, "revision": model_args.model_revision, "use_auth_token": True if model_args.use_auth_token else None, } if model_args.config_name_or_path: lowerCAmelCase__ = AutoConfig.from_pretrained(model_args.config_name_or_path , **UpperCamelCase_ ) elif model_args.model_name_or_path: lowerCAmelCase__ = AutoConfig.from_pretrained(model_args.model_name_or_path , **UpperCamelCase_ ) else: lowerCAmelCase__ = CONFIG_MAPPING[model_args.model_type]() logger.warning("You are instantiating a new config instance from scratch." ) if model_args.config_overrides is not None: logger.info(F"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(F"""New config: {config}""" ) # make sure the decoder_type is "simmim" (only relevant for BEiT) if hasattr(UpperCamelCase_ , "decoder_type" ): lowerCAmelCase__ = "simmim" # adapt config lowerCAmelCase__ = model_args.image_size if model_args.image_size is not None else config.image_size lowerCAmelCase__ = model_args.patch_size if model_args.patch_size is not None else config.patch_size lowerCAmelCase__ = ( model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride ) config.update( { "image_size": model_args.image_size, "patch_size": model_args.patch_size, "encoder_stride": model_args.encoder_stride, } ) # create image processor if model_args.image_processor_name: lowerCAmelCase__ = AutoImageProcessor.from_pretrained(model_args.image_processor_name , **UpperCamelCase_ ) elif model_args.model_name_or_path: lowerCAmelCase__ = AutoImageProcessor.from_pretrained(model_args.model_name_or_path , **UpperCamelCase_ ) else: lowerCAmelCase__ = { conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items() } lowerCAmelCase__ = IMAGE_PROCESSOR_TYPES[model_args.model_type]() # create model if model_args.model_name_or_path: lowerCAmelCase__ = AutoModelForMaskedImageModeling.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=UpperCamelCase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("Training new model from scratch" ) lowerCAmelCase__ = AutoModelForMaskedImageModeling.from_config(UpperCamelCase_ ) if training_args.do_train: lowerCAmelCase__ = ds["train"].column_names else: lowerCAmelCase__ = ds["validation"].column_names if data_args.image_column_name is not None: lowerCAmelCase__ = data_args.image_column_name elif "image" in column_names: lowerCAmelCase__ = "image" elif "img" in column_names: lowerCAmelCase__ = "img" else: lowerCAmelCase__ = column_names[0] # transformations as done in original SimMIM paper # source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py lowerCAmelCase__ = Compose( [ Lambda(lambda UpperCamelCase_ : img.convert("RGB" ) if img.mode != "RGB" else img ), RandomResizedCrop(model_args.image_size , scale=(0.67, 1.0) , ratio=(3.0 / 4.0, 4.0 / 3.0) ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) # create mask generator lowerCAmelCase__ = MaskGenerator( input_size=model_args.image_size , mask_patch_size=data_args.mask_patch_size , model_patch_size=model_args.patch_size , mask_ratio=data_args.mask_ratio , ) def preprocess_images(UpperCamelCase_ : List[Any] ): lowerCAmelCase__ = [transforms(UpperCamelCase_ ) for image in examples[image_column_name]] lowerCAmelCase__ = [mask_generator() for i in range(len(examples[image_column_name] ) )] return examples if training_args.do_train: if "train" not in ds: raise ValueError("--do_train requires a train dataset" ) if data_args.max_train_samples is not None: lowerCAmelCase__ = ds["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(UpperCamelCase_ ) if training_args.do_eval: if "validation" not in ds: raise ValueError("--do_eval requires a validation dataset" ) if data_args.max_eval_samples is not None: lowerCAmelCase__ = ( ds["validation"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(UpperCamelCase_ ) # Initialize our trainer lowerCAmelCase__ = Trainer( model=UpperCamelCase_ , args=UpperCamelCase_ , train_dataset=ds["train"] if training_args.do_train else None , eval_dataset=ds["validation"] if training_args.do_eval else None , tokenizer=UpperCamelCase_ , data_collator=UpperCamelCase_ , ) # Training if training_args.do_train: lowerCAmelCase__ = None if training_args.resume_from_checkpoint is not None: lowerCAmelCase__ = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCAmelCase__ = last_checkpoint lowerCAmelCase__ = trainer.train(resume_from_checkpoint=UpperCamelCase_ ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowerCAmelCase__ = trainer.evaluate() trainer.log_metrics("eval" , UpperCamelCase_ ) trainer.save_metrics("eval" , UpperCamelCase_ ) # Write model card and (optionally) push to hub lowerCAmelCase__ = { "finetuned_from": model_args.model_name_or_path, "tasks": "masked-image-modeling", "dataset": data_args.dataset_name, "tags": ["masked-image-modeling"], } if training_args.push_to_hub: trainer.push_to_hub(**UpperCamelCase_ ) else: trainer.create_model_card(**UpperCamelCase_ ) if __name__ == "__main__": main()
48
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __a = { "configuration_gpt_bigcode": ["GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTBigCodeConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTBigCodeForSequenceClassification", "GPTBigCodeForTokenClassification", "GPTBigCodeForCausalLM", "GPTBigCodeModel", "GPTBigCodePreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
374
0
'''simple docstring''' import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class SCREAMING_SNAKE_CASE ( a_ , unittest.TestCase ): """simple docstring""" lowerCamelCase : int =CanineTokenizer lowerCamelCase : str =False def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: """simple docstring""" super().setUp() __lowerCAmelCase : List[str] = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: """simple docstring""" return CanineTokenizer.from_pretrained("""google/canine-s""" ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , **lowerCAmelCase : Any ) -> CanineTokenizer: """simple docstring""" __lowerCAmelCase : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase ) __lowerCAmelCase : Tuple = 10_24 return tokenizer @require_torch def SCREAMING_SNAKE_CASE ( self : str ) -> Dict: """simple docstring""" __lowerCAmelCase : str = self.canine_tokenizer __lowerCAmelCase : Union[str, Any] = ["""Life is like a box of chocolates.""", """You never know what you're gonna get."""] # fmt: off __lowerCAmelCase : str = [5_73_44, 76, 1_05, 1_02, 1_01, 32, 1_05, 1_15, 32, 1_08, 1_05, 1_07, 1_01, 32, 97, 32, 98, 1_11, 1_20, 32, 1_11, 1_02, 32, 99, 1_04, 1_11, 99, 1_11, 1_08, 97, 1_16, 1_01, 1_15, 46, 5_73_45, 0, 0, 0, 0] # fmt: on __lowerCAmelCase : List[Any] = tokenizer(lowerCAmelCase , padding=lowerCAmelCase , return_tensors="""pt""" ) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : List[Any] = list(batch.input_ids.numpy()[0] ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def SCREAMING_SNAKE_CASE ( self : Any ) -> Any: """simple docstring""" __lowerCAmelCase : Tuple = self.canine_tokenizer __lowerCAmelCase : List[Any] = ["""Once there was a man.""", """He wrote a test in HuggingFace Tranformers."""] __lowerCAmelCase : Union[str, Any] = tokenizer(lowerCAmelCase , padding=lowerCAmelCase , return_tensors="""pt""" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("""input_ids""" , lowerCAmelCase ) self.assertIn("""attention_mask""" , lowerCAmelCase ) self.assertIn("""token_type_ids""" , lowerCAmelCase ) @require_torch def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: """simple docstring""" __lowerCAmelCase : int = self.canine_tokenizer __lowerCAmelCase : Optional[int] = [ """What's the weater?""", """It's about 25 degrees.""", ] __lowerCAmelCase : List[str] = tokenizer( text_target=lowerCAmelCase , max_length=32 , padding="""max_length""" , truncation=lowerCAmelCase , return_tensors="""pt""" ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) def SCREAMING_SNAKE_CASE ( self : int ) -> Tuple: """simple docstring""" __lowerCAmelCase : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __lowerCAmelCase : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __lowerCAmelCase : List[str] = tempfile.mkdtemp() __lowerCAmelCase : List[str] = """ He is very happy, UNwant\u00E9d,running""" __lowerCAmelCase : Optional[Any] = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) tokenizer.save_pretrained(lowerCAmelCase ) __lowerCAmelCase : List[Any] = tokenizer.__class__.from_pretrained(lowerCAmelCase ) __lowerCAmelCase : Optional[Any] = after_tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) shutil.rmtree(lowerCAmelCase ) __lowerCAmelCase : List[str] = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __lowerCAmelCase : Union[str, Any] = tempfile.mkdtemp() __lowerCAmelCase : Optional[Any] = """ He is very happy, UNwant\u00E9d,running""" __lowerCAmelCase : int = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: __lowerCAmelCase : Dict = chr(0Xe007 ) additional_special_tokens.append(lowerCAmelCase ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) __lowerCAmelCase : Tuple = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) tokenizer.save_pretrained(lowerCAmelCase ) __lowerCAmelCase : Optional[Any] = tokenizer.__class__.from_pretrained(lowerCAmelCase ) __lowerCAmelCase : Any = after_tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) self.assertIn(lowerCAmelCase , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __lowerCAmelCase : Union[str, Any] = tokenizer.__class__.from_pretrained(lowerCAmelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Optional[int] = self.get_tokenizers(do_lower_case=lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __lowerCAmelCase : List[Any] = self.get_clean_sequence(lowerCAmelCase ) # a special token for Canine can be defined as follows: __lowerCAmelCase : str = 0Xe005 __lowerCAmelCase : Optional[int] = chr(lowerCAmelCase ) tokenizer.add_special_tokens({"""cls_token""": special_token} ) __lowerCAmelCase : Optional[Any] = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) self.assertEqual(len(lowerCAmelCase ) , 1 ) __lowerCAmelCase : str = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=lowerCAmelCase ) __lowerCAmelCase : List[Any] = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) __lowerCAmelCase : Optional[Any] = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) __lowerCAmelCase : int = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) self.assertEqual(lowerCAmelCase , input_encoded + special_token_id ) __lowerCAmelCase : str = tokenizer.decode(lowerCAmelCase , skip_special_tokens=lowerCAmelCase ) self.assertTrue(special_token not in decoded ) def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = self.get_tokenizers(do_lower_case=lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __lowerCAmelCase : List[str] = chr(0Xe005 ) __lowerCAmelCase : Optional[int] = chr(0Xe006 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=lowerCAmelCase ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"""additional_special_tokens""": [SPECIAL_TOKEN_2]} ) __lowerCAmelCase : Tuple = tokenizer.tokenize(lowerCAmelCase ) __lowerCAmelCase : Any = tokenizer.tokenize(lowerCAmelCase ) self.assertEqual(len(lowerCAmelCase ) , 1 ) self.assertEqual(len(lowerCAmelCase ) , 1 ) self.assertEqual(token_a[0] , lowerCAmelCase ) self.assertEqual(token_a[0] , lowerCAmelCase ) @require_tokenizers def SCREAMING_SNAKE_CASE ( self : Any ) -> str: """simple docstring""" __lowerCAmelCase : List[Any] = self.get_tokenizers(do_lower_case=lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # a special token for Canine can be defined as follows: __lowerCAmelCase : int = 0Xe006 __lowerCAmelCase : Dict = chr(lowerCAmelCase ) __lowerCAmelCase : Tuple = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase ) tokenizer.add_special_tokens({"""additional_special_tokens""": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(lowerCAmelCase ) tokenizer.from_pretrained(lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : int = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowerCAmelCase ) with open(os.path.join(lowerCAmelCase , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file: __lowerCAmelCase : Tuple = json.load(lowerCAmelCase ) with open(os.path.join(lowerCAmelCase , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file: __lowerCAmelCase : int = json.load(lowerCAmelCase ) # a special token for Canine can be defined as follows: __lowerCAmelCase : Optional[Any] = 0Xe006 __lowerCAmelCase : str = chr(lowerCAmelCase ) __lowerCAmelCase : Optional[Any] = [new_token_a] __lowerCAmelCase : Optional[Any] = [new_token_a] with open(os.path.join(lowerCAmelCase , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(lowerCAmelCase , lowerCAmelCase ) with open(os.path.join(lowerCAmelCase , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(lowerCAmelCase , lowerCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __lowerCAmelCase : Tuple = tokenizer_class.from_pretrained(lowerCAmelCase , extra_ids=0 ) self.assertIn(lowerCAmelCase , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) __lowerCAmelCase : Union[str, Any] = 0Xe007 __lowerCAmelCase : List[Any] = chr(lowerCAmelCase ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __lowerCAmelCase : Any = [AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase )] __lowerCAmelCase : Tuple = tokenizer_class.from_pretrained( lowerCAmelCase , additional_special_tokens=lowerCAmelCase , extra_ids=0 ) self.assertIn(lowerCAmelCase , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: """simple docstring""" __lowerCAmelCase : Union[str, Any] = self.get_tokenizers(do_lower_case=lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __lowerCAmelCase : Any = """hello world""" if self.space_between_special_tokens: __lowerCAmelCase : List[Any] = """[CLS] hello world [SEP]""" else: __lowerCAmelCase : Any = input __lowerCAmelCase : Dict = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) __lowerCAmelCase : Union[str, Any] = tokenizer.decode(lowerCAmelCase , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(lowerCAmelCase , [output, output.lower()] ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __lowerCAmelCase : int = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __lowerCAmelCase : int = [ """bos_token""", """eos_token""", """unk_token""", """sep_token""", """pad_token""", """cls_token""", """mask_token""", ] __lowerCAmelCase : str = """a""" __lowerCAmelCase : Union[str, Any] = ord(lowerCAmelCase ) for attr in attributes_list: setattr(lowerCAmelCase , attr + """_id""" , lowerCAmelCase ) self.assertEqual(getattr(lowerCAmelCase , lowerCAmelCase ) , lowerCAmelCase ) self.assertEqual(getattr(lowerCAmelCase , attr + """_id""" ) , lowerCAmelCase ) setattr(lowerCAmelCase , attr + """_id""" , lowerCAmelCase ) self.assertEqual(getattr(lowerCAmelCase , lowerCAmelCase ) , lowerCAmelCase ) self.assertEqual(getattr(lowerCAmelCase , attr + """_id""" ) , lowerCAmelCase ) setattr(lowerCAmelCase , """additional_special_tokens_ids""" , [] ) self.assertListEqual(getattr(lowerCAmelCase , """additional_special_tokens""" ) , [] ) self.assertListEqual(getattr(lowerCAmelCase , """additional_special_tokens_ids""" ) , [] ) __lowerCAmelCase : str = 0Xe006 __lowerCAmelCase : Optional[int] = chr(lowerCAmelCase ) setattr(lowerCAmelCase , """additional_special_tokens_ids""" , [additional_special_token_id] ) self.assertListEqual(getattr(lowerCAmelCase , """additional_special_tokens""" ) , [additional_special_token] ) self.assertListEqual(getattr(lowerCAmelCase , """additional_special_tokens_ids""" ) , [additional_special_token_id] ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : int ) -> Union[str, Any]: """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : str ) -> Dict: """simple docstring""" pass
710
import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def snake_case_ (__A : int ) -> str: __lowerCAmelCase : str = int(__A ) __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase : str = t // 3_6_0_0, (t // 6_0) % 6_0, t % 6_0 return f'''{h}:{m:02d}:{s:02d}''' if h != 0 else f'''{m:02d}:{s:02d}''' def snake_case_ (__A : Dict , __A : Any , __A : List[str] , __A : Optional[int] , __A : Dict=3_0_0 ) -> int: # docstyle-ignore return f''' <div> {prefix} <progress value=\'{value}\' max=\'{total}\' style=\'width:{width}px; height:20px; vertical-align: middle;\'></progress> {label} </div> ''' def snake_case_ (__A : Optional[Any] ) -> Tuple: __lowerCAmelCase : List[Any] = """<table border=\"1\" class=\"dataframe\">\n""" html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += f''' <th>{i}</th>\n''' html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: __lowerCAmelCase : Any = f'''{elt:.6f}''' if isinstance(__A , __A ) else str(__A ) html_code += f''' <td>{elt}</td>\n''' html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class SCREAMING_SNAKE_CASE : """simple docstring""" lowerCamelCase : Optional[int] =5 lowerCamelCase : Tuple =0.2 def __init__( self : Tuple , lowerCAmelCase : int , lowerCAmelCase : Optional[str] = None , lowerCAmelCase : bool = True , lowerCAmelCase : Optional["NotebookTrainingTracker"] = None , lowerCAmelCase : int = 3_00 , ) -> int: """simple docstring""" __lowerCAmelCase : Optional[int] = total __lowerCAmelCase : Dict = """""" if prefix is None else prefix __lowerCAmelCase : str = leave __lowerCAmelCase : Optional[Any] = parent __lowerCAmelCase : Optional[Any] = width __lowerCAmelCase : List[str] = None __lowerCAmelCase : Union[str, Any] = None __lowerCAmelCase : List[str] = None def SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase : int , lowerCAmelCase : bool = False , lowerCAmelCase : str = None ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : str = value if comment is not None: __lowerCAmelCase : Optional[Any] = comment if self.last_value is None: __lowerCAmelCase : List[Any] = time.time() __lowerCAmelCase : Optional[int] = value __lowerCAmelCase : Optional[int] = None __lowerCAmelCase : Any = self.warmup __lowerCAmelCase : List[str] = 1 self.update_bar(lowerCAmelCase ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ): if self.first_calls > 0: self.first_calls -= 1 __lowerCAmelCase : Optional[Any] = time.time() __lowerCAmelCase : Optional[int] = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: __lowerCAmelCase : Optional[Any] = self.elapsed_time / (value - self.start_value) else: __lowerCAmelCase : str = None if value >= self.total: __lowerCAmelCase : Any = self.total __lowerCAmelCase : List[str] = None if not self.leave: self.close() elif self.average_time_per_item is not None: __lowerCAmelCase : List[str] = self.average_time_per_item * (self.total - value) self.update_bar(lowerCAmelCase ) __lowerCAmelCase : str = value __lowerCAmelCase : Union[str, Any] = current_time if self.average_time_per_item is None: __lowerCAmelCase : Optional[Any] = 1 else: __lowerCAmelCase : List[str] = max(int(self.update_every / self.average_time_per_item ) , 1 ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[int]=None ) -> Optional[int]: """simple docstring""" __lowerCAmelCase : List[str] = """ """ * (len(str(self.total ) ) - len(str(lowerCAmelCase ) )) + str(lowerCAmelCase ) if self.elapsed_time is None: __lowerCAmelCase : List[str] = f'''[{spaced_value}/{self.total} : < :''' elif self.predicted_remaining is None: __lowerCAmelCase : Dict = f'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )}''' else: __lowerCAmelCase : Dict = ( f'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <''' f''' {format_time(self.predicted_remaining )}''' ) self.label += f''', {1/self.average_time_per_item:.2f} it/s''' self.label += "]" if self.comment is None or len(self.comment ) == 0 else f''', {self.comment}]''' self.display() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __lowerCAmelCase : str = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: __lowerCAmelCase : List[str] = disp.display(disp.HTML(self.html_code ) , display_id=lowerCAmelCase ) else: self.output.update(disp.HTML(self.html_code ) ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: """simple docstring""" if self.parent is None and self.output is not None: self.output.update(disp.HTML("""""" ) ) class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" def __init__( self : Union[str, Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Optional[Any]=None ) -> Any: """simple docstring""" super().__init__(lowerCAmelCase ) __lowerCAmelCase : str = None if column_names is None else [column_names] __lowerCAmelCase : List[str] = None def SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: """simple docstring""" __lowerCAmelCase : Any = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: __lowerCAmelCase : Optional[int] = disp.display(disp.HTML(self.html_code ) , display_id=lowerCAmelCase ) else: self.output.update(disp.HTML(self.html_code ) ) def SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase : Tuple ) -> Optional[Any]: """simple docstring""" if self.inner_table is None: __lowerCAmelCase : Tuple = [list(values.keys() ), list(values.values() )] else: __lowerCAmelCase : Dict = self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(lowerCAmelCase ) __lowerCAmelCase : List[str] = columns self.inner_table.append([values[c] for c in columns] ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : Tuple=None , lowerCAmelCase : List[str]=3_00 ) -> Tuple: """simple docstring""" __lowerCAmelCase : Union[str, Any] = NotebookProgressBar(lowerCAmelCase , prefix=lowerCAmelCase , parent=self , width=lowerCAmelCase ) return self.child_bar def SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: """simple docstring""" __lowerCAmelCase : Optional[Any] = None self.display() class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" def __init__( self : Optional[int] ) -> Tuple: """simple docstring""" __lowerCAmelCase : int = None __lowerCAmelCase : Any = None __lowerCAmelCase : Optional[Any] = False def SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : int , **lowerCAmelCase : Any ) -> str: """simple docstring""" __lowerCAmelCase : int = """Epoch""" if args.evaluation_strategy == IntervalStrategy.EPOCH else """Step""" __lowerCAmelCase : Tuple = 0 __lowerCAmelCase : str = 0 __lowerCAmelCase : List[Any] = [self.first_column] + ["""Training Loss"""] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append("""Validation Loss""" ) __lowerCAmelCase : int = NotebookTrainingTracker(state.max_steps , lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : int , **lowerCAmelCase : Tuple ) -> List[Any]: """simple docstring""" __lowerCAmelCase : Any = int(state.epoch ) if int(state.epoch ) == state.epoch else f'''{state.epoch:.2f}''' self.training_tracker.update( state.global_step + 1 , comment=f'''Epoch {epoch}/{state.num_train_epochs}''' , force_update=self._force_next_update , ) __lowerCAmelCase : Optional[Any] = False def SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Tuple=None , **lowerCAmelCase : Optional[int] ) -> List[str]: """simple docstring""" if not has_length(lowerCAmelCase ): return if self.prediction_bar is None: if self.training_tracker is not None: __lowerCAmelCase : List[str] = self.training_tracker.add_child(len(lowerCAmelCase ) ) else: __lowerCAmelCase : List[Any] = NotebookProgressBar(len(lowerCAmelCase ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple ) -> Optional[int]: """simple docstring""" if self.prediction_bar is not None: self.prediction_bar.close() __lowerCAmelCase : List[str] = None def SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase : str , lowerCAmelCase : List[str] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Any=None , **lowerCAmelCase : Tuple ) -> List[str]: """simple docstring""" if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: __lowerCAmelCase : List[str] = {"""Training Loss""": logs["""loss"""]} # First column is necessarily Step sine we're not in epoch eval strategy __lowerCAmelCase : Tuple = state.global_step self.training_tracker.write_line(lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase : List[str] , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : int=None , **lowerCAmelCase : Union[str, Any] ) -> str: """simple docstring""" if self.training_tracker is not None: __lowerCAmelCase : Union[str, Any] = {"""Training Loss""": """No log""", """Validation Loss""": """No log"""} for log in reversed(state.log_history ): if "loss" in log: __lowerCAmelCase : int = log["""loss"""] break if self.first_column == "Epoch": __lowerCAmelCase : int = int(state.epoch ) else: __lowerCAmelCase : Optional[int] = state.global_step __lowerCAmelCase : Union[str, Any] = """eval""" for k in metrics: if k.endswith("""_loss""" ): __lowerCAmelCase : Dict = re.sub(r"""\_loss$""" , """""" , lowerCAmelCase ) __lowerCAmelCase : Tuple = metrics.pop("""total_flos""" , lowerCAmelCase ) __lowerCAmelCase : List[Any] = metrics.pop("""epoch""" , lowerCAmelCase ) __lowerCAmelCase : Optional[Any] = metrics.pop(f'''{metric_key_prefix}_runtime''' , lowerCAmelCase ) __lowerCAmelCase : Tuple = metrics.pop(f'''{metric_key_prefix}_samples_per_second''' , lowerCAmelCase ) __lowerCAmelCase : List[Any] = metrics.pop(f'''{metric_key_prefix}_steps_per_second''' , lowerCAmelCase ) __lowerCAmelCase : Dict = metrics.pop(f'''{metric_key_prefix}_jit_compilation_time''' , lowerCAmelCase ) for k, v in metrics.items(): if k == f'''{metric_key_prefix}_loss''': __lowerCAmelCase : Tuple = v else: __lowerCAmelCase : Any = k.split("""_""" ) __lowerCAmelCase : Optional[Any] = """ """.join([part.capitalize() for part in splits[1:]] ) __lowerCAmelCase : List[str] = v self.training_tracker.write_line(lowerCAmelCase ) self.training_tracker.remove_child() __lowerCAmelCase : int = None # Evaluation takes a long time so we should force the next update. __lowerCAmelCase : str = True def SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : List[str] , lowerCAmelCase : Dict , **lowerCAmelCase : Any ) -> Tuple: """simple docstring""" self.training_tracker.update( state.global_step , comment=f'''Epoch {int(state.epoch )}/{state.num_train_epochs}''' , force_update=lowerCAmelCase ) __lowerCAmelCase : Optional[int] = None
218
0
def A_ ( lowercase_ , lowercase_ ) -> str: _snake_case : str = '''''' for word_or_phrase in separated: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise Exception('''join() accepts only strings to be joined''' ) joined += word_or_phrase + separator return joined.strip(__UpperCAmelCase ) if __name__ == "__main__": from doctest import testmod testmod()
326
'''simple docstring''' from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def __magic_name__ ( ) -> Union[str, Any]: '''simple docstring''' import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join __SCREAMING_SNAKE_CASE = """__test_patch_submodule_mock__""" with patch_submodule(_test_patching , """os.path.join""" , __UpperCAmelCase ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def __magic_name__ ( ) -> Tuple: '''simple docstring''' assert _test_patching.open is open __SCREAMING_SNAKE_CASE = """__test_patch_submodule_builtin_mock__""" # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , """open""" , __UpperCAmelCase ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def __magic_name__ ( ) -> Any: '''simple docstring''' __SCREAMING_SNAKE_CASE = """__test_patch_submodule_missing_mock__""" with patch_submodule(_test_patching , """pandas.read_csv""" , __UpperCAmelCase ): pass def __magic_name__ ( ) -> Dict: '''simple docstring''' __SCREAMING_SNAKE_CASE = """__test_patch_submodule_missing_builtin_mock__""" # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , """len""" , __UpperCAmelCase ) is None with patch_submodule(_test_patching , """len""" , __UpperCAmelCase ): assert _test_patching.len is mock assert _test_patching.len is len def __magic_name__ ( ) -> Tuple: '''simple docstring''' __SCREAMING_SNAKE_CASE = """__test_patch_submodule_start_and_stop_mock__""" __SCREAMING_SNAKE_CASE = patch_submodule(_test_patching , """open""" , __UpperCAmelCase ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def __magic_name__ ( ) -> Union[str, Any]: '''simple docstring''' from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join __SCREAMING_SNAKE_CASE = """__test_patch_submodule_successive_join__""" __SCREAMING_SNAKE_CASE = """__test_patch_submodule_successive_dirname__""" __SCREAMING_SNAKE_CASE = """__test_patch_submodule_successive_rename__""" assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , """os.path.join""" , __UpperCAmelCase ): with patch_submodule(_test_patching , """os.rename""" , __UpperCAmelCase ): with patch_submodule(_test_patching , """os.path.dirname""" , __UpperCAmelCase ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , """os.rename""" , __UpperCAmelCase ): with patch_submodule(_test_patching , """os.path.join""" , __UpperCAmelCase ): with patch_submodule(_test_patching , """os.path.dirname""" , __UpperCAmelCase ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def __magic_name__ ( ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE = """__test_patch_submodule_doesnt_exist_mock__""" with patch_submodule(_test_patching , """__module_that_doesn_exist__.__attribute_that_doesn_exist__""" , __UpperCAmelCase ): pass with patch_submodule(_test_patching , """os.__attribute_that_doesn_exist__""" , __UpperCAmelCase ): pass
109
0
"""simple docstring""" from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) # TODO Update this lowerCAmelCase__ = { '''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''', # See all ESM models at https://huggingface.co/models?filter=esm } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): """simple docstring""" a : Union[str, Any] ="esm" def __init__( self , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3_072 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=1_026 , snake_case__=0.02 , snake_case__=1e-12 , snake_case__="absolute" , snake_case__=True , snake_case__=None , snake_case__=False , snake_case__=False , snake_case__=None , snake_case__=None , **snake_case__ , ): """simple docstring""" super().__init__(pad_token_id=snake_case__ , mask_token_id=snake_case__ , **snake_case__ ) lowerCAmelCase : List[str] = vocab_size lowerCAmelCase : int = hidden_size lowerCAmelCase : Union[str, Any] = num_hidden_layers lowerCAmelCase : List[str] = num_attention_heads lowerCAmelCase : List[str] = intermediate_size lowerCAmelCase : Union[str, Any] = hidden_dropout_prob lowerCAmelCase : List[str] = attention_probs_dropout_prob lowerCAmelCase : List[str] = max_position_embeddings lowerCAmelCase : List[str] = initializer_range lowerCAmelCase : Optional[Any] = layer_norm_eps lowerCAmelCase : Optional[int] = position_embedding_type lowerCAmelCase : Optional[int] = use_cache lowerCAmelCase : Optional[int] = emb_layer_norm_before lowerCAmelCase : List[str] = token_dropout lowerCAmelCase : Optional[int] = is_folding_model if is_folding_model: if esmfold_config is None: logger.info("No esmfold_config supplied for folding model, using default values." ) lowerCAmelCase : Dict = EsmFoldConfig() elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = EsmFoldConfig(**snake_case__ ) lowerCAmelCase : Dict = esmfold_config if vocab_list is None: logger.warning("No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!" ) lowerCAmelCase : List[str] = get_default_vocab_list() else: lowerCAmelCase : List[Any] = vocab_list else: lowerCAmelCase : List[Any] = None lowerCAmelCase : List[str] = None if self.esmfold_config is not None and getattr(self.esmfold_config , "use_esm_attn_map" , snake_case__ ): raise ValueError("The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!" ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = super().to_dict() if isinstance(self.esmfold_config , snake_case__ ): lowerCAmelCase : Dict = self.esmfold_config.to_dict() return output @dataclass class SCREAMING_SNAKE_CASE__ : """simple docstring""" a : List[Any] =None a : Optional[int] =True a : int =False a : int =False a : Union[str, Any] =False a : str =0 a : Union[str, Any] =True a : Optional[int] =False a : List[Any] =1_28 a : str =None def lowercase__ ( self ): """simple docstring""" if self.trunk is None: lowerCAmelCase : Dict = TrunkConfig() elif isinstance(self.trunk , snake_case__ ): lowerCAmelCase : int = TrunkConfig(**self.trunk ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = asdict(self ) lowerCAmelCase : Any = self.trunk.to_dict() return output @dataclass class SCREAMING_SNAKE_CASE__ : """simple docstring""" a : int =48 a : int =10_24 a : Union[str, Any] =1_28 a : Optional[int] =32 a : Optional[int] =32 a : int =32 a : Optional[int] =0 a : Any =0 a : Dict =False a : List[Any] =4 a : List[Any] =1_28 a : Any =None def lowercase__ ( self ): """simple docstring""" if self.structure_module is None: lowerCAmelCase : str = StructureModuleConfig() elif isinstance(self.structure_module , snake_case__ ): lowerCAmelCase : Optional[int] = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f"""`max_recycles` should be positive, got {self.max_recycles}.""" ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( "`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got" f""" {self.sequence_state_dim} and {self.sequence_state_dim}.""" ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( "`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got" f""" {self.pairwise_state_dim} and {self.pairwise_state_dim}.""" ) lowerCAmelCase : Union[str, Any] = self.sequence_state_dim // self.sequence_head_width lowerCAmelCase : List[Any] = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( "`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got" f""" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.""" ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( "`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got" f""" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.""" ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f"""`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.""" ) if self.dropout >= 0.4: raise ValueError(f"""`dropout` should not be greater than 0.4, got {self.dropout}.""" ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = asdict(self ) lowerCAmelCase : Optional[int] = self.structure_module.to_dict() return output @dataclass class SCREAMING_SNAKE_CASE__ : """simple docstring""" a : int =3_84 a : str =1_28 a : Union[str, Any] =16 a : Any =1_28 a : Optional[int] =12 a : Union[str, Any] =4 a : int =8 a : Tuple =0.1 a : Any =8 a : Union[str, Any] =1 a : List[Any] =2 a : Dict =7 a : Optional[int] =10 a : Dict =1E-8 a : Optional[int] =1E5 def lowercase__ ( self ): """simple docstring""" return asdict(self ) def a__ ( ): '''simple docstring''' return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
715
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' lowerCAmelCase : Optional[int] = len(SCREAMING_SNAKE_CASE ) while cur > 1: # Find the maximum number in arr lowerCAmelCase : List[str] = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi lowerCAmelCase : str = arr[mi::-1] + arr[mi + 1 : len(SCREAMING_SNAKE_CASE )] # Reverse whole list lowerCAmelCase : str = arr[cur - 1 :: -1] + arr[cur : len(SCREAMING_SNAKE_CASE )] cur -= 1 return arr if __name__ == "__main__": lowerCAmelCase__ = input('''Enter numbers separated by a comma:\n''').strip() lowerCAmelCase__ = [int(item) for item in user_input.split(''',''')] print(pancake_sort(unsorted))
681
0
"""simple docstring""" import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) a =logging.getLogger(__name__) class __UpperCAmelCase ( __lowerCAmelCase ): def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None ): lowerCamelCase__ =self.layer[current_layer](_lowerCamelCase , _lowerCamelCase , head_mask[current_layer] ) lowerCamelCase__ =layer_outputs[0] return hidden_states @add_start_docstrings( '''The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.''' , __lowerCAmelCase , ) class __UpperCAmelCase ( __lowerCAmelCase ): def __init__( self , _lowerCamelCase ): super().__init__(_lowerCamelCase ) lowerCamelCase__ =BertEncoderWithPabee(_lowerCamelCase ) self.init_weights() lowerCamelCase__ =0 lowerCamelCase__ =0 lowerCamelCase__ =0 lowerCamelCase__ =0 def _a ( self , _lowerCamelCase ): lowerCamelCase__ =threshold def _a ( self , _lowerCamelCase ): lowerCamelCase__ =patience def _a ( self ): lowerCamelCase__ =0 lowerCamelCase__ =0 def _a ( self ): lowerCamelCase__ =self.inference_layers_num / self.inference_instances_num lowerCamelCase__ =( F'''*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =''' F''' {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***''' ) print(_lowerCamelCase ) @add_start_docstrings_to_model_forward(_lowerCamelCase ) def _a ( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=False , ): if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time" ) elif input_ids is not None: lowerCamelCase__ =input_ids.size() elif inputs_embeds is not None: lowerCamelCase__ =inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds" ) lowerCamelCase__ =input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: lowerCamelCase__ =torch.ones(_lowerCamelCase , device=_lowerCamelCase ) if token_type_ids is None: lowerCamelCase__ =torch.zeros(_lowerCamelCase , dtype=torch.long , device=_lowerCamelCase ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. lowerCamelCase__ =self.get_extended_attention_mask(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ =encoder_hidden_states.size() lowerCamelCase__ =(encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: lowerCamelCase__ =torch.ones(_lowerCamelCase , device=_lowerCamelCase ) lowerCamelCase__ =self.invert_attention_mask(_lowerCamelCase ) else: lowerCamelCase__ =None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] lowerCamelCase__ =self.get_head_mask(_lowerCamelCase , self.config.num_hidden_layers ) lowerCamelCase__ =self.embeddings( input_ids=_lowerCamelCase , position_ids=_lowerCamelCase , token_type_ids=_lowerCamelCase , inputs_embeds=_lowerCamelCase ) lowerCamelCase__ =embedding_output if self.training: lowerCamelCase__ =[] for i in range(self.config.num_hidden_layers ): lowerCamelCase__ =self.encoder.adaptive_forward( _lowerCamelCase , current_layer=_lowerCamelCase , attention_mask=_lowerCamelCase , head_mask=_lowerCamelCase ) lowerCamelCase__ =self.pooler(_lowerCamelCase ) lowerCamelCase__ =output_layers[i](output_dropout(_lowerCamelCase ) ) res.append(_lowerCamelCase ) elif self.patience == 0: # Use all layers for inference lowerCamelCase__ =self.encoder( _lowerCamelCase , attention_mask=_lowerCamelCase , head_mask=_lowerCamelCase , encoder_hidden_states=_lowerCamelCase , encoder_attention_mask=_lowerCamelCase , ) lowerCamelCase__ =self.pooler(encoder_outputs[0] ) lowerCamelCase__ =[output_layers[self.config.num_hidden_layers - 1](_lowerCamelCase )] else: lowerCamelCase__ =0 lowerCamelCase__ =None lowerCamelCase__ =0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 lowerCamelCase__ =self.encoder.adaptive_forward( _lowerCamelCase , current_layer=_lowerCamelCase , attention_mask=_lowerCamelCase , head_mask=_lowerCamelCase ) lowerCamelCase__ =self.pooler(_lowerCamelCase ) lowerCamelCase__ =output_layers[i](_lowerCamelCase ) if regression: lowerCamelCase__ =logits.detach() if patient_result is not None: lowerCamelCase__ =patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: lowerCamelCase__ =0 else: lowerCamelCase__ =logits.detach().argmax(dim=1 ) if patient_result is not None: lowerCamelCase__ =patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(_lowerCamelCase ) ): patient_counter += 1 else: lowerCamelCase__ =0 lowerCamelCase__ =logits if patient_counter == self.patience: break lowerCamelCase__ =[patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( '''Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. ''' , __lowerCAmelCase , ) class __UpperCAmelCase ( __lowerCAmelCase ): def __init__( self , _lowerCamelCase ): super().__init__(_lowerCamelCase ) lowerCamelCase__ =config.num_labels lowerCamelCase__ =BertModelWithPabee(_lowerCamelCase ) lowerCamelCase__ =nn.Dropout(config.hidden_dropout_prob ) lowerCamelCase__ =nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(_lowerCamelCase ) def _a ( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , ): lowerCamelCase__ =self.bert( input_ids=_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , position_ids=_lowerCamelCase , head_mask=_lowerCamelCase , inputs_embeds=_lowerCamelCase , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) lowerCamelCase__ =(logits[-1],) if labels is not None: lowerCamelCase__ =None lowerCamelCase__ =0 for ix, logits_item in enumerate(_lowerCamelCase ): if self.num_labels == 1: # We are doing regression lowerCamelCase__ =MSELoss() lowerCamelCase__ =loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: lowerCamelCase__ =CrossEntropyLoss() lowerCamelCase__ =loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: lowerCamelCase__ =loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 lowerCamelCase__ =(total_loss / total_weights,) + outputs return outputs
530
"""simple docstring""" import random def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = False ) -> dict: '''simple docstring''' lowerCamelCase__ ={i: [] for i in range(__lowerCAmelCase )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(__lowerCAmelCase ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(__lowerCAmelCase ): for j in range(i + 1 , __lowerCAmelCase ): if random.random() < probability: graph[i].append(__lowerCAmelCase ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(__lowerCAmelCase ) return graph def lowerCamelCase_ ( __lowerCAmelCase ) -> dict: '''simple docstring''' return { i: [j for j in range(__lowerCAmelCase ) if i != j] for i in range(__lowerCAmelCase ) } if __name__ == "__main__": import doctest doctest.testmod()
530
1
def _snake_case (__lowercase , __lowercase): return x if y == 0 else greatest_common_divisor(__lowercase , x % y) def _snake_case (__lowercase , __lowercase): return (x * y) // greatest_common_divisor(__lowercase , __lowercase) def _snake_case (__lowercase = 20): UpperCamelCase_ = 1 for i in range(1 , n + 1): UpperCamelCase_ = lcm(__lowercase , __lowercase) return g if __name__ == "__main__": print(f'{solution() = }')
618
from typing import Any def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ): _validation( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) # Creates data structures and fill initial step UpperCamelCase_ = {} UpperCamelCase_ = {} for state in states_space: UpperCamelCase_ = observations_space[0] UpperCamelCase_ = ( initial_probabilities[state] * emission_probabilities[state][observation] ) UpperCamelCase_ = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__lowercase)): UpperCamelCase_ = observations_space[o] UpperCamelCase_ = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function UpperCamelCase_ = '' UpperCamelCase_ = -1 for k_state in states_space: UpperCamelCase_ = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: UpperCamelCase_ = probability UpperCamelCase_ = k_state # Update probabilities and pointers dicts UpperCamelCase_ = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) UpperCamelCase_ = arg_max # The final observation UpperCamelCase_ = observations_space[len(__lowercase) - 1] # argmax for given final observation UpperCamelCase_ = '' UpperCamelCase_ = -1 for k_state in states_space: UpperCamelCase_ = probabilities[(k_state, final_observation)] if probability > max_probability: UpperCamelCase_ = probability UpperCamelCase_ = k_state UpperCamelCase_ = arg_max # Process pointers backwards UpperCamelCase_ = last_state UpperCamelCase_ = [] for o in range(len(__lowercase) - 1 , -1 , -1): result.append(__lowercase) UpperCamelCase_ = pointers[previous, observations_space[o]] result.reverse() return result def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ): _validate_not_empty( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) _validate_lists(__lowercase , __lowercase) _validate_dicts( __lowercase , __lowercase , __lowercase) def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ): if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ]): raise ValueError('There\'s an empty parameter') def _snake_case (__lowercase , __lowercase): _validate_list(__lowercase , 'observations_space') _validate_list(__lowercase , 'states_space') def _snake_case (__lowercase , __lowercase): if not isinstance(_object , __lowercase): UpperCamelCase_ = f"""{var_name} must be a list""" raise ValueError(__lowercase) else: for x in _object: if not isinstance(__lowercase , __lowercase): UpperCamelCase_ = f"""{var_name} must be a list of strings""" raise ValueError(__lowercase) def _snake_case (__lowercase , __lowercase , __lowercase , ): _validate_dict(__lowercase , 'initial_probabilities' , __lowercase) _validate_nested_dict(__lowercase , 'transition_probabilities') _validate_nested_dict(__lowercase , 'emission_probabilities') def _snake_case (__lowercase , __lowercase): _validate_dict(_object , __lowercase , __lowercase) for x in _object.values(): _validate_dict(__lowercase , __lowercase , __lowercase , __lowercase) def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase = False): if not isinstance(_object , __lowercase): UpperCamelCase_ = f"""{var_name} must be a dict""" raise ValueError(__lowercase) if not all(isinstance(__lowercase , __lowercase) for x in _object): UpperCamelCase_ = f"""{var_name} all keys must be strings""" raise ValueError(__lowercase) if not all(isinstance(__lowercase , __lowercase) for x in _object.values()): UpperCamelCase_ = 'nested dictionary ' if nested else '' UpperCamelCase_ = f"""{var_name} {nested_text}all values must be {value_type.__name__}""" raise ValueError(__lowercase) if __name__ == "__main__": from doctest import testmod testmod()
618
1
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" print('\nThe shortest path matrix using Floyd Warshall algorithm\n' ) for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): if dist[i][j] != float('inf' ): print(int(dist[i][j] ) , end='\t' ) else: print('INF' , end='\t' ) print() def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _A = [[float('inf' ) for _ in range(_SCREAMING_SNAKE_CASE )] for _ in range(_SCREAMING_SNAKE_CASE )] for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): _A = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(_SCREAMING_SNAKE_CASE ): # looping through rows of graph array for i in range(_SCREAMING_SNAKE_CASE ): # looping through columns of graph array for j in range(_SCREAMING_SNAKE_CASE ): if ( dist[i][k] != float('inf' ) and dist[k][j] != float('inf' ) and dist[i][k] + dist[k][j] < dist[i][j] ): _A = dist[i][k] + dist[k][j] _print_dist(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return dist, v if __name__ == "__main__": __A : Dict = int(input("Enter number of vertices: ")) __A : Union[str, Any] = int(input("Enter number of edges: ")) __A : List[str] = [[float("inf") for i in range(v)] for j in range(v)] for i in range(v): __A : List[Any] = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print("\nEdge ", i + 1) __A : Union[str, Any] = int(input("Enter source:")) __A : List[str] = int(input("Enter destination:")) __A : Union[str, Any] = float(input("Enter weight:")) __A : Any = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
27
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class A__ ( unittest.TestCase ): UpperCAmelCase = ViTImageProcessor if is_vision_available() else None @property def __UpperCamelCase ( self : str ) -> Union[str, Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __UpperCamelCase ( self : str ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =(3, 32, 128) _SCREAMING_SNAKE_CASE =tempfile.mkdtemp() # fmt: off _SCREAMING_SNAKE_CASE =['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on _SCREAMING_SNAKE_CASE =dict(zip(_a , range(len(_a ) ) ) ) _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_a ) + '''\n''' ) _SCREAMING_SNAKE_CASE ={ '''do_normalize''': False, '''do_resize''': True, '''image_processor_type''': '''ViTImageProcessor''', '''resample''': 3, '''size''': {'''height''': 32, '''width''': 128}, } _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , _a ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_a , _a ) def __UpperCamelCase ( self : Optional[Any] , **_a : str ) -> int: """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_a ) def __UpperCamelCase ( self : Optional[int] , **_a : Tuple ) -> List[Any]: """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname , **_a ) def __UpperCamelCase ( self : Tuple ) -> str: """simple docstring""" shutil.rmtree(self.tmpdirname ) def __UpperCamelCase ( self : List[Any] ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta ) _SCREAMING_SNAKE_CASE =Image.fromarray(np.moveaxis(_a , 0 , -1 ) ) return image_input def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =MgpstrProcessor(tokenizer=_a , image_processor=_a ) processor.save_pretrained(self.tmpdirname ) _SCREAMING_SNAKE_CASE =MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=_a ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , _a ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , _a ) def __UpperCamelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =MgpstrProcessor(tokenizer=_a , image_processor=_a ) processor.save_pretrained(self.tmpdirname ) _SCREAMING_SNAKE_CASE =self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) _SCREAMING_SNAKE_CASE =self.get_image_processor(do_normalize=_a , padding_value=1.0 ) _SCREAMING_SNAKE_CASE =MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_a , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , _a ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _a ) def __UpperCamelCase ( self : Union[str, Any] ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =MgpstrProcessor(tokenizer=_a , image_processor=_a ) _SCREAMING_SNAKE_CASE =self.prepare_image_inputs() _SCREAMING_SNAKE_CASE =image_processor(_a , return_tensors='''np''' ) _SCREAMING_SNAKE_CASE =processor(images=_a , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __UpperCamelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =MgpstrProcessor(tokenizer=_a , image_processor=_a ) _SCREAMING_SNAKE_CASE ='''test''' _SCREAMING_SNAKE_CASE =processor(text=_a ) _SCREAMING_SNAKE_CASE =tokenizer(_a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __UpperCamelCase ( self : List[str] ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =MgpstrProcessor(tokenizer=_a , image_processor=_a ) _SCREAMING_SNAKE_CASE ='''test''' _SCREAMING_SNAKE_CASE =self.prepare_image_inputs() _SCREAMING_SNAKE_CASE =processor(text=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''labels'''] ) # test if it raises when no input is passed with pytest.raises(_a ): processor() def __UpperCamelCase ( self : List[Any] ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =MgpstrProcessor(tokenizer=_a , image_processor=_a ) _SCREAMING_SNAKE_CASE =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] _SCREAMING_SNAKE_CASE =processor.char_decode(_a ) _SCREAMING_SNAKE_CASE =tokenizer.batch_decode(_a ) _SCREAMING_SNAKE_CASE =[seq.replace(''' ''' , '''''' ) for seq in decoded_tok] self.assertListEqual(_a , _a ) def __UpperCamelCase ( self : Any ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =MgpstrProcessor(tokenizer=_a , image_processor=_a ) _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =self.prepare_image_inputs() _SCREAMING_SNAKE_CASE =processor(text=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =MgpstrProcessor(tokenizer=_a , image_processor=_a ) _SCREAMING_SNAKE_CASE =torch.randn(1 , 27 , 38 ) _SCREAMING_SNAKE_CASE =torch.randn(1 , 27 , 5_0257 ) _SCREAMING_SNAKE_CASE =torch.randn(1 , 27 , 3_0522 ) _SCREAMING_SNAKE_CASE =processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ['''generated_text''', '''scores''', '''char_preds''', '''bpe_preds''', '''wp_preds'''] )
691
0
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowerCAmelCase_ : Tuple = 1_6 lowerCAmelCase_ : Union[str, Any] = 3_2 def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase = 16 , lowerCAmelCase = "bert-base-cased" ): '''simple docstring''' UpperCAmelCase = AutoTokenizer.from_pretrained(snake_case__ ) UpperCAmelCase = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(lowerCAmelCase ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=snake_case__ , max_length=snake_case__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset UpperCAmelCase = datasets.map( snake_case__ , batched=snake_case__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=snake_case__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowerCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(snake_case__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(snake_case__ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. UpperCAmelCase = DataLoader( tokenized_datasets["""train"""] , shuffle=snake_case__ , collate_fn=snake_case__ , batch_size=snake_case__ ) UpperCAmelCase = DataLoader( tokenized_datasets["""validation"""] , shuffle=snake_case__ , collate_fn=snake_case__ , batch_size=snake_case__ ) return train_dataloader, eval_dataloader def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' # Initialize accelerator UpperCAmelCase = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase = config["""lr"""] UpperCAmelCase = int(config["""num_epochs"""] ) UpperCAmelCase = int(config["""seed"""] ) UpperCAmelCase = int(config["""batch_size"""] ) UpperCAmelCase = args.model_name_or_path set_seed(snake_case__ ) UpperCAmelCase , UpperCAmelCase = get_dataloaders(snake_case__ , snake_case__ , snake_case__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained(snake_case__ , return_dict=snake_case__ ) # Instantiate optimizer UpperCAmelCase = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) UpperCAmelCase = optimizer_cls(params=model.parameters() , lr=snake_case__ ) if accelerator.state.deepspeed_plugin is not None: UpperCAmelCase = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: UpperCAmelCase = 1 UpperCAmelCase = (len(snake_case__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): UpperCAmelCase = get_linear_schedule_with_warmup( optimizer=snake_case__ , num_warmup_steps=0 , num_training_steps=snake_case__ , ) else: UpperCAmelCase = DummyScheduler(snake_case__ , total_num_steps=snake_case__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = accelerator.prepare( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # We need to keep track of how many total steps we have iterated over UpperCAmelCase = 0 # We also need to keep track of the stating epoch so files are named properly UpperCAmelCase = 0 # Now we train the model UpperCAmelCase = evaluate.load("""glue""" , """mrpc""" ) UpperCAmelCase = 0 UpperCAmelCase = {} for epoch in range(snake_case__ , snake_case__ ): model.train() for step, batch in enumerate(snake_case__ ): UpperCAmelCase = model(**snake_case__ ) UpperCAmelCase = outputs.loss UpperCAmelCase = loss / gradient_accumulation_steps accelerator.backward(snake_case__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() UpperCAmelCase = 0 for step, batch in enumerate(snake_case__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase = model(**snake_case__ ) UpperCAmelCase = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times UpperCAmelCase , UpperCAmelCase = accelerator.gather( (predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(snake_case__ ) - 1: UpperCAmelCase = predictions[: len(eval_dataloader.dataset ) - samples_seen] UpperCAmelCase = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=snake_case__ , references=snake_case__ , ) UpperCAmelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , snake_case__ ) UpperCAmelCase = eval_metric["""accuracy"""] if best_performance < eval_metric["accuracy"]: UpperCAmelCase = eval_metric["""accuracy"""] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), F'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}''' accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , """all_results.json""" ) , """w""" ) as f: json.dump(snake_case__ , snake_case__ ) def _lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=snake_case__ , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=snake_case__ , ) parser.add_argument( """--output_dir""" , type=snake_case__ , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--performance_lower_bound""" , type=snake_case__ , default=snake_case__ , help="""Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.""" , ) parser.add_argument( """--num_epochs""" , type=snake_case__ , default=3 , help="""Number of train epochs.""" , ) UpperCAmelCase = parser.parse_args() UpperCAmelCase = {"""lr""": 2e-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(snake_case__ , snake_case__ ) if __name__ == "__main__": main()
717
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) class UpperCamelCase_ ( a_ ): _A : List[str] = ['pixel_values'] def __init__( self , snake_case__ = True , snake_case__ = None , snake_case__ = 0.9 , snake_case__ = PILImageResampling.BICUBIC , snake_case__ = True , snake_case__ = None , snake_case__ = 1 / 2_55 , snake_case__ = True , snake_case__ = True , snake_case__ = None , snake_case__ = None , **snake_case__ , ) -> None: """simple docstring""" super().__init__(**snake_case__ ) UpperCAmelCase = size if size is not None else {"""shortest_edge""": 2_24} UpperCAmelCase = get_size_dict(snake_case__ , default_to_square=snake_case__ ) UpperCAmelCase = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24} UpperCAmelCase = get_size_dict(snake_case__ , param_name="""crop_size""" ) UpperCAmelCase = do_resize UpperCAmelCase = size UpperCAmelCase = crop_pct UpperCAmelCase = resample UpperCAmelCase = do_center_crop UpperCAmelCase = crop_size UpperCAmelCase = do_rescale UpperCAmelCase = rescale_factor UpperCAmelCase = do_normalize UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN UpperCAmelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCamelCase_ ( self , snake_case__ , snake_case__ , snake_case__ = None , snake_case__ = PILImageResampling.BICUBIC , snake_case__ = None , **snake_case__ , ) -> np.ndarray: """simple docstring""" UpperCAmelCase = get_size_dict(snake_case__ , default_to_square=snake_case__ ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(f'''size must contain \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) if crop_pct is not None: if "shortest_edge" in size: UpperCAmelCase = int(size["""shortest_edge"""] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: UpperCAmelCase = int(size["""height"""] / crop_pct ) else: UpperCAmelCase = (int(size["""height"""] / crop_pct ), int(size["""width"""] / crop_pct )) else: raise ValueError("""Invalid size for resize: {}""".format(snake_case__ ) ) UpperCAmelCase = get_resize_output_image_size(snake_case__ , size=snake_case__ , default_to_square=snake_case__ ) else: if "shortest_edge" in size: UpperCAmelCase = get_resize_output_image_size(snake_case__ , size=size["""shortest_edge"""] , default_to_square=snake_case__ ) elif "height" in size and "width" in size: UpperCAmelCase = (size["""height"""], size["""width"""]) else: raise ValueError("""Invalid size for resize: {}""".format(snake_case__ ) ) return resize(snake_case__ , size=snake_case__ , resample=snake_case__ , data_format=snake_case__ , **snake_case__ ) def UpperCamelCase_ ( self , snake_case__ , snake_case__ , snake_case__ = None , **snake_case__ , ) -> np.ndarray: """simple docstring""" UpperCAmelCase = get_size_dict(snake_case__ ) if "height" not in size or "width" not in size: raise ValueError(f'''size must contain \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(snake_case__ , size=(size["""height"""], size["""width"""]) , data_format=snake_case__ , **snake_case__ ) def UpperCamelCase_ ( self , snake_case__ , snake_case__ , snake_case__ = None , **snake_case__ , ) -> Tuple: """simple docstring""" return rescale(snake_case__ , scale=snake_case__ , data_format=snake_case__ , **snake_case__ ) def UpperCamelCase_ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , **snake_case__ , ) -> np.ndarray: """simple docstring""" return normalize(snake_case__ , mean=snake_case__ , std=snake_case__ , data_format=snake_case__ , **snake_case__ ) def UpperCamelCase_ ( self , snake_case__ , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = ChannelDimension.FIRST , **snake_case__ , ) -> PIL.Image.Image: """simple docstring""" UpperCAmelCase = do_resize if do_resize is not None else self.do_resize UpperCAmelCase = crop_pct if crop_pct is not None else self.crop_pct UpperCAmelCase = resample if resample is not None else self.resample UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase = image_mean if image_mean is not None else self.image_mean UpperCAmelCase = image_std if image_std is not None else self.image_std UpperCAmelCase = size if size is not None else self.size UpperCAmelCase = get_size_dict(snake_case__ , default_to_square=snake_case__ ) UpperCAmelCase = crop_size if crop_size is not None else self.crop_size UpperCAmelCase = get_size_dict(snake_case__ , param_name="""crop_size""" ) UpperCAmelCase = make_list_of_images(snake_case__ ) if not valid_images(snake_case__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_pct is None: raise ValueError("""Crop_pct must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. UpperCAmelCase = [to_numpy_array(snake_case__ ) for image in images] if do_resize: UpperCAmelCase = [self.resize(image=snake_case__ , size=snake_case__ , crop_pct=snake_case__ , resample=snake_case__ ) for image in images] if do_center_crop: UpperCAmelCase = [self.center_crop(image=snake_case__ , size=snake_case__ ) for image in images] if do_rescale: UpperCAmelCase = [self.rescale(image=snake_case__ , scale=snake_case__ ) for image in images] if do_normalize: UpperCAmelCase = [self.normalize(image=snake_case__ , mean=snake_case__ , std=snake_case__ ) for image in images] UpperCAmelCase = [to_channel_dimension_format(snake_case__ , snake_case__ ) for image in images] UpperCAmelCase = {"""pixel_values""": images} return BatchFeature(data=snake_case__ , tensor_type=snake_case__ )
378
0
"""simple docstring""" def UpperCamelCase ( _lowerCAmelCase : Union[str, Any] ) -> Union[str, Any]: _UpperCAmelCase : Any = len(_lowerCAmelCase ) for i in range(length - 1 ): _UpperCAmelCase : Any = i for k in range(i + 1, _lowerCAmelCase ): if collection[k] < collection[least]: _UpperCAmelCase : str = k if least != i: _UpperCAmelCase , _UpperCAmelCase : int = (collection[i], collection[least]) return collection if __name__ == "__main__": lowerCamelCase__ : List[str] = input('''Enter numbers separated by a comma:\n''').strip() lowerCamelCase__ : Any = [int(item) for item in user_input.split(''',''')] print(selection_sort(unsorted))
238
"""simple docstring""" from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging lowerCamelCase__ : Any = logging.get_logger(__name__) class _UpperCAmelCase ( __a): __a : Dict = ["""input_features""", """attention_mask"""] def __init__( self , _A=80 , _A=1_60_00 , _A=0.0 , _A=10 , _A=25 , _A="hamming_window" , _A=32768.0 , _A=0.97 , _A=1.0 , _A=True , _A=True , _A=False , **_A , ) -> List[Any]: '''simple docstring''' super().__init__(feature_size=_A , sampling_rate=_A , padding_value=_A , **_A ) _UpperCAmelCase : List[str] = feature_size _UpperCAmelCase : Optional[int] = sampling_rate _UpperCAmelCase : List[str] = padding_value _UpperCAmelCase : Dict = hop_length _UpperCAmelCase : List[str] = win_length _UpperCAmelCase : Tuple = frame_signal_scale _UpperCAmelCase : Optional[Any] = preemphasis_coeff _UpperCAmelCase : int = mel_floor _UpperCAmelCase : Tuple = normalize_means _UpperCAmelCase : str = normalize_vars _UpperCAmelCase : List[Any] = win_function _UpperCAmelCase : List[Any] = return_attention_mask _UpperCAmelCase : str = win_length * sampling_rate // 10_00 _UpperCAmelCase : List[str] = hop_length * sampling_rate // 10_00 _UpperCAmelCase : List[str] = optimal_fft_length(self.sample_size ) _UpperCAmelCase : Dict = (self.n_fft // 2) + 1 def __snake_case ( self , _A ) -> np.ndarray: '''simple docstring''' if self.win_function == "hamming_window": _UpperCAmelCase : Dict = window_function(window_length=self.sample_size , name=self.win_function , periodic=_A ) else: _UpperCAmelCase : int = window_function(window_length=self.sample_size , name=self.win_function ) _UpperCAmelCase : int = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , ) _UpperCAmelCase : Tuple = spectrogram( one_waveform * self.frame_signal_scale , window=_A , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=_A , preemphasis=self.preemphasis_coeff , mel_filters=_A , mel_floor=self.mel_floor , log_mel="""log""" , ) return msfc_features.T def __snake_case ( self , _A , _A , _A ) -> Any: '''simple docstring''' if self.normalize_means: _UpperCAmelCase : List[Any] = x[:input_length].mean(axis=0 ) _UpperCAmelCase : List[str] = np.subtract(_A , _A ) if self.normalize_vars: _UpperCAmelCase : Dict = x[:input_length].std(axis=0 ) _UpperCAmelCase : Tuple = np.divide(_A , _A ) if input_length < x.shape[0]: _UpperCAmelCase : Optional[Any] = padding_value # make sure array is in float32 _UpperCAmelCase : Any = x.astype(np.floataa ) return x def __snake_case ( self , _A , _A = None ) -> List[np.ndarray]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(_A , _A , self.padding_value ) for x, n in zip(_A , _A )] def __call__( self , _A , _A = False , _A = None , _A = False , _A = None , _A = None , _A = None , _A = None , **_A , ) -> BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' f''' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with''' f''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( """It is strongly recommended to pass the ``sampling_rate`` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) _UpperCAmelCase : Any = isinstance(_A , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) _UpperCAmelCase : Optional[Any] = is_batched_numpy or ( isinstance(_A , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _UpperCAmelCase : Tuple = [np.asarray(_A , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_A , np.ndarray ): _UpperCAmelCase : str = np.asarray(_A , dtype=np.floataa ) elif isinstance(_A , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _UpperCAmelCase : Any = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _UpperCAmelCase : Optional[int] = [raw_speech] # extract fbank features _UpperCAmelCase : int = [self._extract_mfsc_features(_A ) for one_waveform in raw_speech] # convert into correct format for padding _UpperCAmelCase : Any = BatchFeature({"""input_features""": features} ) _UpperCAmelCase : Dict = self.pad( _A , padding=_A , max_length=_A , truncation=_A , pad_to_multiple_of=_A , return_attention_mask=_A , **_A , ) # make sure list is in array format _UpperCAmelCase : List[Any] = padded_inputs.get("""input_features""" ) if isinstance(input_features[0] , _A ): _UpperCAmelCase : int = [np.asarray(_A , dtype=np.floataa ) for feature in input_features] _UpperCAmelCase : Optional[int] = padded_inputs.get("""attention_mask""" ) if attention_mask is not None: _UpperCAmelCase : Any = [np.asarray(_A , dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: _UpperCAmelCase : Union[str, Any] = ( np.array(_A , dtype=np.intaa ) if self._get_padding_strategies(_A , max_length=_A ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) _UpperCAmelCase : List[str] = self.normalize( padded_inputs["""input_features"""] , attention_mask=_A ) if return_tensors is not None: _UpperCAmelCase : Dict = padded_inputs.convert_to_tensors(_A ) return padded_inputs
238
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ = {"configuration_mbart": ["MBART_PRETRAINED_CONFIG_ARCHIVE_MAP", "MBartConfig", "MBartOnnxConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ["MBartTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ["MBartTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ "MBART_PRETRAINED_MODEL_ARCHIVE_LIST", "MBartForCausalLM", "MBartForConditionalGeneration", "MBartForQuestionAnswering", "MBartForSequenceClassification", "MBartModel", "MBartPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ "TFMBartForConditionalGeneration", "TFMBartModel", "TFMBartPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ "FlaxMBartForConditionalGeneration", "FlaxMBartForQuestionAnswering", "FlaxMBartForSequenceClassification", "FlaxMBartModel", "FlaxMBartPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
588
import functools def UpperCAmelCase_ ( __UpperCamelCase, __UpperCamelCase ): SCREAMING_SNAKE_CASE__ =len(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ =len(__UpperCamelCase ) @functools.cache def min_distance(__UpperCamelCase, __UpperCamelCase ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa SCREAMING_SNAKE_CASE__ =int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1, __UpperCamelCase ), 1 + min_distance(__UpperCamelCase, indexa + 1 ), diff + min_distance(indexa + 1, indexa + 1 ), ) return min_distance(0, 0 ) if __name__ == "__main__": import doctest doctest.testmod()
588
1
'''simple docstring''' import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class SCREAMING_SNAKE_CASE ( __a ): """simple docstring""" def __init__( self : Any , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any]=13 , __lowerCAmelCase : List[str]=7 , __lowerCAmelCase : Optional[int]=True , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : str=False , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : Tuple=99 , __lowerCAmelCase : str=32 , __lowerCAmelCase : Union[str, Any]=5 , __lowerCAmelCase : Dict=4 , __lowerCAmelCase : Any=37 , __lowerCAmelCase : str="gelu" , __lowerCAmelCase : Optional[int]=0.1 , __lowerCAmelCase : str=0.1 , __lowerCAmelCase : Any=512 , __lowerCAmelCase : Union[str, Any]=16 , __lowerCAmelCase : Optional[Any]=2 , __lowerCAmelCase : List[str]=0.0_2 , __lowerCAmelCase : List[Any]=3 , __lowerCAmelCase : Union[str, Any]=4 , __lowerCAmelCase : Optional[Any]=None , ): """simple docstring""" _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_input_mask _lowerCAmelCase = use_token_type_ids _lowerCAmelCase = use_labels _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = type_sequence_label_size _lowerCAmelCase = initializer_range _lowerCAmelCase = num_labels _lowerCAmelCase = num_choices _lowerCAmelCase = scope def a ( self : List[Any] ): """simple docstring""" _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = None if self.use_input_mask: _lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def a ( self : Tuple ): """simple docstring""" return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def a ( self : Optional[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] , __lowerCAmelCase : int ): """simple docstring""" _lowerCAmelCase = DistilBertModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCAmelCase = model(__lowerCAmelCase , __lowerCAmelCase ) _lowerCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a ( self : str , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : str , __lowerCAmelCase : Tuple , __lowerCAmelCase : Tuple ): """simple docstring""" _lowerCAmelCase = DistilBertForMaskedLM(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCAmelCase = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a ( self : str , __lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict ): """simple docstring""" _lowerCAmelCase = DistilBertForQuestionAnswering(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCAmelCase = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , start_positions=__lowerCAmelCase , end_positions=__lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a ( self : Optional[int] , __lowerCAmelCase : Tuple , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : Any ): """simple docstring""" _lowerCAmelCase = self.num_labels _lowerCAmelCase = DistilBertForSequenceClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCAmelCase = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a ( self : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Any ): """simple docstring""" _lowerCAmelCase = self.num_labels _lowerCAmelCase = DistilBertForTokenClassification(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCAmelCase = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a ( self : Optional[int] , __lowerCAmelCase : int , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : List[Any] ): """simple docstring""" _lowerCAmelCase = self.num_choices _lowerCAmelCase = DistilBertForMultipleChoice(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , labels=__lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a ( self : List[str] ): """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = config_and_inputs _lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( __a , __a , unittest.TestCase ): """simple docstring""" __A = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) __A = ( { "feature-extraction": DistilBertModel, "fill-mask": DistilBertForMaskedLM, "question-answering": DistilBertForQuestionAnswering, "text-classification": DistilBertForSequenceClassification, "token-classification": DistilBertForTokenClassification, "zero-shot": DistilBertForSequenceClassification, } if is_torch_available() else {} ) __A = True __A = True __A = True __A = True def a ( self : Optional[Any] ): """simple docstring""" _lowerCAmelCase = DistilBertModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=__lowerCAmelCase , dim=37 ) def a ( self : Optional[Any] ): """simple docstring""" self.config_tester.run_common_tests() def a ( self : Union[str, Any] ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*__lowerCAmelCase ) def a ( self : Tuple ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*__lowerCAmelCase ) def a ( self : Tuple ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*__lowerCAmelCase ) def a ( self : Any ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*__lowerCAmelCase ) def a ( self : Tuple ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*__lowerCAmelCase ) def a ( self : List[str] ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*__lowerCAmelCase ) @slow def a ( self : List[str] ): """simple docstring""" for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = DistilBertModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) @slow @require_torch_gpu def a ( self : Union[str, Any] ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return _lowerCAmelCase = True _lowerCAmelCase = model_class(config=__lowerCAmelCase ) _lowerCAmelCase = self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) _lowerCAmelCase = torch.jit.trace( __lowerCAmelCase , (inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(__lowerCAmelCase , os.path.join(__lowerCAmelCase , 'traced_model.pt' ) ) _lowerCAmelCase = torch.jit.load(os.path.join(__lowerCAmelCase , 'traced_model.pt' ) , map_location=__lowerCAmelCase ) loaded(inputs_dict['input_ids'].to(__lowerCAmelCase ) , inputs_dict['attention_mask'].to(__lowerCAmelCase ) ) @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @slow def a ( self : Union[str, Any] ): """simple docstring""" _lowerCAmelCase = DistilBertModel.from_pretrained('distilbert-base-uncased' ) _lowerCAmelCase = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) _lowerCAmelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _lowerCAmelCase = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase )[0] _lowerCAmelCase = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , __lowerCAmelCase ) _lowerCAmelCase = torch.tensor( [[[-0.1_6_3_9, 0.3_2_9_9, 0.1_6_4_8], [-0.1_7_4_6, 0.3_2_8_9, 0.1_7_1_0], [-0.1_8_8_4, 0.3_3_5_7, 0.1_8_1_0]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __lowerCAmelCase , atol=1e-4 ) )
309
'''simple docstring''' import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class SCREAMING_SNAKE_CASE ( __a ): """simple docstring""" def __init__( self : List[Any] , __lowerCAmelCase : Union[str, "sqlalchemy.sql.Selectable"] , __lowerCAmelCase : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , __lowerCAmelCase : Optional[Features] = None , __lowerCAmelCase : str = None , __lowerCAmelCase : bool = False , **__lowerCAmelCase : Optional[int] , ): """simple docstring""" super().__init__(features=__lowerCAmelCase , cache_dir=__lowerCAmelCase , keep_in_memory=__lowerCAmelCase , **__lowerCAmelCase ) _lowerCAmelCase = Sql( cache_dir=__lowerCAmelCase , features=__lowerCAmelCase , sql=__lowerCAmelCase , con=__lowerCAmelCase , **__lowerCAmelCase , ) def a ( self : str ): """simple docstring""" _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None self.builder.download_and_prepare( download_config=__lowerCAmelCase , download_mode=__lowerCAmelCase , verification_mode=__lowerCAmelCase , base_path=__lowerCAmelCase , ) # Build dataset for splits _lowerCAmelCase = self.builder.as_dataset( split='train' , verification_mode=__lowerCAmelCase , in_memory=self.keep_in_memory ) return dataset class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Dict , __lowerCAmelCase : Dataset , __lowerCAmelCase : str , __lowerCAmelCase : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , __lowerCAmelCase : Optional[int] = None , __lowerCAmelCase : Optional[int] = None , **__lowerCAmelCase : Tuple , ): """simple docstring""" if num_proc is not None and num_proc <= 0: raise ValueError(F"num_proc {num_proc} must be an integer > 0." ) _lowerCAmelCase = dataset _lowerCAmelCase = name _lowerCAmelCase = con _lowerCAmelCase = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE _lowerCAmelCase = num_proc _lowerCAmelCase = to_sql_kwargs def a ( self : Optional[int] ): """simple docstring""" _lowerCAmelCase = self.to_sql_kwargs.pop('sql' , __lowerCAmelCase ) _lowerCAmelCase = self.to_sql_kwargs.pop('con' , __lowerCAmelCase ) _lowerCAmelCase = self.to_sql_kwargs.pop('index' , __lowerCAmelCase ) _lowerCAmelCase = self._write(index=__lowerCAmelCase , **self.to_sql_kwargs ) return written def a ( self : Any , __lowerCAmelCase : int ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = args _lowerCAmelCase = {**to_sql_kwargs, 'if_exists': 'append'} if offset > 0 else to_sql_kwargs _lowerCAmelCase = query_table( table=self.dataset.data , key=slice(__lowerCAmelCase , offset + self.batch_size ) , indices=self.dataset._indices , ) _lowerCAmelCase = batch.to_pandas() _lowerCAmelCase = df.to_sql(self.name , self.con , index=__lowerCAmelCase , **__lowerCAmelCase ) return num_rows or len(__lowerCAmelCase ) def a ( self : Dict , __lowerCAmelCase : List[Any] , **__lowerCAmelCase : Dict ): """simple docstring""" _lowerCAmelCase = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating SQL from Arrow format' , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: _lowerCAmelCase , _lowerCAmelCase = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , __lowerCAmelCase , __lowerCAmelCase )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating SQL from Arrow format' , ): written += num_rows return written
309
1
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def _SCREAMING_SNAKE_CASE ( A : Any ) -> int: """simple docstring""" __snake_case : int = image.size __snake_case : str = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 __snake_case : Dict = image.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) __snake_case : int = np.array(A ).astype(np.floataa ) / 255.0 __snake_case : Dict = image[None].transpose(0 , 3 , 1 , 2 ) __snake_case : Optional[int] = torch.from_numpy(A ) return 2.0 * image - 1.0 class a_ ( UpperCamelCase_ ): def __init__(self , __a , __a , __a , ) -> Any: """simple docstring""" super().__init__() self.register_modules(vqvae=__a , unet=__a , scheduler=__a) @torch.no_grad() def __call__(self , __a = None , __a = 1 , __a = 1_0_0 , __a = 0.0 , __a = None , __a = "pil" , __a = True , ) -> Union[Tuple, ImagePipelineOutput]: """simple docstring""" if isinstance(__a , PIL.Image.Image): __snake_case : Optional[int] = 1 elif isinstance(__a , torch.Tensor): __snake_case : int = image.shape[0] else: raise ValueError(F"""`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(__a)}""") if isinstance(__a , PIL.Image.Image): __snake_case : Any = preprocess(__a) __snake_case : List[str] = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image __snake_case : List[str] = (batch_size, self.unet.config.in_channels // 2, height, width) __snake_case : Optional[Any] = next(self.unet.parameters()).dtype __snake_case : Tuple = randn_tensor(__a , generator=__a , device=self.device , dtype=__a) __snake_case : Optional[int] = image.to(device=self.device , dtype=__a) # set timesteps and move to the correct device self.scheduler.set_timesteps(__a , device=self.device) __snake_case : Optional[int] = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler __snake_case : str = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (ฮท) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to ฮท in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __snake_case : List[Any] = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) __snake_case : Optional[Any] = {} if accepts_eta: __snake_case : List[str] = eta for t in self.progress_bar(__a): # concat latents and low resolution image in the channel dimension. __snake_case : Optional[Any] = torch.cat([latents, image] , dim=1) __snake_case : Any = self.scheduler.scale_model_input(__a , __a) # predict the noise residual __snake_case : Optional[Any] = self.unet(__a , __a).sample # compute the previous noisy sample x_t -> x_t-1 __snake_case : List[str] = self.scheduler.step(__a , __a , __a , **__a).prev_sample # decode the image latents with the VQVAE __snake_case : Tuple = self.vqvae.decode(__a).sample __snake_case : Any = torch.clamp(__a , -1.0 , 1.0) __snake_case : Dict = image / 2 + 0.5 __snake_case : List[str] = image.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": __snake_case : Optional[int] = self.numpy_to_pil(__a) if not return_dict: return (image,) return ImagePipelineOutput(images=__a)
701
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { '''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class a_ ( UpperCamelCase_ ): _snake_case = """vit_msn""" def __init__(self , __a=7_6_8 , __a=1_2 , __a=1_2 , __a=3_0_7_2 , __a="gelu" , __a=0.0 , __a=0.0 , __a=0.02 , __a=1E-06 , __a=2_2_4 , __a=1_6 , __a=3 , __a=True , **__a , ) -> Any: """simple docstring""" super().__init__(**__a) __snake_case : List[str] = hidden_size __snake_case : Optional[int] = num_hidden_layers __snake_case : Optional[Any] = num_attention_heads __snake_case : str = intermediate_size __snake_case : List[str] = hidden_act __snake_case : List[Any] = hidden_dropout_prob __snake_case : Tuple = attention_probs_dropout_prob __snake_case : List[str] = initializer_range __snake_case : Optional[int] = layer_norm_eps __snake_case : Dict = image_size __snake_case : int = patch_size __snake_case : Dict = num_channels __snake_case : Tuple = qkv_bias
61
0
'''simple docstring''' import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser UpperCamelCase =re.compile(R"\s+") def snake_case ( a_ : Tuple ) -> List[str]: """simple docstring""" return {"hash": hashlib.mda(re.sub(a_ , """""" , example["""content"""] ).encode("""utf-8""" ) ).hexdigest()} def snake_case ( a_ : Union[str, Any] ) -> Tuple: """simple docstring""" UpperCamelCase_ : Dict = [len(a_ ) for line in example["""content"""].splitlines()] return {"line_mean": np.mean(a_ ), "line_max": max(a_ )} def snake_case ( a_ : Dict ) -> int: """simple docstring""" UpperCamelCase_ : Dict = np.mean([c.isalnum() for c in example["""content"""]] ) return {"alpha_frac": alpha_frac} def snake_case ( a_ : List[str] , a_ : Any ) -> Tuple: """simple docstring""" if example["hash"] in uniques: uniques.remove(example["""hash"""] ) return True else: return False def snake_case ( a_ : Optional[Any] , a_ : Any=5 ) -> Any: """simple docstring""" UpperCamelCase_ : List[Any] = ["""auto-generated""", """autogenerated""", """automatically generated"""] UpperCamelCase_ : Any = example["""content"""].splitlines() for _, line in zip(range(a_ ) , a_ ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def snake_case ( a_ : Any , a_ : List[Any]=5 , a_ : Any=0.05 ) -> int: """simple docstring""" UpperCamelCase_ : List[Any] = ["""unit tests""", """test file""", """configuration file"""] UpperCamelCase_ : List[Any] = example["""content"""].splitlines() UpperCamelCase_ : Union[str, Any] = 0 UpperCamelCase_ : Optional[Any] = 0 # first test for _, line in zip(range(a_ ) , a_ ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test UpperCamelCase_ : int = example["""content"""].count("""\n""" ) UpperCamelCase_ : List[str] = int(coeff * nlines ) for line in lines: count_config += line.lower().count("""config""" ) count_test += line.lower().count("""test""" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def snake_case ( a_ : int ) -> str: """simple docstring""" UpperCamelCase_ : Optional[Any] = ["""def """, """class """, """for """, """while """] UpperCamelCase_ : str = example["""content"""].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def snake_case ( a_ : str , a_ : Optional[int]=4 ) -> Optional[int]: """simple docstring""" UpperCamelCase_ : Optional[int] = example["""content"""].splitlines() UpperCamelCase_ : Dict = 0 for line in lines: counter += line.lower().count("""=""" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def snake_case ( a_ : int ) -> int: """simple docstring""" UpperCamelCase_ : List[str] = tokenizer(example["""content"""] , truncation=a_ )["""input_ids"""] UpperCamelCase_ : Optional[int] = len(example["""content"""] ) / len(a_ ) return {"ratio": ratio} def snake_case ( a_ : Union[str, Any] ) -> List[str]: """simple docstring""" UpperCamelCase_ : str = {} results.update(get_hash(a_ ) ) results.update(line_stats(a_ ) ) results.update(alpha_stats(a_ ) ) results.update(char_token_ratio(a_ ) ) results.update(is_autogenerated(a_ ) ) results.update(is_config_or_test(a_ ) ) results.update(has_no_keywords(a_ ) ) results.update(has_few_assignments(a_ ) ) return results def snake_case ( a_ : Optional[Any] , a_ : List[str] , a_ : List[str] ) -> List[Any]: """simple docstring""" if not check_uniques(a_ , a_ ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def snake_case ( a_ : Optional[int] ) -> List[str]: """simple docstring""" with open(a_ , """rb""" ) as f_in: with gzip.open(str(a_ ) + """.gz""" , """wb""" , compresslevel=6 ) as f_out: shutil.copyfileobj(a_ , a_ ) os.unlink(a_ ) # Settings UpperCamelCase =HfArgumentParser(PreprocessingArguments) UpperCamelCase =parser.parse_args() if args.num_workers is None: UpperCamelCase =multiprocessing.cpu_count() UpperCamelCase =AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset UpperCamelCase =time.time() UpperCamelCase =load_dataset(args.dataset_name, split="train") print(f"Time to load dataset: {time.time()-t_start:.2f}") # Run preprocessing UpperCamelCase =time.time() UpperCamelCase =ds.map(preprocess, num_proc=args.num_workers) print(f"Time to preprocess dataset: {time.time()-t_start:.2f}") # Deduplicate hashes UpperCamelCase =set(ds.unique("hash")) UpperCamelCase =len(uniques) / len(ds) print(f"Fraction of duplicates: {1-frac:.2%}") # Deduplicate data and apply heuristics UpperCamelCase =time.time() UpperCamelCase =ds.filter(filter, fn_kwargs={"uniques": uniques, "args": args}) print(f"Time to filter dataset: {time.time()-t_start:.2f}") print(f"Size of filtered dataset: {len(ds_filter)}") # Deduplicate with minhash and jaccard similarity if args.near_deduplication: UpperCamelCase =time.time() UpperCamelCase , UpperCamelCase =deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f"Time to deduplicate dataset: {time.time()-t_start:.2f}") print(f"Size of deduplicate dataset: {len(ds_filter)}") # Save data in batches of samples_per_file UpperCamelCase =Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / "duplicate_clusters.json", "w") as f: json.dump(duplicate_clusters, f) UpperCamelCase =output_dir / "data" data_dir.mkdir(exist_ok=True) UpperCamelCase =time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): UpperCamelCase =str(data_dir / f"file-{file_number+1:012}.json") UpperCamelCase =min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f"Time to save dataset: {time.time()-t_start:.2f}")
208
'''simple docstring''' def snake_case ( a_ : str , a_ : Optional[int] ) -> Any: """simple docstring""" UpperCamelCase_ : Tuple = (boundary[1] - boundary[0]) / steps UpperCamelCase_ : Dict = boundary[0] UpperCamelCase_ : Any = boundary[1] UpperCamelCase_ : Union[str, Any] = make_points(a_ , a_ , a_ ) UpperCamelCase_ : Any = 0.0 y += (h / 2.0) * f(a_ ) for i in x_i: # print(i) y += h * f(a_ ) y += (h / 2.0) * f(a_ ) return y def snake_case ( a_ : Tuple , a_ : Any , a_ : Tuple ) -> Tuple: """simple docstring""" UpperCamelCase_ : Optional[int] = a + h while x < (b - h): yield x UpperCamelCase_ : List[str] = x + h def snake_case ( a_ : List[str] ) -> Tuple: # enter your function here """simple docstring""" UpperCamelCase_ : int = (x - 0) * (x - 0) return y def snake_case ( ) -> Dict: """simple docstring""" UpperCamelCase_ : Optional[Any] = 0.0 # Lower bound of integration UpperCamelCase_ : Optional[int] = 1.0 # Upper bound of integration UpperCamelCase_ : Optional[Any] = 10.0 # define number of steps or resolution UpperCamelCase_ : Optional[Any] = [a, b] # define boundary of integration UpperCamelCase_ : Any = method_a(a_ , a_ ) print(f"y = {y}" ) if __name__ == "__main__": main()
208
1
class A : # Public class to implement a graph """simple docstring""" def __init__( self : int,lowercase_ : int,lowercase_ : int,lowercase_ : list[list[bool]] )-> None: '''simple docstring''' A__ = row A__ = col A__ = graph def snake_case__ ( self : List[Any],lowercase_ : int,lowercase_ : int,lowercase_ : list[list[bool]] )-> bool: '''simple docstring''' return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def snake_case__ ( self : Optional[Any],lowercase_ : int,lowercase_ : int,lowercase_ : list[list[bool]] )-> None: '''simple docstring''' A__ = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order A__ = [-1, 0, 1, -1, 1, -1, 0, 1] A__ = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k],j + col_nbr[k],lowercase_ ): self.diffs(i + row_nbr[k],j + col_nbr[k],lowercase_ ) def snake_case__ ( self : str )-> int: # And finally, count all islands. '''simple docstring''' A__ = [[False for j in range(self.COL )] for i in range(self.ROW )] A__ = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(lowercase_,lowercase_,lowercase_ ) count += 1 return count
586
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo lowercase_ = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and ลukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n" lowercase_ = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n" lowercase_ = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): """simple docstring""" def snake_case__ ( self : Any )-> MetricInfo: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string',id='token' ),id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string',id='token' ),id='sequence' ),id='references' ), } ),) def snake_case__ ( self : List[str],lowercase_ : List[List[List[str]]],lowercase_ : List[List[str]],lowercase_ : int = 1,lowercase_ : int = 4,)-> Dict[str, float]: '''simple docstring''' return { "google_bleu": gleu_score.corpus_gleu( list_of_references=lowercase_,hypotheses=lowercase_,min_len=lowercase_,max_len=lowercase_ ) }
586
1
# Lint as: python3 import itertools import os import re _a : Union[str, Any] = re.compile(R'([A-Z]+)([A-Z][a-z])') _a : Union[str, Any] = re.compile(R'([a-z\d])([A-Z])') _a : Tuple = re.compile(R'(?<!_)_(?!_)') _a : Any = re.compile(R'(_{2,})') _a : List[str] = R'^\w+(\.\w+)*$' _a : Tuple = R'<>:/\|?*' def a_ ( __magic_name__ ) -> Optional[int]: """simple docstring""" snake_case : int = _uppercase_uppercase_re.sub(R'''\1_\2''' , __magic_name__ ) snake_case : Union[str, Any] = _lowercase_uppercase_re.sub(R'''\1_\2''' , __magic_name__ ) return name.lower() def a_ ( __magic_name__ ) -> Optional[int]: """simple docstring""" snake_case : Union[str, Any] = _single_underscore_re.split(__magic_name__ ) snake_case : Tuple = [_multiple_underscores_re.split(__magic_name__ ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(__magic_name__ ) if n != '''''' ) def a_ ( __magic_name__ ) -> Union[str, Any]: """simple docstring""" if os.path.basename(__magic_name__ ) != name: raise ValueError(F"Should be a dataset name, not a path: {name}" ) return camelcase_to_snakecase(__magic_name__ ) def a_ ( __magic_name__ , __magic_name__ ) -> str: """simple docstring""" if os.path.basename(__magic_name__ ) != name: raise ValueError(F"Should be a dataset name, not a path: {name}" ) if not re.match(_split_re , __magic_name__ ): raise ValueError(F"Split name should match '{_split_re}'' but got '{split}'." ) return F"{filename_prefix_for_name(__magic_name__ )}-{split}" def a_ ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=None ) -> Optional[int]: """simple docstring""" snake_case : Any = filename_prefix_for_split(__magic_name__ , __magic_name__ ) if filetype_suffix: prefix += F".{filetype_suffix}" snake_case : Dict = os.path.join(__magic_name__ , __magic_name__ ) return F"{filepath}*" def a_ ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=None , __magic_name__=None ) -> str: """simple docstring""" snake_case : Dict = filename_prefix_for_split(__magic_name__ , __magic_name__ ) snake_case : Any = os.path.join(__magic_name__ , __magic_name__ ) if shard_lengths: snake_case : Tuple = len(__magic_name__ ) snake_case : Optional[Any] = [F"{prefix}-{shard_id:05d}-of-{num_shards:05d}" for shard_id in range(__magic_name__ )] if filetype_suffix: snake_case : List[Any] = [filename + F".{filetype_suffix}" for filename in filenames] return filenames else: snake_case : List[str] = prefix if filetype_suffix: filename += F".{filetype_suffix}" return [filename]
598
from math import log from scipy.constants import Boltzmann, physical_constants _a : List[str] = 300 # TEMPERATURE (unit = K) def a_ ( __magic_name__ , __magic_name__ , __magic_name__ , ) -> float: """simple docstring""" if donor_conc <= 0: raise ValueError('''Donor concentration should be positive''' ) elif acceptor_conc <= 0: raise ValueError('''Acceptor concentration should be positive''' ) elif intrinsic_conc <= 0: raise ValueError('''Intrinsic concentration should be positive''' ) elif donor_conc <= intrinsic_conc: raise ValueError( '''Donor concentration should be greater than intrinsic concentration''' ) elif acceptor_conc <= intrinsic_conc: raise ValueError( '''Acceptor concentration should be greater than intrinsic concentration''' ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
598
1
"""simple docstring""" import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __init__( self: Dict , __A: List[str] , __A: List[str]=7 , __A: Dict=3 , __A: List[str]=18 , __A: Tuple=30 , __A: Optional[Any]=400 , __A: Union[str, Any]=True , __A: Union[str, Any]=None , __A: str=True , __A: Optional[int]=[0.5, 0.5, 0.5] , __A: List[str]=[0.5, 0.5, 0.5] , ): '''simple docstring''' a__ = size if size is not None else {'''height''': 18, '''width''': 18} a__ = parent a__ = batch_size a__ = num_channels a__ = image_size a__ = min_resolution a__ = max_resolution a__ = do_resize a__ = size a__ = do_normalize a__ = image_mean a__ = image_std def lowercase ( self: str ): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( __snake_case , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE =DPTImageProcessor if is_vision_available() else None def lowercase ( self: List[str] ): '''simple docstring''' a__ = DPTImageProcessingTester(self ) @property def lowercase ( self: Union[str, Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase ( self: Union[str, Any] ): '''simple docstring''' a__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , '''image_mean''' ) ) self.assertTrue(hasattr(__A , '''image_std''' ) ) self.assertTrue(hasattr(__A , '''do_normalize''' ) ) self.assertTrue(hasattr(__A , '''do_resize''' ) ) self.assertTrue(hasattr(__A , '''size''' ) ) def lowercase ( self: List[str] ): '''simple docstring''' a__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} ) a__ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) def lowercase ( self: Optional[int] ): '''simple docstring''' a__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images a__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input a__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched a__ = image_processing(__A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def lowercase ( self: Optional[int] ): '''simple docstring''' a__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input a__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched a__ = image_processing(__A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def lowercase ( self: int ): '''simple docstring''' a__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input a__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched a__ = image_processing(__A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , )
200
"""simple docstring""" from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class _SCREAMING_SNAKE_CASE ( __snake_case ): """simple docstring""" _SCREAMING_SNAKE_CASE ='EncodecFeatureExtractor' _SCREAMING_SNAKE_CASE =('T5Tokenizer', 'T5TokenizerFast') def __init__( self: List[Any] , __A: Any , __A: Dict ): '''simple docstring''' super().__init__(__A , __A ) a__ = self.feature_extractor a__ = False def lowercase ( self: Union[str, Any] , __A: List[Any]=None , __A: Optional[Any]=None , __A: List[Any]=True ): '''simple docstring''' return self.tokenizer.get_decoder_prompt_ids(task=__A , language=__A , no_timestamps=__A ) def __call__( self: Union[str, Any] , *__A: int , **__A: Dict ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*__A , **__A ) a__ = kwargs.pop('''audio''' , __A ) a__ = kwargs.pop('''sampling_rate''' , __A ) a__ = kwargs.pop('''text''' , __A ) if len(__A ) > 0: a__ = args[0] a__ = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if text is not None: a__ = self.tokenizer(__A , **__A ) if audio is not None: a__ = self.feature_extractor(__A , *__A , sampling_rate=__A , **__A ) if audio is None: return inputs elif text is None: return audio_inputs else: a__ = audio_inputs['''input_values'''] if "padding_mask" in audio_inputs: a__ = audio_inputs['''padding_mask'''] return inputs def lowercase ( self: Union[str, Any] , *__A: List[str] , **__A: Tuple ): '''simple docstring''' a__ = kwargs.pop('''audio''' , __A ) a__ = kwargs.pop('''padding_mask''' , __A ) if len(__A ) > 0: a__ = args[0] a__ = args[1:] if audio_values is not None: return self._decode_audio(__A , padding_mask=__A ) else: return self.tokenizer.batch_decode(*__A , **__A ) def lowercase ( self: Union[str, Any] , *__A: Optional[int] , **__A: Optional[Any] ): '''simple docstring''' return self.tokenizer.decode(*__A , **__A ) def lowercase ( self: Union[str, Any] , __A: Dict , __A: Optional = None ): '''simple docstring''' a__ = to_numpy(__A ) a__ ,a__ ,a__ = audio_values.shape if padding_mask is None: return list(__A ) a__ = to_numpy(__A ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) a__ = seq_len - padding_mask.shape[-1] a__ = 1 - self.feature_extractor.padding_value a__ = np.pad(__A , ((0, 0), (0, difference)) , '''constant''' , constant_values=__A ) a__ = audio_values.tolist() for i in range(__A ): a__ = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] a__ = sliced_audio.reshape(__A , -1 ) return audio_values
200
1
"""simple docstring""" import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def _snake_case ( snake_case__ : dict ): return (data["data"], data["target"]) def _snake_case ( snake_case__ : np.ndarray , snake_case__ : np.ndarray ): A = XGBClassifier() classifier.fit(snake_case__ , snake_case__ ) return classifier def _snake_case ( ): A = load_iris() A , A = data_handling(snake_case__ ) A , A , A , A = train_test_split( snake_case__ , snake_case__ , test_size=0.25 ) A = iris['target_names'] # Create an XGBoost Classifier from the training data A = xgboost(snake_case__ , snake_case__ ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( snake_case__ , snake_case__ , snake_case__ , display_labels=snake_case__ , cmap='Blues' , normalize='true' , ) plt.title('Normalized Confusion Matrix - IRIS Dataset' ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
91
"""simple docstring""" from random import randint from tempfile import TemporaryFile import numpy as np def a ( __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Optional[int] ) -> int: __magic_name__: Optional[int] = 0 if start < end: __magic_name__: Union[str, Any] = randint(__UpperCAmelCase , __UpperCAmelCase ) __magic_name__: int = a[end] __magic_name__: Optional[int] = a[pivot] __magic_name__: Tuple = temp __magic_name__, __magic_name__: int = _in_place_partition(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) count += _in_place_quick_sort(__UpperCAmelCase , __UpperCAmelCase , p - 1 ) count += _in_place_quick_sort(__UpperCAmelCase , p + 1 , __UpperCAmelCase ) return count def a ( __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : str , __UpperCAmelCase : List[Any] ) -> Union[str, Any]: __magic_name__: Union[str, Any] = 0 __magic_name__: str = randint(__UpperCAmelCase , __UpperCAmelCase ) __magic_name__: Optional[int] = a[end] __magic_name__: Optional[int] = a[pivot] __magic_name__: Optional[int] = temp __magic_name__: Dict = start - 1 for index in range(__UpperCAmelCase , __UpperCAmelCase ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value __magic_name__: List[Any] = new_pivot_index + 1 __magic_name__: Any = a[new_pivot_index] __magic_name__: int = a[index] __magic_name__: Union[str, Any] = temp __magic_name__: List[Any] = a[new_pivot_index + 1] __magic_name__: Union[str, Any] = a[end] __magic_name__: Dict = temp return new_pivot_index + 1, count __lowerCamelCase = TemporaryFile() __lowerCamelCase = 1_00 # 1000 elements are to be sorted __lowerCamelCase , __lowerCamelCase = 0, 1 # mean and standard deviation __lowerCamelCase = np.random.normal(mu, sigma, p) np.save(outfile, X) print('The array is') print(X) outfile.seek(0) # using the same array __lowerCamelCase = np.load(outfile) __lowerCamelCase = len(M) - 1 __lowerCamelCase = _in_place_quick_sort(M, 0, r) print( 'No of Comparisons for 100 elements selected from a standard normal distribution' 'is :' ) print(z)
96
0
'''simple docstring''' from maths.prime_check import is_prime def __snake_case (__UpperCAmelCase ): """simple docstring""" if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): lowerCamelCase_ : Dict = F"""Input value of [number={number}] must be an integer""" raise TypeError(__UpperCAmelCase ) if is_prime(__UpperCAmelCase ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
418
'''simple docstring''' from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class lowerCAmelCase__ ( nn.Module ): def __init__( self : int , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : Tuple=0.0 , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : str = "geglu" , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : bool = False , UpperCamelCase_ : bool = False , UpperCamelCase_ : bool = False , UpperCamelCase_ : bool = False , UpperCamelCase_ : bool = True , UpperCamelCase_ : str = "layer_norm" , UpperCamelCase_ : bool = False , ) -> Tuple: """simple docstring""" super().__init__() lowerCamelCase_ : int = only_cross_attention lowerCamelCase_ : Dict = (num_embeds_ada_norm is not None) and norm_type == '''ada_norm_zero''' lowerCamelCase_ : Optional[int] = (num_embeds_ada_norm is not None) and norm_type == '''ada_norm''' if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( F"""`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to""" F""" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.""" ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: lowerCamelCase_ : Optional[int] = AdaLayerNorm(UpperCamelCase_ , UpperCamelCase_ ) elif self.use_ada_layer_norm_zero: lowerCamelCase_ : Tuple = AdaLayerNormZero(UpperCamelCase_ , UpperCamelCase_ ) else: lowerCamelCase_ : Any = nn.LayerNorm(UpperCamelCase_ , elementwise_affine=UpperCamelCase_ ) lowerCamelCase_ : Tuple = Attention( query_dim=UpperCamelCase_ , heads=UpperCamelCase_ , dim_head=UpperCamelCase_ , dropout=UpperCamelCase_ , bias=UpperCamelCase_ , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=UpperCamelCase_ , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. lowerCamelCase_ : List[str] = ( AdaLayerNorm(UpperCamelCase_ , UpperCamelCase_ ) if self.use_ada_layer_norm else nn.LayerNorm(UpperCamelCase_ , elementwise_affine=UpperCamelCase_ ) ) lowerCamelCase_ : List[str] = Attention( query_dim=UpperCamelCase_ , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=UpperCamelCase_ , dim_head=UpperCamelCase_ , dropout=UpperCamelCase_ , bias=UpperCamelCase_ , upcast_attention=UpperCamelCase_ , ) # is self-attn if encoder_hidden_states is none else: lowerCamelCase_ : Optional[int] = None lowerCamelCase_ : List[str] = None # 3. Feed-forward lowerCamelCase_ : Union[str, Any] = nn.LayerNorm(UpperCamelCase_ , elementwise_affine=UpperCamelCase_ ) lowerCamelCase_ : Optional[int] = FeedForward(UpperCamelCase_ , dropout=UpperCamelCase_ , activation_fn=UpperCamelCase_ , final_dropout=UpperCamelCase_ ) # let chunk size default to None lowerCamelCase_ : int = None lowerCamelCase_ : str = 0 def __UpperCamelCase ( self : Dict , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : int ) -> str: """simple docstring""" lowerCamelCase_ : int = chunk_size lowerCamelCase_ : Dict = dim def __UpperCamelCase ( self : List[str] , UpperCamelCase_ : torch.FloatTensor , UpperCamelCase_ : Optional[torch.FloatTensor] = None , UpperCamelCase_ : Optional[torch.FloatTensor] = None , UpperCamelCase_ : Optional[torch.FloatTensor] = None , UpperCamelCase_ : Optional[torch.LongTensor] = None , UpperCamelCase_ : Dict[str, Any] = None , UpperCamelCase_ : Optional[torch.LongTensor] = None , ) -> Dict: """simple docstring""" if self.use_ada_layer_norm: lowerCamelCase_ : int = self.norma(UpperCamelCase_ , UpperCamelCase_ ) elif self.use_ada_layer_norm_zero: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Any = self.norma( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , hidden_dtype=hidden_states.dtype ) else: lowerCamelCase_ : Optional[Any] = self.norma(UpperCamelCase_ ) lowerCamelCase_ : str = cross_attention_kwargs if cross_attention_kwargs is not None else {} lowerCamelCase_ : int = self.attna( UpperCamelCase_ , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=UpperCamelCase_ , **UpperCamelCase_ , ) if self.use_ada_layer_norm_zero: lowerCamelCase_ : str = gate_msa.unsqueeze(1 ) * attn_output lowerCamelCase_ : Tuple = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: lowerCamelCase_ : List[Any] = ( self.norma(UpperCamelCase_ , UpperCamelCase_ ) if self.use_ada_layer_norm else self.norma(UpperCamelCase_ ) ) lowerCamelCase_ : Tuple = self.attna( UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , attention_mask=UpperCamelCase_ , **UpperCamelCase_ , ) lowerCamelCase_ : str = attn_output + hidden_states # 3. Feed-forward lowerCamelCase_ : Tuple = self.norma(UpperCamelCase_ ) if self.use_ada_layer_norm_zero: lowerCamelCase_ : str = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( F"""`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.""" ) lowerCamelCase_ : Optional[Any] = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size lowerCamelCase_ : Optional[int] = torch.cat( [self.ff(UpperCamelCase_ ) for hid_slice in norm_hidden_states.chunk(UpperCamelCase_ , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: lowerCamelCase_ : Optional[Any] = self.ff(UpperCamelCase_ ) if self.use_ada_layer_norm_zero: lowerCamelCase_ : List[str] = gate_mlp.unsqueeze(1 ) * ff_output lowerCamelCase_ : Optional[int] = ff_output + hidden_states return hidden_states class lowerCAmelCase__ ( nn.Module ): def __init__( self : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : int = 4 , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : str = "geglu" , UpperCamelCase_ : bool = False , ) -> Dict: """simple docstring""" super().__init__() lowerCamelCase_ : Tuple = int(dim * mult ) lowerCamelCase_ : List[Any] = dim_out if dim_out is not None else dim if activation_fn == "gelu": lowerCamelCase_ : Optional[int] = GELU(UpperCamelCase_ , UpperCamelCase_ ) if activation_fn == "gelu-approximate": lowerCamelCase_ : Any = GELU(UpperCamelCase_ , UpperCamelCase_ , approximate='''tanh''' ) elif activation_fn == "geglu": lowerCamelCase_ : Tuple = GEGLU(UpperCamelCase_ , UpperCamelCase_ ) elif activation_fn == "geglu-approximate": lowerCamelCase_ : Union[str, Any] = ApproximateGELU(UpperCamelCase_ , UpperCamelCase_ ) lowerCamelCase_ : Any = nn.ModuleList([] ) # project in self.net.append(UpperCamelCase_ ) # project dropout self.net.append(nn.Dropout(UpperCamelCase_ ) ) # project out self.net.append(nn.Linear(UpperCamelCase_ , UpperCamelCase_ ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(UpperCamelCase_ ) ) def __UpperCamelCase ( self : List[Any] , UpperCamelCase_ : str ) -> Dict: """simple docstring""" for module in self.net: lowerCamelCase_ : Optional[int] = module(UpperCamelCase_ ) return hidden_states class lowerCAmelCase__ ( nn.Module ): def __init__( self : Optional[int] , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : str = "none" ) -> int: """simple docstring""" super().__init__() lowerCamelCase_ : List[str] = nn.Linear(UpperCamelCase_ , UpperCamelCase_ ) lowerCamelCase_ : int = approximate def __UpperCamelCase ( self : Tuple , UpperCamelCase_ : Optional[int] ) -> Optional[Any]: """simple docstring""" if gate.device.type != "mps": return F.gelu(UpperCamelCase_ , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def __UpperCamelCase ( self : Optional[Any] , UpperCamelCase_ : Any ) -> Tuple: """simple docstring""" lowerCamelCase_ : List[str] = self.proj(UpperCamelCase_ ) lowerCamelCase_ : int = self.gelu(UpperCamelCase_ ) return hidden_states class lowerCAmelCase__ ( nn.Module ): def __init__( self : Dict , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> Any: """simple docstring""" super().__init__() lowerCamelCase_ : Optional[Any] = nn.Linear(UpperCamelCase_ , dim_out * 2 ) def __UpperCamelCase ( self : Any , UpperCamelCase_ : Optional[int] ) -> List[str]: """simple docstring""" if gate.device.type != "mps": return F.gelu(UpperCamelCase_ ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def __UpperCamelCase ( self : Dict , UpperCamelCase_ : List[Any] ) -> Any: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ : int = self.proj(UpperCamelCase_ ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(UpperCamelCase_ ) class lowerCAmelCase__ ( nn.Module ): def __init__( self : Dict , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> List[str]: """simple docstring""" super().__init__() lowerCamelCase_ : List[Any] = nn.Linear(UpperCamelCase_ , UpperCamelCase_ ) def __UpperCamelCase ( self : List[Any] , UpperCamelCase_ : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ : List[Any] = self.proj(UpperCamelCase_ ) return x * torch.sigmoid(1.702 * x ) class lowerCAmelCase__ ( nn.Module ): def __init__( self : Union[str, Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[str] ) -> str: """simple docstring""" super().__init__() lowerCamelCase_ : Tuple = nn.Embedding(UpperCamelCase_ , UpperCamelCase_ ) lowerCamelCase_ : Tuple = nn.SiLU() lowerCamelCase_ : List[str] = nn.Linear(UpperCamelCase_ , embedding_dim * 2 ) lowerCamelCase_ : List[Any] = nn.LayerNorm(UpperCamelCase_ , elementwise_affine=UpperCamelCase_ ) def __UpperCamelCase ( self : Tuple , UpperCamelCase_ : Dict , UpperCamelCase_ : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ : Tuple = self.linear(self.silu(self.emb(UpperCamelCase_ ) ) ) lowerCamelCase_ , lowerCamelCase_ : Optional[int] = torch.chunk(UpperCamelCase_ , 2 ) lowerCamelCase_ : List[Any] = self.norm(UpperCamelCase_ ) * (1 + scale) + shift return x class lowerCAmelCase__ ( nn.Module ): def __init__( self : Tuple , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[Any] ) -> Optional[Any]: """simple docstring""" super().__init__() lowerCamelCase_ : Tuple = CombinedTimestepLabelEmbeddings(UpperCamelCase_ , UpperCamelCase_ ) lowerCamelCase_ : List[Any] = nn.SiLU() lowerCamelCase_ : str = nn.Linear(UpperCamelCase_ , 6 * embedding_dim , bias=UpperCamelCase_ ) lowerCamelCase_ : Dict = nn.LayerNorm(UpperCamelCase_ , elementwise_affine=UpperCamelCase_ , eps=1e-6 ) def __UpperCamelCase ( self : Tuple , UpperCamelCase_ : Any , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : int=None ) -> Any: """simple docstring""" lowerCamelCase_ : Optional[Any] = self.linear(self.silu(self.emb(UpperCamelCase_ , UpperCamelCase_ , hidden_dtype=UpperCamelCase_ ) ) ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Union[str, Any] = emb.chunk(6 , dim=1 ) lowerCamelCase_ : Tuple = self.norm(UpperCamelCase_ ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class lowerCAmelCase__ ( nn.Module ): def __init__( self : Optional[int] , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : Optional[str] = None , UpperCamelCase_ : float = 1e-5 ) -> Tuple: """simple docstring""" super().__init__() lowerCamelCase_ : str = num_groups lowerCamelCase_ : List[Any] = eps if act_fn is None: lowerCamelCase_ : Any = None else: lowerCamelCase_ : List[str] = get_activation(UpperCamelCase_ ) lowerCamelCase_ : Optional[Any] = nn.Linear(UpperCamelCase_ , out_dim * 2 ) def __UpperCamelCase ( self : Optional[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any] ) -> Optional[int]: """simple docstring""" if self.act: lowerCamelCase_ : Optional[int] = self.act(UpperCamelCase_ ) lowerCamelCase_ : Optional[int] = self.linear(UpperCamelCase_ ) lowerCamelCase_ : List[str] = emb[:, :, None, None] lowerCamelCase_ , lowerCamelCase_ : int = emb.chunk(2 , dim=1 ) lowerCamelCase_ : List[str] = F.group_norm(UpperCamelCase_ , self.num_groups , eps=self.eps ) lowerCamelCase_ : Optional[Any] = x * (1 + scale) + shift return x
418
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCAmelCase : Optional[Any] = { "configuration_roberta": ["ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "RobertaConfig", "RobertaOnnxConfig"], "tokenization_roberta": ["RobertaTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Any = ["RobertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Union[str, Any] = [ "ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "RobertaForCausalLM", "RobertaForMaskedLM", "RobertaForMultipleChoice", "RobertaForQuestionAnswering", "RobertaForSequenceClassification", "RobertaForTokenClassification", "RobertaModel", "RobertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[Any] = [ "TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRobertaForCausalLM", "TFRobertaForMaskedLM", "TFRobertaForMultipleChoice", "TFRobertaForQuestionAnswering", "TFRobertaForSequenceClassification", "TFRobertaForTokenClassification", "TFRobertaMainLayer", "TFRobertaModel", "TFRobertaPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : str = [ "FlaxRobertaForCausalLM", "FlaxRobertaForMaskedLM", "FlaxRobertaForMultipleChoice", "FlaxRobertaForQuestionAnswering", "FlaxRobertaForSequenceClassification", "FlaxRobertaForTokenClassification", "FlaxRobertaModel", "FlaxRobertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys _lowerCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
193
import random from typing import Any def UpperCAmelCase_ ( snake_case__ ) -> list[Any]: """simple docstring""" for _ in range(len(snake_case__ ) ): lowerCAmelCase__ = random.randint(0 , len(snake_case__ ) - 1 ) lowerCAmelCase__ = random.randint(0 , len(snake_case__ ) - 1 ) lowerCAmelCase__ , lowerCAmelCase__ = data[b], data[a] return data if __name__ == "__main__": _lowerCAmelCase : int = [0, 1, 2, 3, 4, 5, 6, 7] _lowerCAmelCase : Optional[Any] = ["python", "says", "hello", "!"] print("Fisher-Yates Shuffle:") print("List", integers, strings) print("FY Shuffle", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
193
1
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _a (__magic_name__ ): '''simple docstring''' UpperCAmelCase__: Any = ['''image_processor''', '''tokenizer'''] UpperCAmelCase__: Tuple = '''CLIPImageProcessor''' UpperCAmelCase__: Union[str, Any] = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self , A__=None , A__=None , **A__ ): A__ : List[Any] = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , A__ , ) A__ : Any = kwargs.pop("""feature_extractor""" ) A__ : Union[str, Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(A__ , A__ ) def __call__( self , A__=None , A__=None , A__=None , **A__ ): if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: A__ : Tuple = self.tokenizer(A__ , return_tensors=A__ , **A__ ) if images is not None: A__ : List[Any] = self.image_processor(A__ , return_tensors=A__ , **A__ ) if text is not None and images is not None: A__ : List[str] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**A__ ) , tensor_type=A__ ) def __A ( self , *A__ , **A__ ): return self.tokenizer.batch_decode(*A__ , **A__ ) def __A ( self , *A__ , **A__ ): return self.tokenizer.decode(*A__ , **A__ ) @property def __A ( self ): A__ : Optional[int] = self.tokenizer.model_input_names A__ : Optional[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __A ( self ): warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , A__ , ) return self.image_processor_class @property def __A ( self ): warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , A__ , ) return self.image_processor
64
import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def UpperCamelCase (lowercase_: List[str] , lowercase_: str ) -> Optional[Any]: if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer A__ : Union[str, Any] = flax_key_tuple[:-1] + ("""weight""",) A__ : Optional[int] = torch.permute(lowercase_ , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(lowercase_ ): # linear layer A__ : Optional[Any] = flax_key_tuple[:-1] + ("""weight""",) A__ : int = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: A__ : Optional[int] = flax_key_tuple[:-1] + ("""weight""",) return flax_key_tuple, flax_tensor def UpperCamelCase (lowercase_: Tuple , lowercase_: Optional[int] , lowercase_: str ) -> Union[str, Any]: if "metadata" in layer: A__ : Tuple = layer.split("""metadata""" ) A__ : Optional[Any] = """""".join(split_layer[0] )[:-1] A__ : Optional[Any] = [tuple(("""metadata""" + split_layer[1]).split("""/""" ) )] elif "kvstore" in layer: A__ : str = layer.split("""kvstore""" ) A__ : int = """""".join(split_layer[0] )[:-1] A__ : Optional[int] = [tuple(("""kvstore""" + split_layer[1]).split("""/""" ) )] else: A__ : Any = layer.split("""/""" ) A__ : int = """/""".join(split_layer[:-1] ) A__ : str = (split_layer[-1],) if "kvstore/path" in layer: A__ : Dict = f"""{switch_checkpoint_path}/{checkpoint_info[layer]}""" elif "kvstore/driver" in layer: A__ : Optional[int] = """file""" else: A__ : str = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def UpperCamelCase (lowercase_: str , lowercase_: List[Any] ) -> int: A__ : int = rename_keys(lowercase_ ) A__ : Any = {} for k, v in current_block.items(): A__ : Dict = v A__ : str = new_current_block torch.save(lowercase_ , lowercase_ ) def UpperCamelCase (lowercase_: Dict , lowercase_: Optional[Any] , lowercase_: Optional[Any] , lowercase_: Optional[int] , lowercase_: str = WEIGHTS_NAME ) -> Tuple: A__ : Optional[int] = convert_file_size_to_int(lowercase_ ) A__ : List[Any] = [] A__ : int = {} A__ : List[str] = 0 A__ : Any = 0 os.makedirs(lowercase_ , exist_ok=lowercase_ ) with gfile.GFile(switch_checkpoint_path + """/checkpoint""" , """rb""" ) as fp: A__ : Optional[Any] = serialization.msgpack_restore(fp.read() )["""optimizer"""]["""target"""] A__ : Dict = flatten_dict(lowercase_ , sep="""/""" ) A__ : Any = {} for layer in checkpoint_info.keys(): A__ , A__ , A__ : Union[str, Any] = get_key_and_tensorstore_dict( lowercase_ , lowercase_ , lowercase_ ) if curr_real_layer_name in all_layers: A__ : Optional[int] = content else: A__ : List[Any] = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file A__ : Optional[Any] = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() A__ : List[Any] = torch.tensor(lowercase_ ) A__ : List[Any] = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts A__ , A__ : Any = rename_base_flax_keys(tuple(key.split("""/""" ) ) , lowercase_ ) A__ : Any = """/""".join(lowercase_ ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: A__ : List[Any] = os.path.join( lowercase_ , weights_name.replace(""".bin""" , f"""-{len(lowercase_ )+1:05d}-of-???.bin""" ) ) rename_and_save_block(lowercase_ , lowercase_ ) sharded_state_dicts.append(current_block.keys() ) del current_block A__ : Any = {} A__ : str = 0 A__ : List[str] = raw_weights.to(getattr(lowercase_ , lowercase_ ) ) current_block_size += weight_size total_size += weight_size # Add the last block A__ : Union[str, Any] = os.path.join(lowercase_ , weights_name.replace(""".bin""" , f"""-{len(lowercase_ )+1:05d}-of-???.bin""" ) ) rename_and_save_block(lowercase_ , lowercase_ ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(lowercase_ ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index A__ : str = {} A__ : Any = {} for idx, shard in enumerate(lowercase_ ): A__ : Any = weights_name.replace( """.bin""" , f"""-{idx+1:05d}-of-{len(lowercase_ ):05d}.bin""" ) # len(sharded_state_dicts):05d} A__ : Dict = os.path.join(lowercase_ , weights_name.replace(""".bin""" , f"""-{idx+1:05d}-of-???.bin""" ) ) os.rename(lowercase_ , os.path.join(lowercase_ , lowercase_ ) ) A__ : str = shard for key in shard: A__ : Any = shard_file # Add the metadata A__ : Tuple = {"""total_size""": total_size} A__ : Union[str, Any] = {"""metadata""": metadata, """weight_map""": weight_map} with open(os.path.join(lowercase_ , lowercase_ ) , """w""" , encoding="""utf-8""" ) as f: A__ : Dict = json.dumps(lowercase_ , indent=2 , sort_keys=lowercase_ ) + """\n""" f.write(lowercase_ ) return metadata, index if __name__ == "__main__": A_ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--switch_t5x_checkpoint_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--max_shard_size', default='10GB', required=False, help='Max shard size') parser.add_argument('--dtype', default='bfloat16', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted', type=str, required=False, help='Path to the output pytorch model.', ) A_ : Dict = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def UpperCamelCase () -> int: from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer A__ : str = SwitchTransformersConfig.from_pretrained("""google/switch-base-8""" ) config.save_pretrained("""/home/arthur_huggingface_co/transformers/switch_converted""" ) A__ : str = SwitchTransformersForConditionalGeneration.from_pretrained( """/home/arthur_huggingface_co/transformers/switch_converted""" , device_map="""auto""" ) A__ : Tuple = TaTokenizer.from_pretrained("""t5-small""" ) A__ : Dict = """A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.""" A__ : Union[str, Any] = tokenizer(lowercase_ , return_tensors="""pt""" ).input_ids A__ : Tuple = model.generate(lowercase_ , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
64
1
'''simple docstring''' import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def snake_case ( ) -> List[Any]: """simple docstring""" with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(A__ ): requests.request('GET' , 'https://huggingface.co' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('GET' , 'https://huggingface.co' , timeout=1.0 ) @pytest.mark.integration def snake_case ( ) -> Tuple: """simple docstring""" with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('GET' , 'https://huggingface.co' ) def snake_case ( ) -> Optional[int]: """simple docstring""" with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(A__ ): http_head('https://huggingface.co' )
284
import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def a__ ( A__ ): if isinstance(A__, collections.abc.Iterable ): return x return (x, x) @require_flax class __lowercase : """simple docstring""" def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" pass def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = np.abs((a - b) ).max() self.assertLessEqual(lowerCAmelCase__ , lowerCAmelCase__ , F'''Difference between torch and flax is {diff} (>= {tol}).''' ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , **lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[str] = FlaxVisionTextDualEncoderModel(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Tuple = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], config.projection_dim) ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , **lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_vision_text_model(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : str = {'vision_model': vision_model, 'text_model': text_model} SCREAMING_SNAKE_CASE_ : Union[str, Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , **lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = self.get_vision_text_model(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Dict = {'vision_model': vision_model, 'text_model': text_model} SCREAMING_SNAKE_CASE_ : List[Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Tuple = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Tuple = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = after_output[0] SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCAmelCase__ , 1E-3 ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , **lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_vision_text_model(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[str] = {'vision_model': vision_model, 'text_model': text_model} SCREAMING_SNAKE_CASE_ : Union[str, Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[str] = model( input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , output_attentions=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[str] = output.vision_model_output.attentions self.assertEqual(len(lowerCAmelCase__ ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE_ : str = to_atuple(vision_model.config.image_size ) SCREAMING_SNAKE_CASE_ : Any = to_atuple(vision_model.config.patch_size ) SCREAMING_SNAKE_CASE_ : Tuple = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) SCREAMING_SNAKE_CASE_ : str = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) SCREAMING_SNAKE_CASE_ : Tuple = output.text_model_output.attentions self.assertEqual(len(lowerCAmelCase__ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" pt_model.to(lowerCAmelCase__ ) pt_model.eval() # prepare inputs SCREAMING_SNAKE_CASE_ : str = inputs_dict SCREAMING_SNAKE_CASE_ : List[Any] = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): SCREAMING_SNAKE_CASE_ : List[Any] = pt_model(**lowerCAmelCase__ ).to_tuple() SCREAMING_SNAKE_CASE_ : Dict = fx_model(**lowerCAmelCase__ ).to_tuple() self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(lowerCAmelCase__ , pt_output.numpy() , 4E-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ , from_pt=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Dict = fx_model_loaded(**lowerCAmelCase__ ).to_tuple() self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(lowerCAmelCase__ , pt_output.numpy() , 4E-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[Any] = VisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ , from_flax=lowerCAmelCase__ ) pt_model_loaded.to(lowerCAmelCase__ ) pt_model_loaded.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Optional[int] = pt_model_loaded(**lowerCAmelCase__ ).to_tuple() self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(lowerCAmelCase__ , pt_output_loaded.numpy() , 4E-2 ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = VisionTextDualEncoderModel(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[Any] = FlaxVisionTextDualEncoderModel(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : str = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Tuple = fx_state self.check_pt_flax_equivalence(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = VisionTextDualEncoderModel(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : str = FlaxVisionTextDualEncoderModel(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : int = load_flax_weights_in_pytorch_model(lowerCAmelCase__ , fx_model.params ) self.check_pt_flax_equivalence(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**lowerCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**lowerCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = self.prepare_config_and_inputs() self.check_save_load(**lowerCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**lowerCAmelCase__ ) @is_pt_flax_cross_test def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ : Union[str, Any] = config_inputs_dict.pop('vision_config' ) SCREAMING_SNAKE_CASE_ : Optional[int] = config_inputs_dict.pop('text_config' ) SCREAMING_SNAKE_CASE_ : Any = config_inputs_dict self.check_equivalence_pt_to_flax(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) self.check_equivalence_flax_to_pt(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) @slow def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = self.get_pretrained_model_and_inputs() SCREAMING_SNAKE_CASE_ : int = model_a(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : int = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : str = model_a(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Any = after_outputs[0] SCREAMING_SNAKE_CASE_ : str = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCAmelCase__ , 1E-5 ) @require_flax class __lowercase (__SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-vit' , 'hf-internal-testing/tiny-bert' , vision_from_pt=lowerCAmelCase__ , text_from_pt=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_ : Optional[int] = 1_3 SCREAMING_SNAKE_CASE_ : str = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) SCREAMING_SNAKE_CASE_ : Tuple = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = random_attention_mask([batch_size, 4] ) SCREAMING_SNAKE_CASE_ : Tuple = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = FlaxViTModel(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Tuple = FlaxBertModel(lowerCAmelCase__ ) return vision_model, text_model def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = FlaxViTModelTester(self ) SCREAMING_SNAKE_CASE_ : List[Any] = FlaxBertModelTester(self ) SCREAMING_SNAKE_CASE_ : str = vit_model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ : List[Any] = bert_model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = vision_config_and_inputs SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class __lowercase (__SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-clip' , 'hf-internal-testing/tiny-bert' , vision_from_pt=lowerCAmelCase__ , text_from_pt=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_ : List[Any] = 1_3 SCREAMING_SNAKE_CASE_ : Dict = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) SCREAMING_SNAKE_CASE_ : int = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) SCREAMING_SNAKE_CASE_ : Dict = random_attention_mask([batch_size, 4] ) SCREAMING_SNAKE_CASE_ : int = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = FlaxCLIPVisionModel(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Any = FlaxBertModel(lowerCAmelCase__ ) return vision_model, text_model def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = FlaxCLIPVisionModelTester(self ) SCREAMING_SNAKE_CASE_ : Tuple = FlaxBertModelTester(self ) SCREAMING_SNAKE_CASE_ : Optional[Any] = clip_model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ : int = bert_model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = vision_config_and_inputs SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class __lowercase (unittest.TestCase ): """simple docstring""" @slow def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = FlaxVisionTextDualEncoderModel.from_pretrained('clip-italian/clip-italian' , logit_scale_init_value=1.0 ) SCREAMING_SNAKE_CASE_ : str = VisionTextDualEncoderProcessor.from_pretrained('clip-italian/clip-italian' ) SCREAMING_SNAKE_CASE_ : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) SCREAMING_SNAKE_CASE_ : str = processor( text=['una foto di un gatto', 'una foto di un cane'] , images=lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors='np' ) SCREAMING_SNAKE_CASE_ : Optional[int] = model(**lowerCAmelCase__ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) SCREAMING_SNAKE_CASE_ : Tuple = np.array([[1.2_284_727, 0.3_104_122]] ) self.assertTrue(np.allclose(outputs.logits_per_image , lowerCAmelCase__ , atol=1E-3 ) )
101
0
"""simple docstring""" import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class UpperCAmelCase_ ( _lowercase): def _UpperCamelCase ( self : int ) -> List[str]: _UpperCamelCase = tempfile.mkdtemp() _UpperCamelCase = 5 # Realm tok _UpperCamelCase = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''test''', '''question''', '''this''', '''is''', '''the''', '''first''', '''second''', '''third''', '''fourth''', '''fifth''', '''record''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _UpperCamelCase = os.path.join(self.tmpdirname , '''realm_tokenizer''' ) os.makedirs(__UpperCamelCase , exist_ok=__UpperCamelCase ) _UpperCamelCase = os.path.join(__UpperCamelCase , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) _UpperCamelCase = os.path.join(self.tmpdirname , '''realm_block_records''' ) os.makedirs(__UpperCamelCase , exist_ok=__UpperCamelCase ) def _UpperCamelCase ( self : int ) -> RealmTokenizer: return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''realm_tokenizer''' ) ) def _UpperCamelCase ( self : Optional[int] ) -> Dict: shutil.rmtree(self.tmpdirname ) def _UpperCamelCase ( self : List[Any] ) -> int: _UpperCamelCase = RealmConfig(num_block_records=self.num_block_records ) return config def _UpperCamelCase ( self : int ) -> List[Any]: _UpperCamelCase = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''question''': ['''foo''', '''bar'''], '''answers''': [['''Foo''', '''Bar'''], ['''Bar''']], } ) return dataset def _UpperCamelCase ( self : Union[str, Any] ) -> List[Any]: _UpperCamelCase = np.array( [ B'''This is the first record''', B'''This is the second record''', B'''This is the third record''', B'''This is the fourth record''', B'''This is the fifth record''', B'''This is a longer longer longer record''', ] , dtype=__UpperCamelCase , ) return block_records def _UpperCamelCase ( self : Union[str, Any] ) -> int: _UpperCamelCase = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def _UpperCamelCase ( self : List[Any] ) -> Tuple: _UpperCamelCase = self.get_config() _UpperCamelCase = self.get_dummy_retriever() _UpperCamelCase = retriever.tokenizer _UpperCamelCase = np.array([0, 3] , dtype='''long''' ) _UpperCamelCase = tokenizer(['''Test question'''] ).input_ids _UpperCamelCase = tokenizer( ['''the fourth'''] , add_special_tokens=__UpperCamelCase , return_token_type_ids=__UpperCamelCase , return_attention_mask=__UpperCamelCase , ).input_ids _UpperCamelCase = config.reader_seq_len _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = retriever( __UpperCamelCase , __UpperCamelCase , answer_ids=__UpperCamelCase , max_length=__UpperCamelCase , return_tensors='''np''' ) self.assertEqual(len(__UpperCamelCase ) , 2 ) self.assertEqual(len(__UpperCamelCase ) , 2 ) self.assertEqual(len(__UpperCamelCase ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ['''[CLS]''', '''test''', '''question''', '''[SEP]''', '''this''', '''is''', '''the''', '''first''', '''record''', '''[SEP]'''] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ['''[CLS]''', '''test''', '''question''', '''[SEP]''', '''this''', '''is''', '''the''', '''fourth''', '''record''', '''[SEP]'''] , ) def _UpperCamelCase ( self : Dict ) -> Tuple: _UpperCamelCase = self.get_config() _UpperCamelCase = self.get_dummy_retriever() _UpperCamelCase = retriever.tokenizer _UpperCamelCase = np.array([0, 3, 5] , dtype='''long''' ) _UpperCamelCase = tokenizer(['''Test question'''] ).input_ids _UpperCamelCase = tokenizer( ['''the fourth''', '''longer longer'''] , add_special_tokens=__UpperCamelCase , return_token_type_ids=__UpperCamelCase , return_attention_mask=__UpperCamelCase , ).input_ids _UpperCamelCase = config.reader_seq_len _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = retriever( __UpperCamelCase , __UpperCamelCase , answer_ids=__UpperCamelCase , max_length=__UpperCamelCase , return_tensors='''np''' ) self.assertEqual([False, True, True] , __UpperCamelCase ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , __UpperCamelCase ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , __UpperCamelCase ) def _UpperCamelCase ( self : Optional[int] ) -> List[str]: _UpperCamelCase = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , '''realm_block_records''' ) ) # Test local path _UpperCamelCase = retriever.from_pretrained(os.path.join(self.tmpdirname , '''realm_block_records''' ) ) self.assertEqual(retriever.block_records[0] , B'''This is the first record''' ) # Test mocked remote path with patch('''transformers.models.realm.retrieval_realm.hf_hub_download''' ) as mock_hf_hub_download: _UpperCamelCase = os.path.join( os.path.join(self.tmpdirname , '''realm_block_records''' ) , _REALM_BLOCK_RECORDS_FILENAME ) _UpperCamelCase = RealmRetriever.from_pretrained('''google/realm-cc-news-pretrained-openqa''' ) self.assertEqual(retriever.block_records[0] , B'''This is the first record''' )
342
"""simple docstring""" import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets UpperCAmelCase = """\ @inproceedings{lin-2004-rouge, title = \"{ROUGE}: A Package for Automatic Evaluation of Summaries\", author = \"Lin, Chin-Yew\", booktitle = \"Text Summarization Branches Out\", month = jul, year = \"2004\", address = \"Barcelona, Spain\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/W04-1013\", pages = \"74--81\", } """ UpperCAmelCase = """\ ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for evaluating automatic summarization and machine translation software in natural language processing. The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation. Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters. This metrics is a wrapper around Google Research reimplementation of ROUGE: https://github.com/google-research/google-research/tree/master/rouge """ UpperCAmelCase = """ Calculates average rouge scores for a list of hypotheses and references Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. rouge_types: A list of rouge types to calculate. Valid names: `\"rouge{n}\"` (e.g. `\"rouge1\"`, `\"rouge2\"`) where: {n} is the n-gram based scoring, `\"rougeL\"`: Longest common subsequence based scoring. `\"rougeLSum\"`: rougeLsum splits text using `\"\n\"`. See details in https://github.com/huggingface/datasets/issues/617 use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes. use_aggregator: Return aggregates if this is set to True Returns: rouge1: rouge_1 (precision, recall, f1), rouge2: rouge_2 (precision, recall, f1), rougeL: rouge_l (precision, recall, f1), rougeLsum: rouge_lsum (precision, recall, f1) Examples: >>> rouge = datasets.load_metric('rouge') >>> predictions = [\"hello there\", \"general kenobi\"] >>> references = [\"hello there\", \"general kenobi\"] >>> results = rouge.compute(predictions=predictions, references=references) >>> print(list(results.keys())) ['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] >>> print(results[\"rouge1\"]) AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0)) >>> print(results[\"rouge1\"].mid.fmeasure) 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class UpperCAmelCase_ ( datasets.Metric): def _UpperCamelCase ( self : List[Any] ) -> List[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/google-research/google-research/tree/master/rouge'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/ROUGE_(metric)''', '''https://github.com/google-research/google-research/tree/master/rouge''', ] , ) def _UpperCamelCase ( self : Optional[int] , __UpperCamelCase : Dict , __UpperCamelCase : Any , __UpperCamelCase : str=None , __UpperCamelCase : List[Any]=True , __UpperCamelCase : Dict=False ) -> str: if rouge_types is None: _UpperCamelCase = ['''rouge1''', '''rouge2''', '''rougeL''', '''rougeLsum'''] _UpperCamelCase = rouge_scorer.RougeScorer(rouge_types=__UpperCamelCase , use_stemmer=__UpperCamelCase ) if use_aggregator: _UpperCamelCase = scoring.BootstrapAggregator() else: _UpperCamelCase = [] for ref, pred in zip(__UpperCamelCase , __UpperCamelCase ): _UpperCamelCase = scorer.score(__UpperCamelCase , __UpperCamelCase ) if use_aggregator: aggregator.add_scores(__UpperCamelCase ) else: scores.append(__UpperCamelCase ) if use_aggregator: _UpperCamelCase = aggregator.aggregate() else: _UpperCamelCase = {} for key in scores[0]: _UpperCamelCase = [score[key] for score in scores] return result
342
1
'''simple docstring''' import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __magic_name__ ( self ) -> int: __a : int = inspect.getfile(accelerate.test_utils ) __a : Union[str, Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] ) __a : Dict = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_distributed_data_loop.py'] ) __a : int = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_ops.py'] ) @require_multi_gpu def __magic_name__ ( self ) -> Tuple: print(f'''Found {torch.cuda.device_count()} devices.''' ) __a : List[str] = ['torchrun', f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A , env=os.environ.copy() ) @require_multi_gpu def __magic_name__ ( self ) -> List[Any]: print(f'''Found {torch.cuda.device_count()} devices.''' ) __a : Optional[int] = ['torchrun', f'''--nproc_per_node={torch.cuda.device_count()}''', self.operation_file_path] print(f'''Command: {cmd}''' ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A , env=os.environ.copy() ) @require_multi_gpu def __magic_name__ ( self ) -> str: __a : Optional[int] = ['torchrun', f'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A , env=os.environ.copy() ) @require_multi_gpu def __magic_name__ ( self ) -> List[Any]: print(f'''Found {torch.cuda.device_count()} devices, using 2 devices only''' ) __a : Any = ['torchrun', f'''--nproc_per_node={torch.cuda.device_count()}''', self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices='0,1' ): execute_subprocess_async(_A , env=os.environ.copy() ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = Accelerator() SCREAMING_SNAKE_CASE_ = (accelerator.state.process_index + 2, 1_0) SCREAMING_SNAKE_CASE_ = torch.randint(0, 1_0, shape).to(accelerator.device) SCREAMING_SNAKE_CASE_ = "" SCREAMING_SNAKE_CASE_ = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." SCREAMING_SNAKE_CASE_ = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." SCREAMING_SNAKE_CASE_ = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
597
'''simple docstring''' import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device SCREAMING_SNAKE_CASE_ = False class lowerCAmelCase ( unittest.TestCase ): """simple docstring""" pass @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __magic_name__ ( self ) -> List[Any]: __a : Any = VersatileDiffusionImageVariationPipeline.from_pretrained('shi-labs/versatile-diffusion' ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) __a : Union[str, Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) __a : Optional[Any] = torch.manual_seed(0 ) __a : Any = pipe( image=_A , generator=_A , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' , ).images __a : Dict = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __a : Tuple = np.array([0.0_441, 0.0_469, 0.0_507, 0.0_575, 0.0_632, 0.0_650, 0.0_865, 0.0_909, 0.0_945] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
597
1
from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging A_ : List[str] = logging.get_logger(__name__) class _a (__magic_name__ ): '''simple docstring''' UpperCAmelCase__: Any = ['''audio_values''', '''audio_mask'''] def __init__( self , A__=2048 , A__=1 , A__=[16, 16] , A__=128 , A__=4_4100 , A__=86 , A__=2048 , A__=0.0 , **A__ , ): super().__init__( feature_size=A__ , sampling_rate=A__ , padding_value=A__ , **A__ , ) A__ : int = spectrogram_length A__ : List[str] = num_channels A__ : Tuple = patch_size A__ : Any = feature_size // self.patch_size[1] A__ : Tuple = n_fft A__ : Any = sampling_rate // hop_length_to_sampling_rate A__ : Dict = sampling_rate A__ : Dict = padding_value A__ : Dict = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=A__ , min_frequency=0.0 , max_frequency=2_2_0_5_0.0 , sampling_rate=A__ , norm="""slaney""" , mel_scale="""slaney""" , ).T def __A ( self , A__ ): A__ : List[Any] = spectrogram( A__ , window_function(self.n_fft , """hann""" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel="""dB""" , db_range=8_0.0 , ) A__ : List[Any] = log_spec[:, :-1] A__ : Dict = log_spec - 2_0.0 A__ : List[str] = np.clip(log_spec / 4_0.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self , A__ , A__ = None , A__ = True , A__ = None , A__ = False , A__ = False , **A__ , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( """This feature extractor is set to support sampling rate""" F""" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled""" F""" with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) A__ : Optional[int] = isinstance(A__ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) A__ : Optional[int] = is_batched_numpy or ( isinstance(A__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: A__ : int = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(A__ , np.ndarray ): A__ : List[Any] = np.asarray(A__ , dtype=np.floataa ) elif isinstance(A__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): A__ : int = raw_speech.astype(np.floataa ) # always return batch if not is_batched: A__ : Dict = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis A__ : List[str] = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , A__ ): A__ : Dict = [np.asarray(A__ , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask A__ : Optional[int] = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: A__ : str = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] A__ : Tuple = np.array(A__ ).astype(np.floataa ) # convert into correct format for padding A__ : Tuple = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch A__ : str = np.ones([len(A__ ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) A__ : Tuple = padded_audio_features * self.padding_value for i in range(len(A__ ) ): A__ : List[Any] = audio_features[i] A__ : List[str] = feature # return as BatchFeature if return_attention_mask: A__ : Union[str, Any] = {"""audio_values""": padded_audio_features, """audio_mask""": audio_mask} else: A__ : Optional[int] = {"""audio_values""": padded_audio_features} A__ : List[Any] = BatchFeature(data=A__ , tensor_type=A__ ) return encoded_inputs
64
from __future__ import annotations from collections.abc import Callable A_ : List[Any] = list[list[float | int]] def UpperCamelCase (lowercase_: Matrix , lowercase_: Matrix ) -> Matrix: A__ : int = len(lowercase_ ) A__ : Matrix = [[0 for _ in range(size + 1 )] for _ in range(lowercase_ )] A__ : int A__ : int A__ : int A__ : int A__ : int A__ : float for row in range(lowercase_ ): for col in range(lowercase_ ): A__ : List[str] = matrix[row][col] A__ : int = vector[row][0] A__ : Optional[int] = 0 A__ : str = 0 while row < size and col < size: # pivoting A__ : int = max((abs(augmented[rowa][col] ), rowa) for rowa in range(lowercase_ , lowercase_ ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: A__ , A__ : Union[str, Any] = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , lowercase_ ): A__ : List[Any] = augmented[rowa][col] / augmented[row][col] A__ : Dict = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , lowercase_ ): for row in range(lowercase_ ): A__ : List[str] = augmented[row][col] / augmented[col][col] for cola in range(lowercase_ , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(lowercase_ ) ] def UpperCamelCase (lowercase_: list[int] ) -> Callable[[int], int]: A__ : int = len(lowercase_ ) A__ : Matrix = [[0 for _ in range(lowercase_ )] for _ in range(lowercase_ )] A__ : Matrix = [[0] for _ in range(lowercase_ )] A__ : Matrix A__ : int A__ : int A__ : int for x_val, y_val in enumerate(lowercase_ ): for col in range(lowercase_ ): A__ : Dict = (x_val + 1) ** (size - col - 1) A__ : Any = y_val A__ : Union[str, Any] = solve(lowercase_ , lowercase_ ) def interpolated_func(lowercase_: int ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(lowercase_ ) ) return interpolated_func def UpperCamelCase (lowercase_: int ) -> int: return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def UpperCamelCase (lowercase_: Callable[[int], int] = question_function , lowercase_: int = 10 ) -> int: A__ : list[int] = [func(lowercase_ ) for x_val in range(1 , order + 1 )] A__ : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] A__ : int = 0 A__ : Callable[[int], int] A__ : int for poly in polynomials: A__ : List[str] = 1 while func(lowercase_ ) == poly(lowercase_ ): x_val += 1 ret += poly(lowercase_ ) return ret if __name__ == "__main__": print(f'''{solution() = }''')
64
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A: Union[str, Any] = logging.get_logger(__name__) A: Optional[int] = { "facebook/nllb-moe-54B": "https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json", } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): __lowerCAmelCase : str = 'nllb-moe' __lowerCAmelCase : List[Any] = ['past_key_values'] __lowerCAmelCase : Dict = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , _SCREAMING_SNAKE_CASE=128112 , _SCREAMING_SNAKE_CASE=1024 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=4096 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=4096 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=0.05 , _SCREAMING_SNAKE_CASE=0.05 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE="relu" , _SCREAMING_SNAKE_CASE=1024 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE="float32" , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=128 , _SCREAMING_SNAKE_CASE=64 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=0.001 , _SCREAMING_SNAKE_CASE=0.001 , _SCREAMING_SNAKE_CASE="all" , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE=0.2 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=False , **_SCREAMING_SNAKE_CASE , ) -> Dict: '''simple docstring''' UpperCAmelCase : Optional[int] = vocab_size UpperCAmelCase : Optional[int] = max_position_embeddings UpperCAmelCase : str = d_model UpperCAmelCase : Union[str, Any] = encoder_ffn_dim UpperCAmelCase : int = encoder_layers UpperCAmelCase : Dict = encoder_attention_heads UpperCAmelCase : Tuple = decoder_ffn_dim UpperCAmelCase : List[Any] = decoder_layers UpperCAmelCase : Tuple = decoder_attention_heads UpperCAmelCase : Any = dropout UpperCAmelCase : Optional[int] = attention_dropout UpperCAmelCase : Union[str, Any] = activation_dropout UpperCAmelCase : Dict = activation_function UpperCAmelCase : int = init_std UpperCAmelCase : List[Any] = encoder_layerdrop UpperCAmelCase : Optional[Any] = decoder_layerdrop UpperCAmelCase : str = use_cache UpperCAmelCase : List[Any] = encoder_layers UpperCAmelCase : Union[str, Any] = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase : Optional[Any] = router_z_loss_coef UpperCAmelCase : List[str] = router_aux_loss_coef UpperCAmelCase : str = decoder_sparse_step UpperCAmelCase : str = encoder_sparse_step UpperCAmelCase : Optional[int] = num_experts UpperCAmelCase : Optional[int] = expert_capacity UpperCAmelCase : List[Any] = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F"`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}" ) UpperCAmelCase : int = router_dtype UpperCAmelCase : Optional[int] = router_ignore_padding_tokens UpperCAmelCase : Tuple = batch_prioritized_routing UpperCAmelCase : Any = second_expert_policy UpperCAmelCase : List[str] = normalize_router_prob_before_dropping UpperCAmelCase : str = moe_eval_capacity_token_fraction UpperCAmelCase : Union[str, Any] = moe_token_dropout UpperCAmelCase : Any = output_router_logits super().__init__( pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , is_encoder_decoder=_SCREAMING_SNAKE_CASE , decoder_start_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , )
160
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A: int = logging.get_logger(__name__) A: str = {"vocab_file": "sentencepiece.bpe.model"} A: int = { "vocab_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model" ), }, } A: Optional[Any] = { "moussaKam/mbarthez": 1_0_2_4, "moussaKam/barthez": 1_0_2_4, "moussaKam/barthez-orangesum-title": 1_0_2_4, } A: Union[str, Any] = "โ–" class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): __lowerCAmelCase : Any = VOCAB_FILES_NAMES __lowerCAmelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : Tuple = ['input_ids', 'attention_mask'] def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE="<mask>" , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> None: '''simple docstring''' UpperCAmelCase : str = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else mask_token UpperCAmelCase : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **_SCREAMING_SNAKE_CASE , ) UpperCAmelCase : Any = vocab_file UpperCAmelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_SCREAMING_SNAKE_CASE ) ) UpperCAmelCase : int = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} UpperCAmelCase : List[Any] = len(self.sp_model ) - 1 UpperCAmelCase : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase : Union[str, Any] = [self.cls_token_id] UpperCAmelCase : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_SCREAMING_SNAKE_CASE , token_ids_a=_SCREAMING_SNAKE_CASE , already_has_special_tokens=_SCREAMING_SNAKE_CASE ) if token_ids_a is None: return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]: '''simple docstring''' UpperCAmelCase : List[str] = [self.sep_token_id] UpperCAmelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' return len(self.sp_model ) def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' UpperCAmelCase : Optional[Any] = {self.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' return self.sp_model.encode(_SCREAMING_SNAKE_CASE , out_type=_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase : List[str] = self.sp_model.PieceToId(_SCREAMING_SNAKE_CASE ) return spm_id if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : str = [] UpperCAmelCase : str = """""" UpperCAmelCase : Union[str, Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) + token UpperCAmelCase : int = True UpperCAmelCase : List[Any] = [] else: current_sub_tokens.append(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Tuple = False out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) return out_string.strip() def __getstate__( self ) -> Any: '''simple docstring''' UpperCAmelCase : Tuple = self.__dict__.copy() UpperCAmelCase : Optional[int] = None return state def __setstate__( self , _SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Tuple = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): UpperCAmelCase : List[Any] = {} UpperCAmelCase : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return UpperCAmelCase : Union[str, Any] = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(_SCREAMING_SNAKE_CASE , """wb""" ) as fi: UpperCAmelCase : int = self.sp_model.serialized_model_proto() fi.write(_SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
160
1
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCAmelCase_ ( _UpperCamelCase, unittest.TestCase): '''simple docstring''' __UpperCamelCase : Optional[Any] = DiTPipeline __UpperCamelCase : List[Any] = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS __UpperCamelCase : str = PipelineTesterMixin.required_optional_params - { "latents", "num_images_per_prompt", "callback", "callback_steps", } __UpperCamelCase : int = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS __UpperCamelCase : Optional[Any] = False def _lowercase ( self ): """simple docstring""" torch.manual_seed(0 ) UpperCamelCase : Optional[Any] = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=__SCREAMING_SNAKE_CASE , activation_fn='''gelu-approximate''' , num_embeds_ada_norm=1_000 , norm_type='''ada_norm_zero''' , norm_elementwise_affine=__SCREAMING_SNAKE_CASE , ) UpperCamelCase : Dict = AutoencoderKL() UpperCamelCase : Any = DDIMScheduler() UpperCamelCase : int = {"transformer": transformer.eval(), "vae": vae.eval(), "scheduler": scheduler} return components def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=0 ): """simple docstring""" if str(__SCREAMING_SNAKE_CASE ).startswith('''mps''' ): UpperCamelCase : Union[str, Any] = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: UpperCamelCase : List[str] = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = { "class_labels": [1], "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[Any] = "cpu" UpperCamelCase : str = self.get_dummy_components() UpperCamelCase : str = self.pipeline_class(**__SCREAMING_SNAKE_CASE ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) UpperCamelCase : str = pipe(**__SCREAMING_SNAKE_CASE ).images UpperCamelCase : Tuple = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) UpperCamelCase : Tuple = np.array([0.2_946, 0.6_601, 0.4_329, 0.3_296, 0.4_144, 0.5_319, 0.7_273, 0.5_013, 0.4_457] ) UpperCamelCase : List[Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__SCREAMING_SNAKE_CASE , 1e-3 ) def _lowercase ( self ): """simple docstring""" self._test_inference_batch_single_identical(relax_max_difference=__SCREAMING_SNAKE_CASE , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def _lowercase ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class UpperCAmelCase_ ( unittest.TestCase): '''simple docstring''' def _lowercase ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[Any] = torch.manual_seed(0 ) UpperCamelCase : Dict = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-256''' ) pipe.to('''cuda''' ) UpperCamelCase : Tuple = ["vase", "umbrella", "white shark", "white wolf"] UpperCamelCase : Optional[Any] = pipe.get_label_ids(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = pipe(__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , num_inference_steps=40 , output_type='''np''' ).images for word, image in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): UpperCamelCase : Optional[Any] = load_numpy( f"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy""" ) assert np.abs((expected_image - image).max() ) < 1e-2 def _lowercase ( self ): """simple docstring""" UpperCamelCase : int = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-512''' ) UpperCamelCase : Dict = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to('''cuda''' ) UpperCamelCase : Dict = ["vase", "umbrella"] UpperCamelCase : Any = pipe.get_label_ids(__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = torch.manual_seed(0 ) UpperCamelCase : str = pipe(__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , num_inference_steps=25 , output_type='''np''' ).images for word, image in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): UpperCamelCase : Optional[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' f"""/dit/{word}_512.npy""" ) assert np.abs((expected_image - image).max() ) < 1e-1
715
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : int = logging.get_logger(__name__) __UpperCAmelCase : List[Any] = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} __UpperCAmelCase : str = { "vocab_file": { "facebook/mbart-large-en-ro": ( "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model" ), "facebook/mbart-large-cc25": ( "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/mbart-large-en-ro": "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json", "facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json", }, } __UpperCAmelCase : Union[str, Any] = { "facebook/mbart-large-en-ro": 1024, "facebook/mbart-large-cc25": 1024, } # fmt: off __UpperCAmelCase : Any = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : List[str] = VOCAB_FILES_NAMES __UpperCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Union[str, Any] = ["input_ids", "attention_mask"] __UpperCamelCase : Any = MBartTokenizer __UpperCamelCase : List[int] = [] __UpperCamelCase : List[int] = [] def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="<unk>" , __SCREAMING_SNAKE_CASE="<pad>" , __SCREAMING_SNAKE_CASE="<mask>" , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : Union[str, Any] = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else mask_token super().__init__( vocab_file=__SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , src_lang=__SCREAMING_SNAKE_CASE , tgt_lang=__SCREAMING_SNAKE_CASE , additional_special_tokens=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) UpperCamelCase : Dict = vocab_file UpperCamelCase : List[str] = False if not self.vocab_file else True UpperCamelCase : List[Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) UpperCamelCase : List[Any] = { lang_code: self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) for lang_code in FAIRSEQ_LANGUAGE_CODES } UpperCamelCase : Dict = src_lang if src_lang is not None else '''en_XX''' UpperCamelCase : List[Any] = self.convert_tokens_to_ids(self._src_lang ) UpperCamelCase : str = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def _lowercase ( self ): """simple docstring""" return self._src_lang @src_lang.setter def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Union[str, Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" UpperCamelCase : str = [self.sep_token_id] UpperCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) UpperCamelCase : List[str] = src_lang UpperCamelCase : Dict = self(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[Any] = self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Any = tgt_lang_id return inputs def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = "en_XX" , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "ro_RO" , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : Optional[Any] = src_lang UpperCamelCase : Optional[int] = tgt_lang return super().prepare_seqaseq_batch(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def _lowercase ( self ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Optional[int] = self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Any = [] UpperCamelCase : Dict = [self.eos_token_id, self.cur_lang_code] UpperCamelCase : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCamelCase : int = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCamelCase : Tuple = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Optional[int] = self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = [] UpperCamelCase : Optional[Any] = [self.eos_token_id, self.cur_lang_code] UpperCamelCase : Optional[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCamelCase : List[str] = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCamelCase : Optional[int] = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory.""" ) return UpperCamelCase : Optional[int] = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
643
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available UpperCamelCase_ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["""GPTSw3Tokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
92
def UpperCamelCase( __UpperCamelCase : str ,__UpperCamelCase : str ): lowerCAmelCase_ : Any = len(__UpperCamelCase ) lowerCAmelCase_ : Optional[int] = [] for i in range(len(__UpperCamelCase ) - pat_len + 1 ): lowerCAmelCase_ : str = True for j in range(__UpperCamelCase ): if s[i + j] != pattern[j]: lowerCAmelCase_ : List[Any] = False break if match_found: position.append(__UpperCamelCase ) return position if __name__ == "__main__": assert naive_pattern_search('''ABCDEFG''', '''DE''') == [3] print(naive_pattern_search('''ABAAABCDBBABCDDEBCABC''', '''ABC'''))
171
0
'''simple docstring''' import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json", } class UpperCamelCase__ ( UpperCAmelCase_ ): '''simple docstring''' _snake_case = 'mvp' _snake_case = ['past_key_values'] _snake_case = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , SCREAMING_SNAKE_CASE=5_02_67 , SCREAMING_SNAKE_CASE=10_24 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=40_96 , SCREAMING_SNAKE_CASE=16 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=40_96 , SCREAMING_SNAKE_CASE=16 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=10_24 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.0_2 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=1 , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=1_00 , SCREAMING_SNAKE_CASE=8_00 , **SCREAMING_SNAKE_CASE , ) -> Union[str, Any]: __lowerCAmelCase : Optional[Any] = vocab_size __lowerCAmelCase : List[str] = max_position_embeddings __lowerCAmelCase : str = d_model __lowerCAmelCase : Any = encoder_ffn_dim __lowerCAmelCase : Dict = encoder_layers __lowerCAmelCase : int = encoder_attention_heads __lowerCAmelCase : Any = decoder_ffn_dim __lowerCAmelCase : List[Any] = decoder_layers __lowerCAmelCase : Union[str, Any] = decoder_attention_heads __lowerCAmelCase : List[Any] = dropout __lowerCAmelCase : List[str] = attention_dropout __lowerCAmelCase : int = activation_dropout __lowerCAmelCase : List[str] = activation_function __lowerCAmelCase : int = init_std __lowerCAmelCase : str = encoder_layerdrop __lowerCAmelCase : str = decoder_layerdrop __lowerCAmelCase : List[str] = classifier_dropout __lowerCAmelCase : Any = use_cache __lowerCAmelCase : List[Any] = encoder_layers __lowerCAmelCase : Tuple = scale_embedding # scale factor will be sqrt(d_model) if True __lowerCAmelCase : int = use_prompt __lowerCAmelCase : List[str] = prompt_length __lowerCAmelCase : List[str] = prompt_mid_dim super().__init__( pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , is_encoder_decoder=_lowercase , decoder_start_token_id=_lowercase , forced_eos_token_id=_lowercase , **_lowercase , ) if self.forced_bos_token_id is None and kwargs.get('force_bos_token_to_be_generated' , _lowercase ): __lowerCAmelCase : Any = self.bos_token_id warnings.warn( F"""Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. """ 'The config can simply be saved and uploaded again to be fixed.' )
707
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ = { "configuration_upernet": ["UperNetConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ "UperNetForSemanticSegmentation", "UperNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys A_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
123
0
"""simple docstring""" import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class _lowercase ( __UpperCAmelCase ): def __init__( self , UpperCamelCase_ , UpperCamelCase_=13 , UpperCamelCase_=7 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=99 , UpperCamelCase_=32 , UpperCamelCase_=5 , UpperCamelCase_=4 , UpperCamelCase_=37 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=512 , UpperCamelCase_=16 , UpperCamelCase_=2 , UpperCamelCase_=0.0_2 , UpperCamelCase_=False , UpperCamelCase_=True , UpperCamelCase_="None" , UpperCamelCase_=3 , UpperCamelCase_=4 , UpperCamelCase_=None , ): __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = seq_length __magic_name__ = is_training __magic_name__ = use_input_mask __magic_name__ = use_token_type_ids __magic_name__ = use_labels __magic_name__ = vocab_size __magic_name__ = hidden_size __magic_name__ = num_hidden_layers __magic_name__ = num_attention_heads __magic_name__ = intermediate_size __magic_name__ = hidden_act __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = max_position_embeddings __magic_name__ = type_vocab_size __magic_name__ = type_sequence_label_size __magic_name__ = initializer_range __magic_name__ = num_labels __magic_name__ = num_choices __magic_name__ = relative_attention __magic_name__ = position_biased_input __magic_name__ = pos_att_type __magic_name__ = scope def lowerCAmelCase__ ( self ): __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ = None if self.use_input_mask: __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __magic_name__ = None if self.use_token_type_ids: __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __magic_name__ = None __magic_name__ = None __magic_name__ = None if self.use_labels: __magic_name__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __magic_name__ = ids_tensor([self.batch_size] , self.num_choices ) __magic_name__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase__ ( self ): return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def lowerCAmelCase__ ( self ): __magic_name__ = self.get_config() __magic_name__ = 300 return config def lowerCAmelCase__ ( self , UpperCamelCase_ ): self.parent.assertListEqual(list(result.loss.size() ) , [] ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __magic_name__ = DebertaModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __magic_name__ = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ )[0] __magic_name__ = model(UpperCamelCase_ , token_type_ids=UpperCamelCase_ )[0] __magic_name__ = model(UpperCamelCase_ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __magic_name__ = DebertaForMaskedLM(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __magic_name__ = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __magic_name__ = self.num_labels __magic_name__ = DebertaForSequenceClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __magic_name__ = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(UpperCamelCase_ ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __magic_name__ = self.num_labels __magic_name__ = DebertaForTokenClassification(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __magic_name__ = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __magic_name__ = DebertaForQuestionAnswering(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __magic_name__ = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , start_positions=UpperCamelCase_ , end_positions=UpperCamelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase__ ( self ): __magic_name__ = self.prepare_config_and_inputs() ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) = config_and_inputs __magic_name__ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _lowercase ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): _lowerCamelCase = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) _lowerCamelCase = ( { '''feature-extraction''': DebertaModel, '''fill-mask''': DebertaForMaskedLM, '''question-answering''': DebertaForQuestionAnswering, '''text-classification''': DebertaForSequenceClassification, '''token-classification''': DebertaForTokenClassification, '''zero-shot''': DebertaForSequenceClassification, } if is_torch_available() else {} ) _lowerCamelCase = True _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False def lowerCAmelCase__ ( self ): __magic_name__ = DebertaModelTester(self ) __magic_name__ = ConfigTester(self , config_class=UpperCamelCase_ , hidden_size=37 ) def lowerCAmelCase__ ( self ): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self ): __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*UpperCamelCase_ ) def lowerCAmelCase__ ( self ): __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*UpperCamelCase_ ) def lowerCAmelCase__ ( self ): __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*UpperCamelCase_ ) def lowerCAmelCase__ ( self ): __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*UpperCamelCase_ ) def lowerCAmelCase__ ( self ): __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*UpperCamelCase_ ) @slow def lowerCAmelCase__ ( self ): for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ = DebertaModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) @require_torch @require_sentencepiece @require_tokenizers class _lowercase ( unittest.TestCase ): @unittest.skip(reason='''Model not available yet''' ) def lowerCAmelCase__ ( self ): pass @slow def lowerCAmelCase__ ( self ): __magic_name__ = DebertaModel.from_pretrained('''microsoft/deberta-base''' ) __magic_name__ = torch.tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) __magic_name__ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __magic_name__ = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ )[0] # compare the actual values for a slice. __magic_name__ = torch.tensor( [[[-0.5_9_8_6, -0.8_0_5_5, -0.8_4_6_2], [1.4_4_8_4, -0.9_3_4_8, -0.8_0_5_9], [0.3_1_2_3, 0.0_0_3_2, -1.4_1_3_1]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , UpperCamelCase_ , atol=1E-4 ) , f'''{output[:, 1:4, 1:4]}''' )
490
"""simple docstring""" from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __lowerCamelCase = logging.get_logger(__name__) class _lowercase ( __UpperCAmelCase ): _lowerCamelCase = ['''input_features''', '''attention_mask'''] def __init__( self , UpperCamelCase_=80 , UpperCamelCase_=1_6000 , UpperCamelCase_=80 , UpperCamelCase_=0.0 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=True , **UpperCamelCase_ , ): super().__init__(feature_size=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , padding_value=UpperCamelCase_ , **UpperCamelCase_ ) __magic_name__ = num_mel_bins __magic_name__ = do_ceptral_normalize __magic_name__ = normalize_means __magic_name__ = normalize_vars __magic_name__ = True def lowerCAmelCase__ ( self , UpperCamelCase_ , ): __magic_name__ = waveform * (2**15) # Kaldi compliance: 16-bit signed integers __magic_name__ = torch.from_numpy(UpperCamelCase_ ).unsqueeze(0 ) __magic_name__ = ta_kaldi.fbank(UpperCamelCase_ , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def lowerCAmelCase__ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = True , UpperCamelCase_ = True , UpperCamelCase_ = 0.0 , ): # make sure we normalize float32 arrays if normalize_means: __magic_name__ = x[:input_length].mean(axis=0 ) __magic_name__ = np.subtract(UpperCamelCase_ , UpperCamelCase_ ) if normalize_vars: __magic_name__ = x[:input_length].std(axis=0 ) __magic_name__ = np.divide(UpperCamelCase_ , UpperCamelCase_ ) if input_length < x.shape[0]: __magic_name__ = padding_value # make sure array is in float32 __magic_name__ = x.astype(np.floataa ) return x def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ = None ): __magic_name__ = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(UpperCamelCase_ , UpperCamelCase_ , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(UpperCamelCase_ , UpperCamelCase_ ) ] def __call__( self , UpperCamelCase_ , UpperCamelCase_ = False , UpperCamelCase_ = None , UpperCamelCase_ = False , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , **UpperCamelCase_ , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' f''' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with''' f''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) __magic_name__ = isinstance(UpperCamelCase_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) __magic_name__ = is_batched_numpy or ( isinstance(UpperCamelCase_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __magic_name__ = [np.asarray(UpperCamelCase_ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(UpperCamelCase_ , np.ndarray ): __magic_name__ = np.asarray(UpperCamelCase_ , dtype=np.floataa ) elif isinstance(UpperCamelCase_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __magic_name__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __magic_name__ = [raw_speech] # extract fbank features __magic_name__ = [self._extract_fbank_features(UpperCamelCase_ ) for waveform in raw_speech] # convert into correct format for padding __magic_name__ = BatchFeature({'''input_features''': features} ) __magic_name__ = self.pad( UpperCamelCase_ , padding=UpperCamelCase_ , max_length=UpperCamelCase_ , truncation=UpperCamelCase_ , pad_to_multiple_of=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , **UpperCamelCase_ , ) # make sure list is in array format __magic_name__ = padded_inputs.get('''input_features''' ) if isinstance(input_features[0] , UpperCamelCase_ ): __magic_name__ = [np.asarray(UpperCamelCase_ , dtype=np.floataa ) for feature in input_features] __magic_name__ = padded_inputs.get('''attention_mask''' ) if attention_mask is not None: __magic_name__ = [np.asarray(UpperCamelCase_ , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: __magic_name__ = ( np.array(UpperCamelCase_ , dtype=np.intaa ) if self._get_padding_strategies(UpperCamelCase_ , max_length=UpperCamelCase_ ) is not PaddingStrategy.DO_NOT_PAD else None ) __magic_name__ = self.normalize( padded_inputs['''input_features'''] , attention_mask=UpperCamelCase_ ) if return_tensors is not None: __magic_name__ = padded_inputs.convert_to_tensors(UpperCamelCase_ ) return padded_inputs
490
1
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar _SCREAMING_SNAKE_CASE = TypeVar("""T""") def SCREAMING_SNAKE_CASE__ ( __a ): return (position - 1) // 2 def SCREAMING_SNAKE_CASE__ ( __a ): return (2 * position) + 1 def SCREAMING_SNAKE_CASE__ ( __a ): return (2 * position) + 2 class SCREAMING_SNAKE_CASE_ ( Generic[T] ): def __init__( self : int ) -> None: """simple docstring""" snake_case_ : list[tuple[T, int]] = [] snake_case_ : dict[T, int] = {} snake_case_ : int = 0 def __len__( self : List[Any] ) -> int: """simple docstring""" return self.elements def __repr__( self : Optional[Any] ) -> str: """simple docstring""" return str(self.heap ) def UpperCAmelCase_ ( self : Dict ) -> bool: """simple docstring""" return self.elements == 0 def UpperCAmelCase_ ( self : List[str] , _A : T , _A : int ) -> None: """simple docstring""" self.heap.append((elem, weight) ) snake_case_ : Optional[int] = self.elements self.elements += 1 self._bubble_up(_A ) def UpperCAmelCase_ ( self : List[str] ) -> T: """simple docstring""" if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) snake_case_ ,snake_case_ : Optional[int] = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: snake_case_ ,snake_case_ : List[str] = self.heap[0] self._bubble_down(_A ) return elem def UpperCAmelCase_ ( self : Optional[Any] , _A : T , _A : int ) -> None: """simple docstring""" snake_case_ : List[str] = self.position_map[elem] snake_case_ : int = (elem, weight) if position > 0: snake_case_ : Any = get_parent_position(_A ) snake_case_ ,snake_case_ : Any = self.heap[parent_position] if parent_weight > weight: self._bubble_up(_A ) else: self._bubble_down(_A ) else: self._bubble_down(_A ) def UpperCAmelCase_ ( self : Union[str, Any] , _A : T ) -> None: """simple docstring""" snake_case_ : Tuple = self.position_map[elem] if curr_pos == 0: return None snake_case_ : Dict = get_parent_position(_A ) snake_case_ ,snake_case_ : Tuple = self.heap[curr_pos] snake_case_ ,snake_case_ : Optional[Any] = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(_A , _A ) return self._bubble_up(_A ) return None def UpperCAmelCase_ ( self : Tuple , _A : T ) -> None: """simple docstring""" snake_case_ : Tuple = self.position_map[elem] snake_case_ ,snake_case_ : List[Any] = self.heap[curr_pos] snake_case_ : List[Any] = get_child_left_position(_A ) snake_case_ : Optional[Any] = get_child_right_position(_A ) if child_left_position < self.elements and child_right_position < self.elements: snake_case_ ,snake_case_ : Union[str, Any] = self.heap[child_left_position] snake_case_ ,snake_case_ : Any = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(_A , _A ) return self._bubble_down(_A ) if child_left_position < self.elements: snake_case_ ,snake_case_ : Optional[Any] = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(_A , _A ) return self._bubble_down(_A ) else: return None if child_right_position < self.elements: snake_case_ ,snake_case_ : Tuple = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(_A , _A ) return self._bubble_down(_A ) return None def UpperCAmelCase_ ( self : List[Any] , _A : int , _A : int ) -> None: """simple docstring""" snake_case_ : Dict = self.heap[nodea_pos][0] snake_case_ : Union[str, Any] = self.heap[nodea_pos][0] snake_case_ ,snake_case_ : Union[str, Any] = ( self.heap[nodea_pos], self.heap[nodea_pos], ) snake_case_ : Dict = nodea_pos snake_case_ : Dict = nodea_pos class SCREAMING_SNAKE_CASE_ ( Generic[T] ): def __init__( self : List[Any] ) -> None: """simple docstring""" snake_case_ : dict[T, dict[T, int]] = {} snake_case_ : int = 0 def __repr__( self : int ) -> str: """simple docstring""" return str(self.connections ) def __len__( self : Tuple ) -> int: """simple docstring""" return self.nodes def UpperCAmelCase_ ( self : str , _A : T ) -> None: """simple docstring""" if node not in self.connections: snake_case_ : Any = {} self.nodes += 1 def UpperCAmelCase_ ( self : Optional[Any] , _A : T , _A : T , _A : int ) -> None: """simple docstring""" self.add_node(_A ) self.add_node(_A ) snake_case_ : str = weight snake_case_ : Tuple = weight def SCREAMING_SNAKE_CASE__ ( __a , ): snake_case_ : dict[T, int] = {node: maxsize for node in graph.connections} snake_case_ : dict[T, T | None] = {node: None for node in graph.connections} snake_case_ : MinPriorityQueue[T] = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(__a , __a ) if priority_queue.is_empty(): return dist, parent # initialization snake_case_ : Tuple = priority_queue.extract_min() snake_case_ : Dict = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: snake_case_ : List[str] = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(__a , dist[neighbour] ) snake_case_ : Tuple = node # running prim's algorithm while not priority_queue.is_empty(): snake_case_ : Dict = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: snake_case_ : int = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(__a , dist[neighbour] ) snake_case_ : List[str] = node return dist, parent
534
from ....utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE_ ( snake_case_ ): def __init__( self : str , _A : List[Any] , _A : List[Any]=None , _A : str=2048 ) -> Optional[int]: """simple docstring""" snake_case_ : Tuple = config.__dict__ snake_case_ : List[str] = modal_hidden_size if num_labels: snake_case_ : int = num_labels
534
1
"""simple docstring""" import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def _snake_case ( __snake_case : Tuple , __snake_case : Union[str, Any] , __snake_case : List[Any] ): """simple docstring""" _lowerCamelCase : Tuple = LxmertConfig.from_json_file(__snake_case ) print(F'Building PyTorch model from configuration: {config}' ) _lowerCamelCase : Any = LxmertForPreTraining(__snake_case ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(__snake_case , __snake_case , __snake_case ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , __snake_case ) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) UpperCAmelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
88
'''simple docstring''' import os # Precomputes a list of the 100 first triangular numbers lowerCamelCase = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def _A ( ): """simple docstring""" __lowercase =os.path.dirname(os.path.realpath(_lowerCAmelCase ) ) __lowercase =os.path.join(_lowerCAmelCase , 'words.txt' ) __lowercase ='' with open(_lowerCAmelCase ) as f: __lowercase =f.readline() __lowercase =[word.strip('"' ) for word in words.strip('\r\n' ).split(',' )] __lowercase =[ word for word in [sum(ord(_lowerCAmelCase ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(_lowerCAmelCase ) if __name__ == "__main__": print(solution())
474
0
'''simple docstring''' import math def _UpperCAmelCase ( _UpperCamelCase : int ) -> bool: return math.sqrt(_UpperCamelCase ) * math.sqrt(_UpperCamelCase ) == num def _UpperCAmelCase ( _UpperCamelCase : int ) -> bool: A_ = 0 A_ = n while left <= right: A_ = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: A_ = mid - 1 else: A_ = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
174
'''simple docstring''' def _UpperCAmelCase ( _UpperCamelCase : int ) -> bool: if not isinstance(_UpperCamelCase, _UpperCamelCase ): A_ = F'''Input value of [number={number}] must be an integer''' raise TypeError(_UpperCamelCase ) if number < 0: return False A_ = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
174
1
'''simple docstring''' _a : Dict = { "meter": "m", "kilometer": "km", "megametre": "Mm", "gigametre": "Gm", "terametre": "Tm", "petametre": "Pm", "exametre": "Em", "zettametre": "Zm", "yottametre": "Ym", } # Exponent of the factor(meter) _a : str = { "m": 0, "km": 3, "Mm": 6, "Gm": 9, "Tm": 12, "Pm": 15, "Em": 18, "Zm": 21, "Ym": 24, } def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> float: """simple docstring""" __UpperCAmelCase : List[str] = from_type.lower().strip("s" ) __UpperCAmelCase : Union[str, Any] = to_type.lower().strip("s" ) __UpperCAmelCase : Optional[Any] = UNIT_SYMBOL.get(lowerCamelCase__ , lowerCamelCase__ ) __UpperCAmelCase : Optional[Any] = UNIT_SYMBOL.get(lowerCamelCase__ , lowerCamelCase__ ) if from_sanitized not in METRIC_CONVERSION: __UpperCAmelCase : List[Any] = ( f"""Invalid 'from_type' value: {from_type!r}.\n""" f"""Conversion abbreviations are: {', '.join(lowerCamelCase__ )}""" ) raise ValueError(lowerCamelCase__ ) if to_sanitized not in METRIC_CONVERSION: __UpperCAmelCase : Optional[Any] = ( f"""Invalid 'to_type' value: {to_type!r}.\n""" f"""Conversion abbreviations are: {', '.join(lowerCamelCase__ )}""" ) raise ValueError(lowerCamelCase__ ) __UpperCAmelCase : Optional[int] = METRIC_CONVERSION[from_sanitized] __UpperCAmelCase : List[str] = METRIC_CONVERSION[to_sanitized] __UpperCAmelCase : int = 1 if from_exponent > to_exponent: __UpperCAmelCase : List[str] = from_exponent - to_exponent else: __UpperCAmelCase : Union[str, Any] = -(to_exponent - from_exponent) return value * pow(10 , lowerCamelCase__ ) if __name__ == "__main__": from doctest import testmod testmod()
168
'''simple docstring''' from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __A (__magic_name__ ): snake_case :Optional[int] = ["image_processor", "tokenizer"] snake_case :List[str] = "BlipImageProcessor" snake_case :Optional[Any] = "AutoTokenizer" def __init__( self , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : List[Any] = False super().__init__(UpperCamelCase_ , UpperCamelCase_ ) __UpperCAmelCase : List[Any] = self.image_processor def __call__( self , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = True , UpperCamelCase_ = False , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = 0 , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = False , UpperCamelCase_ = False , UpperCamelCase_ = False , UpperCamelCase_ = False , UpperCamelCase_ = False , UpperCamelCase_ = True , UpperCamelCase_ = None , **UpperCamelCase_ , ): if images is None and text is None: raise ValueError("You have to specify either images or text." ) # Get only text if images is None: __UpperCAmelCase : Tuple = self.tokenizer __UpperCAmelCase : Any = self.tokenizer( text=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=UpperCamelCase_ , stride=UpperCamelCase_ , pad_to_multiple_of=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , return_overflowing_tokens=UpperCamelCase_ , return_special_tokens_mask=UpperCamelCase_ , return_offsets_mapping=UpperCamelCase_ , return_token_type_ids=UpperCamelCase_ , return_length=UpperCamelCase_ , verbose=UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ , ) return text_encoding # add pixel_values __UpperCAmelCase : int = self.image_processor(UpperCamelCase_ , return_tensors=UpperCamelCase_ ) if text is not None: __UpperCAmelCase : Dict = self.tokenizer( text=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=UpperCamelCase_ , stride=UpperCamelCase_ , pad_to_multiple_of=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , return_overflowing_tokens=UpperCamelCase_ , return_special_tokens_mask=UpperCamelCase_ , return_offsets_mapping=UpperCamelCase_ , return_token_type_ids=UpperCamelCase_ , return_length=UpperCamelCase_ , verbose=UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ , ) else: __UpperCAmelCase : Optional[Any] = None if text_encoding is not None: encoding_image_processor.update(UpperCamelCase_ ) return encoding_image_processor def _snake_case ( self , *UpperCamelCase_ , **UpperCamelCase_ ): return self.tokenizer.batch_decode(*UpperCamelCase_ , **UpperCamelCase_ ) def _snake_case ( self , *UpperCamelCase_ , **UpperCamelCase_ ): return self.tokenizer.decode(*UpperCamelCase_ , **UpperCamelCase_ ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def _snake_case ( self ): __UpperCAmelCase : str = self.tokenizer.model_input_names __UpperCAmelCase : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
168
1
'''simple docstring''' import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings lowerCAmelCase_ = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" __SCREAMING_SNAKE_CASE = field(default=lowerCamelCase_ , metadata={'''help''': '''Whether to use SortishSampler or not.'''} ) __SCREAMING_SNAKE_CASE = field( default=lowerCamelCase_ , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) __SCREAMING_SNAKE_CASE = field( default=lowerCamelCase_ , metadata={ '''help''': ( '''The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `max_length` value of the model configuration.''' ) } , ) __SCREAMING_SNAKE_CASE = field( default=lowerCamelCase_ , metadata={ '''help''': ( '''The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `num_beams` value of the model configuration.''' ) } , ) __SCREAMING_SNAKE_CASE = field( default=lowerCamelCase_ , metadata={ '''help''': '''Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.''' } , ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase : Tuple = super().to_dict() for k, v in d.items(): if isinstance(lowerCamelCase , lowerCamelCase ): UpperCamelCase : Tuple = v.to_dict() return d
435
'''simple docstring''' from __future__ import annotations import math def A__ ( A : int): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(A) + 1) , 6): if number % i == 0 or number % (i + 2) == 0: return False return True lowerCAmelCase_ = [num for num in range(3, 10_0001, 2) if not is_prime(num)] def A__ ( A : int): '''simple docstring''' if not isinstance(A , A): raise ValueError("n must be an integer") if n <= 0: raise ValueError("n must be >= 0") UpperCamelCase : Union[str, Any] = [] for num in range(len(A)): UpperCamelCase : Any = 0 while 2 * i * i <= odd_composites[num]: UpperCamelCase : str = odd_composites[num] - 2 * i * i if is_prime(A): break i += 1 else: list_nums.append(odd_composites[num]) if len(A) == n: return list_nums return [] def A__ ( ): '''simple docstring''' return compute_nums(1)[0] if __name__ == "__main__": print(f"""{solution() = }""")
435
1
_lowerCAmelCase: dict[str, float] = { "km/h": 1.0, "m/s": 3.6, "mph": 1.609_344, "knot": 1.852, } _lowerCAmelCase: dict[str, float] = { "km/h": 1.0, "m/s": 0.277_777_778, "mph": 0.621_371_192, "knot": 0.539_956_803, } def _lowercase( __a : float , __a : str , __a : str ): if unit_to not in speed_chart or unit_from not in speed_chart_inverse: a__ =( f"""Incorrect 'from_type' or 'to_type' value: {unit_from!r}, {unit_to!r}\n""" f"""Valid values are: {', '.join(__a )}""" ) raise ValueError(__a ) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 ) if __name__ == "__main__": import doctest doctest.testmod()
20
import sys from collections import defaultdict class _A : def __init__(self ) -> List[Any]: '''simple docstring''' UpperCamelCase__ = [] def _a (self , SCREAMING_SNAKE_CASE_ ) -> str: '''simple docstring''' return self.node_position[vertex] def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple: '''simple docstring''' UpperCamelCase__ = pos def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Dict: '''simple docstring''' if start > size // 2 - 1: return else: if 2 * start + 2 >= size: UpperCamelCase__ = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: UpperCamelCase__ = 2 * start + 1 else: UpperCamelCase__ = 2 * start + 2 if heap[smallest_child] < heap[start]: UpperCamelCase__ , UpperCamelCase__ = heap[smallest_child], positions[smallest_child] UpperCamelCase__ , UpperCamelCase__ = ( heap[start], positions[start], ) UpperCamelCase__ , UpperCamelCase__ = temp, tempa UpperCamelCase__ = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , SCREAMING_SNAKE_CASE_ ) self.top_to_bottom(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ = position[index] while index != 0: UpperCamelCase__ = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: UpperCamelCase__ = heap[parent] UpperCamelCase__ = position[parent] self.set_position(position[parent] , SCREAMING_SNAKE_CASE_ ) else: UpperCamelCase__ = val UpperCamelCase__ = temp self.set_position(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) break UpperCamelCase__ = parent else: UpperCamelCase__ = val UpperCamelCase__ = temp self.set_position(SCREAMING_SNAKE_CASE_ , 0 ) def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = len(SCREAMING_SNAKE_CASE_ ) // 2 - 1 for i in range(SCREAMING_SNAKE_CASE_ , -1 , -1 ): self.top_to_bottom(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ = positions[0] UpperCamelCase__ = sys.maxsize self.top_to_bottom(SCREAMING_SNAKE_CASE_ , 0 , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) return temp def __UpperCamelCase ( A ): UpperCamelCase__ = Heap() UpperCamelCase__ = [0] * len(A ) UpperCamelCase__ = [-1] * len(A ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph UpperCamelCase__ = [] # Heap of Distance of vertices from their neighboring vertex UpperCamelCase__ = [] for vertex in range(len(A ) ): distance_tv.append(sys.maxsize ) positions.append(A ) heap.node_position.append(A ) UpperCamelCase__ = [] UpperCamelCase__ = 1 UpperCamelCase__ = sys.maxsize for neighbor, distance in adjacency_list[0]: UpperCamelCase__ = 0 UpperCamelCase__ = distance heap.heapify(A , A ) for _ in range(1 , len(A ) ): UpperCamelCase__ = heap.delete_minimum(A , A ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) UpperCamelCase__ = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(A )] ): UpperCamelCase__ = distance heap.bottom_to_top( A , heap.get_position(A ) , A , A ) UpperCamelCase__ = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > __magic_name__ =int(input('''Enter number of edges: ''').strip()) __magic_name__ =defaultdict(list) for _ in range(edges_number): __magic_name__ =[int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
415
0
"""simple docstring""" import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput lowerCamelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name def __lowerCAmelCase (_UpperCamelCase ): warnings.warn( 'The preprocess method is deprecated and will be removed in a future version. Please' ' use VaeImageProcessor.preprocess instead' , a_ , ) if isinstance(a_ , torch.Tensor ): return image elif isinstance(a_ , PIL.Image.Image ): __lowerCAmelCase : Union[str, Any] = [image] if isinstance(image[0] , PIL.Image.Image ): __lowerCAmelCase : List[str] = image[0].size __lowerCAmelCase : Union[str, Any] = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 __lowerCAmelCase : str = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] __lowerCAmelCase : str = np.concatenate(a_ , axis=0 ) __lowerCAmelCase : List[str] = np.array(a_ ).astype(np.floataa ) / 255.0 __lowerCAmelCase : List[str] = image.transpose(0 , 3 , 1 , 2 ) __lowerCAmelCase : Optional[Any] = 2.0 * image - 1.0 __lowerCAmelCase : List[Any] = torch.from_numpy(a_ ) elif isinstance(image[0] , torch.Tensor ): __lowerCAmelCase : Tuple = torch.cat(a_ , dim=0 ) return image def __lowerCAmelCase (_UpperCamelCase ): if isinstance(a_ , torch.Tensor ): return mask elif isinstance(a_ , PIL.Image.Image ): __lowerCAmelCase : Optional[int] = [mask] if isinstance(mask[0] , PIL.Image.Image ): __lowerCAmelCase : Any = mask[0].size __lowerCAmelCase : List[str] = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 __lowerCAmelCase : List[str] = [np.array(m.convert('L' ).resize((w, h) , resample=PIL_INTERPOLATION['nearest'] ) )[None, :] for m in mask] __lowerCAmelCase : List[str] = np.concatenate(a_ , axis=0 ) __lowerCAmelCase : Any = mask.astype(np.floataa ) / 255.0 __lowerCAmelCase : str = 0 __lowerCAmelCase : str = 1 __lowerCAmelCase : Union[str, Any] = torch.from_numpy(a_ ) elif isinstance(mask[0] , torch.Tensor ): __lowerCAmelCase : Tuple = torch.cat(a_ , dim=0 ) return mask class A__ ( _UpperCAmelCase): A_ : List[str] = 4_2 A_ : Optional[int] = 4_2 def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): super().__init__() self.register_modules(unet=lowerCamelCase_ , scheduler=lowerCamelCase_ ) @torch.no_grad() def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 2_50 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = 10 , _SCREAMING_SNAKE_CASE = 10 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , ): __lowerCAmelCase : Optional[int] = image __lowerCAmelCase : Any = _preprocess_image(lowerCamelCase_ ) __lowerCAmelCase : Dict = original_image.to(device=self.device , dtype=self.unet.dtype ) __lowerCAmelCase : Optional[Any] = _preprocess_mask(lowerCamelCase_ ) __lowerCAmelCase : int = mask_image.to(device=self.device , dtype=self.unet.dtype ) __lowerCAmelCase : Optional[Any] = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(lowerCamelCase_ , lowerCamelCase_ ) and len(lowerCamelCase_ ) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(lowerCamelCase_ )}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) __lowerCAmelCase : Tuple = original_image.shape __lowerCAmelCase : List[Any] = randn_tensor(lowerCamelCase_ , generator=lowerCamelCase_ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , self.device ) __lowerCAmelCase : Optional[Any] = eta __lowerCAmelCase : Optional[Any] = self.scheduler.timesteps[0] + 1 __lowerCAmelCase : Dict = generator[0] if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual __lowerCAmelCase : str = self.unet(lowerCamelCase_ , lowerCamelCase_ ).sample # compute previous image: x_t -> x_t-1 __lowerCAmelCase : int = self.scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ).prev_sample else: # compute the reverse: x_t-1 -> x_t __lowerCAmelCase : Union[str, Any] = self.scheduler.undo_step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) __lowerCAmelCase : Optional[int] = t __lowerCAmelCase : Any = (image / 2 + 0.5).clamp(0 , 1 ) __lowerCAmelCase : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __lowerCAmelCase : List[str] = self.numpy_to_pil(lowerCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCamelCase_ )
718
"""simple docstring""" from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def __lowerCAmelCase (): __lowerCAmelCase : Tuple = HfArgumentParser(_UpperCamelCase ) __lowerCAmelCase : Optional[Any] = parser.parse_args_into_dataclasses()[0] __lowerCAmelCase : int = TensorFlowBenchmark(args=_UpperCamelCase ) try: __lowerCAmelCase : Dict = parser.parse_args_into_dataclasses()[0] except ValueError as e: __lowerCAmelCase : List[Any] = 'Arg --no_{0} is no longer used, please use --no-{0} instead.' __lowerCAmelCase : Union[str, Any] = ' '.join(str(_UpperCamelCase ).split(' ' )[:-1] ) __lowerCAmelCase : List[str] = '' __lowerCAmelCase : Any = eval(str(_UpperCamelCase ).split(' ' )[-1] ) __lowerCAmelCase : Dict = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(_UpperCamelCase ) if len(_UpperCamelCase ) > 0: __lowerCAmelCase : Any = full_error_msg + begin_error_msg + str(_UpperCamelCase ) raise ValueError(_UpperCamelCase ) benchmark.run() if __name__ == "__main__": main()
549
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class __magic_name__ ( unittest.TestCase ): """simple docstring""" def __init__( self : List[str] , _lowercase : Tuple , _lowercase : Union[str, Any]=7 , _lowercase : str=3 , _lowercase : Union[str, Any]=30 , _lowercase : List[Any]=400 , _lowercase : Dict=True , _lowercase : Optional[int]=None , _lowercase : Dict=True , _lowercase : Optional[Any]=1 / 255 , _lowercase : List[str]=True , _lowercase : Tuple=[0.5, 0.5, 0.5] , _lowercase : Tuple=[0.5, 0.5, 0.5] , _lowercase : Optional[Any]=True , ): """simple docstring""" _UpperCamelCase: List[str] = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1_333} _UpperCamelCase: List[Any] = parent _UpperCamelCase: Any = batch_size _UpperCamelCase: List[str] = num_channels _UpperCamelCase: int = min_resolution _UpperCamelCase: Any = max_resolution _UpperCamelCase: Optional[Any] = do_resize _UpperCamelCase: Union[str, Any] = size _UpperCamelCase: str = do_rescale _UpperCamelCase: List[Any] = rescale_factor _UpperCamelCase: List[Any] = do_normalize _UpperCamelCase: List[str] = image_mean _UpperCamelCase: str = image_std _UpperCamelCase: Optional[Any] = do_pad def lowerCAmelCase ( self : Dict ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def lowerCAmelCase ( self : Dict , _lowercase : int , _lowercase : Dict=False ): """simple docstring""" if not batched: _UpperCamelCase: str = image_inputs[0] if isinstance(_lowercase , Image.Image ): _UpperCamelCase , _UpperCamelCase: Tuple = image.size else: _UpperCamelCase , _UpperCamelCase: Optional[int] = image.shape[1], image.shape[2] if w < h: _UpperCamelCase: Dict = int(self.size['''shortest_edge'''] * h / w ) _UpperCamelCase: str = self.size['''shortest_edge'''] elif w > h: _UpperCamelCase: Dict = self.size['''shortest_edge'''] _UpperCamelCase: List[Any] = int(self.size['''shortest_edge'''] * w / h ) else: _UpperCamelCase: Tuple = self.size['''shortest_edge'''] _UpperCamelCase: Dict = self.size['''shortest_edge'''] else: _UpperCamelCase: Any = [] for image in image_inputs: _UpperCamelCase , _UpperCamelCase: Dict = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _UpperCamelCase: Union[str, Any] = max(_lowercase , key=lambda _lowercase : item[0] )[0] _UpperCamelCase: str = max(_lowercase , key=lambda _lowercase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __magic_name__ ( __a , unittest.TestCase ): """simple docstring""" lowerCAmelCase : int = DetrImageProcessor if is_vision_available() else None def lowerCAmelCase ( self : Optional[Any] ): """simple docstring""" _UpperCamelCase: str = DetrImageProcessingTester(self ) @property def lowerCAmelCase ( self : List[str] ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase ( self : int ): """simple docstring""" _UpperCamelCase: List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowercase , '''image_mean''' ) ) self.assertTrue(hasattr(_lowercase , '''image_std''' ) ) self.assertTrue(hasattr(_lowercase , '''do_normalize''' ) ) self.assertTrue(hasattr(_lowercase , '''do_rescale''' ) ) self.assertTrue(hasattr(_lowercase , '''rescale_factor''' ) ) self.assertTrue(hasattr(_lowercase , '''do_resize''' ) ) self.assertTrue(hasattr(_lowercase , '''size''' ) ) self.assertTrue(hasattr(_lowercase , '''do_pad''' ) ) def lowerCAmelCase ( self : Dict ): """simple docstring""" _UpperCamelCase: Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1_333} ) self.assertEqual(image_processor.do_pad , _lowercase ) _UpperCamelCase: Tuple = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_lowercase ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , _lowercase ) def lowerCAmelCase ( self : Tuple ): """simple docstring""" pass def lowerCAmelCase ( self : Any ): """simple docstring""" _UpperCamelCase: Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCamelCase: int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , Image.Image ) # Test not batched input _UpperCamelCase: str = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _UpperCamelCase , _UpperCamelCase: List[str] = self.image_processor_tester.get_expected_values(_lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCamelCase , _UpperCamelCase: List[Any] = self.image_processor_tester.get_expected_values(_lowercase , batched=_lowercase ) _UpperCamelCase: Optional[Any] = image_processing(_lowercase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase ( self : int ): """simple docstring""" _UpperCamelCase: Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCamelCase: Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , numpify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , np.ndarray ) # Test not batched input _UpperCamelCase: Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _UpperCamelCase , _UpperCamelCase: Any = self.image_processor_tester.get_expected_values(_lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCamelCase: Dict = image_processing(_lowercase , return_tensors='''pt''' ).pixel_values _UpperCamelCase , _UpperCamelCase: List[str] = self.image_processor_tester.get_expected_values(_lowercase , batched=_lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase ( self : str ): """simple docstring""" _UpperCamelCase: str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCamelCase: Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , torchify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , torch.Tensor ) # Test not batched input _UpperCamelCase: int = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _UpperCamelCase , _UpperCamelCase: Optional[int] = self.image_processor_tester.get_expected_values(_lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCamelCase: int = image_processing(_lowercase , return_tensors='''pt''' ).pixel_values _UpperCamelCase , _UpperCamelCase: str = self.image_processor_tester.get_expected_values(_lowercase , batched=_lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowerCAmelCase ( self : str ): """simple docstring""" _UpperCamelCase: Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: _UpperCamelCase: Optional[int] = json.loads(f.read() ) _UpperCamelCase: List[str] = {'''image_id''': 39_769, '''annotations''': target} # encode them _UpperCamelCase: str = DetrImageProcessor.from_pretrained('''facebook/detr-resnet-50''' ) _UpperCamelCase: Optional[int] = image_processing(images=_lowercase , annotations=_lowercase , return_tensors='''pt''' ) # verify pixel values _UpperCamelCase: Optional[Any] = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['''pixel_values'''].shape , _lowercase ) _UpperCamelCase: str = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _lowercase , atol=1E-4 ) ) # verify area _UpperCamelCase: str = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _lowercase ) ) # verify boxes _UpperCamelCase: Optional[int] = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _lowercase ) _UpperCamelCase: Optional[int] = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _lowercase , atol=1E-3 ) ) # verify image_id _UpperCamelCase: Union[str, Any] = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _lowercase ) ) # verify is_crowd _UpperCamelCase: int = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _lowercase ) ) # verify class_labels _UpperCamelCase: str = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _lowercase ) ) # verify orig_size _UpperCamelCase: Union[str, Any] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _lowercase ) ) # verify size _UpperCamelCase: List[str] = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _lowercase ) ) @slow def lowerCAmelCase ( self : Tuple ): """simple docstring""" _UpperCamelCase: List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: _UpperCamelCase: Dict = json.loads(f.read() ) _UpperCamelCase: Any = {'''file_name''': '''000000039769.png''', '''image_id''': 39_769, '''segments_info''': target} _UpperCamelCase: Optional[int] = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them _UpperCamelCase: List[Any] = DetrImageProcessor.from_pretrained('''facebook/detr-resnet-50-panoptic''' ) _UpperCamelCase: int = image_processing(images=_lowercase , annotations=_lowercase , masks_path=_lowercase , return_tensors='''pt''' ) # verify pixel values _UpperCamelCase: int = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['''pixel_values'''].shape , _lowercase ) _UpperCamelCase: Optional[int] = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _lowercase , atol=1E-4 ) ) # verify area _UpperCamelCase: Any = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _lowercase ) ) # verify boxes _UpperCamelCase: int = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _lowercase ) _UpperCamelCase: Optional[int] = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _lowercase , atol=1E-3 ) ) # verify image_id _UpperCamelCase: Dict = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _lowercase ) ) # verify is_crowd _UpperCamelCase: Optional[int] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _lowercase ) ) # verify class_labels _UpperCamelCase: Union[str, Any] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _lowercase ) ) # verify masks _UpperCamelCase: Any = 822_873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , _lowercase ) # verify orig_size _UpperCamelCase: Optional[Any] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _lowercase ) ) # verify size _UpperCamelCase: Tuple = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _lowercase ) )
271
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCAmelCase_ = { '''configuration_mega''': ['''MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegaConfig''', '''MegaOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ '''MEGA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegaForCausalLM''', '''MegaForMaskedLM''', '''MegaForMultipleChoice''', '''MegaForQuestionAnswering''', '''MegaForSequenceClassification''', '''MegaForTokenClassification''', '''MegaModel''', '''MegaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
271
1
from math import pi def A_ ( a , a ): """simple docstring""" return 2 * pi * radius * (angle / 3_6_0) if __name__ == "__main__": print(arc_length(90, 10))
353
import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _A ( __magic_name__ , unittest.TestCase): SCREAMING_SNAKE_CASE : Dict = GPTSanJapaneseTokenizer SCREAMING_SNAKE_CASE : List[Any] = False SCREAMING_SNAKE_CASE : Union[str, Any] = {'''do_clean_text''': False, '''add_prefix_space''': False} def UpperCAmelCase ( self ): """simple docstring""" super().setUp() # fmt: off SCREAMING_SNAKE_CASE_ : Optional[Any] = ['ใ“ใ‚“', 'ใ“ใ‚“ใซ', 'ใซใกใฏ', 'ใฐใ‚“ใฏ', 'ไธ–็•Œ,ใ”บ็•Œ', 'ใ€', 'ใ€‚', '<BR>', '<SP>', '<TAB>', '<URL>', '<EMAIL>', '<TEL>', '<DATE>', '<PRICE>', '<BLOCK>', '<KIGOU>', '<U2000U2BFF>', '<|emoji1|>', '<unk>', '<|bagoftoken|>', '<|endoftext|>'] # fmt: on SCREAMING_SNAKE_CASE_ : Optional[Any] = {'emoji': {'\ud83d\ude00': '<|emoji1|>'}, 'emoji_inv': {'<|emoji1|>': '\ud83d\ude00'}} # ๐Ÿ˜€ SCREAMING_SNAKE_CASE_ : int = {'unk_token': '<unk>'} SCREAMING_SNAKE_CASE_ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE_ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['emoji_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) with open(self.emoji_file , 'w' ) as emoji_writer: emoji_writer.write(json.dumps(_SCREAMING_SNAKE_CASE ) ) def UpperCAmelCase ( self , **_SCREAMING_SNAKE_CASE ): """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = 'ใ“ใ‚“ใซใกใฏใ€ไธ–็•Œใ€‚ \nใ“ใ‚“ใฐใ‚“ใฏใ€ใ”บ็•Œใ€‚๐Ÿ˜€' SCREAMING_SNAKE_CASE_ : Optional[Any] = 'ใ“ใ‚“ใซใกใฏใ€ไธ–็•Œใ€‚ \nใ“ใ‚“ใฐใ‚“ใฏใ€ไธ–็•Œใ€‚๐Ÿ˜€' return input_text, output_text def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = self.get_input_output_texts(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Any = tokenizer.decode(_SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=_SCREAMING_SNAKE_CASE ) return text, ids def UpperCAmelCase ( self ): """simple docstring""" pass # TODO add if relevant def UpperCAmelCase ( self ): """simple docstring""" pass # TODO add if relevant def UpperCAmelCase ( self ): """simple docstring""" pass # TODO add if relevant def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.get_tokenizer() # Testing tokenization SCREAMING_SNAKE_CASE_ : List[Any] = 'ใ“ใ‚“ใซใกใฏใ€ไธ–็•Œใ€‚ใ€€ใ“ใ‚“ใฐใ‚“ใฏใ€ใ”บ็•Œใ€‚' SCREAMING_SNAKE_CASE_ : List[str] = ['ใ“ใ‚“', 'ใซใกใฏ', 'ใ€', 'ไธ–็•Œ', 'ใ€‚', '<SP>', 'ใ“ใ‚“', 'ใฐใ‚“ใฏ', 'ใ€', 'ใ”บ็•Œ', 'ใ€‚'] SCREAMING_SNAKE_CASE_ : str = tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Testing conversion to ids without special tokens SCREAMING_SNAKE_CASE_ : Optional[Any] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] SCREAMING_SNAKE_CASE_ : List[str] = tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Testing conversion to ids with special tokens SCREAMING_SNAKE_CASE_ : Optional[Any] = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE_ : str = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] SCREAMING_SNAKE_CASE_ : str = tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_tokenizer() # Testing tokenization SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'ใ“ใ‚“ใซใกใฏใ€<|bagoftoken|>ไธ–็•Œใ€‚ใ“ใ‚“ใฐใ‚“ใฏใ€<|bagoftoken|>ใ”บ็•Œใ€‚' SCREAMING_SNAKE_CASE_ : str = 'ใ“ใ‚“ใซใกใฏใ€ใ€ใ€ใ€ไธ–็•Œใ€‚ใ“ใ‚“ใฐใ‚“ใฏใ€ใ€ใ€ใ€ไธ–็•Œใ€‚' SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer.encode(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer.decode(_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @slow def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) # Testing tokenization SCREAMING_SNAKE_CASE_ : int = 'ใ“ใ‚“ใซใกใฏใ€ไธ–็•Œใ€‚' SCREAMING_SNAKE_CASE_ : List[str] = 'ใ“ใ‚“ใฐใ‚“ใฏใ€ใ”บ็•Œใ€‚๐Ÿ˜€' SCREAMING_SNAKE_CASE_ : List[str] = 'ใ“ใ‚“ใซใกใฏใ€ไธ–็•Œใ€‚ใ“ใ‚“ใฐใ‚“ใฏใ€ไธ–็•Œใ€‚๐Ÿ˜€' SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer.encode(prefix_text + input_text ) SCREAMING_SNAKE_CASE_ : int = tokenizer.encode('' , prefix_text=prefix_text + input_text ) SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer.encode(_SCREAMING_SNAKE_CASE , prefix_text=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[str] = tokenizer.decode(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : str = tokenizer.decode(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Dict = tokenizer.decode(_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @slow def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) # Testing tokenization SCREAMING_SNAKE_CASE_ : Any = 'ใ“ใ‚“ใซใกใฏใ€ไธ–็•Œใ€‚' SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'ใ“ใ‚“ใฐใ‚“ใฏใ€ใ”บ็•Œใ€‚๐Ÿ˜€' SCREAMING_SNAKE_CASE_ : int = len(tokenizer.encode(_SCREAMING_SNAKE_CASE ) ) - 2 SCREAMING_SNAKE_CASE_ : Union[str, Any] = len(tokenizer.encode(_SCREAMING_SNAKE_CASE ) ) - 2 SCREAMING_SNAKE_CASE_ : str = [1] + [0] * (len_prefix + len_text + 1) SCREAMING_SNAKE_CASE_ : Union[str, Any] = [1] * (len_prefix + len_text + 1) + [0] SCREAMING_SNAKE_CASE_ : Dict = [1] + [1] * (len_prefix) + [0] * (len_text + 1) SCREAMING_SNAKE_CASE_ : Any = tokenizer(prefix_text + input_text ).token_type_ids SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer('' , prefix_text=prefix_text + input_text ).token_type_ids SCREAMING_SNAKE_CASE_ : Tuple = tokenizer(_SCREAMING_SNAKE_CASE , prefix_text=_SCREAMING_SNAKE_CASE ).token_type_ids self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @slow def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer.encode('ใ‚ใƒณใ„ใƒฏ' ) SCREAMING_SNAKE_CASE_ : Dict = tokenizer.encode('' , prefix_text='ใ‚ใƒณใ„ใƒฏ' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer.encode('ใ„ใƒฏ' , prefix_text='ใ‚ใƒณ' ) self.assertEqual(tokenizer.decode(_SCREAMING_SNAKE_CASE ) , tokenizer.decode(_SCREAMING_SNAKE_CASE ) ) self.assertEqual(tokenizer.decode(_SCREAMING_SNAKE_CASE ) , tokenizer.decode(_SCREAMING_SNAKE_CASE ) ) self.assertNotEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertNotEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) SCREAMING_SNAKE_CASE_ : Tuple = [['ๆญฆ็”ฐไฟก็Ž„', 'ใฏใ€'], ['็น”็”ฐไฟก้•ท', 'ใฎ้…ไธ‹ใฎใ€']] SCREAMING_SNAKE_CASE_ : Tuple = tokenizer(_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer.batch_encode_plus(_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE ) # fmt: off SCREAMING_SNAKE_CASE_ : List[str] = [[3_5993, 8640, 2_5948, 3_5998, 3_0647, 3_5675, 3_5999, 3_5999], [3_5993, 1_0382, 9868, 3_5998, 3_0646, 9459, 3_0646, 3_5675]] SCREAMING_SNAKE_CASE_ : int = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] SCREAMING_SNAKE_CASE_ : Any = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , _SCREAMING_SNAKE_CASE ) self.assertListEqual(x_token.token_type_ids , _SCREAMING_SNAKE_CASE ) self.assertListEqual(x_token.attention_mask , _SCREAMING_SNAKE_CASE ) self.assertListEqual(x_token_a.input_ids , _SCREAMING_SNAKE_CASE ) self.assertListEqual(x_token_a.token_type_ids , _SCREAMING_SNAKE_CASE ) self.assertListEqual(x_token_a.attention_mask , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ): """simple docstring""" pass def UpperCAmelCase ( self ): """simple docstring""" pass
353
1