code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def __lowercase (_SCREAMING_SNAKE_CASE :Tuple ): if is_torch_version('''<''' , '''2.0.0''' ) or not hasattr(_SCREAMING_SNAKE_CASE , '''_dynamo''' ): return False return isinstance(_SCREAMING_SNAKE_CASE , torch._dynamo.eval_frame.OptimizedModule ) def __lowercase (_SCREAMING_SNAKE_CASE :Tuple , _SCREAMING_SNAKE_CASE :bool = True ): SCREAMING_SNAKE_CASE : Any = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) SCREAMING_SNAKE_CASE : Any = is_compiled_module(_SCREAMING_SNAKE_CASE ) if is_compiled: SCREAMING_SNAKE_CASE : int = model SCREAMING_SNAKE_CASE : Tuple = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE : Any = model.module if not keep_fpaa_wrapper: SCREAMING_SNAKE_CASE : Optional[int] = getattr(_SCREAMING_SNAKE_CASE , '''forward''' ) SCREAMING_SNAKE_CASE : Tuple = model.__dict__.pop('''_original_forward''' , _SCREAMING_SNAKE_CASE ) if original_forward is not None: while hasattr(_SCREAMING_SNAKE_CASE , '''__wrapped__''' ): SCREAMING_SNAKE_CASE : Optional[Any] = forward.__wrapped__ if forward == original_forward: break SCREAMING_SNAKE_CASE : Tuple = forward if getattr(_SCREAMING_SNAKE_CASE , '''_converted_to_transformer_engine''' , _SCREAMING_SNAKE_CASE ): convert_model(_SCREAMING_SNAKE_CASE , to_transformer_engine=_SCREAMING_SNAKE_CASE ) if is_compiled: SCREAMING_SNAKE_CASE : List[Any] = model SCREAMING_SNAKE_CASE : int = compiled_model return model def __lowercase (): PartialState().wait_for_everyone() def __lowercase (_SCREAMING_SNAKE_CASE :str , _SCREAMING_SNAKE_CASE :Union[str, Any] ): if PartialState().distributed_type == DistributedType.TPU: xm.save(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif PartialState().local_process_index == 0: torch.save(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @contextmanager def __lowercase (**_SCREAMING_SNAKE_CASE :str ): for key, value in kwargs.items(): SCREAMING_SNAKE_CASE : str = str(_SCREAMING_SNAKE_CASE ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def __lowercase (_SCREAMING_SNAKE_CASE :List[Any] ): if not hasattr(_SCREAMING_SNAKE_CASE , '''__qualname__''' ) and not hasattr(_SCREAMING_SNAKE_CASE , '''__name__''' ): SCREAMING_SNAKE_CASE : str = getattr(_SCREAMING_SNAKE_CASE , '''__class__''' , _SCREAMING_SNAKE_CASE ) if hasattr(_SCREAMING_SNAKE_CASE , '''__qualname__''' ): return obj.__qualname__ if hasattr(_SCREAMING_SNAKE_CASE , '''__name__''' ): return obj.__name__ return str(_SCREAMING_SNAKE_CASE ) def __lowercase (_SCREAMING_SNAKE_CASE :Optional[Any] , _SCREAMING_SNAKE_CASE :str ): for key, value in source.items(): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE : int = destination.setdefault(_SCREAMING_SNAKE_CASE , {} ) merge_dicts(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: SCREAMING_SNAKE_CASE : Dict = value return destination def __lowercase (_SCREAMING_SNAKE_CASE :int = None ): if port is None: SCREAMING_SNAKE_CASE : Dict = 2_95_00 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('''localhost''', port) ) == 0
507
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
507
1
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() a_ : List[Any] = logging.get_logger(__name__) def __a ( __UpperCAmelCase , __UpperCAmelCase=False ): a__ = [] # fmt: off # stem: rename_keys.append(('''cls_token''', '''vit.embeddings.cls_token''') ) rename_keys.append(('''pos_embed''', '''vit.embeddings.position_embeddings''') ) rename_keys.append(('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias''') ) # backbone rename_keys.append(('''patch_embed.backbone.stem.conv.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight''') ) rename_keys.append(('''patch_embed.backbone.stem.norm.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight''') ) rename_keys.append(('''patch_embed.backbone.stem.norm.bias''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias''') ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias") ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((f"blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" a__ = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) # fmt: on return rename_keys def __a ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ): for i in range(config.num_hidden_layers ): if base_model: a__ = '''''' else: a__ = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) a__ = state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) a__ = state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict a__ = in_proj_weight[ : config.hidden_size, : ] a__ = in_proj_bias[: config.hidden_size] a__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] a__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] a__ = in_proj_weight[ -config.hidden_size :, : ] a__ = in_proj_bias[-config.hidden_size :] def __a ( __UpperCAmelCase ): a__ = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__UpperCAmelCase , __UpperCAmelCase ) def __a ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): a__ = dct.pop(__UpperCAmelCase ) a__ = val def __a ( ): a__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' a__ = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ) return im @torch.no_grad() def __a ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ): a__ = BitConfig( global_padding='''same''' , layer_type='''bottleneck''' , depths=(3, 4, 9) , out_features=['''stage3'''] , embedding_dynamic_padding=__UpperCAmelCase , ) a__ = ViTHybridConfig(backbone_config=__UpperCAmelCase , image_size=384 , num_labels=1000 ) a__ = False # load original model from timm a__ = timm.create_model(__UpperCAmelCase , pretrained=__UpperCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys a__ = timm_model.state_dict() if base_model: remove_classification_head_(__UpperCAmelCase ) a__ = create_rename_keys(__UpperCAmelCase , __UpperCAmelCase ) for src, dest in rename_keys: rename_key(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) read_in_q_k_v(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) a__ = '''huggingface/label-files''' a__ = '''imagenet-1k-id2label.json''' a__ = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) a__ = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} a__ = idalabel a__ = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": a__ = ViTHybridModel(__UpperCAmelCase ).eval() else: a__ = ViTHybridForImageClassification(__UpperCAmelCase ).eval() model.load_state_dict(__UpperCAmelCase ) # create image processor a__ = create_transform(**resolve_data_config({} , model=__UpperCAmelCase ) ) a__ = transform.transforms a__ = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } a__ = ViTHybridImageProcessor( do_resize=__UpperCAmelCase , size={'''shortest_edge''': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=__UpperCAmelCase , crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]} , do_normalize=__UpperCAmelCase , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) a__ = prepare_img() a__ = transform(__UpperCAmelCase ).unsqueeze(0 ) a__ = processor(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values # verify pixel values assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase ) # verify logits with torch.no_grad(): a__ = model(__UpperCAmelCase ) a__ = outputs.logits print('''Predicted class:''' , logits.argmax(-1 ).item() ) if base_model: a__ = timm_model.forward_features(__UpperCAmelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(__UpperCAmelCase , outputs.pooler_output , atol=1e-3 ) else: a__ = timm_model(__UpperCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__UpperCAmelCase , outputs.logits , atol=1e-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) print(f"Saving model {vit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__UpperCAmelCase ) print(f"Saving processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(__UpperCAmelCase ) if push_to_hub: print(f"Pushing model and processor to the hub {vit_name}" ) model.push_to_hub(f"ybelkada/{vit_name}" ) processor.push_to_hub(f"ybelkada/{vit_name}" ) if __name__ == "__main__": a_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--vit_name', default='vit_base_r50_s16_384', type=str, help='Name of the hybrid ViT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) a_ : Dict = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
148
from typing import Union import fire import torch from tqdm import tqdm def __a ( __UpperCAmelCase , __UpperCAmelCase = "cpu" , __UpperCAmelCase = None ): a__ = torch.load(__UpperCAmelCase , map_location=__UpperCAmelCase ) for k, v in tqdm(state_dict.items() ): if not isinstance(__UpperCAmelCase , torch.Tensor ): raise TypeError('''FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin''' ) a__ = v.half() if save_path is None: # overwrite src_path a__ = src_path torch.save(__UpperCAmelCase , __UpperCAmelCase ) if __name__ == "__main__": fire.Fire(convert)
148
1
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax snake_case = logging.get_logger(__name__) @add_end_docstrings(__a ) class SCREAMING_SNAKE_CASE ( __a ): """simple docstring""" def __init__( self : Tuple , **__lowerCAmelCase : Tuple ): """simple docstring""" super().__init__(**__lowerCAmelCase ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : str , __lowerCAmelCase : Union[str, List[str], "Image", List["Image"]] , **__lowerCAmelCase : str ): """simple docstring""" return super().__call__(__lowerCAmelCase , **__lowerCAmelCase ) def a ( self : Optional[int] , **__lowerCAmelCase : List[str] ): """simple docstring""" _lowerCAmelCase = {} if "candidate_labels" in kwargs: _lowerCAmelCase = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: _lowerCAmelCase = kwargs['hypothesis_template'] return preprocess_params, {}, {} def a ( self : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[Any]=None , __lowerCAmelCase : Any="This is a photo of {}." ): """simple docstring""" _lowerCAmelCase = load_image(__lowerCAmelCase ) _lowerCAmelCase = self.image_processor(images=[image] , return_tensors=self.framework ) _lowerCAmelCase = candidate_labels _lowerCAmelCase = [hypothesis_template.format(__lowerCAmelCase ) for x in candidate_labels] _lowerCAmelCase = self.tokenizer(__lowerCAmelCase , return_tensors=self.framework , padding=__lowerCAmelCase ) _lowerCAmelCase = [text_inputs] return inputs def a ( self : int , __lowerCAmelCase : Any ): """simple docstring""" _lowerCAmelCase = model_inputs.pop('candidate_labels' ) _lowerCAmelCase = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0] , __lowerCAmelCase ): _lowerCAmelCase = text_inputs[0] else: # Batching case. _lowerCAmelCase = text_inputs[0][0] _lowerCAmelCase = self.model(**__lowerCAmelCase , **__lowerCAmelCase ) _lowerCAmelCase = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_image, } return model_outputs def a ( self : Optional[int] , __lowerCAmelCase : Any ): """simple docstring""" _lowerCAmelCase = model_outputs.pop('candidate_labels' ) _lowerCAmelCase = model_outputs['logits'][0] if self.framework == "pt": _lowerCAmelCase = logits.softmax(dim=-1 ).squeeze(-1 ) _lowerCAmelCase = probs.tolist() if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): _lowerCAmelCase = [scores] elif self.framework == "tf": _lowerCAmelCase = stable_softmax(__lowerCAmelCase , axis=-1 ) _lowerCAmelCase = probs.numpy().tolist() else: raise ValueError(F"Unsupported framework: {self.framework}" ) _lowerCAmelCase = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(__lowerCAmelCase , __lowerCAmelCase ) , key=lambda __lowerCAmelCase : -x[0] ) ] return result
309
'''simple docstring''' import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () snake_case = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). snake_case = [0, 25, 50] snake_case = [25, 50, 75] snake_case = fuzz.membership.trimf(X, abca) snake_case = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. snake_case = np.ones(75) snake_case = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) snake_case = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) snake_case = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) snake_case = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) snake_case = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] snake_case = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) snake_case = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] snake_case = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] snake_case = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('''Young''') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('''Middle aged''') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('''union''') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('''intersection''') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('''complement_a''') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('''difference a/b''') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('''alg_sum''') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('''alg_product''') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('''bdd_sum''') plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title('''bdd_difference''') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
309
1
'''simple docstring''' import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a : def __init__( self : Union[str, Any] , lowercase_ : str , lowercase_ : str=13 , lowercase_ : Union[str, Any]=32 , lowercase_ : Tuple=3 , lowercase_ : List[str]=4 , lowercase_ : Optional[Any]=[10, 20, 30, 40] , lowercase_ : List[str]=[2, 2, 3, 2] , lowercase_ : Any=True , lowercase_ : Optional[Any]=True , lowercase_ : Union[str, Any]=37 , lowercase_ : List[str]="gelu" , lowercase_ : str=10 , lowercase_ : int=0.02 , lowercase_ : Optional[Any]=["stage2", "stage3", "stage4"] , lowercase_ : Optional[int]=[2, 3, 4] , lowercase_ : int=None , ): snake_case_ = parent snake_case_ = batch_size snake_case_ = image_size snake_case_ = num_channels snake_case_ = num_stages snake_case_ = hidden_sizes snake_case_ = depths snake_case_ = is_training snake_case_ = use_labels snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = num_labels snake_case_ = initializer_range snake_case_ = out_features snake_case_ = out_indices snake_case_ = scope def A_ ( self : List[Any] ): snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.num_labels ) snake_case_ = self.get_config() return config, pixel_values, labels def A_ ( self : Any ): return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=_snake_case , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def A_ ( self : Tuple , lowercase_ : Any , lowercase_ : Union[str, Any] , lowercase_ : Union[str, Any] ): snake_case_ = ConvNextModel(config=_snake_case ) model.to(_snake_case ) model.eval() snake_case_ = model(_snake_case ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def A_ ( self : str , lowercase_ : Optional[int] , lowercase_ : int , lowercase_ : List[str] ): snake_case_ = ConvNextForImageClassification(_snake_case ) model.to(_snake_case ) model.eval() snake_case_ = model(_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A_ ( self : List[str] , lowercase_ : Union[str, Any] , lowercase_ : str , lowercase_ : Dict ): snake_case_ = ConvNextBackbone(config=_snake_case ) model.to(_snake_case ) model.eval() snake_case_ = model(_snake_case ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None snake_case_ = None snake_case_ = ConvNextBackbone(config=_snake_case ) model.to(_snake_case ) model.eval() snake_case_ = model(_snake_case ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def A_ ( self : List[Any] ): snake_case_ = self.prepare_config_and_inputs() snake_case_ ,snake_case_ ,snake_case_ = config_and_inputs snake_case_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class a ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): snake_case_ = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) snake_case_ = ( {"feature-extraction": ConvNextModel, "image-classification": ConvNextForImageClassification} if is_torch_available() else {} ) snake_case_ = True snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def A_ ( self : Optional[Any] ): snake_case_ = ConvNextModelTester(self ) snake_case_ = ConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case , hidden_size=37 ) def A_ ( self : List[Any] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A_ ( self : Dict ): return @unittest.skip(reason='''ConvNext does not use inputs_embeds''' ) def A_ ( self : int ): pass @unittest.skip(reason='''ConvNext does not support input and output embeddings''' ) def A_ ( self : int ): pass @unittest.skip(reason='''ConvNext does not use feedforward chunking''' ) def A_ ( self : str ): pass def A_ ( self : Optional[Any] ): snake_case_ ,snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(_snake_case ) snake_case_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ = [*signature.parameters.keys()] snake_case_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _snake_case ) def A_ ( self : str ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def A_ ( self : int ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_snake_case ) def A_ ( self : Tuple ): def check_hidden_states_output(lowercase_ : int , lowercase_ : int , lowercase_ : Union[str, Any] ): snake_case_ = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(_snake_case , _snake_case ) ) snake_case_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states snake_case_ = self.model_tester.num_stages self.assertEqual(len(_snake_case ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) snake_case_ ,snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case_ = True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) def A_ ( self : Optional[Any] ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) @slow def A_ ( self : str ): for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = ConvNextModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def __magic_name__ ( ) -> Optional[Any]: '''simple docstring''' snake_case_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class a ( unittest.TestCase ): @cached_property def A_ ( self : Optional[Any] ): return AutoImageProcessor.from_pretrained('''facebook/convnext-tiny-224''' ) if is_vision_available() else None @slow def A_ ( self : List[str] ): snake_case_ = ConvNextForImageClassification.from_pretrained('''facebook/convnext-tiny-224''' ).to(_snake_case ) snake_case_ = self.default_image_processor snake_case_ = prepare_img() snake_case_ = image_processor(images=_snake_case , return_tensors='''pt''' ).to(_snake_case ) # forward pass with torch.no_grad(): snake_case_ = model(**_snake_case ) # verify the logits snake_case_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _snake_case ) snake_case_ = torch.tensor([-0.0260, -0.4739, 0.1911] ).to(_snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _snake_case , atol=1e-4 ) ) @require_torch class a ( unittest.TestCase , UpperCAmelCase_ ): snake_case_ = (ConvNextBackbone,) if is_torch_available() else () snake_case_ = ConvNextConfig snake_case_ = False def A_ ( self : Union[str, Any] ): snake_case_ = ConvNextModelTester(self )
708
'''simple docstring''' a : Dict = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] a : Optional[Any] = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] a : Optional[Any] = { 0: 'Sunday', 1: 'Monday', 2: 'Tuesday', 3: 'Wednesday', 4: 'Thursday', 5: 'Friday', 6: 'Saturday', } def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) -> str: '''simple docstring''' assert len(str(__UpperCAmelCase ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: snake_case_ = year // 100 snake_case_ = (5 * (century % 4) + 2) % 7 snake_case_ = year % 100 snake_case_ = centurian % 12 snake_case_ = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 snake_case_ = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0) else DOOMSDAY_LEAP[month - 1] ) snake_case_ = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
593
0
"""simple docstring""" class SCREAMING_SNAKE_CASE__ : def __init__(self , _lowercase ): '''simple docstring''' __a : Dict = len(_lowercase ) __a : Tuple = [0] * len_array if len_array > 0: __a : Tuple = array[0] for i in range(1 , _lowercase ): __a : Optional[Any] = self.prefix_sum[i - 1] + array[i] def lowerCAmelCase__(self , _lowercase , _lowercase ): '''simple docstring''' if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def lowerCAmelCase__(self , _lowercase ): '''simple docstring''' __a : Dict = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(_lowercase ) return False if __name__ == "__main__": import doctest doctest.testmod()
581
"""simple docstring""" from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. lowercase__ = 10 def __magic_name__ ( _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : list[int] , _lowerCamelCase : int ): for i in range(_lowerCamelCase , _lowerCamelCase ): if array[i] == target: return i return -1 def __magic_name__ ( _lowerCamelCase : list[int] , _lowerCamelCase : int ): __a : Optional[int] = 0 __a : Tuple = len(_lowerCamelCase ) while left <= right: if right - left < precision: return lin_search(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) __a : Tuple = (left + right) // 3 + 1 __a : List[Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: __a : Optional[Any] = one_third - 1 elif array[two_third] < target: __a : List[Any] = two_third + 1 else: __a : Any = one_third + 1 __a : Union[str, Any] = two_third - 1 else: return -1 def __magic_name__ ( _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : list[int] , _lowerCamelCase : int ): if left < right: if right - left < precision: return lin_search(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) __a : Any = (left + right) // 3 + 1 __a : Optional[Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(_lowerCamelCase , one_third - 1 , _lowerCamelCase , _lowerCamelCase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , _lowerCamelCase , _lowerCamelCase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() lowercase__ = input("Enter numbers separated by comma:\n").strip() lowercase__ = [int(item.strip()) for item in user_input.split(",")] assert collection == sorted(collection), f"List must be ordered.\n{collection}." lowercase__ = int(input("Enter the number to be found in the list:\n").strip()) lowercase__ = ite_ternary_search(collection, target) lowercase__ = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(f'Iterative search: {target} found at positions: {resulta}') print(f'Recursive search: {target} found at positions: {resulta}') else: print("Not found")
581
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowercase = { '''configuration_owlvit''': [ '''OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OwlViTConfig''', '''OwlViTOnnxConfig''', '''OwlViTTextConfig''', '''OwlViTVisionConfig''', ], '''processing_owlvit''': ['''OwlViTProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = ['''OwlViTFeatureExtractor'''] lowercase = ['''OwlViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OwlViTModel''', '''OwlViTPreTrainedModel''', '''OwlViTTextModel''', '''OwlViTVisionModel''', '''OwlViTForObjectDetection''', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
714
"""simple docstring""" from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal lowercase = logging.get_logger(__name__) lowercase = TypeVar('''DatasetType''', Dataset, IterableDataset) def UpperCAmelCase ( A : List[DatasetType] , A : Optional[List[float]] = None , A : Optional[int] = None , A : Optional[DatasetInfo] = None , A : Optional[NamedSplit] = None , A : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ): '''simple docstring''' from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('Unable to interleave an empty list of datasets.' ) for i, dataset in enumerate(A ): if not isinstance(A , (Dataset, IterableDataset) ): if isinstance(A , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' 'is an empty dataset dictionary.' ) raise ValueError( f'Dataset at position {i} has at least one split: {list(A )}\n' f'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(A ) )}\']' ) raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(A ).__name__}.' ) if i == 0: _UpperCAmelCase , _UpperCAmelCase = ( (Dataset, IterableDataset) if isinstance(A , A ) else (IterableDataset, Dataset) ) elif not isinstance(A , A ): raise ValueError( f'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(f'{stopping_strategy} is not supported. Please enter a valid stopping_strategy.' ) if dataset_type is Dataset: return _interleave_map_style_datasets( A , A , A , info=A , split=A , stopping_strategy=A ) else: return _interleave_iterable_datasets( A , A , A , info=A , split=A , stopping_strategy=A ) def UpperCAmelCase ( A : List[DatasetType] , A : Optional[DatasetInfo] = None , A : Optional[NamedSplit] = None , A : int = 0 , ): '''simple docstring''' if not dsets: raise ValueError('Unable to concatenate an empty list of datasets.' ) for i, dataset in enumerate(A ): if not isinstance(A , (Dataset, IterableDataset) ): if isinstance(A , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' 'is an empty dataset dictionary.' ) raise ValueError( f'Dataset at position {i} has at least one split: {list(A )}\n' f'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(A ) )}\']' ) raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(A ).__name__}.' ) if i == 0: _UpperCAmelCase , _UpperCAmelCase = ( (Dataset, IterableDataset) if isinstance(A , A ) else (IterableDataset, Dataset) ) elif not isinstance(A , A ): raise ValueError( f'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if dataset_type is Dataset: return _concatenate_map_style_datasets(A , info=A , split=A , axis=A ) else: return _concatenate_iterable_datasets(A , info=A , split=A , axis=A )
24
0
"""simple docstring""" from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class lowerCamelCase__ : SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 class lowerCamelCase__ : def __init__( self ,A ): UpperCAmelCase = [[] for _ in range(A )] UpperCAmelCase = size def __getitem__( self ,A ): return iter(self._graph[vertex] ) @property def _UpperCamelCase ( self ): return self._size def _UpperCamelCase ( self ,A ,A ,A ): if weight not in (0, 1): raise ValueError("""Edge weight must be either 0 or 1.""" ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("""Vertex indexes must be in [0; size).""" ) self._graph[from_vertex].append(Edge(A ,A ) ) def _UpperCamelCase ( self ,A ,A ): UpperCAmelCase = deque([start_vertex] ) UpperCAmelCase = [None] * self.size UpperCAmelCase = 0 while queue: UpperCAmelCase = queue.popleft() UpperCAmelCase = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: UpperCAmelCase = current_distance + edge.weight UpperCAmelCase = distances[edge.destination_vertex] if ( isinstance(A ,A ) and new_distance >= dest_vertex_distance ): continue UpperCAmelCase = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("""No path from start_vertex to finish_vertex.""" ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
341
"""simple docstring""" import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class lowerCamelCase__ ( snake_case ): def _UpperCamelCase ( self ): UpperCAmelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(A ,"""hidden_sizes""" ) ) self.parent.assertTrue(hasattr(A ,"""num_attention_heads""" ) ) self.parent.assertTrue(hasattr(A ,"""num_encoder_blocks""" ) ) class lowerCamelCase__ : def __init__( self ,A ,A=13 ,A=64 ,A=3 ,A=4 ,A=[2, 2, 2, 2] ,A=[8, 4, 2, 1] ,A=[16, 32, 64, 128] ,A=[1, 4, 8, 16] ,A=[1, 2, 4, 8] ,A=True ,A=True ,A="gelu" ,A=0.1 ,A=0.1 ,A=0.02 ,A=3 ,A=None ,): UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = image_size UpperCAmelCase = num_channels UpperCAmelCase = num_encoder_blocks UpperCAmelCase = sr_ratios UpperCAmelCase = depths UpperCAmelCase = hidden_sizes UpperCAmelCase = downsampling_rates UpperCAmelCase = num_attention_heads UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = initializer_range UpperCAmelCase = num_labels UpperCAmelCase = scope def _UpperCamelCase ( self ): UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels ) UpperCAmelCase = self.get_config() return config, pixel_values, labels def _UpperCamelCase ( self ): return SegformerConfig( image_size=self.image_size ,num_channels=self.num_channels ,num_encoder_blocks=self.num_encoder_blocks ,depths=self.depths ,hidden_sizes=self.hidden_sizes ,num_attention_heads=self.num_attention_heads ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,initializer_range=self.initializer_range ,) def _UpperCamelCase ( self ,A ,A ,A ): UpperCAmelCase = SegformerModel(config=A ) model.to(A ) model.eval() UpperCAmelCase = model(A ) UpperCAmelCase = UpperCAmelCase = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def _UpperCamelCase ( self ,A ,A ,A ): UpperCAmelCase = self.num_labels UpperCAmelCase = SegformerForSemanticSegmentation(A ) model.to(A ) model.eval() UpperCAmelCase = model(A ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) UpperCAmelCase = model(A ,labels=A ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss ,0.0 ) def _UpperCamelCase ( self ,A ,A ,A ): UpperCAmelCase = 1 UpperCAmelCase = SegformerForSemanticSegmentation(config=A ) model.to(A ) model.eval() UpperCAmelCase = torch.randint(0 ,1 ,(self.batch_size, self.image_size, self.image_size) ).to(A ) UpperCAmelCase = model(A ,labels=A ) self.parent.assertGreater(result.loss ,0.0 ) def _UpperCamelCase ( self ): UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = config_and_inputs UpperCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase__ ( snake_case , snake_case , unittest.TestCase ): SCREAMING_SNAKE_CASE = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE = ( { '''feature-extraction''': SegformerModel, '''image-classification''': SegformerForImageClassification, '''image-segmentation''': SegformerForSemanticSegmentation, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def _UpperCamelCase ( self ): UpperCAmelCase = SegformerModelTester(self ) UpperCAmelCase = SegformerConfigTester(self ,config_class=A ) def _UpperCamelCase ( self ): self.config_tester.run_common_tests() def _UpperCamelCase ( self ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def _UpperCamelCase ( self ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*A ) def _UpperCamelCase ( self ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*A ) @unittest.skip("""SegFormer does not use inputs_embeds""" ) def _UpperCamelCase ( self ): pass @unittest.skip("""SegFormer does not have get_input_embeddings method and get_output_embeddings methods""" ) def _UpperCamelCase ( self ): pass def _UpperCamelCase ( self ): UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(A ) UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,A ) def _UpperCamelCase ( self ): UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = True for model_class in self.all_model_classes: UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = True UpperCAmelCase = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): UpperCAmelCase = model(**self._prepare_for_class(A ,A ) ) UpperCAmelCase = outputs.attentions UpperCAmelCase = sum(self.model_tester.depths ) self.assertEqual(len(A ) ,A ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCAmelCase = True UpperCAmelCase = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): UpperCAmelCase = model(**self._prepare_for_class(A ,A ) ) UpperCAmelCase = outputs.attentions self.assertEqual(len(A ) ,A ) # verify the first attentions (first block, first layer) UpperCAmelCase = (self.model_tester.image_size // 4) ** 2 UpperCAmelCase = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] ,) # verify the last attentions (last block, last layer) UpperCAmelCase = (self.model_tester.image_size // 32) ** 2 UpperCAmelCase = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ) ,[self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] ,) UpperCAmelCase = len(A ) # Check attention is always last and order is fine UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): UpperCAmelCase = model(**self._prepare_for_class(A ,A ) ) self.assertEqual(out_len + 1 ,len(A ) ) UpperCAmelCase = outputs.attentions self.assertEqual(len(A ) ,A ) # verify the first attentions (first block, first layer) UpperCAmelCase = (self.model_tester.image_size // 4) ** 2 UpperCAmelCase = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] ,) def _UpperCamelCase ( self ): def check_hidden_states_output(A ,A ,A ): UpperCAmelCase = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): UpperCAmelCase = model(**self._prepare_for_class(A ,A ) ) UpperCAmelCase = outputs.hidden_states UpperCAmelCase = self.model_tester.num_encoder_blocks self.assertEqual(len(A ) ,A ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) ,[ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] ,) UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = True check_hidden_states_output(A ,A ,A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase = True check_hidden_states_output(A ,A ,A ) def _UpperCamelCase ( self ): if not self.model_tester.is_training: return UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = True for model_class in self.all_model_classes: if model_class in get_values(A ): continue UpperCAmelCase = model_class(A ) model.to(A ) model.train() UpperCAmelCase = self._prepare_for_class(A ,A ,return_labels=A ) UpperCAmelCase = model(**A ).loss loss.backward() @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _UpperCamelCase ( self ): pass @slow def _UpperCamelCase ( self ): for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = SegformerModel.from_pretrained(A ) self.assertIsNotNone(A ) def _a ( ): """simple docstring""" UpperCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch class lowerCamelCase__ ( unittest.TestCase ): @slow def _UpperCamelCase ( self ): # only resize + normalize UpperCAmelCase = SegformerImageProcessor( image_scale=(512, 512) ,keep_ratio=A ,align=A ,do_random_crop=A ) UpperCAmelCase = SegformerForSemanticSegmentation.from_pretrained("""nvidia/segformer-b0-finetuned-ade-512-512""" ).to( A ) UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=A ,return_tensors="""pt""" ) UpperCAmelCase = encoded_inputs.pixel_values.to(A ) with torch.no_grad(): UpperCAmelCase = model(A ) UpperCAmelCase = torch.Size((1, model.config.num_labels, 128, 128) ) self.assertEqual(outputs.logits.shape ,A ) UpperCAmelCase = torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] ,A ,atol=1e-4 ) ) @slow def _UpperCamelCase ( self ): # only resize + normalize UpperCAmelCase = SegformerImageProcessor( image_scale=(512, 512) ,keep_ratio=A ,align=A ,do_random_crop=A ) UpperCAmelCase = SegformerForSemanticSegmentation.from_pretrained( """nvidia/segformer-b1-finetuned-cityscapes-1024-1024""" ).to(A ) UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=A ,return_tensors="""pt""" ) UpperCAmelCase = encoded_inputs.pixel_values.to(A ) with torch.no_grad(): UpperCAmelCase = model(A ) UpperCAmelCase = torch.Size((1, model.config.num_labels, 128, 128) ) self.assertEqual(outputs.logits.shape ,A ) UpperCAmelCase = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] ,A ,atol=1e-1 ) ) @slow def _UpperCamelCase ( self ): # only resize + normalize UpperCAmelCase = SegformerImageProcessor( image_scale=(512, 512) ,keep_ratio=A ,align=A ,do_random_crop=A ) UpperCAmelCase = SegformerForSemanticSegmentation.from_pretrained("""nvidia/segformer-b0-finetuned-ade-512-512""" ).to( A ) UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=A ,return_tensors="""pt""" ) UpperCAmelCase = encoded_inputs.pixel_values.to(A ) with torch.no_grad(): UpperCAmelCase = model(A ) UpperCAmelCase = outputs.logits.detach().cpu() UpperCAmelCase = image_processor.post_process_semantic_segmentation(outputs=A ,target_sizes=[(500, 300)] ) UpperCAmelCase = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape ,A ) UpperCAmelCase = image_processor.post_process_semantic_segmentation(outputs=A ) UpperCAmelCase = torch.Size((128, 128) ) self.assertEqual(segmentation[0].shape ,A )
341
1
def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> float: def get_matched_characters(lowerCamelCase_ , lowerCamelCase_ ) -> str: _lowercase : Dict = [] _lowercase : List[Any] = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): _lowercase : str = int(max(0 , i - limit ) ) _lowercase : Tuple = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(lowerCamelCase_ ) _lowercase : str = F'''{_stra[0:_stra.index(lowerCamelCase_ )]} {_stra[_stra.index(lowerCamelCase_ ) + 1:]}''' return "".join(lowerCamelCase_ ) # matching characters _lowercase : Optional[int] = get_matched_characters(lowerCamelCase_ , lowerCamelCase_ ) _lowercase : List[Any] = get_matched_characters(lowerCamelCase_ , lowerCamelCase_ ) _lowercase : List[str] = len(lowerCamelCase_ ) # transposition _lowercase : Dict = ( len([(ca, ca) for ca, ca in zip(lowerCamelCase_ , lowerCamelCase_ ) if ca != ca] ) // 2 ) if not match_count: _lowercase : Optional[int] = 0.0 else: _lowercase : Tuple = ( 1 / 3 * ( match_count / len(lowerCamelCase_ ) + match_count / len(lowerCamelCase_ ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters _lowercase : Any = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler("hello", "world"))
354
def UpperCamelCase_( lowerCamelCase_ ) -> int: assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and number_of_steps > 0 ), F'''number_of_steps needs to be positive integer, your input {number_of_steps}''' if number_of_steps == 1: return 1 _lowercase , _lowercase : Dict = 1, 1 for _ in range(number_of_steps - 1 ): _lowercase , _lowercase : Tuple = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
354
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : Optional[Any] = logging.get_logger(__name__) lowercase__ : Dict = { '''microsoft/trocr-base-handwritten''': ( '''https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json''' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class SCREAMING_SNAKE_CASE (lowerCAmelCase_ ): lowerCAmelCase = '''trocr''' lowerCAmelCase = ['''past_key_values'''] lowerCAmelCase = { '''num_attention_heads''': '''decoder_attention_heads''', '''hidden_size''': '''d_model''', '''num_hidden_layers''': '''decoder_layers''', } def __init__( self , _UpperCAmelCase=5_0265 , _UpperCAmelCase=1024 , _UpperCAmelCase=12 , _UpperCAmelCase=16 , _UpperCAmelCase=4096 , _UpperCAmelCase="gelu" , _UpperCAmelCase=512 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=0.0 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=1 , _UpperCAmelCase=0 , _UpperCAmelCase=2 , **_UpperCAmelCase , ): '''simple docstring''' __A : Any = vocab_size __A : Optional[int] = d_model __A : Optional[Any] = decoder_layers __A : Optional[Any] = decoder_attention_heads __A : Optional[int] = decoder_ffn_dim __A : str = activation_function __A : Dict = max_position_embeddings __A : Optional[int] = dropout __A : List[str] = attention_dropout __A : Union[str, Any] = activation_dropout __A : int = init_std __A : Any = decoder_layerdrop __A : List[str] = use_cache __A : int = scale_embedding __A : List[str] = use_learned_position_embeddings __A : Tuple = layernorm_embedding super().__init__( pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , decoder_start_token_id=__lowerCamelCase , **__lowerCamelCase , )
8
'''simple docstring''' import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py A_ = "." # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) A_ = [ "Assert", "AssignVariableOp", "EmptyTensorList", "MergeV2Checkpoints", "ReadVariableOp", "ResourceGather", "RestoreV2", "SaveV2", "ShardedFilename", "StatefulPartitionedCall", "StaticRegexFullMatch", "VarHandleOp", ] def UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Union[str, Any]: snake_case__ : str = SavedModel() snake_case__ : Union[str, Any] = [] with open(os.path.join(__SCREAMING_SNAKE_CASE , 'utils' , 'tf_ops' , 'onnx.json' ) ) as f: snake_case__ : Optional[Any] = json.load(__SCREAMING_SNAKE_CASE )['opsets'] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(__SCREAMING_SNAKE_CASE )] ) with open(__SCREAMING_SNAKE_CASE , 'rb' ) as f: saved_model.ParseFromString(f.read() ) snake_case__ : List[str] = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want snake_case__ : Optional[int] = sorted(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(__SCREAMING_SNAKE_CASE ) if strict and len(__SCREAMING_SNAKE_CASE ) > 0: raise Exception(f"Found the following incompatible ops for the opset {opset}:\n" + incompatible_ops ) elif len(__SCREAMING_SNAKE_CASE ) > 0: print(f"Found the following incompatible ops for the opset {opset}:" ) print(*__SCREAMING_SNAKE_CASE , sep='\n' ) else: print(f"The saved model {saved_model_path} can properly be converted with ONNX." ) if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument("--saved_model_path", help="Path of the saved model to check (the .pb file).") parser.add_argument( "--opset", default=12, type=int, help="The ONNX opset against which the model has to be tested." ) parser.add_argument( "--framework", choices=["onnx"], default="onnx", help="Frameworks against which to test the saved model." ) parser.add_argument( "--strict", action="store_true", help="Whether make the checking strict (raise errors) or not (raise warnings)" ) A_ = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
270
0
from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar __lowerCamelCase = TypeVar('''T''') class a__ ( Generic[T] ): def __init__( self : Optional[Any] , lowerCamelCase_ : list[T] , lowerCamelCase_ : Callable[[T, T], T] ): a_ : Any | T = None a_ : int = len(lowerCamelCase_ ) a_ : list[T] = [any_type for _ in range(self.N )] + arr a_ : List[str] = fnc self.build() def UpperCAmelCase( self : Union[str, Any] ): for p in range(self.N - 1 , 0 , -1 ): a_ : str = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def UpperCAmelCase( self : Optional[Any] , lowerCamelCase_ : int , lowerCamelCase_ : T ): p += self.N a_ : Optional[int] = v while p > 1: a_ : int = p // 2 a_ : Dict = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def UpperCAmelCase( self : Dict , lowerCamelCase_ : int , lowerCamelCase_ : int ): # noqa: E741 a_ : List[Any] = l + self.N, r + self.N a_ : T | None = None while l <= r: if l % 2 == 1: a_ : Union[str, Any] = self.st[l] if res is None else self.fn(lowerCamelCase_ , self.st[l] ) if r % 2 == 0: a_ : List[Any] = self.st[r] if res is None else self.fn(lowerCamelCase_ , self.st[r] ) a_ : Any = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce __lowerCamelCase = [1, 10, -2, 9, -3, 8, 4, -7, 5, 6, 11, -12] __lowerCamelCase = { 0: 7, 1: 2, 2: 6, 3: -14, 4: 5, 5: 4, 6: 7, 7: -10, 8: 9, 9: 10, 10: 12, 11: 1, } __lowerCamelCase = SegmentTree(test_array, min) __lowerCamelCase = SegmentTree(test_array, max) __lowerCamelCase = SegmentTree(test_array, lambda a, b: a + b) def _a ( ): for i in range(len(__UpperCamelCase ) ): for j in range(__UpperCamelCase , len(__UpperCamelCase ) ): a_ : Dict = reduce(__UpperCamelCase , test_array[i : j + 1] ) a_ : Dict = reduce(__UpperCamelCase , test_array[i : j + 1] ) a_ : str = reduce(lambda __UpperCamelCase , __UpperCamelCase : a + b , test_array[i : j + 1] ) assert min_range == min_segment_tree.query(__UpperCamelCase , __UpperCamelCase ) assert max_range == max_segment_tree.query(__UpperCamelCase , __UpperCamelCase ) assert sum_range == sum_segment_tree.query(__UpperCamelCase , __UpperCamelCase ) test_all_segments() for index, value in test_updates.items(): __lowerCamelCase = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
717
import argparse import collections import json import os import re import string import sys import numpy as np __lowerCamelCase = re.compile(R'''\b(a|an|the)\b''', re.UNICODE) __lowerCamelCase = None def _a ( ): a_ : Tuple = argparse.ArgumentParser("""Official evaluation script for SQuAD version 2.0.""" ) parser.add_argument("""data_file""" , metavar="""data.json""" , help="""Input data JSON file.""" ) parser.add_argument("""pred_file""" , metavar="""pred.json""" , help="""Model predictions.""" ) parser.add_argument( """--out-file""" , """-o""" , metavar="""eval.json""" , help="""Write accuracy metrics to file (default is stdout).""" ) parser.add_argument( """--na-prob-file""" , """-n""" , metavar="""na_prob.json""" , help="""Model estimates of probability of no answer.""" ) parser.add_argument( """--na-prob-thresh""" , """-t""" , type=__UpperCamelCase , default=1.0 , help="""Predict \"\" if no-answer probability exceeds this (default = 1.0).""" , ) parser.add_argument( """--out-image-dir""" , """-p""" , metavar="""out_images""" , default=__UpperCamelCase , help="""Save precision-recall curves to directory.""" ) parser.add_argument("""--verbose""" , """-v""" , action="""store_true""" ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def _a ( __UpperCamelCase ): a_ : Union[str, Any] = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: a_ : Union[str, Any] = bool(qa["""answers"""]["""text"""] ) return qid_to_has_ans def _a ( __UpperCamelCase ): def remove_articles(__UpperCamelCase ): return ARTICLES_REGEX.sub(""" """ , __UpperCamelCase ) def white_space_fix(__UpperCamelCase ): return " ".join(text.split() ) def remove_punc(__UpperCamelCase ): a_ : List[str] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__UpperCamelCase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__UpperCamelCase ) ) ) ) def _a ( __UpperCamelCase ): if not s: return [] return normalize_answer(__UpperCamelCase ).split() def _a ( __UpperCamelCase , __UpperCamelCase ): return int(normalize_answer(__UpperCamelCase ) == normalize_answer(__UpperCamelCase ) ) def _a ( __UpperCamelCase , __UpperCamelCase ): a_ : List[Any] = get_tokens(__UpperCamelCase ) a_ : str = get_tokens(__UpperCamelCase ) a_ : Tuple = collections.Counter(__UpperCamelCase ) & collections.Counter(__UpperCamelCase ) a_ : str = sum(common.values() ) if len(__UpperCamelCase ) == 0 or len(__UpperCamelCase ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 a_ : Any = 1.0 * num_same / len(__UpperCamelCase ) a_ : Optional[int] = 1.0 * num_same / len(__UpperCamelCase ) a_ : List[Any] = (2 * precision * recall) / (precision + recall) return fa def _a ( __UpperCamelCase , __UpperCamelCase ): a_ : Tuple = {} a_ : Optional[int] = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: a_ : str = qa["""id"""] a_ : Dict = [t for t in qa["""answers"""]["""text"""] if normalize_answer(__UpperCamelCase )] if not gold_answers: # For unanswerable questions, only correct answer is empty string a_ : Union[str, Any] = [""""""] if qid not in preds: print(F'''Missing prediction for {qid}''' ) continue a_ : int = preds[qid] # Take max over all gold answers a_ : Union[str, Any] = max(compute_exact(__UpperCamelCase , __UpperCamelCase ) for a in gold_answers ) a_ : int = max(compute_fa(__UpperCamelCase , __UpperCamelCase ) for a in gold_answers ) return exact_scores, fa_scores def _a ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): a_ : Optional[Any] = {} for qid, s in scores.items(): a_ : Optional[int] = na_probs[qid] > na_prob_thresh if pred_na: a_ : List[Any] = float(not qid_to_has_ans[qid] ) else: a_ : List[Any] = s return new_scores def _a ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None ): if not qid_list: a_ : List[Any] = len(__UpperCamelCase ) return collections.OrderedDict( [ ("""exact""", 1_00.0 * sum(exact_scores.values() ) / total), ("""f1""", 1_00.0 * sum(fa_scores.values() ) / total), ("""total""", total), ] ) else: a_ : Tuple = len(__UpperCamelCase ) return collections.OrderedDict( [ ("""exact""", 1_00.0 * sum(exact_scores[k] for k in qid_list ) / total), ("""f1""", 1_00.0 * sum(fa_scores[k] for k in qid_list ) / total), ("""total""", total), ] ) def _a ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): for k in new_eval: a_ : Any = new_eval[k] def _a ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): plt.step(__UpperCamelCase , __UpperCamelCase , color="""b""" , alpha=0.2 , where="""post""" ) plt.fill_between(__UpperCamelCase , __UpperCamelCase , step="""post""" , alpha=0.2 , color="""b""" ) plt.xlabel("""Recall""" ) plt.ylabel("""Precision""" ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(__UpperCamelCase ) plt.savefig(__UpperCamelCase ) plt.clf() def _a ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None ): a_ : List[Any] = sorted(__UpperCamelCase , key=lambda __UpperCamelCase : na_probs[k] ) a_ : int = 0.0 a_ : Tuple = 1.0 a_ : Union[str, Any] = 0.0 a_ : List[str] = [1.0] a_ : int = [0.0] a_ : Optional[int] = 0.0 for i, qid in enumerate(__UpperCamelCase ): if qid_to_has_ans[qid]: true_pos += scores[qid] a_ : Union[str, Any] = true_pos / float(i + 1 ) a_ : Tuple = true_pos / float(__UpperCamelCase ) if i == len(__UpperCamelCase ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(__UpperCamelCase ) recalls.append(__UpperCamelCase ) if out_image: plot_pr_curve(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return {"ap": 1_00.0 * avg_prec} def _a ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): if out_image_dir and not os.path.exists(__UpperCamelCase ): os.makedirs(__UpperCamelCase ) a_ : Any = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return a_ : Union[str, Any] = make_precision_recall_eval( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , out_image=os.path.join(__UpperCamelCase , """pr_exact.png""" ) , title="""Precision-Recall curve for Exact Match score""" , ) a_ : Any = make_precision_recall_eval( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , out_image=os.path.join(__UpperCamelCase , """pr_f1.png""" ) , title="""Precision-Recall curve for F1 score""" , ) a_ : int = {k: float(__UpperCamelCase ) for k, v in qid_to_has_ans.items()} a_ : Dict = make_precision_recall_eval( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , out_image=os.path.join(__UpperCamelCase , """pr_oracle.png""" ) , title="""Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)""" , ) merge_eval(__UpperCamelCase , __UpperCamelCase , """pr_exact""" ) merge_eval(__UpperCamelCase , __UpperCamelCase , """pr_f1""" ) merge_eval(__UpperCamelCase , __UpperCamelCase , """pr_oracle""" ) def _a ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): if not qid_list: return a_ : List[Any] = [na_probs[k] for k in qid_list] a_ : List[Any] = np.ones_like(__UpperCamelCase ) / float(len(__UpperCamelCase ) ) plt.hist(__UpperCamelCase , weights=__UpperCamelCase , bins=2_0 , range=(0.0, 1.0) ) plt.xlabel("""Model probability of no-answer""" ) plt.ylabel("""Proportion of dataset""" ) plt.title(F'''Histogram of no-answer probability: {name}''' ) plt.savefig(os.path.join(__UpperCamelCase , F'''na_prob_hist_{name}.png''' ) ) plt.clf() def _a ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): a_ : Optional[int] = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) a_ : Tuple = num_no_ans a_ : List[Any] = cur_score a_ : List[Any] = 0.0 a_ : int = sorted(__UpperCamelCase , key=lambda __UpperCamelCase : na_probs[k] ) for i, qid in enumerate(__UpperCamelCase ): if qid not in scores: continue if qid_to_has_ans[qid]: a_ : Optional[Any] = scores[qid] else: if preds[qid]: a_ : Optional[int] = -1 else: a_ : Optional[int] = 0 cur_score += diff if cur_score > best_score: a_ : str = cur_score a_ : int = na_probs[qid] return 1_00.0 * best_score / len(__UpperCamelCase ), best_thresh def _a ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): a_ , a_ : Optional[int] = find_best_thresh(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) a_ , a_ : Optional[Any] = find_best_thresh(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) a_ : Dict = best_exact a_ : Optional[Any] = exact_thresh a_ : Optional[Any] = best_fa a_ : Union[str, Any] = fa_thresh def _a ( ): with open(OPTS.data_file ) as f: a_ : str = json.load(__UpperCamelCase ) a_ : Optional[int] = dataset_json["""data"""] with open(OPTS.pred_file ) as f: a_ : Dict = json.load(__UpperCamelCase ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: a_ : List[str] = json.load(__UpperCamelCase ) else: a_ : List[str] = {k: 0.0 for k in preds} a_ : Any = make_qid_to_has_ans(__UpperCamelCase ) # maps qid to True/False a_ : Any = [k for k, v in qid_to_has_ans.items() if v] a_ : Union[str, Any] = [k for k, v in qid_to_has_ans.items() if not v] a_ , a_ : List[str] = get_raw_scores(__UpperCamelCase , __UpperCamelCase ) a_ : int = apply_no_ans_threshold(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , OPTS.na_prob_thresh ) a_ : Optional[int] = apply_no_ans_threshold(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , OPTS.na_prob_thresh ) a_ : List[str] = make_eval_dict(__UpperCamelCase , __UpperCamelCase ) if has_ans_qids: a_ : Dict = make_eval_dict(__UpperCamelCase , __UpperCamelCase , qid_list=__UpperCamelCase ) merge_eval(__UpperCamelCase , __UpperCamelCase , """HasAns""" ) if no_ans_qids: a_ : List[str] = make_eval_dict(__UpperCamelCase , __UpperCamelCase , qid_list=__UpperCamelCase ) merge_eval(__UpperCamelCase , __UpperCamelCase , """NoAns""" ) if OPTS.na_prob_file: find_all_best_thresh(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , OPTS.out_image_dir ) histogram_na_prob(__UpperCamelCase , __UpperCamelCase , OPTS.out_image_dir , """hasAns""" ) histogram_na_prob(__UpperCamelCase , __UpperCamelCase , OPTS.out_image_dir , """noAns""" ) if OPTS.out_file: with open(OPTS.out_file , """w""" ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) else: print(json.dumps(__UpperCamelCase , indent=2 ) ) if __name__ == "__main__": __lowerCamelCase = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use('''Agg''') import matplotlib.pyplot as plt main()
478
0
"""simple docstring""" import string from math import logaa def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = document.translate( str.maketrans('''''' ,'''''' ,string.punctuation ) ).replace('''\n''' ,'''''' ) lowerCamelCase_ = document_without_punctuation.split(''' ''' ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = corpus.lower().translate( str.maketrans('''''' ,'''''' ,string.punctuation ) ) # strip all punctuation and replace it with '' lowerCamelCase_ = corpus_without_punctuation.split('''\n''' ) lowerCamelCase_ = term.lower() return (len([doc for doc in docs if term in doc] ), len(lowerCAmelCase__ )) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=False ): if smoothing: if n == 0: raise ValueError('''log10(0) is undefined.''' ) return round(1 + logaa(n / (1 + df) ) ,3 ) if df == 0: raise ZeroDivisionError('''df must be > 0''' ) elif n == 0: raise ValueError('''log10(0) is undefined.''' ) return round(logaa(n / df ) ,3 ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): return round(tf * idf ,3 )
29
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { "facebook/xlm-roberta-xl": "https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json", "facebook/xlm-roberta-xxl": "https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class _UpperCamelCase ( __snake_case): __lowerCamelCase = "xlm-roberta-xl" def __init__(self , lowerCamelCase__=2_5_0_8_8_0 , lowerCamelCase__=2_5_6_0 , lowerCamelCase__=3_6 , lowerCamelCase__=3_2 , lowerCamelCase__=1_0_2_4_0 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=5_1_4 , lowerCamelCase__=1 , lowerCamelCase__=0.0_2 , lowerCamelCase__=1E-05 , lowerCamelCase__=1 , lowerCamelCase__=0 , lowerCamelCase__=2 , lowerCamelCase__="absolute" , lowerCamelCase__=True , lowerCamelCase__=None , **lowerCamelCase__ , ): """simple docstring""" super().__init__(pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , **lowerCamelCase__ ) A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = hidden_act A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = initializer_range A__ = layer_norm_eps A__ = position_embedding_type A__ = use_cache A__ = classifier_dropout class _UpperCamelCase ( __snake_case): @property def A (self ): """simple docstring""" if self.task == "multiple-choice": A__ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A__ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
574
0
'''simple docstring''' import argparse import json import subprocess def __lowerCamelCase ( _lowercase , _lowercase ) -> Tuple: UpperCAmelCase : int = [] UpperCAmelCase : Optional[Any] = ( F'''curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"''' """ https://api.github.com/repos/huggingface/transformers/actions/runners""" ) UpperCAmelCase : Optional[Any] = subprocess.run(_lowercase , shell=_lowercase , stdout=subprocess.PIPE ) UpperCAmelCase : Dict = output.stdout.decode("""utf-8""" ) UpperCAmelCase : Dict = json.loads(_lowercase ) UpperCAmelCase : Any = status["""runners"""] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(_lowercase ) # save the result so we can report them on Slack with open("""offline_runners.txt""" , """w""" ) as fp: fp.write(json.dumps(_lowercase ) ) if len(_lowercase ) > 0: UpperCAmelCase : int = """\n""".join([x["""name"""] for x in offline_runners] ) raise ValueError(F'''The following runners are offline:\n{failed}''' ) if __name__ == "__main__": def __lowerCamelCase ( _lowercase ) -> Any: return values.split(""",""" ) a : str = argparse.ArgumentParser() # Required parameters parser.add_argument( """--target_runners""", default=None, type=list_str, required=True, help="""Comma-separated list of runners to check status.""", ) parser.add_argument( """--token""", default=None, type=str, required=True, help="""A token that has actions:read permission.""" ) a : Union[str, Any] = parser.parse_args() get_runner_status(args.target_runners, args.token)
717
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : Any = { """configuration_nezha""": ["""NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NezhaConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = [ """NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST""", """NezhaForNextSentencePrediction""", """NezhaForMaskedLM""", """NezhaForPreTraining""", """NezhaForMultipleChoice""", """NezhaForQuestionAnswering""", """NezhaForSequenceClassification""", """NezhaForTokenClassification""", """NezhaModel""", """NezhaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys a : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
672
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE : Optional[Any] = { "configuration_xmod": [ "XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP", "XmodConfig", "XmodOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Dict = [ "XMOD_PRETRAINED_MODEL_ARCHIVE_LIST", "XmodForCausalLM", "XmodForMaskedLM", "XmodForMultipleChoice", "XmodForQuestionAnswering", "XmodForSequenceClassification", "XmodForTokenClassification", "XmodModel", "XmodPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
89
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() __A = 2 class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self: int , *, # begin keyword-only arguments __A: Any="<s>" , __A: List[str]="<pad>" , __A: Optional[Any]="</s>" , __A: Dict="<unk>" , __A: Any=None , ) -> Tuple: _A ,_A ,_A ,_A = bos, unk, pad, eos _A = [] _A = [] _A = {} _A = self.add_symbol(__A ) _A = self.add_symbol(__A ) _A = self.add_symbol(__A ) _A = self.add_symbol(__A ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(__A ) _A = len(self.symbols ) def __eq__( self: Any , __A: Any ) -> Optional[Any]: return self.indices == other.indices def __getitem__( self: Tuple , __A: Optional[int] ) -> int: if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self: Optional[Any] ) -> Optional[Any]: return len(self.symbols ) def __contains__( self: Dict , __A: List[str] ) -> Union[str, Any]: return sym in self.indices @classmethod def __A ( cls: Tuple , __A: Optional[Any] ) -> Optional[Any]: _A = cls() d.add_from_file(__A ) return d def __A ( self: List[Any] , __A: List[str] , __A: List[Any]=1 , __A: List[Any]=False ) -> Optional[Any]: if word in self.indices and not overwrite: _A = self.indices[word] _A = self.count[idx] + n return idx else: _A = len(self.symbols ) _A = idx self.symbols.append(__A ) self.count.append(__A ) return idx def __A ( self: Optional[Any] , __A: Optional[int] ) -> str: return 0 def __A ( self: List[str] , __A: Optional[Any] ) -> List[Any]: if isinstance(__A , __A ): try: with open(__A , '''r''' , encoding='''utf-8''' ) as fd: self.add_from_file(__A ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('''Incorrect encoding detected in {}, please rebuild the dataset'''.format(__A ) ) return _A = f.readlines() _A = self._load_meta(__A ) for line in lines[indices_start_line:]: try: _A ,_A = line.rstrip().rsplit(''' ''' , 1 ) if field == "#fairseq:overwrite": _A = True _A ,_A = line.rsplit(''' ''' , 1 ) else: _A = False _A = int(__A ) _A = line if word in self and not overwrite: raise RuntimeError( '''Duplicate word found when loading Dictionary: \'{}\'. ''' '''Duplicate words can overwrite earlier ones by adding the ''' '''#fairseq:overwrite flag at the end of the corresponding row ''' '''in the dictionary file. If using the Camembert model, please ''' '''download an updated copy of the model file.'''.format(__A ) ) self.add_symbol(__A , n=__A , overwrite=__A ) except ValueError: raise ValueError('''Incorrect dictionary format, expected \'<token> <cnt> [flags]\'''' ) def __A ( _lowercase ): '''simple docstring''' _A = dict((re.sub(R'''@@$''' , '''''' , _lowercase ), v) if k.endswith('''@@''' ) else (re.sub(R'''$''' , '''</w>''' , _lowercase ), v) for k, v in d.items() ) _A = '''<s> <pad> </s> <unk>'''.split() # restore the special tokens for k in keep_keys: del da[f"""{k}</w>"""] _A = d[k] # restore return da def __A ( _lowercase , _lowercase ): '''simple docstring''' if not os.path.exists(_lowercase ): raise ValueError(f"""path {biogpt_checkpoint_path} does not exist!""" ) os.makedirs(_lowercase , exist_ok=_lowercase ) print(f"""Writing results to {pytorch_dump_folder_path}""" ) # handle various types of models _A = os.path.join(_lowercase , '''checkpoint.pt''' ) if not os.path.isfile(_lowercase ): raise ValueError(f"""path to the file {checkpoint_file} does not exist!""" ) _A = torch.load(_lowercase , map_location='''cpu''' ) _A = chkpt['''cfg''']['''model'''] # dicts _A = os.path.join(_lowercase , '''dict.txt''' ) if not os.path.isfile(_lowercase ): raise ValueError(f"""path to the file {dict_file} does not exist!""" ) _A = Dictionary.load(_lowercase ) _A = rewrite_dict_keys(src_dict.indices ) _A = len(_lowercase ) _A = os.path.join(_lowercase , VOCAB_FILES_NAMES['''vocab_file'''] ) print(f"""Generating {src_vocab_file} of {src_vocab_size} records""" ) with open(_lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(_lowercase , ensure_ascii=_lowercase , indent=_lowercase ) ) # merges_file (bpecodes) _A = os.path.join(_lowercase , '''bpecodes''' ) if not os.path.isfile(_lowercase ): raise ValueError(f"""path to the file {bpecodes_file} does not exist!""" ) _A = os.path.join(_lowercase , VOCAB_FILES_NAMES['''merges_file'''] ) shutil.copyfile(_lowercase , _lowercase ) # model config _A = os.path.join(_lowercase , '''config.json''' ) _A = { '''activation_dropout''': args['''activation_dropout'''], '''architectures''': ['''BioGptForCausalLM'''], '''attention_probs_dropout_prob''': args['''attention_dropout'''], '''bos_token_id''': 0, '''eos_token_id''': 2, '''hidden_act''': args['''activation_fn'''], '''hidden_dropout_prob''': args['''dropout'''], '''hidden_size''': args['''decoder_embed_dim'''], '''initializer_range''': 0.02, '''intermediate_size''': args['''decoder_ffn_embed_dim'''], '''layer_norm_eps''': 1e-12, '''layerdrop''': args['''decoder_layerdrop'''], '''max_position_embeddings''': args['''max_target_positions'''], '''model_type''': '''biogpt''', '''num_attention_heads''': args['''decoder_attention_heads'''], '''num_hidden_layers''': args['''decoder_layers'''], '''pad_token_id''': 1, '''scale_embedding''': not args['''no_scale_embedding'''], '''tie_word_embeddings''': args['''share_decoder_input_output_embed'''], '''vocab_size''': src_vocab_size, } # good hparam defaults to start with print(f"""Generating {biogpt_model_config_file}""" ) with open(_lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(_lowercase , ensure_ascii=_lowercase , indent=_lowercase ) ) # tokenizer config _A = os.path.join(_lowercase , _lowercase ) _A = { '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', '''model_max_length''': 10_24, '''pad_token''': '''<pad>''', '''special_tokens_map_file''': None, '''tokenizer_class''': '''BioGptTokenizer''', '''unk_token''': '''<unk>''', } print(f"""Generating {biogpt_tokenizer_config_file}""" ) with open(_lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(_lowercase , ensure_ascii=_lowercase , indent=_lowercase ) ) # model _A = chkpt['''model'''] # remove unneeded keys _A = [ '''decoder.version''', ] for k in ignore_keys: model_state_dict.pop(_lowercase , _lowercase ) _A = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith('''output_projection.weight''' ): _A = model_state_dict.pop(_lowercase ) else: _A = model_state_dict.pop(_lowercase ) _A = BioGptConfig.from_pretrained(_lowercase ) _A = BioGptForCausalLM(_lowercase ) # check that it loads ok model_new.load_state_dict(_lowercase ) # save _A = os.path.join(_lowercase , _lowercase ) print(f"""Generating {pytorch_weights_dump_path}""" ) torch.save(_lowercase , _lowercase ) print('''Conversion is done!''' ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( '--biogpt_checkpoint_path', default=None, type=str, required=True, help=( 'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,' ' bpecodes, etc.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __A = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
484
0
'''simple docstring''' import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def snake_case_ (_a : BertModel , _a : str , _a : str ): UpperCAmelCase = ('''dense.weight''', '''attention.self.query''', '''attention.self.key''', '''attention.self.value''') UpperCAmelCase = ( ('''layer.''', '''layer_'''), ('''word_embeddings.weight''', '''word_embeddings'''), ('''position_embeddings.weight''', '''position_embeddings'''), ('''token_type_embeddings.weight''', '''token_type_embeddings'''), ('''.''', '''/'''), ('''LayerNorm/weight''', '''LayerNorm/gamma'''), ('''LayerNorm/bias''', '''LayerNorm/beta'''), ('''weight''', '''kernel'''), ) if not os.path.isdir(UpperCamelCase__ ): os.makedirs(UpperCamelCase__ ) UpperCAmelCase = model.state_dict() def to_tf_var_name(_a : str ): for patt, repl in iter(UpperCamelCase__ ): UpperCAmelCase = name.replace(UpperCamelCase__ , UpperCamelCase__ ) return F"bert/{name}" def create_tf_var(_a : np.ndarray , _a : str , _a : tf.Session ): UpperCAmelCase = tf.dtypes.as_dtype(tensor.dtype ) UpperCAmelCase = tf.get_variable(dtype=UpperCamelCase__ , shape=tensor.shape , name=UpperCamelCase__ , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(UpperCamelCase__ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: UpperCAmelCase = to_tf_var_name(UpperCamelCase__ ) UpperCAmelCase = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): UpperCAmelCase = torch_tensor.T UpperCAmelCase = create_tf_var(tensor=UpperCamelCase__ , name=UpperCamelCase__ , session=UpperCamelCase__ ) tf.keras.backend.set_value(UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase = session.run(UpperCamelCase__ ) print(F"Successfully created {tf_name}: {np.allclose(UpperCamelCase__ , UpperCamelCase__ )}" ) UpperCAmelCase = tf.train.Saver(tf.trainable_variables() ) saver.save(UpperCamelCase__ , os.path.join(UpperCamelCase__ , model_name.replace('''-''' , '''_''' ) + '''.ckpt''' ) ) def snake_case_ (_a : Optional[int]=None ): UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=UpperCamelCase__ , required=UpperCamelCase__ , help='''model name e.g. bert-base-uncased''' ) parser.add_argument( '''--cache_dir''' , type=UpperCamelCase__ , default=UpperCamelCase__ , required=UpperCamelCase__ , help='''Directory containing pytorch model''' ) parser.add_argument('''--pytorch_model_path''' , type=UpperCamelCase__ , required=UpperCamelCase__ , help='''/path/to/<pytorch-model-name>.bin''' ) parser.add_argument('''--tf_cache_dir''' , type=UpperCamelCase__ , required=UpperCamelCase__ , help='''Directory in which to save tensorflow model''' ) UpperCAmelCase = parser.parse_args(UpperCamelCase__ ) UpperCAmelCase = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=UpperCamelCase__ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
715
'''simple docstring''' import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format='%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=os.environ.get('LOGLEVEL', 'INFO').upper(), stream=sys.stdout, ) A =logging.getLogger(__name__) A ={'facebook/bart-base': BartForConditionalGeneration} A ={'facebook/bart-base': BartTokenizer} def snake_case_ (): UpperCAmelCase = argparse.ArgumentParser(description='''Export Bart model + Beam Search to ONNX graph.''' ) parser.add_argument( '''--validation_file''' , type=_a , default=_a , help='''A csv or a json file containing the validation data.''' ) parser.add_argument( '''--max_length''' , type=_a , default=5 , help='''The maximum total input sequence length after tokenization.''' , ) parser.add_argument( '''--num_beams''' , type=_a , default=_a , help=( '''Number of beams to use for evaluation. This argument will be ''' '''passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.''' ) , ) parser.add_argument( '''--model_name_or_path''' , type=_a , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=_a , ) parser.add_argument( '''--config_name''' , type=_a , default=_a , help='''Pretrained config name or path if not the same as model_name''' , ) parser.add_argument( '''--device''' , type=_a , default='''cpu''' , help='''Device where the model will be run''' , ) parser.add_argument('''--output_file_path''' , type=_a , default=_a , help='''Where to store the final ONNX file.''' ) UpperCAmelCase = parser.parse_args() return args def snake_case_ (_a : Tuple , _a : str="cpu" ): UpperCAmelCase = model_dict[model_name].from_pretrained(_a ).to(_a ) UpperCAmelCase = tokenizer_dict[model_name].from_pretrained(_a ) if model_name in ["facebook/bart-base"]: UpperCAmelCase = 0 UpperCAmelCase = None UpperCAmelCase = 0 return huggingface_model, tokenizer def snake_case_ (_a : Optional[int] , _a : List[str] , _a : str , _a : Optional[Any] , _a : str ): model.eval() UpperCAmelCase = None UpperCAmelCase = torch.jit.script(BARTBeamSearchGenerator(_a ) ) with torch.no_grad(): UpperCAmelCase = '''My friends are cool but they eat too many carbs.''' UpperCAmelCase = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_0_2_4 , return_tensors='''pt''' ).to(model.device ) UpperCAmelCase = model.generate( inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , num_beams=_a , max_length=_a , early_stopping=_a , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( _a , ( inputs['''input_ids'''], inputs['''attention_mask'''], num_beams, max_length, model.config.decoder_start_token_id, ) , _a , opset_version=1_4 , input_names=['''input_ids''', '''attention_mask''', '''num_beams''', '''max_length''', '''decoder_start_token_id'''] , output_names=['''output_ids'''] , dynamic_axes={ '''input_ids''': {0: '''batch''', 1: '''seq'''}, '''output_ids''': {0: '''batch''', 1: '''seq_out'''}, } , example_outputs=_a , ) logger.info('''Model exported to {}'''.format(_a ) ) UpperCAmelCase = remove_dup_initializers(os.path.abspath(_a ) ) logger.info('''Deduplicated and optimized model written to {}'''.format(_a ) ) UpperCAmelCase = onnxruntime.InferenceSession(_a ) UpperCAmelCase = ort_sess.run( _a , { '''input_ids''': inputs['''input_ids'''].cpu().numpy(), '''attention_mask''': inputs['''attention_mask'''].cpu().numpy(), '''num_beams''': np.array(_a ), '''max_length''': np.array(_a ), '''decoder_start_token_id''': np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info('''Model outputs from torch and ONNX Runtime are similar.''' ) logger.info('''Success.''' ) def snake_case_ (): UpperCAmelCase = parse_args() UpperCAmelCase = 5 UpperCAmelCase = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() UpperCAmelCase = torch.device(args.device ) UpperCAmelCase , UpperCAmelCase = load_model_tokenizer(args.model_name_or_path , _a ) if model.config.decoder_start_token_id is None: raise ValueError('''Make sure that `config.decoder_start_token_id` is correctly defined''' ) model.to(_a ) if args.max_length: UpperCAmelCase = args.max_length if args.num_beams: UpperCAmelCase = args.num_beams if args.output_file_path: UpperCAmelCase = args.output_file_path else: UpperCAmelCase = '''BART.onnx''' logger.info('''Exporting model to ONNX''' ) export_and_validate_model(_a , _a , _a , _a , _a ) if __name__ == "__main__": main()
358
0
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time snake_case = Lock() def SCREAMING_SNAKE_CASE__ ( snake_case__ :Optional[int] , snake_case__ :Union[str, Any] , snake_case__ :Tuple , snake_case__ :Any , snake_case__ :Dict , snake_case__ :Optional[int] , snake_case__ :List[str] ) -> Optional[Any]: global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(snake_case__ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() _lowercase = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left _lowercase = min(snake_case__ , snake_case__ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(snake_case__ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() _lowercase = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right _lowercase = max(snake_case__ , snake_case__ ) # after all swaps are performed, send the values back to main result_pipe[1].send(snake_case__ ) def SCREAMING_SNAKE_CASE__ ( snake_case__ :str ) -> Dict: _lowercase = [] _lowercase = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop _lowercase = Pipe() _lowercase = Pipe() process_array_.append( Process( target=snake_case__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) _lowercase = temp_rs _lowercase = temp_rr for i in range(1 , len(snake_case__ ) - 1 ): _lowercase = Pipe() _lowercase = Pipe() process_array_.append( Process( target=snake_case__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) _lowercase = temp_rs _lowercase = temp_rr process_array_.append( Process( target=snake_case__ , args=( len(snake_case__ ) - 1, arr[len(snake_case__ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(snake_case__ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(snake_case__ ) ): _lowercase = result_pipe[p][0].recv() process_array_[p].join() return arr def SCREAMING_SNAKE_CASE__ ( ) -> List[Any]: _lowercase = list(range(10 , 0 , -1 ) ) print('Initial List' ) print(*snake_case__ ) _lowercase = odd_even_transposition(snake_case__ ) print('Sorted List\n' ) print(*snake_case__ ) if __name__ == "__main__": main()
67
'''simple docstring''' import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class __magic_name__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): UpperCamelCase__ = BarthezTokenizer UpperCamelCase__ = BarthezTokenizerFast UpperCamelCase__ = True UpperCamelCase__ = True def _A( self ): super().setUp() lowercase =BarthezTokenizerFast.from_pretrained('''moussaKam/mbarthez''' ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=snake_case_ ) lowercase =tokenizer def _A( self ): lowercase ='''<pad>''' lowercase =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def _A( self ): lowercase =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(snake_case_ ) , 10_11_22 ) def _A( self ): self.assertEqual(self.get_tokenizer().vocab_size , 10_11_22 ) @require_torch def _A( self ): lowercase =['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] lowercase =[0, 57, 30_18, 7_03_07, 91, 2] lowercase =self.tokenizer( snake_case_ , max_length=len(snake_case_ ) , padding=snake_case_ , truncation=snake_case_ , return_tensors='''pt''' ) self.assertIsInstance(snake_case_ , snake_case_ ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) lowercase =batch.input_ids.tolist()[0] self.assertListEqual(snake_case_ , snake_case_ ) def _A( self ): if not self.test_rust_tokenizer: return lowercase =self.get_tokenizer() lowercase =self.get_rust_tokenizer() lowercase ='''I was born in 92000, and this is falsé.''' lowercase =tokenizer.tokenize(snake_case_ ) lowercase =rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) lowercase =tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) lowercase =rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) lowercase =self.get_rust_tokenizer() lowercase =tokenizer.encode(snake_case_ ) lowercase =rust_tokenizer.encode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) @slow def _A( self ): # fmt: off lowercase ={'''input_ids''': [[0, 4_90, 1_43_28, 45_07, 3_54, 47, 4_36_69, 95, 25, 7_81_17, 2_02_15, 1_97_79, 1_90, 22, 4_00, 4, 3_53_43, 8_03_10, 6_03, 86, 2_49_37, 1_05, 3_34_38, 9_47_62, 1_96, 3_96_42, 7, 15, 1_59_33, 1_73, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_05_34, 87, 25, 66, 33_58, 1_96, 5_52_89, 8, 8_29_61, 81, 22_04, 7_52_03, 7, 15, 7_63, 1_29_56, 2_16, 1_78, 1_43_28, 95_95, 13_77, 6_96_93, 7, 4_48, 7_10_21, 1_96, 1_81_06, 14_37, 1_39_74, 1_08, 90_83, 4, 4_93_15, 7, 39, 86, 13_26, 27_93, 4_63_33, 4, 4_48, 1_96, 7_45_88, 7, 4_93_15, 7, 39, 21, 8_22, 3_84_70, 74, 21, 6_67_23, 6_24_80, 8, 2_20_50, 5, 2]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. lowercase =[ '''Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ''' '''utilisé principalement dans le domaine du traitement automatique des langues (TAL).''', '''À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ''' '''pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ''' '''telles que la traduction et la synthèse de texte.''', ] self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name='''moussaKam/mbarthez''' , revision='''c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6''' , sequences=snake_case_ , )
72
0
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class lowercase : """simple docstring""" @staticmethod def __UpperCAmelCase ( *lowerCamelCase_ : Any , **lowerCamelCase_ : List[Any] ): '''simple docstring''' pass @is_pipeline_test @require_vision @require_timm @require_torch class lowercase ( unittest.TestCase ): """simple docstring""" _UpperCamelCase : Tuple = MODEL_FOR_OBJECT_DETECTION_MAPPING def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : Dict , lowerCamelCase_ : Any , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' _snake_case : Tuple = ObjectDetectionPipeline(model=lowerCamelCase_ , image_processor=lowerCamelCase_ ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def __UpperCAmelCase ( self : Union[str, Any] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[Any] ): '''simple docstring''' _snake_case : Tuple = object_detector('./tests/fixtures/tests_samples/COCO/000000039769.png' , threshold=0.0 ) self.assertGreater(len(lowerCamelCase_ ) , 0 ) for detected_object in outputs: self.assertEqual( lowerCamelCase_ , { 'score': ANY(lowerCamelCase_ ), 'label': ANY(lowerCamelCase_ ), 'box': {'xmin': ANY(lowerCamelCase_ ), 'ymin': ANY(lowerCamelCase_ ), 'xmax': ANY(lowerCamelCase_ ), 'ymax': ANY(lowerCamelCase_ )}, } , ) import datasets _snake_case : Tuple = datasets.load_dataset('hf-internal-testing/fixtures_image_utils' , 'image' , split='test' ) _snake_case : str = [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] _snake_case : str = object_detector(lowerCamelCase_ , threshold=0.0 ) self.assertEqual(len(lowerCamelCase_ ) , len(lowerCamelCase_ ) ) for outputs in batch_outputs: self.assertGreater(len(lowerCamelCase_ ) , 0 ) for detected_object in outputs: self.assertEqual( lowerCamelCase_ , { 'score': ANY(lowerCamelCase_ ), 'label': ANY(lowerCamelCase_ ), 'box': {'xmin': ANY(lowerCamelCase_ ), 'ymin': ANY(lowerCamelCase_ ), 'xmax': ANY(lowerCamelCase_ ), 'ymax': ANY(lowerCamelCase_ )}, } , ) @require_tf @unittest.skip('Object detection not implemented in TF' ) def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' pass @require_torch def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' _snake_case : Tuple = 'hf-internal-testing/tiny-detr-mobilenetsv3' _snake_case : Any = AutoModelForObjectDetection.from_pretrained(lowerCamelCase_ ) _snake_case : List[str] = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ) _snake_case : List[str] = ObjectDetectionPipeline(model=lowerCamelCase_ , feature_extractor=lowerCamelCase_ ) _snake_case : List[Any] = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' , threshold=0.0 ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ {'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 1_59, 'ymin': 1_20, 'xmax': 4_80, 'ymax': 3_59}}, {'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 1_59, 'ymin': 1_20, 'xmax': 4_80, 'ymax': 3_59}}, ] , ) _snake_case : Optional[Any] = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] , threshold=0.0 , ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ [ {'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 1_59, 'ymin': 1_20, 'xmax': 4_80, 'ymax': 3_59}}, {'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 1_59, 'ymin': 1_20, 'xmax': 4_80, 'ymax': 3_59}}, ], [ {'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 1_59, 'ymin': 1_20, 'xmax': 4_80, 'ymax': 3_59}}, {'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 1_59, 'ymin': 1_20, 'xmax': 4_80, 'ymax': 3_59}}, ], ] , ) @require_torch @slow def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Optional[int] = 'facebook/detr-resnet-50' _snake_case : Tuple = AutoModelForObjectDetection.from_pretrained(lowerCamelCase_ ) _snake_case : Optional[int] = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ) _snake_case : Tuple = ObjectDetectionPipeline(model=lowerCamelCase_ , feature_extractor=lowerCamelCase_ ) _snake_case : Optional[Any] = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ {'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 1_75, 'ymax': 1_17}}, {'score': 0.9960, 'label': 'remote', 'box': {'xmin': 3_33, 'ymin': 72, 'xmax': 3_68, 'ymax': 1_87}}, {'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 6_39, 'ymax': 4_73}}, {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 3_14, 'ymax': 4_70}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 3_45, 'ymin': 23, 'xmax': 6_40, 'ymax': 3_68}}, ] , ) _snake_case : Tuple = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ [ {'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 1_75, 'ymax': 1_17}}, {'score': 0.9960, 'label': 'remote', 'box': {'xmin': 3_33, 'ymin': 72, 'xmax': 3_68, 'ymax': 1_87}}, {'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 6_39, 'ymax': 4_73}}, {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 3_14, 'ymax': 4_70}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 3_45, 'ymin': 23, 'xmax': 6_40, 'ymax': 3_68}}, ], [ {'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 1_75, 'ymax': 1_17}}, {'score': 0.9960, 'label': 'remote', 'box': {'xmin': 3_33, 'ymin': 72, 'xmax': 3_68, 'ymax': 1_87}}, {'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 6_39, 'ymax': 4_73}}, {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 3_14, 'ymax': 4_70}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 3_45, 'ymin': 23, 'xmax': 6_40, 'ymax': 3_68}}, ], ] , ) @require_torch @slow def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' _snake_case : str = 'facebook/detr-resnet-50' _snake_case : Any = pipeline('object-detection' , model=lowerCamelCase_ ) _snake_case : Dict = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ {'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 1_75, 'ymax': 1_17}}, {'score': 0.9960, 'label': 'remote', 'box': {'xmin': 3_33, 'ymin': 72, 'xmax': 3_68, 'ymax': 1_87}}, {'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 6_39, 'ymax': 4_73}}, {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 3_14, 'ymax': 4_70}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 3_45, 'ymin': 23, 'xmax': 6_40, 'ymax': 3_68}}, ] , ) _snake_case : Optional[int] = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ [ {'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 1_75, 'ymax': 1_17}}, {'score': 0.9960, 'label': 'remote', 'box': {'xmin': 3_33, 'ymin': 72, 'xmax': 3_68, 'ymax': 1_87}}, {'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 6_39, 'ymax': 4_73}}, {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 3_14, 'ymax': 4_70}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 3_45, 'ymin': 23, 'xmax': 6_40, 'ymax': 3_68}}, ], [ {'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 1_75, 'ymax': 1_17}}, {'score': 0.9960, 'label': 'remote', 'box': {'xmin': 3_33, 'ymin': 72, 'xmax': 3_68, 'ymax': 1_87}}, {'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 6_39, 'ymax': 4_73}}, {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 3_14, 'ymax': 4_70}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 3_45, 'ymin': 23, 'xmax': 6_40, 'ymax': 3_68}}, ], ] , ) @require_torch @slow def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' _snake_case : str = 0.9985 _snake_case : Optional[Any] = 'facebook/detr-resnet-50' _snake_case : str = pipeline('object-detection' , model=lowerCamelCase_ ) _snake_case : Any = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' , threshold=lowerCamelCase_ ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 3_14, 'ymax': 4_70}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 3_45, 'ymin': 23, 'xmax': 6_40, 'ymax': 3_68}}, ] , ) @require_torch @require_pytesseract @slow def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' _snake_case : Optional[Any] = 'Narsil/layoutlmv3-finetuned-funsd' _snake_case : Optional[int] = 0.9993 _snake_case : List[Any] = pipeline('object-detection' , model=lowerCamelCase_ , threshold=lowerCamelCase_ ) _snake_case : List[Any] = object_detector( 'https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png' ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ {'score': 0.9993, 'label': 'I-ANSWER', 'box': {'xmin': 2_94, 'ymin': 2_54, 'xmax': 3_43, 'ymax': 2_64}}, {'score': 0.9993, 'label': 'I-ANSWER', 'box': {'xmin': 2_94, 'ymin': 2_54, 'xmax': 3_43, 'ymax': 2_64}}, ] , )
652
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowercase_ : Optional[int] = { '''configuration_mega''': ['''MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegaConfig''', '''MegaOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Any = [ '''MEGA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegaForCausalLM''', '''MegaForMaskedLM''', '''MegaForMultipleChoice''', '''MegaForQuestionAnswering''', '''MegaForSequenceClassification''', '''MegaForTokenClassification''', '''MegaModel''', '''MegaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys lowercase_ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
652
1
"""simple docstring""" import numpy as np def _snake_case ( UpperCamelCase : np.array ): return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
160
"""simple docstring""" def UpperCamelCase__ ( lowercase__ : int , lowercase__ : int ): return int((input_a, input_a).count(1 ) != 0 ) def UpperCamelCase__ ( ): assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
134
0
'''simple docstring''' from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge __lowerCamelCase : Optional[int] = [ "Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of the" " final seconds on board Flight 9525. The Germanwings co-pilot says he had a \"previous episode of severe" " depression\" German airline confirms it knew of Andreas Lubitz's depression years before he took control.", "The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal" " accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC's" " founding Rome Statute in January. Israel and the United States opposed the Palestinians' efforts to join the" " body.", "Amnesty International releases its annual report on the death penalty. The report catalogs the use of" " state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the" " world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital" " punishment.", ] __lowerCamelCase : Dict = [ "Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports ." " Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz" " had informed his Lufthansa training school of an episode of severe depression, airline says .", "Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June ." " Israel and the United States opposed the move, which could open the door to war crimes investigations against" " Israelis .", "Amnesty's annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to" " death . Organization claims that governments around the world are using the threat of terrorism to advance" " executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death" " sentences up by 28% .", ] def UpperCAmelCase_ ( ): """simple docstring""" lowercase = calculate_rouge(lowerCAmelCase_ , lowerCAmelCase_ , bootstrap_aggregation=lowerCAmelCase_ , rouge_keys=["rouge2", "rougeL"] ) assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) lowercase = calculate_rouge(lowerCAmelCase_ , lowerCAmelCase_ , bootstrap_aggregation=lowerCAmelCase_ , rouge_keys=["rouge2"] ) assert ( pd.DataFrame(no_aggregation["rouge2"] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra["rouge2"] ).fmeasure.mean() ) def UpperCAmelCase_ ( ): """simple docstring""" lowercase = "rougeLsum" lowercase = calculate_rouge(lowerCAmelCase_ , lowerCAmelCase_ , newline_sep=lowerCAmelCase_ , rouge_keys=[k] )[k] lowercase = calculate_rouge(lowerCAmelCase_ , lowerCAmelCase_ , newline_sep=lowerCAmelCase_ , rouge_keys=[k] )[k] assert score > score_no_sep def UpperCAmelCase_ ( ): """simple docstring""" lowercase = ["rouge1", "rouge2", "rougeL"] lowercase = calculate_rouge(lowerCAmelCase_ , lowerCAmelCase_ , newline_sep=lowerCAmelCase_ , rouge_keys=lowerCAmelCase_ ) lowercase = calculate_rouge(lowerCAmelCase_ , lowerCAmelCase_ , newline_sep=lowerCAmelCase_ , rouge_keys=lowerCAmelCase_ ) assert score_sep == score_no_sep def UpperCAmelCase_ ( ): """simple docstring""" lowercase = [ "Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.", "Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports .", ] lowercase = [ "Margot Frank, died in 1945, a month earlier than previously thought.", "Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of" " the final seconds on board Flight 9525.", ] assert calculate_rouge(lowerCAmelCase_ , lowerCAmelCase_ , newline_sep=lowerCAmelCase_ ) == calculate_rouge(lowerCAmelCase_ , lowerCAmelCase_ , newline_sep=lowerCAmelCase_ ) def UpperCAmelCase_ ( ): """simple docstring""" lowercase = [ "\" \"a person who has such a video needs to immediately give it to the investigators,\" prosecutor says .<n> \"it is a very disturbing scene,\" editor-in-chief of bild online tells \"erin burnett: outfront\" " ] lowercase = [ " Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports . Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says ." ] lowercase = calculate_rouge(lowerCAmelCase_ , lowerCAmelCase_ , rouge_keys=["rougeLsum"] , newline_sep=lowerCAmelCase_ )["rougeLsum"] lowercase = calculate_rouge(lowerCAmelCase_ , lowerCAmelCase_ , rouge_keys=["rougeLsum"] )["rougeLsum"] assert new_score > prev_score def UpperCAmelCase_ ( ): """simple docstring""" lowercase = Path("examples/seq2seq/test_data/wmt_en_ro" ) lowercase = calculate_rouge_path(data_dir.joinpath("test.source" ) , data_dir.joinpath("test.target" ) ) assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) lowercase = calculate_rouge_path( data_dir.joinpath("test.source" ) , data_dir.joinpath("test.target" ) , bootstrap_aggregation=lowerCAmelCase_ ) assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ )
459
'''simple docstring''' import inspect import unittest from transformers import RegNetConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import RegNetForImageClassification, RegNetModel from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase : def __init__(self : Dict , A__ : str , A__ : int=3 , A__ : Dict=3_2 , A__ : str=3 , A__ : str=1_0 , A__ : Optional[int]=[1_0, 2_0, 3_0, 4_0] , A__ : Tuple=[1, 1, 2, 1] , A__ : int=True , A__ : List[Any]=True , A__ : List[Any]="relu" , A__ : Any=3 , A__ : Any=None , ) -> Tuple: lowercase = parent lowercase = batch_size lowercase = image_size lowercase = num_channels lowercase = embeddings_size lowercase = hidden_sizes lowercase = depths lowercase = is_training lowercase = use_labels lowercase = hidden_act lowercase = num_labels lowercase = scope lowercase = len(A__ ) def UpperCAmelCase__ (self : str ) -> List[str]: lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase = None if self.use_labels: lowercase = ids_tensor([self.batch_size] , self.num_labels ) lowercase = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ (self : Optional[Any] ) -> List[str]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def UpperCAmelCase__ (self : Dict , A__ : Union[str, Any] , A__ : Optional[int] , A__ : Dict ) -> str: lowercase = RegNetModel(config=A__ ) model.to(A__ ) model.eval() lowercase = model(A__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def UpperCAmelCase__ (self : List[str] , A__ : List[str] , A__ : Union[str, Any] , A__ : str ) -> Dict: lowercase = self.num_labels lowercase = RegNetForImageClassification(A__ ) model.to(A__ ) model.eval() lowercase = model(A__ , labels=A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase__ (self : Any ) -> Union[str, Any]: lowercase = self.prepare_config_and_inputs() lowercase , lowercase , lowercase = config_and_inputs lowercase = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( _lowercase , _lowercase , unittest.TestCase ): UpperCAmelCase : str = (RegNetModel, RegNetForImageClassification) if is_torch_available() else () UpperCAmelCase : Dict = ( {'''feature-extraction''': RegNetModel, '''image-classification''': RegNetForImageClassification} if is_torch_available() else {} ) UpperCAmelCase : Dict = False UpperCAmelCase : int = False UpperCAmelCase : Tuple = False UpperCAmelCase : Tuple = False def UpperCAmelCase__ (self : Optional[int] ) -> Tuple: lowercase = RegNetModelTester(self ) lowercase = ConfigTester(self , config_class=A__ , has_text_modality=A__ ) def UpperCAmelCase__ (self : List[Any] ) -> str: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase__ (self : Optional[Any] ) -> int: return @unittest.skip(reason="RegNet does not use inputs_embeds" ) def UpperCAmelCase__ (self : int ) -> Optional[int]: pass @unittest.skip(reason="RegNet does not support input and output embeddings" ) def UpperCAmelCase__ (self : List[Any] ) -> Optional[Any]: pass def UpperCAmelCase__ (self : Any ) -> str: lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(A__ ) lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase = [*signature.parameters.keys()] lowercase = ["pixel_values"] self.assertListEqual(arg_names[:1] , A__ ) def UpperCAmelCase__ (self : List[Any] ) -> Union[str, Any]: lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A__ ) def UpperCAmelCase__ (self : List[str] ) -> Tuple: lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(config=A__ ) for name, module in model.named_modules(): if isinstance(A__ , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) def UpperCAmelCase__ (self : Optional[Any] ) -> List[str]: def check_hidden_states_output(A__ : Optional[Any] , A__ : List[str] , A__ : Tuple ): lowercase = model_class(A__ ) model.to(A__ ) model.eval() with torch.no_grad(): lowercase = model(**self._prepare_for_class(A__ , A__ ) ) lowercase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase = self.model_tester.num_stages self.assertEqual(len(A__ ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() lowercase = ["basic", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: lowercase = layer_type lowercase = True check_hidden_states_output(A__ , A__ , A__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase = True check_hidden_states_output(A__ , A__ , A__ ) def UpperCAmelCase__ (self : List[Any] ) -> Tuple: lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A__ ) @slow def UpperCAmelCase__ (self : Tuple ) -> Any: for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase = RegNetModel.from_pretrained(A__ ) self.assertIsNotNone(A__ ) def UpperCAmelCase_ ( ): """simple docstring""" lowercase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): @cached_property def UpperCAmelCase__ (self : Optional[int] ) -> Union[str, Any]: return ( AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCAmelCase__ (self : List[str] ) -> int: lowercase = RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(A__ ) lowercase = self.default_image_processor lowercase = prepare_img() lowercase = image_processor(images=A__ , return_tensors="pt" ).to(A__ ) # forward pass with torch.no_grad(): lowercase = model(**A__ ) # verify the logits lowercase = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , A__ ) lowercase = torch.tensor([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6] ).to(A__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A__ , atol=1e-4 ) )
459
1
import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch __UpperCAmelCase = True except ImportError: __UpperCAmelCase = False try: from torch.hub import _get_torch_home __UpperCAmelCase = _get_torch_home() except ImportError: __UpperCAmelCase = os.path.expanduser( os.getenv('''TORCH_HOME''', os.path.join(os.getenv('''XDG_CACHE_HOME''', '''~/.cache'''), '''torch''')) ) __UpperCAmelCase = os.path.join(torch_cache_home, '''transformers''') __UpperCAmelCase = """https://cdn.huggingface.co""" __UpperCAmelCase = """https://s3.amazonaws.com/models.huggingface.co/bert""" __UpperCAmelCase = """/""".join(str(Path(__file__).resolve()).split('''/''')[:-1]) __UpperCAmelCase = os.path.join(PATH, '''config.yaml''') __UpperCAmelCase = os.path.join(PATH, '''attributes.txt''') __UpperCAmelCase = os.path.join(PATH, '''objects.txt''') __UpperCAmelCase = os.getenv('''PYTORCH_PRETRAINED_BERT_CACHE''', default_cache_path) __UpperCAmelCase = os.getenv('''PYTORCH_TRANSFORMERS_CACHE''', PYTORCH_PRETRAINED_BERT_CACHE) __UpperCAmelCase = os.getenv('''TRANSFORMERS_CACHE''', PYTORCH_TRANSFORMERS_CACHE) __UpperCAmelCase = """pytorch_model.bin""" __UpperCAmelCase = """config.yaml""" def UpperCamelCase ( snake_case__ : List[Any]=OBJECTS , snake_case__ : str=ATTRIBUTES ) -> Optional[Any]: UpperCamelCase : List[Any] = [] with open(_lowercase ) as f: for object in f.readlines(): vg_classes.append(object.split(',' )[0].lower().strip() ) UpperCamelCase : Dict = [] with open(_lowercase ) as f: for object in f.readlines(): vg_attrs.append(object.split(',' )[0].lower().strip() ) return vg_classes, vg_attrs def UpperCamelCase ( snake_case__ : List[Any] ) -> Optional[Any]: UpperCamelCase : int = OrderedDict() with open(_lowercase , 'rb' ) as f: UpperCamelCase : Dict = pkl.load(_lowercase )["model"] for k in copy.deepcopy(list(ckp.keys() ) ): UpperCamelCase : Dict = ckp.pop(_lowercase ) if isinstance(_lowercase , np.ndarray ): UpperCamelCase : Union[str, Any] = torch.tensor(_lowercase ) else: assert isinstance(_lowercase , torch.tensor ), type(_lowercase ) UpperCamelCase : List[str] = v return r class lowerCAmelCase_ : UpperCAmelCase__ : List[Any] = {} def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = "root", SCREAMING_SNAKE_CASE_=0 ) -> Union[str, Any]: UpperCamelCase : List[str] = name UpperCamelCase : Optional[int] = level UpperCamelCase : Optional[Any] = {} for k, v in dictionary.items(): if v is None: raise ValueError() UpperCamelCase : str = copy.deepcopy(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = copy.deepcopy(SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Optional[Any] = Config(SCREAMING_SNAKE_CASE_, name=SCREAMING_SNAKE_CASE_, level=level + 1 ) UpperCamelCase : Any = v setattr(self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = d def __repr__( self ) -> Any: return str(list((self._pointer.keys()) ) ) def __setattr__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Tuple: UpperCamelCase : List[Any] = val UpperCamelCase : List[Any] = val UpperCamelCase : List[str] = key.split('.' ) UpperCamelCase : Tuple = len(SCREAMING_SNAKE_CASE_ ) - 1 UpperCamelCase : int = self._pointer if len(SCREAMING_SNAKE_CASE_ ) > 1: for i, l in enumerate(SCREAMING_SNAKE_CASE_ ): if hasattr(self, SCREAMING_SNAKE_CASE_ ) and isinstance(getattr(self, SCREAMING_SNAKE_CASE_ ), SCREAMING_SNAKE_CASE_ ): setattr(getattr(self, SCREAMING_SNAKE_CASE_ ), '.'.join(levels[i:] ), SCREAMING_SNAKE_CASE_ ) if l == last_level: UpperCamelCase : Any = val else: UpperCamelCase : Tuple = pointer[l] def snake_case_ ( self ) -> Optional[int]: return self._pointer def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Tuple: with open(F"""{file_name}""", 'w' ) as stream: dump(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: with open(F"""{file_name}""", 'w' ) as stream: json.dump(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) @staticmethod def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> Dict: with open(SCREAMING_SNAKE_CASE_ ) as stream: UpperCamelCase : Optional[int] = load(SCREAMING_SNAKE_CASE_, Loader=SCREAMING_SNAKE_CASE_ ) return data def __str__( self ) -> Any: UpperCamelCase : int = " " if self._name != "root": UpperCamelCase : Tuple = F"""{t * (self._level-1)}{self._name}:\n""" else: UpperCamelCase : int = "" UpperCamelCase : Any = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): r += F"""{t * (self._level)}{v}\n""" self._level += 1 else: r += F"""{t * (self._level)}{k}: {v} ({type(SCREAMING_SNAKE_CASE_ ).__name__})\n""" UpperCamelCase : List[str] = level return r[:-1] @classmethod def snake_case_ ( cls, SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> Any: UpperCamelCase : List[str] = cls.get_config_dict(SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) return cls(SCREAMING_SNAKE_CASE_ ) @classmethod def snake_case_ ( cls, SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: UpperCamelCase : Optional[Any] = kwargs.pop('cache_dir', SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = kwargs.pop('force_download', SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = kwargs.pop('resume_download', SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = kwargs.pop('proxies', SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = kwargs.pop('local_files_only', SCREAMING_SNAKE_CASE_ ) if os.path.isdir(SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Dict = os.path.join(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) elif os.path.isfile(SCREAMING_SNAKE_CASE_ ) or is_remote_url(SCREAMING_SNAKE_CASE_ ): UpperCamelCase : List[str] = pretrained_model_name_or_path else: UpperCamelCase : List[str] = hf_bucket_url(SCREAMING_SNAKE_CASE_, filename=SCREAMING_SNAKE_CASE_, use_cdn=SCREAMING_SNAKE_CASE_ ) try: # Load from URL or cache if already cached UpperCamelCase : Union[str, Any] = cached_path( SCREAMING_SNAKE_CASE_, cache_dir=SCREAMING_SNAKE_CASE_, force_download=SCREAMING_SNAKE_CASE_, proxies=SCREAMING_SNAKE_CASE_, resume_download=SCREAMING_SNAKE_CASE_, local_files_only=SCREAMING_SNAKE_CASE_, ) # Load config dict if resolved_config_file is None: raise EnvironmentError UpperCamelCase : List[Any] = Config.load_yaml(SCREAMING_SNAKE_CASE_ ) except EnvironmentError: UpperCamelCase : Optional[Any] = "Can't load config for" raise EnvironmentError(SCREAMING_SNAKE_CASE_ ) if resolved_config_file == config_file: print('loading configuration file from path' ) else: print('loading configuration file cache' ) return Config.load_yaml(SCREAMING_SNAKE_CASE_ ), kwargs def UpperCamelCase ( snake_case__ : str ) -> Any: UpperCamelCase : List[str] = torch.load('dump.pt' , map_location=in_tensor.device ) UpperCamelCase : List[str] = in_tensor.numpy() UpperCamelCase : Any = out_tensor.numpy()[0] print(na.shape , na[0, 0, :5] ) print(na.shape , na[0, 0, :5] ) assert np.allclose(_lowercase , _lowercase , rtol=0.01 , atol=0.1 ), ( F"""{sum([1 for x in np.isclose(_lowercase , _lowercase , rtol=0.01 , atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %""" " element-wise mismatch" ) raise Exception('tensors are all good' ) # Hugging face functions below def UpperCamelCase ( snake_case__ : Any ) -> Tuple: UpperCamelCase : Optional[Any] = urlparse(_lowercase ) return parsed.scheme in ("http", "https") def UpperCamelCase ( snake_case__ : str , snake_case__ : str , snake_case__ : Any=True ) -> Tuple: UpperCamelCase : Optional[int] = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX UpperCamelCase : int = "/" not in model_id if legacy_format: return F"""{endpoint}/{model_id}-{filename}""" else: return F"""{endpoint}/{model_id}/{filename}""" def UpperCamelCase ( snake_case__ : Tuple , snake_case__ : Optional[int] , snake_case__ : int=None , snake_case__ : Tuple=0 , snake_case__ : List[str]=None , ) -> str: UpperCamelCase : List[Any] = "python/{}".format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(_lowercase , _lowercase ): ua += "; " + "; ".join('{}/{}'.format(_lowercase , _lowercase ) for k, v in user_agent.items() ) elif isinstance(_lowercase , _lowercase ): ua += "; " + user_agent UpperCamelCase : int = {"user-agent": ua} if resume_size > 0: UpperCamelCase : Tuple = "bytes=%d-" % (resume_size,) UpperCamelCase : Union[str, Any] = requests.get(_lowercase , stream=_lowercase , proxies=_lowercase , headers=_lowercase ) if response.status_code == 416: # Range not satisfiable return UpperCamelCase : List[str] = response.headers.get('Content-Length' ) UpperCamelCase : Union[str, Any] = resume_size + int(_lowercase ) if content_length is not None else None UpperCamelCase : str = tqdm( unit='B' , unit_scale=_lowercase , total=_lowercase , initial=_lowercase , desc='Downloading' , ) for chunk in response.iter_content(chunk_size=1024 ): if chunk: # filter out keep-alive new chunks progress.update(len(_lowercase ) ) temp_file.write(_lowercase ) progress.close() def UpperCamelCase ( snake_case__ : List[str] , snake_case__ : Any=None , snake_case__ : Any=False , snake_case__ : str=None , snake_case__ : Union[str, Any]=10 , snake_case__ : Optional[int]=False , snake_case__ : str=None , snake_case__ : List[Any]=False , ) -> List[Any]: if cache_dir is None: UpperCamelCase : str = TRANSFORMERS_CACHE if isinstance(_lowercase , _lowercase ): UpperCamelCase : int = str(_lowercase ) os.makedirs(_lowercase , exist_ok=_lowercase ) UpperCamelCase : Union[str, Any] = None if not local_files_only: try: UpperCamelCase : str = requests.head(_lowercase , allow_redirects=_lowercase , proxies=_lowercase , timeout=_lowercase ) if response.status_code == 200: UpperCamelCase : Any = response.headers.get('ETag' ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass UpperCamelCase : int = url_to_filename(_lowercase , _lowercase ) # get cache path to put the file UpperCamelCase : Dict = os.path.join(_lowercase , _lowercase ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(_lowercase ): return cache_path else: UpperCamelCase : Tuple = [ file for file in fnmatch.filter(os.listdir(_lowercase ) , filename + '.*' ) if not file.endswith('.json' ) and not file.endswith('.lock' ) ] if len(_lowercase ) > 0: return os.path.join(_lowercase , matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( 'Cannot find the requested files in the cached path and outgoing traffic has been' ' disabled. To enable model look-ups and downloads online, set \'local_files_only\'' ' to False.' ) return None # From now on, etag is not None. if os.path.exists(_lowercase ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. UpperCamelCase : Dict = cache_path + ".lock" with FileLock(_lowercase ): # If the download just completed while the lock was activated. if os.path.exists(_lowercase ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: UpperCamelCase : Dict = cache_path + ".incomplete" @contextmanager def _resumable_file_manager(): with open(_lowercase , 'a+b' ) as f: yield f UpperCamelCase : Optional[int] = _resumable_file_manager if os.path.exists(_lowercase ): UpperCamelCase : Any = os.stat(_lowercase ).st_size else: UpperCamelCase : str = 0 else: UpperCamelCase : Any = partial(tempfile.NamedTemporaryFile , dir=_lowercase , delete=_lowercase ) UpperCamelCase : str = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( '%s not found in cache or force_download set to True, downloading to %s' , _lowercase , temp_file.name , ) http_get( _lowercase , _lowercase , proxies=_lowercase , resume_size=_lowercase , user_agent=_lowercase , ) os.replace(temp_file.name , _lowercase ) UpperCamelCase : Tuple = {"url": url, "etag": etag} UpperCamelCase : Optional[int] = cache_path + ".json" with open(_lowercase , 'w' ) as meta_file: json.dump(_lowercase , _lowercase ) return cache_path def UpperCamelCase ( snake_case__ : int , snake_case__ : Any=None ) -> Optional[int]: UpperCamelCase : Tuple = url.encode('utf-8' ) UpperCamelCase : Optional[int] = shaaaa(_lowercase ) UpperCamelCase : Tuple = url_hash.hexdigest() if etag: UpperCamelCase : Any = etag.encode('utf-8' ) UpperCamelCase : List[Any] = shaaaa(_lowercase ) filename += "." + etag_hash.hexdigest() if url.endswith('.h5' ): filename += ".h5" return filename def UpperCamelCase ( snake_case__ : str , snake_case__ : List[Any]=None , snake_case__ : str=False , snake_case__ : Dict=None , snake_case__ : Optional[Any]=False , snake_case__ : Optional[int]=None , snake_case__ : List[Any]=False , snake_case__ : Dict=False , snake_case__ : Optional[Any]=False , ) -> str: if cache_dir is None: UpperCamelCase : Tuple = TRANSFORMERS_CACHE if isinstance(_lowercase , _lowercase ): UpperCamelCase : Dict = str(_lowercase ) if isinstance(_lowercase , _lowercase ): UpperCamelCase : int = str(_lowercase ) if is_remote_url(_lowercase ): # URL, so get it from the cache (downloading if necessary) UpperCamelCase : Any = get_from_cache( _lowercase , cache_dir=_lowercase , force_download=_lowercase , proxies=_lowercase , resume_download=_lowercase , user_agent=_lowercase , local_files_only=_lowercase , ) elif os.path.exists(_lowercase ): # File, and it exists. UpperCamelCase : Optional[Any] = url_or_filename elif urlparse(_lowercase ).scheme == "": # File, but it doesn't exist. raise EnvironmentError('file {} not found'.format(_lowercase ) ) else: # Something unknown raise ValueError('unable to parse {} as a URL or as a local path'.format(_lowercase ) ) if extract_compressed_file: if not is_zipfile(_lowercase ) and not tarfile.is_tarfile(_lowercase ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" UpperCamelCase : Tuple = os.path.split(_lowercase ) UpperCamelCase : Any = output_file.replace('.' , '-' ) + "-extracted" UpperCamelCase : str = os.path.join(_lowercase , _lowercase ) if os.path.isdir(_lowercase ) and os.listdir(_lowercase ) and not force_extract: return output_path_extracted # Prevent parallel extractions UpperCamelCase : int = output_path + ".lock" with FileLock(_lowercase ): shutil.rmtree(_lowercase , ignore_errors=_lowercase ) os.makedirs(_lowercase ) if is_zipfile(_lowercase ): with ZipFile(_lowercase , 'r' ) as zip_file: zip_file.extractall(_lowercase ) zip_file.close() elif tarfile.is_tarfile(_lowercase ): UpperCamelCase : Optional[int] = tarfile.open(_lowercase ) tar_file.extractall(_lowercase ) tar_file.close() else: raise EnvironmentError('Archive format of {} could not be identified'.format(_lowercase ) ) return output_path_extracted return output_path def UpperCamelCase ( snake_case__ : List[Any] , snake_case__ : int="," ) -> Union[str, Any]: assert isinstance(_lowercase , _lowercase ) if os.path.isfile(_lowercase ): with open(_lowercase ) as f: UpperCamelCase : Tuple = eval(f.read() ) else: UpperCamelCase : Tuple = requests.get(_lowercase ) try: UpperCamelCase : Dict = requests.json() except Exception: UpperCamelCase : Dict = req.content.decode() assert data is not None, "could not connect" try: UpperCamelCase : Union[str, Any] = eval(_lowercase ) except Exception: UpperCamelCase : str = data.split('\n' ) req.close() return data def UpperCamelCase ( snake_case__ : List[Any] ) -> Optional[int]: UpperCamelCase : Any = requests.get(_lowercase ) UpperCamelCase : str = np.array(Image.open(BytesIO(response.content ) ) ) return img def UpperCamelCase ( snake_case__ : Union[str, Any] ) -> int: UpperCamelCase : Union[str, Any] = url.split('/' )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(_lowercase ) with open(_lowercase , 'rb' ) as stream: UpperCamelCase : int = pkl.load(_lowercase ) UpperCamelCase : List[Any] = weights.pop('model' ) UpperCamelCase : List[str] = {} for k, v in model.items(): UpperCamelCase : str = torch.from_numpy(_lowercase ) if "running_var" in k: UpperCamelCase : Any = torch.tensor([0] ) UpperCamelCase : int = k.replace('running_var' , 'num_batches_tracked' ) UpperCamelCase : Tuple = zero return new def UpperCamelCase ( ) -> Tuple: print(F"""{os.path.abspath(os.path.join(_lowercase , os.pardir ) )}/demo.ipynb""" ) def UpperCamelCase ( snake_case__ : Optional[Any] , snake_case__ : List[Any]="RGB" ) -> str: assert isinstance(_lowercase , _lowercase ) if os.path.isfile(_lowercase ): UpperCamelCase : str = cva.imread(_lowercase ) else: UpperCamelCase : Optional[int] = get_image_from_url(_lowercase ) assert img is not None, F"""could not connect to: {im}""" UpperCamelCase : Tuple = cva.cvtColor(_lowercase , cva.COLOR_BGR2RGB ) if input_format == "RGB": UpperCamelCase : Dict = img[:, :, ::-1] return img def UpperCamelCase ( snake_case__ : Optional[Any] , snake_case__ : Union[str, Any]=1 ) -> Any: return (images[i : i + batch] for i in range(0 , len(_lowercase ) , _lowercase ))
40
"""simple docstring""" def lowercase_ ( _lowercase : int ): '''simple docstring''' UpperCAmelCase : List[str] = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(2_7)) print(perfect_cube(4))
595
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging a_ : Optional[int] = logging.get_logger(__name__) a_ : Dict = { '''bigscience/bloom''': '''https://huggingface.co/bigscience/bloom/resolve/main/config.json''', '''bigscience/bloom-560m''': '''https://huggingface.co/bigscience/bloom-560m/blob/main/config.json''', '''bigscience/bloom-1b1''': '''https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json''', '''bigscience/bloom-1b7''': '''https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json''', '''bigscience/bloom-3b''': '''https://huggingface.co/bigscience/bloom-3b/blob/main/config.json''', '''bigscience/bloom-7b1''': '''https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json''', } class __lowercase( lowercase__ ): '''simple docstring''' __a : int = 'bloom' __a : Optional[Any] = ['past_key_values'] __a : Union[str, Any] = { 'num_hidden_layers': 'n_layer', 'num_attention_heads': 'n_head', } def __init__( self , __a=250880 , __a=64 , __a=2 , __a=8 , __a=1E-5 , __a=0.02 , __a=True , __a=1 , __a=2 , __a=False , __a=0.0 , __a=0.0 , __a=1 , __a=False , **__a , ): __lowerCamelCase : Union[str, Any] = vocab_size # Backward compatibility with n_embed kwarg __lowerCamelCase : List[str] = kwargs.pop('n_embed' , __a ) __lowerCamelCase : Optional[Any] = hidden_size if n_embed is None else n_embed __lowerCamelCase : Any = n_layer __lowerCamelCase : str = n_head __lowerCamelCase : Tuple = layer_norm_epsilon __lowerCamelCase : Optional[Any] = initializer_range __lowerCamelCase : Any = use_cache __lowerCamelCase : str = pretraining_tp __lowerCamelCase : Optional[Any] = apply_residual_connection_post_layernorm __lowerCamelCase : Optional[int] = hidden_dropout __lowerCamelCase : Any = attention_dropout __lowerCamelCase : str = bos_token_id __lowerCamelCase : Tuple = eos_token_id __lowerCamelCase : Optional[Any] = slow_but_exact super().__init__(bos_token_id=__a , eos_token_id=__a , **__a ) class __lowercase( lowercase__ ): '''simple docstring''' __a : Optional[int] = version.parse('1.12' ) def __init__( self , __a , __a = "default" , __a = None , __a = False , ): super().__init__(__a , task=__a , patching_specs=__a , use_past=__a ) if not getattr(self._config , 'pad_token_id' , __a ): # TODO: how to do that better? __lowerCamelCase : List[str] = 0 @property def snake_case_ ( self ): __lowerCamelCase : List[str] = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(__a , direction='inputs' , inverted_values_shape=__a ) __lowerCamelCase : int = {0: 'batch', 1: 'past_sequence + sequence'} else: __lowerCamelCase : int = {0: 'batch', 1: 'sequence'} return common_inputs @property def snake_case_ ( self ): return self._config.n_layer @property def snake_case_ ( self ): return self._config.n_head @property def snake_case_ ( self ): return 1E-3 def snake_case_ ( self , __a , __a = -1 , __a = -1 , __a = False , __a = None , ): __lowerCamelCase : Optional[Any] = super(__a , self ).generate_dummy_inputs( __a , batch_size=__a , seq_length=__a , is_pair=__a , framework=__a ) # We need to order the input in the way they appears in the forward() __lowerCamelCase : int = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch __lowerCamelCase : Tuple = common_inputs['input_ids'].shape # Not using the same length for past_key_values __lowerCamelCase : Tuple = seqlen + 2 __lowerCamelCase : str = self._config.hidden_size // self.num_attention_heads __lowerCamelCase : List[Any] = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) __lowerCamelCase : List[str] = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) __lowerCamelCase : int = [ (torch.zeros(__a ), torch.zeros(__a )) for _ in range(self.num_layers ) ] __lowerCamelCase : List[Any] = common_inputs['attention_mask'] if self.use_past: __lowerCamelCase : Optional[Any] = ordered_inputs['attention_mask'].dtype __lowerCamelCase : List[str] = torch.cat( [ordered_inputs['attention_mask'], torch.ones(__a , __a , dtype=__a )] , dim=1 ) return ordered_inputs @property def snake_case_ ( self ): return 13
714
"""simple docstring""" import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) a_ : Tuple = '''hf-internal-testing/tiny-random-bert''' a_ : List[Any] = os.path.join(TRANSFORMERS_CACHE, '''models--hf-internal-testing--tiny-random-bert''') a_ : Dict = '''9b8c223d42b2188cb49d29af482996f9d0f3e5a6''' class __lowercase( unittest.TestCase ): '''simple docstring''' def snake_case_ ( self ): __lowerCamelCase : List[Any] = cached_file(__a , __a ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(__a ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(__a , __a ) ) ) with open(os.path.join(__a , 'refs' , 'main' ) ) as f: __lowerCamelCase : Optional[int] = f.read() self.assertEqual(__a , os.path.join(__a , 'snapshots' , __a , __a ) ) self.assertTrue(os.path.isfile(__a ) ) # File is cached at the same place the second time. __lowerCamelCase : Optional[Any] = cached_file(__a , __a ) self.assertEqual(__a , __a ) # Using a specific revision to test the full commit hash. __lowerCamelCase : Optional[int] = cached_file(__a , __a , revision='9b8c223' ) self.assertEqual(__a , os.path.join(__a , 'snapshots' , __a , __a ) ) def snake_case_ ( self ): with self.assertRaisesRegex(__a , 'is not a valid model identifier' ): __lowerCamelCase : List[str] = cached_file('tiny-random-bert' , __a ) with self.assertRaisesRegex(__a , 'is not a valid git identifier' ): __lowerCamelCase : int = cached_file(__a , __a , revision='aaaa' ) with self.assertRaisesRegex(__a , 'does not appear to have a file named' ): __lowerCamelCase : List[Any] = cached_file(__a , 'conf' ) def snake_case_ ( self ): with self.assertRaisesRegex(__a , 'does not appear to have a file named' ): __lowerCamelCase : Dict = cached_file(__a , 'conf' ) with open(os.path.join(__a , 'refs' , 'main' ) ) as f: __lowerCamelCase : Any = f.read() self.assertTrue(os.path.isfile(os.path.join(__a , '.no_exist' , __a , 'conf' ) ) ) __lowerCamelCase : str = cached_file(__a , 'conf' , _raise_exceptions_for_missing_entries=__a ) self.assertIsNone(__a ) __lowerCamelCase : int = cached_file(__a , 'conf' , local_files_only=__a , _raise_exceptions_for_missing_entries=__a ) self.assertIsNone(__a ) __lowerCamelCase : List[str] = mock.Mock() __lowerCamelCase : str = 500 __lowerCamelCase : Union[str, Any] = {} __lowerCamelCase : Dict = HTTPError __lowerCamelCase : Any = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=__a ) as mock_head: __lowerCamelCase : Any = cached_file(__a , 'conf' , _raise_exceptions_for_connection_errors=__a ) self.assertIsNone(__a ) # This check we did call the fake head request mock_head.assert_called() def snake_case_ ( self ): self.assertTrue(has_file('hf-internal-testing/tiny-bert-pt-only' , __a ) ) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , __a ) ) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , __a ) ) def snake_case_ ( self ): # `get_file_from_repo` returns None if the file does not exist self.assertIsNone(get_file_from_repo('bert-base-cased' , 'ahah.txt' ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(__a , 'is not a valid model identifier' ): get_file_from_repo('bert-base-case' , __a ) # The function raises if the revision does not exist. with self.assertRaisesRegex(__a , 'is not a valid git identifier' ): get_file_from_repo('bert-base-cased' , __a , revision='ahaha' ) __lowerCamelCase : Optional[int] = get_file_from_repo('bert-base-cased' , __a ) # The name is the cached name which is not very easy to test, so instead we load the content. __lowerCamelCase : int = json.loads(open(__a , 'r' ).read() ) self.assertEqual(config['hidden_size'] , 768 ) def snake_case_ ( self ): with tempfile.TemporaryDirectory() as tmp_dir: __lowerCamelCase : int = Path(__a ) / 'a.txt' filename.touch() self.assertEqual(get_file_from_repo(__a , 'a.txt' ) , str(__a ) ) self.assertIsNone(get_file_from_repo(__a , 'b.txt' ) )
263
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __A : Dict = { 'configuration_squeezebert': [ 'SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SqueezeBertConfig', 'SqueezeBertOnnxConfig', ], 'tokenization_squeezebert': ['SqueezeBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = ['SqueezeBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Tuple = [ 'SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'SqueezeBertForMaskedLM', 'SqueezeBertForMultipleChoice', 'SqueezeBertForQuestionAnswering', 'SqueezeBertForSequenceClassification', 'SqueezeBertForTokenClassification', 'SqueezeBertModel', 'SqueezeBertModule', 'SqueezeBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys __A : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
334
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. __A : Dict = {'LayoutLMv2Config', 'LayoutLMv3Config'} @is_pipeline_test class __UpperCamelCase ( unittest.TestCase ): lowercase : Optional[int] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowercase : Tuple = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: lowercase : int = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: lowercase : Any = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def a__ ( self :int ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :str ,_UpperCamelCase :List[Any] ): snake_case_ : Optional[Any] = ZeroShotClassificationPipeline( model=_UpperCamelCase ,tokenizer=_UpperCamelCase ,candidate_labels=["""polics""", """health"""] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def a__ ( self :Dict ,_UpperCamelCase :Any ,_UpperCamelCase :int ): snake_case_ : int = classifier("""Who are you voting for in 2020?""" ,candidate_labels="""politics""" ) self.assertEqual(_UpperCamelCase ,{"""sequence""": ANY(_UpperCamelCase ), """labels""": [ANY(_UpperCamelCase )], """scores""": [ANY(_UpperCamelCase )]} ) # No kwarg snake_case_ : List[str] = classifier("""Who are you voting for in 2020?""" ,["""politics"""] ) self.assertEqual(_UpperCamelCase ,{"""sequence""": ANY(_UpperCamelCase ), """labels""": [ANY(_UpperCamelCase )], """scores""": [ANY(_UpperCamelCase )]} ) snake_case_ : Union[str, Any] = classifier("""Who are you voting for in 2020?""" ,candidate_labels=["""politics"""] ) self.assertEqual(_UpperCamelCase ,{"""sequence""": ANY(_UpperCamelCase ), """labels""": [ANY(_UpperCamelCase )], """scores""": [ANY(_UpperCamelCase )]} ) snake_case_ : int = classifier("""Who are you voting for in 2020?""" ,candidate_labels="""politics, public health""" ) self.assertEqual( _UpperCamelCase ,{"""sequence""": ANY(_UpperCamelCase ), """labels""": [ANY(_UpperCamelCase ), ANY(_UpperCamelCase )], """scores""": [ANY(_UpperCamelCase ), ANY(_UpperCamelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["""scores"""] ) ) ,1.0 ) snake_case_ : Any = classifier("""Who are you voting for in 2020?""" ,candidate_labels=["""politics""", """public health"""] ) self.assertEqual( _UpperCamelCase ,{"""sequence""": ANY(_UpperCamelCase ), """labels""": [ANY(_UpperCamelCase ), ANY(_UpperCamelCase )], """scores""": [ANY(_UpperCamelCase ), ANY(_UpperCamelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["""scores"""] ) ) ,1.0 ) snake_case_ : List[Any] = classifier( """Who are you voting for in 2020?""" ,candidate_labels="""politics""" ,hypothesis_template="""This text is about {}""" ) self.assertEqual(_UpperCamelCase ,{"""sequence""": ANY(_UpperCamelCase ), """labels""": [ANY(_UpperCamelCase )], """scores""": [ANY(_UpperCamelCase )]} ) # https://github.com/huggingface/transformers/issues/13846 snake_case_ : Union[str, Any] = classifier(["""I am happy"""] ,["""positive""", """negative"""] ) self.assertEqual( _UpperCamelCase ,[ {"""sequence""": ANY(_UpperCamelCase ), """labels""": [ANY(_UpperCamelCase ), ANY(_UpperCamelCase )], """scores""": [ANY(_UpperCamelCase ), ANY(_UpperCamelCase )]} for i in range(1 ) ] ,) snake_case_ : Union[str, Any] = classifier(["""I am happy""", """I am sad"""] ,["""positive""", """negative"""] ) self.assertEqual( _UpperCamelCase ,[ {"""sequence""": ANY(_UpperCamelCase ), """labels""": [ANY(_UpperCamelCase ), ANY(_UpperCamelCase )], """scores""": [ANY(_UpperCamelCase ), ANY(_UpperCamelCase )]} for i in range(2 ) ] ,) with self.assertRaises(_UpperCamelCase ): classifier("""""" ,candidate_labels="""politics""" ) with self.assertRaises(_UpperCamelCase ): classifier(_UpperCamelCase ,candidate_labels="""politics""" ) with self.assertRaises(_UpperCamelCase ): classifier("""Who are you voting for in 2020?""" ,candidate_labels="""""" ) with self.assertRaises(_UpperCamelCase ): classifier("""Who are you voting for in 2020?""" ,candidate_labels=_UpperCamelCase ) with self.assertRaises(_UpperCamelCase ): classifier( """Who are you voting for in 2020?""" ,candidate_labels="""politics""" ,hypothesis_template="""Not formatting template""" ,) with self.assertRaises(_UpperCamelCase ): classifier( """Who are you voting for in 2020?""" ,candidate_labels="""politics""" ,hypothesis_template=_UpperCamelCase ,) self.run_entailment_id(_UpperCamelCase ) def a__ ( self :Tuple ,_UpperCamelCase :Pipeline ): snake_case_ : int = zero_shot_classifier.model.config snake_case_ : Union[str, Any] = config.labelaid snake_case_ : Optional[Any] = zero_shot_classifier.entailment_id snake_case_ : List[Any] = {"""LABEL_0""": 0, """LABEL_1""": 1, """LABEL_2""": 2} self.assertEqual(zero_shot_classifier.entailment_id ,-1 ) snake_case_ : Optional[Any] = {"""entailment""": 0, """neutral""": 1, """contradiction""": 2} self.assertEqual(zero_shot_classifier.entailment_id ,0 ) snake_case_ : int = {"""ENTAIL""": 0, """NON-ENTAIL""": 1} self.assertEqual(zero_shot_classifier.entailment_id ,0 ) snake_case_ : Tuple = {"""ENTAIL""": 2, """NEUTRAL""": 1, """CONTR""": 0} self.assertEqual(zero_shot_classifier.entailment_id ,2 ) snake_case_ : Optional[Any] = original_labelaid self.assertEqual(_UpperCamelCase ,zero_shot_classifier.entailment_id ) @require_torch def a__ ( self :Any ): snake_case_ : Dict = pipeline( """zero-shot-classification""" ,model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""" ,framework="""pt""" ,) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( """Who are you voting for in 2020?""" * 1_0_0 ,candidate_labels=["""politics""", """public health""", """science"""] ) @require_torch def a__ ( self :Dict ): snake_case_ : Union[str, Any] = pipeline( """zero-shot-classification""" ,model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""" ,framework="""pt""" ,) snake_case_ : Union[str, Any] = zero_shot_classifier( """Who are you voting for in 2020?""" ,candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(_UpperCamelCase ) ,{ """sequence""": """Who are you voting for in 2020?""", """labels""": ["""science""", """public health""", """politics"""], """scores""": [0.3_33, 0.3_33, 0.3_33], } ,) @require_tf def a__ ( self :Tuple ): snake_case_ : Union[str, Any] = pipeline( """zero-shot-classification""" ,model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""" ,framework="""tf""" ,) snake_case_ : Union[str, Any] = zero_shot_classifier( """Who are you voting for in 2020?""" ,candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(_UpperCamelCase ) ,{ """sequence""": """Who are you voting for in 2020?""", """labels""": ["""science""", """public health""", """politics"""], """scores""": [0.3_33, 0.3_33, 0.3_33], } ,) @slow @require_torch def a__ ( self :Optional[int] ): snake_case_ : Dict = pipeline("""zero-shot-classification""" ,model="""roberta-large-mnli""" ,framework="""pt""" ) snake_case_ : str = zero_shot_classifier( """Who are you voting for in 2020?""" ,candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(_UpperCamelCase ) ,{ """sequence""": """Who are you voting for in 2020?""", """labels""": ["""politics""", """public health""", """science"""], """scores""": [0.9_76, 0.0_15, 0.0_09], } ,) snake_case_ : int = zero_shot_classifier( """The dominant sequence transduction models are based on complex recurrent or convolutional neural networks""" """ in an encoder-decoder configuration. The best performing models also connect the encoder and decoder""" """ through an attention mechanism. We propose a new simple network architecture, the Transformer, based""" """ solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two""" """ machine translation tasks show these models to be superior in quality while being more parallelizable""" """ and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014""" """ English-to-German translation task, improving over the existing best results, including ensembles by""" """ over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new""" """ single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small""" """ fraction of the training costs of the best models from the literature. We show that the Transformer""" """ generalizes well to other tasks by applying it successfully to English constituency parsing both with""" """ large and limited training data.""" ,candidate_labels=["""machine learning""", """statistics""", """translation""", """vision"""] ,multi_label=_UpperCamelCase ,) self.assertEqual( nested_simplify(_UpperCamelCase ) ,{ """sequence""": ( """The dominant sequence transduction models are based on complex recurrent or convolutional neural""" """ networks in an encoder-decoder configuration. The best performing models also connect the""" """ encoder and decoder through an attention mechanism. We propose a new simple network""" """ architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence""" """ and convolutions entirely. Experiments on two machine translation tasks show these models to be""" """ superior in quality while being more parallelizable and requiring significantly less time to""" """ train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,""" """ improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014""" """ English-to-French translation task, our model establishes a new single-model state-of-the-art""" """ BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training""" """ costs of the best models from the literature. We show that the Transformer generalizes well to""" """ other tasks by applying it successfully to English constituency parsing both with large and""" """ limited training data.""" ), """labels""": ["""translation""", """machine learning""", """vision""", """statistics"""], """scores""": [0.8_17, 0.7_13, 0.0_18, 0.0_18], } ,) @slow @require_tf def a__ ( self :Optional[int] ): snake_case_ : List[str] = pipeline("""zero-shot-classification""" ,model="""roberta-large-mnli""" ,framework="""tf""" ) snake_case_ : str = zero_shot_classifier( """Who are you voting for in 2020?""" ,candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(_UpperCamelCase ) ,{ """sequence""": """Who are you voting for in 2020?""", """labels""": ["""politics""", """public health""", """science"""], """scores""": [0.9_76, 0.0_15, 0.0_09], } ,) snake_case_ : Optional[int] = zero_shot_classifier( """The dominant sequence transduction models are based on complex recurrent or convolutional neural networks""" """ in an encoder-decoder configuration. The best performing models also connect the encoder and decoder""" """ through an attention mechanism. We propose a new simple network architecture, the Transformer, based""" """ solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two""" """ machine translation tasks show these models to be superior in quality while being more parallelizable""" """ and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014""" """ English-to-German translation task, improving over the existing best results, including ensembles by""" """ over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new""" """ single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small""" """ fraction of the training costs of the best models from the literature. We show that the Transformer""" """ generalizes well to other tasks by applying it successfully to English constituency parsing both with""" """ large and limited training data.""" ,candidate_labels=["""machine learning""", """statistics""", """translation""", """vision"""] ,multi_label=_UpperCamelCase ,) self.assertEqual( nested_simplify(_UpperCamelCase ) ,{ """sequence""": ( """The dominant sequence transduction models are based on complex recurrent or convolutional neural""" """ networks in an encoder-decoder configuration. The best performing models also connect the""" """ encoder and decoder through an attention mechanism. We propose a new simple network""" """ architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence""" """ and convolutions entirely. Experiments on two machine translation tasks show these models to be""" """ superior in quality while being more parallelizable and requiring significantly less time to""" """ train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,""" """ improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014""" """ English-to-French translation task, our model establishes a new single-model state-of-the-art""" """ BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training""" """ costs of the best models from the literature. We show that the Transformer generalizes well to""" """ other tasks by applying it successfully to English constituency parsing both with large and""" """ limited training data.""" ), """labels""": ["""translation""", """machine learning""", """vision""", """statistics"""], """scores""": [0.8_17, 0.7_13, 0.0_18, 0.0_18], } ,)
334
1
from __future__ import annotations from math import pi, sqrt def A_ ( _lowercase, _lowercase ): '''simple docstring''' if inductance <= 0: raise ValueError("""Inductance cannot be 0 or negative""" ) elif capacitance <= 0: raise ValueError("""Capacitance cannot be 0 or negative""" ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
700
"""simple docstring""" # limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( "pipelines_utils", "0.22.0", "Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.", standard_warn=False, stacklevel=3, )
310
0
import baseaa def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> bytes: """simple docstring""" return baseaa.baaencode(string.encode('''utf-8''' ) ) def A__ ( SCREAMING_SNAKE_CASE_ : bytes ) -> str: """simple docstring""" return baseaa.baadecode(SCREAMING_SNAKE_CASE_ ).decode('''utf-8''' ) if __name__ == "__main__": UpperCAmelCase_ = "Hello World!" UpperCAmelCase_ = baseaa_encode(test) print(encoded) UpperCAmelCase_ = baseaa_decode(encoded) print(decoded)
32
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase_ = { '''configuration_albert''': ['''ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AlbertConfig''', '''AlbertOnnxConfig'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ['''AlbertTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ['''AlbertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AlbertForMaskedLM''', '''AlbertForMultipleChoice''', '''AlbertForPreTraining''', '''AlbertForQuestionAnswering''', '''AlbertForSequenceClassification''', '''AlbertForTokenClassification''', '''AlbertModel''', '''AlbertPreTrainedModel''', '''load_tf_weights_in_albert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFAlbertForMaskedLM''', '''TFAlbertForMultipleChoice''', '''TFAlbertForPreTraining''', '''TFAlbertForQuestionAnswering''', '''TFAlbertForSequenceClassification''', '''TFAlbertForTokenClassification''', '''TFAlbertMainLayer''', '''TFAlbertModel''', '''TFAlbertPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''FlaxAlbertForMaskedLM''', '''FlaxAlbertForMultipleChoice''', '''FlaxAlbertForPreTraining''', '''FlaxAlbertForQuestionAnswering''', '''FlaxAlbertForSequenceClassification''', '''FlaxAlbertForTokenClassification''', '''FlaxAlbertModel''', '''FlaxAlbertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert import AlbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert_fast import AlbertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_albert import ( ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, AlbertPreTrainedModel, load_tf_weights_in_albert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_albert import ( TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFAlbertForMaskedLM, TFAlbertForMultipleChoice, TFAlbertForPreTraining, TFAlbertForQuestionAnswering, TFAlbertForSequenceClassification, TFAlbertForTokenClassification, TFAlbertMainLayer, TFAlbertModel, TFAlbertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, FlaxAlbertPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
354
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = {"""openai-gpt""": """https://huggingface.co/openai-gpt/resolve/main/config.json"""} class lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' lowerCamelCase__ = """openai-gpt""" lowerCamelCase__ = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , lowercase=40478 , lowercase=512 , lowercase=768 , lowercase=12 , lowercase=12 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=0.1 , lowercase=1E-5 , lowercase=0.02 , lowercase="cls_index" , lowercase=True , lowercase=None , lowercase=True , lowercase=0.1 , **lowercase , ): _lowerCamelCase : Optional[Any] = vocab_size _lowerCamelCase : Optional[int] = n_positions _lowerCamelCase : Tuple = n_embd _lowerCamelCase : Optional[Any] = n_layer _lowerCamelCase : Any = n_head _lowerCamelCase : Optional[int] = afn _lowerCamelCase : int = resid_pdrop _lowerCamelCase : List[Any] = embd_pdrop _lowerCamelCase : List[Any] = attn_pdrop _lowerCamelCase : int = layer_norm_epsilon _lowerCamelCase : Tuple = initializer_range _lowerCamelCase : Tuple = summary_type _lowerCamelCase : List[Any] = summary_use_proj _lowerCamelCase : int = summary_activation _lowerCamelCase : int = summary_first_dropout _lowerCamelCase : Union[str, Any] = summary_proj_to_labels super().__init__(**_a )
710
"""simple docstring""" from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging lowercase__ = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class lowerCAmelCase__ ( lowercase ): '''simple docstring''' def __init__( self , lowercase = 101 ): _lowerCamelCase : Optional[int] = length def __len__( self ): return self.length def __getitem__( self , lowercase ): return i class lowerCAmelCase__ : '''simple docstring''' def __call__( self , lowercase ): return {"input_ids": torch.tensor(lowercase ), "labels": torch.tensor(lowercase )} class lowerCAmelCase__ ( nn.Module ): '''simple docstring''' def __init__( self ): super().__init__() # Add some (unused) params otherwise DDP will complain. _lowerCamelCase : int = nn.Linear(120 , 80 ) def A_ ( self , lowercase , lowercase=None ): if labels is not None: return torch.tensor(0.0 , device=input_ids.device ), input_ids else: return input_ids class lowerCAmelCase__ ( lowercase ): '''simple docstring''' @require_torch_neuroncore def A_ ( self ): _lowerCamelCase : Optional[Any] = F'''--nproc_per_node=2 --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py '''.split() _lowerCamelCase : int = self.get_auto_remove_tmp_dir() _lowerCamelCase : str = F'''--output_dir {output_dir}'''.split() _lowerCamelCase : Tuple = ['torchrun'] + distributed_args + args execute_subprocess_async(lowercase , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class lowerCAmelCase__ ( lowercase ): '''simple docstring''' @require_torch_multi_gpu def A_ ( self ): _lowerCamelCase : Union[str, Any] = F'''--nproc_per_node={torch.cuda.device_count()} --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py '''.split() _lowerCamelCase : List[str] = self.get_auto_remove_tmp_dir() _lowerCamelCase : Any = F'''--output_dir {output_dir}'''.split() _lowerCamelCase : Any = ['torchrun'] + distributed_args + args execute_subprocess_async(lowercase , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py lowercase__ = HfArgumentParser((TrainingArguments,)) lowercase__ = parser.parse_args_into_dataclasses()[0] logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, " F"distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}" ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: lowercase__ = DummyDataset(dataset_length) def _snake_case ( lowercase__ ): _lowerCamelCase : int = list(range(len(lowercase__ ) ) ) _lowerCamelCase : Optional[int] = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( 'Predictions and/or labels do not match expected results:\n - predictions: ' f'''{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}''' ) return {"success": success} lowercase__ = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) lowercase__ = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) lowercase__ = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) lowercase__ = 2 lowercase__ = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) lowercase__ = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) lowercase__ = None
492
0
'''simple docstring''' from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class _a ( UpperCamelCase__ ): def __init__( self ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = False ,_SCREAMING_SNAKE_CASE = False ,_SCREAMING_SNAKE_CASE = None ,**_SCREAMING_SNAKE_CASE ,) -> Optional[Any]: _snake_case = path_or_paths _snake_case = split if split or isinstance(__lowerCamelCase ,__lowerCamelCase ) else "train" _snake_case = features _snake_case = cache_dir _snake_case = keep_in_memory _snake_case = streaming _snake_case = num_proc _snake_case = kwargs @abstractmethod def _lowercase ( self ) -> Union[str, Any]: pass class _a ( UpperCamelCase__ ): def __init__( self ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = False ,_SCREAMING_SNAKE_CASE = False ,_SCREAMING_SNAKE_CASE = None ,**_SCREAMING_SNAKE_CASE ,) -> Tuple: _snake_case = features _snake_case = cache_dir _snake_case = keep_in_memory _snake_case = streaming _snake_case = num_proc _snake_case = kwargs @abstractmethod def _lowercase ( self ) -> List[str]: pass
185
def lowerCAmelCase_ ( A_): UpperCamelCase__: Optional[int] = len(A_) for i in range(1 ,A_): UpperCamelCase__: List[Any] = collection[i] UpperCamelCase__: Tuple = 0 UpperCamelCase__: Union[str, Any] = i - 1 while low <= high: UpperCamelCase__: Any = (low + high) // 2 if val < collection[mid]: UpperCamelCase__: str = mid - 1 else: UpperCamelCase__: str = mid + 1 for j in range(A_ ,A_ ,-1): UpperCamelCase__: Optional[int] = collection[j - 1] UpperCamelCase__: Optional[Any] = val return collection if __name__ == "__main__": A__: Dict = input('''Enter numbers separated by a comma:\n''').strip() A__: Optional[int] = [int(item) for item in user_input.split(''',''')] print(binary_insertion_sort(unsorted))
380
0
"""simple docstring""" import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class lowerCAmelCase__ ( lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : str = PriorTransformer __UpperCAmelCase : Tuple = "hidden_states" @property def snake_case ( self : Union[str, Any] ): __lowercase : List[Any] = 4 __lowercase : List[str] = 8 __lowercase : Optional[int] = 7 __lowercase : Optional[int] = floats_tensor((batch_size, embedding_dim) ).to(lowercase__ ) __lowercase : Tuple = floats_tensor((batch_size, embedding_dim) ).to(lowercase__ ) __lowercase : List[str] = floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(lowercase__ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def snake_case ( self : List[Any] , lowercase__ : int=0 ): torch.manual_seed(lowercase__ ) __lowercase : Optional[int] = 4 __lowercase : Optional[int] = 8 __lowercase : List[str] = 7 __lowercase : int = torch.randn((batch_size, embedding_dim) ).to(lowercase__ ) __lowercase : Any = torch.randn((batch_size, embedding_dim) ).to(lowercase__ ) __lowercase : int = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(lowercase__ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def snake_case ( self : Union[str, Any] ): return (4, 8) @property def snake_case ( self : Dict ): return (4, 8) def snake_case ( self : Optional[Any] ): __lowercase : Optional[Any] = { "num_attention_heads": 2, "attention_head_dim": 4, "num_layers": 2, "embedding_dim": 8, "num_embeddings": 7, "additional_embeddings": 4, } __lowercase : Any = self.dummy_input return init_dict, inputs_dict def snake_case ( self : str ): __lowercase ,__lowercase : Union[str, Any] = PriorTransformer.from_pretrained( "hf-internal-testing/prior-dummy" , output_loading_info=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertEqual(len(loading_info["missing_keys"] ) , 0 ) model.to(lowercase__ ) __lowercase : str = model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def snake_case ( self : int ): __lowercase ,__lowercase : List[str] = self.prepare_init_args_and_inputs_for_common() __lowercase : Dict = self.model_class(**lowercase__ ) __lowercase : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : List[str] = [*signature.parameters.keys()] __lowercase : Optional[int] = ["hidden_states", "timestep"] self.assertListEqual(arg_names[:2] , lowercase__ ) def snake_case ( self : int ): __lowercase : List[Any] = PriorTransformer.from_pretrained("hf-internal-testing/prior-dummy" ) __lowercase : List[str] = model.to(lowercase__ ) if hasattr(lowercase__ , "set_default_attn_processor" ): model.set_default_attn_processor() __lowercase : Optional[int] = self.get_dummy_seed_input() with torch.no_grad(): __lowercase : Tuple = model(**lowercase__ )[0] __lowercase : Optional[Any] = output[0, :5].flatten().cpu() print(lowercase__ ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. __lowercase : Union[str, Any] = torch.tensor([-1.3_4_3_6, -0.2_8_7_0, 0.7_5_3_8, 0.4_3_6_8, -0.0_2_3_9] ) self.assertTrue(torch_all_close(lowercase__ , lowercase__ , rtol=1e-2 ) ) @slow class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def snake_case ( self : int , lowercase__ : Optional[int]=1 , lowercase__ : Dict=7_6_8 , lowercase__ : List[Any]=7_7 , lowercase__ : Tuple=0 ): torch.manual_seed(lowercase__ ) __lowercase : List[str] = batch_size __lowercase : str = embedding_dim __lowercase : List[Any] = num_embeddings __lowercase : Any = torch.randn((batch_size, embedding_dim) ).to(lowercase__ ) __lowercase : List[str] = torch.randn((batch_size, embedding_dim) ).to(lowercase__ ) __lowercase : Dict = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(lowercase__ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def snake_case ( self : List[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [1_3, [-0.5_8_6_1, 0.1_2_8_3, -0.0_9_3_1, 0.0_8_8_2, 0.4_4_7_6, 0.1_3_2_9, -0.0_4_9_8, 0.0_6_4_0]], [3_7, [-0.4_9_1_3, 0.0_1_1_0, -0.0_4_8_3, 0.0_5_4_1, 0.4_9_5_4, -0.0_1_7_0, 0.0_3_5_4, 0.1_6_5_1]], # fmt: on ] ) def snake_case ( self : int , lowercase__ : str , lowercase__ : List[str] ): __lowercase : Union[str, Any] = PriorTransformer.from_pretrained("kandinsky-community/kandinsky-2-1-prior" , subfolder="prior" ) model.to(lowercase__ ) __lowercase : Optional[Any] = self.get_dummy_seed_input(seed=lowercase__ ) with torch.no_grad(): __lowercase : Union[str, Any] = model(**lowercase__ )[0] assert list(sample.shape ) == [1, 7_6_8] __lowercase : Any = sample[0, :8].flatten().cpu() print(lowercase__ ) __lowercase : int = torch.tensor(lowercase__ ) assert torch_all_close(lowercase__ , lowercase__ , atol=1e-3 )
281
"""simple docstring""" from __future__ import annotations def snake_case__ ( _lowerCamelCase, _lowerCamelCase = None ) ->list[list[str]]: """simple docstring""" __lowercase : List[Any] = word_bank or [] # create a table __lowercase : int = len(_lowerCamelCase ) + 1 __lowercase : list[list[list[str]]] = [] for _ in range(_lowerCamelCase ): table.append([] ) # seed value __lowercase : Any = [[]] # because empty string has empty combination # iterate through the indices for i in range(_lowerCamelCase ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(_lowerCamelCase )] == word: __lowercase : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(_lowerCamelCase )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(_lowerCamelCase )]: combination.reverse() return table[len(_lowerCamelCase )] if __name__ == "__main__": print(all_construct('jwajalapa', ['jwa', 'j', 'w', 'a', 'la', 'lapa'])) print(all_construct('rajamati', ['s', 'raj', 'amat', 'raja', 'ma', 'i', 't'])) print( all_construct( 'hexagonosaurus', ['h', 'ex', 'hex', 'ag', 'ago', 'ru', 'auru', 'rus', 'go', 'no', 'o', 's'], ) )
281
1
'''simple docstring''' import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize('''dataset_size''' , [None, 4_00 * 2**20, 6_00 * 2**20] ) @pytest.mark.parametrize('''input_in_memory_max_size''' , ['''default''', 0, 1_00 * 2**20, 9_00 * 2**20] ) def A_ ( __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[str] ) -> Any: if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , '''IN_MEMORY_MAX_SIZE''' , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE : Any = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: __SCREAMING_SNAKE_CASE : int = dataset_size < in_memory_max_size else: __SCREAMING_SNAKE_CASE : List[Any] = False __SCREAMING_SNAKE_CASE : Any = is_small_dataset(__SCREAMING_SNAKE_CASE ) assert result == expected
158
'''simple docstring''' import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL lowerCAmelCase_ = logging.get_logger(__name__) def A__ ( A : np.ndarray , A : Union[int, Iterable[int]] , A : bool , A : int): '''simple docstring''' def constraint_to_multiple_of(A : List[str] , A : Any , A : Optional[Any]=0 , A : Dict=None): UpperCamelCase : Tuple = round(val / multiple) * multiple if max_val is not None and x > max_val: UpperCamelCase : Optional[Any] = math.floor(val / multiple) * multiple if x < min_val: UpperCamelCase : Dict = math.ceil(val / multiple) * multiple return x UpperCamelCase : Dict = (output_size, output_size) if isinstance(A , A) else output_size UpperCamelCase , UpperCamelCase : str = get_image_size(A) UpperCamelCase , UpperCamelCase : Any = output_size # determine new height and width UpperCamelCase : List[str] = output_height / input_height UpperCamelCase : Tuple = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width) < abs(1 - scale_height): # fit width UpperCamelCase : List[str] = scale_width else: # fit height UpperCamelCase : str = scale_height UpperCamelCase : str = constraint_to_multiple_of(scale_height * input_height , multiple=A) UpperCamelCase : int = constraint_to_multiple_of(scale_width * input_width , multiple=A) return (new_height, new_width) class UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" __SCREAMING_SNAKE_CASE = ['''pixel_values'''] def __init__( self , lowerCamelCase = True , lowerCamelCase = None , lowerCamelCase = PILImageResampling.BILINEAR , lowerCamelCase = False , lowerCamelCase = 1 , lowerCamelCase = True , lowerCamelCase = 1 / 2_55 , lowerCamelCase = True , lowerCamelCase = None , lowerCamelCase = None , **lowerCamelCase , ) -> None: '''simple docstring''' super().__init__(**lowerCamelCase ) UpperCamelCase : Dict = size if size is not None else {"height": 3_84, "width": 3_84} UpperCamelCase : int = get_size_dict(lowerCamelCase ) UpperCamelCase : str = do_resize UpperCamelCase : int = size UpperCamelCase : str = keep_aspect_ratio UpperCamelCase : int = ensure_multiple_of UpperCamelCase : Optional[int] = resample UpperCamelCase : Optional[int] = do_rescale UpperCamelCase : Any = rescale_factor UpperCamelCase : Tuple = do_normalize UpperCamelCase : Any = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCamelCase : Optional[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def SCREAMING_SNAKE_CASE__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = False , lowerCamelCase = 1 , lowerCamelCase = PILImageResampling.BICUBIC , lowerCamelCase = None , **lowerCamelCase , ) -> np.ndarray: '''simple docstring''' UpperCamelCase : List[Any] = get_size_dict(lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) UpperCamelCase : Optional[Any] = get_resize_output_image_size( lowerCamelCase , output_size=(size["height"], size["width"]) , keep_aspect_ratio=lowerCamelCase , multiple=lowerCamelCase , ) return resize(lowerCamelCase , size=lowerCamelCase , resample=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , **lowerCamelCase , ) -> Any: '''simple docstring''' return rescale(lowerCamelCase , scale=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , **lowerCamelCase , ) -> np.ndarray: '''simple docstring''' return normalize(lowerCamelCase , mean=lowerCamelCase , std=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = ChannelDimension.FIRST , **lowerCamelCase , ) -> PIL.Image.Image: '''simple docstring''' UpperCamelCase : List[str] = do_resize if do_resize is not None else self.do_resize UpperCamelCase : Optional[int] = size if size is not None else self.size UpperCamelCase : Optional[int] = get_size_dict(lowerCamelCase ) UpperCamelCase : Tuple = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio UpperCamelCase : Optional[int] = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of UpperCamelCase : str = resample if resample is not None else self.resample UpperCamelCase : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase : Dict = image_mean if image_mean is not None else self.image_mean UpperCamelCase : List[str] = image_std if image_std is not None else self.image_std UpperCamelCase : Optional[int] = make_list_of_images(lowerCamelCase ) if not valid_images(lowerCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCamelCase : Dict = [to_numpy_array(lowerCamelCase ) for image in images] if do_resize: UpperCamelCase : Optional[Any] = [self.resize(image=lowerCamelCase , size=lowerCamelCase , resample=lowerCamelCase ) for image in images] if do_rescale: UpperCamelCase : Union[str, Any] = [self.rescale(image=lowerCamelCase , scale=lowerCamelCase ) for image in images] if do_normalize: UpperCamelCase : Dict = [self.normalize(image=lowerCamelCase , mean=lowerCamelCase , std=lowerCamelCase ) for image in images] UpperCamelCase : List[str] = [to_channel_dimension_format(lowerCamelCase , lowerCamelCase ) for image in images] UpperCamelCase : Dict = {"pixel_values": images} return BatchFeature(data=lowerCamelCase , tensor_type=lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , lowerCamelCase , lowerCamelCase = None ) -> Dict: '''simple docstring''' UpperCamelCase : Optional[Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowerCamelCase ) != len(lowerCamelCase ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(lowerCamelCase ): UpperCamelCase : Dict = target_sizes.numpy() UpperCamelCase : List[Any] = [] for idx in range(len(lowerCamelCase ) ): UpperCamelCase : Tuple = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=lowerCamelCase ) UpperCamelCase : str = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowerCamelCase ) else: UpperCamelCase : Any = logits.argmax(dim=1 ) UpperCamelCase : Union[str, Any] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
173
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __SCREAMING_SNAKE_CASE : Optional[int] = { '''configuration_informer''': [ '''INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : List[str] = [ '''INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InformerForPrediction''', '''InformerModel''', '''InformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
707
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __lowerCamelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" a_: Dict = StableDiffusionInstructPixaPixPipeline a_: Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width""", """cross_attention_kwargs"""} a_: Tuple = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS a_: Any = IMAGE_TO_IMAGE_IMAGE_PARAMS a_: str = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowerCAmelCase__ ( self : Dict ): torch.manual_seed(0 ) _lowerCAmelCase =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) _lowerCAmelCase =PNDMScheduler(skip_prk_steps=lowerCamelCase_ ) torch.manual_seed(0 ) _lowerCAmelCase =AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) _lowerCAmelCase =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) _lowerCAmelCase =CLIPTextModel(lowerCamelCase_ ) _lowerCAmelCase =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _lowerCAmelCase ={ """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase_ : int , lowerCamelCase_ : str=0 ): _lowerCAmelCase =floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) _lowerCAmelCase =image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase =Image.fromarray(np.uinta(lowerCamelCase_ ) ).convert("""RGB""" ) if str(lowerCamelCase_ ).startswith("""mps""" ): _lowerCAmelCase =torch.manual_seed(lowerCamelCase_ ) else: _lowerCAmelCase =torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) _lowerCAmelCase ={ """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """image_guidance_scale""": 1, """output_type""": """numpy""", } return inputs def lowerCAmelCase__ ( self : Optional[int] ): _lowerCAmelCase ="""cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase =self.get_dummy_components() _lowerCAmelCase =StableDiffusionInstructPixaPixPipeline(**lowerCamelCase_ ) _lowerCAmelCase =sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _lowerCAmelCase =self.get_dummy_inputs(lowerCamelCase_ ) _lowerCAmelCase =sd_pipe(**lowerCamelCase_ ).images _lowerCAmelCase =image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _lowerCAmelCase =np.array([0.7526, 0.3750, 0.4547, 0.6117, 0.5866, 0.5016, 0.4327, 0.5642, 0.4815] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowerCAmelCase__ ( self : str ): _lowerCAmelCase ="""cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase =self.get_dummy_components() _lowerCAmelCase =StableDiffusionInstructPixaPixPipeline(**lowerCamelCase_ ) _lowerCAmelCase =sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _lowerCAmelCase =self.get_dummy_inputs(lowerCamelCase_ ) _lowerCAmelCase ="""french fries""" _lowerCAmelCase =sd_pipe(**lowerCamelCase_ , negative_prompt=lowerCamelCase_ ) _lowerCAmelCase =output.images _lowerCAmelCase =image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _lowerCAmelCase =np.array([0.7511, 0.3642, 0.4553, 0.6236, 0.5797, 0.5013, 0.4343, 0.5611, 0.4831] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowerCAmelCase__ ( self : Union[str, Any] ): _lowerCAmelCase ="""cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase =self.get_dummy_components() _lowerCAmelCase =StableDiffusionInstructPixaPixPipeline(**lowerCamelCase_ ) _lowerCAmelCase =sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _lowerCAmelCase =self.get_dummy_inputs(lowerCamelCase_ ) _lowerCAmelCase =[inputs["""prompt"""]] * 2 _lowerCAmelCase =np.array(inputs["""image"""] ).astype(np.floataa ) / 255.0 _lowerCAmelCase =torch.from_numpy(lowerCamelCase_ ).unsqueeze(0 ).to(lowerCamelCase_ ) _lowerCAmelCase =image / 2 + 0.5 _lowerCAmelCase =image.permute(0 , 3 , 1 , 2 ) _lowerCAmelCase =image.repeat(2 , 1 , 1 , 1 ) _lowerCAmelCase =sd_pipe(**lowerCamelCase_ ).images _lowerCAmelCase =image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) _lowerCAmelCase =np.array([0.5812, 0.5748, 0.5222, 0.5908, 0.5695, 0.7174, 0.6804, 0.5523, 0.5579] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowerCAmelCase__ ( self : Union[str, Any] ): _lowerCAmelCase ="""cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase =self.get_dummy_components() _lowerCAmelCase =EulerAncestralDiscreteScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" ) _lowerCAmelCase =StableDiffusionInstructPixaPixPipeline(**lowerCamelCase_ ) _lowerCAmelCase =sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _lowerCAmelCase =self.get_dummy_inputs(lowerCamelCase_ ) _lowerCAmelCase =sd_pipe(**lowerCamelCase_ ).images _lowerCAmelCase =image[0, -3:, -3:, -1] _lowerCAmelCase =[round(lowerCamelCase_ , 4 ) for x in image_slice.flatten().tolist()] print(""",""".join([str(lowerCamelCase_ ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) _lowerCAmelCase =np.array([0.7417, 0.3842, 0.4732, 0.5776, 0.5891, 0.5139, 0.4052, 0.5673, 0.4986] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowerCAmelCase__ ( self : Dict ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def lowerCAmelCase__ ( self : str ): _lowerCAmelCase =self.get_dummy_components() _lowerCAmelCase =StableDiffusionInstructPixaPixPipeline(**lowerCamelCase_ ) _lowerCAmelCase =VaeImageProcessor(do_resize=lowerCamelCase_ , do_normalize=lowerCamelCase_ ) _lowerCAmelCase =pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _lowerCAmelCase =pipe(**self.get_dummy_inputs_by_type(lowerCamelCase_ , input_image_type="""pt""" ) )[0] _lowerCAmelCase =components["""vae"""] _lowerCAmelCase =self.get_dummy_inputs_by_type(lowerCamelCase_ , input_image_type="""pt""" ) for image_param in self.image_latents_params: if image_param in inputs.keys(): _lowerCAmelCase =vae.encode(inputs[image_param] ).latent_dist.mode() _lowerCAmelCase =pipe(**lowerCamelCase_ )[0] _lowerCAmelCase =np.abs(out - out_latents_inputs ).max() self.assertLess(lowerCamelCase_ , 1e-4 , """passing latents as image input generate different result from passing image""" ) @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase__ ( self : Optional[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase_ : Optional[int]=0 ): _lowerCAmelCase =torch.manual_seed(lowerCamelCase_ ) _lowerCAmelCase =load_image( """https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg""" ) _lowerCAmelCase ={ """prompt""": """turn him into a cyborg""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """image_guidance_scale""": 1.0, """output_type""": """numpy""", } return inputs def lowerCAmelCase__ ( self : int ): _lowerCAmelCase =StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=lowerCamelCase_ ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) pipe.enable_attention_slicing() _lowerCAmelCase =self.get_inputs() _lowerCAmelCase =pipe(**lowerCamelCase_ ).images _lowerCAmelCase =image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) _lowerCAmelCase =np.array([0.5902, 0.6015, 0.6027, 0.5983, 0.6092, 0.6061, 0.5765, 0.5785, 0.5555] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def lowerCAmelCase__ ( self : int ): _lowerCAmelCase =StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=lowerCamelCase_ ) _lowerCAmelCase =LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) pipe.enable_attention_slicing() _lowerCAmelCase =self.get_inputs() _lowerCAmelCase =pipe(**lowerCamelCase_ ).images _lowerCAmelCase =image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) _lowerCAmelCase =np.array([0.6578, 0.6817, 0.6972, 0.6761, 0.6856, 0.6916, 0.6428, 0.6516, 0.6301] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def lowerCAmelCase__ ( self : List[str] ): _lowerCAmelCase =StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=lowerCamelCase_ ) _lowerCAmelCase =DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) pipe.enable_attention_slicing() _lowerCAmelCase =self.get_inputs() _lowerCAmelCase =pipe(**lowerCamelCase_ ).images _lowerCAmelCase =image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) _lowerCAmelCase =np.array([0.3828, 0.3834, 0.3818, 0.3792, 0.3865, 0.3752, 0.3792, 0.3847, 0.3753] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def lowerCAmelCase__ ( self : Tuple ): _lowerCAmelCase =0 def callback_fn(lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : torch.FloatTensor ) -> None: _lowerCAmelCase =True nonlocal number_of_steps number_of_steps += 1 if step == 1: _lowerCAmelCase =latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) _lowerCAmelCase =latents[0, -3:, -3:, -1] _lowerCAmelCase =np.array([-0.2463, -0.4644, -0.9756, 1.5176, 1.4414, 0.7866, 0.9897, 0.8521, 0.7983] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: _lowerCAmelCase =latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) _lowerCAmelCase =latents[0, -3:, -3:, -1] _lowerCAmelCase =np.array([-0.2644, -0.4626, -0.9653, 1.5176, 1.4551, 0.7686, 0.9805, 0.8452, 0.8115] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 _lowerCAmelCase =False _lowerCAmelCase =StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=lowerCamelCase_ , torch_dtype=torch.floataa ) _lowerCAmelCase =pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) pipe.enable_attention_slicing() _lowerCAmelCase =self.get_inputs() pipe(**lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def lowerCAmelCase__ ( self : str ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _lowerCAmelCase =StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=lowerCamelCase_ , torch_dtype=torch.floataa ) _lowerCAmelCase =pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _lowerCAmelCase =self.get_inputs() _lowerCAmelCase =pipe(**lowerCamelCase_ ) _lowerCAmelCase =torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def lowerCAmelCase__ ( self : Optional[int] ): _lowerCAmelCase =self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 _lowerCAmelCase =inputs["""image"""].resize((504, 504) ) _lowerCAmelCase ="""timbrooks/instruct-pix2pix""" _lowerCAmelCase =StableDiffusionInstructPixaPixPipeline.from_pretrained( lowerCamelCase_ , safety_checker=lowerCamelCase_ , ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) pipe.enable_attention_slicing() _lowerCAmelCase =pipe(**lowerCamelCase_ ) _lowerCAmelCase =output.images[0] _lowerCAmelCase =image[255:258, 383:386, -1] assert image.shape == (504, 504, 3) _lowerCAmelCase =np.array([0.2726, 0.2529, 0.2664, 0.2655, 0.2641, 0.2642, 0.2591, 0.2649, 0.2590] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
149
0
import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class __snake_case ( unittest.TestCase ): '''simple docstring''' def __init__( self , A_ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = parent def lowercase_ ( self ): '''simple docstring''' return {} def __snake_case ( ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = '''<HTML> <HEAD> <TITLE>sample document</TITLE> </HEAD> <BODY BGCOLOR="FFFFFF"> <HR> <a href="http://google.com">Goog</a> <H1>This is one header</H1> <H2>This is a another Header</H2> <P>Travel from <P> <B>SFO to JFK</B> <BR> <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B> <HR> <div style="color:#0000FF"> <h3>Traveler <b> name </b> is <p> John Doe </p> </div>''' SCREAMING_SNAKE_CASE__ = ''' <!DOCTYPE html> <html> <body> <h1>My First Heading</h1> <p>My first paragraph.</p> </body> </html> ''' return [html_string_a, html_string_a] @require_bsa class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = MarkupLMFeatureExtractor if is_bsa_available() else None def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = MarkupLMFeatureExtractionTester(self ) @property def lowercase_ ( self ): '''simple docstring''' return self.feature_extract_tester.prepare_feat_extract_dict() def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = self.feature_extraction_class() # Test not batched input SCREAMING_SNAKE_CASE__ = get_html_strings()[0] SCREAMING_SNAKE_CASE__ = feature_extractor(A_ ) # fmt: off SCREAMING_SNAKE_CASE__ = [['''sample document''', '''Goog''', '''This is one header''', '''This is a another Header''', '''Travel from''', '''SFO to JFK''', '''on May 2, 2015 at 2:00 pm. For details go to confirm.com''', '''Traveler''', '''name''', '''is''', '''John Doe''']] SCREAMING_SNAKE_CASE__ = [['''/html/head/title''', '''/html/body/a''', '''/html/body/h1''', '''/html/body/h2''', '''/html/body/p''', '''/html/body/p/p/b[1]''', '''/html/body/p/p/b[2]/i''', '''/html/body/p/p/div/h3''', '''/html/body/p/p/div/h3/b''', '''/html/body/p/p/div/h3''', '''/html/body/p/p/div/h3/p''']] # fmt: on self.assertEqual(encoding.nodes , A_ ) self.assertEqual(encoding.xpaths , A_ ) # Test batched SCREAMING_SNAKE_CASE__ = get_html_strings() SCREAMING_SNAKE_CASE__ = feature_extractor(A_ ) # fmt: off SCREAMING_SNAKE_CASE__ = expected_nodes + [['''My First Heading''', '''My first paragraph.''']] SCREAMING_SNAKE_CASE__ = expected_xpaths + [['''/html/body/h1''', '''/html/body/p''']] self.assertEqual(len(encoding.nodes ) , 2 ) self.assertEqual(len(encoding.xpaths ) , 2 ) self.assertEqual(encoding.nodes , A_ ) self.assertEqual(encoding.xpaths , A_ )
100
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _A : List[str] = logging.get_logger(__name__) def __snake_case ( lowerCAmelCase_ ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = SwinConfig.from_pretrained( '''microsoft/swin-tiny-patch4-window7-224''' , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) SCREAMING_SNAKE_CASE__ = MaskFormerConfig(backbone_config=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ = '''huggingface/label-files''' if "ade20k-full" in model_name: # this should be ok SCREAMING_SNAKE_CASE__ = 8_4_7 SCREAMING_SNAKE_CASE__ = '''maskformer-ade20k-full-id2label.json''' elif "ade" in model_name: # this should be ok SCREAMING_SNAKE_CASE__ = 1_5_0 SCREAMING_SNAKE_CASE__ = '''ade20k-id2label.json''' elif "coco-stuff" in model_name: # this should be ok SCREAMING_SNAKE_CASE__ = 1_7_1 SCREAMING_SNAKE_CASE__ = '''maskformer-coco-stuff-id2label.json''' elif "coco" in model_name: # TODO SCREAMING_SNAKE_CASE__ = 1_3_3 SCREAMING_SNAKE_CASE__ = '''coco-panoptic-id2label.json''' elif "cityscapes" in model_name: # this should be ok SCREAMING_SNAKE_CASE__ = 1_9 SCREAMING_SNAKE_CASE__ = '''cityscapes-id2label.json''' elif "vistas" in model_name: # this should be ok SCREAMING_SNAKE_CASE__ = 6_5 SCREAMING_SNAKE_CASE__ = '''mapillary-vistas-id2label.json''' SCREAMING_SNAKE_CASE__ = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type='''dataset''' ) , '''r''' ) ) SCREAMING_SNAKE_CASE__ = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} return config def __snake_case ( lowerCAmelCase_ ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = [] # stem # fmt: off rename_keys.append(('''backbone.patch_embed.proj.weight''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.patch_embed.proj.bias''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.patch_embed.norm.weight''', '''model.pixel_level_module.encoder.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.patch_embed.norm.bias''', '''model.pixel_level_module.encoder.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm1.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm1.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.relative_position_index''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.proj.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.proj.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm2.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm2.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc1.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc1.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc2.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc2.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((f'''backbone.layers.{i}.downsample.reduction.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((f'''backbone.layers.{i}.downsample.norm.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((f'''backbone.layers.{i}.downsample.norm.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append((f'''backbone.norm{i}.weight''', f'''model.pixel_level_module.encoder.hidden_states_norms.{i}.weight''') ) rename_keys.append((f'''backbone.norm{i}.bias''', f'''model.pixel_level_module.encoder.hidden_states_norms.{i}.bias''') ) # FPN rename_keys.append(('''sem_seg_head.layer_4.weight''', '''model.pixel_level_module.decoder.fpn.stem.0.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.weight''', '''model.pixel_level_module.decoder.fpn.stem.1.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.bias''', '''model.pixel_level_module.decoder.fpn.stem.1.bias''') ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((f'''sem_seg_head.adapter_{source_index}.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight''') ) rename_keys.append((f'''sem_seg_head.adapter_{source_index}.norm.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight''') ) rename_keys.append((f'''sem_seg_head.adapter_{source_index}.norm.bias''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias''') ) rename_keys.append((f'''sem_seg_head.layer_{source_index}.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight''') ) rename_keys.append((f'''sem_seg_head.layer_{source_index}.norm.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight''') ) rename_keys.append((f'''sem_seg_head.layer_{source_index}.norm.bias''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias''') ) rename_keys.append(('''sem_seg_head.mask_features.weight''', '''model.pixel_level_module.decoder.mask_projection.weight''') ) rename_keys.append(('''sem_seg_head.mask_features.bias''', '''model.pixel_level_module.decoder.mask_projection.bias''') ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight''', f'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias''', f'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias''') ) # cross-attention out projection rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias''') ) # MLP 1 rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight''', f'''model.transformer_module.decoder.layers.{idx}.fc1.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias''', f'''model.transformer_module.decoder.layers.{idx}.fc1.bias''') ) # MLP 2 rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight''', f'''model.transformer_module.decoder.layers.{idx}.fc2.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias''', f'''model.transformer_module.decoder.layers.{idx}.fc2.bias''') ) # layernorm 1 (self-attention layernorm) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight''', f'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias''', f'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias''') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias''') ) # layernorm 3 (final layernorm) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight''', f'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias''', f'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias''') ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.weight''', '''model.transformer_module.decoder.layernorm.weight''') ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.bias''', '''model.transformer_module.decoder.layernorm.bias''') ) # heads on top rename_keys.append(('''sem_seg_head.predictor.query_embed.weight''', '''model.transformer_module.queries_embedder.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.weight''', '''model.transformer_module.input_projection.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.bias''', '''model.transformer_module.input_projection.bias''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.weight''', '''class_predictor.weight''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.bias''', '''class_predictor.bias''') ) for i in range(3 ): rename_keys.append((f'''sem_seg_head.predictor.mask_embed.layers.{i}.weight''', f'''mask_embedder.{i}.0.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.mask_embed.layers.{i}.bias''', f'''mask_embedder.{i}.0.bias''') ) # fmt: on return rename_keys def __snake_case ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> str: SCREAMING_SNAKE_CASE__ = dct.pop(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ = val def __snake_case ( lowerCAmelCase_ , lowerCAmelCase_ ) -> Any: SCREAMING_SNAKE_CASE__ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): SCREAMING_SNAKE_CASE__ = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''backbone.layers.{i}.blocks.{j}.attn.qkv.weight''' ) SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''backbone.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE__ = in_proj_weight[:dim, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[: dim] SCREAMING_SNAKE_CASE__ = in_proj_weight[ dim : dim * 2, : ] SCREAMING_SNAKE_CASE__ = in_proj_bias[ dim : dim * 2 ] SCREAMING_SNAKE_CASE__ = in_proj_weight[ -dim :, : ] SCREAMING_SNAKE_CASE__ = in_proj_bias[-dim :] # fmt: on def __snake_case ( lowerCAmelCase_ , lowerCAmelCase_ ) -> Tuple: # fmt: off SCREAMING_SNAKE_CASE__ = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight''' ) SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE__ = in_proj_weight[: hidden_size, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[:config.hidden_size] SCREAMING_SNAKE_CASE__ = in_proj_weight[hidden_size : hidden_size * 2, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[hidden_size : hidden_size * 2] SCREAMING_SNAKE_CASE__ = in_proj_weight[-hidden_size :, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight''' ) SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE__ = in_proj_weight[: hidden_size, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[:config.hidden_size] SCREAMING_SNAKE_CASE__ = in_proj_weight[hidden_size : hidden_size * 2, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[hidden_size : hidden_size * 2] SCREAMING_SNAKE_CASE__ = in_proj_weight[-hidden_size :, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[-hidden_size :] # fmt: on def __snake_case ( ) -> torch.Tensor: SCREAMING_SNAKE_CASE__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' SCREAMING_SNAKE_CASE__ = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def __snake_case ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = False ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = get_maskformer_config(lowerCAmelCase_ ) # load original state_dict with open(lowerCAmelCase_ , '''rb''' ) as f: SCREAMING_SNAKE_CASE__ = pickle.load(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ = data['''model'''] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys SCREAMING_SNAKE_CASE__ = create_rename_keys(lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) read_in_swin_q_k_v(lowerCAmelCase_ , config.backbone_config ) read_in_decoder_q_k_v(lowerCAmelCase_ , lowerCAmelCase_ ) # update to torch tensors for key, value in state_dict.items(): SCREAMING_SNAKE_CASE__ = torch.from_numpy(lowerCAmelCase_ ) # load 🤗 model SCREAMING_SNAKE_CASE__ = MaskFormerForInstanceSegmentation(lowerCAmelCase_ ) model.eval() for name, param in model.named_parameters(): print(lowerCAmelCase_ , param.shape ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = model.load_state_dict(lowerCAmelCase_ , strict=lowerCAmelCase_ ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(lowerCAmelCase_ ) == 0, f'''Unexpected keys: {unexpected_keys}''' # verify results SCREAMING_SNAKE_CASE__ = prepare_img() if "vistas" in model_name: SCREAMING_SNAKE_CASE__ = 6_5 elif "cityscapes" in model_name: SCREAMING_SNAKE_CASE__ = 6_5_5_3_5 else: SCREAMING_SNAKE_CASE__ = 2_5_5 SCREAMING_SNAKE_CASE__ = True if '''ade''' in model_name else False SCREAMING_SNAKE_CASE__ = MaskFormerImageProcessor(ignore_index=lowerCAmelCase_ , reduce_labels=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ = image_processor(lowerCAmelCase_ , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE__ = model(**lowerCAmelCase_ ) print('''Logits:''' , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": SCREAMING_SNAKE_CASE__ = torch.tensor( [[3.63_53, -4.47_70, -2.60_65], [0.50_81, -4.23_94, -3.53_43], [2.19_09, -5.03_53, -1.93_23]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f'''Saving model and image processor to {pytorch_dump_folder_path}''' ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) image_processor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: print('''Pushing model and image processor to the hub...''' ) model.push_to_hub(f'''nielsr/{model_name}''' ) image_processor.push_to_hub(f'''nielsr/{model_name}''' ) if __name__ == "__main__": _A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""maskformer-swin-tiny-ade""", type=str, help=("""Name of the MaskFormer model you'd like to convert""",), ) parser.add_argument( """--checkpoint_path""", default="""/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl""", type=str, help="""Path to the original state dict (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _A : str = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
100
1
def _A ( __snake_case :int ) -> str: """simple docstring""" if num <= 0: raise ValueError("Input must be a positive integer" ) __SCREAMING_SNAKE_CASE = [True] * (num + 1) __SCREAMING_SNAKE_CASE = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , snake_case__ ): __SCREAMING_SNAKE_CASE = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() _snake_case : str = int(input('Enter a positive integer: ').strip()) print(prime_sieve_eratosthenes(user_num))
700
import argparse _snake_case : Union[str, Any] = 'docs/source/_static/js/custom.js' def _A ( __snake_case :List[Any] ) -> Any: """simple docstring""" with open(__snake_case , encoding="utf-8" , newline="\n" ) as f: __SCREAMING_SNAKE_CASE = f.readlines() __SCREAMING_SNAKE_CASE = 0 # First let's put the right version while not lines[index].startswith("const stableVersion =" ): index += 1 __SCREAMING_SNAKE_CASE = f'''const stableVersion = "v{version}"\n''' # Then update the dictionary while not lines[index].startswith("const versionMapping = {" ): index += 1 # We go until the end while not lines[index].startswith("}" ): index += 1 # We add the new version at the end lines[index - 1] += f''' "v{version}": "v{version}",\n''' with open(__snake_case , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(__snake_case ) if __name__ == "__main__": _snake_case : List[str] = argparse.ArgumentParser() parser.add_argument('--version', help='Release version.') _snake_case : Tuple = parser.parse_args() update_custom_js(args.version)
214
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore SCREAMING_SNAKE_CASE = '\nHuman: <<task>>\n\nAssistant: ' SCREAMING_SNAKE_CASE = 'huggingface-tools/default-prompts' SCREAMING_SNAKE_CASE = {'chat': 'chat_prompt_template.txt', 'run': 'run_prompt_template.txt'} def a (lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__="run" ): if prompt_or_repo_id is None: __a = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search("""\\s""" , lowerCAmelCase__ ) is not None: return prompt_or_repo_id __a = cached_file( lowerCAmelCase__ , PROMPT_FILES[mode] , repo_type="""dataset""" , user_agent={"""agent""": agent_name} ) with open(lowerCAmelCase__ , """r""" , encoding="""utf-8""" ) as f: return f.read()
99
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A = {'configuration_mmbt': ['MMBTConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ['MMBTForClassification', 'MMBTModel', 'ModalEmbeddings'] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys __A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
484
0
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def lowerCamelCase_ ( _lowercase , _lowercase ) -> np.array: __A : List[str] = F"{sampling_rate}" __A : List[Any] = "1" __A : Optional[int] = "f32le" __A : Union[str, Any] = [ "ffmpeg", "-i", "pipe:0", "-ac", ac, "-ar", ar, "-f", format_for_conversion, "-hide_banner", "-loglevel", "quiet", "pipe:1", ] try: with subprocess.Popen(_lowercase , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: __A : Optional[Any] = ffmpeg_process.communicate(_lowercase ) except FileNotFoundError as error: raise ValueError("ffmpeg was not found but is required to load audio files from filename" ) from error __A : Dict = output_stream[0] __A : List[Any] = np.frombuffer(_lowercase , np.floataa ) if audio.shape[0] == 0: raise ValueError("Malformed soundfile" ) return audio def lowerCamelCase_ ( _lowercase , _lowercase , _lowercase = "f32le" , ) -> str: __A : int = F"{sampling_rate}" __A : List[str] = "1" if format_for_conversion == "s16le": __A : List[Any] = 2 elif format_for_conversion == "f32le": __A : str = 4 else: raise ValueError(F"Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`" ) __A : Optional[Any] = platform.system() if system == "Linux": __A : Optional[Any] = "alsa" __A : Optional[Any] = "default" elif system == "Darwin": __A : Union[str, Any] = "avfoundation" __A : Optional[Any] = ":0" elif system == "Windows": __A : Dict = "dshow" __A : Union[str, Any] = "default" __A : Any = [ "ffmpeg", "-f", format_, "-i", input_, "-ac", ac, "-ar", ar, "-f", format_for_conversion, "-fflags", "nobuffer", "-hide_banner", "-loglevel", "quiet", "pipe:1", ] __A : Dict = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample __A : Dict = _ffmpeg_stream(_lowercase , _lowercase ) for item in iterator: yield item def lowerCamelCase_ ( _lowercase , _lowercase , _lowercase = None , _lowercase = None , _lowercase = "f32le" , ) -> str: if stream_chunk_s is not None: __A : Union[str, Any] = stream_chunk_s else: __A : Any = chunk_length_s __A : List[Any] = ffmpeg_microphone(_lowercase , _lowercase , format_for_conversion=_lowercase ) if format_for_conversion == "s16le": __A : Optional[Any] = np.intaa __A : str = 2 elif format_for_conversion == "f32le": __A : int = np.floataa __A : Optional[Any] = 4 else: raise ValueError(F"Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`" ) if stride_length_s is None: __A : Optional[Any] = chunk_length_s / 6 __A : List[str] = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(_lowercase , (int, float) ): __A : Any = [stride_length_s, stride_length_s] __A : Dict = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample __A : Optional[int] = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample __A : str = datetime.datetime.now() __A : Any = datetime.timedelta(seconds=_lowercase ) for item in chunk_bytes_iter(_lowercase , _lowercase , stride=(stride_left, stride_right) , stream=_lowercase ): # Put everything back in numpy scale __A : List[Any] = np.frombuffer(item["raw"] , dtype=_lowercase ) __A : Any = ( item["stride"][0] // size_of_sample, item["stride"][1] // size_of_sample, ) __A : Tuple = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def lowerCamelCase_ ( _lowercase , _lowercase , _lowercase , _lowercase = False ) -> Optional[Any]: __A : Optional[int] = B"" __A : Optional[Any] = stride if stride_left + stride_right >= chunk_len: raise ValueError( F"Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}" ) __A : int = 0 for raw in iterator: acc += raw if stream and len(_lowercase ) < chunk_len: __A : Dict = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(_lowercase ) >= chunk_len: # We are flushing the accumulator __A : List[str] = (_stride_left, stride_right) __A : int = {"raw": acc[:chunk_len], "stride": stride} if stream: __A : str = False yield item __A : Tuple = stride_left __A : Optional[int] = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(_lowercase ) > stride_left: __A : List[Any] = {"raw": acc, "stride": (_stride_left, 0)} if stream: __A : Tuple = False yield item def lowerCamelCase_ ( _lowercase , _lowercase ) -> str: __A : Tuple = 2**24 # 16Mo try: with subprocess.Popen(_lowercase , stdout=subprocess.PIPE , bufsize=_lowercase ) as ffmpeg_process: while True: __A : Union[str, Any] = ffmpeg_process.stdout.read(_lowercase ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError("ffmpeg was not found but is required to stream audio files from filename" ) from error
718
def lowerCamelCase_ ( _lowercase = 2_000_000 ) -> int: __A : str = [0 for i in range(n + 1 )] __A : int = 1 __A : Dict = 1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , _lowercase ): __A : str = 1 __A : Union[str, Any] = 0 for i in range(_lowercase ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(F'''{solution() = }''')
387
0
import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness __UpperCamelCase : int = """\ @misc{chen2021evaluating, title={Evaluating Large Language Models Trained on Code}, author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \ and Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \ and Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \ and Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \ and Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \ and Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \ and Mohammad Bavarian and Clemens Winter and Philippe Tillet \ and Felipe Petroski Such and Dave Cummings and Matthias Plappert \ and Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \ and William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \ and Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \ and William Saunders and Christopher Hesse and Andrew N. Carr \ and Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \ and Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \ and Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \ and Sam McCandlish and Ilya Sutskever and Wojciech Zaremba}, year={2021}, eprint={2107.03374}, archivePrefix={arXiv}, primaryClass={cs.LG} } """ __UpperCamelCase : List[Any] = """\ This metric implements the evaluation harness for the HumanEval problem solving dataset described in the paper \"Evaluating Large Language Models Trained on Code\" (https://arxiv.org/abs/2107.03374). """ __UpperCamelCase : int = """ Calculates how good are predictions given some references, using certain scores Args: predictions: list of candidates to evaluate. Each candidates should be a list of strings with several code candidates to solve the problem. references: a list with a test for each prediction. Each test should evaluate the correctness of a code candidate. k: number of code candidates to consider in the evaluation (Default: [1, 10, 100]) num_workers: number of workers used to evaluate the canidate programs (Default: 4). timeout: Returns: pass_at_k: dict with pass rates for each k results: dict with granular results of each unittest Examples: >>> code_eval = datasets.load_metric(\"code_eval\") >>> test_cases = [\"assert add(2,3)==5\"] >>> candidates = [[\"def add(a,b): return a*b\", \"def add(a, b): return a+b\"]] >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2]) >>> print(pass_at_k) {'pass@1': 0.5, 'pass@2': 1.0} """ __UpperCamelCase : Union[str, Any] = """ ################################################################################ !!!WARNING!!! ################################################################################ The \"code_eval\" metric executes untrusted model-generated code in Python. Although it is highly unlikely that model-generated code will do something overtly malicious in response to this test suite, model-generated code may act destructively due to a lack of model capability or alignment. Users are strongly encouraged to sandbox this evaluation suite so that it does not perform destructive actions on their host or network. For more information on how OpenAI sandboxes its code, see the paper \"Evaluating Large Language Models Trained on Code\" (https://arxiv.org/abs/2107.03374). Once you have read this disclaimer and taken appropriate precautions, set the environment variable HF_ALLOW_CODE_EVAL=\"1\". Within Python you can to this with: >>> import os >>> os.environ[\"HF_ALLOW_CODE_EVAL\"] = \"1\" ################################################################################\ """ __UpperCamelCase : Any = """The MIT License Copyright (c) OpenAI (https://openai.com) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the \"Software\"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.""" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCamelCase ( datasets.Metric ): def _a ( self : List[str] ) -> Optional[int]: """simple docstring""" return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" ) ), """references""": datasets.Value("""string""" ), } ) , homepage="""https://github.com/openai/human-eval""" , codebase_urls=["""https://github.com/openai/human-eval"""] , reference_urls=["""https://github.com/openai/human-eval"""] , license=_LICENSE , ) def _a ( self : Optional[int] , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[str]=[1, 10, 100] , _lowerCAmelCase : List[Any]=4 , _lowerCAmelCase : Optional[int]=3.0 ) -> List[Any]: """simple docstring""" if os.getenv("""HF_ALLOW_CODE_EVAL""" , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError("""This metric is currently not supported on Windows.""" ) with ThreadPoolExecutor(max_workers=_lowerCAmelCase ) as executor: __lowercase = [] __lowercase = Counter() __lowercase = 0 __lowercase = defaultdict(_lowerCAmelCase ) for task_id, (candidates, test_case) in enumerate(zip(_lowerCAmelCase , _lowerCAmelCase ) ): for candidate in candidates: __lowercase = candidate + """\n""" + test_case __lowercase = (test_program, timeout, task_id, completion_id[task_id]) __lowercase = executor.submit(_lowerCAmelCase , *_lowerCAmelCase ) futures.append(_lowerCAmelCase ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(_lowerCAmelCase ): __lowercase = future.result() results[result["task_id"]].append((result["""completion_id"""], result) ) __lowercase , __lowercase = [], [] for result in results.values(): result.sort() __lowercase = [r[1]["""passed"""] for r in result] total.append(len(_lowerCAmelCase ) ) correct.append(sum(_lowerCAmelCase ) ) __lowercase = np.array(_lowerCAmelCase ) __lowercase = np.array(_lowerCAmelCase ) __lowercase = k __lowercase = {F'pass@{k}': estimate_pass_at_k(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' def estimator(lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) ) if isinstance(lowerCamelCase , lowerCamelCase ): __lowercase = itertools.repeat(lowerCamelCase , len(lowerCamelCase ) ) else: assert len(lowerCamelCase ) == len(lowerCamelCase ) __lowercase = iter(lowerCamelCase ) return np.array([estimator(int(lowerCamelCase ) , int(lowerCamelCase ) , lowerCamelCase ) for n, c in zip(lowerCamelCase , lowerCamelCase )] )
80
'''simple docstring''' def _UpperCamelCase (_lowerCamelCase : int )-> int: '''simple docstring''' __snake_case = abs(_lowerCamelCase ) __snake_case = 0 while n > 0: res += n % 10 n //= 10 return res def _UpperCamelCase (_lowerCamelCase : int )-> int: '''simple docstring''' __snake_case = abs(_lowerCamelCase ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def _UpperCamelCase (_lowerCamelCase : int )-> int: '''simple docstring''' return sum(int(_lowerCamelCase ) for c in str(abs(_lowerCamelCase ) ) ) def _UpperCamelCase ()-> None: '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(_lowerCamelCase : Callable , _lowerCamelCase : int ) -> None: __snake_case = f'''{func.__name__}({value})''' __snake_case = timeit(f'''__main__.{call}''' , setup='''import __main__''' ) print(f'''{call:56} = {func(_lowerCamelCase )} -- {timing:.4f} seconds''' ) for value in (26_21_44, 11_25_89_99_06_84_26_24, 1_26_76_50_60_02_28_22_94_01_49_67_03_20_53_76): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(_lowerCamelCase , _lowerCamelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
24
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) _lowercase: int = {'''configuration_vit''': ['''VIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTConfig''', '''ViTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase: str = ['''ViTFeatureExtractor'''] _lowercase: List[Any] = ['''ViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase: Tuple = [ '''VIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTForImageClassification''', '''ViTForMaskedImageModeling''', '''ViTModel''', '''ViTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase: List[Any] = [ '''TFViTForImageClassification''', '''TFViTModel''', '''TFViTPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase: List[Any] = [ '''FlaxViTForImageClassification''', '''FlaxViTModel''', '''FlaxViTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys _lowercase: Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
225
import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def _lowerCamelCase ( snake_case ): _lowerCAmelCase = torch.exp(snake_case ) _lowerCAmelCase = torch.sum(snake_case , dim=1 ) # sum of exp(x_i) _lowerCAmelCase = torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i) return torch.log(snake_case ) - B / A class lowerCamelCase__ ( nn.Module ): def __init__( self : str , lowercase__ : List[str] ): super().__init__() _lowerCAmelCase = config.output_attentions _lowerCAmelCase = config.output_hidden_states _lowerCAmelCase = nn.ModuleList([BertLayer(lowercase__ ) for _ in range(config.num_hidden_layers )] ) _lowerCAmelCase = nn.ModuleList([BertHighway(lowercase__ ) for _ in range(config.num_hidden_layers )] ) _lowerCAmelCase = [-1 for _ in range(config.num_hidden_layers )] def SCREAMING_SNAKE_CASE__ ( self : int , lowercase__ : Any ): if (type(lowercase__ ) is float) or (type(lowercase__ ) is int): for i in range(len(self.early_exit_entropy ) ): _lowerCAmelCase = x else: _lowerCAmelCase = x def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , lowercase__ : str ): _lowerCAmelCase = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , lowercase__ : Any , lowercase__ : Optional[Any]=None , lowercase__ : List[str]=None , lowercase__ : str=None , lowercase__ : Optional[Any]=None , ): _lowerCAmelCase = () _lowerCAmelCase = () _lowerCAmelCase = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: _lowerCAmelCase = all_hidden_states + (hidden_states,) _lowerCAmelCase = layer_module( lowercase__ , lowercase__ , head_mask[i] , lowercase__ , lowercase__ ) _lowerCAmelCase = layer_outputs[0] if self.output_attentions: _lowerCAmelCase = all_attentions + (layer_outputs[1],) _lowerCAmelCase = (hidden_states,) if self.output_hidden_states: _lowerCAmelCase = current_outputs + (all_hidden_states,) if self.output_attentions: _lowerCAmelCase = current_outputs + (all_attentions,) _lowerCAmelCase = self.highway[i](lowercase__ ) # logits, pooled_output if not self.training: _lowerCAmelCase = highway_exit[0] _lowerCAmelCase = entropy(lowercase__ ) _lowerCAmelCase = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy _lowerCAmelCase = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: _lowerCAmelCase = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(lowercase__ , i + 1 ) else: _lowerCAmelCase = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: _lowerCAmelCase = all_hidden_states + (hidden_states,) _lowerCAmelCase = (hidden_states,) if self.output_hidden_states: _lowerCAmelCase = outputs + (all_hidden_states,) if self.output_attentions: _lowerCAmelCase = outputs + (all_attentions,) _lowerCAmelCase = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( "The Bert Model transformer with early exiting (DeeBERT). " ,UpperCAmelCase ,) class lowerCamelCase__ ( UpperCAmelCase ): def __init__( self : Optional[int] , lowercase__ : List[Any] ): super().__init__(lowercase__ ) _lowerCAmelCase = config _lowerCAmelCase = BertEmbeddings(lowercase__ ) _lowerCAmelCase = DeeBertEncoder(lowercase__ ) _lowerCAmelCase = BertPooler(lowercase__ ) self.init_weights() def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): self.encoder.init_highway_pooler(self.pooler ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): return self.embeddings.word_embeddings def SCREAMING_SNAKE_CASE__ ( self : int , lowercase__ : List[Any] ): _lowerCAmelCase = value def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , lowercase__ : List[str] ): for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(lowercase__ ) @add_start_docstrings_to_model_forward(lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : int , lowercase__ : int=None , lowercase__ : Union[str, Any]=None , lowercase__ : str=None , lowercase__ : Any=None , lowercase__ : int=None , lowercase__ : Optional[int]=None , lowercase__ : Any=None , lowercase__ : int=None , ): if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: _lowerCAmelCase = input_ids.size() elif inputs_embeds is not None: _lowerCAmelCase = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) _lowerCAmelCase = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: _lowerCAmelCase = torch.ones(lowercase__ , device=lowercase__ ) if encoder_attention_mask is None: _lowerCAmelCase = torch.ones(lowercase__ , device=lowercase__ ) if token_type_ids is None: _lowerCAmelCase = torch.zeros(lowercase__ , dtype=torch.long , device=lowercase__ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. _lowerCAmelCase = self.get_extended_attention_mask(lowercase__ , lowercase__ , lowercase__ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: _lowerCAmelCase = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: _lowerCAmelCase = encoder_attention_mask[:, None, None, :] _lowerCAmelCase = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility _lowerCAmelCase = (1.0 - encoder_extended_attention_mask) * -1_0_0_0_0.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] _lowerCAmelCase = self.get_head_mask(lowercase__ , self.config.num_hidden_layers ) _lowerCAmelCase = self.embeddings( input_ids=lowercase__ , position_ids=lowercase__ , token_type_ids=lowercase__ , inputs_embeds=lowercase__ ) _lowerCAmelCase = self.encoder( lowercase__ , attention_mask=lowercase__ , head_mask=lowercase__ , encoder_hidden_states=lowercase__ , encoder_attention_mask=lowercase__ , ) _lowerCAmelCase = encoder_outputs[0] _lowerCAmelCase = self.pooler(lowercase__ ) _lowerCAmelCase = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class lowerCamelCase__ ( UpperCAmelCase ): def __init__( self : List[Any] , lowercase__ : int , lowercase__ : Dict ): _lowerCAmelCase = message _lowerCAmelCase = exit_layer # start from 1! class lowerCamelCase__ ( nn.Module ): def __init__( self : int , lowercase__ : Optional[Any] ): super().__init__() _lowerCAmelCase = BertPooler(lowercase__ ) _lowerCAmelCase = nn.Dropout(config.hidden_dropout_prob ) _lowerCAmelCase = nn.Linear(config.hidden_size , config.num_labels ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , lowercase__ : Dict ): # Pooler _lowerCAmelCase = encoder_outputs[0] _lowerCAmelCase = self.pooler(lowercase__ ) # "return" pooler_output # BertModel _lowerCAmelCase = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification _lowerCAmelCase = bmodel_output[1] _lowerCAmelCase = self.dropout(lowercase__ ) _lowerCAmelCase = self.classifier(lowercase__ ) return logits, pooled_output @add_start_docstrings( "Bert Model (with early exiting - DeeBERT) with a classifier on top,\n also takes care of multi-layer training. " ,UpperCAmelCase ,) class lowerCamelCase__ ( UpperCAmelCase ): def __init__( self : Union[str, Any] , lowercase__ : Any ): super().__init__(lowercase__ ) _lowerCAmelCase = config.num_labels _lowerCAmelCase = config.num_hidden_layers _lowerCAmelCase = DeeBertModel(lowercase__ ) _lowerCAmelCase = nn.Dropout(config.hidden_dropout_prob ) _lowerCAmelCase = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : Dict , lowercase__ : Dict=None , lowercase__ : int=None , lowercase__ : Union[str, Any]=None , lowercase__ : Optional[Any]=None , lowercase__ : List[Any]=None , lowercase__ : Optional[Any]=None , lowercase__ : Tuple=None , lowercase__ : Optional[int]=-1 , lowercase__ : Optional[int]=False , ): _lowerCAmelCase = self.num_layers try: _lowerCAmelCase = self.bert( lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , position_ids=lowercase__ , head_mask=lowercase__ , inputs_embeds=lowercase__ , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits _lowerCAmelCase = outputs[1] _lowerCAmelCase = self.dropout(lowercase__ ) _lowerCAmelCase = self.classifier(lowercase__ ) _lowerCAmelCase = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: _lowerCAmelCase = e.message _lowerCAmelCase = e.exit_layer _lowerCAmelCase = outputs[0] if not self.training: _lowerCAmelCase = entropy(lowercase__ ) _lowerCAmelCase = [] _lowerCAmelCase = [] if labels is not None: if self.num_labels == 1: # We are doing regression _lowerCAmelCase = MSELoss() _lowerCAmelCase = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: _lowerCAmelCase = CrossEntropyLoss() _lowerCAmelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits _lowerCAmelCase = [] for highway_exit in outputs[-1]: _lowerCAmelCase = highway_exit[0] if not self.training: highway_logits_all.append(lowercase__ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression _lowerCAmelCase = MSELoss() _lowerCAmelCase = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: _lowerCAmelCase = CrossEntropyLoss() _lowerCAmelCase = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(lowercase__ ) if train_highway: _lowerCAmelCase = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: _lowerCAmelCase = (loss,) + outputs if not self.training: _lowerCAmelCase = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: _lowerCAmelCase = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
225
1
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase :Tuple = logging.get_logger(__name__) _lowerCAmelCase :Union[str, Any] = { """facebook/wav2vec2-base-960h""": """https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json""", # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class UpperCAmelCase ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case__ : Dict = "wav2vec2" def __init__( self , lowercase__=32 , lowercase__=768 , lowercase__=12 , lowercase__=12 , lowercase__=3_072 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.0 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.0_2 , lowercase__=1E-5 , lowercase__="group" , lowercase__="gelu" , lowercase__=(512, 512, 512, 512, 512, 512, 512) , lowercase__=(5, 2, 2, 2, 2, 2, 2) , lowercase__=(10, 3, 3, 3, 3, 2, 2) , lowercase__=False , lowercase__=128 , lowercase__=16 , lowercase__=False , lowercase__=True , lowercase__=0.0_5 , lowercase__=10 , lowercase__=2 , lowercase__=0.0 , lowercase__=10 , lowercase__=0 , lowercase__=320 , lowercase__=2 , lowercase__=0.1 , lowercase__=100 , lowercase__=256 , lowercase__=256 , lowercase__=0.1 , lowercase__="sum" , lowercase__=False , lowercase__=False , lowercase__=256 , lowercase__=(512, 512, 512, 512, 1_500) , lowercase__=(5, 3, 3, 1, 1) , lowercase__=(1, 2, 3, 1, 1) , lowercase__=512 , lowercase__=0 , lowercase__=1 , lowercase__=2 , lowercase__=False , lowercase__=3 , lowercase__=2 , lowercase__=3 , lowercase__=None , lowercase__=None , **lowercase__ , ) -> str: super().__init__(**lowercase__ , pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ ) SCREAMING_SNAKE_CASE : Dict = hidden_size SCREAMING_SNAKE_CASE : Optional[Any] = feat_extract_norm SCREAMING_SNAKE_CASE : Optional[int] = feat_extract_activation SCREAMING_SNAKE_CASE : Dict = list(lowercase__ ) SCREAMING_SNAKE_CASE : Tuple = list(lowercase__ ) SCREAMING_SNAKE_CASE : List[Any] = list(lowercase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = conv_bias SCREAMING_SNAKE_CASE : Optional[Any] = num_conv_pos_embeddings SCREAMING_SNAKE_CASE : List[Any] = num_conv_pos_embedding_groups SCREAMING_SNAKE_CASE : int = len(self.conv_dim ) SCREAMING_SNAKE_CASE : Optional[Any] = num_hidden_layers SCREAMING_SNAKE_CASE : List[str] = intermediate_size SCREAMING_SNAKE_CASE : Tuple = hidden_act SCREAMING_SNAKE_CASE : Dict = num_attention_heads SCREAMING_SNAKE_CASE : List[Any] = hidden_dropout SCREAMING_SNAKE_CASE : Any = attention_dropout SCREAMING_SNAKE_CASE : int = activation_dropout SCREAMING_SNAKE_CASE : Optional[Any] = feat_proj_dropout SCREAMING_SNAKE_CASE : Any = final_dropout SCREAMING_SNAKE_CASE : Tuple = layerdrop SCREAMING_SNAKE_CASE : Any = layer_norm_eps SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range SCREAMING_SNAKE_CASE : List[Any] = vocab_size SCREAMING_SNAKE_CASE : List[str] = do_stable_layer_norm SCREAMING_SNAKE_CASE : List[Any] = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 SCREAMING_SNAKE_CASE : Optional[Any] = apply_spec_augment SCREAMING_SNAKE_CASE : Any = mask_time_prob SCREAMING_SNAKE_CASE : str = mask_time_length SCREAMING_SNAKE_CASE : Optional[int] = mask_time_min_masks SCREAMING_SNAKE_CASE : Tuple = mask_feature_prob SCREAMING_SNAKE_CASE : Optional[Any] = mask_feature_length SCREAMING_SNAKE_CASE : Dict = mask_feature_min_masks # parameters for pretraining with codevector quantized representations SCREAMING_SNAKE_CASE : str = num_codevectors_per_group SCREAMING_SNAKE_CASE : Union[str, Any] = num_codevector_groups SCREAMING_SNAKE_CASE : int = contrastive_logits_temperature SCREAMING_SNAKE_CASE : List[Any] = feat_quantizer_dropout SCREAMING_SNAKE_CASE : Dict = num_negatives SCREAMING_SNAKE_CASE : Dict = codevector_dim SCREAMING_SNAKE_CASE : List[Any] = proj_codevector_dim SCREAMING_SNAKE_CASE : Optional[Any] = diversity_loss_weight # ctc loss SCREAMING_SNAKE_CASE : str = ctc_loss_reduction SCREAMING_SNAKE_CASE : str = ctc_zero_infinity # adapter SCREAMING_SNAKE_CASE : str = add_adapter SCREAMING_SNAKE_CASE : Optional[Any] = adapter_kernel_size SCREAMING_SNAKE_CASE : List[str] = adapter_stride SCREAMING_SNAKE_CASE : Optional[Any] = num_adapter_layers SCREAMING_SNAKE_CASE : List[str] = output_hidden_size or hidden_size SCREAMING_SNAKE_CASE : int = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. SCREAMING_SNAKE_CASE : Optional[int] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. SCREAMING_SNAKE_CASE : Optional[int] = list(lowercase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = list(lowercase__ ) SCREAMING_SNAKE_CASE : str = list(lowercase__ ) SCREAMING_SNAKE_CASE : List[Any] = xvector_output_dim @property def _UpperCamelCase ( self ) -> Optional[Any]: return functools.reduce(operator.mul , self.conv_stride , 1 )
251
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging _lowerCAmelCase :str = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCAmelCase ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ) -> Union[str, Any]: super().__init__() self.register_modules( vae=lowercase__ , text_encoder=lowercase__ , tokenizer=lowercase__ , unet=lowercase__ , scheduler=lowercase__ , safety_checker=lowercase__ , feature_extractor=lowercase__ , ) def _UpperCamelCase ( self , lowercase__ = "auto" ) -> Optional[Any]: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory SCREAMING_SNAKE_CASE : List[Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowercase__ ) def _UpperCamelCase ( self ) -> str: self.enable_attention_slicing(lowercase__ ) @torch.no_grad() def __call__( self , lowercase__ , lowercase__ = 512 , lowercase__ = 512 , lowercase__ = 50 , lowercase__ = 7.5 , lowercase__ = None , lowercase__ = 1 , lowercase__ = 0.0 , lowercase__ = None , lowercase__ = None , lowercase__ = "pil" , lowercase__ = True , lowercase__ = None , lowercase__ = 1 , lowercase__ = None , **lowercase__ , ) -> Union[str, Any]: if isinstance(lowercase__ , lowercase__ ): SCREAMING_SNAKE_CASE : Dict = 1 elif isinstance(lowercase__ , lowercase__ ): SCREAMING_SNAKE_CASE : int = len(lowercase__ ) else: raise ValueError(F"""`prompt` has to be of type `str` or `list` but is {type(lowercase__ )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowercase__ , lowercase__ ) or callback_steps <= 0) ): raise ValueError( F"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" F""" {type(lowercase__ )}.""" ) # get prompt text embeddings SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer( lowercase__ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) SCREAMING_SNAKE_CASE : Optional[int] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: SCREAMING_SNAKE_CASE : Dict = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' F""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) SCREAMING_SNAKE_CASE : Union[str, Any] = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: SCREAMING_SNAKE_CASE : Optional[int] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = text_embeddings.shape SCREAMING_SNAKE_CASE : List[Any] = text_embeddings.repeat(1 , lowercase__ , 1 ) SCREAMING_SNAKE_CASE : str = text_embeddings.view(bs_embed * num_images_per_prompt , lowercase__ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. SCREAMING_SNAKE_CASE : int = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: SCREAMING_SNAKE_CASE : List[str] if negative_prompt is None: SCREAMING_SNAKE_CASE : str = [''] elif type(lowercase__ ) is not type(lowercase__ ): raise TypeError( F"""`negative_prompt` should be the same type to `prompt`, but got {type(lowercase__ )} !=""" F""" {type(lowercase__ )}.""" ) elif isinstance(lowercase__ , lowercase__ ): SCREAMING_SNAKE_CASE : int = [negative_prompt] elif batch_size != len(lowercase__ ): raise ValueError( F"""`negative_prompt`: {negative_prompt} has batch size {len(lowercase__ )}, but `prompt`:""" F""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" ' the batch size of `prompt`.' ) else: SCREAMING_SNAKE_CASE : int = negative_prompt SCREAMING_SNAKE_CASE : int = text_input_ids.shape[-1] SCREAMING_SNAKE_CASE : str = self.tokenizer( lowercase__ , padding='max_length' , max_length=lowercase__ , truncation=lowercase__ , return_tensors='pt' , ) SCREAMING_SNAKE_CASE : Dict = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method SCREAMING_SNAKE_CASE : Optional[Any] = uncond_embeddings.shape[1] SCREAMING_SNAKE_CASE : Optional[Any] = uncond_embeddings.repeat(lowercase__ , lowercase__ , 1 ) SCREAMING_SNAKE_CASE : Union[str, Any] = uncond_embeddings.view(batch_size * num_images_per_prompt , lowercase__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes SCREAMING_SNAKE_CASE : List[Any] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. SCREAMING_SNAKE_CASE : Tuple = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) SCREAMING_SNAKE_CASE : Dict = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) SCREAMING_SNAKE_CASE : Optional[Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps SCREAMING_SNAKE_CASE : Optional[Any] = torch.randn( lowercase__ , generator=lowercase__ , device='cpu' , dtype=lowercase__ ).to(self.device ) SCREAMING_SNAKE_CASE : Dict = torch.randn(lowercase__ , generator=lowercase__ , device='cpu' , dtype=lowercase__ ).to( self.device ) else: SCREAMING_SNAKE_CASE : Optional[int] = torch.randn( lowercase__ , generator=lowercase__ , device=self.device , dtype=lowercase__ ) SCREAMING_SNAKE_CASE : int = torch.randn(lowercase__ , generator=lowercase__ , device=self.device , dtype=lowercase__ ) else: if latents_reference.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) SCREAMING_SNAKE_CASE : Optional[Any] = latents_reference.to(self.device ) SCREAMING_SNAKE_CASE : Union[str, Any] = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images SCREAMING_SNAKE_CASE : List[Any] = (latents_shape[3] - latents_shape_reference[3]) // 2 SCREAMING_SNAKE_CASE : int = (latents_shape[2] - latents_shape_reference[2]) // 2 SCREAMING_SNAKE_CASE : Tuple = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx SCREAMING_SNAKE_CASE : Any = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy SCREAMING_SNAKE_CASE : Optional[Any] = 0 if dx < 0 else dx SCREAMING_SNAKE_CASE : Union[str, Any] = 0 if dy < 0 else dy SCREAMING_SNAKE_CASE : List[str] = max(-dx , 0 ) SCREAMING_SNAKE_CASE : Optional[int] = max(-dy , 0 ) # import pdb # pdb.set_trace() SCREAMING_SNAKE_CASE : Optional[int] = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(lowercase__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand SCREAMING_SNAKE_CASE : Optional[Any] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler SCREAMING_SNAKE_CASE : Union[str, Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] SCREAMING_SNAKE_CASE : int = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) SCREAMING_SNAKE_CASE : str = {} if accepts_eta: SCREAMING_SNAKE_CASE : Dict = eta for i, t in enumerate(self.progress_bar(lowercase__ ) ): # expand the latents if we are doing classifier free guidance SCREAMING_SNAKE_CASE : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents SCREAMING_SNAKE_CASE : Union[str, Any] = self.scheduler.scale_model_input(lowercase__ , lowercase__ ) # predict the noise residual SCREAMING_SNAKE_CASE : int = self.unet(lowercase__ , lowercase__ , encoder_hidden_states=lowercase__ ).sample # perform guidance if do_classifier_free_guidance: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = noise_pred.chunk(2 ) SCREAMING_SNAKE_CASE : Union[str, Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 SCREAMING_SNAKE_CASE : Union[str, Any] = self.scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowercase__ , lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE : List[Any] = 1 / 0.1_8_2_1_5 * latents SCREAMING_SNAKE_CASE : Tuple = self.vae.decode(lowercase__ ).sample SCREAMING_SNAKE_CASE : int = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 SCREAMING_SNAKE_CASE : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: SCREAMING_SNAKE_CASE : List[str] = self.feature_extractor(self.numpy_to_pil(lowercase__ ) , return_tensors='pt' ).to( self.device ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = self.safety_checker( images=lowercase__ , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: SCREAMING_SNAKE_CASE : str = None if output_type == "pil": SCREAMING_SNAKE_CASE : Optional[int] = self.numpy_to_pil(lowercase__ ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=lowercase__ , nsfw_content_detected=lowercase__ )
251
1
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def __snake_case ( _UpperCAmelCase ): """simple docstring""" lowercase = int(number**0.5 ) return number == sq * sq def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" lowercase = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den lowercase = x_den * y_den * z_den lowercase = gcd(_UpperCAmelCase , _UpperCAmelCase ) top //= hcf bottom //= hcf return top, bottom def __snake_case ( _UpperCAmelCase = 35 ): """simple docstring""" lowercase = set() lowercase = 42 lowercase = Fraction(0 ) lowercase = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 lowercase = x_num * y_den + x_den * y_num lowercase = x_den * y_den lowercase = gcd(_UpperCAmelCase , _UpperCAmelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowercase = add_three( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) unique_s.add(_UpperCAmelCase ) # n=2 lowercase = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) lowercase = x_den * x_den * y_den * y_den if is_sq(_UpperCAmelCase ) and is_sq(_UpperCAmelCase ): lowercase = int(sqrt(_UpperCAmelCase ) ) lowercase = int(sqrt(_UpperCAmelCase ) ) lowercase = gcd(_UpperCAmelCase , _UpperCAmelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowercase = add_three( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) unique_s.add(_UpperCAmelCase ) # n=-1 lowercase = x_num * y_num lowercase = x_den * y_num + x_num * y_den lowercase = gcd(_UpperCAmelCase , _UpperCAmelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowercase = add_three( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) unique_s.add(_UpperCAmelCase ) # n=2 lowercase = x_num * x_num * y_num * y_num lowercase = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(_UpperCAmelCase ) and is_sq(_UpperCAmelCase ): lowercase = int(sqrt(_UpperCAmelCase ) ) lowercase = int(sqrt(_UpperCAmelCase ) ) lowercase = gcd(_UpperCAmelCase , _UpperCAmelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowercase = add_three( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) unique_s.add(_UpperCAmelCase ) for num, den in unique_s: total += Fraction(_UpperCAmelCase , _UpperCAmelCase ) return total.denominator + total.numerator if __name__ == "__main__": print(F"""{solution() = }""")
702
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm __magic_name__ = re.compile('''[^A-Za-z_0-9]''') # parameters used in DuplicationIndex __magic_name__ = 10 __magic_name__ = 256 def __snake_case ( _UpperCAmelCase ): """simple docstring""" if len(_UpperCAmelCase ) < MIN_NUM_TOKENS: return None lowercase = MinHash(num_perm=_UpperCAmelCase ) for token in set(_UpperCAmelCase ): min_hash.update(token.encode() ) return min_hash def __snake_case ( _UpperCAmelCase ): """simple docstring""" return {t for t in NON_ALPHA.split(_UpperCAmelCase ) if len(t.strip() ) > 0} class a__ : """simple docstring""" def __init__( self :Dict , *, lowercase__ :float = 0.85 , ): lowercase = duplication_jaccard_threshold lowercase = NUM_PERM lowercase = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) lowercase = defaultdict(lowercase__ ) def __UpperCAmelCase ( self :Dict , lowercase__ :Tuple , lowercase__ :MinHash ): lowercase = self._index.query(lowercase__ ) if code_key in self._index.keys: print(F"""Duplicate key {code_key}""" ) return self._index.insert(lowercase__ , lowercase__ ) if len(lowercase__ ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(lowercase__ ) break else: self._duplicate_clusters[close_duplicates[0]].add(lowercase__ ) def __UpperCAmelCase ( self :Dict ): lowercase = [] for base, duplicates in self._duplicate_clusters.items(): lowercase = [base] + list(lowercase__ ) # reformat the cluster to be a list of dict lowercase = [{'base_index': el[0], 'repo_name': el[1], 'path': el[2]} for el in cluster] duplicate_clusters.append(lowercase__ ) return duplicate_clusters def __UpperCAmelCase ( self :Dict , lowercase__ :List[Any] ): lowercase = self.get_duplicate_clusters() with open(lowercase__ , 'w' ) as f: json.dump(lowercase__ , lowercase__ ) def __snake_case ( _UpperCAmelCase ): """simple docstring""" lowercase , lowercase = element lowercase = get_min_hash([t for t in NON_ALPHA.split(data['content'] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def __snake_case ( _UpperCAmelCase ): """simple docstring""" with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(_UpperCAmelCase , max_queue_size=1_00_00 ) , chunksize=1_00 , ): if data is not None: yield data def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" lowercase = DuplicationIndex(duplication_jaccard_threshold=_UpperCAmelCase ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(_UpperCAmelCase ) ) , max_queue_size=1_00 ) ): di.add(_UpperCAmelCase , _UpperCAmelCase ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" lowercase = get_tokens(_UpperCAmelCase ) lowercase = get_tokens(_UpperCAmelCase ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) __magic_name__ = None def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" lowercase = [] for elementa in cluster: lowercase = _shared_dataset[elementa['base_index']]['content'] for elementa in extremes: lowercase = _shared_dataset[elementa['base_index']]['content'] if jaccard_similarity(_UpperCAmelCase , _UpperCAmelCase ) >= jaccard_threshold: elementa["copies"] += 1 break else: lowercase = 1 extremes.append(_UpperCAmelCase ) return extremes def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" global _shared_dataset lowercase = dataset lowercase = [] lowercase = partial(_find_cluster_extremes_shared , jaccard_threshold=_UpperCAmelCase ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( _UpperCAmelCase , _UpperCAmelCase , ) , total=len(_UpperCAmelCase ) , ): extremes_list.append(_UpperCAmelCase ) return extremes_list def __snake_case ( _UpperCAmelCase , _UpperCAmelCase = 0.85 ): """simple docstring""" lowercase = make_duplicate_clusters(_UpperCAmelCase , _UpperCAmelCase ) lowercase = {x['base_index'] for cluster in duplicate_clusters for x in cluster} lowercase = {} lowercase = find_extremes(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) for extremes in extremes_clusters: for element in extremes: lowercase = element lowercase = duplicate_indices - set(extreme_dict.keys() ) lowercase = dataset.filter(lambda _UpperCAmelCase , _UpperCAmelCase : idx not in remove_indices , with_indices=_UpperCAmelCase ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: lowercase = element['base_index'] in extreme_dict if element["is_extreme"]: lowercase = extreme_dict[element['base_index']]['copies'] print(f"""Original dataset size: {len(_UpperCAmelCase )}""" ) print(f"""Number of duplicate clusters: {len(_UpperCAmelCase )}""" ) print(f"""Files in duplicate cluster: {len(_UpperCAmelCase )}""" ) print(f"""Unique files in duplicate cluster: {len(_UpperCAmelCase )}""" ) print(f"""Filtered dataset size: {len(_UpperCAmelCase )}""" ) return ds_filter, duplicate_clusters
314
0
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
0
'''simple docstring''' from typing import Any class _UpperCAmelCase : """simple docstring""" def __init__( self : List[Any] , __UpperCAmelCase : Any ): '''simple docstring''' _A = data _A = None class _UpperCAmelCase : """simple docstring""" def __init__( self : Union[str, Any] ): '''simple docstring''' _A = None def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' _A = self.head while temp is not None: print(temp.data , end=" " ) _A = temp.next print() def lowerCAmelCase ( self : Dict , __UpperCAmelCase : Any ): '''simple docstring''' _A = Node(__UpperCAmelCase ) _A = self.head _A = new_node def lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : int , __UpperCAmelCase : Any ): '''simple docstring''' if node_data_a == node_data_a: return else: _A = self.head while node_a is not None and node_a.data != node_data_a: _A = node_a.next _A = self.head while node_a is not None and node_a.data != node_data_a: _A = node_a.next if node_a is None or node_a is None: return _A , _A = node_a.data, node_a.data if __name__ == "__main__": lowerCamelCase_ = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print('''After swapping''') ll.print_list()
330
0
"""simple docstring""" from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar lowercase__ = TypeVar('T') def __a ( _SCREAMING_SNAKE_CASE ) ->int: return (position - 1) // 2 def __a ( _SCREAMING_SNAKE_CASE ) ->int: return (2 * position) + 1 def __a ( _SCREAMING_SNAKE_CASE ) ->int: return (2 * position) + 2 class __snake_case ( Generic[T] ): def __init__( self) -> None: '''simple docstring''' a__: list[tuple[T, int]] = [] a__: dict[T, int] = {} a__: int = 0 def __len__( self) -> int: '''simple docstring''' return self.elements def __repr__( self) -> str: '''simple docstring''' return str(self.heap) def lowerCamelCase_ ( self) -> bool: '''simple docstring''' return self.elements == 0 def lowerCamelCase_ ( self , lowercase , lowercase) -> None: '''simple docstring''' self.heap.append((elem, weight)) a__: Union[str, Any] = self.elements self.elements += 1 self._bubble_up(lowercase) def lowerCamelCase_ ( self) -> T: '''simple docstring''' if self.elements > 1: self._swap_nodes(0 , self.elements - 1) a__ , a__: Any = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: a__ , a__: Any = self.heap[0] self._bubble_down(lowercase) return elem def lowerCamelCase_ ( self , lowercase , lowercase) -> None: '''simple docstring''' a__: List[Any] = self.position_map[elem] a__: Optional[int] = (elem, weight) if position > 0: a__: Tuple = get_parent_position(lowercase) a__ , a__: Any = self.heap[parent_position] if parent_weight > weight: self._bubble_up(lowercase) else: self._bubble_down(lowercase) else: self._bubble_down(lowercase) def lowerCamelCase_ ( self , lowercase) -> None: '''simple docstring''' a__: Any = self.position_map[elem] if curr_pos == 0: return None a__: List[Any] = get_parent_position(lowercase) a__ , a__: Optional[int] = self.heap[curr_pos] a__ , a__: int = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(lowercase , lowercase) return self._bubble_up(lowercase) return None def lowerCamelCase_ ( self , lowercase) -> None: '''simple docstring''' a__: Optional[Any] = self.position_map[elem] a__ , a__: int = self.heap[curr_pos] a__: int = get_child_left_position(lowercase) a__: Union[str, Any] = get_child_right_position(lowercase) if child_left_position < self.elements and child_right_position < self.elements: a__ , a__: Any = self.heap[child_left_position] a__ , a__: Any = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(lowercase , lowercase) return self._bubble_down(lowercase) if child_left_position < self.elements: a__ , a__: Tuple = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(lowercase , lowercase) return self._bubble_down(lowercase) else: return None if child_right_position < self.elements: a__ , a__: Any = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(lowercase , lowercase) return self._bubble_down(lowercase) return None def lowerCamelCase_ ( self , lowercase , lowercase) -> None: '''simple docstring''' a__: Tuple = self.heap[nodea_pos][0] a__: Any = self.heap[nodea_pos][0] a__ , a__: List[str] = ( self.heap[nodea_pos], self.heap[nodea_pos], ) a__: Optional[int] = nodea_pos a__: List[Any] = nodea_pos class __snake_case ( Generic[T] ): def __init__( self) -> None: '''simple docstring''' a__: dict[T, dict[T, int]] = {} a__: int = 0 def __repr__( self) -> str: '''simple docstring''' return str(self.connections) def __len__( self) -> int: '''simple docstring''' return self.nodes def lowerCamelCase_ ( self , lowercase) -> None: '''simple docstring''' if node not in self.connections: a__: List[str] = {} self.nodes += 1 def lowerCamelCase_ ( self , lowercase , lowercase , lowercase) -> None: '''simple docstring''' self.add_node(lowercase) self.add_node(lowercase) a__: List[Any] = weight a__: int = weight def __a ( _SCREAMING_SNAKE_CASE , ) ->tuple[dict[T, int], dict[T, T | None]]: a__: dict[T, int] = {node: maxsize for node in graph.connections} a__: dict[T, T | None] = {node: None for node in graph.connections} a__: MinPriorityQueue[T] = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if priority_queue.is_empty(): return dist, parent # initialization a__: List[Any] = priority_queue.extract_min() a__: Dict = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: a__: Dict = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(_SCREAMING_SNAKE_CASE , dist[neighbour] ) a__: List[Any] = node # running prim's algorithm while not priority_queue.is_empty(): a__: Optional[int] = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: a__: int = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(_SCREAMING_SNAKE_CASE , dist[neighbour] ) a__: Tuple = node return dist, parent
217
"""simple docstring""" import re def __a ( _SCREAMING_SNAKE_CASE ) ->list: return [char.split() for char in re.split(r'[^ a-z A-Z 0-9 \s]' , str_ )] def __a ( _SCREAMING_SNAKE_CASE ) ->str: a__: int = split_input(str_ ) return "".join( [''.join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->str: try: a__: List[str] = split_input(_SCREAMING_SNAKE_CASE ) if upper: a__: Optional[int] = ''.join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: a__: Optional[Any] = ''.join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def __a ( _SCREAMING_SNAKE_CASE ) ->str: return to_simple_case(_SCREAMING_SNAKE_CASE ) def __a ( _SCREAMING_SNAKE_CASE ) ->str: try: a__: Union[str, Any] = to_simple_case(_SCREAMING_SNAKE_CASE ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->str: return to_complex_case(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , '_' ) def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->str: return to_complex_case(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , '-' ) if __name__ == "__main__": __import__('doctest').testmod()
217
1
def a_ ( UpperCamelCase_ : Any ) -> Dict: """simple docstring""" stooge(UpperCamelCase_ , 0 , len(UpperCamelCase_ ) - 1 ) return arr def a_ ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : str , UpperCamelCase_ : Union[str, Any] ) -> Any: """simple docstring""" if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: lowerCamelCase , lowerCamelCase = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: lowerCamelCase = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(UpperCamelCase_ , UpperCamelCase_ , (h - t) ) # Recursively sort last 2/3 elements stooge(UpperCamelCase_ , i + t , (UpperCamelCase_) ) # Recursively sort first 2/3 elements stooge(UpperCamelCase_ , UpperCamelCase_ , (h - t) ) if __name__ == "__main__": _lowerCAmelCase : List[Any] = input('Enter numbers separated by a comma:\n').strip() _lowerCAmelCase : List[str] = [int(item) for item in user_input.split(',')] print(stooge_sort(unsorted))
246
from __future__ import annotations _lowerCAmelCase : Optional[Any] = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } class lowerCAmelCase : '''simple docstring''' def __init__( self : List[Any] , __snake_case : dict[str, list[str]] , __snake_case : str ) -> None: '''simple docstring''' lowerCamelCase = graph # mapping node to its parent in resulting breadth first tree lowerCamelCase = {} lowerCamelCase = source_vertex def lowerCamelCase__ ( self : List[Any] ) -> None: '''simple docstring''' lowerCamelCase = {self.source_vertex} lowerCamelCase = None lowerCamelCase = [self.source_vertex] # first in first out queue while queue: lowerCamelCase = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(__snake_case ) lowerCamelCase = vertex queue.append(__snake_case ) def lowerCamelCase__ ( self : List[Any] , __snake_case : str ) -> str: '''simple docstring''' if target_vertex == self.source_vertex: return self.source_vertex lowerCamelCase = self.parent.get(__snake_case ) if target_vertex_parent is None: lowerCamelCase = ( F'''No path from vertex: {self.source_vertex} to vertex: {target_vertex}''' ) raise ValueError(__snake_case ) return self.shortest_path(__snake_case ) + F'''->{target_vertex}''' if __name__ == "__main__": _lowerCAmelCase : Optional[int] = Graph(graph, 'G') g.breath_first_search() print(g.shortest_path('D')) print(g.shortest_path('G')) print(g.shortest_path('Foo'))
246
1
"""simple docstring""" from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class __lowerCAmelCase ( __lowerCamelCase ): """simple docstring""" snake_case = 42 class __lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : Any , _snake_case : Union[str, Any]=3 , _snake_case : Dict=3 , _snake_case : Union[str, Any]=("DownEncoderBlock2D",) , _snake_case : int=(64,) , _snake_case : int=2 , _snake_case : Any=32 , _snake_case : Any="silu" , _snake_case : Any=True , ) -> Any: """simple docstring""" super().__init__() A_ = layers_per_block A_ = torch.nn.Convad( UpperCAmelCase_ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) A_ = None A_ = nn.ModuleList([] ) # down A_ = block_out_channels[0] for i, down_block_type in enumerate(UpperCAmelCase_ ): A_ = output_channel A_ = block_out_channels[i] A_ = i == len(UpperCAmelCase_ ) - 1 A_ = get_down_block( UpperCAmelCase_ , num_layers=self.layers_per_block , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=UpperCAmelCase_ , resnet_groups=UpperCAmelCase_ , attention_head_dim=UpperCAmelCase_ , temb_channels=UpperCAmelCase_ , ) self.down_blocks.append(UpperCAmelCase_ ) # mid A_ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=UpperCAmelCase_ , output_scale_factor=1 , resnet_time_scale_shift="default" , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCAmelCase_ , temb_channels=UpperCAmelCase_ , ) # out A_ = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=UpperCAmelCase_ , eps=1e-6 ) A_ = nn.SiLU() A_ = 2 * out_channels if double_z else out_channels A_ = nn.Convad(block_out_channels[-1] , UpperCAmelCase_ , 3 , padding=1 ) A_ = False def lowerCamelCase__ ( self : Any , _snake_case : List[str] ) -> Union[str, Any]: """simple docstring""" A_ = x A_ = self.conv_in(UpperCAmelCase_ ) if self.training and self.gradient_checkpointing: def create_custom_forward(_snake_case : Tuple ): def custom_forward(*_snake_case : Optional[Any] ): return module(*UpperCAmelCase_ ) return custom_forward # down if is_torch_version(">=" , "1.11.0" ): for down_block in self.down_blocks: A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCAmelCase_ ) , UpperCAmelCase_ , use_reentrant=UpperCAmelCase_ ) # middle A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCAmelCase_ , use_reentrant=UpperCAmelCase_ ) else: for down_block in self.down_blocks: A_ = torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCAmelCase_ ) , UpperCAmelCase_ ) # middle A_ = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , UpperCAmelCase_ ) else: # down for down_block in self.down_blocks: A_ = down_block(UpperCAmelCase_ ) # middle A_ = self.mid_block(UpperCAmelCase_ ) # post-process A_ = self.conv_norm_out(UpperCAmelCase_ ) A_ = self.conv_act(UpperCAmelCase_ ) A_ = self.conv_out(UpperCAmelCase_ ) return sample class __lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : List[Any] , _snake_case : str=3 , _snake_case : Tuple=3 , _snake_case : Union[str, Any]=("UpDecoderBlock2D",) , _snake_case : str=(64,) , _snake_case : Union[str, Any]=2 , _snake_case : Union[str, Any]=32 , _snake_case : Optional[Any]="silu" , _snake_case : Any="group" , ) -> Union[str, Any]: """simple docstring""" super().__init__() A_ = layers_per_block A_ = nn.Convad( UpperCAmelCase_ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) A_ = None A_ = nn.ModuleList([] ) A_ = in_channels if norm_type == 'spatial' else None # mid A_ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=UpperCAmelCase_ , output_scale_factor=1 , resnet_time_scale_shift="default" if norm_type == "group" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCAmelCase_ , temb_channels=UpperCAmelCase_ , ) # up A_ = list(reversed(UpperCAmelCase_ ) ) A_ = reversed_block_out_channels[0] for i, up_block_type in enumerate(UpperCAmelCase_ ): A_ = output_channel A_ = reversed_block_out_channels[i] A_ = i == len(UpperCAmelCase_ ) - 1 A_ = get_up_block( UpperCAmelCase_ , num_layers=self.layers_per_block + 1 , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , prev_output_channel=UpperCAmelCase_ , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=UpperCAmelCase_ , resnet_groups=UpperCAmelCase_ , attention_head_dim=UpperCAmelCase_ , temb_channels=UpperCAmelCase_ , resnet_time_scale_shift=UpperCAmelCase_ , ) self.up_blocks.append(UpperCAmelCase_ ) A_ = output_channel # out if norm_type == "spatial": A_ = SpatialNorm(block_out_channels[0] , UpperCAmelCase_ ) else: A_ = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=UpperCAmelCase_ , eps=1e-6 ) A_ = nn.SiLU() A_ = nn.Convad(block_out_channels[0] , UpperCAmelCase_ , 3 , padding=1 ) A_ = False def lowerCamelCase__ ( self : Tuple , _snake_case : str , _snake_case : str=None ) -> int: """simple docstring""" A_ = z A_ = self.conv_in(UpperCAmelCase_ ) A_ = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(_snake_case : Optional[int] ): def custom_forward(*_snake_case : Tuple ): return module(*UpperCAmelCase_ ) return custom_forward if is_torch_version(">=" , "1.11.0" ): # middle A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCAmelCase_ , UpperCAmelCase_ , use_reentrant=UpperCAmelCase_ ) A_ = sample.to(UpperCAmelCase_ ) # up for up_block in self.up_blocks: A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCAmelCase_ ) , UpperCAmelCase_ , UpperCAmelCase_ , use_reentrant=UpperCAmelCase_ ) else: # middle A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCAmelCase_ , UpperCAmelCase_ ) A_ = sample.to(UpperCAmelCase_ ) # up for up_block in self.up_blocks: A_ = torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCAmelCase_ ) , UpperCAmelCase_ , UpperCAmelCase_ ) else: # middle A_ = self.mid_block(UpperCAmelCase_ , UpperCAmelCase_ ) A_ = sample.to(UpperCAmelCase_ ) # up for up_block in self.up_blocks: A_ = up_block(UpperCAmelCase_ , UpperCAmelCase_ ) # post-process if latent_embeds is None: A_ = self.conv_norm_out(UpperCAmelCase_ ) else: A_ = self.conv_norm_out(UpperCAmelCase_ , UpperCAmelCase_ ) A_ = self.conv_act(UpperCAmelCase_ ) A_ = self.conv_out(UpperCAmelCase_ ) return sample class __lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : List[str] , _snake_case : Tuple , _snake_case : Union[str, Any] , _snake_case : Union[str, Any] , _snake_case : Tuple=None , _snake_case : List[Any]="random" , _snake_case : Tuple=False , _snake_case : Optional[Any]=True ) -> Optional[int]: """simple docstring""" super().__init__() A_ = n_e A_ = vq_embed_dim A_ = beta A_ = legacy A_ = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) A_ = remap if self.remap is not None: self.register_buffer("used" , torch.tensor(np.load(self.remap ) ) ) A_ = self.used.shape[0] A_ = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": A_ = self.re_embed A_ = self.re_embed + 1 print( F'Remapping {self.n_e} indices to {self.re_embed} indices. ' F'Using {self.unknown_index} for unknown indices.' ) else: A_ = n_e A_ = sane_index_shape def lowerCamelCase__ ( self : int , _snake_case : Optional[int] ) -> Dict: """simple docstring""" A_ = inds.shape assert len(UpperCAmelCase_ ) > 1 A_ = inds.reshape(ishape[0] , -1 ) A_ = self.used.to(UpperCAmelCase_ ) A_ = (inds[:, :, None] == used[None, None, ...]).long() A_ = match.argmax(-1 ) A_ = match.sum(2 ) < 1 if self.unknown_index == "random": A_ = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: A_ = self.unknown_index return new.reshape(UpperCAmelCase_ ) def lowerCamelCase__ ( self : int , _snake_case : Dict ) -> Any: """simple docstring""" A_ = inds.shape assert len(UpperCAmelCase_ ) > 1 A_ = inds.reshape(ishape[0] , -1 ) A_ = self.used.to(UpperCAmelCase_ ) if self.re_embed > self.used.shape[0]: # extra token A_ = 0 # simply set to zero A_ = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , UpperCAmelCase_ ) return back.reshape(UpperCAmelCase_ ) def lowerCamelCase__ ( self : Dict , _snake_case : Optional[int] ) -> Tuple: """simple docstring""" # reshape z -> (batch, height, width, channel) and flatten A_ = z.permute(0 , 2 , 3 , 1 ).contiguous() A_ = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z A_ = torch.argmin(torch.cdist(UpperCAmelCase_ , self.embedding.weight ) , dim=1 ) A_ = self.embedding(UpperCAmelCase_ ).view(z.shape ) A_ = None A_ = None # compute loss for embedding if not self.legacy: A_ = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: A_ = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients A_ = z + (z_q - z).detach() # reshape back to match original input shape A_ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: A_ = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis A_ = self.remap_to_used(UpperCAmelCase_ ) A_ = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: A_ = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def lowerCamelCase__ ( self : int , _snake_case : List[Any] , _snake_case : Any ) -> Tuple: """simple docstring""" # shape specifying (batch, height, width, channel) if self.remap is not None: A_ = indices.reshape(shape[0] , -1 ) # add batch axis A_ = self.unmap_to_all(UpperCAmelCase_ ) A_ = indices.reshape(-1 ) # flatten again # get quantized latent vectors A_ = self.embedding(UpperCAmelCase_ ) if shape is not None: A_ = z_q.view(UpperCAmelCase_ ) # reshape back to match original input shape A_ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class __lowerCAmelCase ( __lowerCamelCase ): """simple docstring""" def __init__( self : List[str] , _snake_case : List[Any] , _snake_case : Tuple=False ) -> Optional[Any]: """simple docstring""" A_ = parameters A_ = torch.chunk(UpperCAmelCase_ , 2 , dim=1 ) A_ = torch.clamp(self.logvar , -3_0.0 , 2_0.0 ) A_ = deterministic A_ = torch.exp(0.5 * self.logvar ) A_ = torch.exp(self.logvar ) if self.deterministic: A_ = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def lowerCamelCase__ ( self : Union[str, Any] , _snake_case : Optional[torch.Generator] = None ) -> Any: """simple docstring""" # make sure sample is on the same device as the parameters and has same dtype A_ = randn_tensor( self.mean.shape , generator=UpperCAmelCase_ , device=self.parameters.device , dtype=self.parameters.dtype ) A_ = self.mean + self.std * sample return x def lowerCamelCase__ ( self : Tuple , _snake_case : Dict=None ) -> int: """simple docstring""" if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def lowerCamelCase__ ( self : Dict , _snake_case : Union[str, Any] , _snake_case : Optional[int]=[1, 2, 3] ) -> Optional[int]: """simple docstring""" if self.deterministic: return torch.Tensor([0.0] ) A_ = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=UpperCAmelCase_ ) def lowerCamelCase__ ( self : Optional[int] ) -> Tuple: """simple docstring""" return self.mean
706
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase_ : str = {'''configuration_timm_backbone''': ['''TimmBackboneConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ : Union[str, Any] = ['''TimmBackbone'''] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys UpperCamelCase_ : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
482
0
'''simple docstring''' from torch import nn def __snake_case ( lowercase : int ): if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f'''Unsupported activation function: {act_fn}''' )
508
'''simple docstring''' def __snake_case ( lowercase : int ): if n == 1 or not isinstance(lowercase , lowercase ): return 0 elif n == 2: return 1 else: snake_case_ = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def __snake_case ( lowercase : int ): snake_case_ = 0 snake_case_ = 2 while digits < n: index += 1 snake_case_ = len(str(fibonacci(lowercase ) ) ) return index def __snake_case ( lowercase : int = 1_000 ): return fibonacci_digits_index(lowercase ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
508
1
import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def _lowerCAmelCase ( _a : int , _a : Dict , _a : Optional[Any] , _a : str , _a : Any ) -> str: # load base model lowerCAmelCase_ : List[str] = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors lowerCAmelCase_ : Optional[int] = load_file(UpperCAmelCase__ ) lowerCAmelCase_ : str = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: lowerCAmelCase_ : List[str] = key.split(""".""" )[0].split(LORA_PREFIX_TEXT_ENCODER + """_""" )[-1].split("""_""" ) lowerCAmelCase_ : int = pipeline.text_encoder else: lowerCAmelCase_ : str = key.split(""".""" )[0].split(LORA_PREFIX_UNET + """_""" )[-1].split("""_""" ) lowerCAmelCase_ : Optional[int] = pipeline.unet # find the target layer lowerCAmelCase_ : List[str] = layer_infos.pop(0 ) while len(UpperCAmelCase__ ) > -1: try: lowerCAmelCase_ : Union[str, Any] = curr_layer.__getattr__(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) > 0: lowerCAmelCase_ : Tuple = layer_infos.pop(0 ) elif len(UpperCAmelCase__ ) == 0: break except Exception: if len(UpperCAmelCase__ ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: lowerCAmelCase_ : Dict = layer_infos.pop(0 ) lowerCAmelCase_ : int = [] if "lora_down" in key: pair_keys.append(key.replace("""lora_down""" , """lora_up""" ) ) pair_keys.append(UpperCAmelCase__ ) else: pair_keys.append(UpperCAmelCase__ ) pair_keys.append(key.replace("""lora_up""" , """lora_down""" ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: lowerCAmelCase_ : str = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) lowerCAmelCase_ : List[Any] = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(UpperCAmelCase__ , UpperCAmelCase__ ).unsqueeze(2 ).unsqueeze(3 ) else: lowerCAmelCase_ : Dict = state_dict[pair_keys[0]].to(torch.floataa ) lowerCAmelCase_ : int = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(UpperCAmelCase__ , UpperCAmelCase__ ) # update visited list for item in pair_keys: visited.append(UpperCAmelCase__ ) return pipeline if __name__ == "__main__": UpperCAmelCase_ : List[Any] = argparse.ArgumentParser() parser.add_argument( """--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format.""" ) parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors""" ) parser.add_argument( """--lora_prefix_text_encoder""", default="""lora_te""", type=str, help="""The prefix of text encoder weight in safetensors""", ) parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""") parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""" ) parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") UpperCAmelCase_ : List[str] = parser.parse_args() UpperCAmelCase_ : Tuple = args.base_model_path UpperCAmelCase_ : Dict = args.checkpoint_path UpperCAmelCase_ : Union[str, Any] = args.dump_path UpperCAmelCase_ : Dict = args.lora_prefix_unet UpperCAmelCase_ : Tuple = args.lora_prefix_text_encoder UpperCAmelCase_ : List[str] = args.alpha UpperCAmelCase_ : Dict = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) UpperCAmelCase_ : str = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
708
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase_ : Dict = { """configuration_poolformer""": [ """POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PoolFormerConfig""", """PoolFormerOnnxConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Union[str, Any] = ["""PoolFormerFeatureExtractor"""] UpperCAmelCase_ : str = ["""PoolFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[str] = [ """POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """PoolFormerForImageClassification""", """PoolFormerModel""", """PoolFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys UpperCAmelCase_ : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
440
0
"""simple docstring""" from __future__ import annotations class __lowercase : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): __a , __a : List[Any] = text, pattern __a , __a : Tuple = len(_UpperCAmelCase ), len(_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase ): for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def _lowerCamelCase ( self , _UpperCAmelCase ): for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def _lowerCamelCase ( self ): # searches pattern in text and returns index positions __a : Dict = [] for i in range(self.textLen - self.patLen + 1 ): __a : List[str] = self.mismatch_in_text(_UpperCAmelCase ) if mismatch_index == -1: positions.append(_UpperCAmelCase ) else: __a : Tuple = self.match_in_pattern(self.text[mismatch_index] ) __a : Optional[int] = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions A = '''ABAABA''' A = '''AB''' A = BoyerMooreSearch(text, pattern) A = bms.bad_character_heuristic() if len(positions) == 0: print('''No match found''') else: print('''Pattern found in following positions: ''') print(positions)
52
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class UpperCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self : Optional[Any] ): _UpperCAmelCase : Tuple = tempfile.mkdtemp() # fmt: off _UpperCAmelCase : List[str] = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on _UpperCAmelCase : Tuple = dict(zip(A , range(len(A ) ) ) ) _UpperCAmelCase : Any = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] _UpperCAmelCase : Optional[Any] = {"unk_token": "<unk>"} _UpperCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _UpperCAmelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(A ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(A ) ) _UpperCAmelCase : List[Any] = { "do_resize": True, "size": 2_0, "do_center_crop": True, "crop_size": 1_8, "do_normalize": True, "image_mean": [0.48_145_466, 0.4_578_275, 0.40_821_073], "image_std": [0.26_862_954, 0.26_130_258, 0.27_577_711], } _UpperCAmelCase : Tuple = os.path.join(self.tmpdirname , A ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(A , A ) def snake_case_ ( self : int , **A : Any ): return CLIPTokenizer.from_pretrained(self.tmpdirname , **A ) def snake_case_ ( self : List[str] , **A : Tuple ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **A ) def snake_case_ ( self : Any , **A : Optional[Any] ): return ViTImageProcessor.from_pretrained(self.tmpdirname , **A ) def snake_case_ ( self : Dict ): shutil.rmtree(self.tmpdirname ) def snake_case_ ( self : List[str] ): _UpperCAmelCase : int = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] _UpperCAmelCase : str = [Image.fromarray(np.moveaxis(A , 0 , -1 ) ) for x in image_inputs] return image_inputs def snake_case_ ( self : List[str] ): _UpperCAmelCase : str = self.get_tokenizer() _UpperCAmelCase : int = self.get_rust_tokenizer() _UpperCAmelCase : List[str] = self.get_image_processor() _UpperCAmelCase : Union[str, Any] = CLIPSegProcessor(tokenizer=A , image_processor=A ) processor_slow.save_pretrained(self.tmpdirname ) _UpperCAmelCase : Dict = CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=A ) _UpperCAmelCase : Any = CLIPSegProcessor(tokenizer=A , image_processor=A ) processor_fast.save_pretrained(self.tmpdirname ) _UpperCAmelCase : int = CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , A ) self.assertIsInstance(processor_fast.tokenizer , A ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , A ) self.assertIsInstance(processor_fast.image_processor , A ) def snake_case_ ( self : Optional[Any] ): _UpperCAmelCase : Union[str, Any] = CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _UpperCAmelCase : List[str] = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) _UpperCAmelCase : int = self.get_image_processor(do_normalize=A , padding_value=1.0 ) _UpperCAmelCase : Optional[Any] = CLIPSegProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=A , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , A ) def snake_case_ ( self : str ): _UpperCAmelCase : Any = self.get_image_processor() _UpperCAmelCase : Optional[int] = self.get_tokenizer() _UpperCAmelCase : Dict = CLIPSegProcessor(tokenizer=A , image_processor=A ) _UpperCAmelCase : Dict = self.prepare_image_inputs() _UpperCAmelCase : int = image_processor(A , return_tensors="np" ) _UpperCAmelCase : int = processor(images=A , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def snake_case_ ( self : Dict ): _UpperCAmelCase : List[Any] = self.get_image_processor() _UpperCAmelCase : Dict = self.get_tokenizer() _UpperCAmelCase : Optional[Any] = CLIPSegProcessor(tokenizer=A , image_processor=A ) _UpperCAmelCase : Tuple = "lower newer" _UpperCAmelCase : Any = processor(text=A ) _UpperCAmelCase : int = tokenizer(A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def snake_case_ ( self : Optional[Any] ): _UpperCAmelCase : List[str] = self.get_image_processor() _UpperCAmelCase : Union[str, Any] = self.get_tokenizer() _UpperCAmelCase : Tuple = CLIPSegProcessor(tokenizer=A , image_processor=A ) _UpperCAmelCase : List[Any] = "lower newer" _UpperCAmelCase : List[Any] = self.prepare_image_inputs() _UpperCAmelCase : str = processor(text=A , images=A ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(A ): processor() def snake_case_ ( self : Optional[Any] ): _UpperCAmelCase : Dict = self.get_image_processor() _UpperCAmelCase : Optional[int] = self.get_tokenizer() _UpperCAmelCase : str = CLIPSegProcessor(tokenizer=A , image_processor=A ) _UpperCAmelCase : List[Any] = self.prepare_image_inputs() _UpperCAmelCase : int = self.prepare_image_inputs() _UpperCAmelCase : Any = processor(images=A , visual_prompt=A ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "conditional_pixel_values"] ) # test if it raises when no input is passed with pytest.raises(A ): processor() def snake_case_ ( self : Optional[Any] ): _UpperCAmelCase : Dict = self.get_image_processor() _UpperCAmelCase : Optional[Any] = self.get_tokenizer() _UpperCAmelCase : Optional[Any] = CLIPSegProcessor(tokenizer=A , image_processor=A ) _UpperCAmelCase : str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _UpperCAmelCase : Union[str, Any] = processor.batch_decode(A ) _UpperCAmelCase : List[Any] = tokenizer.batch_decode(A ) self.assertListEqual(A , A )
289
0
"""simple docstring""" import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup SCREAMING_SNAKE_CASE__ : List[str] ={ 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36' ' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582' } def UpperCamelCase ( SCREAMING_SNAKE_CASE_ = "dhaka" , SCREAMING_SNAKE_CASE_ = 5 ) ->int: _lowerCamelCase : str = min(SCREAMING_SNAKE_CASE_ , 50 ) # Prevent abuse! _lowerCamelCase : Union[str, Any] = { '''q''': query, '''tbm''': '''isch''', '''hl''': '''en''', '''ijn''': '''0''', } _lowerCamelCase : Optional[Any] = requests.get('''https://www.google.com/search''' , params=SCREAMING_SNAKE_CASE_ , headers=SCREAMING_SNAKE_CASE_ ) _lowerCamelCase : int = BeautifulSoup(html.text , '''html.parser''' ) _lowerCamelCase : Any = ''''''.join( re.findall(R'''AF_initDataCallback\(([^<]+)\);''' , str(soup.select('''script''' ) ) ) ) _lowerCamelCase : List[Any] = json.dumps(SCREAMING_SNAKE_CASE_ ) _lowerCamelCase : Dict = json.loads(SCREAMING_SNAKE_CASE_ ) _lowerCamelCase : List[str] = re.findall( R'''\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",''' , SCREAMING_SNAKE_CASE_ , ) if not matched_google_image_data: return 0 _lowerCamelCase : Optional[int] = re.sub( R'''\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]''' , '''''' , str(SCREAMING_SNAKE_CASE_ ) , ) _lowerCamelCase : Union[str, Any] = re.findall( R'''(?:\'|,),\[\"(https:|http.*?)\",\d+,\d+\]''' , SCREAMING_SNAKE_CASE_ , ) for index, fixed_full_res_image in enumerate(SCREAMING_SNAKE_CASE_ ): if index >= max_images: return index _lowerCamelCase : int = bytes(SCREAMING_SNAKE_CASE_ , '''ascii''' ).decode( '''unicode-escape''' ) _lowerCamelCase : Optional[Any] = bytes(SCREAMING_SNAKE_CASE_ , '''ascii''' ).decode( '''unicode-escape''' ) _lowerCamelCase : Optional[Any] = urllib.request.build_opener() _lowerCamelCase : int = [ ( '''User-Agent''', '''Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36''' ''' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582''', ) ] urllib.request.install_opener(SCREAMING_SNAKE_CASE_ ) _lowerCamelCase : List[Any] = F'''query_{query.replace(" " , "_" )}''' if not os.path.exists(SCREAMING_SNAKE_CASE_ ): os.makedirs(SCREAMING_SNAKE_CASE_ ) urllib.request.urlretrieve( # noqa: S310 SCREAMING_SNAKE_CASE_ , F'''{path_name}/original_size_img_{index}.jpg''' ) return index if __name__ == "__main__": try: SCREAMING_SNAKE_CASE__ : Union[str, Any] =download_images_from_google_query(sys.argv[1]) print(F"""{image_count} images were downloaded to disk.""") except IndexError: print('Please provide a search term.') raise
558
"""simple docstring""" import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _UpperCAmelCase ( a_ , unittest.TestCase ): """simple docstring""" __snake_case = CLIPTokenizer __snake_case = CLIPTokenizerFast __snake_case = True __snake_case = {} __snake_case = False def a__ ( self ) -> Tuple: super().setUp() # fmt: off _lowerCamelCase : List[str] = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on _lowerCamelCase : Any = dict(zip(_lowercase , range(len(_lowercase ) ) ) ) _lowerCamelCase : Union[str, Any] = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>'''] _lowerCamelCase : List[Any] = {'''unk_token''': '''<unk>'''} _lowerCamelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _lowerCamelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_lowercase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_lowercase ) ) def a__ ( self , **_lowercase ) -> List[str]: kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **_lowercase ) def a__ ( self , **_lowercase ) -> Dict: kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **_lowercase ) def a__ ( self , _lowercase ) -> Any: _lowerCamelCase : Any = '''lower newer''' _lowerCamelCase : Any = '''lower newer''' return input_text, output_text def a__ ( self ) -> Tuple: _lowerCamelCase : Dict = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _lowerCamelCase : Union[str, Any] = '''lower newer''' _lowerCamelCase : Optional[int] = ['''lo''', '''w''', '''er</w>''', '''n''', '''e''', '''w''', '''er</w>'''] _lowerCamelCase : str = tokenizer.tokenize(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) _lowerCamelCase : Any = tokens + [tokenizer.unk_token] _lowerCamelCase : Union[str, Any] = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) , _lowercase ) @require_ftfy def a__ ( self ) -> Optional[Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _lowerCamelCase : List[Any] = self.tokenizer_class.from_pretrained(_lowercase , **_lowercase ) _lowerCamelCase : Tuple = self.rust_tokenizer_class.from_pretrained(_lowercase , **_lowercase ) _lowerCamelCase : Any = '''A\n\'ll 11p223RF☆ho!!to?\'d\'d\'\'d of a cat to-$\'\'d.''' _lowerCamelCase : Tuple = tokenizer_s.tokenize(_lowercase ) _lowerCamelCase : Union[str, Any] = tokenizer_r.tokenize(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways _lowerCamelCase : Any = '''xa\u0303y''' + ''' ''' + '''x\xe3y''' _lowerCamelCase : Tuple = tokenizer_s.tokenize(_lowercase ) _lowerCamelCase : Optional[Any] = tokenizer_r.tokenize(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) # Test that the tokenization is identical on unicode of space type _lowerCamelCase : Optional[int] = [ '''\u0009''', # (horizontal tab, '\t') '''\u000B''', # (vertical tab) '''\u000C''', # (form feed) '''\u0020''', # (space, ' ') '''\u200E''', # (left-to-right mark):w '''\u200F''', # (right-to-left mark) ] for unicode_seq in spaces_unicodes: _lowerCamelCase : Optional[int] = tokenizer_s.tokenize(_lowercase ) _lowerCamelCase : Any = tokenizer_r.tokenize(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) # Test that the tokenization is identical on unicode of line break type _lowerCamelCase : Union[str, Any] = [ '''\u000A''', # (line feed, '\n') '''\r\n''', # (carriage return and line feed, '\r\n') '''\u000D''', # (carriage return, '\r') '''\r''', # (carriage return, '\r') '''\u000D''', # (carriage return, '\r') '''\u2028''', # (line separator) '''\u2029''', # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: _lowerCamelCase : Dict = tokenizer_s.tokenize(_lowercase ) _lowerCamelCase : str = tokenizer_r.tokenize(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) def a__ ( self ) -> str: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _lowerCamelCase : int = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` _lowerCamelCase : List[Any] = F'''{text_of_1_token} {text_of_1_token}''' _lowerCamelCase : int = self.rust_tokenizer_class.from_pretrained( _lowercase , use_fast=_lowercase , ) _lowerCamelCase : List[str] = tokenizer_r(_lowercase , return_offsets_mapping=_lowercase , add_special_tokens=_lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_lowercase ) + 1, len(_lowercase ) + 1 + len(_lowercase )) , ) _lowerCamelCase : str = F''' {text}''' _lowerCamelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( _lowercase , use_fast=_lowercase , ) _lowerCamelCase : List[Any] = tokenizer_r(_lowercase , return_offsets_mapping=_lowercase , add_special_tokens=_lowercase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(_lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_lowercase ) + 1, 1 + len(_lowercase ) + 1 + len(_lowercase )) , ) def a__ ( self ) -> Optional[Any]: # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(_lowercase ) as context: self.rust_tokenizer_class.from_pretrained('''robot-test/old-clip-tokenizer''' ) self.assertTrue( context.exception.args[0].startswith( '''The `backend_tokenizer` provided does not match the expected format.''' ) ) @require_ftfy def a__ ( self ) -> Tuple: super().test_tokenization_python_rust_equals() def a__ ( self ) -> Tuple: # CLIP always lower cases letters pass
558
1
import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ : Union[str, Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Any = ["model.decoder.embed_positions.weights"] def __magic_name__ ( __lowerCAmelCase : Tuple ) -> Tuple: if "emb" in name: __lowerCamelCase = name.replace('''emb''' , '''model.decoder.embed_tokens''' ) if "transformer" in name: __lowerCamelCase = name.replace('''transformer''' , '''model.decoder''' ) if "cross_attention" in name: __lowerCamelCase = name.replace('''cross_attention''' , '''encoder_attn''' ) if "linear1" in name: __lowerCamelCase = name.replace('''linear1''' , '''fc1''' ) if "linear2" in name: __lowerCamelCase = name.replace('''linear2''' , '''fc2''' ) if "norm1" in name: __lowerCamelCase = name.replace('''norm1''' , '''self_attn_layer_norm''' ) if "norm_cross" in name: __lowerCamelCase = name.replace('''norm_cross''' , '''encoder_attn_layer_norm''' ) if "norm2" in name: __lowerCamelCase = name.replace('''norm2''' , '''final_layer_norm''' ) if "out_norm" in name: __lowerCamelCase = name.replace('''out_norm''' , '''model.decoder.layer_norm''' ) if "linears" in name: __lowerCamelCase = name.replace('''linears''' , '''lm_heads''' ) if "condition_provider.conditioners.description.output_proj" in name: __lowerCamelCase = name.replace('''condition_provider.conditioners.description.output_proj''' , '''enc_to_dec_proj''' ) return name def __magic_name__ ( __lowerCAmelCase : OrderedDict , __lowerCAmelCase : int ) -> Tuple[Dict, Dict]: __lowerCamelCase = list(state_dict.keys() ) __lowerCamelCase = {} for key in keys: __lowerCamelCase = state_dict.pop(__lowerCAmelCase ) __lowerCamelCase = rename_keys(__lowerCAmelCase ) if "in_proj_weight" in key: # split fused qkv proj __lowerCamelCase = val[:hidden_size, :] __lowerCamelCase = val[hidden_size : 2 * hidden_size, :] __lowerCamelCase = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: __lowerCamelCase = val else: __lowerCamelCase = val return state_dict, enc_dec_proj_state_dict def __magic_name__ ( __lowerCAmelCase : str ) -> MusicgenDecoderConfig: if checkpoint == "small": # default config values __lowerCamelCase = 1024 __lowerCamelCase = 24 __lowerCamelCase = 16 elif checkpoint == "medium": __lowerCamelCase = 1536 __lowerCamelCase = 48 __lowerCamelCase = 24 elif checkpoint == "large": __lowerCamelCase = 2048 __lowerCamelCase = 48 __lowerCamelCase = 32 else: raise ValueError(f'''Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.''' ) __lowerCamelCase = MusicgenDecoderConfig( hidden_size=__lowerCAmelCase , ffn_dim=hidden_size * 4 , num_hidden_layers=__lowerCAmelCase , num_attention_heads=__lowerCAmelCase , ) return config @torch.no_grad() def __magic_name__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any]=None , __lowerCAmelCase : str=None , __lowerCAmelCase : Dict="cpu" ) -> int: __lowerCamelCase = MusicGen.get_pretrained(__lowerCAmelCase , device=__lowerCAmelCase ) __lowerCamelCase = decoder_config_from_checkpoint(__lowerCAmelCase ) __lowerCamelCase = fairseq_model.lm.state_dict() __lowerCamelCase , __lowerCamelCase = rename_state_dict( __lowerCAmelCase , hidden_size=decoder_config.hidden_size ) __lowerCamelCase = TaEncoderModel.from_pretrained('''t5-base''' ) __lowerCamelCase = EncodecModel.from_pretrained('''facebook/encodec_32khz''' ) __lowerCamelCase = MusicgenForCausalLM(__lowerCAmelCase ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection __lowerCamelCase , __lowerCamelCase = decoder.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) for key in missing_keys.copy(): if key.startswith(('''text_encoder''', '''audio_encoder''') ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: raise ValueError(f'''Missing key(s) in state_dict: {missing_keys}''' ) if len(__lowerCAmelCase ) > 0: raise ValueError(f'''Unexpected key(s) in state_dict: {unexpected_keys}''' ) # init the composite model __lowerCamelCase = MusicgenForConditionalGeneration(text_encoder=__lowerCAmelCase , audio_encoder=__lowerCAmelCase , decoder=__lowerCAmelCase ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(__lowerCAmelCase ) # check we can do a forward pass __lowerCamelCase = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) __lowerCamelCase = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): __lowerCamelCase = model(input_ids=__lowerCAmelCase , decoder_input_ids=__lowerCAmelCase ).logits if logits.shape != (8, 1, 2048): raise ValueError('''Incorrect shape for logits''' ) # now construct the processor __lowerCamelCase = AutoTokenizer.from_pretrained('''t5-base''' ) __lowerCamelCase = AutoFeatureExtractor.from_pretrained('''facebook/encodec_32khz''' , padding_side='''left''' ) __lowerCamelCase = MusicgenProcessor(feature_extractor=__lowerCAmelCase , tokenizer=__lowerCAmelCase ) # set the appropriate bos/pad token ids __lowerCamelCase = 2048 __lowerCamelCase = 2048 # set other default generation config params __lowerCamelCase = int(30 * audio_encoder.config.frame_rate ) __lowerCamelCase = True __lowerCamelCase = 3.0 if pytorch_dump_folder is not None: Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) logger.info(f'''Saving model {checkpoint} to {pytorch_dump_folder}''' ) model.save_pretrained(__lowerCAmelCase ) processor.save_pretrained(__lowerCAmelCase ) if repo_id: logger.info(f'''Pushing model {checkpoint} to {repo_id}''' ) model.push_to_hub(__lowerCAmelCase ) processor.push_to_hub(__lowerCAmelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint", default="small", type=str, help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.", ) parser.add_argument( "--pytorch_dump_folder", required=True, default=None, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) parser.add_argument( "--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda." ) SCREAMING_SNAKE_CASE__ : Optional[Any] = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
298
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFXLMRobertaModel @require_tf @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( unittest.TestCase ): @slow def __A ( self : Tuple ) -> Optional[int]: __lowerCamelCase = TFXLMRobertaModel.from_pretrained('''jplu/tf-xlm-roberta-base''' ) __lowerCamelCase = { '''input_ids''': tf.convert_to_tensor([[0, 26_46, 1_02_69, 83, 9_99_42, 2]] , dtype=tf.intaa ), # "My dog is cute" '''attention_mask''': tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]] , dtype=tf.intaa ), } __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ )['''last_hidden_state'''] __lowerCamelCase = tf.TensorShape((1, 6, 7_68) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE__ ) # compare the actual values for a slice. __lowerCamelCase = tf.convert_to_tensor( [ [ [0.0681762, 0.10894451, 0.06772504], [-0.06423668, 0.02366615, 0.04329344], [-0.06057295, 0.09974135, -0.00070584], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
298
1
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer lowerCamelCase : List[str] = logging.get_logger(__name__) lowerCamelCase : Union[str, Any] = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} # See all MVP models at https://huggingface.co/models?filter=mvp lowerCamelCase : Union[str, Any] = { '''vocab_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json''', }, '''added_tokens.json''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json''', }, '''merges_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json''', }, } lowerCamelCase : Any = { '''RUCAIBox/mvp''': 1024, } class _UpperCamelCase (a_ ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ["""input_ids""", """attention_mask"""] snake_case_ = MvpTokenizer def __init__( self , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase="replace" , __UpperCamelCase="<s>" , __UpperCamelCase="</s>" , __UpperCamelCase="</s>" , __UpperCamelCase="<s>" , __UpperCamelCase="<unk>" , __UpperCamelCase="<pad>" , __UpperCamelCase="<mask>" , __UpperCamelCase=False , __UpperCamelCase=True , **__UpperCamelCase , )-> Any: super().__init__( __UpperCamelCase , __UpperCamelCase , tokenizer_file=__UpperCamelCase , errors=__UpperCamelCase , bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , sep_token=__UpperCamelCase , cls_token=__UpperCamelCase , unk_token=__UpperCamelCase , pad_token=__UpperCamelCase , mask_token=__UpperCamelCase , add_prefix_space=__UpperCamelCase , trim_offsets=__UpperCamelCase , **__UpperCamelCase , ) __lowerCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , __UpperCamelCase ) != add_prefix_space: __lowerCAmelCase = getattr(__UpperCamelCase , pre_tok_state.pop("type" ) ) __lowerCAmelCase = add_prefix_space __lowerCAmelCase = pre_tok_class(**__UpperCamelCase ) __lowerCAmelCase = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` __lowerCAmelCase = "post_processor" __lowerCAmelCase = getattr(self.backend_tokenizer , __UpperCamelCase , __UpperCamelCase ) if tokenizer_component_instance: __lowerCAmelCase = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __lowerCAmelCase = tuple(state["sep"] ) if "cls" in state: __lowerCAmelCase = tuple(state["cls"] ) __lowerCAmelCase = False if state.get("add_prefix_space" , __UpperCamelCase ) != add_prefix_space: __lowerCAmelCase = add_prefix_space __lowerCAmelCase = True if state.get("trim_offsets" , __UpperCamelCase ) != trim_offsets: __lowerCAmelCase = trim_offsets __lowerCAmelCase = True if changes_to_apply: __lowerCAmelCase = getattr(__UpperCamelCase , state.pop("type" ) ) __lowerCAmelCase = component_class(**__UpperCamelCase ) setattr(self.backend_tokenizer , __UpperCamelCase , __UpperCamelCase ) @property def __UpperCAmelCase ( self )-> str: if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def __UpperCAmelCase ( self , __UpperCamelCase )-> Dict: __lowerCAmelCase = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else value __lowerCAmelCase = value def __UpperCAmelCase ( self , *__UpperCamelCase , **__UpperCamelCase )-> BatchEncoding: __lowerCAmelCase = kwargs.get("is_split_into_words" , __UpperCamelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__UpperCamelCase , **__UpperCamelCase ) def __UpperCAmelCase ( self , *__UpperCamelCase , **__UpperCamelCase )-> BatchEncoding: __lowerCAmelCase = kwargs.get("is_split_into_words" , __UpperCamelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*__UpperCamelCase , **__UpperCamelCase ) def __UpperCAmelCase ( self , __UpperCamelCase , __UpperCamelCase = None )-> Tuple[str]: __lowerCAmelCase = self._tokenizer.model.save(__UpperCamelCase , name=__UpperCamelCase ) return tuple(__UpperCamelCase ) def __UpperCAmelCase ( self , __UpperCamelCase , __UpperCamelCase=None )-> Optional[Any]: __lowerCAmelCase = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __UpperCAmelCase ( self , __UpperCamelCase , __UpperCamelCase = None )-> List[int]: __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
290
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class _UpperCamelCase (unittest.TestCase ): def __UpperCAmelCase ( self )-> Optional[Any]: __lowerCAmelCase = tempfile.mkdtemp() # fmt: off __lowerCAmelCase = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest"] # fmt: on __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) __lowerCAmelCase = { "do_resize": True, "size": {"height": 1_8, "width": 1_8}, "do_normalize": True, "image_mean": [0.5, 0.5, 0.5], "image_std": [0.5, 0.5, 0.5], } __lowerCAmelCase = os.path.join(self.tmpdirname , __UpperCamelCase ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(__UpperCamelCase , __UpperCamelCase ) def __UpperCAmelCase ( self , **__UpperCamelCase )-> Optional[Any]: return BertTokenizer.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def __UpperCAmelCase ( self , **__UpperCamelCase )-> Any: return ViTImageProcessor.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def __UpperCAmelCase ( self )-> Any: shutil.rmtree(self.tmpdirname ) def __UpperCAmelCase ( self )-> int: __lowerCAmelCase = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] __lowerCAmelCase = [Image.fromarray(np.moveaxis(__UpperCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __UpperCAmelCase ( self )-> Optional[Any]: __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = VisionTextDualEncoderProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCamelCase ) def __UpperCAmelCase ( self )-> str: __lowerCAmelCase = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) __lowerCAmelCase = self.get_image_processor(do_normalize=__UpperCamelCase , padding_value=1.0 ) __lowerCAmelCase = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__UpperCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCamelCase ) def __UpperCAmelCase ( self )-> Union[str, Any]: __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = VisionTextDualEncoderProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = image_processor(__UpperCamelCase , return_tensors="np" ) __lowerCAmelCase = processor(images=__UpperCamelCase , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __UpperCAmelCase ( self )-> Dict: __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = VisionTextDualEncoderProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) __lowerCAmelCase = "lower newer" __lowerCAmelCase = processor(text=__UpperCamelCase ) __lowerCAmelCase = tokenizer(__UpperCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __UpperCAmelCase ( self )-> List[str]: __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = VisionTextDualEncoderProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) __lowerCAmelCase = "lower newer" __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__UpperCamelCase , images=__UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "token_type_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with self.assertRaises(__UpperCamelCase ): processor() def __UpperCAmelCase ( self )-> Optional[int]: __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = VisionTextDualEncoderProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) __lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCAmelCase = processor.batch_decode(__UpperCamelCase ) __lowerCAmelCase = tokenizer.batch_decode(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) def __UpperCAmelCase ( self )-> Any: __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = VisionTextDualEncoderProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) __lowerCAmelCase = "lower newer" __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__UpperCamelCase , images=__UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
290
1
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable lowercase__ : List[Any] = {'configuration_gpt_neox': ['GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GPTNeoXConfig']} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : List[Any] = ['GPTNeoXTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : str = [ 'GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST', 'GPTNeoXForCausalLM', 'GPTNeoXForQuestionAnswering', 'GPTNeoXForSequenceClassification', 'GPTNeoXForTokenClassification', 'GPTNeoXLayer', 'GPTNeoXModel', 'GPTNeoXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox import ( GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXLayer, GPTNeoXModel, GPTNeoXPreTrainedModel, ) else: import sys lowercase__ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
98
"""simple docstring""" import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _lowercase ( unittest.TestCase ): def lowerCAmelCase__ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() def lowerCAmelCase__ ( self ): __magic_name__ , __magic_name__ = FlaxStableDiffusionPipeline.from_pretrained( '''stabilityai/stable-diffusion-2''' , revision='''bf16''' , dtype=jnp.bfloataa , ) __magic_name__ = '''A painting of a squirrel eating a burger''' __magic_name__ = jax.device_count() __magic_name__ = num_samples * [prompt] __magic_name__ = sd_pipe.prepare_inputs(UpperCamelCase_ ) __magic_name__ = replicate(UpperCamelCase_ ) __magic_name__ = shard(UpperCamelCase_ ) __magic_name__ = jax.random.PRNGKey(0 ) __magic_name__ = jax.random.split(UpperCamelCase_ , jax.device_count() ) __magic_name__ = sd_pipe(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , num_inference_steps=25 , jit=UpperCamelCase_ )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) __magic_name__ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __magic_name__ = images[0, 253:256, 253:256, -1] __magic_name__ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __magic_name__ = jnp.array([0.4_2_3_8, 0.4_4_1_4, 0.4_3_9_5, 0.4_4_5_3, 0.4_6_2_9, 0.4_5_9_0, 0.4_5_3_1, 0.4_5_5_0_8, 0.4_5_1_2] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def lowerCAmelCase__ ( self ): __magic_name__ = '''stabilityai/stable-diffusion-2''' __magic_name__ , __magic_name__ = FlaxDPMSolverMultistepScheduler.from_pretrained(UpperCamelCase_ , subfolder='''scheduler''' ) __magic_name__ , __magic_name__ = FlaxStableDiffusionPipeline.from_pretrained( UpperCamelCase_ , scheduler=UpperCamelCase_ , revision='''bf16''' , dtype=jnp.bfloataa , ) __magic_name__ = scheduler_params __magic_name__ = '''A painting of a squirrel eating a burger''' __magic_name__ = jax.device_count() __magic_name__ = num_samples * [prompt] __magic_name__ = sd_pipe.prepare_inputs(UpperCamelCase_ ) __magic_name__ = replicate(UpperCamelCase_ ) __magic_name__ = shard(UpperCamelCase_ ) __magic_name__ = jax.random.PRNGKey(0 ) __magic_name__ = jax.random.split(UpperCamelCase_ , jax.device_count() ) __magic_name__ = sd_pipe(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , num_inference_steps=25 , jit=UpperCamelCase_ )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) __magic_name__ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __magic_name__ = images[0, 253:256, 253:256, -1] __magic_name__ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __magic_name__ = jnp.array([0.4_3_3_6, 0.4_2_9_6_9, 0.4_4_5_3, 0.4_1_9_9, 0.4_2_9_7, 0.4_5_3_1, 0.4_4_3_4, 0.4_4_3_4, 0.4_2_9_7] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
490
0
import numpy as np __lowerCamelCase : Union[str, Any] = [ ["""a""", """b""", """c""", """d""", """e"""], ["""f""", """g""", """h""", """i""", """k"""], ["""l""", """m""", """n""", """o""", """p"""], ["""q""", """r""", """s""", """t""", """u"""], ["""v""", """w""", """x""", """y""", """z"""], ] class A__ : def __init__( self ): '''simple docstring''' UpperCamelCase : Dict = np.array(A_ ) def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase , UpperCamelCase : Any = np.where(letter == self.SQUARE ) UpperCamelCase : Union[str, Any] = np.concatenate([indexa + 1, indexa + 1] ) return indexes def __UpperCamelCase( self , A_ , A_ ): '''simple docstring''' UpperCamelCase : Union[str, Any] = self.SQUARE[indexa - 1, indexa - 1] return letter def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase : Union[str, Any] = message.lower() UpperCamelCase : int = message.replace(" " , "" ) UpperCamelCase : Optional[int] = message.replace("j" , "i" ) UpperCamelCase : int = np.empty((2, len(A_ )) ) for letter_index in range(len(A_ ) ): UpperCamelCase : Optional[int] = self.letter_to_numbers(message[letter_index] ) UpperCamelCase : Optional[int] = numbers[0] UpperCamelCase : List[Any] = numbers[1] UpperCamelCase : Any = first_step.reshape(2 * len(A_ ) ) UpperCamelCase : List[Any] = "" for numbers_index in range(len(A_ ) ): UpperCamelCase : int = int(second_step[numbers_index * 2] ) UpperCamelCase : int = int(second_step[(numbers_index * 2) + 1] ) UpperCamelCase : List[Any] = self.numbers_to_letter(A_ , A_ ) UpperCamelCase : str = encoded_message + letter return encoded_message def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase : List[Any] = message.lower() message.replace(" " , "" ) UpperCamelCase : Any = np.empty(2 * len(A_ ) ) for letter_index in range(len(A_ ) ): UpperCamelCase : Tuple = self.letter_to_numbers(message[letter_index] ) UpperCamelCase : Optional[int] = numbers[0] UpperCamelCase : List[str] = numbers[1] UpperCamelCase : List[str] = first_step.reshape((2, len(A_ )) ) UpperCamelCase : int = "" for numbers_index in range(len(A_ ) ): UpperCamelCase : str = int(second_step[0, numbers_index] ) UpperCamelCase : Dict = int(second_step[1, numbers_index] ) UpperCamelCase : str = self.numbers_to_letter(A_ , A_ ) UpperCamelCase : Optional[int] = decoded_message + letter return decoded_message
38
import gc import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A__ ( __snake_case , unittest.TestCase ): _UpperCAmelCase :str = KandinskyVaaPipeline _UpperCAmelCase :str = [ 'image_embeds', 'negative_image_embeds', ] _UpperCAmelCase :str = ['image_embeds', 'negative_image_embeds'] _UpperCAmelCase :List[str] = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] _UpperCAmelCase :List[str] = False @property def __UpperCamelCase( self ): '''simple docstring''' return 32 @property def __UpperCamelCase( self ): '''simple docstring''' return 32 @property def __UpperCamelCase( self ): '''simple docstring''' return self.time_input_dim @property def __UpperCamelCase( self ): '''simple docstring''' return self.time_input_dim * 4 @property def __UpperCamelCase( self ): '''simple docstring''' return 100 @property def __UpperCamelCase( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase : List[str] = { "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } UpperCamelCase : Dict = UNetaDConditionModel(**A_ ) return model @property def __UpperCamelCase( self ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __UpperCamelCase( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase : Optional[Any] = VQModel(**self.dummy_movq_kwargs ) return model def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Tuple = self.dummy_unet UpperCamelCase : Optional[Any] = self.dummy_movq UpperCamelCase : Dict = DDIMScheduler( num_train_timesteps=1000 , beta_schedule="linear" , beta_start=0.0_00_85 , beta_end=0.0_12 , clip_sample=A_ , set_alpha_to_one=A_ , steps_offset=1 , prediction_type="epsilon" , thresholding=A_ , ) UpperCamelCase : Tuple = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def __UpperCamelCase( self , A_ , A_=0 ): '''simple docstring''' UpperCamelCase : Optional[int] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(A_ ) ).to(A_ ) UpperCamelCase : Optional[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( A_ ) if str(A_ ).startswith("mps" ): UpperCamelCase : Optional[Any] = torch.manual_seed(A_ ) else: UpperCamelCase : List[Any] = torch.Generator(device=A_ ).manual_seed(A_ ) UpperCamelCase : Optional[int] = { "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "guidance_scale": 4.0, "num_inference_steps": 2, "output_type": "np", } return inputs def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Optional[Any] = "cpu" UpperCamelCase : List[str] = self.get_dummy_components() UpperCamelCase : Tuple = self.pipeline_class(**A_ ) UpperCamelCase : List[str] = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) UpperCamelCase : Dict = pipe(**self.get_dummy_inputs(A_ ) ) UpperCamelCase : Optional[int] = output.images UpperCamelCase : int = pipe( **self.get_dummy_inputs(A_ ) , return_dict=A_ , )[0] UpperCamelCase : Tuple = image[0, -3:, -3:, -1] UpperCamelCase : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase : int = np.array( [0.6_23_79_76, 1.0, 0.36_44_13_32, 1.0, 0.70_63_96_34, 0.29_87_71_86, 0.85_65_21_25, 0.5_21_68_43, 0.54_45_40_46] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class A__ ( unittest.TestCase ): def __UpperCamelCase( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Dict = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy" ) UpperCamelCase : Dict = KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(A_ ) UpperCamelCase : Dict = KandinskyVaaPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder" , torch_dtype=torch.floataa ) UpperCamelCase : Tuple = pipeline.to(A_ ) pipeline.set_progress_bar_config(disable=A_ ) UpperCamelCase : str = "red cat, 4k photo" UpperCamelCase : str = torch.Generator(device="cuda" ).manual_seed(0 ) UpperCamelCase , UpperCamelCase : Tuple = pipe_prior( A_ , generator=A_ , num_inference_steps=5 , negative_prompt="" , ).to_tuple() UpperCamelCase : int = torch.Generator(device="cuda" ).manual_seed(0 ) UpperCamelCase : Tuple = pipeline( image_embeds=A_ , negative_image_embeds=A_ , generator=A_ , num_inference_steps=100 , output_type="np" , ) UpperCamelCase : Union[str, Any] = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(A_ , A_ )
38
1
'''simple docstring''' import math from datetime import datetime, timedelta def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : List[str] = year % 19 _lowerCamelCase : Dict = year % 4 _lowerCamelCase : str = year % 7 _lowerCamelCase : Any = math.floor(year / 100 ) _lowerCamelCase : Union[str, Any] = math.floor((13 + 8 * leap_day_inhibits) / 25 ) _lowerCamelCase : str = leap_day_inhibits / 4 _lowerCamelCase : Tuple = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 _lowerCamelCase : int = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 _lowerCamelCase : str = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon _lowerCamelCase : Any = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(_lowerCAmelCase , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(_lowerCAmelCase , 4 , 18 ) else: return datetime(_lowerCAmelCase , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1994, 2000, 2010, 2021, 2023): UpperCAmelCase_ : Any = 'will be' if year > datetime.now().year else 'was' print(f'''Easter in {year} {tense} {gauss_easter(year)}''')
44
"""simple docstring""" # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def UpperCAmelCase__ (lowerCAmelCase_=None ): '''simple docstring''' if subparsers is not None: __SCREAMING_SNAKE_CASE = subparsers.add_parser("env" ) else: __SCREAMING_SNAKE_CASE = argparse.ArgumentParser("Accelerate env command" ) parser.add_argument( "--config_file" , default=lowerCAmelCase_ , help="The config file to use for the default values in the launching script." ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase_ ) return parser def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = torch.__version__ __SCREAMING_SNAKE_CASE = torch.cuda.is_available() __SCREAMING_SNAKE_CASE = is_xpu_available() __SCREAMING_SNAKE_CASE = is_npu_available() __SCREAMING_SNAKE_CASE = "Not found" # Get the default from the config file. if args.config_file is not None or os.path.isfile(lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = load_config_from_file(args.config_file ).to_dict() __SCREAMING_SNAKE_CASE = { "`Accelerate` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "Numpy version": np.__version__, "PyTorch version (GPU?)": f"""{pt_version} ({pt_cuda_available})""", "PyTorch XPU available": str(lowerCAmelCase_ ), "PyTorch NPU available": str(lowerCAmelCase_ ), "System RAM": f"""{psutil.virtual_memory().total / 1024 ** 3:.2f} GB""", } if pt_cuda_available: __SCREAMING_SNAKE_CASE = torch.cuda.get_device_name() print("\nCopy-and-paste the text below in your GitHub issue\n" ) print("\n".join([f"""- {prop}: {val}""" for prop, val in info.items()] ) ) print("- `Accelerate` default config:" if args.config_file is None else "- `Accelerate` config passed:" ) __SCREAMING_SNAKE_CASE = ( "\n".join([f"""\t- {prop}: {val}""" for prop, val in accelerate_config.items()] ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else f"""\t{accelerate_config}""" ) print(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = accelerate_config return info def UpperCAmelCase__ (): '''simple docstring''' __SCREAMING_SNAKE_CASE = env_command_parser() __SCREAMING_SNAKE_CASE = parser.parse_args() env_command(lowerCAmelCase_ ) return 0 if __name__ == "__main__": raise SystemExit(main())
682
0
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def UpperCamelCase ( _A : str )-> str: """simple docstring""" A__ = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(_A , _A ) def UpperCamelCase ( _A : Dict )-> str: """simple docstring""" A__ , A__ = emb.weight.shape A__ = nn.Linear(_A , _A , bias=_A ) A__ = emb.weight.data return lin_layer def UpperCamelCase ( _A : Optional[Any] , _A : List[str]=None )-> Optional[int]: """simple docstring""" A__ = {} for old_key in state_dict.keys(): A__ = old_key if "moe_layer.experts." in key: if expert_idx is not None: A__ = key.replace("moe_layer.experts.0" , f"""ffn.experts.expert_{expert_idx}""" ) else: A__ = key.replace("moe_layer.experts." , "ffn.experts.expert_" ) if "gate" in key: A__ = key.replace(".moe_layer.gate.wg" , ".ffn.router.classifier" ) if "fc2" and "experts" not in key: A__ = key.replace(".fc2." , ".ffn.fc2." ) if "fc1" and "experts" not in key: A__ = key.replace(".fc1." , ".ffn.fc1." ) if ".encoder_attn." in key: A__ = key.replace(".encoder_attn." , ".cross_attention." ) if "encoder_attn_layer_norm" in key: A__ = key.replace("encoder_attn_layer_norm" , "cross_attention_layer_norm" ) if "final_layer_norm" in key: A__ = key.replace("final_layer_norm" , "ff_layer_norm" ) A__ = state_dict[old_key] return new_dict def UpperCamelCase ( _A : int , _A : str , _A : Union[str, Any] , _A : Any , _A : str = WEIGHTS_NAME )-> Optional[int]: """simple docstring""" A__ = [] A__ = 0 os.makedirs(_A , exist_ok=_A ) for expert in range(_A ): A__ = switch_checkpoint_path + f"""-rank-{expert}.pt""" if os.path.isfile(_A ): A__ = torch.load(_A )["model"] remove_ignore_keys_(_A ) A__ = rename_fairseq_keys(_A , _A ) A__ = os.path.join( _A , weights_name.replace(".bin" , f"""-{len(_A )+1:05d}-of-???.bin""" ) ) torch.save(_A , _A ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(_A )[0]].dtype ) # Add the last block A__ = os.path.join(_A , weights_name.replace(".bin" , f"""-{len(_A )+1:05d}-of-???.bin""" ) ) A__ = torch.load(switch_checkpoint_path + "-shared.pt" )["model"] remove_ignore_keys_(_A ) A__ = rename_fairseq_keys(_A , _A ) A__ = shared_weights["decoder.embed_tokens.weight"] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(_A ) == 1: A__ = os.path.join(_A , _A ) torch.save(_A , _A ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(_A , _A ) # Otherwise, let's build the index A__ = {} for idx, shard in enumerate(_A ): A__ = weights_name.replace(".bin" , f"""-{idx+1:05d}-of-{len(_A ):05d}.bin""" ) A__ = os.path.join(_A , weights_name.replace(".bin" , f"""-{idx+1:05d}-of-???.bin""" ) ) os.rename(_A , os.path.join(_A , _A ) ) for key in shard: A__ = shard_file # Add the metadata A__ = {"total_size": total_size} A__ = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(_A , _A ) , "w" , encoding="utf-8" ) as f: A__ = json.dumps(_A , indent=2 , sort_keys=_A ) + "\n" f.write(_A ) return metadata, index if __name__ == "__main__": UpperCAmelCase_ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--nllb_moe_checkpoint_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000", type=str, required=False, help="Path to a directory containing a folder per layer. Follows the original Google format.", ) parser.add_argument("--dtype", default="float32", type=str, required=False, help="dtype of the saved model") parser.add_argument( "--pytorch_dump_folder_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b", type=str, required=False, help="Path to the output pytorch model.", ) UpperCAmelCase_ : Any = parser.parse_args() UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) UpperCAmelCase_ : Dict = NllbMoeConfig.from_pretrained( "facebook/nllb-200-3.3B", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) UpperCAmelCase_ : Dict = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("Done") model.save_pretrained(args.pytorch_dump_folder_path)
232
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : int = logging.get_logger(__name__) def UpperCamelCase ( _A : List[str] )-> List[str]: """simple docstring""" A__ = torch.load(_A , map_location="cpu" ) if "model" in sd.keys(): A__ = torch.load(_A , map_location="cpu" )["model"] # pop unnecessary weights A__ = [ "decoder.version", "decoder.output_projection.weight", ] for key in keys_to_delete: if key in sd: sd.pop(_A ) A__ = { "decoder.project_in_dim.weight": "decoder.project_in.weight", "decoder.project_out_dim.weight": "decoder.project_out.weight", "decoder.layer_norm.weight": "decoder.final_layer_norm.weight", "decoder.layer_norm.bias": "decoder.final_layer_norm.bias", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: A__ = sd.pop(_A ) A__ = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: A__ = sd[key] # We split QKV in separate Q,K,V A__ = key.replace(".qkv_proj." , ".q_proj." ) A__ = key.replace(".qkv_proj." , ".k_proj." ) A__ = key.replace(".qkv_proj." , ".v_proj." ) A__ = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 A__ , A__ , A__ = torch.split(_A , depth // 3 , dim=0 ) A__ = q A__ = k A__ = v del sd[key] return sd @torch.no_grad() def UpperCamelCase ( _A : Any , _A : Dict , _A : Union[str, Any]=None )-> Dict: """simple docstring""" A__ = load_checkpoint(_A ) if config is not None: A__ = OPTConfig.from_pretrained(_A ) else: A__ = OPTConfig() A__ = OPTModel(_A ).half().eval() model.load_state_dict(_A ) # Check results Path(_A ).mkdir(exist_ok=_A ) model.save_pretrained(_A ) if __name__ == "__main__": UpperCAmelCase_ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fairseq_path", type=str, help=( "path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:" " https://huggingface.co/models?other=opt_metasq" ), ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--hf_config", default=None, type=str, help="Define HF config.") UpperCAmelCase_ : Union[str, Any] = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
232
1
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : List[Any] , a_ : List[Any] , a_ : Optional[Any]=7 , a_ : List[Any]=3 , a_ : Optional[Any]=18 , a_ : List[Any]=30 , a_ : Any=4_00 , a_ : List[str]=True , a_ : int=None , a_ : Union[str, Any]=True , ): lowerCAmelCase_ : str = size if size is not None else {'height': 18, 'width': 18} lowerCAmelCase_ : Dict = parent lowerCAmelCase_ : int = batch_size lowerCAmelCase_ : Any = num_channels lowerCAmelCase_ : str = image_size lowerCAmelCase_ : Union[str, Any] = min_resolution lowerCAmelCase_ : int = max_resolution lowerCAmelCase_ : Union[str, Any] = do_resize lowerCAmelCase_ : Optional[int] = size lowerCAmelCase_ : Optional[Any] = apply_ocr def lowerCamelCase ( self : Optional[int] ): return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class __lowerCamelCase ( __UpperCAmelCase , unittest.TestCase ): '''simple docstring''' a_ : Optional[Any] = LayoutLMvaImageProcessor if is_pytesseract_available() else None def lowerCamelCase ( self : Tuple ): lowerCAmelCase_ : Optional[Any] = LayoutLMvaImageProcessingTester(self ) @property def lowerCamelCase ( self : str ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase ( self : Tuple ): lowerCAmelCase_ : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a_ , "do_resize" ) ) self.assertTrue(hasattr(a_ , "size" ) ) self.assertTrue(hasattr(a_ , "apply_ocr" ) ) def lowerCamelCase ( self : Dict ): lowerCAmelCase_ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 18, "width": 18} ) lowerCAmelCase_ : Dict = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) def lowerCamelCase ( self : List[Any] ): pass def lowerCamelCase ( self : Any ): lowerCAmelCase_ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ ) for image in image_inputs: self.assertIsInstance(a_ , Image.Image ) # Test not batched input lowerCAmelCase_ : Any = image_processing(image_inputs[0] , return_tensors="pt" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) self.assertIsInstance(encoding.words , a_ ) self.assertIsInstance(encoding.boxes , a_ ) # Test batched lowerCAmelCase_ : Optional[Any] = image_processing(a_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def lowerCamelCase ( self : List[str] ): lowerCAmelCase_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase_ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , numpify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , np.ndarray ) # Test not batched input lowerCAmelCase_ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched lowerCAmelCase_ : Optional[Any] = image_processing(a_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def lowerCamelCase ( self : Dict ): lowerCAmelCase_ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase_ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , torchify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , torch.Tensor ) # Test not batched input lowerCAmelCase_ : Any = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched lowerCAmelCase_ : Any = image_processing(a_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def lowerCamelCase ( self : str ): lowerCAmelCase_ : Optional[Any] = LayoutLMvaImageProcessor() from datasets import load_dataset lowerCAmelCase_ : Tuple = load_dataset("hf-internal-testing/fixtures_docvqa" , split="test" ) lowerCAmelCase_ : Optional[int] = Image.open(ds[0]["file"] ).convert("RGB" ) lowerCAmelCase_ : Tuple = image_processing(a_ , return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 lowerCAmelCase_ : Optional[Any] = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 lowerCAmelCase_ : Optional[int] = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , a_ ) self.assertListEqual(encoding.boxes , a_ ) # with apply_OCR = False lowerCAmelCase_ : Optional[Any] = LayoutLMvaImageProcessor(apply_ocr=a_ ) lowerCAmelCase_ : Tuple = image_processing(a_ , return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
610
from cva import destroyAllWindows, imread, imshow, waitKey def A_ ( A__ ) -> Tuple: # getting number of pixels in the image a__ , a__ : Any = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(A__ ): for j in range(A__ ): a__ : str = [255, 255, 255] - img[i][j] return img if __name__ == "__main__": # read original image lowercase : Dict = imread("""image_data/lena.jpg""", 1) # convert to its negative lowercase : Tuple = convert_to_negative(img) # show result image imshow("""negative of original image""", img) waitKey(0) destroyAllWindows()
302
0
import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient _lowerCamelCase =WebClient(token=os.environ["CI_SLACK_BOT_TOKEN"]) def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =test_results.split(' ' ) SCREAMING_SNAKE_CASE =0 SCREAMING_SNAKE_CASE =0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. SCREAMING_SNAKE_CASE =expressions[-2] if '=' in expressions[-1] else expressions[-1] for i, expression in enumerate(lowerCAmelCase_ ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE ={} SCREAMING_SNAKE_CASE =None SCREAMING_SNAKE_CASE =False for line in failures_short_lines.split('\n' ): if re.search(r'_ \[doctest\]', lowerCAmelCase_ ): SCREAMING_SNAKE_CASE =True SCREAMING_SNAKE_CASE =line.split(' ' )[2] elif in_error and not line.split(' ' )[0].isdigit(): SCREAMING_SNAKE_CASE =line SCREAMING_SNAKE_CASE =False return failures class a_ : """simple docstring""" def __init__( self : Dict ,snake_case : str ,snake_case : Dict ): SCREAMING_SNAKE_CASE =title SCREAMING_SNAKE_CASE =doc_test_results['time_spent'].split(',' )[0] SCREAMING_SNAKE_CASE =doc_test_results['success'] SCREAMING_SNAKE_CASE =doc_test_results['failures'] SCREAMING_SNAKE_CASE =self.n_success + self.n_failures # Failures and success of the modeling tests SCREAMING_SNAKE_CASE =doc_test_results @property def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =[self._time_spent] SCREAMING_SNAKE_CASE =0 for time in time_spent: SCREAMING_SNAKE_CASE =time.split(':' ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(snake_case ) == 1: SCREAMING_SNAKE_CASE =[0, 0, time_parts[0]] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return f'{int(snake_case )}h{int(snake_case )}m{int(snake_case )}s' @property def _lowerCAmelCase ( self : Union[str, Any] ): return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def _lowerCAmelCase ( self : List[Any] ): return { "type": "section", "text": { "type": "plain_text", "text": f'🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def _lowerCAmelCase ( self : List[Any] ): return { "type": "section", "text": { "type": "plain_text", "text": ( f'There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in' f' {self.time}.' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE =40 SCREAMING_SNAKE_CASE ={k: v['failed'] for k, v in doc_test_results.items() if isinstance(snake_case ,snake_case )} SCREAMING_SNAKE_CASE ='' for category, failures in category_failures.items(): if len(snake_case ) == 0: continue if report != "": report += "\n\n" report += f'*{category} failures*:'.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(snake_case ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": f'The following examples had failures:\n\n\n{report}\n', }, } @property def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE =[self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(snake_case ) @staticmethod def _lowerCAmelCase ( ): SCREAMING_SNAKE_CASE =[ { 'type': 'section', 'text': { 'type': 'plain_text', 'text': 'There was an issue running the tests.', }, 'accessory': { 'type': 'button', 'text': {'type': 'plain_text', 'text': 'Check Action results', 'emoji': True}, 'url': f'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } ] print('Sending the following payload' ) print(json.dumps({'blocks': json.loads(snake_case )} ) ) client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] ,text='There was an issue running the tests.' ,blocks=snake_case ,) def _lowerCAmelCase ( self : Dict ): print('Sending the following payload' ) print(json.dumps({'blocks': json.loads(self.payload )} ) ) SCREAMING_SNAKE_CASE =f'{self.n_failures} failures out of {self.n_tests} tests,' if self.n_failures else 'All tests passed.' SCREAMING_SNAKE_CASE =client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] ,blocks=self.payload ,text=snake_case ,) def _lowerCAmelCase ( self : Optional[int] ,snake_case : Optional[int] ,snake_case : List[str] ,snake_case : Tuple ,snake_case : List[str] ): SCREAMING_SNAKE_CASE ='' for key, value in failures.items(): SCREAMING_SNAKE_CASE =value[:200] + ' [Truncated]' if len(snake_case ) > 250 else value failures_text += f'*{key}*\n_{value}_\n\n' SCREAMING_SNAKE_CASE =job_name SCREAMING_SNAKE_CASE ={'type': 'section', 'text': {'type': 'mrkdwn', 'text': text}} if job_link is not None: SCREAMING_SNAKE_CASE ={ 'type': 'button', 'text': {'type': 'plain_text', 'text': 'GitHub Action job', 'emoji': True}, 'url': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def _lowerCAmelCase ( self : Any ): if self.thread_ts is None: raise ValueError('Can only post reply if a post has been made.' ) SCREAMING_SNAKE_CASE =self.doc_test_results.pop('job_link' ) self.doc_test_results.pop('failures' ) self.doc_test_results.pop('success' ) self.doc_test_results.pop('time_spent' ) SCREAMING_SNAKE_CASE =sorted(self.doc_test_results.items() ,key=lambda snake_case : t[0] ) for job, job_result in sorted_dict: if len(job_result['failures'] ): SCREAMING_SNAKE_CASE =f'*Num failures* :{len(job_result["failed"] )} \n' SCREAMING_SNAKE_CASE =job_result['failures'] SCREAMING_SNAKE_CASE =self.get_reply_blocks(snake_case ,snake_case ,snake_case ,text=snake_case ) print('Sending the following reply' ) print(json.dumps({'blocks': blocks} ) ) client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] ,text=f'Results for {job}' ,blocks=snake_case ,thread_ts=self.thread_ts['ts'] ,) time.sleep(1 ) def snake_case__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE =os.environ['GITHUB_RUN_ID'] SCREAMING_SNAKE_CASE =F'https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100' SCREAMING_SNAKE_CASE =requests.get(lowerCAmelCase_ ).json() SCREAMING_SNAKE_CASE ={} try: jobs.update({job['name']: job['html_url'] for job in result['jobs']} ) SCREAMING_SNAKE_CASE =math.ceil((result['total_count'] - 100) / 100 ) for i in range(lowerCAmelCase_ ): SCREAMING_SNAKE_CASE =requests.get(url + F'&page={i + 2}' ).json() jobs.update({job['name']: job['html_url'] for job in result['jobs']} ) return jobs except Exception as e: print('Unknown error, could not fetch links.', lowerCAmelCase_ ) return {} def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE ={} if os.path.exists(lowerCAmelCase_ ): SCREAMING_SNAKE_CASE =os.listdir(lowerCAmelCase_ ) for file in files: try: with open(os.path.join(lowerCAmelCase_, lowerCAmelCase_ ), encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE =f.read() except UnicodeDecodeError as e: raise ValueError(F'Could not open {os.path.join(lowerCAmelCase_, lowerCAmelCase_ )}.' ) from e return _artifact def snake_case__ ( ): """simple docstring""" class a_ : """simple docstring""" def __init__( self : Optional[int] ,snake_case : str ): SCREAMING_SNAKE_CASE =name SCREAMING_SNAKE_CASE =[] def __str__( self : Optional[Any] ): return self.name def _lowerCAmelCase ( self : Tuple ,snake_case : str ): self.paths.append({'name': self.name, 'path': path} ) SCREAMING_SNAKE_CASE ={} SCREAMING_SNAKE_CASE =filter(os.path.isdir, os.listdir() ) for directory in directories: SCREAMING_SNAKE_CASE =directory if artifact_name not in _available_artifacts: SCREAMING_SNAKE_CASE =Artifact(lowerCAmelCase_ ) _available_artifacts[artifact_name].add_path(lowerCAmelCase_ ) return _available_artifacts if __name__ == "__main__": _lowerCamelCase =get_job_links() _lowerCamelCase =retrieve_available_artifacts() _lowerCamelCase =collections.OrderedDict( [ ("*.py", "API Examples"), ("*.md", "MD Examples"), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' _lowerCamelCase ={ v: { "failed": [], "failures": {}, } for v in docs.values() } # Link to the GitHub Action job _lowerCamelCase =github_actions_job_links.get("run_doctests") _lowerCamelCase =available_artifacts["doc_tests_gpu_test_reports"].paths[0] _lowerCamelCase =retrieve_artifact(artifact_path["name"]) if "stats" in artifact: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase =handle_test_results(artifact["stats"]) _lowerCamelCase =failed _lowerCamelCase =success _lowerCamelCase =time_spent[1:-1] + ", " _lowerCamelCase =extract_first_line_failure(artifact["failures_short"]) for line in artifact["summary_short"].split("\n"): if re.search("FAILED", line): _lowerCamelCase =line.replace("FAILED ", "") _lowerCamelCase =line.split()[0].replace("\n", "") if "::" in line: _lowerCamelCase , _lowerCamelCase =line.split("::") else: _lowerCamelCase , _lowerCamelCase =line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): _lowerCamelCase =docs[file_regex] doc_test_results[category]["failed"].append(test) _lowerCamelCase =all_failures[test] if test in all_failures else "N/A" _lowerCamelCase =failure break _lowerCamelCase =Message("🤗 Results of the doc tests.", doc_test_results) message.post() message.post_reply()
252
import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowerCamelCase =16 _lowerCamelCase =32 def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = 16 ): """simple docstring""" SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained('bert-base-cased' ) SCREAMING_SNAKE_CASE =DatasetDict( { 'train': dataset['train'].select(lowerCAmelCase_ ), 'validation': dataset['train'].select(lowerCAmelCase_ ), 'test': dataset['validation'], } ) def tokenize_function(lowerCAmelCase_ ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE =tokenizer(examples['sentence1'], examples['sentence2'], truncation=lowerCAmelCase_, max_length=lowerCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE =datasets.map( lowerCAmelCase_, batched=lowerCAmelCase_, remove_columns=['idx', 'sentence1', 'sentence2'], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE =tokenized_datasets.rename_column('label', 'labels' ) def collate_fn(lowerCAmelCase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE =128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE =16 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE =8 else: SCREAMING_SNAKE_CASE =None return tokenizer.pad( lowerCAmelCase_, padding='longest', max_length=lowerCAmelCase_, pad_to_multiple_of=lowerCAmelCase_, return_tensors='pt', ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE =DataLoader( tokenized_datasets['train'], shuffle=lowerCAmelCase_, collate_fn=lowerCAmelCase_, batch_size=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =DataLoader( tokenized_datasets['validation'], shuffle=lowerCAmelCase_, collate_fn=lowerCAmelCase_, batch_size=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =DataLoader( tokenized_datasets['test'], shuffle=lowerCAmelCase_, collate_fn=lowerCAmelCase_, batch_size=lowerCAmelCase_ ) return train_dataloader, eval_dataloader, test_dataloader def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =[] # Download the dataset SCREAMING_SNAKE_CASE =load_dataset('glue', 'mrpc' ) # Create our splits SCREAMING_SNAKE_CASE =StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator SCREAMING_SNAKE_CASE =Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE =config['lr'] SCREAMING_SNAKE_CASE =int(config['num_epochs'] ) SCREAMING_SNAKE_CASE =int(config['seed'] ) SCREAMING_SNAKE_CASE =int(config['batch_size'] ) SCREAMING_SNAKE_CASE =evaluate.load('glue', 'mrpc' ) # If the batch size is too big we use gradient accumulation SCREAMING_SNAKE_CASE =1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: SCREAMING_SNAKE_CASE =batch_size // MAX_GPU_BATCH_SIZE SCREAMING_SNAKE_CASE =MAX_GPU_BATCH_SIZE set_seed(lowerCAmelCase_ ) # New Code # # Create our folds: SCREAMING_SNAKE_CASE =kfold.split(np.zeros(datasets['train'].num_rows ), datasets['train']['label'] ) SCREAMING_SNAKE_CASE =[] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(lowerCAmelCase_ ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =get_fold_dataloaders( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE =AutoModelForSequenceClassification.from_pretrained('bert-base-cased', return_dict=lowerCAmelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE =model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE =AdamW(params=model.parameters(), lr=lowerCAmelCase_ ) # Instantiate scheduler SCREAMING_SNAKE_CASE =get_linear_schedule_with_warmup( optimizer=lowerCAmelCase_, num_warmup_steps=100, num_training_steps=(len(lowerCAmelCase_ ) * num_epochs) // gradient_accumulation_steps, ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =accelerator.prepare( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) # Now we train the model for epoch in range(lowerCAmelCase_ ): model.train() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) SCREAMING_SNAKE_CASE =model(**lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =outputs.loss SCREAMING_SNAKE_CASE =loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE =model(**lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=lowerCAmelCase_, references=lowerCAmelCase_, ) SCREAMING_SNAKE_CASE =metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:', lowerCAmelCase_ ) # New Code # # We also run predictions on the test set at the very end SCREAMING_SNAKE_CASE =[] for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE =model(**lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =outputs.logits SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =accelerator.gather_for_metrics((predictions, batch['labels']) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(lowerCAmelCase_, dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: SCREAMING_SNAKE_CASE =torch.cat(lowerCAmelCase_, dim=0 ) SCREAMING_SNAKE_CASE =torch.stack(lowerCAmelCase_, dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) SCREAMING_SNAKE_CASE =metric.compute(predictions=lowerCAmelCase_, references=lowerCAmelCase_ ) accelerator.print('Average test metrics from all folds:', lowerCAmelCase_ ) def snake_case__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE =argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision', type=lowerCAmelCase_, default=lowerCAmelCase_, choices=['no', 'fp16', 'bf16', 'fp8'], help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.', ) parser.add_argument('--cpu', action='store_true', help='If passed, will train on the CPU.' ) # New Code # parser.add_argument('--num_folds', type=lowerCAmelCase_, default=3, help='The number of splits to perform across the dataset' ) SCREAMING_SNAKE_CASE =parser.parse_args() SCREAMING_SNAKE_CASE ={'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(lowerCAmelCase_, lowerCAmelCase_ ) if __name__ == "__main__": main()
252
1
from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = { 'nielsr/canine-s': 2048, } # Unicode defines 1,114,112 total “codepoints” _lowerCamelCase = 1114112 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py _lowerCamelCase = 0 _lowerCamelCase = 0XE0_00 _lowerCamelCase = 0XE0_01 _lowerCamelCase = 0XE0_02 _lowerCamelCase = 0XE0_03 _lowerCamelCase = 0XE0_04 # Maps special codepoints to human-readable names. _lowerCamelCase = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. _lowerCamelCase = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self :str , __A :str=chr(__A ) , __A :str=chr(__A ) , __A :Dict=chr(__A ) , __A :str=chr(__A ) , __A :Union[str, Any]=chr(__A ) , __A :str=chr(__A ) , __A :int=False , __A :int=2048 , **__A :Dict , ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else bos_token SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else eos_token SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else sep_token SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else cls_token SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token super().__init__( bos_token=__A , eos_token=__A , sep_token=__A , cls_token=__A , pad_token=__A , mask_token=__A , add_prefix_space=__A , model_max_length=__A , **__A , ) # Creates a mapping for looking up the IDs of special symbols. SCREAMING_SNAKE_CASE__ = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): SCREAMING_SNAKE_CASE__ = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. SCREAMING_SNAKE_CASE__ = { codepoint: name for name, codepoint in self._special_codepoints.items() } SCREAMING_SNAKE_CASE__ = UNICODE_VOCAB_SIZE SCREAMING_SNAKE_CASE__ = len(self._special_codepoints ) @property def _snake_case ( self :Optional[Any] ) -> int: """simple docstring""" return self._unicode_vocab_size def _snake_case ( self :Tuple , __A :str ) -> List[str]: """simple docstring""" return list(__A ) def _snake_case ( self :Optional[Any] , __A :str ) -> int: """simple docstring""" try: return ord(__A ) except TypeError: raise ValueError(f'''invalid token: \'{token}\'''' ) def _snake_case ( self :str , __A :int ) -> str: """simple docstring""" try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(__A ) except TypeError: raise ValueError(f'''invalid id: {index}''' ) def _snake_case ( self :Union[str, Any] , __A :Optional[int] ) -> Any: """simple docstring""" return "".join(__A ) def _snake_case ( self :Optional[Any] , __A :List[int] , __A :Optional[List[int]] = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] SCREAMING_SNAKE_CASE__ = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def _snake_case ( self :List[Any] , __A :List[int] , __A :Optional[List[int]] = None , __A :bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A ) SCREAMING_SNAKE_CASE__ = [1] + ([0] * len(__A )) + [1] if token_ids_a is not None: result += ([0] * len(__A )) + [1] return result def _snake_case ( self :List[str] , __A :List[int] , __A :Optional[List[int]] = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] SCREAMING_SNAKE_CASE__ = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def _snake_case ( self :int , __A :str , __A :Optional[str] = None ) -> Any: """simple docstring""" return ()
6
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self ) -> Any: A__ = tempfile.mkdtemp() A__ = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] A__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) A__ = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], "image_std": [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } A__ = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE__ ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self , **SCREAMING_SNAKE_CASE__ ) -> List[Any]: return BertTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self , **SCREAMING_SNAKE_CASE__ ) -> Tuple: return BertTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self , **SCREAMING_SNAKE_CASE__ ) -> str: return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self ) -> List[str]: shutil.rmtree(self.tmpdirname ) def snake_case__ ( self ) -> Any: A__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] A__ = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def snake_case__ ( self ) -> Dict: A__ = self.get_tokenizer() A__ = self.get_rust_tokenizer() A__ = self.get_image_processor() A__ = AlignProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) processor_slow.save_pretrained(self.tmpdirname ) A__ = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=SCREAMING_SNAKE_CASE__ ) A__ = AlignProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) processor_fast.save_pretrained(self.tmpdirname ) A__ = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(processor_fast.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(processor_fast.image_processor , SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self ) -> Union[str, Any]: A__ = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A__ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) A__ = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 ) A__ = AlignProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self ) -> List[Any]: A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = AlignProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) A__ = self.prepare_image_inputs() A__ = image_processor(SCREAMING_SNAKE_CASE__ , return_tensors="np" ) A__ = processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def snake_case__ ( self ) -> List[Any]: A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = AlignProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) A__ = "lower newer" A__ = processor(text=SCREAMING_SNAKE_CASE__ ) A__ = tokenizer(SCREAMING_SNAKE_CASE__ , padding="max_length" , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def snake_case__ ( self ) -> int: A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = AlignProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) A__ = "lower newer" A__ = self.prepare_image_inputs() A__ = processor(text=SCREAMING_SNAKE_CASE__ , images=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "token_type_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE__ ): processor() def snake_case__ ( self ) -> Union[str, Any]: A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = AlignProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) A__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A__ = processor.batch_decode(SCREAMING_SNAKE_CASE__ ) A__ = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self ) -> Union[str, Any]: A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = AlignProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) A__ = "lower newer" A__ = self.prepare_image_inputs() A__ = processor(text=SCREAMING_SNAKE_CASE__ , images=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
104
0
def _A ( lowerCamelCase , lowerCamelCase ): a__ : Optional[Any] = "" for i in table: res += inp[i - 1] return res def _A ( lowerCamelCase ): return data[1:] + data[0] def _A ( lowerCamelCase , lowerCamelCase ): a__ : Union[str, Any] = "" for i in range(len(lowerCamelCase ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def _A ( lowerCamelCase , lowerCamelCase ): a__ : List[str] = int("0b" + data[0] + data[-1] , 2 ) a__ : Any = int("0b" + data[1:3] , 2 ) return bin(s[row][col] )[2:] def _A ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): a__ : List[str] = message[:4] a__ : Dict = message[4:] a__ : Dict = apply_table(lowerCamelCase , lowerCamelCase ) a__ : int = xor(lowerCamelCase , lowerCamelCase ) a__ : Optional[int] = apply_sbox(lowerCamelCase , temp[:4] ) # noqa: E741 a__ : str = apply_sbox(lowerCamelCase , temp[4:] ) a__ : List[str] = "0" * (2 - len(lowerCamelCase )) + l # noqa: E741 a__ : Any = "0" * (2 - len(lowerCamelCase )) + r a__ : Union[str, Any] = apply_table(l + r , lowerCamelCase ) a__ : int = xor(lowerCamelCase , lowerCamelCase ) return temp + right if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Union[str, Any] = input("""Enter 10 bit key: """) SCREAMING_SNAKE_CASE__ : str = input("""Enter 8 bit message: """) SCREAMING_SNAKE_CASE__ : List[str] = [6, 3, 7, 4, 8, 5, 1_0, 9] SCREAMING_SNAKE_CASE__ : Tuple = [3, 5, 2, 7, 4, 1_0, 1, 9, 8, 6] SCREAMING_SNAKE_CASE__ : Optional[Any] = [2, 4, 3, 1] SCREAMING_SNAKE_CASE__ : int = [2, 6, 3, 1, 4, 8, 5, 7] SCREAMING_SNAKE_CASE__ : int = [4, 1, 3, 5, 7, 2, 8, 6] SCREAMING_SNAKE_CASE__ : Dict = [4, 1, 2, 3, 2, 3, 4, 1] SCREAMING_SNAKE_CASE__ : Tuple = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] SCREAMING_SNAKE_CASE__ : str = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation SCREAMING_SNAKE_CASE__ : Dict = apply_table(key, paa_table) SCREAMING_SNAKE_CASE__ : str = temp[:5] SCREAMING_SNAKE_CASE__ : str = temp[5:] SCREAMING_SNAKE_CASE__ : Tuple = left_shift(left) SCREAMING_SNAKE_CASE__ : Union[str, Any] = left_shift(right) SCREAMING_SNAKE_CASE__ : Union[str, Any] = apply_table(left + right, pa_table) SCREAMING_SNAKE_CASE__ : Union[str, Any] = left_shift(left) SCREAMING_SNAKE_CASE__ : int = left_shift(right) SCREAMING_SNAKE_CASE__ : Any = left_shift(left) SCREAMING_SNAKE_CASE__ : List[str] = left_shift(right) SCREAMING_SNAKE_CASE__ : Optional[Any] = apply_table(left + right, pa_table) # encryption SCREAMING_SNAKE_CASE__ : int = apply_table(message, IP) SCREAMING_SNAKE_CASE__ : Dict = function(expansion, sa, sa, keya, temp) SCREAMING_SNAKE_CASE__ : Dict = temp[4:] + temp[:4] SCREAMING_SNAKE_CASE__ : Dict = function(expansion, sa, sa, keya, temp) SCREAMING_SNAKE_CASE__ : Union[str, Any] = apply_table(temp, IP_inv) print("""Cipher text is:""", CT) # decryption SCREAMING_SNAKE_CASE__ : Optional[Any] = apply_table(CT, IP) SCREAMING_SNAKE_CASE__ : Union[str, Any] = function(expansion, sa, sa, keya, temp) SCREAMING_SNAKE_CASE__ : str = temp[4:] + temp[:4] SCREAMING_SNAKE_CASE__ : Tuple = function(expansion, sa, sa, keya, temp) SCREAMING_SNAKE_CASE__ : Tuple = apply_table(temp, IP_inv) print("""Plain text after decypting is:""", PT)
709
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ : Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : str = { """huggingface/informer-tourism-monthly""": ( """https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json""" ), # See all Informer models at https://huggingface.co/models?filter=informer } class __lowerCAmelCase ( _UpperCamelCase ): _UpperCamelCase : Optional[Any] = """informer""" _UpperCamelCase : Any = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self , snake_case = None , snake_case = None , snake_case = "student_t" , snake_case = "nll" , snake_case = 1 , snake_case = None , snake_case = "mean" , snake_case = 0 , snake_case = 0 , snake_case = 0 , snake_case = 0 , snake_case = None , snake_case = None , snake_case = 64 , snake_case = 32 , snake_case = 32 , snake_case = 2 , snake_case = 2 , snake_case = 2 , snake_case = 2 , snake_case = True , snake_case = "gelu" , snake_case = 0.05 , snake_case = 0.1 , snake_case = 0.1 , snake_case = 0.1 , snake_case = 0.1 , snake_case = 100 , snake_case = 0.02 , snake_case=True , snake_case = "prob" , snake_case = 5 , snake_case = True , **snake_case , ) -> Union[str, Any]: """simple docstring""" a__ : Optional[Any] = prediction_length a__ : Optional[int] = context_length or prediction_length a__ : Optional[int] = distribution_output a__ : str = loss a__ : Optional[Any] = input_size a__ : int = num_time_features a__ : Optional[int] = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] a__ : Optional[int] = scaling a__ : List[str] = num_dynamic_real_features a__ : Optional[int] = num_static_real_features a__ : Optional[int] = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(snake_case ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) a__ : List[Any] = cardinality else: a__ : Tuple = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(snake_case ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) a__ : Tuple = embedding_dimension else: a__ : int = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] a__ : Optional[Any] = num_parallel_samples # Transformer architecture configuration a__ : int = input_size * len(self.lags_sequence ) + self._number_of_features a__ : Union[str, Any] = d_model a__ : Any = encoder_attention_heads a__ : Optional[Any] = decoder_attention_heads a__ : int = encoder_ffn_dim a__ : List[Any] = decoder_ffn_dim a__ : List[str] = encoder_layers a__ : Any = decoder_layers a__ : List[str] = dropout a__ : int = attention_dropout a__ : List[Any] = activation_dropout a__ : Optional[int] = encoder_layerdrop a__ : Tuple = decoder_layerdrop a__ : Any = activation_function a__ : Tuple = init_std a__ : Optional[int] = use_cache # Informer a__ : Union[str, Any] = attention_type a__ : List[str] = sampling_factor a__ : Optional[int] = distil super().__init__(is_encoder_decoder=snake_case , **snake_case ) @property def _snake_case ( self ) -> int: """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
629
0
"""simple docstring""" from __future__ import annotations import requests def A ( snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = f"""https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty""" return requests.get(snake_case__ ).json() def A ( snake_case__ = 10 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = """https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty""" SCREAMING_SNAKE_CASE__ = requests.get(snake_case__ ).json()[:max_stories] return [get_hackernews_story(snake_case__ ) for story_id in story_ids] def A ( snake_case__ = 10 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = hackernews_top_stories(snake_case__ ) return "\n".join("""* [{title}]({url})""".format(**snake_case__ ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
196
"""simple docstring""" def A ( snake_case__ , snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = len(snake_case__ ) SCREAMING_SNAKE_CASE__ = len(snake_case__ ) SCREAMING_SNAKE_CASE__ = ( first_str_length if first_str_length > second_str_length else second_str_length ) SCREAMING_SNAKE_CASE__ = [] for char_count in range(snake_case__ ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(snake_case__ ) if __name__ == "__main__": print(alternative_string_arrange("AB", "XYZ"), end=" ")
196
1
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar lowercase_ = TypeVar("""T""") def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> int: return (position - 1) // 2 def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> int: return (2 * position) + 1 def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> int: return (2 * position) + 2 class SCREAMING_SNAKE_CASE (Generic[T] ): def __init__( self : Optional[Any] )-> None: """simple docstring""" lowercase__ = [] lowercase__ = {} lowercase__ = 0 def __len__( self : List[Any] )-> int: """simple docstring""" return self.elements def __repr__( self : str )-> str: """simple docstring""" return str(self.heap ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] )-> bool: """simple docstring""" return self.elements == 0 def SCREAMING_SNAKE_CASE_ ( self : List[Any] , a : T , a : int )-> None: """simple docstring""" self.heap.append((elem, weight) ) lowercase__ = self.elements self.elements += 1 self._bubble_up(a ) def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> T: """simple docstring""" if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) lowercase__ , lowercase__ = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: lowercase__ , lowercase__ = self.heap[0] self._bubble_down(a ) return elem def SCREAMING_SNAKE_CASE_ ( self : Any , a : T , a : int )-> None: """simple docstring""" lowercase__ = self.position_map[elem] lowercase__ = (elem, weight) if position > 0: lowercase__ = get_parent_position(a ) lowercase__ , lowercase__ = self.heap[parent_position] if parent_weight > weight: self._bubble_up(a ) else: self._bubble_down(a ) else: self._bubble_down(a ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , a : T )-> None: """simple docstring""" lowercase__ = self.position_map[elem] if curr_pos == 0: return None lowercase__ = get_parent_position(a ) lowercase__ , lowercase__ = self.heap[curr_pos] lowercase__ , lowercase__ = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(a , a ) return self._bubble_up(a ) return None def SCREAMING_SNAKE_CASE_ ( self : str , a : T )-> None: """simple docstring""" lowercase__ = self.position_map[elem] lowercase__ , lowercase__ = self.heap[curr_pos] lowercase__ = get_child_left_position(a ) lowercase__ = get_child_right_position(a ) if child_left_position < self.elements and child_right_position < self.elements: lowercase__ , lowercase__ = self.heap[child_left_position] lowercase__ , lowercase__ = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(a , a ) return self._bubble_down(a ) if child_left_position < self.elements: lowercase__ , lowercase__ = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(a , a ) return self._bubble_down(a ) else: return None if child_right_position < self.elements: lowercase__ , lowercase__ = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(a , a ) return self._bubble_down(a ) return None def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , a : int , a : int )-> None: """simple docstring""" lowercase__ = self.heap[nodea_pos][0] lowercase__ = self.heap[nodea_pos][0] lowercase__ , lowercase__ = ( self.heap[nodea_pos], self.heap[nodea_pos], ) lowercase__ = nodea_pos lowercase__ = nodea_pos class SCREAMING_SNAKE_CASE (Generic[T] ): def __init__( self : Union[str, Any] )-> None: """simple docstring""" lowercase__ = {} lowercase__ = 0 def __repr__( self : Dict )-> str: """simple docstring""" return str(self.connections ) def __len__( self : Tuple )-> int: """simple docstring""" return self.nodes def SCREAMING_SNAKE_CASE_ ( self : Any , a : T )-> None: """simple docstring""" if node not in self.connections: lowercase__ = {} self.nodes += 1 def SCREAMING_SNAKE_CASE_ ( self : List[str] , a : T , a : T , a : int )-> None: """simple docstring""" self.add_node(a ) self.add_node(a ) lowercase__ = weight lowercase__ = weight def __UpperCamelCase (_SCREAMING_SNAKE_CASE , ) -> tuple[dict[T, int], dict[T, T | None]]: lowercase__ = {node: maxsize for node in graph.connections} lowercase__ = {node: None for node in graph.connections} lowercase__ = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if priority_queue.is_empty(): return dist, parent # initialization lowercase__ = priority_queue.extract_min() lowercase__ = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: lowercase__ = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(_SCREAMING_SNAKE_CASE , dist[neighbour] ) lowercase__ = node # running prim's algorithm while not priority_queue.is_empty(): lowercase__ = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: lowercase__ = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(_SCREAMING_SNAKE_CASE , dist[neighbour] ) lowercase__ = node return dist, parent
45
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE (UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): _UpperCamelCase : List[Any] = StableDiffusionSAGPipeline _UpperCamelCase : str = TEXT_TO_IMAGE_PARAMS _UpperCamelCase : Dict = TEXT_TO_IMAGE_BATCH_PARAMS _UpperCamelCase : str = TEXT_TO_IMAGE_IMAGE_PARAMS _UpperCamelCase : Optional[int] = TEXT_TO_IMAGE_IMAGE_PARAMS _UpperCamelCase : Union[str, Any] = False def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> Dict: """simple docstring""" torch.manual_seed(0 ) lowercase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) lowercase__ = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=a , set_alpha_to_one=a , ) torch.manual_seed(0 ) lowercase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) lowercase__ = CLIPTextModel(a ) lowercase__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowercase__ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def SCREAMING_SNAKE_CASE_ ( self : Tuple , a : Optional[int] , a : Any=0 )-> Union[str, Any]: """simple docstring""" if str(a ).startswith('mps' ): lowercase__ = torch.manual_seed(a ) else: lowercase__ = torch.Generator(device=a ).manual_seed(a ) lowercase__ = { 'prompt': '.', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 1.0, 'sag_scale': 1.0, 'output_type': 'numpy', } return inputs def SCREAMING_SNAKE_CASE_ ( self : Any )-> Any: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self : str )-> int: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Optional[Any]: """simple docstring""" lowercase__ = StableDiffusionSAGPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' ) lowercase__ = sag_pipe.to(a ) sag_pipe.set_progress_bar_config(disable=a ) lowercase__ = '.' lowercase__ = torch.manual_seed(0 ) lowercase__ = sag_pipe( [prompt] , generator=a , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' ) lowercase__ = output.images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase__ = np.array([0.1568, 0.1738, 0.1695, 0.1693, 0.1507, 0.1705, 0.1547, 0.1751, 0.1949] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Optional[Any]: """simple docstring""" lowercase__ = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) lowercase__ = sag_pipe.to(a ) sag_pipe.set_progress_bar_config(disable=a ) lowercase__ = '.' lowercase__ = torch.manual_seed(0 ) lowercase__ = sag_pipe( [prompt] , generator=a , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' ) lowercase__ = output.images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase__ = np.array([0.3459, 0.2876, 0.2537, 0.3002, 0.2671, 0.2160, 0.3026, 0.2262, 0.2371] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def SCREAMING_SNAKE_CASE_ ( self : Optional[int] )-> List[Any]: """simple docstring""" lowercase__ = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) lowercase__ = sag_pipe.to(a ) sag_pipe.set_progress_bar_config(disable=a ) lowercase__ = '.' lowercase__ = torch.manual_seed(0 ) lowercase__ = sag_pipe( [prompt] , width=768 , height=512 , generator=a , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' , ) lowercase__ = output.images assert image.shape == (1, 512, 768, 3)
45
1
'''simple docstring''' def _A ( A__ ): """simple docstring""" if not isinstance(A__ , A__ ): raise ValueError('''check_bouncy() accepts only integer arguments''' ) __lowercase = str(A__ ) __lowercase = ''''''.join(sorted(A__ ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def _A ( A__ = 99 ): """simple docstring""" if not 0 < percent < 100: raise ValueError('''solution() only accepts values from 0 to 100''' ) __lowercase = 0 __lowercase = 1 while True: if check_bouncy(A__ ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(f'{solution(99)}')
41
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging lowerCAmelCase : int = logging.get_logger(__name__) lowerCAmelCase : Optional[int] = '''▁''' lowerCAmelCase : Tuple = {'''vocab_file''': '''sentencepiece.bpe.model'''} lowerCAmelCase : int = { '''vocab_file''': { '''facebook/mbart-large-50-one-to-many-mmt''': ( '''https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model''' ), } } lowerCAmelCase : str = { '''facebook/mbart-large-50-one-to-many-mmt''': 1024, } # fmt: off lowerCAmelCase : Any = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN''', '''af_ZA''', '''az_AZ''', '''bn_IN''', '''fa_IR''', '''he_IL''', '''hr_HR''', '''id_ID''', '''ka_GE''', '''km_KH''', '''mk_MK''', '''ml_IN''', '''mn_MN''', '''mr_IN''', '''pl_PL''', '''ps_AF''', '''pt_XX''', '''sv_SE''', '''sw_KE''', '''ta_IN''', '''te_IN''', '''th_TH''', '''tl_XX''', '''uk_UA''', '''ur_PK''', '''xh_ZA''', '''gl_ES''', '''sl_SI'''] class SCREAMING_SNAKE_CASE__ ( __a ): '''simple docstring''' UpperCamelCase__ : Optional[Any] = VOCAB_FILES_NAMES UpperCamelCase__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ : int = ['''input_ids''', '''attention_mask'''] UpperCamelCase__ : List[int] = [] UpperCamelCase__ : List[int] = [] def __init__( self : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : str="</s>" , lowerCAmelCase__ : Dict="</s>" , lowerCAmelCase__ : Any="<s>" , lowerCAmelCase__ : Optional[int]="<unk>" , lowerCAmelCase__ : List[str]="<pad>" , lowerCAmelCase__ : int="<mask>" , lowerCAmelCase__ : Optional[Dict[str, Any]] = None , **lowerCAmelCase__ : Optional[Any] , ) -> None: # Mask token behave like a normal word, i.e. include the space before it snake_case__ = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token snake_case__ = {} if sp_model_kwargs is None else sp_model_kwargs snake_case__ = kwargs.get("""additional_special_tokens""" , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=lowerCAmelCase__ , tgt_lang=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase__ , ) snake_case__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCAmelCase__ ) ) snake_case__ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token snake_case__ = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab snake_case__ = 1 snake_case__ = len(self.sp_model ) snake_case__ = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowerCAmelCase__ ) } snake_case__ = {v: k for k, v in self.lang_code_to_id.items()} snake_case__ = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) snake_case__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} snake_case__ = src_lang if src_lang is not None else """en_XX""" snake_case__ = self.lang_code_to_id[self._src_lang] snake_case__ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def UpperCAmelCase_ ( self : Any ) -> int: return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def UpperCAmelCase_ ( self : List[Any] ) -> str: return self._src_lang @src_lang.setter def UpperCAmelCase_ ( self : Optional[Any] , lowerCAmelCase__ : str ) -> None: snake_case__ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Union[str, Any] ) -> Dict: snake_case__ = self.__dict__.copy() snake_case__ = None return state def __setstate__( self : int , lowerCAmelCase__ : Dict ) -> None: snake_case__ = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): snake_case__ = {} snake_case__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase_ ( self : int ) -> Dict: snake_case__ = {self.convert_ids_to_tokens(lowerCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase_ ( self : int , lowerCAmelCase__ : str ) -> List[str]: return self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__ ) def UpperCAmelCase_ ( self : List[Any] , lowerCAmelCase__ : str ) -> int: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case__ = self.sp_model.PieceToId(lowerCAmelCase__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCAmelCase_ ( self : str , lowerCAmelCase__ : int ) -> str: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCAmelCase_ ( self : Tuple , lowerCAmelCase__ : Any ) -> Any: snake_case__ = [] snake_case__ = """""" snake_case__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCAmelCase__ ) + token snake_case__ = True snake_case__ = [] else: current_sub_tokens.append(lowerCAmelCase__ ) snake_case__ = False out_string += self.sp_model.decode(lowerCAmelCase__ ) return out_string.strip() def UpperCAmelCase_ ( self : str , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case__ = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase__ , """wb""" ) as fi: snake_case__ = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase__ ) return (out_vocab_file,) def UpperCAmelCase_ ( self : Union[str, Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) snake_case__ = [1] * len(self.prefix_tokens ) snake_case__ = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCAmelCase__ )) + suffix_ones return prefix_ones + ([0] * len(lowerCAmelCase__ )) + ([0] * len(lowerCAmelCase__ )) + suffix_ones def UpperCAmelCase_ ( self : int , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCAmelCase_ ( self : Any , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] , lowerCAmelCase__ : Optional[str] , **lowerCAmelCase__ : Union[str, Any] ) -> Any: if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) snake_case__ = src_lang snake_case__ = self(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ ) snake_case__ = self.convert_tokens_to_ids(lowerCAmelCase__ ) snake_case__ = tgt_lang_id return inputs def UpperCAmelCase_ ( self : List[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str = "en_XX" , lowerCAmelCase__ : Optional[List[str]] = None , lowerCAmelCase__ : str = "ro_RO" , **lowerCAmelCase__ : Dict , ) -> BatchEncoding: snake_case__ = src_lang snake_case__ = tgt_lang return super().prepare_seqaseq_batch(lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) def UpperCAmelCase_ ( self : List[Any] ) -> Union[str, Any]: return self.set_src_lang_special_tokens(self.src_lang ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> str: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCAmelCase_ ( self : Tuple , lowerCAmelCase__ : str ) -> None: snake_case__ = self.lang_code_to_id[src_lang] snake_case__ = [self.cur_lang_code_id] snake_case__ = [self.eos_token_id] def UpperCAmelCase_ ( self : str , lowerCAmelCase__ : str ) -> None: snake_case__ = self.lang_code_to_id[tgt_lang] snake_case__ = [self.cur_lang_code_id] snake_case__ = [self.eos_token_id]
214
0
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase__ ( snake_case__ ): snake_case_ = ['''image_processor''', '''tokenizer'''] snake_case_ = '''LayoutLMv3ImageProcessor''' snake_case_ = ('''LayoutLMv3Tokenizer''', '''LayoutLMv3TokenizerFast''') def __init__( self , A__=None , A__=None , **A__ ): """simple docstring""" UpperCAmelCase_: str = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , A__ , ) UpperCAmelCase_: int = kwargs.pop("feature_extractor" ) UpperCAmelCase_: Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(A__ , A__ ) def __call__( self , A__ , A__ = None , A__ = None , A__ = None , A__ = None , A__ = True , A__ = False , A__ = None , A__ = None , A__ = 0 , A__ = None , A__ = None , A__ = None , A__ = False , A__ = False , A__ = False , A__ = False , A__ = True , A__ = None , **A__ , ): """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( "You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True." ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( "You cannot provide word labels if you initialized the image processor with apply_ocr set to True." ) # first, apply the image processor UpperCAmelCase_: int = self.image_processor(images=A__ , return_tensors=A__ ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(A__ , A__ ): UpperCAmelCase_: Optional[Any] = [text] # add batch dimension (as the image processor always adds a batch dimension) UpperCAmelCase_: str = features["words"] UpperCAmelCase_: Any = self.tokenizer( text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=A__ , add_special_tokens=A__ , padding=A__ , truncation=A__ , max_length=A__ , stride=A__ , pad_to_multiple_of=A__ , return_token_type_ids=A__ , return_attention_mask=A__ , return_overflowing_tokens=A__ , return_special_tokens_mask=A__ , return_offsets_mapping=A__ , return_length=A__ , verbose=A__ , return_tensors=A__ , **A__ , ) # add pixel values UpperCAmelCase_: List[str] = features.pop("pixel_values" ) if return_overflowing_tokens is True: UpperCAmelCase_: Tuple = self.get_overflowing_images(A__ , encoded_inputs["overflow_to_sample_mapping"] ) UpperCAmelCase_: List[str] = images return encoded_inputs def snake_case_ ( self , A__ , A__ ): """simple docstring""" UpperCAmelCase_: Union[str, Any] = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(A__ ) != len(A__ ): raise ValueError( "Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got" F" {len(A__ )} and {len(A__ )}" ) return images_with_overflow def snake_case_ ( self , *A__ , **A__ ): """simple docstring""" return self.tokenizer.batch_decode(*A__ , **A__ ) def snake_case_ ( self , *A__ , **A__ ): """simple docstring""" return self.tokenizer.decode(*A__ , **A__ ) @property def snake_case_ ( self ): """simple docstring""" return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def snake_case_ ( self ): """simple docstring""" warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , A__ , ) return self.image_processor_class @property def snake_case_ ( self ): """simple docstring""" warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , A__ , ) return self.image_processor
306
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class UpperCAmelCase__ ( unittest.TestCase ): def snake_case_ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def snake_case_ ( self ): """simple docstring""" UpperCAmelCase_: str = 1 UpperCAmelCase_: Optional[Any] = 3 UpperCAmelCase_: Optional[int] = (32, 32) UpperCAmelCase_: int = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(A__ ) return image @property def snake_case_ ( self ): """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase_: str = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=A__ , only_cross_attention=(True, True, False) , num_class_embeds=100 , ) return model @property def snake_case_ ( self ): """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase_: int = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def snake_case_ ( self ): """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase_: List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="gelu" , projection_dim=512 , ) return CLIPTextModel(A__ ) def snake_case_ ( self ): """simple docstring""" UpperCAmelCase_: Any = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_: Optional[Any] = self.dummy_cond_unet_upscale UpperCAmelCase_: Dict = DDPMScheduler() UpperCAmelCase_: Optional[int] = DDIMScheduler(prediction_type="v_prediction" ) UpperCAmelCase_: Union[str, Any] = self.dummy_vae UpperCAmelCase_: Optional[int] = self.dummy_text_encoder UpperCAmelCase_: str = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase_: Optional[int] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_: Dict = Image.fromarray(np.uinta(A__ ) ).convert("RGB" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk UpperCAmelCase_: Optional[int] = StableDiffusionUpscalePipeline( unet=A__ , low_res_scheduler=A__ , scheduler=A__ , vae=A__ , text_encoder=A__ , tokenizer=A__ , max_noise_level=350 , ) UpperCAmelCase_: Optional[int] = sd_pipe.to(A__ ) sd_pipe.set_progress_bar_config(disable=A__ ) UpperCAmelCase_: Union[str, Any] = "A painting of a squirrel eating a burger" UpperCAmelCase_: Any = torch.Generator(device=A__ ).manual_seed(0 ) UpperCAmelCase_: int = sd_pipe( [prompt] , image=A__ , generator=A__ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase_: Optional[Any] = output.images UpperCAmelCase_: List[str] = torch.Generator(device=A__ ).manual_seed(0 ) UpperCAmelCase_: List[Any] = sd_pipe( [prompt] , image=A__ , generator=A__ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , return_dict=A__ , )[0] UpperCAmelCase_: List[Any] = image[0, -3:, -3:, -1] UpperCAmelCase_: List[str] = image_from_tuple[0, -3:, -3:, -1] UpperCAmelCase_: int = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) UpperCAmelCase_: List[str] = np.array([0.3_113, 0.3_910, 0.4_272, 0.4_859, 0.5_061, 0.4_652, 0.5_362, 0.5_715, 0.5_661] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def snake_case_ ( self ): """simple docstring""" UpperCAmelCase_: Optional[int] = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_: Optional[Any] = self.dummy_cond_unet_upscale UpperCAmelCase_: Union[str, Any] = DDPMScheduler() UpperCAmelCase_: Optional[Any] = DDIMScheduler(prediction_type="v_prediction" ) UpperCAmelCase_: Dict = self.dummy_vae UpperCAmelCase_: Any = self.dummy_text_encoder UpperCAmelCase_: Tuple = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase_: Union[str, Any] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_: List[str] = Image.fromarray(np.uinta(A__ ) ).convert("RGB" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk UpperCAmelCase_: str = StableDiffusionUpscalePipeline( unet=A__ , low_res_scheduler=A__ , scheduler=A__ , vae=A__ , text_encoder=A__ , tokenizer=A__ , max_noise_level=350 , ) UpperCAmelCase_: int = sd_pipe.to(A__ ) sd_pipe.set_progress_bar_config(disable=A__ ) UpperCAmelCase_: Any = "A painting of a squirrel eating a burger" UpperCAmelCase_: Union[str, Any] = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase_: Any = output.images assert image.shape[0] == 2 UpperCAmelCase_: Any = torch.Generator(device=A__ ).manual_seed(0 ) UpperCAmelCase_: Any = sd_pipe( [prompt] , image=A__ , generator=A__ , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase_: Dict = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def snake_case_ ( self ): """simple docstring""" UpperCAmelCase_: List[str] = self.dummy_cond_unet_upscale UpperCAmelCase_: Dict = DDPMScheduler() UpperCAmelCase_: int = DDIMScheduler(prediction_type="v_prediction" ) UpperCAmelCase_: Dict = self.dummy_vae UpperCAmelCase_: Dict = self.dummy_text_encoder UpperCAmelCase_: Union[str, Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase_: List[str] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_: Union[str, Any] = Image.fromarray(np.uinta(A__ ) ).convert("RGB" ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 UpperCAmelCase_: List[str] = unet.half() UpperCAmelCase_: Union[str, Any] = text_encoder.half() # make sure here that pndm scheduler skips prk UpperCAmelCase_: Optional[Any] = StableDiffusionUpscalePipeline( unet=A__ , low_res_scheduler=A__ , scheduler=A__ , vae=A__ , text_encoder=A__ , tokenizer=A__ , max_noise_level=350 , ) UpperCAmelCase_: Optional[int] = sd_pipe.to(A__ ) sd_pipe.set_progress_bar_config(disable=A__ ) UpperCAmelCase_: Any = "A painting of a squirrel eating a burger" UpperCAmelCase_: List[Any] = torch.manual_seed(0 ) UpperCAmelCase_: str = sd_pipe( [prompt] , image=A__ , generator=A__ , num_inference_steps=2 , output_type="np" , ).images UpperCAmelCase_: str = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase ): def snake_case_ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self ): """simple docstring""" UpperCAmelCase_: str = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) UpperCAmelCase_: List[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat.npy" ) UpperCAmelCase_: Optional[Any] = "stabilityai/stable-diffusion-x4-upscaler" UpperCAmelCase_: Optional[Any] = StableDiffusionUpscalePipeline.from_pretrained(A__ ) pipe.to(A__ ) pipe.set_progress_bar_config(disable=A__ ) pipe.enable_attention_slicing() UpperCAmelCase_: List[str] = "a cat sitting on a park bench" UpperCAmelCase_: Any = torch.manual_seed(0 ) UpperCAmelCase_: Any = pipe( prompt=A__ , image=A__ , generator=A__ , output_type="np" , ) UpperCAmelCase_: Dict = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1E-3 def snake_case_ ( self ): """simple docstring""" UpperCAmelCase_: Optional[int] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) UpperCAmelCase_: Dict = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat_fp16.npy" ) UpperCAmelCase_: Optional[int] = "stabilityai/stable-diffusion-x4-upscaler" UpperCAmelCase_: Any = StableDiffusionUpscalePipeline.from_pretrained( A__ , torch_dtype=torch.floataa , ) pipe.to(A__ ) pipe.set_progress_bar_config(disable=A__ ) pipe.enable_attention_slicing() UpperCAmelCase_: Any = "a cat sitting on a park bench" UpperCAmelCase_: Optional[int] = torch.manual_seed(0 ) UpperCAmelCase_: Optional[Any] = pipe( prompt=A__ , image=A__ , generator=A__ , output_type="np" , ) UpperCAmelCase_: str = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def snake_case_ ( self ): """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCAmelCase_: List[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) UpperCAmelCase_: Tuple = "stabilityai/stable-diffusion-x4-upscaler" UpperCAmelCase_: Union[str, Any] = StableDiffusionUpscalePipeline.from_pretrained( A__ , torch_dtype=torch.floataa , ) pipe.to(A__ ) pipe.set_progress_bar_config(disable=A__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() UpperCAmelCase_: str = "a cat sitting on a park bench" UpperCAmelCase_: Optional[int] = torch.manual_seed(0 ) UpperCAmelCase_: Union[str, Any] = pipe( prompt=A__ , image=A__ , generator=A__ , num_inference_steps=5 , output_type="np" , ) UpperCAmelCase_: Any = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
306
1
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def UpperCamelCase ( _lowerCamelCase : Tuple ): if "cls_token" in name: A__ = name.replace("cls_token" , "vit.embeddings.cls_token" ) if "mask_token" in name: A__ = name.replace("mask_token" , "decoder.mask_token" ) if "decoder_pos_embed" in name: A__ = name.replace("decoder_pos_embed" , "decoder.decoder_pos_embed" ) if "pos_embed" in name and "decoder" not in name: A__ = name.replace("pos_embed" , "vit.embeddings.position_embeddings" ) if "patch_embed.proj" in name: A__ = name.replace("patch_embed.proj" , "vit.embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: A__ = name.replace("patch_embed.norm" , "vit.embeddings.norm" ) if "decoder_blocks" in name: A__ = name.replace("decoder_blocks" , "decoder.decoder_layers" ) if "blocks" in name: A__ = name.replace("blocks" , "vit.encoder.layer" ) if "attn.proj" in name: A__ = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: A__ = name.replace("attn" , "attention.self" ) if "norm1" in name: A__ = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: A__ = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: A__ = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: A__ = name.replace("mlp.fc2" , "output.dense" ) if "decoder_embed" in name: A__ = name.replace("decoder_embed" , "decoder.decoder_embed" ) if "decoder_norm" in name: A__ = name.replace("decoder_norm" , "decoder.decoder_norm" ) if "decoder_pred" in name: A__ = name.replace("decoder_pred" , "decoder.decoder_pred" ) if "norm.weight" in name and "decoder" not in name: A__ = name.replace("norm.weight" , "vit.layernorm.weight" ) if "norm.bias" in name and "decoder" not in name: A__ = name.replace("norm.bias" , "vit.layernorm.bias" ) return name def UpperCamelCase ( _lowerCamelCase : Dict , _lowerCamelCase : int ): for key in orig_state_dict.copy().keys(): A__ = orig_state_dict.pop(_lowerCamelCase ) if "qkv" in key: A__ = key.split("." ) A__ = int(key_split[1] ) if "decoder_blocks" in key: A__ = config.decoder_hidden_size A__ = "decoder.decoder_layers." if "weight" in key: A__ = val[:dim, :] A__ = val[dim : dim * 2, :] A__ = val[-dim:, :] elif "bias" in key: A__ = val[:dim] A__ = val[dim : dim * 2] A__ = val[-dim:] else: A__ = config.hidden_size A__ = "vit.encoder.layer." if "weight" in key: A__ = val[:dim, :] A__ = val[dim : dim * 2, :] A__ = val[-dim:, :] elif "bias" in key: A__ = val[:dim] A__ = val[dim : dim * 2] A__ = val[-dim:] else: A__ = val return orig_state_dict def UpperCamelCase ( _lowerCamelCase : Optional[int] , _lowerCamelCase : Optional[int] ): A__ = ViTMAEConfig() if "large" in checkpoint_url: A__ = 10_24 A__ = 40_96 A__ = 24 A__ = 16 elif "huge" in checkpoint_url: A__ = 14 A__ = 12_80 A__ = 51_20 A__ = 32 A__ = 16 A__ = ViTMAEForPreTraining(_lowerCamelCase ) A__ = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location="cpu" )["model"] A__ = ViTMAEImageProcessor(size=config.image_size ) A__ = convert_state_dict(_lowerCamelCase , _lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) model.eval() A__ = "https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg" A__ = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) A__ = ViTMAEImageProcessor(size=config.image_size ) A__ = image_processor(images=_lowerCamelCase , return_tensors="pt" ) # forward pass torch.manual_seed(2 ) A__ = model(**_lowerCamelCase ) A__ = outputs.logits if "large" in checkpoint_url: A__ = torch.tensor( [[-0.7_3_0_9, -0.7_1_2_8, -1.0_1_6_9], [-1.0_1_6_1, -0.9_0_5_8, -1.1_8_7_8], [-1.0_4_7_8, -0.9_4_1_1, -1.1_9_1_1]] ) elif "huge" in checkpoint_url: A__ = torch.tensor( [[-1.1_5_9_9, -0.9_1_9_9, -1.2_2_2_1], [-1.1_9_5_2, -0.9_2_6_9, -1.2_3_0_7], [-1.2_1_4_3, -0.9_3_3_7, -1.2_2_6_2]] ) else: A__ = torch.tensor( [[-0.9_1_9_2, -0.8_4_8_1, -1.1_2_5_9], [-1.1_3_4_9, -1.0_0_3_4, -1.2_5_9_9], [-1.1_7_5_7, -1.0_4_2_9, -1.2_7_2_6]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , _lowerCamelCase , atol=1e-4 ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCamelCase ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": __lowerCAmelCase : List[Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) __lowerCAmelCase : int =parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
440
'''simple docstring''' import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : Any =logging.get_logger(__name__) __lowerCAmelCase : int ="https://openaipublic.azureedge.net/jukebox/models/" __lowerCAmelCase : Any ={ "jukebox-1b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "1b_lyrics/prior_level_2.pth.tar", ], "jukebox-5b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "5b_lyrics/prior_level_2.pth.tar", ], } def UpperCamelCase ( _lowerCamelCase : str ): if key.endswith(".model.1.bias" ) and len(key.split("." ) ) > 10: A__ = key.replace(".model.1.bias" , ".conv1d_1.bias" ) elif key.endswith(".model.1.weight" ) and len(key.split("." ) ) > 10: A__ = key.replace(".model.1.weight" , ".conv1d_1.weight" ) elif key.endswith(".model.3.bias" ) and len(key.split("." ) ) > 10: A__ = key.replace(".model.3.bias" , ".conv1d_2.bias" ) elif key.endswith(".model.3.weight" ) and len(key.split("." ) ) > 10: A__ = key.replace(".model.3.weight" , ".conv1d_2.weight" ) if "conditioner_blocks.0." in key: A__ = key.replace("conditioner_blocks.0" , "conditioner_blocks" ) if "prime_prior" in key: A__ = key.replace("prime_prior" , "encoder" ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: A__ = key.replace(".emb." , "." ) if key.endswith("k" ): # replace vqvae.X.k with vqvae.X.codebook return key.replace(".k" , ".codebook" ) if "y_emb." in key: return key.replace("y_emb." , "metadata_embedding." ) if "x_emb.emb." in key: A__ = key.replace("0.x_emb.emb" , "embed_tokens" ) if "prime_state_ln" in key: return key.replace("prime_state_ln" , "encoder.final_layer_norm" ) if ".ln" in key: return key.replace(".ln" , ".layer_norm" ) if "_ln" in key: return key.replace("_ln" , "_layer_norm" ) if "prime_state_proj" in key: return key.replace("prime_state_proj" , "encoder.proj_in" ) if "prime_x_out" in key: return key.replace("prime_x_out" , "encoder.lm_head" ) if "prior.x_out" in key: return key.replace("x_out" , "fc_proj_out" ) if "x_emb" in key: return key.replace("x_emb" , "embed_tokens" ) return key def UpperCamelCase ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : Dict , _lowerCamelCase : str ): A__ = {} import re A__ = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) A__ = re.compile( r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) A__ = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) A__ = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) A__ = re.compile( r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) A__ = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) A__ = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)" ) A__ = re.compile( r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) A__ = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)" ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_lowerCamelCase ): A__ = re_encoder_block_conv_in.match(_lowerCamelCase ) A__ = regex_match.groups() A__ = int(groups[2] ) * 2 + int(groups[3] ) A__ = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}" A__ = re_encoder_block_conv_in.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_resnet.fullmatch(_lowerCamelCase ): A__ = re_encoder_block_resnet.match(_lowerCamelCase ) A__ = regex_match.groups() A__ = int(groups[2] ) * 2 + int(groups[3] ) A__ = {"1": 1, "3": 2}[groups[-2]] A__ = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}." A__ = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" A__ = prefix + resnet_block A__ = re_encoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_proj_out.fullmatch(_lowerCamelCase ): A__ = re_encoder_block_proj_out.match(_lowerCamelCase ) A__ = regex_match.groups() A__ = F"encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}" A__ = re_encoder_block_proj_out.sub(_lowerCamelCase , _lowerCamelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_lowerCamelCase ): A__ = re_decoder_block_conv_out.match(_lowerCamelCase ) A__ = regex_match.groups() A__ = int(groups[2] ) * 2 + int(groups[3] ) - 2 A__ = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}" A__ = re_decoder_block_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_resnet.fullmatch(_lowerCamelCase ): A__ = re_decoder_block_resnet.match(_lowerCamelCase ) A__ = regex_match.groups() A__ = int(groups[2] ) * 2 + int(groups[3] ) - 2 A__ = {"1": 1, "3": 2}[groups[-2]] A__ = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}." A__ = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" A__ = prefix + resnet_block A__ = re_decoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_proj_in.fullmatch(_lowerCamelCase ): A__ = re_decoder_block_proj_in.match(_lowerCamelCase ) A__ = regex_match.groups() A__ = F"decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}" A__ = re_decoder_block_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_lowerCamelCase ): A__ = re_prior_cond_conv_out.match(_lowerCamelCase ) A__ = regex_match.groups() A__ = int(groups[1] ) * 2 + int(groups[2] ) - 2 A__ = F"conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}" A__ = re_prior_cond_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_resnet.fullmatch(_lowerCamelCase ): A__ = re_prior_cond_resnet.match(_lowerCamelCase ) A__ = regex_match.groups() A__ = int(groups[1] ) * 2 + int(groups[2] ) - 2 A__ = {"1": 1, "3": 2}[groups[-2]] A__ = F"conditioner_blocks.upsampler.upsample_block.{block_index}." A__ = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" A__ = prefix + resnet_block A__ = re_prior_cond_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_proj_in.fullmatch(_lowerCamelCase ): A__ = re_prior_cond_proj_in.match(_lowerCamelCase ) A__ = regex_match.groups() A__ = F"conditioner_blocks.upsampler.proj_in.{groups[-1]}" A__ = re_prior_cond_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # keep original key else: A__ = original_key A__ = replace_key(_lowerCamelCase ) if F"{key_prefix}.{key}" not in model_state_dict or key is None: print(F"failed converting {original_key} to {key}, does not match" ) # handle missmatched shape elif value.shape != model_state_dict[F"{key_prefix}.{key}"].shape: A__ = model_state_dict[F"{key_prefix}.{key}"] print(F"{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match" ) A__ = original_key A__ = original_key A__ = value return new_dict @torch.no_grad() def UpperCamelCase ( _lowerCamelCase : str=None , _lowerCamelCase : Dict=None ): for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" ): A__ = requests.get(F"{PREFIX}{file}" , allow_redirects=_lowerCamelCase ) os.makedirs(F"{pytorch_dump_folder_path}/" , exist_ok=_lowerCamelCase ) open(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" , "wb" ).write(r.content ) A__ = MODEL_MAPPING[model_name.split("/" )[-1]] A__ = JukeboxConfig.from_pretrained(_lowerCamelCase ) A__ = JukeboxModel(_lowerCamelCase ) A__ = [] A__ = {} for i, dict_name in enumerate(_lowerCamelCase ): A__ = torch.load(F"{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}" )["model"] A__ = {} for k in old_dic.keys(): if k.endswith(".b" ): A__ = old_dic[k] elif k.endswith(".w" ): A__ = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: A__ = old_dic[k] else: A__ = old_dic[k] A__ = "vqvae" if i == 0 else F"priors.{3 - i}" A__ = fix_jukebox_keys(_lowerCamelCase , model.state_dict() , _lowerCamelCase , _lowerCamelCase ) weight_dict.append(_lowerCamelCase ) A__ = weight_dict.pop(0 ) model.vqvae.load_state_dict(_lowerCamelCase ) for i in range(len(_lowerCamelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) with open(F"{pytorch_dump_folder_path}/mapping.json" , "w" ) as txtfile: json.dump(_lowerCamelCase , _lowerCamelCase ) print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCamelCase ) return weight_dict if __name__ == "__main__": __lowerCAmelCase : Dict =argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="jukebox-5b-lyrics", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="jukebox-5b-lyrics-converted", type=str, help="Path to the output PyTorch model directory.", ) __lowerCAmelCase : int =parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
440
1
import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _UpperCAmelCase ( A__ , unittest.TestCase ): UpperCamelCase__ = CodeGenTokenizer UpperCamelCase__ = CodeGenTokenizerFast UpperCamelCase__ = True UpperCamelCase__ = {'''add_prefix_space''': True} UpperCamelCase__ = False def snake_case_ ( self): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt A__ = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', '''<|endoftext|>''', ] A__ = dict(zip(a__ , range(len(a__)))) A__ = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] A__ = {'''unk_token''': '''<unk>'''} A__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) A__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as fp: fp.write(json.dumps(a__) + '''\n''') with open(self.merges_file , '''w''' , encoding='''utf-8''') as fp: fp.write('''\n'''.join(a__)) def snake_case_ ( self , **a__): kwargs.update(self.special_tokens_map) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **a__) def snake_case_ ( self , **a__): kwargs.update(self.special_tokens_map) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **a__) def snake_case_ ( self , a__): A__ = '''lower newer''' A__ = '''lower newer''' return input_text, output_text def snake_case_ ( self): A__ = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map) A__ = '''lower newer''' A__ = ['''\u0120low''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] A__ = tokenizer.tokenize(a__ , add_prefix_space=a__) self.assertListEqual(a__ , a__) A__ = tokens + [tokenizer.unk_token] A__ = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__) , a__) def snake_case_ ( self): if not self.test_rust_tokenizer: return A__ = self.get_tokenizer() A__ = self.get_rust_tokenizer(add_prefix_space=a__) A__ = '''lower newer''' # Testing tokenization A__ = tokenizer.tokenize(a__ , add_prefix_space=a__) A__ = rust_tokenizer.tokenize(a__) self.assertListEqual(a__ , a__) # Testing conversion to ids without special tokens A__ = tokenizer.encode(a__ , add_special_tokens=a__ , add_prefix_space=a__) A__ = rust_tokenizer.encode(a__ , add_special_tokens=a__) self.assertListEqual(a__ , a__) # Testing conversion to ids with special tokens A__ = self.get_rust_tokenizer(add_prefix_space=a__) A__ = tokenizer.encode(a__ , add_prefix_space=a__) A__ = rust_tokenizer.encode(a__) self.assertListEqual(a__ , a__) # Testing the unknown token A__ = tokens + [rust_tokenizer.unk_token] A__ = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(a__) , a__) def snake_case_ ( self , *a__ , **a__): # It's very difficult to mix/test pretokenization with byte-level # And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def snake_case_ ( self , a__=1_5): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})"): A__ = self.rust_tokenizer_class.from_pretrained(a__ , **a__) # Simple input A__ = '''This is a simple input''' A__ = ['''This is a simple input 1''', '''This is a simple input 2'''] A__ = ('''This is a simple input''', '''This is a pair''') A__ = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(a__ , tokenizer_r.encode , a__ , max_length=a__ , padding='''max_length''') # Simple input self.assertRaises(a__ , tokenizer_r.encode_plus , a__ , max_length=a__ , padding='''max_length''') # Simple input self.assertRaises( a__ , tokenizer_r.batch_encode_plus , a__ , max_length=a__ , padding='''max_length''' , ) # Pair input self.assertRaises(a__ , tokenizer_r.encode , a__ , max_length=a__ , padding='''max_length''') # Pair input self.assertRaises(a__ , tokenizer_r.encode_plus , a__ , max_length=a__ , padding='''max_length''') # Pair input self.assertRaises( a__ , tokenizer_r.batch_encode_plus , a__ , max_length=a__ , padding='''max_length''' , ) def snake_case_ ( self): A__ = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token='''<pad>''') # Simple input A__ = '''This is a simple input''' A__ = ['''This is a simple input looooooooong''', '''This is a simple input'''] A__ = ('''This is a simple input''', '''This is a pair''') A__ = [ ('''This is a simple input loooooong''', '''This is a simple input'''), ('''This is a simple pair loooooong''', '''This is a simple pair'''), ] A__ = tokenizer.pad_token_id A__ = tokenizer(a__ , padding='''max_length''' , max_length=3_0 , return_tensors='''np''') A__ = tokenizer(a__ , padding=a__ , truncate=a__ , return_tensors='''np''') A__ = tokenizer(*a__ , padding='''max_length''' , max_length=6_0 , return_tensors='''np''') A__ = tokenizer(a__ , padding=a__ , truncate=a__ , return_tensors='''np''') # s # test single string max_length padding self.assertEqual(out_s['''input_ids'''].shape[-1] , 3_0) self.assertTrue(pad_token_id in out_s['''input_ids''']) self.assertTrue(0 in out_s['''attention_mask''']) # s2 # test automatic padding self.assertEqual(out_sa['''input_ids'''].shape[-1] , 3_3) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['''input_ids'''][0]) self.assertFalse(0 in out_sa['''attention_mask'''][0]) # short slice does have padding self.assertTrue(pad_token_id in out_sa['''input_ids'''][1]) self.assertTrue(0 in out_sa['''attention_mask'''][1]) # p # test single pair max_length padding self.assertEqual(out_p['''input_ids'''].shape[-1] , 6_0) self.assertTrue(pad_token_id in out_p['''input_ids''']) self.assertTrue(0 in out_p['''attention_mask''']) # p2 # test automatic padding pair self.assertEqual(out_pa['''input_ids'''].shape[-1] , 5_2) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['''input_ids'''][0]) self.assertFalse(0 in out_pa['''attention_mask'''][0]) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['''input_ids'''][1]) self.assertTrue(0 in out_pa['''attention_mask'''][1]) def snake_case_ ( self): A__ = '''$$$''' A__ = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=a__ , add_bos_token=a__) A__ = '''This is a simple input''' A__ = ['''This is a simple input 1''', '''This is a simple input 2'''] A__ = tokenizer.bos_token_id A__ = tokenizer(a__) A__ = tokenizer(a__) self.assertEqual(out_s.input_ids[0] , a__) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids)) A__ = tokenizer.decode(out_s.input_ids) A__ = tokenizer.batch_decode(out_sa.input_ids) self.assertEqual(decode_s.split()[0] , a__) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa)) @slow def snake_case_ ( self): A__ = CodeGenTokenizer.from_pretrained('''Salesforce/codegen-350M-mono''') A__ = '''\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#''' A__ = '''\nif len_a > len_b: result = a\nelse: result = b''' A__ = tokenizer.encode(a__) A__ = ['''^#''', re.escape('''<|endoftext|>'''), '''^\'\'\'''', '''^"""''', '''\n\n\n'''] A__ = tokenizer.decode(a__ , truncate_before_pattern=a__) self.assertEqual(a__ , a__) def snake_case_ ( self): pass
714
import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig _lowercase = logging.get_logger(__name__) _lowercase = "T5Config" def lowerCAmelCase__ ( UpperCamelCase_ : jnp.array , UpperCamelCase_ : int , UpperCamelCase_ : int )-> jnp.ndarray: A__ = jnp.zeros_like(UpperCamelCase_ ) A__ = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) A__ = shifted_input_ids.at[:, 0].set(UpperCamelCase_ ) A__ = jnp.where(shifted_input_ids == -1_0_0 , UpperCamelCase_ , UpperCamelCase_ ) return shifted_input_ids class _UpperCAmelCase ( A__ ): UpperCamelCase__ = '''mt5''' UpperCamelCase__ = MTaConfig class _UpperCAmelCase ( A__ ): UpperCamelCase__ = '''mt5''' UpperCamelCase__ = MTaConfig class _UpperCAmelCase ( A__ ): UpperCamelCase__ = '''mt5''' UpperCamelCase__ = MTaConfig
526
0
'''simple docstring''' import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase__ : def __init__( self : List[Any] ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : Tuple=13 ,lowerCamelCase__ : Dict=7 ,lowerCamelCase__ : Dict=True ,lowerCamelCase__ : Optional[Any]=True ,lowerCamelCase__ : Union[str, Any]=True ,lowerCamelCase__ : Tuple=True ,lowerCamelCase__ : int=99 ,lowerCamelCase__ : str=24 ,lowerCamelCase__ : Dict=2 ,lowerCamelCase__ : Optional[Any]=6 ,lowerCamelCase__ : List[str]=37 ,lowerCamelCase__ : Optional[int]="gelu" ,lowerCamelCase__ : Tuple=0.1 ,lowerCamelCase__ : List[str]=0.1 ,lowerCamelCase__ : Dict=512 ,lowerCamelCase__ : Tuple=16 ,lowerCamelCase__ : Tuple=2 ,lowerCamelCase__ : List[str]=0.0_2 ,lowerCamelCase__ : Any=3 ,lowerCamelCase__ : int=None ,lowerCamelCase__ : Union[str, Any]=1000 ,): '''simple docstring''' _UpperCamelCase : List[str] = parent _UpperCamelCase : Union[str, Any] = batch_size _UpperCamelCase : Union[str, Any] = seq_length _UpperCamelCase : Tuple = is_training _UpperCamelCase : Dict = use_input_mask _UpperCamelCase : int = use_token_type_ids _UpperCamelCase : str = use_labels _UpperCamelCase : List[str] = vocab_size _UpperCamelCase : int = hidden_size _UpperCamelCase : str = num_hidden_layers _UpperCamelCase : Dict = num_attention_heads _UpperCamelCase : Optional[int] = intermediate_size _UpperCamelCase : int = hidden_act _UpperCamelCase : Optional[int] = hidden_dropout_prob _UpperCamelCase : Union[str, Any] = attention_probs_dropout_prob _UpperCamelCase : List[Any] = max_position_embeddings _UpperCamelCase : Dict = type_vocab_size _UpperCamelCase : Tuple = type_sequence_label_size _UpperCamelCase : Tuple = initializer_range _UpperCamelCase : List[str] = num_labels _UpperCamelCase : Union[str, Any] = scope _UpperCamelCase : List[str] = range_bbox def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _UpperCamelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) _UpperCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length, 4] ,self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _UpperCamelCase : Dict = bbox[i, j, 3] _UpperCamelCase : Union[str, Any] = bbox[i, j, 1] _UpperCamelCase : Optional[int] = t if bbox[i, j, 2] < bbox[i, j, 0]: _UpperCamelCase : List[str] = bbox[i, j, 2] _UpperCamelCase : str = bbox[i, j, 0] _UpperCamelCase : int = t _UpperCamelCase : Dict = None if self.use_input_mask: _UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) _UpperCamelCase : Optional[int] = None if self.use_token_type_ids: _UpperCamelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) _UpperCamelCase : Optional[Any] = None _UpperCamelCase : Dict = None if self.use_labels: _UpperCamelCase : List[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _UpperCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) _UpperCamelCase : List[str] = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return LiltConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,) def UpperCamelCase_ ( self : Optional[Any] ,lowerCamelCase__ : Union[str, Any] ,lowerCamelCase__ : Dict ,lowerCamelCase__ : Union[str, Any] ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : Any ,): '''simple docstring''' _UpperCamelCase : int = LiltModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() _UpperCamelCase : Optional[Any] = model(snake_case_ ,bbox=snake_case_ ,attention_mask=snake_case_ ,token_type_ids=snake_case_ ) _UpperCamelCase : Optional[Any] = model(snake_case_ ,bbox=snake_case_ ,token_type_ids=snake_case_ ) _UpperCamelCase : Union[str, Any] = model(snake_case_ ,bbox=snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def UpperCamelCase_ ( self : List[Any] ,lowerCamelCase__ : str ,lowerCamelCase__ : Dict ,lowerCamelCase__ : Any ,lowerCamelCase__ : Any ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : Tuple ,): '''simple docstring''' _UpperCamelCase : Dict = self.num_labels _UpperCamelCase : Tuple = LiltForTokenClassification(config=snake_case_ ) model.to(snake_case_ ) model.eval() _UpperCamelCase : str = model( snake_case_ ,bbox=snake_case_ ,attention_mask=snake_case_ ,token_type_ids=snake_case_ ,labels=snake_case_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ ( self : Dict ,lowerCamelCase__ : Any ,lowerCamelCase__ : Any ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : int ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : int ,): '''simple docstring''' _UpperCamelCase : Any = LiltForQuestionAnswering(config=snake_case_ ) model.to(snake_case_ ) model.eval() _UpperCamelCase : Tuple = model( snake_case_ ,bbox=snake_case_ ,attention_mask=snake_case_ ,token_type_ids=snake_case_ ,start_positions=snake_case_ ,end_positions=snake_case_ ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _UpperCamelCase : List[str] = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) : Tuple = config_and_inputs _UpperCamelCase : int = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class lowercase__ ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): lowercase__ = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) lowercase__ = ( { 'feature-extraction': LiltModel, 'question-answering': LiltForQuestionAnswering, 'text-classification': LiltForSequenceClassification, 'token-classification': LiltForTokenClassification, 'zero-shot': LiltForSequenceClassification, } if is_torch_available() else {} ) lowercase__ = False lowercase__ = False def UpperCamelCase_ ( self : Union[str, Any] ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : Dict ,lowerCamelCase__ : Tuple ): '''simple docstring''' return True def UpperCamelCase_ ( self : str ): '''simple docstring''' _UpperCamelCase : str = LiltModelTester(self ) _UpperCamelCase : Optional[int] = ConfigTester(self ,config_class=snake_case_ ,hidden_size=37 ) def UpperCamelCase_ ( self : int ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase_ ( self : str ): '''simple docstring''' _UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _UpperCamelCase : Dict = type self.model_tester.create_and_check_model(*snake_case_ ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case_ ) @slow def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : int = LiltModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @require_torch @slow class lowercase__ ( unittest.TestCase ): def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _UpperCamelCase : Tuple = LiltModel.from_pretrained('SCUT-DLVCLab/lilt-roberta-en-base' ).to(snake_case_ ) _UpperCamelCase : Tuple = torch.tensor([[1, 2]] ,device=snake_case_ ) _UpperCamelCase : Optional[Any] = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] ,device=snake_case_ ) # forward pass with torch.no_grad(): _UpperCamelCase : Union[str, Any] = model(input_ids=snake_case_ ,bbox=snake_case_ ) _UpperCamelCase : str = torch.Size([1, 2, 768] ) _UpperCamelCase : List[Any] = torch.tensor( [[-0.0_6_5_3, 0.0_9_5_0, -0.0_0_6_1], [-0.0_5_4_5, 0.0_9_2_6, -0.0_3_2_4]] ,device=snake_case_ ,) self.assertTrue(outputs.last_hidden_state.shape ,snake_case_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] ,snake_case_ ,atol=1E-3 ) )
195
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = { """configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""], """processing_mgp_str""": ["""MgpstrProcessor"""], """tokenization_mgp_str""": ["""MgpstrTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""", """MgpstrModel""", """MgpstrPreTrainedModel""", """MgpstrForSceneTextRecognition""", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
163
0
import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging _snake_case = logging.get_logger(__name__) def lowercase_( SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None ): '''simple docstring''' return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE_ ) @dataclass class UpperCAmelCase_ : '''simple docstring''' __A : List[str] = list_field( default=[] , metadata={ "help": ( "Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version" " of all available models" ) } , ) __A : List[int] = list_field( default=[8] , metadata={"help": "List of batch sizes for which memory and time performance will be evaluated"} ) __A : List[int] = list_field( default=[8, 32, 128, 512] , metadata={"help": "List of sequence lengths for which memory and time performance will be evaluated"} , ) __A : bool = field( default=UpperCamelCase , metadata={"help": "Whether to benchmark inference of model. Inference can be disabled via --no-inference."} , ) __A : bool = field( default=UpperCamelCase , metadata={"help": "Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."} , ) __A : bool = field( default=UpperCamelCase , metadata={"help": "Whether to run on available tpu devices. TPU can be disabled via --no-tpu."} ) __A : bool = field(default=UpperCamelCase , metadata={"help": "Use FP16 to accelerate inference."} ) __A : bool = field(default=UpperCamelCase , metadata={"help": "Benchmark training of model"} ) __A : bool = field(default=UpperCamelCase , metadata={"help": "Verbose memory tracing"} ) __A : bool = field( default=UpperCamelCase , metadata={"help": "Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."} , ) __A : bool = field( default=UpperCamelCase , metadata={ "help": "Whether to perform memory measurements. Memory measurements can be disabled via --no-memory" } , ) __A : bool = field(default=UpperCamelCase , metadata={"help": "Trace memory line by line"} ) __A : bool = field(default=UpperCamelCase , metadata={"help": "Save result to a CSV file"} ) __A : bool = field(default=UpperCamelCase , metadata={"help": "Save all print statements in a log file"} ) __A : bool = field(default=UpperCamelCase , metadata={"help": "Whether to print environment information"} ) __A : bool = field( default=UpperCamelCase , metadata={ "help": ( "Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use" " multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled" " for debugging / testing and on TPU." ) } , ) __A : str = field( default=f"inference_time_{round(time() )}.csv" , metadata={"help": "CSV filename used if saving time results to csv."} , ) __A : str = field( default=f"inference_memory_{round(time() )}.csv" , metadata={"help": "CSV filename used if saving memory results to csv."} , ) __A : str = field( default=f"train_time_{round(time() )}.csv" , metadata={"help": "CSV filename used if saving time results to csv for training."} , ) __A : str = field( default=f"train_memory_{round(time() )}.csv" , metadata={"help": "CSV filename used if saving memory results to csv for training."} , ) __A : str = field( default=f"env_info_{round(time() )}.csv" , metadata={"help": "CSV filename used if saving environment information."} , ) __A : str = field( default=f"log_{round(time() )}.csv" , metadata={"help": "Log filename used if print statements are saved in log."} , ) __A : int = field(default=3 , metadata={"help": "Times an experiment will be run."} ) __A : bool = field( default=UpperCamelCase , metadata={ "help": ( "Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain" " model weights." ) } , ) def _snake_case ( self ): """simple docstring""" warnings.warn( F"""The class {self.__class__} is deprecated. Hugging Face Benchmarking utils""" " are deprecated in general and it is advised to use external Benchmarking libraries " " to benchmark Transformer models." , __A , ) def _snake_case ( self ): """simple docstring""" return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def _snake_case ( self ): """simple docstring""" if len(self.models ) <= 0: raise ValueError( "Please make sure you provide at least one model name / model identifier, *e.g.* `--models" " bert-base-cased` or `args.models = ['bert-base-cased']." ) return self.models @property def _snake_case ( self ): """simple docstring""" if not self.multi_process: return False elif self.is_tpu: logger.info("Multiprocessing is currently not possible on TPU." ) return False else: return True
718
from __future__ import annotations def lowercase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : Union[str, Any] = len(SCREAMING_SNAKE_CASE_ ) # We need to create solution object to save path. lowerCamelCase : Tuple = [[0 for _ in range(SCREAMING_SNAKE_CASE_ )] for _ in range(SCREAMING_SNAKE_CASE_ )] lowerCamelCase : Optional[int] = run_maze(SCREAMING_SNAKE_CASE_ , 0 , 0 , SCREAMING_SNAKE_CASE_ ) if solved: print("\n".join(str(SCREAMING_SNAKE_CASE_ ) for row in solutions ) ) else: print("No solution exists!" ) return solved def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : Dict = len(SCREAMING_SNAKE_CASE_ ) # Final check point. if i == j == (size - 1): lowerCamelCase : Tuple = 1 return True lowerCamelCase : Optional[Any] = (not i < 0) and (not j < 0) # Check lower bounds lowerCamelCase : str = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. lowerCamelCase : Optional[Any] = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited lowerCamelCase : List[str] = 1 # check for directions if ( run_maze(SCREAMING_SNAKE_CASE_ , i + 1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or run_maze(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , j + 1 , SCREAMING_SNAKE_CASE_ ) or run_maze(SCREAMING_SNAKE_CASE_ , i - 1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or run_maze(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , j - 1 , SCREAMING_SNAKE_CASE_ ) ): return True lowerCamelCase : Dict = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
231
0
"""simple docstring""" import os from distutils.util import strtobool def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' for e in env_keys: __SCREAMING_SNAKE_CASE = int(os.environ.get(lowercase__ , -1 ) ) if val >= 0: return val return default def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_=False ): '''simple docstring''' __SCREAMING_SNAKE_CASE = os.environ.get(lowercase__ , str(lowercase__ ) ) return strtobool(lowercase__ ) == 1 # As its name indicates `strtobool` actually returns an int... def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_="no" ): '''simple docstring''' __SCREAMING_SNAKE_CASE = os.environ.get(lowercase__ , str(lowercase__ ) ) return value
682
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. _UpperCAmelCase : Optional[Any] = abspath(join(dirname(__file__), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def lowerCAmelCase_ (lowercase__ : Union[str, Any] ) -> List[str]: '''simple docstring''' config.addinivalue_line( '''markers''' , '''is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested''' ) config.addinivalue_line( '''markers''' , '''is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested''' ) config.addinivalue_line('''markers''' , '''is_pipeline_test: mark test to run only when pipelines are tested''' ) config.addinivalue_line('''markers''' , '''is_staging_test: mark test to run only in the staging environment''' ) config.addinivalue_line('''markers''' , '''accelerate_tests: mark test that require accelerate''' ) config.addinivalue_line('''markers''' , '''tool_tests: mark the tool tests that are run on their specific schedule''' ) def lowerCAmelCase_ (lowercase__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(lowercase__ ) def lowerCAmelCase_ (lowercase__ : Any ) -> Optional[int]: '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main lowerCAmelCase__ = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(lowercase__ , id=lowercase__ ) def lowerCAmelCase_ (lowercase__ : List[Any] , lowercase__ : int ) -> int: '''simple docstring''' if exitstatus == 5: lowerCAmelCase__ = 0 # Doctest custom flag to ignore output. _UpperCAmelCase : Any = doctest.register_optionflag("IGNORE_RESULT") _UpperCAmelCase : Dict = doctest.OutputChecker class lowerCAmelCase_ ( snake_case__ ): def __snake_case ( self : Dict , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ): if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase : Union[str, Any] = CustomOutputChecker _UpperCAmelCase : Dict = HfDoctestModule _UpperCAmelCase : List[str] = HfDocTestParser
668
0
import requests from bsa import BeautifulSoup def A ( _lowerCamelCase = "AAPL" ): '''simple docstring''' _lowerCAmelCase : Dict = F"https://in.finance.yahoo.com/quote/{symbol}?s={symbol}" _lowerCAmelCase : str = BeautifulSoup(requests.get(_SCREAMING_SNAKE_CASE ).text , "html.parser" ) _lowerCAmelCase : str = "My(6px) Pos(r) smartphone_Mt(6px)" return soup.find("div" , class_=class_ ).find("span" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
702
def A ( _lowerCamelCase ): '''simple docstring''' if length <= 0 or not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError("Length must be a positive integer." ) return [n * (2 * n - 1) for n in range(_lowerCamelCase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
658
0
import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def UpperCamelCase ( __lowerCamelCase : Tuple , __lowerCamelCase : List[Any] , __lowerCamelCase : str , __lowerCamelCase : Union[str, Any]=1024 ): snake_case , snake_case : List[Any] = [], [] snake_case : List[str] = list(zip(__a , __a ) ) snake_case , snake_case : Optional[Any] = sorted_examples[0] def is_too_big(__lowerCamelCase : Any ): return tok(__a , return_tensors="pt" ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): snake_case : List[str] = new_src + " " + src snake_case : int = new_tgt + " " + tgt if is_too_big(__a ) or is_too_big(__a ): # cant fit, finalize example finished_src.append(__a ) finished_tgt.append(__a ) snake_case , snake_case : Union[str, Any] = src, tgt else: # can fit, keep adding snake_case , snake_case : Any = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(__a ) finished_tgt.append(__a ) return finished_src, finished_tgt def UpperCamelCase ( __lowerCamelCase : Any , __lowerCamelCase : int , __lowerCamelCase : str , __lowerCamelCase : Optional[int] ): snake_case : Dict = Path(__a ) save_path.mkdir(exist_ok=__a ) for split in ["train"]: snake_case , snake_case : int = data_dir / f"""{split}.source""", data_dir / f"""{split}.target""" snake_case : Union[str, Any] = [x.rstrip() for x in Path(__a ).open().readlines()] snake_case : Dict = [x.rstrip() for x in Path(__a ).open().readlines()] snake_case , snake_case : Any = pack_examples(__a , __a , __a , __a ) print(f"""packed {split} split from {len(__a )} examples -> {len(__a )}.""" ) Path(save_path / f"""{split}.source""" ).open("w" ).write("\n".join(__a ) ) Path(save_path / f"""{split}.target""" ).open("w" ).write("\n".join(__a ) ) for split in ["val", "test"]: snake_case , snake_case : List[Any] = data_dir / f"""{split}.source""", data_dir / f"""{split}.target""" shutil.copyfile(__a , save_path / f"""{split}.source""" ) shutil.copyfile(__a , save_path / f"""{split}.target""" ) def UpperCamelCase ( ): snake_case : Any = argparse.ArgumentParser() parser.add_argument("--tok_name" , type=__a , help="like facebook/bart-large-cnn,t5-base, etc." ) parser.add_argument("--max_seq_len" , type=__a , default=128 ) parser.add_argument("--data_dir" , type=__a ) parser.add_argument("--save_path" , type=__a ) snake_case : Dict = parser.parse_args() snake_case : Optional[int] = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(__a , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
204
"""simple docstring""" from __future__ import annotations import math def _lowerCamelCase ( __a ): if num <= 0: SCREAMING_SNAKE_CASE_ = F'{num}: Invalid input, please enter a positive integer.' raise ValueError(__a ) SCREAMING_SNAKE_CASE_ = [True] * (num + 1) SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = int(math.sqrt(__a ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(__a ) # Set multiples of start be False for i in range(start * start, num + 1, __a ): if sieve[i] is True: SCREAMING_SNAKE_CASE_ = False start += 1 for j in range(end + 1, num + 1 ): if sieve[j] is True: prime.append(__a ) return prime if __name__ == "__main__": print(prime_sieve(int(input('Enter a positive integer: ').strip())))
626
0
"""simple docstring""" from __future__ import annotations def _a ( _snake_case , _snake_case ): """simple docstring""" if nth_term == "": return [""] UpperCAmelCase = int(_snake_case ) UpperCAmelCase = int(_snake_case ) UpperCAmelCase = [] for temp in range(int(_snake_case ) ): series.append(F'''1 / {pow(temp + 1 , int(_snake_case ) )}''' if series else """1""" ) return series if __name__ == "__main__": import doctest doctest.testmod() _UpperCamelCase = int(input("""Enter the last number (nth term) of the P-Series""")) _UpperCamelCase = int(input("""Enter the power for P-Series""")) print("""Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p""") print(p_series(nth_term, power))
74
"""simple docstring""" def _a ( _snake_case ): # noqa: E741 """simple docstring""" UpperCAmelCase = len(_snake_case ) UpperCAmelCase = 0 UpperCAmelCase = [0] * n UpperCAmelCase = [False] * n UpperCAmelCase = [False] * n def dfs(_snake_case , _snake_case , _snake_case , _snake_case ): if parent == root: out_edge_count += 1 UpperCAmelCase = True UpperCAmelCase = at for to in l[at]: if to == parent: pass elif not visited[to]: UpperCAmelCase = dfs(_snake_case , _snake_case , _snake_case , _snake_case ) UpperCAmelCase = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: UpperCAmelCase = True # AP found via cycle if at == low[to]: UpperCAmelCase = True else: UpperCAmelCase = min(low[at] , _snake_case ) return out_edge_count for i in range(_snake_case ): if not visited[i]: UpperCAmelCase = 0 UpperCAmelCase = dfs(_snake_case , _snake_case , -1 , _snake_case ) UpperCAmelCase = out_edge_count > 1 for x in range(len(_snake_case ) ): if is_art[x] is True: print(_snake_case ) # Adjacency list of graph _UpperCamelCase = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
74
1
'''simple docstring''' from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class _snake_case (__SCREAMING_SNAKE_CASE): __A : jnp.ndarray __A : jnp.ndarray class _snake_case (nn.Module): __A : int __A : Tuple[int] =(16, 32, 96, 2_56) __A : jnp.dtype =jnp.floataa def UpperCamelCase__ ( self ): UpperCAmelCase_ : Tuple = nn.Conv( self.block_out_channels[0] ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) UpperCAmelCase_ : Any = [] for i in range(len(self.block_out_channels ) - 1 ): UpperCAmelCase_ : str = self.block_out_channels[i] UpperCAmelCase_ : Tuple = self.block_out_channels[i + 1] UpperCAmelCase_ : Any = nn.Conv( _snake_case ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) blocks.append(_snake_case ) UpperCAmelCase_ : Optional[int] = nn.Conv( _snake_case ,kernel_size=(3, 3) ,strides=(2, 2) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) blocks.append(_snake_case ) UpperCAmelCase_ : Tuple = blocks UpperCAmelCase_ : str = nn.Conv( self.conditioning_embedding_channels ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) def __call__( self ,_snake_case ): UpperCAmelCase_ : Dict = self.conv_in(_snake_case ) UpperCAmelCase_ : int = nn.silu(_snake_case ) for block in self.blocks: UpperCAmelCase_ : Union[str, Any] = block(_snake_case ) UpperCAmelCase_ : Tuple = nn.silu(_snake_case ) UpperCAmelCase_ : Union[str, Any] = self.conv_out(_snake_case ) return embedding @flax_register_to_config class _snake_case (nn.Module , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): __A : int =32 __A : int =4 __A : Tuple[str] =( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) __A : Union[bool, Tuple[bool]] =False __A : Tuple[int] =(3_20, 6_40, 12_80, 12_80) __A : int =2 __A : Union[int, Tuple[int]] =8 __A : Optional[Union[int, Tuple[int]]] =None __A : int =12_80 __A : float =0.0 __A : bool =False __A : jnp.dtype =jnp.floataa __A : bool =True __A : int =0 __A : str ="rgb" __A : Tuple[int] =(16, 32, 96, 2_56) def UpperCamelCase__ ( self ,_snake_case ): # init input tensors UpperCAmelCase_ : List[Any] = (1, self.in_channels, self.sample_size, self.sample_size) UpperCAmelCase_ : Any = jnp.zeros(_snake_case ,dtype=jnp.floataa ) UpperCAmelCase_ : Tuple = jnp.ones((1,) ,dtype=jnp.intaa ) UpperCAmelCase_ : List[Any] = jnp.zeros((1, 1, self.cross_attention_dim) ,dtype=jnp.floataa ) UpperCAmelCase_ : Union[str, Any] = (1, 3, self.sample_size * 8, self.sample_size * 8) UpperCAmelCase_ : int = jnp.zeros(_snake_case ,dtype=jnp.floataa ) UpperCAmelCase_ , UpperCAmelCase_ : str = jax.random.split(_snake_case ) UpperCAmelCase_ : Optional[int] = {"params": params_rng, "dropout": dropout_rng} return self.init(_snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case )["params"] def UpperCamelCase__ ( self ): UpperCAmelCase_ : Tuple = self.block_out_channels UpperCAmelCase_ : Union[str, Any] = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. UpperCAmelCase_ : Dict = self.num_attention_heads or self.attention_head_dim # input UpperCAmelCase_ : str = nn.Conv( block_out_channels[0] ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) # time UpperCAmelCase_ : Dict = FlaxTimesteps( block_out_channels[0] ,flip_sin_to_cos=self.flip_sin_to_cos ,freq_shift=self.config.freq_shift ) UpperCAmelCase_ : List[Any] = FlaxTimestepEmbedding(_snake_case ,dtype=self.dtype ) UpperCAmelCase_ : int = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] ,block_out_channels=self.conditioning_embedding_out_channels ,) UpperCAmelCase_ : Any = self.only_cross_attention if isinstance(_snake_case ,_snake_case ): UpperCAmelCase_ : Union[str, Any] = (only_cross_attention,) * len(self.down_block_types ) if isinstance(_snake_case ,_snake_case ): UpperCAmelCase_ : Tuple = (num_attention_heads,) * len(self.down_block_types ) # down UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : str = [] UpperCAmelCase_ : List[str] = block_out_channels[0] UpperCAmelCase_ : Union[str, Any] = nn.Conv( _snake_case ,kernel_size=(1, 1) ,padding="VALID" ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(_snake_case ) for i, down_block_type in enumerate(self.down_block_types ): UpperCAmelCase_ : Tuple = output_channel UpperCAmelCase_ : List[Any] = block_out_channels[i] UpperCAmelCase_ : int = i == len(_snake_case ) - 1 if down_block_type == "CrossAttnDownBlock2D": UpperCAmelCase_ : int = FlaxCrossAttnDownBlockaD( in_channels=_snake_case ,out_channels=_snake_case ,dropout=self.dropout ,num_layers=self.layers_per_block ,num_attention_heads=num_attention_heads[i] ,add_downsample=not is_final_block ,use_linear_projection=self.use_linear_projection ,only_cross_attention=only_cross_attention[i] ,dtype=self.dtype ,) else: UpperCAmelCase_ : List[Any] = FlaxDownBlockaD( in_channels=_snake_case ,out_channels=_snake_case ,dropout=self.dropout ,num_layers=self.layers_per_block ,add_downsample=not is_final_block ,dtype=self.dtype ,) down_blocks.append(_snake_case ) for _ in range(self.layers_per_block ): UpperCAmelCase_ : List[Any] = nn.Conv( _snake_case ,kernel_size=(1, 1) ,padding="VALID" ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(_snake_case ) if not is_final_block: UpperCAmelCase_ : int = nn.Conv( _snake_case ,kernel_size=(1, 1) ,padding="VALID" ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(_snake_case ) UpperCAmelCase_ : int = down_blocks UpperCAmelCase_ : Union[str, Any] = controlnet_down_blocks # mid UpperCAmelCase_ : int = block_out_channels[-1] UpperCAmelCase_ : Tuple = FlaxUNetMidBlockaDCrossAttn( in_channels=_snake_case ,dropout=self.dropout ,num_attention_heads=num_attention_heads[-1] ,use_linear_projection=self.use_linear_projection ,dtype=self.dtype ,) UpperCAmelCase_ : List[str] = nn.Conv( _snake_case ,kernel_size=(1, 1) ,padding="VALID" ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) def __call__( self ,_snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case = 1.0 ,_snake_case = True ,_snake_case = False ,): UpperCAmelCase_ : int = self.controlnet_conditioning_channel_order if channel_order == "bgr": UpperCAmelCase_ : Union[str, Any] = jnp.flip(_snake_case ,axis=1 ) # 1. time if not isinstance(_snake_case ,jnp.ndarray ): UpperCAmelCase_ : Optional[int] = jnp.array([timesteps] ,dtype=jnp.intaa ) elif isinstance(_snake_case ,jnp.ndarray ) and len(timesteps.shape ) == 0: UpperCAmelCase_ : str = timesteps.astype(dtype=jnp.floataa ) UpperCAmelCase_ : Optional[int] = jnp.expand_dims(_snake_case ,0 ) UpperCAmelCase_ : str = self.time_proj(_snake_case ) UpperCAmelCase_ : Optional[Any] = self.time_embedding(_snake_case ) # 2. pre-process UpperCAmelCase_ : Union[str, Any] = jnp.transpose(_snake_case ,(0, 2, 3, 1) ) UpperCAmelCase_ : List[str] = self.conv_in(_snake_case ) UpperCAmelCase_ : Tuple = jnp.transpose(_snake_case ,(0, 2, 3, 1) ) UpperCAmelCase_ : Optional[int] = self.controlnet_cond_embedding(_snake_case ) sample += controlnet_cond # 3. down UpperCAmelCase_ : Union[str, Any] = (sample,) for down_block in self.down_blocks: if isinstance(_snake_case ,_snake_case ): UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = down_block(_snake_case ,_snake_case ,_snake_case ,deterministic=not train ) else: UpperCAmelCase_ , UpperCAmelCase_ : str = down_block(_snake_case ,_snake_case ,deterministic=not train ) down_block_res_samples += res_samples # 4. mid UpperCAmelCase_ : str = self.mid_block(_snake_case ,_snake_case ,_snake_case ,deterministic=not train ) # 5. contronet blocks UpperCAmelCase_ : int = () for down_block_res_sample, controlnet_block in zip(_snake_case ,self.controlnet_down_blocks ): UpperCAmelCase_ : List[str] = controlnet_block(_snake_case ) controlnet_down_block_res_samples += (down_block_res_sample,) UpperCAmelCase_ : str = controlnet_down_block_res_samples UpperCAmelCase_ : List[Any] = self.controlnet_mid_block(_snake_case ) # 6. scaling UpperCAmelCase_ : Any = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=_snake_case ,mid_block_res_sample=_snake_case )
71
from __future__ import annotations import math def _A ( __snake_case :int , __snake_case :int , __snake_case :bool , __snake_case :list[int] , __snake_case :float ) -> int: """simple docstring""" if depth < 0: raise ValueError("Depth cannot be less than 0" ) if len(__snake_case ) == 0: raise ValueError("Scores cannot be empty" ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , __snake_case , __snake_case , __snake_case ) , minimax(depth + 1 , node_index * 2 + 1 , __snake_case , __snake_case , __snake_case ) , ) return min( minimax(depth + 1 , node_index * 2 , __snake_case , __snake_case , __snake_case ) , minimax(depth + 1 , node_index * 2 + 1 , __snake_case , __snake_case , __snake_case ) , ) def _A ( ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = [90, 23, 6, 33, 21, 65, 123, 3_4423] __SCREAMING_SNAKE_CASE = math.log(len(__snake_case ) , 2 ) print("Optimal value : " , end="" ) print(minimax(0 , 0 , __snake_case , __snake_case , __snake_case ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
693
0
import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging __UpperCAmelCase : int = logging.get_logger(__name__) class lowerCamelCase ( SCREAMING_SNAKE_CASE ): UpperCAmelCase : List[str] = 'linear' UpperCAmelCase : Dict = 'cosine' UpperCAmelCase : List[str] = 'cosine_with_restarts' UpperCAmelCase : Tuple = 'polynomial' UpperCAmelCase : Optional[Any] = 'constant' UpperCAmelCase : Tuple = 'constant_with_warmup' UpperCAmelCase : Optional[Any] = 'piecewise_constant' def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_ = -1 ): return LambdaLR(UpperCamelCase_ , lambda UpperCamelCase_ : 1 , last_epoch=UpperCamelCase_ ) def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = -1 ): def lr_lambda(UpperCamelCase_ ): if current_step < num_warmup_steps: return float(UpperCamelCase_ ) / float(max(1.0 , UpperCamelCase_ ) ) return 1.0 return LambdaLR(UpperCamelCase_ , UpperCamelCase_ , last_epoch=UpperCamelCase_ ) def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = -1 ): _a : Optional[int] = {} _a : int = step_rules.split(''',''' ) for rule_str in rule_list[:-1]: _a , _a : Dict = rule_str.split(''':''' ) _a : int = int(UpperCamelCase_ ) _a : Tuple = float(UpperCamelCase_ ) _a : Optional[int] = value _a : Optional[int] = float(rule_list[-1] ) def create_rules_function(UpperCamelCase_ , UpperCamelCase_ ): def rule_func(UpperCamelCase_ ) -> float: _a : Optional[int] = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(UpperCamelCase_ ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func _a : str = create_rules_function(UpperCamelCase_ , UpperCamelCase_ ) return LambdaLR(UpperCamelCase_ , UpperCamelCase_ , last_epoch=UpperCamelCase_ ) def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=-1 ): def lr_lambda(UpperCamelCase_ ): if current_step < num_warmup_steps: return float(UpperCamelCase_ ) / float(max(1 , UpperCamelCase_ ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = 0.5 , UpperCamelCase_ = -1 ): def lr_lambda(UpperCamelCase_ ): if current_step < num_warmup_steps: return float(UpperCamelCase_ ) / float(max(1 , UpperCamelCase_ ) ) _a : List[str] = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(UpperCamelCase_ ) * 2.0 * progress )) ) return LambdaLR(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = 1 , UpperCamelCase_ = -1 ): def lr_lambda(UpperCamelCase_ ): if current_step < num_warmup_steps: return float(UpperCamelCase_ ) / float(max(1 , UpperCamelCase_ ) ) _a : Union[str, Any] = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(UpperCamelCase_ ) * progress) % 1.0) )) ) return LambdaLR(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=1E-7 , UpperCamelCase_=1.0 , UpperCamelCase_=-1 ): _a : Dict = optimizer.defaults['''lr'''] if not (lr_init > lr_end): raise ValueError(f"""lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})""" ) def lr_lambda(UpperCamelCase_ ): if current_step < num_warmup_steps: return float(UpperCamelCase_ ) / float(max(1 , UpperCamelCase_ ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: _a : int = lr_init - lr_end _a : List[Any] = num_training_steps - num_warmup_steps _a : Optional[Any] = 1 - (current_step - num_warmup_steps) / decay_steps _a : Tuple = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = 1 , UpperCamelCase_ = 1.0 , UpperCamelCase_ = -1 , ): _a : str = SchedulerType(UpperCamelCase_ ) _a : Optional[int] = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(UpperCamelCase_ , last_epoch=UpperCamelCase_ ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(UpperCamelCase_ , step_rules=UpperCamelCase_ , last_epoch=UpperCamelCase_ ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f"""{name} requires `num_warmup_steps`, please provide that argument.""" ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(UpperCamelCase_ , num_warmup_steps=UpperCamelCase_ , last_epoch=UpperCamelCase_ ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f"""{name} requires `num_training_steps`, please provide that argument.""" ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( UpperCamelCase_ , num_warmup_steps=UpperCamelCase_ , num_training_steps=UpperCamelCase_ , num_cycles=UpperCamelCase_ , last_epoch=UpperCamelCase_ , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( UpperCamelCase_ , num_warmup_steps=UpperCamelCase_ , num_training_steps=UpperCamelCase_ , power=UpperCamelCase_ , last_epoch=UpperCamelCase_ , ) return schedule_func( UpperCamelCase_ , num_warmup_steps=UpperCamelCase_ , num_training_steps=UpperCamelCase_ , last_epoch=UpperCamelCase_ )
249
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCAmelCase : Optional[int] = { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json', } class lowerCamelCase ( SCREAMING_SNAKE_CASE ): UpperCAmelCase : List[str] = 'gpt_neox_japanese' def __init__( self : Optional[int] , __snake_case : Tuple=32000 , __snake_case : Union[str, Any]=2560 , __snake_case : List[Any]=32 , __snake_case : Any=32 , __snake_case : Tuple=4 , __snake_case : Optional[Any]="gelu" , __snake_case : Dict=1.00 , __snake_case : Optional[int]=10000 , __snake_case : Optional[Any]=2048 , __snake_case : Tuple=0.02 , __snake_case : str=1E-5 , __snake_case : List[Any]=True , __snake_case : List[Any]=31996 , __snake_case : Union[str, Any]=31999 , __snake_case : List[str]=0.1 , __snake_case : Optional[Any]=0.0 , **__snake_case : List[str] , ) -> Optional[Any]: super().__init__(bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) _a : Optional[int] = vocab_size _a : str = max_position_embeddings _a : str = hidden_size _a : Tuple = num_hidden_layers _a : Optional[Any] = num_attention_heads _a : str = intermediate_multiple_size _a : Tuple = hidden_act _a : List[Any] = rotary_pct _a : Union[str, Any] = rotary_emb_base _a : Optional[int] = initializer_range _a : Optional[Any] = layer_norm_eps _a : Dict = use_cache _a : Optional[Any] = attention_dropout _a : Optional[int] = hidden_dropout
249
1
import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib lowercase : Tuple = { """debug""": logging.DEBUG, """info""": logging.INFO, """warning""": logging.WARNING, """error""": logging.ERROR, """critical""": logging.CRITICAL, } lowercase : int = logging.WARNING def _snake_case( ) -> Any: lowercase : Any = os.getenv("""DATASETS_VERBOSITY""" , SCREAMING_SNAKE_CASE__ ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f"Unknown option DATASETS_VERBOSITY={env_level_str}, " f"has to be one of: { ', '.join(log_levels.keys() ) }" ) return _default_log_level def _snake_case( ) -> str: return __name__.split(""".""" )[0] def _snake_case( ) -> logging.Logger: return logging.getLogger(_get_library_name() ) def _snake_case( ) -> None: # Apply our default configuration to the library root logger. lowercase : Any = _get_library_root_logger() library_root_logger.setLevel(_get_default_logging_level() ) def _snake_case( ) -> None: lowercase : Optional[int] = _get_library_root_logger() library_root_logger.setLevel(logging.NOTSET ) def _snake_case( SCREAMING_SNAKE_CASE__ = None ) -> logging.Logger: if name is None: lowercase : Tuple = _get_library_name() return logging.getLogger(SCREAMING_SNAKE_CASE__ ) def _snake_case( ) -> int: return _get_library_root_logger().getEffectiveLevel() def _snake_case( SCREAMING_SNAKE_CASE__ ) -> None: _get_library_root_logger().setLevel(SCREAMING_SNAKE_CASE__ ) def _snake_case( ) -> Optional[int]: return set_verbosity(SCREAMING_SNAKE_CASE__ ) def _snake_case( ) -> Optional[int]: return set_verbosity(SCREAMING_SNAKE_CASE__ ) def _snake_case( ) -> Dict: return set_verbosity(SCREAMING_SNAKE_CASE__ ) def _snake_case( ) -> Dict: return set_verbosity(SCREAMING_SNAKE_CASE__ ) def _snake_case( ) -> None: lowercase : str = False def _snake_case( ) -> None: lowercase : Union[str, Any] = True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class __snake_case : def __init__( self ,*snake_case ,**snake_case ): # pylint: disable=unused-argument '''simple docstring''' lowercase : Optional[Any] = args[0] if args else None def __iter__( self ): '''simple docstring''' return iter(self._iterator ) def __getattr__( self ,snake_case ): '''simple docstring''' def empty_fn(*snake_case ,**snake_case ): # pylint: disable=unused-argument return return empty_fn def __enter__( self ): '''simple docstring''' return self def __exit__( self ,snake_case ,snake_case ,snake_case ): '''simple docstring''' return lowercase : str = True class __snake_case : def __call__( self ,*snake_case ,snake_case=False ,**snake_case ): '''simple docstring''' if _tqdm_active and not disable: return tqdm_lib.tqdm(*snake_case ,**snake_case ) else: return EmptyTqdm(*snake_case ,**snake_case ) def _SCREAMING_SNAKE_CASE ( self ,*snake_case ,**snake_case ): '''simple docstring''' lowercase : Dict = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*snake_case ,**snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm.get_lock() lowercase : Optional[Any] = _tqdm_cls() def _snake_case( ) -> bool: global _tqdm_active return bool(_tqdm_active ) def _snake_case( ) -> Union[str, Any]: global _tqdm_active lowercase : List[str] = True def _snake_case( ) -> str: global _tqdm_active lowercase : Optional[Any] = False
336
import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin lowercase : Tuple = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right lowercase : Union[str, Any] = 50003 lowercase : Optional[int] = 50002 @require_sentencepiece @require_tokenizers class __snake_case ( lowerCAmelCase , unittest.TestCase ): _a : List[str]= PLBartTokenizer _a : List[str]= None _a : str= False def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowercase : Dict = PLBartTokenizer(snake_case ,language_codes="""base""" ,keep_accents=snake_case ) tokenizer.save_pretrained(self.tmpdirname ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = PLBartTokenizer(snake_case ,language_codes="""base""" ,keep_accents=snake_case ) lowercase : List[str] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(snake_case ,["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case ) ,[value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] ,) lowercase : List[str] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( snake_case ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] ,) lowercase : List[Any] = tokenizer.convert_tokens_to_ids(snake_case ) self.assertListEqual( snake_case ,[ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] ,) lowercase : Any = tokenizer.convert_ids_to_tokens(snake_case ) self.assertListEqual( snake_case ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] ,) lowercase : List[Any] = tokenizer.vocab_size lowercase : Union[str, Any] = [tokenizer.convert_ids_to_tokens(snake_case ) for x in range(end - 4 ,snake_case )] self.assertListEqual(snake_case ,["""__java__""", """__python__""", """__en_XX__""", """<mask>"""] ) lowercase : Optional[int] = """java.lang.Exception, python.lang.Exception, javascript, php, ruby, go""" lowercase : Tuple = tokenizer(snake_case ).input_ids self.assertEqual( tokenizer.decode(snake_case ,skip_special_tokens=snake_case ,clean_up_tokenization_spaces=snake_case ) ,snake_case ,) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Dict = PLBartTokenizer(snake_case ,language_codes="""multi""" ,keep_accents=snake_case ) lowercase : str = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(snake_case ,["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case ) ,[value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] ,) lowercase : Any = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( snake_case ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] ,) lowercase : Tuple = tokenizer.convert_tokens_to_ids(snake_case ) self.assertListEqual( snake_case ,[ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] ,) lowercase : Optional[int] = tokenizer.convert_ids_to_tokens(snake_case ) self.assertListEqual( snake_case ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] ,) lowercase : List[Any] = tokenizer.vocab_size lowercase : int = [tokenizer.convert_ids_to_tokens(snake_case ) for x in range(end - 7 ,snake_case )] self.assertListEqual( snake_case ,["""__java__""", """__python__""", """__en_XX__""", """__javascript__""", """__php__""", """__ruby__""", """__go__"""] ) lowercase : int = """java.lang.Exception, python.lang.Exception, javascript, php, ruby, go""" lowercase : Optional[Any] = tokenizer(snake_case ).input_ids self.assertEqual( tokenizer.decode(snake_case ,skip_special_tokens=snake_case ,clean_up_tokenization_spaces=snake_case ) ,snake_case ,) @require_torch @require_sentencepiece @require_tokenizers class __snake_case ( unittest.TestCase ): _a : str= "uclanlp/plbart-python-en_XX" _a : Union[str, Any]= [ "def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])", "def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])", ] _a : List[Any]= [ "Returns the maximum value of a b c.", "Sums the values of a b c.", ] _a : Optional[Any]= [ 134, 5452, 3_3460, 3_3441, 3_3463, 3_3465, 3_3463, 3_3449, 988, 20, 3_3456, 19, 3_3456, 771, 39, 4258, 889, 3318, 3_3441, 3_3463, 3_3465, 3_3463, 3_3449, 2471, 2, PYTHON_CODE, ] @classmethod def _SCREAMING_SNAKE_CASE ( cls ): '''simple docstring''' lowercase : PLBartTokenizer = PLBartTokenizer.from_pretrained( cls.checkpoint_name ,language_codes="""base""" ,src_lang="""python""" ,tgt_lang="""en_XX""" ) lowercase : Union[str, Any] = 1 return cls def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__java__"""] ,50001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__python__"""] ,50002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__en_XX__"""] ,50003 ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[int] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self.assertIn(snake_case ,self.tokenizer.all_special_ids ) lowercase : List[str] = [EN_CODE, 9037, 33442, 57, 752, 153, 14, 56, 18, 9, 2] lowercase : int = self.tokenizer.decode(snake_case ,skip_special_tokens=snake_case ) lowercase : Tuple = self.tokenizer.decode(generated_ids[1:] ,skip_special_tokens=snake_case ) self.assertEqual(snake_case ,snake_case ) self.assertNotIn(self.tokenizer.eos_token ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[str] = ["""def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])""" * 20] self.assertIsInstance(src_text[0] ,snake_case ) lowercase : Tuple = 10 lowercase : List[str] = self.tokenizer(snake_case ,max_length=snake_case ,truncation=snake_case ).input_ids[0] self.assertEqual(ids[-2] ,2 ) self.assertEqual(ids[-1] ,snake_case ) self.assertEqual(len(snake_case ) ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """__java__"""] ) ,[50004, 50001] ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[str] = tempfile.mkdtemp() lowercase : Union[str, Any] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(snake_case ) lowercase : Optional[Any] = PLBartTokenizer.from_pretrained(snake_case ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids ,snake_case ) @require_torch def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : int = self.tokenizer(self.src_text ,text_target=self.tgt_text ,padding=snake_case ,return_tensors="""pt""" ) lowercase : List[str] = shift_tokens_right(batch["""labels"""] ,self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() ,[2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] ,snake_case ) self.assertEqual(batch.decoder_input_ids[1][-1] ,2 ) self.assertEqual(batch.labels[1][-2:].tolist() ,[2, EN_CODE] ) @require_torch def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Union[str, Any] = self.tokenizer( self.src_text ,text_target=self.tgt_text ,padding=snake_case ,truncation=snake_case ,max_length=len(self.expected_src_tokens ) ,return_tensors="""pt""" ,) lowercase : str = shift_tokens_right(batch["""labels"""] ,self.tokenizer.pad_token_id ) self.assertIsInstance(snake_case ,snake_case ) self.assertEqual((2, 26) ,batch.input_ids.shape ) self.assertEqual((2, 26) ,batch.attention_mask.shape ) lowercase : List[str] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens ,snake_case ) self.assertEqual(2 ,batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens ,[] ) self.assertEqual(self.tokenizer.suffix_tokens ,[self.tokenizer.eos_token_id, PYTHON_CODE] ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = self.tokenizer(self.src_text ,padding=snake_case ,truncation=snake_case ,max_length=3 ,return_tensors="""pt""" ) lowercase : str = self.tokenizer( text_target=self.tgt_text ,padding=snake_case ,truncation=snake_case ,max_length=10 ,return_tensors="""pt""" ) lowercase : int = targets["""input_ids"""] lowercase : Tuple = shift_tokens_right(snake_case ,self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] ,3 ) self.assertEqual(batch.decoder_input_ids.shape[1] ,10 ) @require_torch def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[int] = self.tokenizer._build_translation_inputs( """A test""" ,return_tensors="""pt""" ,src_lang="""en_XX""" ,tgt_lang="""java""" ) self.assertEqual( nested_simplify(snake_case ) ,{ # A, test, EOS, en_XX """input_ids""": [[150, 242, 2, 50003]], """attention_mask""": [[1, 1, 1, 1]], # java """forced_bos_token_id""": 50001, } ,)
336
1
"""simple docstring""" import os def _lowerCamelCase ( ) -> Optional[Any]: """simple docstring""" with open(os.path.dirname(UpperCAmelCase_ ) + "/grid.txt" ) as f: A__ = [] # noqa: E741 for _ in range(20 ): l.append([int(UpperCAmelCase_ ) for x in f.readline().split()] ) A__ = 0 # right for i in range(20 ): for j in range(17 ): A__ = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: A__ = temp # down for i in range(17 ): for j in range(20 ): A__ = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: A__ = temp # diagonal 1 for i in range(17 ): for j in range(17 ): A__ = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: A__ = temp # diagonal 2 for i in range(17 ): for j in range(3, 20 ): A__ = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: A__ = temp return maximum if __name__ == "__main__": print(solution())
562
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCamelCase = { """configuration_wav2vec2""": ["""WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Wav2Vec2Config"""], """feature_extraction_wav2vec2""": ["""Wav2Vec2FeatureExtractor"""], """processing_wav2vec2""": ["""Wav2Vec2Processor"""], """tokenization_wav2vec2""": ["""Wav2Vec2CTCTokenizer""", """Wav2Vec2Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ """WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Wav2Vec2ForAudioFrameClassification""", """Wav2Vec2ForCTC""", """Wav2Vec2ForMaskedLM""", """Wav2Vec2ForPreTraining""", """Wav2Vec2ForSequenceClassification""", """Wav2Vec2ForXVector""", """Wav2Vec2Model""", """Wav2Vec2PreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ """TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFWav2Vec2ForCTC""", """TFWav2Vec2Model""", """TFWav2Vec2PreTrainedModel""", """TFWav2Vec2ForSequenceClassification""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ """FlaxWav2Vec2ForCTC""", """FlaxWav2Vec2ForPreTraining""", """FlaxWav2Vec2Model""", """FlaxWav2Vec2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
562
1
# Function to print upper half of diamond (pyramid) def A__ ( __A : List[str] ) ->Any: for i in range(0 , __A ): for _ in range(0 , n - i - 1 ): # printing spaces print(''' ''' , end='''''' ) for _ in range(0 , i + 1 ): # printing stars print('''* ''' , end='''''' ) print() def A__ ( __A : Tuple ) ->Dict: for i in range(__A , 0 , -1 ): for _ in range(__A , 0 , -1 ): # printing stars print('''* ''' , end='''''' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(''' ''' , end='''''' ) def A__ ( __A : Dict ) ->Dict: if n <= 0: print(''' ... .... nothing printing :(''' ) return floyd(__A ) # upper half reverse_floyd(__A ) # lower half if __name__ == "__main__": print(R'''| /\ | |- | |- |--| |\ /| |-''') print(R'''|/ \| |- |_ |_ |__| | \/ | |_''') _lowerCamelCase : str = 1 while K: _lowerCamelCase : int = int(input('''enter the number and , and see the magic : ''')) print() pretty_print(user_number) _lowerCamelCase : Union[str, Any] = int(input('''press 0 to exit... and 1 to continue...''')) print('''Good Bye...''')
184
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCAmelCase__ ( __magic_name__ ): '''simple docstring''' lowercase_ = ["""image_processor""", """tokenizer"""] lowercase_ = """LayoutLMv2ImageProcessor""" lowercase_ = ("""LayoutXLMTokenizer""", """LayoutXLMTokenizerFast""") def __init__( self , lowercase__=None , lowercase__=None , **lowercase__ ): '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowercase__ , ) __A =kwargs.pop('''feature_extractor''' ) __A =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowercase__ , lowercase__ ) def __call__( self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = True , lowercase__ = False , lowercase__ = None , lowercase__ = None , lowercase__ = 0 , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = False , lowercase__ = False , lowercase__ = False , lowercase__ = False , lowercase__ = True , lowercase__ = None , **lowercase__ , ): '''simple docstring''' if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor __A =self.image_processor(images=lowercase__ , return_tensors=lowercase__ ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(lowercase__ , lowercase__ ): __A =[text] # add batch dimension (as the image processor always adds a batch dimension) __A =features['''words'''] __A =self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=lowercase__ , add_special_tokens=lowercase__ , padding=lowercase__ , truncation=lowercase__ , max_length=lowercase__ , stride=lowercase__ , pad_to_multiple_of=lowercase__ , return_token_type_ids=lowercase__ , return_attention_mask=lowercase__ , return_overflowing_tokens=lowercase__ , return_special_tokens_mask=lowercase__ , return_offsets_mapping=lowercase__ , return_length=lowercase__ , verbose=lowercase__ , return_tensors=lowercase__ , **lowercase__ , ) # add pixel values __A =features.pop('''pixel_values''' ) if return_overflowing_tokens is True: __A =self.get_overflowing_images(lowercase__ , encoded_inputs['''overflow_to_sample_mapping'''] ) __A =images return encoded_inputs def __UpperCamelCase ( self , lowercase__ , lowercase__ ): '''simple docstring''' __A =[] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(lowercase__ ) != len(lowercase__ ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f''' {len(lowercase__ )} and {len(lowercase__ )}''' ) return images_with_overflow def __UpperCamelCase ( self , *lowercase__ , **lowercase__ ): '''simple docstring''' return self.tokenizer.batch_decode(*lowercase__ , **lowercase__ ) def __UpperCamelCase ( self , *lowercase__ , **lowercase__ ): '''simple docstring''' return self.tokenizer.decode(*lowercase__ , **lowercase__ ) @property def __UpperCamelCase ( self ): '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def __UpperCamelCase ( self ): '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowercase__ , ) return self.image_processor_class @property def __UpperCamelCase ( self ): '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , lowercase__ , ) return self.image_processor
184
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A : Optional[int] = logging.get_logger(__name__) A : Union[str, Any] = '▁' A : Optional[int] = {'vocab_file': 'spiece.model'} A : int = { 'vocab_file': { 'google/reformer-crime-and-punishment': ( 'https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model' ) } } A : List[str] = { 'google/reformer-crime-and-punishment': 524_288, } class SCREAMING_SNAKE_CASE( SCREAMING_SNAKE_CASE_ ): snake_case_ : str = VOCAB_FILES_NAMES snake_case_ : str = PRETRAINED_VOCAB_FILES_MAP snake_case_ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ : Tuple = ["""input_ids""", """attention_mask"""] def __init__( self , lowerCamelCase__ , lowerCamelCase__="</s>" , lowerCamelCase__="<unk>" , lowerCamelCase__=[] , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> Optional[int]: """simple docstring""" __lowercase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , additional_special_tokens=UpperCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase__ , ) __lowercase = vocab_file __lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCamelCase__ ) @property def snake_case__ ( self ) -> List[str]: """simple docstring""" return self.sp_model.get_piece_size() def snake_case__ ( self ) -> Any: """simple docstring""" __lowercase = {self.convert_ids_to_tokens(UpperCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> str: """simple docstring""" __lowercase = self.__dict__.copy() __lowercase = None return state def __setstate__( self , lowerCamelCase__ ) -> int: """simple docstring""" __lowercase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __lowercase = {} __lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def snake_case__ ( self , lowerCamelCase__ ) -> Optional[int]: """simple docstring""" return self.sp_model.encode(UpperCamelCase__ , out_type=UpperCamelCase__ ) def snake_case__ ( self , lowerCamelCase__ ) -> Optional[Any]: """simple docstring""" return self.sp_model.piece_to_id(UpperCamelCase__ ) def snake_case__ ( self , lowerCamelCase__ ) -> List[str]: """simple docstring""" if index < self.sp_model.get_piece_size(): __lowercase = self.sp_model.IdToPiece(UpperCamelCase__ ) return token def snake_case__ ( self , lowerCamelCase__ ) -> Tuple: """simple docstring""" __lowercase = [] __lowercase = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(UpperCamelCase__ ) + token __lowercase = [] else: current_sub_tokens.append(UpperCamelCase__ ) out_string += self.sp_model.decode(UpperCamelCase__ ) return out_string.strip() def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> Optional[Any]: """simple docstring""" if not os.path.isdir(UpperCamelCase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __lowercase = os.path.join( UpperCamelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase__ , """wb""" ) as fi: __lowercase = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase__ ) return (out_vocab_file,)
711
'''simple docstring''' import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() A : int = logging.get_logger(__name__) A : Dict = ["""model.decoder.embed_positions.weights"""] def snake_case_ ( a__ : Union[str, Any] ): """simple docstring""" if "emb" in name: __lowercase = name.replace("""emb""" ,"""model.decoder.embed_tokens""" ) if "transformer" in name: __lowercase = name.replace("""transformer""" ,"""model.decoder""" ) if "cross_attention" in name: __lowercase = name.replace("""cross_attention""" ,"""encoder_attn""" ) if "linear1" in name: __lowercase = name.replace("""linear1""" ,"""fc1""" ) if "linear2" in name: __lowercase = name.replace("""linear2""" ,"""fc2""" ) if "norm1" in name: __lowercase = name.replace("""norm1""" ,"""self_attn_layer_norm""" ) if "norm_cross" in name: __lowercase = name.replace("""norm_cross""" ,"""encoder_attn_layer_norm""" ) if "norm2" in name: __lowercase = name.replace("""norm2""" ,"""final_layer_norm""" ) if "out_norm" in name: __lowercase = name.replace("""out_norm""" ,"""model.decoder.layer_norm""" ) if "linears" in name: __lowercase = name.replace("""linears""" ,"""lm_heads""" ) if "condition_provider.conditioners.description.output_proj" in name: __lowercase = name.replace("""condition_provider.conditioners.description.output_proj""" ,"""enc_to_dec_proj""" ) return name def snake_case_ ( a__ : OrderedDict ,a__ : int ): """simple docstring""" __lowercase = list(state_dict.keys() ) __lowercase = {} for key in keys: __lowercase = state_dict.pop(a__ ) __lowercase = rename_keys(a__ ) if "in_proj_weight" in key: # split fused qkv proj __lowercase = val[:hidden_size, :] __lowercase = val[hidden_size : 2 * hidden_size, :] __lowercase = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: __lowercase = val else: __lowercase = val return state_dict, enc_dec_proj_state_dict def snake_case_ ( a__ : str ): """simple docstring""" if checkpoint == "small": # default config values __lowercase = 10_24 __lowercase = 24 __lowercase = 16 elif checkpoint == "medium": __lowercase = 15_36 __lowercase = 48 __lowercase = 24 elif checkpoint == "large": __lowercase = 20_48 __lowercase = 48 __lowercase = 32 else: raise ValueError(f'Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.' ) __lowercase = MusicgenDecoderConfig( hidden_size=a__ ,ffn_dim=hidden_size * 4 ,num_hidden_layers=a__ ,num_attention_heads=a__ ,) return config @torch.no_grad() def snake_case_ ( a__ : Optional[Any] ,a__ : Dict=None ,a__ : Tuple=None ,a__ : Optional[int]="cpu" ): """simple docstring""" __lowercase = MusicGen.get_pretrained(a__ ,device=a__ ) __lowercase = decoder_config_from_checkpoint(a__ ) __lowercase = fairseq_model.lm.state_dict() __lowercase ,__lowercase = rename_state_dict( a__ ,hidden_size=decoder_config.hidden_size ) __lowercase = TaEncoderModel.from_pretrained("""t5-base""" ) __lowercase = EncodecModel.from_pretrained("""facebook/encodec_32khz""" ) __lowercase = MusicgenForCausalLM(a__ ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection __lowercase ,__lowercase = decoder.load_state_dict(a__ ,strict=a__ ) for key in missing_keys.copy(): if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(a__ ) if len(a__ ) > 0: raise ValueError(f'Missing key(s) in state_dict: {missing_keys}' ) if len(a__ ) > 0: raise ValueError(f'Unexpected key(s) in state_dict: {unexpected_keys}' ) # init the composite model __lowercase = MusicgenForConditionalGeneration(text_encoder=a__ ,audio_encoder=a__ ,decoder=a__ ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(a__ ) # check we can do a forward pass __lowercase = torch.arange(0 ,8 ,dtype=torch.long ).reshape(2 ,-1 ) __lowercase = input_ids.reshape(2 * 4 ,-1 ) with torch.no_grad(): __lowercase = model(input_ids=a__ ,decoder_input_ids=a__ ).logits if logits.shape != (8, 1, 20_48): raise ValueError("""Incorrect shape for logits""" ) # now construct the processor __lowercase = AutoTokenizer.from_pretrained("""t5-base""" ) __lowercase = AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" ,padding_side="""left""" ) __lowercase = MusicgenProcessor(feature_extractor=a__ ,tokenizer=a__ ) # set the appropriate bos/pad token ids __lowercase = 20_48 __lowercase = 20_48 # set other default generation config params __lowercase = int(30 * audio_encoder.config.frame_rate ) __lowercase = True __lowercase = 3.0 if pytorch_dump_folder is not None: Path(a__ ).mkdir(exist_ok=a__ ) logger.info(f'Saving model {checkpoint} to {pytorch_dump_folder}' ) model.save_pretrained(a__ ) processor.save_pretrained(a__ ) if repo_id: logger.info(f'Pushing model {checkpoint} to {repo_id}' ) model.push_to_hub(a__ ) processor.push_to_hub(a__ ) if __name__ == "__main__": A : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint""", default="""small""", type=str, help="""Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.""", ) parser.add_argument( """--pytorch_dump_folder""", required=True, default=None, type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) parser.add_argument( """--device""", default="""cpu""", type=str, help="""Torch device to run the conversion, either cpu or cuda.""" ) A : Tuple = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
163
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Dict = 'naver-clova-ix/donut-base-finetuned-docvqa' __snake_case :Dict = ( 'This is a tool that answers a question about an document (pdf). It takes an input named `document` which ' 'should be the document containing the information, as well as a `question` that is the question about the ' 'document. It returns a text that contains the answer to the question.' ) __snake_case :List[str] = 'document_qa' __snake_case :List[Any] = AutoProcessor __snake_case :str = VisionEncoderDecoderModel __snake_case :List[Any] = ['image', 'text'] __snake_case :Optional[Any] = ['text'] def __init__( self : Any , *_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : Any ) -> Optional[int]: """simple docstring""" if not is_vision_available(): raise ValueError("""Pillow must be installed to use the DocumentQuestionAnsweringTool.""" ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase ) def _a ( self : Any , _lowerCAmelCase : "Image" , _lowerCAmelCase : str ) -> str: """simple docstring""" __lowercase = """<s_docvqa><s_question>{user_input}</s_question><s_answer>""" __lowercase = task_prompt.replace("""{user_input}""" , _lowerCAmelCase ) __lowercase = self.pre_processor.tokenizer( _lowerCAmelCase , add_special_tokens=_lowerCAmelCase , return_tensors="""pt""" ).input_ids __lowercase = self.pre_processor(_lowerCAmelCase , return_tensors="""pt""" ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def _a ( self : List[Any] , _lowerCAmelCase : Dict ) -> str: """simple docstring""" return self.model.generate( inputs["""pixel_values"""].to(self.device ) , decoder_input_ids=inputs["""decoder_input_ids"""].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=_lowerCAmelCase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=_lowerCAmelCase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=_lowerCAmelCase , ).sequences def _a ( self : Optional[Any] , _lowerCAmelCase : Optional[Any] ) -> int: """simple docstring""" __lowercase = self.pre_processor.batch_decode(_lowerCAmelCase )[0] __lowercase = sequence.replace(self.pre_processor.tokenizer.eos_token , """""" ) __lowercase = sequence.replace(self.pre_processor.tokenizer.pad_token , """""" ) __lowercase = re.sub(r"""<.*?>""" , """""" , _lowerCAmelCase , count=1 ).strip() # remove first task start token __lowercase = self.pre_processor.tokenajson(_lowerCAmelCase ) return sequence["answer"]
80
'''simple docstring''' import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP UpperCamelCase__ = False try: UpperCamelCase__ = _is_package_available('google.colab') except ModuleNotFoundError: pass @input.register class _UpperCAmelCase : def __init__( self : List[Any] , a : str = None , a : list = [] ): '''simple docstring''' lowercase_ : Optional[Any] = 0 lowercase_ : Dict = choices lowercase_ : List[str] = prompt if sys.platform == "win32": lowercase_ : List[Any] = "*" else: lowercase_ : Union[str, Any] = "➔ " def lowerCAmelCase__ ( self : int , a : Optional[int] , a : str = "" ): '''simple docstring''' if sys.platform != "win32": writeColor(self.choices[index] , 3_2 , a ) else: forceWrite(self.choices[index] , a ) def lowerCAmelCase__ ( self : List[Any] , a : int ): '''simple docstring''' if index == self.position: forceWrite(f""" {self.arrow_char} """ ) self.write_choice(a ) else: forceWrite(f""" {self.choices[index]}""" ) reset_cursor() def lowerCAmelCase__ ( self : str , a : Direction , a : int = 1 ): '''simple docstring''' lowercase_ : Optional[int] = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(a ) move_cursor(a , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP["up"] ) def lowerCAmelCase__ ( self : Dict ): '''simple docstring''' self.move_direction(Direction.UP ) @input.mark(KEYMAP["down"] ) def lowerCAmelCase__ ( self : List[Any] ): '''simple docstring''' self.move_direction(Direction.DOWN ) @input.mark(KEYMAP["newline"] ) def lowerCAmelCase__ ( self : Any ): '''simple docstring''' move_cursor(len(self.choices ) - self.position , "DOWN" ) return self.position @input.mark(KEYMAP["interrupt"] ) def lowerCAmelCase__ ( self : str ): '''simple docstring''' move_cursor(len(self.choices ) - self.position , "DOWN" ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(a )] for number in range(1_0 )] ) def lowerCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ : str = int(chr(self.current_selection ) ) lowercase_ : Tuple = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , a ) else: return else: return def lowerCAmelCase__ ( self : Tuple , a : int = 0 ): '''simple docstring''' if self.prompt: linebreak() forceWrite(self.prompt , "\n" ) if in_colab: forceWrite("Please input a choice index (starting from 0), and press enter" , "\n" ) else: forceWrite("Please select a choice using the arrow or number keys, and selecting with enter" , "\n" ) lowercase_ : Dict = default_choice for i in range(len(self.choices ) ): self.print_choice(a ) forceWrite("\n" ) move_cursor(len(self.choices ) - self.position , "UP" ) with cursor.hide(): while True: if in_colab: try: lowercase_ : List[str] = int(builtins.input() ) except ValueError: lowercase_ : List[Any] = default_choice else: lowercase_ : Dict = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , "UP" ) clear_line() self.write_choice(a , "\n" ) return choice
620
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = '''▁''' UpperCAmelCase = {'''vocab_file''': '''sentencepiece.bpe.model'''} UpperCAmelCase = { '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), } } UpperCAmelCase = { '''facebook/mbart-large-en-ro''': 1_024, '''facebook/mbart-large-cc25''': 1_024, } # fmt: off UpperCAmelCase = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class __magic_name__ ( _UpperCAmelCase ): __A : Tuple = VOCAB_FILES_NAMES __A : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __A : Optional[Any] = ['input_ids', 'attention_mask'] __A : List[int] = [] __A : List[int] = [] def __init__( self : Tuple , snake_case__ : Any , snake_case__ : Any="<s>" , snake_case__ : Any="</s>" , snake_case__ : Dict="</s>" , snake_case__ : Optional[Any]="<s>" , snake_case__ : str="<unk>" , snake_case__ : Optional[Any]="<pad>" , snake_case__ : List[Any]="<mask>" , snake_case__ : Union[str, Any]=None , snake_case__ : Optional[int]=None , snake_case__ : Union[str, Any]=None , snake_case__ : Optional[Dict[str, Any]] = None , snake_case__ : Any=None , **snake_case__ : Tuple , ): '''simple docstring''' lowercase :Optional[Any] = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else mask_token lowercase :Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , unk_token=__UpperCamelCase , sep_token=__UpperCamelCase , cls_token=__UpperCamelCase , pad_token=__UpperCamelCase , mask_token=__UpperCamelCase , tokenizer_file=__UpperCamelCase , src_lang=__UpperCamelCase , tgt_lang=__UpperCamelCase , additional_special_tokens=__UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCamelCase , ) lowercase :Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__UpperCamelCase ) ) lowercase :Dict = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token lowercase :Any = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowercase :str = 1 lowercase :Union[str, Any] = len(self.sp_model ) lowercase :int = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__UpperCamelCase ) } lowercase :int = {v: k for k, v in self.lang_code_to_id.items()} lowercase :Optional[int] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) lowercase :Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} lowercase :Dict = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) lowercase :Tuple = src_lang if src_lang is not None else '''en_XX''' lowercase :Union[str, Any] = self.lang_code_to_id[self._src_lang] lowercase :Union[str, Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : List[str] ): '''simple docstring''' lowercase :List[str] = self.__dict__.copy() lowercase :str = None lowercase :int = self.sp_model.serialized_model_proto() return state def __setstate__( self : Union[str, Any] , snake_case__ : Dict ): '''simple docstring''' lowercase :Any = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowercase :Dict = {} lowercase :Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def __snake_case ( self : Any ): '''simple docstring''' return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def __snake_case ( self : Optional[Any] ): '''simple docstring''' return self._src_lang @src_lang.setter def __snake_case ( self : int , snake_case__ : str ): '''simple docstring''' lowercase :List[str] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __snake_case ( self : List[str] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCamelCase , token_ids_a=__UpperCamelCase , already_has_special_tokens=__UpperCamelCase ) lowercase :List[Any] = [1] * len(self.prefix_tokens ) lowercase :Optional[int] = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__UpperCamelCase )) + suffix_ones return prefix_ones + ([0] * len(__UpperCamelCase )) + ([0] * len(__UpperCamelCase )) + suffix_ones def __snake_case ( self : str , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __snake_case ( self : List[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): '''simple docstring''' lowercase :List[Any] = [self.sep_token_id] lowercase :Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __snake_case ( self : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : str , snake_case__ : Optional[str] , snake_case__ : Optional[str] , **snake_case__ : Tuple ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) lowercase :Union[str, Any] = src_lang lowercase :int = self(__UpperCamelCase , add_special_tokens=__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase ) lowercase :Optional[int] = self.convert_tokens_to_ids(__UpperCamelCase ) lowercase :Union[str, Any] = tgt_lang_id return inputs def __snake_case ( self : Optional[int] ): '''simple docstring''' lowercase :Tuple = {self.convert_ids_to_tokens(__UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __snake_case ( self : Tuple , snake_case__ : str ): '''simple docstring''' return self.sp_model.encode(__UpperCamelCase , out_type=__UpperCamelCase ) def __snake_case ( self : Dict , snake_case__ : Any ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowercase :Tuple = self.sp_model.PieceToId(__UpperCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __snake_case ( self : int , snake_case__ : List[Any] ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __snake_case ( self : Dict , snake_case__ : Dict ): '''simple docstring''' lowercase :Dict = ''''''.join(__UpperCamelCase ).replace(__UpperCamelCase , ''' ''' ).strip() return out_string def __snake_case ( self : Tuple , snake_case__ : str , snake_case__ : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(__UpperCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase :str = os.path.join( __UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCamelCase , '''wb''' ) as fi: lowercase :Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(__UpperCamelCase ) return (out_vocab_file,) def __snake_case ( self : List[Any] , snake_case__ : List[str] , snake_case__ : str = "en_XX" , snake_case__ : Optional[List[str]] = None , snake_case__ : str = "ro_RO" , **snake_case__ : Tuple , ): '''simple docstring''' lowercase :List[str] = src_lang lowercase :Union[str, Any] = tgt_lang return super().prepare_seqaseq_batch(__UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ) def __snake_case ( self : Tuple ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def __snake_case ( self : Optional[int] ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __snake_case ( self : List[str] , snake_case__ : Tuple ): '''simple docstring''' lowercase :Optional[int] = self.lang_code_to_id[src_lang] lowercase :str = [] lowercase :int = [self.eos_token_id, self.cur_lang_code] def __snake_case ( self : Optional[int] , snake_case__ : str ): '''simple docstring''' lowercase :List[str] = self.lang_code_to_id[lang] lowercase :Any = [] lowercase :Any = [self.eos_token_id, self.cur_lang_code]
719
"""simple docstring""" import unittest import numpy as np def lowerCamelCase (a_ :np.ndarray , a_ :np.ndarray , a_ :np.ndarray , a_ :np.ndarray | None = None , ) -> np.ndarray: lowercase :str = np.shape(a_) lowercase :Dict = np.shape(a_) lowercase :Optional[int] = np.shape(a_) if shape_a[0] != shape_b[0]: lowercase :List[str] = ( '''Expected the same number of rows for A and B. ''' F"""Instead found A of size {shape_a} and B of size {shape_b}""" ) raise ValueError(a_) if shape_b[1] != shape_c[1]: lowercase :List[str] = ( '''Expected the same number of columns for B and C. ''' F"""Instead found B of size {shape_b} and C of size {shape_c}""" ) raise ValueError(a_) lowercase :Optional[Any] = pseudo_inv if a_inv is None: try: lowercase :int = np.linalg.inv(a_) except np.linalg.LinAlgError: raise ValueError( '''Input matrix A is not invertible. Cannot compute Schur complement.''') return mat_c - mat_b.T @ a_inv @ mat_b class __magic_name__ ( unittest.TestCase ): def __snake_case ( self : int ): '''simple docstring''' lowercase :Dict = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowercase :List[str] = np.array([[0, 3], [3, 0], [2, 3]] ) lowercase :List[str] = np.array([[2, 1], [6, 3]] ) lowercase :Any = schur_complement(snake_case__ , snake_case__ , snake_case__ ) lowercase :int = np.block([[a, b], [b.T, c]] ) lowercase :Tuple = np.linalg.det(snake_case__ ) lowercase :Any = np.linalg.det(snake_case__ ) lowercase :List[Any] = np.linalg.det(snake_case__ ) self.assertAlmostEqual(snake_case__ , det_a * det_s ) def __snake_case ( self : Optional[int] ): '''simple docstring''' lowercase :Union[str, Any] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowercase :Union[str, Any] = np.array([[0, 3], [3, 0], [2, 3]] ) lowercase :List[str] = np.array([[2, 1], [6, 3]] ) with self.assertRaises(snake_case__ ): schur_complement(snake_case__ , snake_case__ , snake_case__ ) def __snake_case ( self : List[Any] ): '''simple docstring''' lowercase :List[str] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowercase :int = np.array([[0, 3], [3, 0], [2, 3]] ) lowercase :List[Any] = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(snake_case__ ): schur_complement(snake_case__ , snake_case__ , snake_case__ ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
475
0
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : list[int] ) -> list[list[int]]: __snake_case = [] if len(_UpperCAmelCase ) == 1: return [nums.copy()] for _ in range(len(_UpperCAmelCase ) ): __snake_case = nums.pop(0 ) __snake_case = permute(_UpperCAmelCase ) for perm in permutations: perm.append(_UpperCAmelCase ) result.extend(_UpperCAmelCase ) nums.append(_UpperCAmelCase ) return result def __UpperCAmelCase ( _UpperCAmelCase : str ) -> List[Any]: def backtrack(_UpperCAmelCase : Union[str, Any] ): if start == len(_UpperCAmelCase ) - 1: output.append(nums[:] ) else: for i in range(_UpperCAmelCase , len(_UpperCAmelCase ) ): __snake_case , __snake_case = nums[i], nums[start] backtrack(start + 1 ) __snake_case , __snake_case = nums[i], nums[start] # backtrack __snake_case = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function a : Union[str, Any] = permutea([1, 2, 3]) print(res) doctest.testmod()
69
'''simple docstring''' _lowerCAmelCase = "\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" _lowerCAmelCase = [{"type": "code", "content": INSTALL_CONTENT}] _lowerCAmelCase = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
432
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule a_ : List[Any] = {"tokenization_wav2vec2_phoneme": ["Wav2Vec2PhonemeCTCTokenizer"]} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys a_ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
532
'''simple docstring''' import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format="%(message)s") def _A (lowerCAmelCase__ :np.ndarray ) -> np.ndarray: '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def _A (lowerCAmelCase__ :np.ndarray , lowerCAmelCase__ :np.ndarray , lowerCAmelCase__ :int ) -> np.ndarray: '''simple docstring''' _a = np.nan for i in range(lowerCAmelCase__ ): _a = features[:, labels == i] _a = data.mean(1 ) # Centralize the data of class i _a = data - column_reshape(lowerCAmelCase__ ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(lowerCAmelCase__ , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) _a = np.dot(lowerCAmelCase__ , centered_data.T ) return covariance_sum / features.shape[1] def _A (lowerCAmelCase__ :np.ndarray , lowerCAmelCase__ :np.ndarray , lowerCAmelCase__ :int ) -> np.ndarray: '''simple docstring''' _a = features.mean(1 ) _a = np.nan for i in range(lowerCAmelCase__ ): _a = features[:, labels == i] _a = data.shape[1] _a = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(lowerCAmelCase__ ) - column_reshape(lowerCAmelCase__ ) , (column_reshape(lowerCAmelCase__ ) - column_reshape(lowerCAmelCase__ )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) _a = device_data * np.dot( column_reshape(lowerCAmelCase__ ) - column_reshape(lowerCAmelCase__ ) , (column_reshape(lowerCAmelCase__ ) - column_reshape(lowerCAmelCase__ )).T , ) return covariance_sum / features.shape[1] def _A (lowerCAmelCase__ :np.ndarray , lowerCAmelCase__ :int ) -> np.ndarray: '''simple docstring''' if features.any(): _a = features.mean(1 ) # Center the dataset _a = features - np.reshape(lowerCAmelCase__ , (data_mean.size, 1) ) _a = np.dot(lowerCAmelCase__ , centered_data.T ) / features.shape[1] _a , _a = np.linalg.eigh(lowerCAmelCase__ ) # Take all the columns in the reverse order (-1), and then takes only the first _a = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space _a = np.dot(filtered_eigenvectors.T , lowerCAmelCase__ ) logging.info('Principal Component Analysis computed' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='%(message)s' , force=lowerCAmelCase__ ) logging.error('Dataset empty' ) raise AssertionError def _A (lowerCAmelCase__ :np.ndarray , lowerCAmelCase__ :np.ndarray , lowerCAmelCase__ :int , lowerCAmelCase__ :int ) -> np.ndarray: '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: _a , _a = eigh( covariance_between_classes(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , covariance_within_classes(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , ) _a = eigenvectors[:, ::-1][:, :dimensions] _a , _a , _a = np.linalg.svd(lowerCAmelCase__ ) _a = svd_matrix[:, 0:dimensions] _a = np.dot(filtered_svd_matrix.T , lowerCAmelCase__ ) logging.info('Linear Discriminant Analysis computed' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='%(message)s' , force=lowerCAmelCase__ ) logging.error('Dataset empty' ) raise AssertionError def _A () -> None: '''simple docstring''' _a = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) _a = np.array([0, 0, 0, 1, 1] ) _a = 2 _a = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(lowerCAmelCase__ ) as error_info: _a = linear_discriminant_analysis( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , np.ndarray ): raise AssertionError( 'Did not raise AssertionError for dimensions > classes' ) assert error_info.type is AssertionError def _A () -> None: '''simple docstring''' _a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) _a = 2 _a = np.array([[6.9_2_8_2_0_3_2_3, 8.6_6_0_2_5_4_0_4, 1_0.3_9_2_3_0_4_8_5], [3.0, 3.0, 3.0]] ) with pytest.raises(lowerCAmelCase__ ) as error_info: _a = principal_component_analysis(lowerCAmelCase__ , lowerCAmelCase__ ) if not np.allclose(lowerCAmelCase__ , lowerCAmelCase__ ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
532
1
from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline lowercase__ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name class a__ ( UpperCamelCase__ ): def __init__( self , A , A ) -> Optional[int]: '''simple docstring''' super().__init__() self.register_modules(unet=A , scheduler=A ) @torch.no_grad() def __call__( self , A = 1 , A = 100 , A = None , A = None , A = True , ) -> Union[AudioPipelineOutput, Tuple]: '''simple docstring''' if audio_length_in_s is None: a = self.unet.config.sample_size / self.unet.config.sample_rate a = audio_length_in_s * self.unet.config.sample_rate a = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( F'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to''' F''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' ) a = int(A ) if sample_size % down_scale_factor != 0: a = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( F'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled''' F''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising''' " process." ) a = int(A ) a = next(iter(self.unet.parameters() ) ).dtype a = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(A , A ) and len(A ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(A )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) a = randn_tensor(A , generator=A , device=self.device , dtype=A ) # set step values self.scheduler.set_timesteps(A , device=audio.device ) a = self.scheduler.timesteps.to(A ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output a = self.unet(A , A ).sample # 2. compute previous image: x_t -> t_t-1 a = self.scheduler.step(A , A , A ).prev_sample a = audio.clamp(-1 , 1 ).float().cpu().numpy() a = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=A )
515
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class a__ : def __init__( self , A = None ) -> None: '''simple docstring''' if components is None: a = [] a = list(A ) def __len__( self ) -> int: '''simple docstring''' return len(self.__components ) def __str__( self ) -> str: '''simple docstring''' return "(" + ",".join(map(A , self.__components ) ) + ")" def __add__( self , A ) -> Vector: '''simple docstring''' a = len(self ) if size == len(A ): a = [self.__components[i] + other.component(A ) for i in range(A )] return Vector(A ) else: raise Exception("must have the same size" ) def __sub__( self , A ) -> Vector: '''simple docstring''' a = len(self ) if size == len(A ): a = [self.__components[i] - other.component(A ) for i in range(A )] return Vector(A ) else: # error case raise Exception("must have the same size" ) @overload def __mul__( self , A ) -> Vector: '''simple docstring''' ... @overload def __mul__( self , A ) -> float: '''simple docstring''' ... def __mul__( self , A ) -> float | Vector: '''simple docstring''' if isinstance(A , (float, int) ): a = [c * other for c in self.__components] return Vector(A ) elif isinstance(A , A ) and len(self ) == len(A ): a = len(self ) a = [self.__components[i] * other.component(A ) for i in range(A )] return sum(A ) else: # error case raise Exception("invalid operand!" ) def lowerCAmelCase_ ( self ) -> Vector: '''simple docstring''' return Vector(self.__components ) def lowerCAmelCase_ ( self , A ) -> float: '''simple docstring''' if isinstance(A , A ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception("index out of range" ) def lowerCAmelCase_ ( self , A , A ) -> None: '''simple docstring''' assert -len(self.__components ) <= pos < len(self.__components ) a = value def lowerCAmelCase_ ( self ) -> float: '''simple docstring''' if len(self.__components ) == 0: raise Exception("Vector is empty" ) a = [c**2 for c in self.__components] return math.sqrt(sum(A ) ) def lowerCAmelCase_ ( self , A , A = False ) -> float: '''simple docstring''' a = self * other a = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> Vector: assert isinstance(__UpperCamelCase , __UpperCamelCase) return Vector([0] * dimension) def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase) -> Vector: assert isinstance(__UpperCamelCase , __UpperCamelCase) and (isinstance(__UpperCamelCase , __UpperCamelCase)) a = [0] * dimension a = 1 return Vector(__UpperCamelCase) def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase) -> Vector: assert ( isinstance(__UpperCamelCase , __UpperCamelCase) and isinstance(__UpperCamelCase , __UpperCamelCase) and (isinstance(__UpperCamelCase , (int, float))) ) return x * scalar + y def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase) -> Vector: random.seed(__UpperCamelCase) a = [random.randint(__UpperCamelCase , __UpperCamelCase) for _ in range(__UpperCamelCase)] return Vector(__UpperCamelCase) class a__ : def __init__( self , A , A , A ) -> None: '''simple docstring''' a = matrix a = w a = h def __str__( self ) -> str: '''simple docstring''' a = "" for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self , A ) -> Matrix: '''simple docstring''' if self.__width == other.width() and self.__height == other.height(): a = [] for i in range(self.__height ): a = [ self.__matrix[i][j] + other.component(A , A ) for j in range(self.__width ) ] matrix.append(A ) return Matrix(A , self.__width , self.__height ) else: raise Exception("matrix must have the same dimension!" ) def __sub__( self , A ) -> Matrix: '''simple docstring''' if self.__width == other.width() and self.__height == other.height(): a = [] for i in range(self.__height ): a = [ self.__matrix[i][j] - other.component(A , A ) for j in range(self.__width ) ] matrix.append(A ) return Matrix(A , self.__width , self.__height ) else: raise Exception("matrices must have the same dimension!" ) @overload def __mul__( self , A ) -> Matrix: '''simple docstring''' ... @overload def __mul__( self , A ) -> Vector: '''simple docstring''' ... def __mul__( self , A ) -> Vector | Matrix: '''simple docstring''' if isinstance(A , A ): # matrix-vector if len(A ) == self.__width: a = zero_vector(self.__height ) for i in range(self.__height ): a = [ self.__matrix[i][j] * other.component(A ) for j in range(self.__width ) ] ans.change_component(A , sum(A ) ) return ans else: raise Exception( "vector must have the same size as the " "number of columns of the matrix!" ) elif isinstance(A , (int, float) ): # matrix-scalar a = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(A , self.__width , self.__height ) return None def lowerCAmelCase_ ( self ) -> int: '''simple docstring''' return self.__height def lowerCAmelCase_ ( self ) -> int: '''simple docstring''' return self.__width def lowerCAmelCase_ ( self , A , A ) -> float: '''simple docstring''' if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("change_component: indices out of bounds" ) def lowerCAmelCase_ ( self , A , A , A ) -> None: '''simple docstring''' if 0 <= x < self.__height and 0 <= y < self.__width: a = value else: raise Exception("change_component: indices out of bounds" ) def lowerCAmelCase_ ( self , A , A ) -> float: '''simple docstring''' if self.__height != self.__width: raise Exception("Matrix is not square" ) a = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(A ) ): a = minor[i][:y] + minor[i][y + 1 :] return Matrix(A , self.__width - 1 , self.__height - 1 ).determinant() def lowerCAmelCase_ ( self , A , A ) -> float: '''simple docstring''' if self.__height != self.__width: raise Exception("Matrix is not square" ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(A , A ) else: raise Exception("Indices out of bounds" ) def lowerCAmelCase_ ( self ) -> float: '''simple docstring''' if self.__height != self.__width: raise Exception("Matrix is not square" ) if self.__height < 1: raise Exception("Matrix has no element" ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: a = [ self.__matrix[0][y] * self.cofactor(0 , A ) for y in range(self.__width ) ] return sum(A ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> Matrix: a = [[0] * n for _ in range(__UpperCamelCase)] return Matrix(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase) def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase) -> Matrix: random.seed(__UpperCamelCase) a = [ [random.randint(__UpperCamelCase , __UpperCamelCase) for _ in range(__UpperCamelCase)] for _ in range(__UpperCamelCase) ] return Matrix(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase)
515
1
'''simple docstring''' import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { "kakaobrain/align-base": "https://huggingface.co/kakaobrain/align-base/resolve/main/config.json", } class UpperCamelCase__ ( a ): '''simple docstring''' _snake_case = '''align_text_model''' def __init__( self , SCREAMING_SNAKE_CASE=3_05_22 , SCREAMING_SNAKE_CASE=7_68 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=30_72 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=5_12 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=0.0_2 , SCREAMING_SNAKE_CASE=1e-12 , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE="absolute" , SCREAMING_SNAKE_CASE=True , **SCREAMING_SNAKE_CASE , ) -> Optional[int]: super().__init__(**SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Union[str, Any] = vocab_size __lowerCAmelCase : Union[str, Any] = hidden_size __lowerCAmelCase : Optional[Any] = num_hidden_layers __lowerCAmelCase : Any = num_attention_heads __lowerCAmelCase : Union[str, Any] = hidden_act __lowerCAmelCase : Any = intermediate_size __lowerCAmelCase : Optional[int] = hidden_dropout_prob __lowerCAmelCase : int = attention_probs_dropout_prob __lowerCAmelCase : Optional[Any] = max_position_embeddings __lowerCAmelCase : Optional[int] = type_vocab_size __lowerCAmelCase : List[str] = initializer_range __lowerCAmelCase : List[str] = layer_norm_eps __lowerCAmelCase : int = position_embedding_type __lowerCAmelCase : int = use_cache __lowerCAmelCase : List[str] = pad_token_id @classmethod def snake_case ( cls , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> "PretrainedConfig": cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase : int = cls.get_config_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) # get the text config dict if we are loading from AlignConfig if config_dict.get('model_type' ) == "align": __lowerCAmelCase : Union[str, Any] = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) class UpperCamelCase__ ( a ): '''simple docstring''' _snake_case = '''align_vision_model''' def __init__( self , SCREAMING_SNAKE_CASE = 3 , SCREAMING_SNAKE_CASE = 6_00 , SCREAMING_SNAKE_CASE = 2.0 , SCREAMING_SNAKE_CASE = 3.1 , SCREAMING_SNAKE_CASE = 8 , SCREAMING_SNAKE_CASE = [3, 3, 5, 3, 5, 5, 3] , SCREAMING_SNAKE_CASE = [32, 16, 24, 40, 80, 1_12, 1_92] , SCREAMING_SNAKE_CASE = [16, 24, 40, 80, 1_12, 1_92, 3_20] , SCREAMING_SNAKE_CASE = [] , SCREAMING_SNAKE_CASE = [1, 2, 2, 2, 1, 2, 1] , SCREAMING_SNAKE_CASE = [1, 2, 2, 3, 3, 4, 1] , SCREAMING_SNAKE_CASE = [1, 6, 6, 6, 6, 6, 6] , SCREAMING_SNAKE_CASE = 0.2_5 , SCREAMING_SNAKE_CASE = "swish" , SCREAMING_SNAKE_CASE = 25_60 , SCREAMING_SNAKE_CASE = "mean" , SCREAMING_SNAKE_CASE = 0.0_2 , SCREAMING_SNAKE_CASE = 0.0_0_1 , SCREAMING_SNAKE_CASE = 0.9_9 , SCREAMING_SNAKE_CASE = 0.2 , **SCREAMING_SNAKE_CASE , ) -> List[str]: super().__init__(**SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = num_channels __lowerCAmelCase : int = image_size __lowerCAmelCase : Union[str, Any] = width_coefficient __lowerCAmelCase : Any = depth_coefficient __lowerCAmelCase : Tuple = depth_divisor __lowerCAmelCase : str = kernel_sizes __lowerCAmelCase : Dict = in_channels __lowerCAmelCase : Union[str, Any] = out_channels __lowerCAmelCase : str = depthwise_padding __lowerCAmelCase : Optional[int] = strides __lowerCAmelCase : Tuple = num_block_repeats __lowerCAmelCase : Any = expand_ratios __lowerCAmelCase : Union[str, Any] = squeeze_expansion_ratio __lowerCAmelCase : Optional[int] = hidden_act __lowerCAmelCase : Any = hidden_dim __lowerCAmelCase : Optional[Any] = pooling_type __lowerCAmelCase : Optional[int] = initializer_range __lowerCAmelCase : List[str] = batch_norm_eps __lowerCAmelCase : Any = batch_norm_momentum __lowerCAmelCase : str = drop_connect_rate __lowerCAmelCase : str = sum(SCREAMING_SNAKE_CASE ) * 4 @classmethod def snake_case ( cls , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> "PretrainedConfig": cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase : Optional[int] = cls.get_config_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) # get the vision config dict if we are loading from AlignConfig if config_dict.get('model_type' ) == "align": __lowerCAmelCase : List[Any] = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) class UpperCamelCase__ ( a ): '''simple docstring''' _snake_case = '''align''' _snake_case = True def __init__( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=6_40 , SCREAMING_SNAKE_CASE=1.0 , SCREAMING_SNAKE_CASE=0.0_2 , **SCREAMING_SNAKE_CASE , ) -> str: super().__init__(**SCREAMING_SNAKE_CASE ) if text_config is None: __lowerCAmelCase : Any = {} logger.info('text_config is None. Initializing the AlignTextConfig with default values.' ) if vision_config is None: __lowerCAmelCase : int = {} logger.info('vision_config is None. Initializing the AlignVisionConfig with default values.' ) __lowerCAmelCase : Dict = AlignTextConfig(**SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = AlignVisionConfig(**SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = projection_dim __lowerCAmelCase : Optional[Any] = temperature_init_value __lowerCAmelCase : Optional[Any] = initializer_range @classmethod def snake_case ( cls , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Dict: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **SCREAMING_SNAKE_CASE ) def snake_case ( self ) -> Union[str, Any]: __lowerCAmelCase : List[Any] = copy.deepcopy(self.__dict__ ) __lowerCAmelCase : Union[str, Any] = self.text_config.to_dict() __lowerCAmelCase : List[Any] = self.vision_config.to_dict() __lowerCAmelCase : List[str] = self.__class__.model_type return output
123
'''simple docstring''' from abc import ABC, abstractmethod from argparse import ArgumentParser class UpperCamelCase__ ( a ): '''simple docstring''' @staticmethod @abstractmethod def snake_case ( SCREAMING_SNAKE_CASE ) -> Optional[Any]: raise NotImplementedError() @abstractmethod def snake_case ( self ) -> Optional[Any]: raise NotImplementedError()
123
1
from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class snake_case__ ( unittest.TestCase ): def __magic_name__ ( self ) -> Any: __magic_name__ : Any = tf.convert_to_tensor( [ [ 8.2_2_2_0_9_9_1, # 3rd highest value; idx. 0 -0.5_6_2_0_0_4_4, 5.2_3_2_2_9_7_5_2, 4.0_3_8_6_3_9_3, -6.8_7_9_8_3_7_8, -0.5_4_7_8_5_8_0_2, -3.2_0_1_2_1_5_3, 2.9_2_7_7_7_1_7_6, 1.8_8_1_7_1_9_5_3, 7.3_5_3_4_1_2_7_6, # 5th highest value; idx. 9 8.4_3_2_0_7_8_3_3, # 2nd highest value; idx. 10 -9.8_5_7_1_1_8_3_6, -5.9_6_2_0_9_2_3_6, -1.1_3_0_3_9_1_6_1, -7.1_1_1_5_2_9_4, -0.8_3_6_9_6_3_3, -5.3_1_8_6_4_0_8, 7.0_6_4_2_7_4_0_7, 0.8_1_3_6_9_3_4_4, -0.8_2_0_2_3_8_1_7, -5.9_1_7_9_7_9_6, 0.5_8_8_1_3_4_4_3, -6.9_9_7_7_8_4_3_8, 4.7_1_5_5_1_1_8_9, -0.1_8_7_7_1_6_3_7, 7.4_4_0_2_0_7_5_9, # 4th highest value; idx. 25 9.3_8_4_5_0_9_8_7, # 1st highest value; idx. 26 2.1_2_6_6_2_9_4_1, -9.3_2_5_6_2_0_3_8, 2.3_5_6_5_2_5_2_2, ], # cummulative prob of 5 highest values <= 0.6 [ 0.5_8_4_2_5_5_1_8, 4.5_3_1_3_9_2_3_8, -5.5_7_5_1_0_4_6_4, -6.2_8_0_3_0_6_9_9, -7.1_9_5_2_9_5_0_3, -4.0_2_1_2_2_5_5_1, 1.3_9_3_3_7_0_3_7, -6.0_6_7_0_7_0_5_7, 1.5_9_4_8_0_5_1_7, -9.6_4_3_1_1_9, 0.0_3_9_0_7_7_9_9, 0.6_7_2_3_1_7_6_2, -8.8_8_2_0_6_7_2_6, 6.2_7_1_1_5_9_2_2, # 4th highest value; idx. 13 2.2_8_5_2_0_7_2_3, 4.8_2_7_6_7_5_0_6, 4.3_0_4_2_1_3_6_8, 8.8_2_7_5_3_1_3, # 2nd highest value; idx. 17 5.4_4_0_2_9_9_5_8, # 5th highest value; idx. 18 -4.4_7_3_5_7_9_4, 7.3_8_5_7_9_5_3_6, # 3rd highest value; idx. 20 -2.9_1_0_5_1_6_6_3, 2.6_1_9_4_6_0_7_7, -2.5_6_7_4_7_6_2, -9.4_8_9_5_9_3_0_2, -4.0_2_9_2_2_6_4_5, -1.3_5_4_1_6_9_1_8, 9.6_7_7_0_2_3_2_3, # 1st highest value; idx. 27 -5.8_9_4_7_8_5_5_3, 1.8_5_3_7_0_4_6_7, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) __magic_name__ : Any = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above __magic_name__ : Tuple = tf.convert_to_tensor( [8.2_2_2_0_9_9, 7.3_5_3_4_1_2_6, 8.4_3_2_0_7_8, 7.4_4_0_2_0_7_5, 9.3_8_4_5_1, 6.2_7_1_1_5_9, 8.8_2_7_5_3_1, 5.4_4_0_2_9_9_5, 7.3_8_5_7_9_5_6, 9.6_7_7_0_2_3] , dtype=tf.floataa , ) # expected non filtered values as noted above __magic_name__ : Dict = tf_top_k_top_p_filtering(lowerCAmelCase__ , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 ) __magic_name__ : Union[str, Any] = output[output != -float("""inf""" )] __magic_name__ : Union[str, Any] = tf.cast( tf.where(tf.not_equal(lowerCAmelCase__ , tf.constant(-float("""inf""" ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(lowerCAmelCase__ , lowerCAmelCase__ , rtol=1e-1_2 ) tf.debugging.assert_equal(lowerCAmelCase__ , lowerCAmelCase__ ) @require_tf class snake_case__ ( unittest.TestCase , _lowerCAmelCase ): # setting framework_dependent_parameters needs to be gated, just like its contents' imports if is_tf_available(): lowercase__ : str = { '''AutoModelForCausalLM''': TFAutoModelForCausalLM, '''AutoModelForSpeechSeq2Seq''': TFAutoModelForSpeechSeqaSeq, '''AutoModelForSeq2SeqLM''': TFAutoModelForSeqaSeqLM, '''AutoModelForVision2Seq''': TFAutoModelForVisionaSeq, '''LogitsProcessorList''': TFLogitsProcessorList, '''MinLengthLogitsProcessor''': TFMinLengthLogitsProcessor, '''create_tensor_fn''': tf.convert_to_tensor, '''floats_tensor''': floats_tensor, '''return_tensors''': '''tf''', } @slow def __magic_name__ ( self ) -> Any: # TF-only test: tf.saved_model export __magic_name__ : List[Any] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __magic_name__ : Dict = 2 __magic_name__ : Optional[Any] = 2 class snake_case__ ( tf.Module ): def __init__( self , lowerCAmelCase__ ) -> Any: super(lowerCAmelCase__ , self ).__init__() __magic_name__ : Tuple = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name="""input_ids""" ), tf.TensorSpec((None, input_length) , tf.intaa , name="""attention_mask""" ), ) , jit_compile=lowerCAmelCase__ , ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: __magic_name__ : Dict = self.model.generate( input_ids=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , max_new_tokens=lowerCAmelCase__ , return_dict_in_generate=lowerCAmelCase__ , ) return {"sequences": outputs["sequences"]} __magic_name__ : Optional[int] = [[2, 0], [1_02, 1_03]] __magic_name__ : int = [[1, 0], [1, 1]] __magic_name__ : List[str] = DummyModel(model=lowerCAmelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(lowerCAmelCase__ , lowerCAmelCase__ , signatures={"""serving_default""": dummy_model.serving} ) __magic_name__ : Union[str, Any] = tf.saved_model.load(lowerCAmelCase__ ).signatures["""serving_default"""] for batch_size in range(1 , len(lowerCAmelCase__ ) + 1 ): __magic_name__ : str = { """input_ids""": tf.constant(dummy_input_ids[:batch_size] ), """attention_mask""": tf.constant(dummy_attention_masks[:batch_size] ), } __magic_name__ : int = serving_func(**lowerCAmelCase__ )["""sequences"""] __magic_name__ : List[str] = test_model.generate(**lowerCAmelCase__ , max_new_tokens=lowerCAmelCase__ ) tf.debugging.assert_equal(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def __magic_name__ ( self ) -> Any: # TF-only test: tf.saved_model export __magic_name__ : Optional[int] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __magic_name__ : Optional[int] = 1 __magic_name__ : Union[str, Any] = 2 class snake_case__ ( tf.Module ): def __init__( self , lowerCAmelCase__ ) -> Optional[int]: super(lowerCAmelCase__ , self ).__init__() __magic_name__ : Union[str, Any] = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name="""input_ids""" ), tf.TensorSpec((batch_size, None) , tf.intaa , name="""attention_mask""" ), ) , jit_compile=lowerCAmelCase__ , ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[Any]: __magic_name__ : Dict = self.model.generate( input_ids=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , max_new_tokens=lowerCAmelCase__ , return_dict_in_generate=lowerCAmelCase__ , ) return {"sequences": outputs["sequences"]} __magic_name__ : Optional[Any] = [[2], [1_02, 1_03]] __magic_name__ : str = [[1], [1, 1]] __magic_name__ : Union[str, Any] = DummyModel(model=lowerCAmelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(lowerCAmelCase__ , lowerCAmelCase__ , signatures={"""serving_default""": dummy_model.serving} ) __magic_name__ : Tuple = tf.saved_model.load(lowerCAmelCase__ ).signatures["""serving_default"""] for input_row in range(len(lowerCAmelCase__ ) ): __magic_name__ : List[str] = { """input_ids""": tf.constant([dummy_input_ids[input_row]] ), """attention_mask""": tf.constant([dummy_attention_masks[input_row]] ), } __magic_name__ : Tuple = serving_func(**lowerCAmelCase__ )["""sequences"""] __magic_name__ : Dict = test_model.generate(**lowerCAmelCase__ , max_new_tokens=lowerCAmelCase__ ) tf.debugging.assert_equal(lowerCAmelCase__ , lowerCAmelCase__ ) @slow @require_tensorflow_text def __magic_name__ ( self ) -> List[Any]: # TF-only test: tf.saved_model export with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id="""google/flan-t5-small""" , filename="""spiece.model""" , local_dir=lowerCAmelCase__ ) class snake_case__ ( tf.keras.layers.Layer ): def __init__( self ) -> Tuple: super().__init__() __magic_name__ : Tuple = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(lowerCAmelCase__ , """spiece.model""" ) , """rb""" ).read() ) __magic_name__ : Dict = TFAutoModelForSeqaSeqLM.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) def __magic_name__ ( self , lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Tuple: __magic_name__ : Union[str, Any] = self.tokenizer.tokenize(lowerCAmelCase__ ) __magic_name__ ,__magic_name__ : Optional[int] = text.pad_model_inputs( lowerCAmelCase__ , max_seq_length=64 , pad_value=self.model.config.pad_token_id ) __magic_name__ : Dict = self.model.generate(input_ids=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) return self.tokenizer.detokenize(lowerCAmelCase__ ) __magic_name__ : Tuple = CompleteSentenceTransformer() __magic_name__ : Tuple = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="""inputs""" ) __magic_name__ : Any = complete_model(lowerCAmelCase__ ) __magic_name__ : Any = tf.keras.Model(lowerCAmelCase__ , lowerCAmelCase__ ) keras_model.save(lowerCAmelCase__ ) def __magic_name__ ( self ) -> Optional[Any]: # Has PT equivalent: this test relies on random sampling __magic_name__ : List[Any] = { """do_sample""": True, """num_beams""": 1, """top_p""": 0.7, """top_k""": 10, """temperature""": 0.7, } __magic_name__ : Optional[int] = 14 __magic_name__ : Union[str, Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __magic_name__ : Tuple = """Hello, my dog is cute and""" __magic_name__ : Dict = tokenizer(lowerCAmelCase__ , return_tensors="""tf""" ) __magic_name__ : Optional[int] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __magic_name__ : Any = 6_38 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) __magic_name__ : Optional[Any] = model.generate(**lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) __magic_name__ : Tuple = [6_38, 1_98] with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) __magic_name__ : str = model.generate(**lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def __magic_name__ ( self ) -> Dict: # Has PT equivalent: ample use of framework-specific code __magic_name__ : Any = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) __magic_name__ : Optional[Any] = """Hugging Face is a technology company based in New York and Paris.""" __magic_name__ : Union[str, Any] = bart_tokenizer(lowerCAmelCase__ , return_tensors="""tf""" ).input_ids __magic_name__ : List[Any] = TFBartForConditionalGeneration.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) __magic_name__ : str = bart_model.generate(lowerCAmelCase__ ).numpy() class snake_case__ ( _lowerCAmelCase ): def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=None , **lowerCAmelCase__ ) -> Union[str, Any]: return super().call(lowerCAmelCase__ , **lowerCAmelCase__ ) __magic_name__ : Optional[Any] = FakeBart.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) __magic_name__ : Optional[Any] = bart_model.generate(lowerCAmelCase__ , foo="""bar""" ).numpy() self.assertTrue(np.array_equal(lowerCAmelCase__ , lowerCAmelCase__ ) ) class snake_case__ ( bart_model.model.encoder.__class__ ): def __magic_name__ ( self , lowerCAmelCase__ , **lowerCAmelCase__ ) -> int: return super().call(lowerCAmelCase__ , **lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = FakeEncoder(bart_model.config , bart_model.model.shared ) __magic_name__ : List[Any] = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) __magic_name__ : Optional[Any] = bart_model.generate(lowerCAmelCase__ ).numpy() with self.assertRaises(lowerCAmelCase__ ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(lowerCAmelCase__ , foo="""bar""" )
324
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class snake_case__ ( _lowerCAmelCase ): lowercase__ : List[str] = '''Salesforce/blip-image-captioning-base''' lowercase__ : Tuple = ( '''This is a tool that generates a description of an image. It takes an input named `image` which should be the ''' '''image to caption, and returns a text that contains the description in English.''' ) lowercase__ : Any = '''image_captioner''' lowercase__ : Optional[int] = AutoModelForVisionaSeq lowercase__ : List[Any] = ['''image'''] lowercase__ : Optional[Any] = ['''text'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Optional[Any]: requires_backends(self , ["""vision"""] ) super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Optional[int]: return self.pre_processor(images=lowerCAmelCase__ , return_tensors="""pt""" ) def __magic_name__ ( self , lowerCAmelCase__ ) -> List[str]: return self.model.generate(**lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: return self.pre_processor.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )[0].strip()
324
1
'''simple docstring''' from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run UpperCAmelCase : Union[str, Any] = True except (ImportError, AttributeError): UpperCAmelCase : Optional[Any] = object def _a ( *lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" pass UpperCAmelCase : Optional[int] = False UpperCAmelCase : Tuple = logging.get_logger('transformers-cli/serving') def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : Any = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) return ServeCommand(_lowerCAmelCase , args.host , args.port , args.workers ) class lowerCamelCase (a__ ): _lowercase : Optional[int] = 42 class lowerCamelCase (a__ ): _lowercase : List[str] = 42 _lowercase : Tuple = 42 class lowerCamelCase (a__ ): _lowercase : Tuple = 42 class lowerCamelCase (a__ ): _lowercase : int = 42 class lowerCamelCase (a__ ): @staticmethod def UpperCAmelCase_ ( lowercase__ ) -> Dict: """simple docstring""" _snake_case : int = parser.add_parser( '''serve''' , help='''CLI tool to run inference requests through REST and GraphQL endpoints.''' ) serve_parser.add_argument( '''--task''' , type=__A , choices=get_supported_tasks() , help='''The task to run the pipeline on''' , ) serve_parser.add_argument('''--host''' , type=__A , default='''localhost''' , help='''Interface the server will listen on.''' ) serve_parser.add_argument('''--port''' , type=__A , default=8_888 , help='''Port the serving will listen to.''' ) serve_parser.add_argument('''--workers''' , type=__A , default=1 , help='''Number of http workers''' ) serve_parser.add_argument('''--model''' , type=__A , help='''Model\'s name or path to stored model.''' ) serve_parser.add_argument('''--config''' , type=__A , help='''Model\'s config name or path to stored model.''' ) serve_parser.add_argument('''--tokenizer''' , type=__A , help='''Tokenizer name to use.''' ) serve_parser.add_argument( '''--device''' , type=__A , default=-1 , help='''Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)''' , ) serve_parser.set_defaults(func=__A ) def __init__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> Optional[Any]: """simple docstring""" _snake_case : Tuple = pipeline _snake_case : str = host _snake_case : List[str] = port _snake_case : Tuple = workers if not _serve_dependencies_installed: raise RuntimeError( '''Using serve command requires FastAPI and uvicorn. ''' '''Please install transformers with [serving]: pip install \"transformers[serving]\".''' '''Or install FastAPI and uvicorn separately.''' ) else: logger.info(F'''Serving model over {host}:{port}''' ) _snake_case : Optional[int] = FastAPI( routes=[ APIRoute( '''/''' , self.model_info , response_model=__A , response_class=__A , methods=['''GET'''] , ), APIRoute( '''/tokenize''' , self.tokenize , response_model=__A , response_class=__A , methods=['''POST'''] , ), APIRoute( '''/detokenize''' , self.detokenize , response_model=__A , response_class=__A , methods=['''POST'''] , ), APIRoute( '''/forward''' , self.forward , response_model=__A , response_class=__A , methods=['''POST'''] , ), ] , timeout=600 , ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" run(self._app , host=self.host , port=self.port , workers=self.workers ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) ) def UpperCAmelCase_ ( self , lowercase__ = Body(__A , embed=__A ) , lowercase__ = Body(__A , embed=__A ) ) -> int: """simple docstring""" try: _snake_case : Tuple = self._pipeline.tokenizer.tokenize(__A ) if return_ids: _snake_case : Dict = self._pipeline.tokenizer.convert_tokens_to_ids(__A ) return ServeTokenizeResult(tokens=__A , tokens_ids=__A ) else: return ServeTokenizeResult(tokens=__A ) except Exception as e: raise HTTPException(status_code=500 , detail={'''model''': '''''', '''error''': str(__A )} ) def UpperCAmelCase_ ( self , lowercase__ = Body(__A , embed=__A ) , lowercase__ = Body(__A , embed=__A ) , lowercase__ = Body(__A , embed=__A ) , ) -> Tuple: """simple docstring""" try: _snake_case : List[str] = self._pipeline.tokenizer.decode(__A , __A , __A ) return ServeDeTokenizeResult(model='''''' , text=__A ) except Exception as e: raise HTTPException(status_code=500 , detail={'''model''': '''''', '''error''': str(__A )} ) async def UpperCAmelCase_ ( self , lowercase__=Body(__A , embed=__A ) ) -> Any: """simple docstring""" if len(__A ) == 0: return ServeForwardResult(output=[] , attention=[] ) try: # Forward through the model _snake_case : Tuple = self._pipeline(__A ) return ServeForwardResult(output=__A ) except Exception as e: raise HTTPException(500 , {'''error''': str(__A )} )
711
'''simple docstring''' def _a ( lowerCAmelCase_ ): """simple docstring""" if n == 1 or not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return 0 elif n == 2: return 1 else: _snake_case : Union[str, Any] = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[int] = 0 _snake_case : int = 2 while digits < n: index += 1 _snake_case : Tuple = len(str(fibonacci(lowerCAmelCase_ ) ) ) return index def _a ( lowerCAmelCase_ = 1_000 ): """simple docstring""" return fibonacci_digits_index(lowerCAmelCase_ ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
47
0
from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def __UpperCAmelCase ( __a : int ,__a : int ,__a : float = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" _a : List[str] = tau * frequency / samplerate _a : int = sin(__a ) _a : str = cos(__a ) _a : Optional[int] = _sin / (2 * q_factor) _a : List[Any] = (1 - _cos) / 2 _a : Optional[int] = 1 - _cos _a : Union[str, Any] = 1 + alpha _a : Dict = -2 * _cos _a : Any = 1 - alpha _a : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def __UpperCAmelCase ( __a : int ,__a : int ,__a : float = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" _a : List[Any] = tau * frequency / samplerate _a : Union[str, Any] = sin(__a ) _a : Optional[int] = cos(__a ) _a : Optional[Any] = _sin / (2 * q_factor) _a : List[Any] = (1 + _cos) / 2 _a : List[str] = -1 - _cos _a : Tuple = 1 + alpha _a : Optional[int] = -2 * _cos _a : Optional[Any] = 1 - alpha _a : Optional[int] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def __UpperCAmelCase ( __a : int ,__a : int ,__a : float = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" _a : List[Any] = tau * frequency / samplerate _a : Union[str, Any] = sin(__a ) _a : Optional[int] = cos(__a ) _a : str = _sin / (2 * q_factor) _a : Optional[Any] = _sin / 2 _a : str = 0 _a : List[str] = -ba _a : Tuple = 1 + alpha _a : Any = -2 * _cos _a : Any = 1 - alpha _a : List[str] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def __UpperCAmelCase ( __a : int ,__a : int ,__a : float = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" _a : List[str] = tau * frequency / samplerate _a : Any = sin(__a ) _a : Optional[int] = cos(__a ) _a : Any = _sin / (2 * q_factor) _a : int = 1 - alpha _a : List[str] = -2 * _cos _a : Optional[Any] = 1 + alpha _a : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] ,[ba, ba, ba] ) return filt def __UpperCAmelCase ( __a : int ,__a : int ,__a : float ,__a : float = 1 / sqrt(2 ) ,) -> IIRFilter: """simple docstring""" _a : List[Any] = tau * frequency / samplerate _a : Optional[Any] = sin(__a ) _a : Optional[Any] = cos(__a ) _a : Optional[int] = _sin / (2 * q_factor) _a : Dict = 10 ** (gain_db / 40) _a : List[Any] = 1 + alpha * big_a _a : int = -2 * _cos _a : Dict = 1 - alpha * big_a _a : Optional[Any] = 1 + alpha / big_a _a : Dict = -2 * _cos _a : int = 1 - alpha / big_a _a : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def __UpperCAmelCase ( __a : int ,__a : int ,__a : float ,__a : float = 1 / sqrt(2 ) ,) -> IIRFilter: """simple docstring""" _a : Optional[Any] = tau * frequency / samplerate _a : List[Any] = sin(__a ) _a : Any = cos(__a ) _a : str = _sin / (2 * q_factor) _a : Union[str, Any] = 10 ** (gain_db / 40) _a : Tuple = (big_a + 1) - (big_a - 1) * _cos _a : Tuple = (big_a + 1) + (big_a - 1) * _cos _a : Dict = (big_a - 1) - (big_a + 1) * _cos _a : Optional[Any] = (big_a - 1) + (big_a + 1) * _cos _a : Tuple = 2 * sqrt(__a ) * alpha _a : List[str] = big_a * (pmc + aaa) _a : List[str] = 2 * big_a * mpc _a : Union[str, Any] = big_a * (pmc - aaa) _a : Optional[Any] = ppmc + aaa _a : str = -2 * pmpc _a : str = ppmc - aaa _a : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def __UpperCAmelCase ( __a : int ,__a : int ,__a : float ,__a : float = 1 / sqrt(2 ) ,) -> IIRFilter: """simple docstring""" _a : int = tau * frequency / samplerate _a : Tuple = sin(__a ) _a : Optional[int] = cos(__a ) _a : Dict = _sin / (2 * q_factor) _a : Tuple = 10 ** (gain_db / 40) _a : Union[str, Any] = (big_a + 1) - (big_a - 1) * _cos _a : List[Any] = (big_a + 1) + (big_a - 1) * _cos _a : List[str] = (big_a - 1) - (big_a + 1) * _cos _a : Tuple = (big_a - 1) + (big_a + 1) * _cos _a : List[Any] = 2 * sqrt(__a ) * alpha _a : Any = big_a * (ppmc + aaa) _a : Dict = -2 * big_a * pmpc _a : Tuple = big_a * (ppmc - aaa) _a : List[str] = pmc + aaa _a : List[str] = 2 * mpc _a : Optional[Any] = pmc - aaa _a : List[str] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt
14
'''simple docstring''' from torch import nn def _A ( _lowerCAmelCase ): """simple docstring""" if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f"""Unsupported activation function: {act_fn}""" )
474
0
'''simple docstring''' def __snake_case (__UpperCAmelCase ): """simple docstring""" if not grid or not grid[0]: raise TypeError('''The grid does not contain the appropriate information''' ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] lowerCamelCase_ : List[Any] = grid[0] for row_n in range(1 , len(__UpperCAmelCase ) ): lowerCamelCase_ : Dict = grid[row_n] lowerCamelCase_ : Optional[int] = fill_row(__UpperCAmelCase , __UpperCAmelCase ) lowerCamelCase_ : Dict = grid[row_n] return grid[-1][-1] def __snake_case (__UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" current_row[0] += row_above[0] for cell_n in range(1 , len(__UpperCAmelCase ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
418
'''simple docstring''' import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor __lowerCamelCase : List[Any] = logging.get_logger(__name__) class lowerCAmelCase__ ( _lowerCAmelCase ): def __init__( self : Tuple , *UpperCamelCase_ : List[Any] , **UpperCamelCase_ : Tuple ) -> None: """simple docstring""" warnings.warn( '''The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DeiTImageProcessor instead.''' , UpperCamelCase_ , ) super().__init__(*UpperCamelCase_ , **UpperCamelCase_ )
418
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase : Tuple =logging.get_logger(__name__) __lowerCAmelCase : Optional[Any] ={ "google/vit-base-patch16-224": "https://huggingface.co/vit-base-patch16-224/resolve/main/config.json", # See all ViT models at https://huggingface.co/models?filter=vit } class UpperCAmelCase ( __lowerCamelCase ): __lowercase = "vit" def __init__( self :List[str] , lowercase_ :Optional[Any]=7_68 , lowercase_ :Optional[Any]=12 , lowercase_ :Union[str, Any]=12 , lowercase_ :Tuple=30_72 , lowercase_ :str="gelu" , lowercase_ :List[Any]=0.0 , lowercase_ :Dict=0.0 , lowercase_ :Union[str, Any]=0.0_2 , lowercase_ :Optional[int]=1E-12 , lowercase_ :Any=2_24 , lowercase_ :Dict=16 , lowercase_ :str=3 , lowercase_ :Union[str, Any]=True , lowercase_ :List[str]=16 , **lowercase_ :Any , )-> Union[str, Any]: super().__init__(**lowercase_ ) A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = initializer_range A__ = layer_norm_eps A__ = image_size A__ = patch_size A__ = num_channels A__ = qkv_bias A__ = encoder_stride class UpperCAmelCase ( __lowerCamelCase ): __lowercase = version.parse("""1.11""" ) @property def UpperCAmelCase_ ( self :int )-> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def UpperCAmelCase_ ( self :Optional[Any] )-> float: return 1E-4
440
import argparse import hashlib # hashlib is only used inside the Test class import struct class lowercase__ : '''simple docstring''' def __init__( self, __magic_name__ ) -> Optional[int]: """simple docstring""" UpperCamelCase__ : Dict = data UpperCamelCase__ : Dict = [0x6_7_4_5_2_3_0_1, 0xE_F_C_D_A_B_8_9, 0x9_8_B_A_D_C_F_E, 0x1_0_3_2_5_4_7_6, 0xC_3_D_2_E_1_F_0] @staticmethod def UpperCamelCase__ ( __magic_name__, __magic_name__ ) -> str: """simple docstring""" return ((n << b) | (n >> (32 - b))) & 0xF_F_F_F_F_F_F_F def UpperCamelCase__ ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase__ : Any = b'''\x80''' + b'''\x00''' * (63 - (len(self.data ) + 8) % 64) UpperCamelCase__ : Tuple = self.data + padding + struct.pack('''>Q''', 8 * len(self.data ) ) return padded_data def UpperCamelCase__ ( self ) -> Tuple: """simple docstring""" return [ self.padded_data[i : i + 64] for i in range(0, len(self.padded_data ), 64 ) ] def UpperCamelCase__ ( self, __magic_name__ ) -> Dict: """simple docstring""" UpperCamelCase__ : str = list(struct.unpack('''>16L''', __magic_name__ ) ) + [0] * 64 for i in range(16, 80 ): UpperCamelCase__ : str = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]), 1 ) return w def UpperCamelCase__ ( self ) -> Dict: """simple docstring""" UpperCamelCase__ : int = self.padding() UpperCamelCase__ : Dict = self.split_blocks() for block in self.blocks: UpperCamelCase__ : Tuple = self.expand_block(__magic_name__ ) UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : Any = self.h for i in range(0, 80 ): if 0 <= i < 20: UpperCamelCase__ : List[str] = (b & c) | ((~b) & d) UpperCamelCase__ : List[str] = 0x5_A_8_2_7_9_9_9 elif 20 <= i < 40: UpperCamelCase__ : Dict = b ^ c ^ d UpperCamelCase__ : Union[str, Any] = 0x6_E_D_9_E_B_A_1 elif 40 <= i < 60: UpperCamelCase__ : List[str] = (b & c) | (b & d) | (c & d) UpperCamelCase__ : int = 0x8_F_1_B_B_C_D_C elif 60 <= i < 80: UpperCamelCase__ : List[str] = b ^ c ^ d UpperCamelCase__ : str = 0xC_A_6_2_C_1_D_6 UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : Dict = ( self.rotate(__magic_name__, 5 ) + f + e + k + expanded_block[i] & 0xF_F_F_F_F_F_F_F, a, self.rotate(__magic_name__, 30 ), c, d, ) UpperCamelCase__ : int = ( self.h[0] + a & 0xF_F_F_F_F_F_F_F, self.h[1] + b & 0xF_F_F_F_F_F_F_F, self.h[2] + c & 0xF_F_F_F_F_F_F_F, self.h[3] + d & 0xF_F_F_F_F_F_F_F, self.h[4] + e & 0xF_F_F_F_F_F_F_F, ) return ("{:08x}" * 5).format(*self.h ) def lowerCAmelCase_ ( ) -> Dict: UpperCamelCase__ : List[str] = B'''Test String''' assert SHAaHash(__UpperCAmelCase ).final_hash() == hashlib.shaa(__UpperCAmelCase ).hexdigest() # noqa: S324 def lowerCAmelCase_ ( ) -> str: UpperCamelCase__ : Optional[Any] = argparse.ArgumentParser(description='''Process some strings or files''' ) parser.add_argument( '''--string''' , dest='''input_string''' , default='''Hello World!! Welcome to Cryptography''' , help='''Hash the string''' , ) parser.add_argument('''--file''' , dest='''input_file''' , help='''Hash contents of a file''' ) UpperCamelCase__ : Optional[int] = parser.parse_args() UpperCamelCase__ : Any = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , '''rb''' ) as f: UpperCamelCase__ : List[Any] = f.read() else: UpperCamelCase__ : Dict = bytes(__UpperCAmelCase , '''utf-8''' ) print(SHAaHash(__UpperCAmelCase ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
253
0
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class _a : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=2 , _UpperCAmelCase=99 , _UpperCAmelCase=0 , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=2 , _UpperCAmelCase=4 , _UpperCAmelCase="last" , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=0 , ) -> Dict: UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = seq_length UpperCamelCase_ = is_training UpperCamelCase_ = use_input_lengths UpperCamelCase_ = use_token_type_ids UpperCamelCase_ = use_labels UpperCamelCase_ = gelu_activation UpperCamelCase_ = sinusoidal_embeddings UpperCamelCase_ = causal UpperCamelCase_ = asm UpperCamelCase_ = n_langs UpperCamelCase_ = vocab_size UpperCamelCase_ = n_special UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = type_sequence_label_size UpperCamelCase_ = initializer_range UpperCamelCase_ = num_labels UpperCamelCase_ = num_choices UpperCamelCase_ = summary_type UpperCamelCase_ = use_proj UpperCamelCase_ = scope UpperCamelCase_ = bos_token_id def _UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase_ = None if self.use_input_lengths: UpperCamelCase_ = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length UpperCamelCase_ = None if self.use_token_type_ids: UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) UpperCamelCase_ = None UpperCamelCase_ = None UpperCamelCase_ = None if self.use_labels: UpperCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase_ = ids_tensor([self.batch_size] , 2 ).float() UpperCamelCase_ = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase_ = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _UpperCAmelCase ( self ) -> Any: return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) -> List[str]: UpperCamelCase_ = XLMModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase_ = model(snake_case_ , lengths=snake_case_ , langs=snake_case_ ) UpperCamelCase_ = model(snake_case_ , langs=snake_case_ ) UpperCamelCase_ = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) -> List[str]: UpperCamelCase_ = XLMWithLMHeadModel(snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase_ = model(snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) -> int: UpperCamelCase_ = XLMForQuestionAnsweringSimple(snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase_ = model(snake_case_ ) UpperCamelCase_ = model(snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ ) UpperCamelCase_ = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) -> Union[str, Any]: UpperCamelCase_ = XLMForQuestionAnswering(snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase_ = model(snake_case_ ) UpperCamelCase_ = model( snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , cls_index=snake_case_ , is_impossible=snake_case_ , p_mask=snake_case_ , ) UpperCamelCase_ = model( snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , cls_index=snake_case_ , is_impossible=snake_case_ , ) (UpperCamelCase_ ) = result_with_labels.to_tuple() UpperCamelCase_ = model(snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ ) (UpperCamelCase_ ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) -> Optional[int]: UpperCamelCase_ = XLMForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase_ = model(snake_case_ ) UpperCamelCase_ = model(snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) -> int: UpperCamelCase_ = self.num_labels UpperCamelCase_ = XLMForTokenClassification(snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase_ = model(snake_case_ , attention_mask=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) -> Optional[Any]: UpperCamelCase_ = self.num_choices UpperCamelCase_ = XLMForMultipleChoice(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase_ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase_ = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _UpperCAmelCase ( self ) -> int: UpperCamelCase_ = self.prepare_config_and_inputs() ( UpperCamelCase_ ) = config_and_inputs UpperCamelCase_ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths} return config, inputs_dict @require_torch class _a ( _snake_case , _snake_case , _snake_case , unittest.TestCase ): """simple docstring""" A_ = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) A_ = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable A_ = ( { """feature-extraction""": XLMModel, """fill-mask""": XLMWithLMHeadModel, """question-answering""": XLMForQuestionAnsweringSimple, """text-classification""": XLMForSequenceClassification, """text-generation""": XLMWithLMHeadModel, """token-classification""": XLMForTokenClassification, """zero-shot""": XLMForSequenceClassification, } if is_torch_available() else {} ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ) -> str: UpperCamelCase_ = super()._prepare_for_class(snake_case_ , snake_case_ , return_labels=snake_case_ ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": UpperCamelCase_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case_ ) UpperCamelCase_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case_ ) return inputs_dict def _UpperCAmelCase ( self ) -> str: UpperCamelCase_ = XLMModelTester(self ) UpperCamelCase_ = ConfigTester(self , config_class=snake_case_ , emb_dim=37 ) def _UpperCAmelCase ( self ) -> Any: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*snake_case_ ) def _UpperCAmelCase ( self ) -> int: UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*snake_case_ ) def _UpperCAmelCase ( self ) -> Tuple: UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*snake_case_ ) def _UpperCAmelCase ( self ) -> str: UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*snake_case_ ) def _UpperCAmelCase ( self ) -> Tuple: UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*snake_case_ ) def _UpperCAmelCase ( self ) -> Any: UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*snake_case_ ) def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*snake_case_ ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=1 ) -> Optional[int]: self.assertIsInstance(snake_case_ , snake_case_ ) self.assertListEqual( [isinstance(snake_case_ , snake_case_ ) for iter_attentions in attentions] , [True] * len(snake_case_ ) ) self.assertEqual(len(snake_case_ ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(snake_case_ ): # adds PAD dummy token UpperCamelCase_ = min_length + idx + 1 UpperCamelCase_ = min_length + idx + 1 UpperCamelCase_ = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(snake_case_ ) ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=1 ) -> Dict: self.assertIsInstance(snake_case_ , snake_case_ ) self.assertListEqual( [isinstance(snake_case_ , snake_case_ ) for iter_hidden_states in hidden_states] , [True] * len(snake_case_ ) , ) self.assertEqual(len(snake_case_ ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(snake_case_ ): # adds PAD dummy token UpperCamelCase_ = min_length + idx + 1 UpperCamelCase_ = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(snake_case_ ) , ) pass @slow def _UpperCAmelCase ( self ) -> str: for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase_ = XLMModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @require_torch class _a ( unittest.TestCase ): """simple docstring""" @slow def _UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase_ = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(snake_case_ ) UpperCamelCase_ = torch.tensor([[14, 447]] , dtype=torch.long , device=snake_case_ ) # the president UpperCamelCase_ = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference UpperCamelCase_ = model.generate(snake_case_ , do_sample=snake_case_ ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , snake_case_ )
721
import os from math import logaa def _snake_case (__lowercase = "base_exp.txt"): UpperCamelCase_ = 0 UpperCamelCase_ = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(__lowercase) , __lowercase))): UpperCamelCase_ , UpperCamelCase_ = list(map(__lowercase , line.split(','))) if x * logaa(__lowercase) > largest: UpperCamelCase_ = x * logaa(__lowercase) UpperCamelCase_ = i + 1 return result if __name__ == "__main__": print(solution())
618
0
'''simple docstring''' from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
51
"""simple docstring""" import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase : Any = logging.get_logger(__name__) def A ( _A ): """simple docstring""" snake_case_ :List[str] = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: snake_case_ :List[str] = 128 elif "12-12" in model_name: snake_case_ :Union[str, Any] = 12 snake_case_ :Optional[Any] = 12 elif "14-14" in model_name: snake_case_ :Any = 14 snake_case_ :Union[str, Any] = 14 elif "16-16" in model_name: snake_case_ :List[Any] = 16 snake_case_ :Dict = 16 else: raise ValueError("Model not supported" ) snake_case_ :Tuple = "huggingface/label-files" if "speech-commands" in model_name: snake_case_ :Union[str, Any] = 35 snake_case_ :Union[str, Any] = "speech-commands-v2-id2label.json" else: snake_case_ :Union[str, Any] = 527 snake_case_ :List[str] = "audioset-id2label.json" snake_case_ :Any = json.load(open(hf_hub_download(_A, _A, repo_type="dataset" ), "r" ) ) snake_case_ :Union[str, Any] = {int(_A ): v for k, v in idalabel.items()} snake_case_ :Union[str, Any] = idalabel snake_case_ :Any = {v: k for k, v in idalabel.items()} return config def A ( _A ): """simple docstring""" if "module.v" in name: snake_case_ :Optional[Any] = name.replace("module.v", "audio_spectrogram_transformer" ) if "cls_token" in name: snake_case_ :Optional[Any] = name.replace("cls_token", "embeddings.cls_token" ) if "dist_token" in name: snake_case_ :str = name.replace("dist_token", "embeddings.distillation_token" ) if "pos_embed" in name: snake_case_ :Union[str, Any] = name.replace("pos_embed", "embeddings.position_embeddings" ) if "patch_embed.proj" in name: snake_case_ :List[str] = name.replace("patch_embed.proj", "embeddings.patch_embeddings.projection" ) # transformer blocks if "blocks" in name: snake_case_ :Optional[Any] = name.replace("blocks", "encoder.layer" ) if "attn.proj" in name: snake_case_ :List[Any] = name.replace("attn.proj", "attention.output.dense" ) if "attn" in name: snake_case_ :Optional[Any] = name.replace("attn", "attention.self" ) if "norm1" in name: snake_case_ :Tuple = name.replace("norm1", "layernorm_before" ) if "norm2" in name: snake_case_ :Dict = name.replace("norm2", "layernorm_after" ) if "mlp.fc1" in name: snake_case_ :int = name.replace("mlp.fc1", "intermediate.dense" ) if "mlp.fc2" in name: snake_case_ :int = name.replace("mlp.fc2", "output.dense" ) # final layernorm if "audio_spectrogram_transformer.norm" in name: snake_case_ :Optional[int] = name.replace("audio_spectrogram_transformer.norm", "audio_spectrogram_transformer.layernorm" ) # classifier head if "module.mlp_head.0" in name: snake_case_ :Any = name.replace("module.mlp_head.0", "classifier.layernorm" ) if "module.mlp_head.1" in name: snake_case_ :str = name.replace("module.mlp_head.1", "classifier.dense" ) return name def A ( _A, _A ): """simple docstring""" for key in orig_state_dict.copy().keys(): snake_case_ :int = orig_state_dict.pop(_A ) if "qkv" in key: snake_case_ :Optional[Any] = key.split("." ) snake_case_ :Union[str, Any] = int(key_split[3] ) snake_case_ :str = config.hidden_size if "weight" in key: snake_case_ :Any = val[:dim, :] snake_case_ :Optional[Any] = val[dim : dim * 2, :] snake_case_ :List[Any] = val[-dim:, :] else: snake_case_ :str = val[:dim] snake_case_ :Optional[Any] = val[dim : dim * 2] snake_case_ :Any = val[-dim:] else: snake_case_ :int = val return orig_state_dict def A ( _A ): """simple docstring""" snake_case_ :Any = [ "module.v.head.weight", "module.v.head.bias", "module.v.head_dist.weight", "module.v.head_dist.bias", ] for k in ignore_keys: state_dict.pop(_A, _A ) @torch.no_grad() def A ( _A, _A, _A=False ): """simple docstring""" snake_case_ :Any = get_audio_spectrogram_transformer_config(_A ) snake_case_ :List[str] = { "ast-finetuned-audioset-10-10-0.4593": ( "https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1" ), "ast-finetuned-audioset-10-10-0.450": ( "https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1" ), "ast-finetuned-audioset-10-10-0.448": ( "https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1" ), "ast-finetuned-audioset-10-10-0.448-v2": ( "https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1" ), "ast-finetuned-audioset-12-12-0.447": ( "https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1" ), "ast-finetuned-audioset-14-14-0.443": ( "https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1" ), "ast-finetuned-audioset-16-16-0.442": ( "https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1" ), "ast-finetuned-speech-commands-v2": ( "https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1" ), } # load original state_dict snake_case_ :Optional[int] = model_name_to_url[model_name] snake_case_ :str = torch.hub.load_state_dict_from_url(_A, map_location="cpu" ) # remove some keys remove_keys(_A ) # rename some keys snake_case_ :int = convert_state_dict(_A, _A ) # load 🤗 model snake_case_ :str = ASTForAudioClassification(_A ) model.eval() model.load_state_dict(_A ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 snake_case_ :int = -4.2_677_393 if "speech-commands" not in model_name else -6.845_978 snake_case_ :Union[str, Any] = 4.5_689_974 if "speech-commands" not in model_name else 5.5_654_526 snake_case_ :Union[str, Any] = 1_024 if "speech-commands" not in model_name else 128 snake_case_ :Optional[int] = ASTFeatureExtractor(mean=_A, std=_A, max_length=_A ) if "speech-commands" in model_name: snake_case_ :Optional[int] = load_dataset("speech_commands", "v0.02", split="validation" ) snake_case_ :int = dataset[0]["audio"]["array"] else: snake_case_ :Any = hf_hub_download( repo_id="nielsr/audio-spectogram-transformer-checkpoint", filename="sample_audio.flac", repo_type="dataset", ) snake_case_ , snake_case_ :List[Any] = torchaudio.load(_A ) snake_case_ :Optional[int] = waveform.squeeze().numpy() snake_case_ :Any = feature_extractor(_A, sampling_rate=16_000, return_tensors="pt" ) # forward pass snake_case_ :Dict = model(**_A ) snake_case_ :List[str] = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": snake_case_ :Optional[int] = torch.tensor([-0.8_760, -7.0_042, -8.6_602] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": snake_case_ :Any = torch.tensor([-1.1_986, -7.0_903, -8.2_718] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": snake_case_ :List[Any] = torch.tensor([-2.6_128, -8.0_080, -9.4_344] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": snake_case_ :Dict = torch.tensor([-1.5_080, -7.4_534, -8.8_917] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": snake_case_ :int = torch.tensor([-0.5_050, -6.5_833, -8.0_843] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": snake_case_ :Dict = torch.tensor([-0.3_826, -7.0_336, -8.2_413] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": snake_case_ :List[str] = torch.tensor([-1.2_113, -6.9_101, -8.3_470] ) elif model_name == "ast-finetuned-speech-commands-v2": snake_case_ :Optional[Any] = torch.tensor([6.1_589, -8.0_566, -8.7_984] ) else: raise ValueError("Unknown model name" ) if not torch.allclose(logits[0, :3], _A, atol=1e-4 ): raise ValueError("Logits don't match" ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: Path(_A ).mkdir(exist_ok=_A ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_A ) print(F'''Saving feature extractor to {pytorch_dump_folder_path}''' ) feature_extractor.save_pretrained(_A ) if push_to_hub: print("Pushing model and feature extractor to the hub..." ) model.push_to_hub(F'''MIT/{model_name}''' ) feature_extractor.push_to_hub(F'''MIT/{model_name}''' ) if __name__ == "__main__": __UpperCAmelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='ast-finetuned-audioset-10-10-0.4593', type=str, help='Name of the Audio Spectrogram Transformer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __UpperCAmelCase : Optional[Any] = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
584
0
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : List[str] , _snake_case : Optional[int] , _snake_case : str=13 , _snake_case : Tuple=7 , _snake_case : int=True , _snake_case : Optional[Any]=True , _snake_case : Optional[int]=True , _snake_case : int=True , _snake_case : List[Any]=99 , _snake_case : Tuple=32 , _snake_case : Optional[int]=5 , _snake_case : List[str]=4 , _snake_case : int=37 , _snake_case : int="gelu" , _snake_case : Tuple=0.1 , _snake_case : Dict=0.1 , _snake_case : Optional[int]=512 , _snake_case : Dict=16 , _snake_case : Dict=2 , _snake_case : int=0.02 , _snake_case : Any=4 , ): __lowercase : Optional[int] = parent __lowercase : List[str] = batch_size __lowercase : Tuple = seq_length __lowercase : Optional[Any] = is_training __lowercase : Union[str, Any] = use_attention_mask __lowercase : int = use_token_type_ids __lowercase : List[Any] = use_labels __lowercase : Optional[Any] = vocab_size __lowercase : Optional[Any] = hidden_size __lowercase : Any = num_hidden_layers __lowercase : List[str] = num_attention_heads __lowercase : List[str] = intermediate_size __lowercase : Optional[int] = hidden_act __lowercase : Tuple = hidden_dropout_prob __lowercase : Optional[Any] = attention_probs_dropout_prob __lowercase : str = max_position_embeddings __lowercase : Any = type_vocab_size __lowercase : Optional[int] = type_sequence_label_size __lowercase : int = initializer_range __lowercase : str = num_choices def snake_case_ ( self : Tuple ): __lowercase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : List[str] = None if self.use_attention_mask: __lowercase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : Optional[int] = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=_snake_case , ) return config, input_ids, attention_mask def snake_case_ ( self : Any ): __lowercase : Any = self.prepare_config_and_inputs() __lowercase : List[str] = config_and_inputs __lowercase : str = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class __lowerCAmelCase ( lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" A__ : str = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def snake_case_ ( self : str ): __lowercase : Optional[Any] = FlaxDistilBertModelTester(self ) @slow def snake_case_ ( self : List[Any] ): for model_class_name in self.all_model_classes: __lowercase : int = model_class_name.from_pretrained('''distilbert-base-uncased''' ) __lowercase : List[Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_snake_case ) @require_flax class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def snake_case_ ( self : List[Any] ): __lowercase : Union[str, Any] = FlaxDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) __lowercase : Optional[Any] = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) __lowercase : Tuple = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __lowercase : Any = model(_snake_case , attention_mask=_snake_case )[0] __lowercase : Dict = (1, 11, 768) self.assertEqual(output.shape , _snake_case ) __lowercase : str = np.array([[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , _snake_case , atol=1E-4 ) )
709
from __future__ import annotations def UpperCAmelCase_ ( __lowerCAmelCase ) -> int: if not nums: return 0 __lowercase : List[Any] = nums[0] __lowercase : Union[str, Any] = 0 for num in nums[1:]: __lowercase , __lowercase : Dict = ( max_excluding + num, max(__lowerCAmelCase , __lowerCAmelCase ), ) return max(__lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
284
0
'''simple docstring''' # This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class A ( _a ,_a ,_a ,unittest.TestCase ): lowercase_ = StableDiffusionControlNetImgaImgPipeline lowercase_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width'} lowercase_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowercase_ = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({'control_image'} ) lowercase_ = IMAGE_TO_IMAGE_IMAGE_PARAMS def __lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) _a = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) torch.manual_seed(0 ) _a = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0 ) _a = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=lowerCAmelCase_ , set_alpha_to_one=lowerCAmelCase_ , ) torch.manual_seed(0 ) _a = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) _a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) _a = CLIPTextModel(lowerCAmelCase_ ) _a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) _a = { '''unet''': unet, '''controlnet''': controlnet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __lowerCAmelCase ( self : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any]=0 ) -> List[Any]: """simple docstring""" if str(lowerCAmelCase_ ).startswith('''mps''' ): _a = torch.manual_seed(lowerCAmelCase_ ) else: _a = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) _a = 2 _a = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=lowerCAmelCase_ , device=torch.device(lowerCAmelCase_ ) , ) _a = floats_tensor(control_image.shape , rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ ) _a = image.cpu().permute(0 , 2 , 3 , 1 )[0] _a = Image.fromarray(np.uinta(lowerCAmelCase_ ) ).convert('''RGB''' ).resize((64, 64) ) _a = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''image''': image, '''control_image''': control_image, } return inputs def __lowerCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def __lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def __lowerCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) class A ( _a ,_a ,unittest.TestCase ): lowercase_ = StableDiffusionControlNetImgaImgPipeline lowercase_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width'} lowercase_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowercase_ = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def __lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" torch.manual_seed(0 ) _a = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) torch.manual_seed(0 ) def init_weights(lowerCAmelCase_ : List[str] ): if isinstance(lowerCAmelCase_ , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) _a = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(lowerCAmelCase_ ) torch.manual_seed(0 ) _a = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(lowerCAmelCase_ ) torch.manual_seed(0 ) _a = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=lowerCAmelCase_ , set_alpha_to_one=lowerCAmelCase_ , ) torch.manual_seed(0 ) _a = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) _a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) _a = CLIPTextModel(lowerCAmelCase_ ) _a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) _a = MultiControlNetModel([controlneta, controlneta] ) _a = { '''unet''': unet, '''controlnet''': controlnet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any]=0 ) -> Tuple: """simple docstring""" if str(lowerCAmelCase_ ).startswith('''mps''' ): _a = torch.manual_seed(lowerCAmelCase_ ) else: _a = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) _a = 2 _a = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=lowerCAmelCase_ , device=torch.device(lowerCAmelCase_ ) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=lowerCAmelCase_ , device=torch.device(lowerCAmelCase_ ) , ), ] _a = floats_tensor(control_image[0].shape , rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ ) _a = image.cpu().permute(0 , 2 , 3 , 1 )[0] _a = Image.fromarray(np.uinta(lowerCAmelCase_ ) ).convert('''RGB''' ).resize((64, 64) ) _a = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''image''': image, '''control_image''': control_image, } return inputs def __lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" _a = self.get_dummy_components() _a = self.pipeline_class(**lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) _a = 1_0.0 _a = 4 _a = self.get_dummy_inputs(lowerCAmelCase_ ) _a = steps _a = scale _a = pipe(**lowerCAmelCase_ )[0] _a = self.get_dummy_inputs(lowerCAmelCase_ ) _a = steps _a = scale _a = pipe(**lowerCAmelCase_ , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] _a = self.get_dummy_inputs(lowerCAmelCase_ ) _a = steps _a = scale _a = pipe(**lowerCAmelCase_ , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] _a = self.get_dummy_inputs(lowerCAmelCase_ ) _a = steps _a = scale _a = pipe(**lowerCAmelCase_ , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 def __lowerCAmelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def __lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def __lowerCAmelCase ( self : Dict ) -> Dict: """simple docstring""" self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) def __lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" _a = self.get_dummy_components() _a = self.pipeline_class(**lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(lowerCAmelCase_ ) except NotImplementedError: pass @slow @require_torch_gpu class A ( unittest.TestCase ): def __lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" _a = ControlNetModel.from_pretrained('''lllyasviel/sd-controlnet-canny''' ) _a = StableDiffusionControlNetImgaImgPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , safety_checker=lowerCAmelCase_ , controlnet=lowerCAmelCase_ ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _a = torch.Generator(device='''cpu''' ).manual_seed(0 ) _a = '''evil space-punk bird''' _a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png''' ).resize((5_12, 5_12) ) _a = load_image( '''https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png''' ).resize((5_12, 5_12) ) _a = pipe( lowerCAmelCase_ , lowerCAmelCase_ , control_image=lowerCAmelCase_ , generator=lowerCAmelCase_ , output_type='''np''' , num_inference_steps=50 , strength=0.6 , ) _a = output.images[0] assert image.shape == (5_12, 5_12, 3) _a = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy''' ) assert np.abs(expected_image - image ).max() < 9e-2
22
import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A_ ( __UpperCamelCase , unittest.TestCase ): '''simple docstring''' __snake_case = ConsistencyModelPipeline __snake_case = UNCONDITIONAL_IMAGE_GENERATION_PARAMS __snake_case = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt __snake_case = frozenset( [ """num_inference_steps""", """generator""", """latents""", """output_type""", """return_dict""", """callback""", """callback_steps""", ] ) @property def _snake_case ( self: str ): __lowerCamelCase : Tuple = UNetaDModel.from_pretrained( 'diffusers/consistency-models-test' , subfolder='test_unet' , ) return unet @property def _snake_case ( self: Tuple ): __lowerCamelCase : List[str] = UNetaDModel.from_pretrained( 'diffusers/consistency-models-test' , subfolder='test_unet_class_cond' , ) return unet def _snake_case ( self: int , a: str=False ): if class_cond: __lowerCamelCase : str = self.dummy_cond_unet else: __lowerCamelCase : str = self.dummy_uncond_unet # Default to CM multistep sampler __lowerCamelCase : Tuple = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCamelCase : Union[str, Any] = { 'unet': unet, 'scheduler': scheduler, } return components def _snake_case ( self: int , a: List[str] , a: Any=0 ): if str(a ).startswith('mps' ): __lowerCamelCase : List[Any] = torch.manual_seed(a ) else: __lowerCamelCase : Tuple = torch.Generator(device=a ).manual_seed(a ) __lowerCamelCase : Optional[Any] = { 'batch_size': 1, 'num_inference_steps': None, 'timesteps': [22, 0], 'generator': generator, 'output_type': 'np', } return inputs def _snake_case ( self: Optional[Any] ): __lowerCamelCase : int = 'cpu' # ensure determinism for the device-dependent torch.Generator __lowerCamelCase : Dict = self.get_dummy_components() __lowerCamelCase : str = ConsistencyModelPipeline(**a ) __lowerCamelCase : str = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) __lowerCamelCase : Any = self.get_dummy_inputs(a ) __lowerCamelCase : Optional[int] = pipe(**a ).images assert image.shape == (1, 32, 32, 3) __lowerCamelCase : Optional[int] = image[0, -3:, -3:, -1] __lowerCamelCase : str = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case ( self: Optional[int] ): __lowerCamelCase : int = 'cpu' # ensure determinism for the device-dependent torch.Generator __lowerCamelCase : Dict = self.get_dummy_components(class_cond=a ) __lowerCamelCase : Optional[int] = ConsistencyModelPipeline(**a ) __lowerCamelCase : Any = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) __lowerCamelCase : Union[str, Any] = self.get_dummy_inputs(a ) __lowerCamelCase : Tuple = 0 __lowerCamelCase : List[str] = pipe(**a ).images assert image.shape == (1, 32, 32, 3) __lowerCamelCase : Dict = image[0, -3:, -3:, -1] __lowerCamelCase : Any = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case ( self: Optional[int] ): __lowerCamelCase : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator __lowerCamelCase : Optional[int] = self.get_dummy_components() __lowerCamelCase : Tuple = ConsistencyModelPipeline(**a ) __lowerCamelCase : Union[str, Any] = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) __lowerCamelCase : Tuple = self.get_dummy_inputs(a ) __lowerCamelCase : str = 1 __lowerCamelCase : Optional[int] = None __lowerCamelCase : Any = pipe(**a ).images assert image.shape == (1, 32, 32, 3) __lowerCamelCase : int = image[0, -3:, -3:, -1] __lowerCamelCase : Optional[int] = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case ( self: List[str] ): __lowerCamelCase : int = 'cpu' # ensure determinism for the device-dependent torch.Generator __lowerCamelCase : List[Any] = self.get_dummy_components(class_cond=a ) __lowerCamelCase : Optional[Any] = ConsistencyModelPipeline(**a ) __lowerCamelCase : List[Any] = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) __lowerCamelCase : List[str] = self.get_dummy_inputs(a ) __lowerCamelCase : List[str] = 1 __lowerCamelCase : List[str] = None __lowerCamelCase : str = 0 __lowerCamelCase : Tuple = pipe(**a ).images assert image.shape == (1, 32, 32, 3) __lowerCamelCase : int = image[0, -3:, -3:, -1] __lowerCamelCase : Any = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class A_ ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self: Any ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self: Optional[int] , a: str=0 , a: Tuple=False , a: Tuple="cpu" , a: List[str]=torch.floataa , a: Optional[Any]=(1, 3, 64, 64) ): __lowerCamelCase : Optional[Any] = torch.manual_seed(a ) __lowerCamelCase : Optional[int] = { 'num_inference_steps': None, 'timesteps': [22, 0], 'class_labels': 0, 'generator': generator, 'output_type': 'np', } if get_fixed_latents: __lowerCamelCase : Dict = self.get_fixed_latents(seed=a , device=a , dtype=a , shape=a ) __lowerCamelCase : Optional[Any] = latents return inputs def _snake_case ( self: Any , a: Any=0 , a: List[str]="cpu" , a: Optional[Any]=torch.floataa , a: int=(1, 3, 64, 64) ): if type(a ) == str: __lowerCamelCase : Dict = torch.device(a ) __lowerCamelCase : Union[str, Any] = torch.Generator(device=a ).manual_seed(a ) __lowerCamelCase : str = randn_tensor(a , generator=a , device=a , dtype=a ) return latents def _snake_case ( self: str ): __lowerCamelCase : Optional[int] = UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' ) __lowerCamelCase : Union[str, Any] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCamelCase : str = ConsistencyModelPipeline(unet=a , scheduler=a ) pipe.to(torch_device=a ) pipe.set_progress_bar_config(disable=a ) __lowerCamelCase : int = self.get_inputs() __lowerCamelCase : Optional[int] = pipe(**a ).images assert image.shape == (1, 64, 64, 3) __lowerCamelCase : Optional[Any] = image[0, -3:, -3:, -1] __lowerCamelCase : Any = np.array([0.0_8_8_8, 0.0_8_8_1, 0.0_6_6_6, 0.0_4_7_9, 0.0_2_9_2, 0.0_1_9_5, 0.0_2_0_1, 0.0_1_6_3, 0.0_2_5_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _snake_case ( self: Optional[int] ): __lowerCamelCase : int = UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' ) __lowerCamelCase : int = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCamelCase : Dict = ConsistencyModelPipeline(unet=a , scheduler=a ) pipe.to(torch_device=a ) pipe.set_progress_bar_config(disable=a ) __lowerCamelCase : List[str] = self.get_inputs() __lowerCamelCase : Optional[Any] = 1 __lowerCamelCase : Dict = None __lowerCamelCase : Union[str, Any] = pipe(**a ).images assert image.shape == (1, 64, 64, 3) __lowerCamelCase : Optional[Any] = image[0, -3:, -3:, -1] __lowerCamelCase : Tuple = np.array([0.0_3_4_0, 0.0_1_5_2, 0.0_0_6_3, 0.0_2_6_7, 0.0_2_2_1, 0.0_1_0_7, 0.0_4_1_6, 0.0_1_8_6, 0.0_2_1_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 @require_torch_a def _snake_case ( self: List[str] ): __lowerCamelCase : Optional[Any] = UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' ) __lowerCamelCase : Any = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCamelCase : List[Any] = ConsistencyModelPipeline(unet=a , scheduler=a ) pipe.to(torch_device=a , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=a ) __lowerCamelCase : int = self.get_inputs(get_fixed_latents=a , device=a ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=a , enable_math=a , enable_mem_efficient=a ): __lowerCamelCase : int = pipe(**a ).images assert image.shape == (1, 64, 64, 3) __lowerCamelCase : Optional[Any] = image[0, -3:, -3:, -1] __lowerCamelCase : Optional[Any] = np.array([0.1_8_7_5, 0.1_4_2_8, 0.1_2_8_9, 0.2_1_5_1, 0.2_0_9_2, 0.1_4_7_7, 0.1_8_7_7, 0.1_6_4_1, 0.1_3_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @require_torch_a def _snake_case ( self: Dict ): __lowerCamelCase : Dict = UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' ) __lowerCamelCase : Any = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCamelCase : str = ConsistencyModelPipeline(unet=a , scheduler=a ) pipe.to(torch_device=a , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=a ) __lowerCamelCase : str = self.get_inputs(get_fixed_latents=a , device=a ) __lowerCamelCase : str = 1 __lowerCamelCase : Union[str, Any] = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=a , enable_math=a , enable_mem_efficient=a ): __lowerCamelCase : Optional[int] = pipe(**a ).images assert image.shape == (1, 64, 64, 3) __lowerCamelCase : str = image[0, -3:, -3:, -1] __lowerCamelCase : str = np.array([0.1_6_6_3, 0.1_9_4_8, 0.2_2_7_5, 0.1_6_8_0, 0.1_2_0_4, 0.1_2_4_5, 0.1_8_5_8, 0.1_3_3_8, 0.2_0_9_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
669
0
"""simple docstring""" import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse('''0.8.3'''): raise Exception('''requires gluonnlp == 0.8.3''') if version.parse(mx.__version__) != version.parse('''1.5.0'''): raise Exception('''requires mxnet == 1.5.0''') logging.set_verbosity_info() lowercase = logging.get_logger(__name__) lowercase = '''The Nymphenburg Palace is a beautiful palace in Munich!''' def _lowerCAmelCase ( __lowerCamelCase:str , __lowerCamelCase:str ): '''simple docstring''' __magic_name__ = { "attention_cell": "multi_head", "num_layers": 4, "units": 1_0_2_4, "hidden_size": 7_6_8, "max_length": 5_1_2, "num_heads": 8, "scaled": True, "dropout": 0.1, "use_residual": True, "embed_size": 1_0_2_4, "embed_dropout": 0.1, "word_embed": None, "layer_norm_eps": 1E-5, "token_type_vocab_size": 2, } __magic_name__ = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py __magic_name__ = BERTEncoder( attention_cell=predefined_args["attention_cell"] , num_layers=predefined_args["num_layers"] , units=predefined_args["units"] , hidden_size=predefined_args["hidden_size"] , max_length=predefined_args["max_length"] , num_heads=predefined_args["num_heads"] , scaled=predefined_args["scaled"] , dropout=predefined_args["dropout"] , output_attention=__lowerCamelCase , output_all_encodings=__lowerCamelCase , use_residual=predefined_args["use_residual"] , activation=predefined_args.get("activation" , "gelu" ) , layer_norm_eps=predefined_args.get("layer_norm_eps" , __lowerCamelCase ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later __magic_name__ = "openwebtext_ccnews_stories_books_cased" # Specify download folder to Gluonnlp's vocab __magic_name__ = os.path.join(get_home_dir() , "models" ) __magic_name__ = _load_vocab(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , cls=__lowerCamelCase ) __magic_name__ = nlp.model.BERTModel( __lowerCamelCase , len(__lowerCamelCase ) , units=predefined_args["units"] , embed_size=predefined_args["embed_size"] , embed_dropout=predefined_args["embed_dropout"] , word_embed=predefined_args["word_embed"] , use_pooler=__lowerCamelCase , use_token_type_embed=__lowerCamelCase , token_type_vocab_size=predefined_args["token_type_vocab_size"] , use_classifier=__lowerCamelCase , use_decoder=__lowerCamelCase , ) original_bort.load_parameters(__lowerCamelCase , cast_dtype=__lowerCamelCase , ignore_extra=__lowerCamelCase ) __magic_name__ = original_bort._collect_params_with_prefix() # Build our config 🤗 __magic_name__ = { "architectures": ["BertForMaskedLM"], "attention_probs_dropout_prob": predefined_args["dropout"], "hidden_act": "gelu", "hidden_dropout_prob": predefined_args["dropout"], "hidden_size": predefined_args["embed_size"], "initializer_range": 0.0_2, "intermediate_size": predefined_args["hidden_size"], "layer_norm_eps": predefined_args["layer_norm_eps"], "max_position_embeddings": predefined_args["max_length"], "model_type": "bort", "num_attention_heads": predefined_args["num_heads"], "num_hidden_layers": predefined_args["num_layers"], "pad_token_id": 1, # 2 = BERT, 1 = RoBERTa "type_vocab_size": 1, # 2 = BERT, 1 = RoBERTa "vocab_size": len(__lowerCamelCase ), } __magic_name__ = BertConfig.from_dict(__lowerCamelCase ) __magic_name__ = BertForMaskedLM(__lowerCamelCase ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(__lowerCamelCase:Tuple ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(__lowerCamelCase:str , __lowerCamelCase:Union[str, Any] ): __magic_name__ = hf_param.shape __magic_name__ = to_torch(params[gluon_param] ) __magic_name__ = gluon_param.shape assert ( shape_hf == shape_gluon ), f'''The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers''' return gluon_param __magic_name__ = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , "word_embed.0.weight" ) __magic_name__ = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , "encoder.position_weight" ) __magic_name__ = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , "encoder.layer_norm.beta" ) __magic_name__ = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , "encoder.layer_norm.gamma" ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) __magic_name__ = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): __magic_name__ = hf_bort_model.bert.encoder.layer[i] # self attention __magic_name__ = layer.attention.self __magic_name__ = check_and_map_params( self_attn.key.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_key.bias''' ) __magic_name__ = check_and_map_params( self_attn.key.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_key.weight''' ) __magic_name__ = check_and_map_params( self_attn.query.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_query.bias''' ) __magic_name__ = check_and_map_params( self_attn.query.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_query.weight''' ) __magic_name__ = check_and_map_params( self_attn.value.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_value.bias''' ) __magic_name__ = check_and_map_params( self_attn.value.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_value.weight''' ) # self attention output __magic_name__ = layer.attention.output __magic_name__ = check_and_map_params( self_output.dense.bias , f'''encoder.transformer_cells.{i}.proj.bias''' ) __magic_name__ = check_and_map_params( self_output.dense.weight , f'''encoder.transformer_cells.{i}.proj.weight''' ) __magic_name__ = check_and_map_params( self_output.LayerNorm.bias , f'''encoder.transformer_cells.{i}.layer_norm.beta''' ) __magic_name__ = check_and_map_params( self_output.LayerNorm.weight , f'''encoder.transformer_cells.{i}.layer_norm.gamma''' ) # intermediate __magic_name__ = layer.intermediate __magic_name__ = check_and_map_params( intermediate.dense.bias , f'''encoder.transformer_cells.{i}.ffn.ffn_1.bias''' ) __magic_name__ = check_and_map_params( intermediate.dense.weight , f'''encoder.transformer_cells.{i}.ffn.ffn_1.weight''' ) # output __magic_name__ = layer.output __magic_name__ = check_and_map_params( bert_output.dense.bias , f'''encoder.transformer_cells.{i}.ffn.ffn_2.bias''' ) __magic_name__ = check_and_map_params( bert_output.dense.weight , f'''encoder.transformer_cells.{i}.ffn.ffn_2.weight''' ) __magic_name__ = check_and_map_params( bert_output.LayerNorm.bias , f'''encoder.transformer_cells.{i}.ffn.layer_norm.beta''' ) __magic_name__ = check_and_map_params( bert_output.LayerNorm.weight , f'''encoder.transformer_cells.{i}.ffn.layer_norm.gamma''' ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models __magic_name__ = RobertaTokenizer.from_pretrained("roberta-base" ) __magic_name__ = tokenizer.encode_plus(__lowerCamelCase )["input_ids"] # Get gluon output __magic_name__ = mx.nd.array([input_ids] ) __magic_name__ = original_bort(inputs=__lowerCamelCase , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(__lowerCamelCase ) __magic_name__ = BertModel.from_pretrained(__lowerCamelCase ) hf_bort_model.eval() __magic_name__ = tokenizer.encode_plus(__lowerCamelCase , return_tensors="pt" ) __magic_name__ = hf_bort_model(**__lowerCamelCase )[0] __magic_name__ = output_gluon[0].asnumpy() __magic_name__ = output_hf[0].detach().numpy() __magic_name__ = np.max(np.abs(hf_layer - gluon_layer ) ).item() __magic_name__ = np.allclose(__lowerCamelCase , __lowerCamelCase , atol=1E-3 ) if success: print("✔️ Both model do output the same tensors" ) else: print("❌ Both model do **NOT** output the same tensors" ) print("Absolute difference is:" , __lowerCamelCase ) if __name__ == "__main__": lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--bort_checkpoint_path''', default=None, type=str, required=True, help='''Path the official Bort params file.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowercase = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
468
"""simple docstring""" import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html lowercase = '''platform''' import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def _lowerCAmelCase ( __lowerCamelCase:List[Any] , __lowerCamelCase:int , __lowerCamelCase:List[Any]=None , __lowerCamelCase:Any=None , __lowerCamelCase:Any=None , __lowerCamelCase:List[str]=None , __lowerCamelCase:Optional[int]=None , __lowerCamelCase:Optional[int]=None , ): '''simple docstring''' if attention_mask is None: __magic_name__ = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: __magic_name__ = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: __magic_name__ = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __magic_name__ = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __magic_name__ = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class A_ : def __init__( self : Tuple , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any]=1_3 , __lowerCamelCase : str=7 , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Dict=False , __lowerCamelCase : Optional[int]=9_9 , __lowerCamelCase : Tuple=1_6 , __lowerCamelCase : Any=2 , __lowerCamelCase : int=4 , __lowerCamelCase : List[Any]=4 , __lowerCamelCase : List[str]="gelu" , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : List[str]=3_2 , __lowerCamelCase : int=2 , __lowerCamelCase : Any=1 , __lowerCamelCase : int=0 , __lowerCamelCase : Tuple=0.02 , ) -> List[Any]: __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = seq_length __magic_name__ = is_training __magic_name__ = use_labels __magic_name__ = vocab_size __magic_name__ = hidden_size __magic_name__ = num_hidden_layers __magic_name__ = num_attention_heads __magic_name__ = intermediate_size __magic_name__ = hidden_act __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = max_position_embeddings __magic_name__ = eos_token_id __magic_name__ = pad_token_id __magic_name__ = bos_token_id __magic_name__ = initializer_range def _snake_case ( self : str ) -> List[str]: __magic_name__ = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) __magic_name__ = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) __magic_name__ = shift_tokens_right(__lowerCamelCase , 1 , 2 ) __magic_name__ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=__lowerCamelCase , ) __magic_name__ = prepare_blenderbot_inputs_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return config, inputs_dict def _snake_case ( self : Optional[Any] ) -> Any: __magic_name__ , __magic_name__ = self.prepare_config_and_inputs() return config, inputs_dict def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Tuple , __lowerCamelCase : str , __lowerCamelCase : List[Any] ) -> Union[str, Any]: __magic_name__ = 2_0 __magic_name__ = model_class_name(__lowerCamelCase ) __magic_name__ = model.encode(inputs_dict["input_ids"] ) __magic_name__ , __magic_name__ = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) __magic_name__ = model.init_cache(decoder_input_ids.shape[0] , __lowerCamelCase , __lowerCamelCase ) __magic_name__ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4" ) __magic_name__ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __magic_name__ = model.decode( decoder_input_ids[:, :-1] , __lowerCamelCase , decoder_attention_mask=__lowerCamelCase , past_key_values=__lowerCamelCase , decoder_position_ids=__lowerCamelCase , ) __magic_name__ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) __magic_name__ = model.decode( decoder_input_ids[:, -1:] , __lowerCamelCase , decoder_attention_mask=__lowerCamelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=__lowerCamelCase , ) __magic_name__ = model.decode(__lowerCamelCase , __lowerCamelCase ) __magic_name__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) def _snake_case ( self : List[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : Tuple ) -> int: __magic_name__ = 2_0 __magic_name__ = model_class_name(__lowerCamelCase ) __magic_name__ = model.encode(inputs_dict["input_ids"] ) __magic_name__ , __magic_name__ = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) __magic_name__ = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) __magic_name__ = model.init_cache(decoder_input_ids.shape[0] , __lowerCamelCase , __lowerCamelCase ) __magic_name__ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __magic_name__ = model.decode( decoder_input_ids[:, :-1] , __lowerCamelCase , decoder_attention_mask=__lowerCamelCase , past_key_values=__lowerCamelCase , decoder_position_ids=__lowerCamelCase , ) __magic_name__ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) __magic_name__ = model.decode( decoder_input_ids[:, -1:] , __lowerCamelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=__lowerCamelCase , decoder_position_ids=__lowerCamelCase , ) __magic_name__ = model.decode(__lowerCamelCase , __lowerCamelCase , decoder_attention_mask=__lowerCamelCase ) __magic_name__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) @require_flax class A_ ( unittest.TestCase ): UpperCAmelCase__ = 9_9 def _snake_case ( self : Dict ) -> Dict: __magic_name__ = np.array( [ [7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2], [5, 9_7, 1_7, 3_9, 9_4, 4_0, 2], [7_6, 8_3, 9_4, 2_5, 7_0, 7_8, 2], [8_7, 5_9, 4_1, 3_5, 4_8, 6_6, 2], [5_5, 1_3, 1_6, 5_8, 5, 2, 1], # note padding [6_4, 2_7, 3_1, 5_1, 1_2, 7_5, 2], [5_2, 6_4, 8_6, 1_7, 8_3, 3_9, 2], [4_8, 6_1, 9, 2_4, 7_1, 8_2, 2], [2_6, 1, 6_0, 4_8, 2_2, 1_3, 2], [2_1, 5, 6_2, 2_8, 1_4, 7_6, 2], [4_5, 9_8, 3_7, 8_6, 5_9, 4_8, 2], [7_0, 7_0, 5_0, 9, 2_8, 0, 2], ] , dtype=np.intaa , ) __magic_name__ = input_ids.shape[0] __magic_name__ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=2_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=3_2 , decoder_ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def _snake_case ( self : Optional[Any] ) -> Optional[int]: __magic_name__ , __magic_name__ , __magic_name__ = self._get_config_and_data() __magic_name__ = FlaxBlenderbotForConditionalGeneration(__lowerCamelCase ) __magic_name__ = lm_model(input_ids=__lowerCamelCase ) __magic_name__ = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["logits"].shape , __lowerCamelCase ) def _snake_case ( self : List[Any] ) -> Optional[Any]: __magic_name__ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=1_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=4_8 , ) __magic_name__ = FlaxBlenderbotForConditionalGeneration(__lowerCamelCase ) __magic_name__ = np.array([[7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 2, 1]] , dtype=np.intaa ) __magic_name__ = np.array([[8_2, 7_1, 8_2, 1_8, 2], [5_8, 6_8, 2, 1, 1]] , dtype=np.intaa ) __magic_name__ = lm_model(input_ids=__lowerCamelCase , decoder_input_ids=__lowerCamelCase ) __magic_name__ = (*summary.shape, config.vocab_size) self.assertEqual(outputs["logits"].shape , __lowerCamelCase ) def _snake_case ( self : Union[str, Any] ) -> List[Any]: __magic_name__ = np.array([[7_1, 8_2, 1_8, 3_3, 2, 1, 1], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2]] , dtype=np.intaa ) __magic_name__ = shift_tokens_right(__lowerCamelCase , 1 , 2 ) __magic_name__ = np.equal(__lowerCamelCase , 1 ).astype(np.floataa ).sum() __magic_name__ = np.equal(__lowerCamelCase , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(__lowerCamelCase , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class A_ ( snake_case_ , unittest.TestCase , snake_case_ ): UpperCAmelCase__ = True UpperCAmelCase__ = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) UpperCAmelCase__ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def _snake_case ( self : List[Any] ) -> Any: __magic_name__ = FlaxBlenderbotModelTester(self ) def _snake_case ( self : int ) -> Optional[Any]: __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : Optional[int] ) -> Union[str, Any]: __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : Tuple ) -> Dict: __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __magic_name__ = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) __magic_name__ = model_class(__lowerCamelCase ) @jax.jit def encode_jitted(__lowerCamelCase : Dict , __lowerCamelCase : str=None , **__lowerCamelCase : List[str] ): return model.encode(input_ids=__lowerCamelCase , attention_mask=__lowerCamelCase ) with self.subTest("JIT Enabled" ): __magic_name__ = encode_jitted(**__lowerCamelCase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __magic_name__ = encode_jitted(**__lowerCamelCase ).to_tuple() self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) ) for jitted_output, output in zip(__lowerCamelCase , __lowerCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) def _snake_case ( self : Union[str, Any] ) -> Union[str, Any]: __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __magic_name__ = model_class(__lowerCamelCase ) __magic_name__ = model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"] ) __magic_name__ = { "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(__lowerCamelCase : Tuple , __lowerCamelCase : List[Any] , __lowerCamelCase : Dict ): return model.decode( decoder_input_ids=__lowerCamelCase , decoder_attention_mask=__lowerCamelCase , encoder_outputs=__lowerCamelCase , ) with self.subTest("JIT Enabled" ): __magic_name__ = decode_jitted(**__lowerCamelCase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __magic_name__ = decode_jitted(**__lowerCamelCase ).to_tuple() self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) ) for jitted_output, output in zip(__lowerCamelCase , __lowerCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _snake_case ( self : int ) -> int: for model_class_name in self.all_model_classes: __magic_name__ = model_class_name.from_pretrained("facebook/blenderbot-400M-distill" ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids __magic_name__ = np.ones((1, 1) ) * model.config.eos_token_id __magic_name__ = model(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @unittest.skipUnless(jax_device != "cpu" , "3B test too slow on CPU." ) @slow def _snake_case ( self : int ) -> List[Any]: __magic_name__ = {"num_beams": 1, "early_stopping": True, "min_length": 1_5, "max_length": 2_5} __magic_name__ = {"skip_special_tokens": True, "clean_up_tokenization_spaces": True} __magic_name__ = FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-3B" , from_pt=__lowerCamelCase ) __magic_name__ = BlenderbotTokenizer.from_pretrained("facebook/blenderbot-3B" ) __magic_name__ = ["Sam"] __magic_name__ = tokenizer(__lowerCamelCase , return_tensors="jax" ) __magic_name__ = model.generate(**__lowerCamelCase , **__lowerCamelCase ) __magic_name__ = "Sam is a great name. It means \"sun\" in Gaelic." __magic_name__ = tokenizer.batch_decode(__lowerCamelCase , **__lowerCamelCase ) assert generated_txt[0].strip() == tgt_text
468
1
import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class a__ ( unittest.TestCase ): def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.nn.Linear(10,10 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.optim.SGD(model.parameters(),0.1 ) SCREAMING_SNAKE_CASE_ : Dict = Accelerator() SCREAMING_SNAKE_CASE_ : str = accelerator.prepare(UpperCamelCase__ ) try: pickle.loads(pickle.dumps(UpperCamelCase__ ) ) except Exception as e: self.fail(F'Accelerated optimizer pickling failed with {e}' ) AcceleratorState._reset_state()
216
"""simple docstring""" def __a ( A ) -> List[str]: '''simple docstring''' A__ = [0] * len(A ) A__ = [] A__ = [] A__ = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(A ) ): if indegree[i] == 0: queue.append(A ) while queue: A__ = queue.pop(0 ) cnt += 1 topo.append(A ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(A ) if cnt != len(A ): print("Cycle exists" ) else: print(A ) # Adjacency List of Graph __UpperCAmelCase ={0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
337
0
class A__ : """simple docstring""" def __init__( self : Tuple ): '''simple docstring''' _lowerCAmelCase : Tuple = {} def __magic_name__ ( self : str ): '''simple docstring''' print(self.vertex ) for i in self.vertex: print(_lowercase , " -> " , " -> ".join([str(_lowercase ) for j in self.vertex[i]] ) ) def __magic_name__ ( self : Union[str, Any] , A_ : str , A_ : List[str] ): '''simple docstring''' if from_vertex in self.vertex: self.vertex[from_vertex].append(_lowercase ) else: # else make a new vertex _lowerCAmelCase : Optional[int] = [to_vertex] def __magic_name__ ( self : List[Any] ): '''simple docstring''' _lowerCAmelCase : Any = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(_lowercase , _lowercase ) def __magic_name__ ( self : str , A_ : str , A_ : Optional[int] ): '''simple docstring''' _lowerCAmelCase : Dict = True print(_lowercase , end=" " ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(_lowercase , _lowercase ) if __name__ == "__main__": __UpperCAmelCase = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print('DFS:') g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
719
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class A__ ( unittest.TestCase ): """simple docstring""" def __magic_name__ ( self : Any ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __magic_name__ ( self : List[Any] ): '''simple docstring''' _lowerCAmelCase : Optional[int] = 1 _lowerCAmelCase : List[str] = 3 _lowerCAmelCase : int = (3_2, 3_2) _lowerCAmelCase : Dict = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(A_ ) return image @property def __magic_name__ ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : Dict = UNetaDConditionModel( block_out_channels=(3_2, 3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=7 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=3_2 , attention_head_dim=8 , use_linear_projection=A_ , only_cross_attention=(True, True, False) , num_class_embeds=1_0_0 , ) return model @property def __magic_name__ ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : Union[str, Any] = AutoencoderKL( block_out_channels=[3_2, 3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def __magic_name__ ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act="gelu" , projection_dim=5_1_2 , ) return CLIPTextModel(A_ ) def __magic_name__ ( self : str ): '''simple docstring''' _lowerCAmelCase : List[str] = "cpu" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : Tuple = self.dummy_cond_unet_upscale _lowerCAmelCase : Optional[int] = DDPMScheduler() _lowerCAmelCase : Optional[Any] = DDIMScheduler(prediction_type="v_prediction" ) _lowerCAmelCase : str = self.dummy_vae _lowerCAmelCase : Any = self.dummy_text_encoder _lowerCAmelCase : Dict = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _lowerCAmelCase : List[Any] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase : List[Any] = Image.fromarray(np.uinta(A_ ) ).convert("RGB" ).resize((6_4, 6_4) ) # make sure here that pndm scheduler skips prk _lowerCAmelCase : List[Any] = StableDiffusionUpscalePipeline( unet=A_ , low_res_scheduler=A_ , scheduler=A_ , vae=A_ , text_encoder=A_ , tokenizer=A_ , max_noise_level=3_5_0 , ) _lowerCAmelCase : Optional[int] = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) _lowerCAmelCase : List[str] = "A painting of a squirrel eating a burger" _lowerCAmelCase : Tuple = torch.Generator(device=A_ ).manual_seed(0 ) _lowerCAmelCase : Optional[int] = sd_pipe( [prompt] , image=A_ , generator=A_ , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type="np" , ) _lowerCAmelCase : Tuple = output.images _lowerCAmelCase : Optional[int] = torch.Generator(device=A_ ).manual_seed(0 ) _lowerCAmelCase : Union[str, Any] = sd_pipe( [prompt] , image=A_ , generator=A_ , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type="np" , return_dict=A_ , )[0] _lowerCAmelCase : List[Any] = image[0, -3:, -3:, -1] _lowerCAmelCase : List[str] = image_from_tuple[0, -3:, -3:, -1] _lowerCAmelCase : Optional[int] = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) _lowerCAmelCase : str = np.array([0.3113, 0.3910, 0.4272, 0.4859, 0.5061, 0.4652, 0.5362, 0.5715, 0.5661] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def __magic_name__ ( self : int ): '''simple docstring''' _lowerCAmelCase : List[str] = "cpu" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : List[str] = self.dummy_cond_unet_upscale _lowerCAmelCase : str = DDPMScheduler() _lowerCAmelCase : Union[str, Any] = DDIMScheduler(prediction_type="v_prediction" ) _lowerCAmelCase : Tuple = self.dummy_vae _lowerCAmelCase : Union[str, Any] = self.dummy_text_encoder _lowerCAmelCase : List[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _lowerCAmelCase : Dict = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase : Tuple = Image.fromarray(np.uinta(A_ ) ).convert("RGB" ).resize((6_4, 6_4) ) # make sure here that pndm scheduler skips prk _lowerCAmelCase : Optional[Any] = StableDiffusionUpscalePipeline( unet=A_ , low_res_scheduler=A_ , scheduler=A_ , vae=A_ , text_encoder=A_ , tokenizer=A_ , max_noise_level=3_5_0 , ) _lowerCAmelCase : Dict = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) _lowerCAmelCase : Union[str, Any] = "A painting of a squirrel eating a burger" _lowerCAmelCase : Tuple = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type="np" , ) _lowerCAmelCase : List[str] = output.images assert image.shape[0] == 2 _lowerCAmelCase : str = torch.Generator(device=A_ ).manual_seed(0 ) _lowerCAmelCase : List[Any] = sd_pipe( [prompt] , image=A_ , generator=A_ , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type="np" , ) _lowerCAmelCase : int = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def __magic_name__ ( self : Tuple ): '''simple docstring''' _lowerCAmelCase : Any = self.dummy_cond_unet_upscale _lowerCAmelCase : List[str] = DDPMScheduler() _lowerCAmelCase : Optional[int] = DDIMScheduler(prediction_type="v_prediction" ) _lowerCAmelCase : Optional[Any] = self.dummy_vae _lowerCAmelCase : List[str] = self.dummy_text_encoder _lowerCAmelCase : Union[str, Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _lowerCAmelCase : Any = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase : Any = Image.fromarray(np.uinta(A_ ) ).convert("RGB" ).resize((6_4, 6_4) ) # put models in fp16, except vae as it overflows in fp16 _lowerCAmelCase : Tuple = unet.half() _lowerCAmelCase : Optional[Any] = text_encoder.half() # make sure here that pndm scheduler skips prk _lowerCAmelCase : List[str] = StableDiffusionUpscalePipeline( unet=A_ , low_res_scheduler=A_ , scheduler=A_ , vae=A_ , text_encoder=A_ , tokenizer=A_ , max_noise_level=3_5_0 , ) _lowerCAmelCase : Optional[Any] = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) _lowerCAmelCase : str = "A painting of a squirrel eating a burger" _lowerCAmelCase : Any = torch.manual_seed(0 ) _lowerCAmelCase : Optional[Any] = sd_pipe( [prompt] , image=A_ , generator=A_ , num_inference_steps=2 , output_type="np" , ).images _lowerCAmelCase : List[str] = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class A__ ( unittest.TestCase ): """simple docstring""" def __magic_name__ ( self : Any ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ ( self : List[str] ): '''simple docstring''' _lowerCAmelCase : List[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) _lowerCAmelCase : Dict = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat.npy" ) _lowerCAmelCase : Union[str, Any] = "stabilityai/stable-diffusion-x4-upscaler" _lowerCAmelCase : Optional[int] = StableDiffusionUpscalePipeline.from_pretrained(A_ ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) pipe.enable_attention_slicing() _lowerCAmelCase : str = "a cat sitting on a park bench" _lowerCAmelCase : str = torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = pipe( prompt=A_ , image=A_ , generator=A_ , output_type="np" , ) _lowerCAmelCase : int = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 1E-3 def __magic_name__ ( self : Tuple ): '''simple docstring''' _lowerCAmelCase : Optional[int] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) _lowerCAmelCase : Dict = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat_fp16.npy" ) _lowerCAmelCase : Union[str, Any] = "stabilityai/stable-diffusion-x4-upscaler" _lowerCAmelCase : Any = StableDiffusionUpscalePipeline.from_pretrained( A_ , torch_dtype=torch.floataa , ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) pipe.enable_attention_slicing() _lowerCAmelCase : Optional[Any] = "a cat sitting on a park bench" _lowerCAmelCase : Any = torch.manual_seed(0 ) _lowerCAmelCase : int = pipe( prompt=A_ , image=A_ , generator=A_ , output_type="np" , ) _lowerCAmelCase : Union[str, Any] = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 5E-1 def __magic_name__ ( self : List[Any] ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _lowerCAmelCase : int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) _lowerCAmelCase : Tuple = "stabilityai/stable-diffusion-x4-upscaler" _lowerCAmelCase : Any = StableDiffusionUpscalePipeline.from_pretrained( A_ , torch_dtype=torch.floataa , ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _lowerCAmelCase : List[Any] = "a cat sitting on a park bench" _lowerCAmelCase : Union[str, Any] = torch.manual_seed(0 ) _lowerCAmelCase : List[Any] = pipe( prompt=A_ , image=A_ , generator=A_ , num_inference_steps=5 , output_type="np" , ) _lowerCAmelCase : Optional[Any] = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 1_0**9
503
0
'''simple docstring''' from __future__ import annotations from collections import Counter from random import random class _UpperCamelCase : '''simple docstring''' def __init__( self ): """simple docstring""" a__ = {} def lowercase__ ( self , _a ): """simple docstring""" a__ = {} def lowercase__ ( self , _a , _a , _a ): """simple docstring""" if nodea not in self.connections: self.add_node(__snake_case ) if nodea not in self.connections: self.add_node(__snake_case ) a__ = probability def lowercase__ ( self ): """simple docstring""" return list(self.connections ) def lowercase__ ( self , _a ): """simple docstring""" a__ = 0 a__ = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def lowerCAmelCase_ ( a : Tuple , a : Union[str, Any] , a : List[Any] ): a__ = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) a__ = Counter(graph.get_nodes() ) a__ = start for _ in range(UpperCamelCase_ ): a__ = graph.transition(UpperCamelCase_ ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
394
import qiskit def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_ ): _a : Tuple = qiskit.Aer.get_backend('''aer_simulator''' ) _a : Any = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator _a : List[Any] = qiskit.execute(UpperCamelCase_ , UpperCamelCase_ , shots=1000 ) # Return the histogram data of the results of the experiment return job.result().get_counts(UpperCamelCase_ ) if __name__ == "__main__": __UpperCAmelCase : Optional[int] = half_adder(1, 1) print(f'''Half Adder Output Qubit Counts: {counts}''')
471
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase : List[Any] = logging.get_logger(__name__) _UpperCAmelCase : Dict = { """tanreinama/GPTSAN-2.8B-spout_is_uniform""": ( """https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json""" ), } class lowercase ( lowercase_ ): __SCREAMING_SNAKE_CASE : Union[str, Any] = '''gptsan-japanese''' __SCREAMING_SNAKE_CASE : Optional[Any] = [ '''past_key_values''', ] __SCREAMING_SNAKE_CASE : List[str] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , snake_case=3_6000 , snake_case=1280 , snake_case=1024 , snake_case=8192 , snake_case=4096 , snake_case=128 , snake_case=10 , snake_case=0 , snake_case=16 , snake_case=16 , snake_case=128 , snake_case=0.0 , snake_case=1e-5 , snake_case=False , snake_case=0.0 , snake_case="float32" , snake_case=False , snake_case=False , snake_case=False , snake_case=0.0_02 , snake_case=False , snake_case=True , snake_case=3_5998 , snake_case=3_5995 , snake_case=3_5999 , **snake_case , ): snake_case_ = vocab_size snake_case_ = max_position_embeddings snake_case_ = d_model snake_case_ = d_ff snake_case_ = d_ext snake_case_ = d_spout snake_case_ = num_switch_layers snake_case_ = num_ext_layers snake_case_ = num_switch_layers + num_ext_layers snake_case_ = num_heads snake_case_ = num_experts snake_case_ = expert_capacity snake_case_ = dropout_rate snake_case_ = layer_norm_epsilon snake_case_ = router_bias snake_case_ = router_jitter_noise snake_case_ = router_dtype snake_case_ = router_ignore_padding_tokens snake_case_ = output_hidden_states snake_case_ = output_attentions snake_case_ = initializer_factor snake_case_ = output_router_logits snake_case_ = use_cache super().__init__( separator_token_id=snake_case , pad_token_id=snake_case , eos_token_id=snake_case , **snake_case , )
700
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING _UpperCAmelCase : Dict = logging.get_logger(__name__) class lowercase ( lowercase_ ): __SCREAMING_SNAKE_CASE : Any = '''upernet''' def __init__( self , snake_case=None , snake_case=512 , snake_case=0.02 , snake_case=[1, 2, 3, 6] , snake_case=True , snake_case=0.4 , snake_case=384 , snake_case=256 , snake_case=1 , snake_case=False , snake_case=255 , **snake_case , ): super().__init__(**snake_case ) if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) snake_case_ = CONFIG_MAPPING['resnet'](out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) elif isinstance(snake_case , snake_case ): snake_case_ = backbone_config.get('model_type' ) snake_case_ = CONFIG_MAPPING[backbone_model_type] snake_case_ = config_class.from_dict(snake_case ) snake_case_ = backbone_config snake_case_ = hidden_size snake_case_ = initializer_range snake_case_ = pool_scales snake_case_ = use_auxiliary_head snake_case_ = auxiliary_loss_weight snake_case_ = auxiliary_in_channels snake_case_ = auxiliary_channels snake_case_ = auxiliary_num_convs snake_case_ = auxiliary_concat_input snake_case_ = loss_ignore_index def a ( self ): snake_case_ = copy.deepcopy(self.__dict__ ) snake_case_ = self.backbone_config.to_dict() snake_case_ = self.__class__.model_type return output
108
0
"""simple docstring""" import contextlib from multiprocessing import Pool, RLock from tqdm.auto import tqdm from ..utils import experimental, logging SCREAMING_SNAKE_CASE__:List[Any] = logging.get_logger(__name__) class snake_case__ : _snake_case : Optional[int] = None @experimental def _lowerCamelCase( a , a , a , a , a , a , a ): if ParallelBackendConfig.backend_name is None: return _map_with_multiprocessing_pool( a , a , a , a , a , a , a ) return _map_with_joblib(a , a , a , a , a , a , a ) def _lowerCamelCase( a , a , a , a , a , a , a ): __a = num_proc if num_proc <= len(a ) else len(a ) __a = [] # We organize the splits ourselve (contiguous splits) for index in range(a ): __a = len(a ) // num_proc __a = len(a ) % num_proc __a = div * index + min(a , a ) __a = start + div + (1 if index < mod else 0) split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) ) if len(a ) != sum(len(i[1] ) for i in split_kwds ): raise ValueError( F"Error dividing inputs iterable among processes. " F"Total number of objects {len(a )}, " F"length: {sum(len(i[1] ) for i in split_kwds )}" ) logger.info( F"Spawning {num_proc} processes for {len(a )} objects in slices of {[len(i[1] ) for i in split_kwds]}" ) __a , __a = None, None if not disable_tqdm: __a , __a = (RLock(),), tqdm.set_lock with Pool(a , initargs=a , initializer=a ) as pool: __a = pool.map(a , a ) logger.info(F"Finished {num_proc} processes" ) __a = [obj for proc_res in mapped for obj in proc_res] logger.info(F"Unpacked {len(a )} objects" ) return mapped def _lowerCamelCase( a , a , a , a , a , a , a ): # progress bar is not yet supported for _map_with_joblib, because tqdm couldn't accurately be applied to joblib, # and it requires monkey-patching joblib internal classes which is subject to change import joblib with joblib.parallel_backend(ParallelBackendConfig.backend_name , n_jobs=a ): return joblib.Parallel()( joblib.delayed(a )((function, obj, types, None, True, None) ) for obj in iterable ) @experimental @contextlib.contextmanager def _lowerCamelCase( a ): __a = backend_name if backend_name == "spark": from joblibspark import register_spark register_spark() # TODO: call create_cache_and_write_probe if "download" in steps # TODO: raise NotImplementedError when Dataset.map etc is called try: yield finally: __a = None
528
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE__:Optional[Any] = {"""configuration_reformer""": ["""REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ReformerConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__:Optional[Any] = ["""ReformerTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__:List[str] = ["""ReformerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__:int = [ """REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """ReformerAttention""", """ReformerForMaskedLM""", """ReformerForQuestionAnswering""", """ReformerForSequenceClassification""", """ReformerLayer""", """ReformerModel""", """ReformerModelWithLMHead""", """ReformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__:int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
528
1
"""simple docstring""" import math import flax.linen as nn import jax.numpy as jnp def snake_case ( A__ ,A__ ,A__ = 1 ,A__ = 1 ,A__ = 1.0e4 ,A__ = False ,A__ = 1.0 ,): assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, F"""Embedding dimension {embedding_dim} should be even""" UpperCAmelCase_ : Any = float(embedding_dim // 2 ) UpperCAmelCase_ : Optional[int] = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) UpperCAmelCase_ : Any = min_timescale * jnp.exp(jnp.arange(A__ ,dtype=jnp.floataa ) * -log_timescale_increment ) UpperCAmelCase_ : Dict = jnp.expand_dims(A__ ,1 ) * jnp.expand_dims(A__ ,0 ) # scale embeddings UpperCAmelCase_ : str = scale * emb if flip_sin_to_cos: UpperCAmelCase_ : str = jnp.concatenate([jnp.cos(A__ ), jnp.sin(A__ )] ,axis=1 ) else: UpperCAmelCase_ : Union[str, Any] = jnp.concatenate([jnp.sin(A__ ), jnp.cos(A__ )] ,axis=1 ) UpperCAmelCase_ : Union[str, Any] = jnp.reshape(A__ ,[jnp.shape(A__ )[0], embedding_dim] ) return signal class UpperCamelCase_ (nn.Module ): __magic_name__ = 32 __magic_name__ = jnp.floataa @nn.compact def __call__( self : int , lowerCAmelCase_ : str ) -> Any: UpperCAmelCase_ : Dict = nn.Dense(self.time_embed_dim , dtype=self.dtype , name="linear_1" )(lowerCAmelCase_ ) UpperCAmelCase_ : List[Any] = nn.silu(lowerCAmelCase_ ) UpperCAmelCase_ : List[Any] = nn.Dense(self.time_embed_dim , dtype=self.dtype , name="linear_2" )(lowerCAmelCase_ ) return temb class UpperCamelCase_ (nn.Module ): __magic_name__ = 32 __magic_name__ = False __magic_name__ = 1 @nn.compact def __call__( self : Optional[Any] , lowerCAmelCase_ : Dict ) -> Optional[Any]: return get_sinusoidal_embeddings( lowerCAmelCase_ , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
718
"""simple docstring""" import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class UpperCamelCase_ : __magic_name__ = None def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: UpperCAmelCase_ : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase_ : Union[str, Any] = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : str ) -> int: UpperCAmelCase_ : Dict = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase_ : List[Any] = os.path.join(lowerCAmelCase_ , "feat_extract.json" ) feat_extract_first.to_json_file(lowerCAmelCase_ ) UpperCAmelCase_ : Any = self.feature_extraction_class.from_json_file(lowerCAmelCase_ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Dict: UpperCAmelCase_ : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase_ : Optional[Any] = feat_extract_first.save_pretrained(lowerCAmelCase_ )[0] check_json_file_has_correct_format(lowerCAmelCase_ ) UpperCAmelCase_ : Any = self.feature_extraction_class.from_pretrained(lowerCAmelCase_ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: UpperCAmelCase_ : Optional[int] = self.feature_extraction_class() self.assertIsNotNone(lowerCAmelCase_ )
463
0
'''simple docstring''' from ...processing_utils import ProcessorMixin class A__ ( _snake_case ): lowercase = ["image_processor", "feature_extractor"] lowercase = "TvltImageProcessor" lowercase = "TvltFeatureExtractor" def __init__( self , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' super().__init__(image_processor=UpperCamelCase__ , feature_extractor=UpperCamelCase__ ) A_ = image_processor A_ = feature_extractor def __call__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=False , UpperCamelCase__=False , *UpperCamelCase__ , **UpperCamelCase__ , ) -> List[Any]: '''simple docstring''' if images is None and audio is None: raise ValueError("""You need to specify either an `images` or `audio` input to process.""" ) A_ = None if images is not None: A_ = self.image_processor(UpperCamelCase__ , mask_pixel=UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ) if images_mixed is not None: A_ = self.image_processor(UpperCamelCase__ , is_mixed=UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ) if audio is not None: A_ = self.feature_extractor( UpperCamelCase__ , *UpperCamelCase__ , sampling_rate=UpperCamelCase__ , mask_audio=UpperCamelCase__ , **UpperCamelCase__ ) A_ = {} if audio is not None: output_dict.update(UpperCamelCase__ ) if images is not None: output_dict.update(UpperCamelCase__ ) if images_mixed_dict is not None: output_dict.update(UpperCamelCase__ ) return output_dict @property def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = self.image_processor.model_input_names A_ = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
288
'''simple docstring''' import pytest import datasets # Import fixture modules as plugins __lowerCamelCase = ['''tests.fixtures.files''', '''tests.fixtures.hub''', '''tests.fixtures.fsspec'''] def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Optional[int]: # Mark tests as "unit" by default if not marked as "integration" (or already marked as "unit") for item in items: if any(marker in item.keywords for marker in ["""integration""", """unit"""] ): continue item.add_marker(pytest.mark.unit ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Tuple: config.addinivalue_line("""markers""", """torchaudio_latest: mark test to run with torchaudio>=0.12""" ) @pytest.fixture(autouse=UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> int: # test_hf_cache_home = tmp_path_factory.mktemp("cache") # TODO: why a cache dir per test function does not work? A_ = tmp_path_factory.getbasetemp() / """cache""" A_ = test_hf_cache_home / """datasets""" A_ = test_hf_cache_home / """metrics""" A_ = test_hf_cache_home / """modules""" monkeypatch.setattr("""datasets.config.HF_DATASETS_CACHE""", str(UpperCAmelCase__ ) ) monkeypatch.setattr("""datasets.config.HF_METRICS_CACHE""", str(UpperCAmelCase__ ) ) monkeypatch.setattr("""datasets.config.HF_MODULES_CACHE""", str(UpperCAmelCase__ ) ) A_ = test_hf_datasets_cache / """downloads""" monkeypatch.setattr("""datasets.config.DOWNLOADED_DATASETS_PATH""", str(UpperCAmelCase__ ) ) A_ = test_hf_datasets_cache / """downloads""" / """extracted""" monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_PATH""", str(UpperCAmelCase__ ) ) @pytest.fixture(autouse=UpperCAmelCase__, scope="""session""" ) def UpperCAmelCase__ ( ) -> str: datasets.disable_progress_bar() @pytest.fixture(autouse=UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Tuple: # don't take tests into account when counting downloads monkeypatch.setattr("""datasets.config.HF_UPDATE_DOWNLOAD_COUNTS""", UpperCAmelCase__ ) @pytest.fixture def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Any: # Required to suppress RemovedIn20Warning when feature(s) are not compatible with SQLAlchemy 2.0 # To be removed once SQLAlchemy 2.0 supported monkeypatch.setattr("""sqlalchemy.util.deprecations.SILENCE_UBER_WARNING""", UpperCAmelCase__ )
288
1
'''simple docstring''' def __lowerCamelCase ( A__ , A__ ) -> int: """simple docstring""" while a != 0: UpperCamelCase , UpperCamelCase = b % a, a return b def __lowerCamelCase ( A__ , A__ ) -> int: """simple docstring""" if gcd(A__ , A__ ) != 1: UpperCamelCase = F"""mod inverse of {a!r} and {m!r} does not exist""" raise ValueError(A__ ) UpperCamelCase , UpperCamelCase , UpperCamelCase = 1, 0, a UpperCamelCase , UpperCamelCase , UpperCamelCase = 0, 1, m while va != 0: UpperCamelCase = ua // va UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
324
'''simple docstring''' import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: _lowerCamelCase : Dict = False _lowerCamelCase : int = logging.get_logger(__name__) _lowerCamelCase : Dict = "ybelkada/fonts" def __lowerCamelCase ( ) -> Optional[int]: """simple docstring""" if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( F"""You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use """ 'Pix2StructImageProcessor. Please upgrade torch.' ) def __lowerCamelCase ( A__ , A__ , A__ ) -> str: """simple docstring""" requires_backends(A__ , ['torch'] ) _check_torch_version() UpperCamelCase = image_tensor.unsqueeze(0 ) UpperCamelCase = torch.nn.functional.unfold(A__ , (patch_height, patch_width) , stride=(patch_height, patch_width) ) UpperCamelCase = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , A__ , A__ , -1 ) UpperCamelCase = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def __lowerCamelCase ( A__ , A__ = 36 , A__ = "black" , A__ = "white" , A__ = 5 , A__ = 5 , A__ = 5 , A__ = 5 , A__ = None , A__ = None , ) -> Image.Image: """simple docstring""" requires_backends(A__ , 'vision' ) # Add new lines so that each line is no more than 80 characters. UpperCamelCase = textwrap.TextWrapper(width=80 ) UpperCamelCase = wrapper.wrap(text=A__ ) UpperCamelCase = '\n'.join(A__ ) if font_bytes is not None and font_path is None: UpperCamelCase = io.BytesIO(A__ ) elif font_path is not None: UpperCamelCase = font_path else: UpperCamelCase = hf_hub_download(A__ , 'Arial.TTF' ) UpperCamelCase = ImageFont.truetype(A__ , encoding='UTF-8' , size=A__ ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. UpperCamelCase = ImageDraw.Draw(Image.new('RGB' , (1, 1) , A__ ) ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = temp_draw.textbbox((0, 0) , A__ , A__ ) # Create the actual image with a bit of padding around the text. UpperCamelCase = text_width + left_padding + right_padding UpperCamelCase = text_height + top_padding + bottom_padding UpperCamelCase = Image.new('RGB' , (image_width, image_height) , A__ ) UpperCamelCase = ImageDraw.Draw(A__ ) draw.text(xy=(left_padding, top_padding) , text=A__ , fill=A__ , font=A__ ) return image def __lowerCamelCase ( A__ , A__ , **A__ ) -> Optional[Any]: """simple docstring""" requires_backends(A__ , 'vision' ) # Convert to PIL image if necessary UpperCamelCase = to_pil_image(A__ ) UpperCamelCase = render_text(A__ , **A__ ) UpperCamelCase = max(header_image.width , image.width ) UpperCamelCase = int(image.height * (new_width / image.width) ) UpperCamelCase = int(header_image.height * (new_width / header_image.width) ) UpperCamelCase = Image.new('RGB' , (new_width, new_height + new_header_height) , 'white' ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary UpperCamelCase = to_numpy_array(A__ ) if infer_channel_dimension_format(A__ ) == ChannelDimension.LAST: UpperCamelCase = to_channel_dimension_format(A__ , ChannelDimension.LAST ) return new_image class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""flattened_patches"""] def __init__( self : Any , UpperCamelCase__ : bool = True , UpperCamelCase__ : bool = True , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : int = 2_0_4_8 , UpperCamelCase__ : bool = False , **UpperCamelCase__ : Any , ): """simple docstring""" super().__init__(**UpperCamelCase__ ) UpperCamelCase = patch_size if patch_size is not None else {'height': 1_6, 'width': 1_6} UpperCamelCase = do_normalize UpperCamelCase = do_convert_rgb UpperCamelCase = max_patches UpperCamelCase = is_vqa def A ( self : int , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : int , UpperCamelCase__ : dict , **UpperCamelCase__ : Union[str, Any] ): """simple docstring""" requires_backends(self.extract_flattened_patches , 'torch' ) _check_torch_version() # convert to torch UpperCamelCase = to_channel_dimension_format(UpperCamelCase__ , ChannelDimension.FIRST ) UpperCamelCase = torch.from_numpy(UpperCamelCase__ ) UpperCamelCase , UpperCamelCase = patch_size['height'], patch_size['width'] UpperCamelCase , UpperCamelCase = get_image_size(UpperCamelCase__ ) # maximize scale s.t. UpperCamelCase = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) UpperCamelCase = max(min(math.floor(scale * image_height / patch_height ) , UpperCamelCase__ ) , 1 ) UpperCamelCase = max(min(math.floor(scale * image_width / patch_width ) , UpperCamelCase__ ) , 1 ) UpperCamelCase = max(num_feasible_rows * patch_height , 1 ) UpperCamelCase = max(num_feasible_cols * patch_width , 1 ) UpperCamelCase = torch.nn.functional.interpolate( image.unsqueeze(0 ) , size=(resized_height, resized_width) , mode='bilinear' , align_corners=UpperCamelCase__ , antialias=UpperCamelCase__ , ).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] UpperCamelCase = torch_extract_patches(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) UpperCamelCase = patches.shape UpperCamelCase = patches_shape[1] UpperCamelCase = patches_shape[2] UpperCamelCase = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] UpperCamelCase = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] UpperCamelCase = torch.arange(UpperCamelCase__ ).reshape([rows, 1] ).repeat(1 , UpperCamelCase__ ).reshape([rows * columns, 1] ) UpperCamelCase = torch.arange(UpperCamelCase__ ).reshape([1, columns] ).repeat(UpperCamelCase__ , 1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] UpperCamelCase = row_ids.to(torch.floataa ) UpperCamelCase = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] UpperCamelCase = torch.cat([row_ids, col_ids, patches] , -1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] UpperCamelCase = torch.nn.functional.pad(UpperCamelCase__ , [0, 0, 0, max_patches - (rows * columns)] ).float() UpperCamelCase = to_numpy_array(UpperCamelCase__ ) return result def A ( self : List[Any] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Tuple ): """simple docstring""" if image.dtype == np.uinta: UpperCamelCase = image.astype(np.floataa ) # take mean across the whole `image` UpperCamelCase = np.mean(UpperCamelCase__ ) UpperCamelCase = np.std(UpperCamelCase__ ) UpperCamelCase = max(UpperCamelCase__ , 1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ , **UpperCamelCase__ ) def A ( self : Union[str, Any] , UpperCamelCase__ : ImageInput , UpperCamelCase__ : Optional[str] = None , UpperCamelCase__ : bool = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[Dict[str, int]] = None , UpperCamelCase__ : Optional[Union[str, TensorType]] = None , UpperCamelCase__ : ChannelDimension = ChannelDimension.FIRST , **UpperCamelCase__ : Any , ): """simple docstring""" UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCamelCase = patch_size if patch_size is not None else self.patch_size UpperCamelCase = max_patches if max_patches is not None else self.max_patches UpperCamelCase = self.is_vqa if kwargs.get('data_format' , UpperCamelCase__ ) is not None: raise ValueError('data_format is not an accepted input as the outputs are ' ) UpperCamelCase = make_list_of_images(UpperCamelCase__ ) if not valid_images(UpperCamelCase__ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCamelCase = [convert_to_rgb(UpperCamelCase__ ) for image in images] # All transformations expect numpy arrays. UpperCamelCase = [to_numpy_array(UpperCamelCase__ ) for image in images] if is_vqa: if header_text is None: raise ValueError('A header text must be provided for VQA models.' ) UpperCamelCase = kwargs.pop('font_bytes' , UpperCamelCase__ ) UpperCamelCase = kwargs.pop('font_path' , UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): UpperCamelCase = [header_text] * len(UpperCamelCase__ ) UpperCamelCase = [ render_header(UpperCamelCase__ , header_text[i] , font_bytes=UpperCamelCase__ , font_path=UpperCamelCase__ ) for i, image in enumerate(UpperCamelCase__ ) ] if do_normalize: UpperCamelCase = [self.normalize(image=UpperCamelCase__ ) for image in images] # convert to torch tensor and permute UpperCamelCase = [ self.extract_flattened_patches(image=UpperCamelCase__ , max_patches=UpperCamelCase__ , patch_size=UpperCamelCase__ ) for image in images ] # create attention mask in numpy UpperCamelCase = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] UpperCamelCase = BatchFeature( data={'flattened_patches': images, 'attention_mask': attention_masks} , tensor_type=UpperCamelCase__ ) return encoded_outputs
324
1
'''simple docstring''' from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize('''repo_id''' , ['''canonical_dataset_name''', '''org-name/dataset-name'''] ) @pytest.mark.parametrize('''path''' , ['''filename.csv''', '''filename with blanks.csv'''] ) @pytest.mark.parametrize('''revision''' , [None, '''v2'''] ) def _lowerCAmelCase ( __magic_name__ : Optional[int] , __magic_name__ : Tuple , __magic_name__ : List[Any] ) -> List[Any]: lowercase : Any =hf_hub_url(repo_id=__magic_name__ , path=__magic_name__ , revision=__magic_name__ ) assert url == f'''https://huggingface.co/datasets/{repo_id}/resolve/{revision or "main"}/{quote(__magic_name__ )}'''
92
"""simple docstring""" lowercase_ = "\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" lowercase_ = [{"type": "code", "content": INSTALL_CONTENT}] lowercase_ = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
470
0
"""simple docstring""" from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class SCREAMING_SNAKE_CASE_ : '''simple docstring''' __magic_name__ : int __magic_name__ : int class SCREAMING_SNAKE_CASE_ : '''simple docstring''' def __init__( self , lowerCamelCase__) -> List[str]: '''simple docstring''' snake_case__ : list[list[Edge]] = [[] for _ in range(lowerCamelCase__)] snake_case__ : str = size def __getitem__( self , lowerCamelCase__) -> Iterator[Edge]: '''simple docstring''' return iter(self._graph[vertex]) @property def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' return self._size def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__) -> str: '''simple docstring''' if weight not in (0, 1): raise ValueError("Edge weight must be either 0 or 1.") if to_vertex < 0 or to_vertex >= self.size: raise ValueError("Vertex indexes must be in [0; size).") self._graph[from_vertex].append(Edge(lowerCamelCase__ , lowerCamelCase__)) def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__) -> int | None: '''simple docstring''' snake_case__ : int = deque([start_vertex]) snake_case__ : list[int | None] = [None] * self.size snake_case__ : List[str] = 0 while queue: snake_case__ : str = queue.popleft() snake_case__ : Dict = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: snake_case__ : Optional[Any] = current_distance + edge.weight snake_case__ : List[Any] = distances[edge.destination_vertex] if ( isinstance(lowerCamelCase__ , lowerCamelCase__) and new_distance >= dest_vertex_distance ): continue snake_case__ : str = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex) else: queue.append(edge.destination_vertex) if distances[finish_vertex] is None: raise ValueError("No path from start_vertex to finish_vertex.") return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
150
"""simple docstring""" import math import flax.linen as nn import jax.numpy as jnp def A__ ( _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : int , _UpperCAmelCase : float = 1 , _UpperCAmelCase : float = 1 , _UpperCAmelCase : float = 1.0e4 , _UpperCAmelCase : bool = False , _UpperCAmelCase : float = 1.0 , ) -> jnp.ndarray: '''simple docstring''' assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, F"""Embedding dimension {embedding_dim} should be even""" snake_case__ : List[Any] = float(embedding_dim // 2 ) snake_case__ : Tuple = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) snake_case__ : Any = min_timescale * jnp.exp(jnp.arange(_UpperCAmelCase , dtype=jnp.floataa ) * -log_timescale_increment ) snake_case__ : Optional[int] = jnp.expand_dims(_UpperCAmelCase , 1 ) * jnp.expand_dims(_UpperCAmelCase , 0 ) # scale embeddings snake_case__ : List[Any] = scale * emb if flip_sin_to_cos: snake_case__ : Any = jnp.concatenate([jnp.cos(_UpperCAmelCase ), jnp.sin(_UpperCAmelCase )] , axis=1 ) else: snake_case__ : Optional[int] = jnp.concatenate([jnp.sin(_UpperCAmelCase ), jnp.cos(_UpperCAmelCase )] , axis=1 ) snake_case__ : Any = jnp.reshape(_UpperCAmelCase , [jnp.shape(_UpperCAmelCase )[0], embedding_dim] ) return signal class SCREAMING_SNAKE_CASE_ ( nn.Module): '''simple docstring''' __magic_name__ : int = 32 __magic_name__ : jnp.dtype = jnp.floataa @nn.compact def __call__( self , lowerCamelCase__) -> Optional[Any]: '''simple docstring''' snake_case__ : str = nn.Dense(self.time_embed_dim , dtype=self.dtype , name="linear_1")(lowerCamelCase__) snake_case__ : Optional[Any] = nn.silu(lowerCamelCase__) snake_case__ : Union[str, Any] = nn.Dense(self.time_embed_dim , dtype=self.dtype , name="linear_2")(lowerCamelCase__) return temb class SCREAMING_SNAKE_CASE_ ( nn.Module): '''simple docstring''' __magic_name__ : int = 32 __magic_name__ : bool = False __magic_name__ : float = 1 @nn.compact def __call__( self , lowerCamelCase__) -> str: '''simple docstring''' return get_sinusoidal_embeddings( lowerCamelCase__ , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift)
150
1
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _a ( SCREAMING_SNAKE_CASE_ ): a_ : Union[str, Any] = ['image_processor', 'tokenizer'] a_ : List[Any] = 'CLIPImageProcessor' a_ : Tuple = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , **SCREAMING_SNAKE_CASE__ : Tuple ): lowerCamelCase__ = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , SCREAMING_SNAKE_CASE__ , ) lowerCamelCase__ = kwargs.pop('feature_extractor' ) lowerCamelCase__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __call__( self : List[Any] , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : str=None , SCREAMING_SNAKE_CASE__ : Any=None , **SCREAMING_SNAKE_CASE__ : str ): if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: lowerCamelCase__ = self.tokenizer(SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) if images is not None: lowerCamelCase__ = self.image_processor(SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) if text is not None and images is not None: lowerCamelCase__ = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**SCREAMING_SNAKE_CASE__ ) , tensor_type=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : List[Any] , *SCREAMING_SNAKE_CASE__ : str , **SCREAMING_SNAKE_CASE__ : List[Any] ): return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : str , *SCREAMING_SNAKE_CASE__ : Optional[int] , **SCREAMING_SNAKE_CASE__ : str ): return self.tokenizer.decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) @property def _UpperCamelCase ( self : Union[str, Any] ): lowerCamelCase__ = self.tokenizer.model_input_names lowerCamelCase__ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _UpperCamelCase ( self : List[str] ): warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , SCREAMING_SNAKE_CASE__ , ) return self.image_processor_class @property def _UpperCamelCase ( self : str ): warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , SCREAMING_SNAKE_CASE__ , ) return self.image_processor
510
"""simple docstring""" class _a : def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : int ): lowerCamelCase__ = size lowerCamelCase__ = [0] * size lowerCamelCase__ = [0] * size @staticmethod def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int ): return index | (index + 1) @staticmethod def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int ): return (index & (index + 1)) - 1 def _UpperCamelCase ( self : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): lowerCamelCase__ = value while index < self.size: lowerCamelCase__ = self.get_prev(SCREAMING_SNAKE_CASE__ ) + 1 if current_left_border == index: lowerCamelCase__ = value else: lowerCamelCase__ = max(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = self.get_next(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): right -= 1 # Because of right is exclusive lowerCamelCase__ = 0 while left <= right: lowerCamelCase__ = self.get_prev(SCREAMING_SNAKE_CASE__ ) if left <= current_left: lowerCamelCase__ = max(SCREAMING_SNAKE_CASE__ , self.tree[right] ) lowerCamelCase__ = current_left else: lowerCamelCase__ = max(SCREAMING_SNAKE_CASE__ , self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
510
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase_ : Tuple = { 'configuration_conditional_detr': [ 'CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConditionalDetrConfig', 'ConditionalDetrOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[str] = ['ConditionalDetrFeatureExtractor'] UpperCAmelCase_ : Union[str, Any] = ['ConditionalDetrImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[Any] = [ 'CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConditionalDetrForObjectDetection', 'ConditionalDetrForSegmentation', 'ConditionalDetrModel', 'ConditionalDetrPreTrainedModel', ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys UpperCAmelCase_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
11
'''simple docstring''' import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Tuple ): """simple docstring""" if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer _lowerCamelCase : List[str] = flax_key_tuple[:-1] + ("weight",) _lowerCamelCase : Union[str, Any] = torch.permute(_lowerCAmelCase , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_lowerCAmelCase ): # linear layer _lowerCamelCase : Union[str, Any] = flax_key_tuple[:-1] + ("weight",) _lowerCamelCase : int = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: _lowerCamelCase : Tuple = flax_key_tuple[:-1] + ("weight",) return flax_key_tuple, flax_tensor def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : Any ): """simple docstring""" if "metadata" in layer: _lowerCamelCase : Optional[int] = layer.split("metadata" ) _lowerCamelCase : Union[str, Any] = "".join(split_layer[0] )[:-1] _lowerCamelCase : Dict = [tuple(("metadata" + split_layer[1]).split("/" ) )] elif "kvstore" in layer: _lowerCamelCase : List[str] = layer.split("kvstore" ) _lowerCamelCase : Optional[int] = "".join(split_layer[0] )[:-1] _lowerCamelCase : List[Any] = [tuple(("kvstore" + split_layer[1]).split("/" ) )] else: _lowerCamelCase : Tuple = layer.split("/" ) _lowerCamelCase : int = "/".join(split_layer[:-1] ) _lowerCamelCase : Optional[Any] = (split_layer[-1],) if "kvstore/path" in layer: _lowerCamelCase : int = F'{switch_checkpoint_path}/{checkpoint_info[layer]}' elif "kvstore/driver" in layer: _lowerCamelCase : Optional[int] = "file" else: _lowerCamelCase : str = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : str = rename_keys(_lowerCAmelCase ) _lowerCamelCase : Dict = {} for k, v in current_block.items(): _lowerCamelCase : Union[str, Any] = v _lowerCamelCase : str = new_current_block torch.save(_lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : str = WEIGHTS_NAME ): """simple docstring""" _lowerCamelCase : Dict = convert_file_size_to_int(_lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = [] _lowerCamelCase : Dict = {} _lowerCamelCase : Optional[int] = 0 _lowerCamelCase : List[str] = 0 os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) with gfile.GFile(switch_checkpoint_path + "/checkpoint" , "rb" ) as fp: _lowerCamelCase : Tuple = serialization.msgpack_restore(fp.read() )["optimizer"]["target"] _lowerCamelCase : Union[str, Any] = flatten_dict(_lowerCAmelCase , sep="/" ) _lowerCamelCase : Optional[int] = {} for layer in checkpoint_info.keys(): _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : int = get_key_and_tensorstore_dict( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if curr_real_layer_name in all_layers: _lowerCamelCase : Optional[int] = content else: _lowerCamelCase : int = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file _lowerCamelCase : Any = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() _lowerCamelCase : int = torch.tensor(_lowerCAmelCase ) _lowerCamelCase : str = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts _lowerCamelCase , _lowerCamelCase : Optional[Any] = rename_base_flax_keys(tuple(key.split("/" ) ) , _lowerCAmelCase ) _lowerCamelCase : Optional[Any] = "/".join(_lowerCAmelCase ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: _lowerCamelCase : Tuple = os.path.join( _lowerCAmelCase , weights_name.replace(".bin" , F'-{len(_lowerCAmelCase )+1:05d}-of-???.bin' ) ) rename_and_save_block(_lowerCAmelCase , _lowerCAmelCase ) sharded_state_dicts.append(current_block.keys() ) del current_block _lowerCamelCase : Optional[int] = {} _lowerCamelCase : Dict = 0 _lowerCamelCase : Optional[int] = raw_weights.to(getattr(_lowerCAmelCase , _lowerCAmelCase ) ) current_block_size += weight_size total_size += weight_size # Add the last block _lowerCamelCase : List[str] = os.path.join(_lowerCAmelCase , weights_name.replace(".bin" , F'-{len(_lowerCAmelCase )+1:05d}-of-???.bin' ) ) rename_and_save_block(_lowerCAmelCase , _lowerCAmelCase ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(_lowerCAmelCase ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index _lowerCamelCase : Union[str, Any] = {} _lowerCamelCase : str = {} for idx, shard in enumerate(_lowerCAmelCase ): _lowerCamelCase : Dict = weights_name.replace( ".bin" , F'-{idx+1:05d}-of-{len(_lowerCAmelCase ):05d}.bin' ) # len(sharded_state_dicts):05d} _lowerCamelCase : Union[str, Any] = os.path.join(_lowerCAmelCase , weights_name.replace(".bin" , F'-{idx+1:05d}-of-???.bin' ) ) os.rename(_lowerCAmelCase , os.path.join(_lowerCAmelCase , _lowerCAmelCase ) ) _lowerCamelCase : Tuple = shard for key in shard: _lowerCamelCase : str = shard_file # Add the metadata _lowerCamelCase : Optional[Any] = {"total_size": total_size} _lowerCamelCase : Dict = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , "w" , encoding="utf-8" ) as f: _lowerCamelCase : int = json.dumps(_lowerCAmelCase , indent=2 , sort_keys=_lowerCAmelCase ) + "\n" f.write(_lowerCAmelCase ) return metadata, index if __name__ == "__main__": UpperCAmelCase_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--switch_t5x_checkpoint_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--max_shard_size', default='10GB', required=False, help='Max shard size') parser.add_argument('--dtype', default='bfloat16', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted', type=str, required=False, help='Path to the output pytorch model.', ) UpperCAmelCase_ : Dict = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def A_ ( ): """simple docstring""" from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer _lowerCamelCase : Optional[int] = SwitchTransformersConfig.from_pretrained("google/switch-base-8" ) config.save_pretrained("/home/arthur_huggingface_co/transformers/switch_converted" ) _lowerCamelCase : int = SwitchTransformersForConditionalGeneration.from_pretrained( "/home/arthur_huggingface_co/transformers/switch_converted" , device_map="auto" ) _lowerCamelCase : List[str] = TaTokenizer.from_pretrained("t5-small" ) _lowerCamelCase : Tuple = "A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>." _lowerCamelCase : Optional[int] = tokenizer(_lowerCAmelCase , return_tensors="pt" ).input_ids _lowerCamelCase : List[Any] = model.generate(_lowerCAmelCase , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
11
1