code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import qiskit def UpperCAmelCase_ ( __UpperCAmelCase : int , __UpperCAmelCase : int ) -> qiskit.result.counts.Counts: SCREAMING_SNAKE_CASE_ = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register SCREAMING_SNAKE_CASE_ = qiskit.QuantumCircuit(__UpperCAmelCase , __UpperCAmelCase ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator SCREAMING_SNAKE_CASE_ = qiskit.execute(__UpperCAmelCase , __UpperCAmelCase , shots=10_00 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(__UpperCAmelCase ) if __name__ == "__main__": print(f'''Total count for various states are: {single_qubit_measure(1, 1)}''')
31
from ..utils import DummyObject, requires_backends class lowercase__ ( metaclass=__SCREAMING_SNAKE_CASE ): A__= ['flax', 'transformers'] def __init__( self : int , *_lowercase : Union[str, Any] , **_lowercase : List[Any] ): """simple docstring""" requires_backends(self , ["flax", "transformers"] ) @classmethod def _UpperCAmelCase ( cls : str , *_lowercase : Tuple , **_lowercase : int ): """simple docstring""" requires_backends(cls , ["flax", "transformers"] ) @classmethod def _UpperCAmelCase ( cls : Optional[int] , *_lowercase : List[Any] , **_lowercase : Dict ): """simple docstring""" requires_backends(cls , ["flax", "transformers"] ) class lowercase__ ( metaclass=__SCREAMING_SNAKE_CASE ): A__= ['flax', 'transformers'] def __init__( self : Optional[Any] , *_lowercase : int , **_lowercase : List[Any] ): """simple docstring""" requires_backends(self , ["flax", "transformers"] ) @classmethod def _UpperCAmelCase ( cls : Optional[Any] , *_lowercase : Optional[Any] , **_lowercase : Any ): """simple docstring""" requires_backends(cls , ["flax", "transformers"] ) @classmethod def _UpperCAmelCase ( cls : str , *_lowercase : Any , **_lowercase : List[str] ): """simple docstring""" requires_backends(cls , ["flax", "transformers"] ) class lowercase__ ( metaclass=__SCREAMING_SNAKE_CASE ): A__= ['flax', 'transformers'] def __init__( self : str , *_lowercase : Union[str, Any] , **_lowercase : List[str] ): """simple docstring""" requires_backends(self , ["flax", "transformers"] ) @classmethod def _UpperCAmelCase ( cls : Any , *_lowercase : Any , **_lowercase : List[str] ): """simple docstring""" requires_backends(cls , ["flax", "transformers"] ) @classmethod def _UpperCAmelCase ( cls : Tuple , *_lowercase : str , **_lowercase : Optional[Any] ): """simple docstring""" requires_backends(cls , ["flax", "transformers"] ) class lowercase__ ( metaclass=__SCREAMING_SNAKE_CASE ): A__= ['flax', 'transformers'] def __init__( self : Any , *_lowercase : Dict , **_lowercase : str ): """simple docstring""" requires_backends(self , ["flax", "transformers"] ) @classmethod def _UpperCAmelCase ( cls : List[str] , *_lowercase : Tuple , **_lowercase : int ): """simple docstring""" requires_backends(cls , ["flax", "transformers"] ) @classmethod def _UpperCAmelCase ( cls : Any , *_lowercase : str , **_lowercase : Optional[int] ): """simple docstring""" requires_backends(cls , ["flax", "transformers"] )
475
0
# using dfs for finding eulerian path traversal def snake_case ( snake_case__ :Any , snake_case__ :Union[str, Any] , snake_case__ :Union[str, Any] , snake_case__ :Tuple=None) -> Dict: _A = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: _A , _A = True, True _A = dfs(snake_case__ , snake_case__ , snake_case__ , snake_case__) return path def snake_case ( snake_case__ :List[Any] , snake_case__ :str) -> Tuple: _A = 0 _A = -1 for i in range(snake_case__): if i not in graph.keys(): continue if len(graph[i]) % 2 == 1: odd_degree_nodes += 1 _A = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def snake_case ( snake_case__ :Union[str, Any] , snake_case__ :Any) -> Optional[int]: _A = [[False for _ in range(max_node + 1)] for _ in range(max_node + 1)] _A , _A = check_circuit_or_path(snake_case__ , snake_case__) if check == 3: print("""graph is not Eulerian""") print("""no path""") return _A = 1 if check == 2: _A = odd_node print("""graph has a Euler path""") if check == 1: print("""graph has a Euler cycle""") _A = dfs(snake_case__ , snake_case__ , snake_case__) print(snake_case__) def snake_case ( ) -> Any: _A = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} _A = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} _A = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} _A = {1: [2, 3], 2: [1, 3], 3: [1, 2]} _A = { 1: [], 2: [] # all degree is zero } _A = 10 check_euler(snake_case__ , snake_case__) check_euler(snake_case__ , snake_case__) check_euler(snake_case__ , snake_case__) check_euler(snake_case__ , snake_case__) check_euler(snake_case__ , snake_case__) if __name__ == "__main__": main()
83
import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class a ( __lowerCAmelCase ): """simple docstring""" def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=13 , lowerCAmelCase_=7 , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=99 , lowerCAmelCase_=32 , lowerCAmelCase_=5 , lowerCAmelCase_=4 , lowerCAmelCase_=37 , lowerCAmelCase_="gelu" , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.1 , lowerCAmelCase_=5_12 , lowerCAmelCase_=16 , lowerCAmelCase_=2 , lowerCAmelCase_=0.02 , lowerCAmelCase_=False , lowerCAmelCase_=True , lowerCAmelCase_="None" , lowerCAmelCase_=3 , lowerCAmelCase_=4 , lowerCAmelCase_=None , ) -> Union[str, Any]: _A = parent _A = batch_size _A = seq_length _A = is_training _A = use_input_mask _A = use_token_type_ids _A = use_labels _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = type_vocab_size _A = type_sequence_label_size _A = initializer_range _A = num_labels _A = num_choices _A = relative_attention _A = position_biased_input _A = pos_att_type _A = scope def UpperCAmelCase ( self ) -> Dict: _A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A = None if self.use_input_mask: _A = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) _A = None if self.use_token_type_ids: _A = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _A = None _A = None _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A = ids_tensor([self.batch_size] , self.num_choices ) _A = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase ( self ) -> Optional[int]: return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def UpperCAmelCase ( self , lowerCAmelCase_ ) -> Any: self.parent.assertListEqual(list(result.loss.size() ) , [] ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> List[Any]: _A = DebertaVaModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _A = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ )[0] _A = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ )[0] _A = model(lowerCAmelCase_ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> List[str]: _A = DebertaVaForMaskedLM(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _A = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Any: _A = self.num_labels _A = DebertaVaForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _A = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(lowerCAmelCase_ ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> str: _A = self.num_labels _A = DebertaVaForTokenClassification(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _A = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Optional[int]: _A = DebertaVaForQuestionAnswering(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _A = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> str: _A = DebertaVaForMultipleChoice(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _A = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase ( self ) -> Optional[int]: _A = self.prepare_config_and_inputs() ( ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ) = config_and_inputs _A = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class a ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase :int = ( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) lowerCamelCase :str = ( { '''feature-extraction''': DebertaVaModel, '''fill-mask''': DebertaVaForMaskedLM, '''question-answering''': DebertaVaForQuestionAnswering, '''text-classification''': DebertaVaForSequenceClassification, '''token-classification''': DebertaVaForTokenClassification, '''zero-shot''': DebertaVaForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase :str = True lowerCamelCase :Union[str, Any] = False lowerCamelCase :Optional[int] = False lowerCamelCase :List[str] = False lowerCamelCase :str = False def UpperCAmelCase ( self ) -> Optional[int]: _A = DebertaVaModelTester(self ) _A = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=37 ) def UpperCAmelCase ( self ) -> List[str]: self.config_tester.run_common_tests() def UpperCAmelCase ( self ) -> List[str]: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Dict: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Any: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> int: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Dict: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Optional[int]: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*lowerCAmelCase_ ) @slow def UpperCAmelCase ( self ) -> Any: for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = DebertaVaModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @require_torch @require_sentencepiece @require_tokenizers class a ( unittest.TestCase ): """simple docstring""" @unittest.skip(reason="""Model not available yet""" ) def UpperCAmelCase ( self ) -> int: pass @slow def UpperCAmelCase ( self ) -> Optional[Any]: _A = DebertaVaModel.from_pretrained("""microsoft/deberta-v2-xlarge""" ) _A = torch.tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) _A = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _A = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ )[0] # compare the actual values for a slice. _A = torch.tensor( [[[0.2356, 0.1948, 0.0369], [-0.1063, 0.3586, -0.5152], [-0.6399, -0.0259, -0.2525]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowerCAmelCase_ , atol=1E-4 ) , F'''{output[:, 1:4, 1:4]}''' )
83
1
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE_: Any =logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: Tuple ='▁' SCREAMING_SNAKE_CASE_: List[Any] ={ 'vocab_file': 'vocab.json', 'spm_file': 'sentencepiece.bpe.model', 'tokenizer_config_file': 'tokenizer_config.json', } SCREAMING_SNAKE_CASE_: Any ={ 'vocab_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json', }, 'spm_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_config_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json', }, } SCREAMING_SNAKE_CASE_: int ={ 'facebook/m2m100_418M': 10_24, } # fmt: off SCREAMING_SNAKE_CASE_: Union[str, Any] ={ 'm2m100': ['af', 'am', 'ar', 'ast', 'az', 'ba', 'be', 'bg', 'bn', 'br', 'bs', 'ca', 'ceb', 'cs', 'cy', 'da', 'de', 'el', 'en', 'es', 'et', 'fa', 'ff', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl', 'gu', 'ha', 'he', 'hi', 'hr', 'ht', 'hu', 'hy', 'id', 'ig', 'ilo', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km', 'kn', 'ko', 'lb', 'lg', 'ln', 'lo', 'lt', 'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my', 'ne', 'nl', 'no', 'ns', 'oc', 'or', 'pa', 'pl', 'ps', 'pt', 'ro', 'ru', 'sd', 'si', 'sk', 'sl', 'so', 'sq', 'sr', 'ss', 'su', 'sv', 'sw', 'ta', 'th', 'tl', 'tn', 'tr', 'uk', 'ur', 'uz', 'vi', 'wo', 'xh', 'yi', 'yo', 'zh', 'zu'], 'wmt21': ['en', 'ha', 'is', 'ja', 'cs', 'ru', 'zh', 'de'] } class __A ( UpperCamelCase__ ): a__ : Any = VOCAB_FILES_NAMES a__ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : str = PRETRAINED_VOCAB_FILES_MAP a__ : Optional[Any] = ["""input_ids""", """attention_mask"""] a__ : List[int] = [] a__ : List[int] = [] def __init__(self : List[str] , __a : List[str] , __a : Any , __a : Optional[int]=None , __a : Optional[int]=None , __a : Dict="<s>" , __a : Optional[Any]="</s>" , __a : List[str]="</s>" , __a : Union[str, Any]="<pad>" , __a : str="<unk>" , __a : str="m2m100" , __a : Optional[Dict[str, Any]] = None , __a : int=8 , **__a : int , ): UpperCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs UpperCAmelCase_ = language_codes UpperCAmelCase_ = FAIRSEQ_LANGUAGE_CODES[language_codes] UpperCAmelCase_ = {lang_code: f"""__{lang_code}__""" for lang_code in fairseq_language_code} UpperCAmelCase_ = kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(__a ) for lang_code in fairseq_language_code if self.get_lang_token(__a ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=__a , tgt_lang=__a , bos_token=__a , eos_token=__a , sep_token=__a , unk_token=__a , pad_token=__a , language_codes=__a , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=__a , **__a , ) UpperCAmelCase_ = vocab_file UpperCAmelCase_ = load_json(__a ) UpperCAmelCase_ = {v: k for k, v in self.encoder.items()} UpperCAmelCase_ = spm_file UpperCAmelCase_ = load_spm(__a , self.sp_model_kwargs ) UpperCAmelCase_ = len(self.encoder ) UpperCAmelCase_ = { self.get_lang_token(__a ): self.encoder_size + i for i, lang_code in enumerate(__a ) } UpperCAmelCase_ = {lang_code: self.encoder_size + i for i, lang_code in enumerate(__a )} UpperCAmelCase_ = {v: k for k, v in self.lang_token_to_id.items()} UpperCAmelCase_ = src_lang if src_lang is not None else "en" UpperCAmelCase_ = tgt_lang UpperCAmelCase_ = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) UpperCAmelCase_ = num_madeup_words @property def _lowercase (self : List[str] ): return len(self.encoder ) + len(self.lang_token_to_id ) @property def _lowercase (self : str ): return self._src_lang @src_lang.setter def _lowercase (self : Optional[int] , __a : str ): UpperCAmelCase_ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _lowercase (self : List[Any] , __a : str ): return self.sp_model.encode(__a , out_type=__a ) def _lowercase (self : str , __a : str ): if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(__a , self.encoder[self.unk_token] ) def _lowercase (self : Union[str, Any] , __a : int ): if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(__a , self.unk_token ) def _lowercase (self : List[str] , __a : Union[str, Any] ): UpperCAmelCase_ = [] UpperCAmelCase_ = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__a ) + token UpperCAmelCase_ = [] else: current_sub_tokens.append(__a ) out_string += self.sp_model.decode(__a ) return out_string.strip() def _lowercase (self : List[str] , __a : List[int] , __a : Optional[List[int]] = None , __a : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__a , token_ids_a=__a , already_has_special_tokens=__a ) UpperCAmelCase_ = [1] * len(self.prefix_tokens ) UpperCAmelCase_ = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__a )) + suffix_ones return prefix_ones + ([0] * len(__a )) + ([0] * len(__a )) + suffix_ones def _lowercase (self : List[Any] , __a : List[int] , __a : Optional[List[int]] = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _lowercase (self : List[Any] ): UpperCAmelCase_ = {self.convert_ids_to_tokens(__a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__(self : Tuple ): UpperCAmelCase_ = self.__dict__.copy() UpperCAmelCase_ = None return state def __setstate__(self : Tuple , __a : Dict ): UpperCAmelCase_ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCAmelCase_ = {} UpperCAmelCase_ = load_spm(self.spm_file , self.sp_model_kwargs ) def _lowercase (self : Tuple , __a : str , __a : Optional[str] = None ): UpperCAmelCase_ = Path(__a ) if not save_dir.is_dir(): raise OSError(f"""{save_directory} should be a directory""" ) UpperCAmelCase_ = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"] ) UpperCAmelCase_ = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["spm_file"] ) save_json(self.encoder , __a ) if os.path.abspath(self.spm_file ) != os.path.abspath(__a ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , __a ) elif not os.path.isfile(self.spm_file ): with open(__a , "wb" ) as fi: UpperCAmelCase_ = self.sp_model.serialized_model_proto() fi.write(__a ) return (str(__a ), str(__a )) def _lowercase (self : int , __a : List[str] , __a : str = "en" , __a : Optional[List[str]] = None , __a : str = "ro" , **__a : Optional[Any] , ): UpperCAmelCase_ = src_lang UpperCAmelCase_ = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(__a , __a , **__a ) def _lowercase (self : str , __a : List[Any] , __a : Optional[str] , __a : Optional[str] , **__a : Tuple ): if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) UpperCAmelCase_ = src_lang UpperCAmelCase_ = self(__a , add_special_tokens=__a , **__a ) UpperCAmelCase_ = self.get_lang_id(__a ) UpperCAmelCase_ = tgt_lang_id return inputs def _lowercase (self : int ): self.set_src_lang_special_tokens(self.src_lang ) def _lowercase (self : Tuple ): self.set_tgt_lang_special_tokens(self.tgt_lang ) def _lowercase (self : int , __a : str ): UpperCAmelCase_ = self.get_lang_token(__a ) UpperCAmelCase_ = self.lang_token_to_id[lang_token] UpperCAmelCase_ = [self.cur_lang_id] UpperCAmelCase_ = [self.eos_token_id] def _lowercase (self : Optional[Any] , __a : str ): UpperCAmelCase_ = self.get_lang_token(__a ) UpperCAmelCase_ = self.lang_token_to_id[lang_token] UpperCAmelCase_ = [self.cur_lang_id] UpperCAmelCase_ = [self.eos_token_id] def _lowercase (self : List[Any] , __a : str ): return self.lang_code_to_token[lang] def _lowercase (self : str , __a : str ): UpperCAmelCase_ = self.get_lang_token(__a ) return self.lang_token_to_id[lang_token] def lowerCAmelCase_ ( snake_case_ : str , snake_case_ : Dict[str, Any] ) -> sentencepiece.SentencePieceProcessor: '''simple docstring''' UpperCAmelCase_ = sentencepiece.SentencePieceProcessor(**snake_case_ ) spm.Load(str(snake_case_ ) ) return spm def lowerCAmelCase_ ( snake_case_ : str ) -> Union[Dict, List]: '''simple docstring''' with open(snake_case_ , "r" ) as f: return json.load(snake_case_ ) def lowerCAmelCase_ ( snake_case_ : Tuple , snake_case_ : str ) -> None: '''simple docstring''' with open(snake_case_ , "w" ) as f: json.dump(snake_case_ , snake_case_ , indent=2 )
78
"""simple docstring""" # flake8: noqa # Lint as: python3 A_ : List[str] = [ "VerificationMode", "Version", "disable_progress_bar", "enable_progress_bar", "is_progress_bar_enabled", "experimental", ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
196
0
"""simple docstring""" import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer SCREAMING_SNAKE_CASE = """bart""" SCREAMING_SNAKE_CASE = True @st.cache(allow_output_mutation=UpperCAmelCase_ ) def lowerCamelCase__ ( )-> Union[str, Any]: """simple docstring""" if LOAD_DENSE_INDEX: UpperCamelCase = AutoTokenizer.from_pretrained("yjernite/retribert-base-uncased" ) UpperCamelCase = AutoModel.from_pretrained("yjernite/retribert-base-uncased" ).to("cuda:0" ) UpperCamelCase = qar_model.eval() else: UpperCamelCase , UpperCamelCase = (None, None) if MODEL_TYPE == "bart": UpperCamelCase = AutoTokenizer.from_pretrained("yjernite/bart_eli5" ) UpperCamelCase = AutoModelForSeqaSeqLM.from_pretrained("yjernite/bart_eli5" ).to("cuda:0" ) UpperCamelCase = torch.load("seq2seq_models/eli5_bart_model_blm_2.pth" ) sas_model.load_state_dict(save_dict["model"] ) UpperCamelCase = sas_model.eval() else: UpperCamelCase , UpperCamelCase = make_qa_sas_model( model_name="t5-small" , from_file="seq2seq_models/eli5_t5_model_1024_4.pth" , device="cuda:0" ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=UpperCAmelCase_ ) def lowerCamelCase__ ( )-> Optional[int]: """simple docstring""" if LOAD_DENSE_INDEX: UpperCamelCase = faiss.StandardGpuResources() UpperCamelCase = datasets.load_dataset(path="wiki_snippets" , name="wiki40b_en_100_0" )["train"] UpperCamelCase = np.memmap( "wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat" , dtype="float32" , mode="r" , shape=(wikiaab_passages.num_rows, 1_28) , ) UpperCamelCase = faiss.IndexFlatIP(1_28 ) UpperCamelCase = faiss.index_cpu_to_gpu(UpperCAmelCase_ , 1 , UpperCAmelCase_ ) wikiaab_gpu_index_flat.add(UpperCAmelCase_ ) # TODO fix for larger GPU else: UpperCamelCase , UpperCamelCase = (None, None) UpperCamelCase = Elasticsearch([{"host": "localhost", "port": "9200"}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=UpperCAmelCase_ ) def lowerCamelCase__ ( )-> Optional[Any]: """simple docstring""" UpperCamelCase = datasets.load_dataset("eli5" , name="LFQA_reddit" ) UpperCamelCase = elia["train_eli5"] UpperCamelCase = np.memmap( "eli5_questions_reps.dat" , dtype="float32" , mode="r" , shape=(elia_train.num_rows, 1_28) ) UpperCamelCase = faiss.IndexFlatIP(1_28 ) eli5_train_q_index.add(UpperCAmelCase_ ) return (elia_train, eli5_train_q_index) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = load_indexes() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = load_models() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = load_train_data() def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_=10 )-> str: """simple docstring""" UpperCamelCase = embed_questions_for_retrieval([question] , UpperCAmelCase_ , UpperCAmelCase_ ) UpperCamelCase , UpperCamelCase = eli5_train_q_index.search(UpperCAmelCase_ , UpperCAmelCase_ ) UpperCamelCase = [elia_train[int(UpperCAmelCase_ )] for i in I[0]] return nn_examples def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_="wiki40b" , UpperCAmelCase_="dense" , UpperCAmelCase_=10 )-> List[str]: """simple docstring""" if source == "none": UpperCamelCase , UpperCamelCase = (" <P> ".join(["" for _ in range(11 )] ).strip(), []) else: if method == "dense": UpperCamelCase , UpperCamelCase = query_qa_dense_index( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) else: UpperCamelCase , UpperCamelCase = query_es_index( UpperCAmelCase_ , UpperCAmelCase_ , index_name="english_wiki40b_snippets_100w" , n_results=UpperCAmelCase_ , ) UpperCamelCase = [ (res["article_title"], res["section_title"].strip(), res["score"], res["passage_text"]) for res in hit_lst ] UpperCamelCase = "question: {} context: {}".format(UpperCAmelCase_ , UpperCAmelCase_ ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda UpperCAmelCase_ : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda UpperCAmelCase_ : None), } ) def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=64 , UpperCAmelCase_=2_56 , UpperCAmelCase_=False , UpperCAmelCase_=2 , UpperCAmelCase_=0.95 , UpperCAmelCase_=0.8 )-> int: """simple docstring""" with torch.no_grad(): UpperCamelCase = qa_sas_generate( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , num_answers=1 , num_beams=UpperCAmelCase_ , min_len=UpperCAmelCase_ , max_len=UpperCAmelCase_ , do_sample=UpperCAmelCase_ , temp=UpperCAmelCase_ , top_p=UpperCAmelCase_ , top_k=UpperCAmelCase_ , max_input_length=10_24 , device="cuda:0" , )[0] return (answer, support_list) st.title("""Long Form Question Answering with ELI5""") # Start sidebar SCREAMING_SNAKE_CASE = """<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>""" SCREAMING_SNAKE_CASE = """ <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class=\"img-container\"> <!-- Inline parent element --> %s </span> </body> </html> """ % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia SCREAMING_SNAKE_CASE = """ This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. """ st.sidebar.markdown(description, unsafe_allow_html=True) SCREAMING_SNAKE_CASE = [ """Answer the question""", """View the retrieved document only""", """View the most similar ELI5 question and answer""", """Show me everything, please!""", ] SCREAMING_SNAKE_CASE = st.sidebar.checkbox("""Demo options""") if demo_options: SCREAMING_SNAKE_CASE = st.sidebar.selectbox( """""", action_list, index=3, ) SCREAMING_SNAKE_CASE = action_list.index(action_st) SCREAMING_SNAKE_CASE = st.sidebar.selectbox( """""", ["""Show full text of passages""", """Show passage section titles"""], index=0, ) SCREAMING_SNAKE_CASE = show_type == """Show full text of passages""" else: SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = st.sidebar.checkbox("""Retrieval options""") if retrieval_options: SCREAMING_SNAKE_CASE = """ ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. """ st.sidebar.markdown(retriever_info) SCREAMING_SNAKE_CASE = st.sidebar.selectbox("""Which Wikipedia format should the model use?""", ["""wiki40b""", """none"""]) SCREAMING_SNAKE_CASE = st.sidebar.selectbox("""Which Wikipedia indexer should the model use?""", ["""dense""", """sparse""", """mixed"""]) else: SCREAMING_SNAKE_CASE = """wiki40b""" SCREAMING_SNAKE_CASE = """dense""" SCREAMING_SNAKE_CASE = """beam""" SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = 64 SCREAMING_SNAKE_CASE = 256 SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = st.sidebar.checkbox("""Generation options""") if generate_options: SCREAMING_SNAKE_CASE = """ ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder's output probabilities. """ st.sidebar.markdown(generate_info) SCREAMING_SNAKE_CASE = st.sidebar.selectbox("""Would you like to use beam search or sample an answer?""", ["""beam""", """sampled"""]) SCREAMING_SNAKE_CASE = st.sidebar.slider( """Minimum generation length""", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) SCREAMING_SNAKE_CASE = st.sidebar.slider( """Maximum generation length""", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": SCREAMING_SNAKE_CASE = st.sidebar.slider("""Beam size""", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: SCREAMING_SNAKE_CASE = st.sidebar.slider( """Nucleus sampling p""", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) SCREAMING_SNAKE_CASE = st.sidebar.slider( """Temperature""", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) SCREAMING_SNAKE_CASE = None # start main text SCREAMING_SNAKE_CASE = [ """<MY QUESTION>""", """How do people make chocolate?""", """Why do we get a fever when we are sick?""", """How can different animals perceive different colors?""", """What is natural language processing?""", """What's the best way to treat a sunburn?""", """What exactly are vitamins ?""", """How does nuclear energy provide electricity?""", """What's the difference between viruses and bacteria?""", """Why are flutes classified as woodwinds when most of them are made out of metal ?""", """Why do people like drinking coffee even though it tastes so bad?""", """What happens when wine ages? How does it make the wine taste better?""", """If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?""", """How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?""", """How does New Zealand have so many large bird predators?""", ] SCREAMING_SNAKE_CASE = st.selectbox( """What would you like to ask? ---- select <MY QUESTION> to enter a new query""", questions_list, index=1, ) if question_s == "<MY QUESTION>": SCREAMING_SNAKE_CASE = st.text_input("""Enter your question here:""", """""") else: SCREAMING_SNAKE_CASE = question_s if st.button("""Show me!"""): if action in [0, 1, 3]: if index_type == "mixed": SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = make_support(question, source=wiki_source, method="""dense""", n_results=10) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = make_support(question, source=wiki_source, method="""sparse""", n_results=10) SCREAMING_SNAKE_CASE = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] SCREAMING_SNAKE_CASE = support_list[:10] SCREAMING_SNAKE_CASE = """<P> """ + """ <P> """.join([res[-1] for res in support_list]) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == """sampled"""), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("""### The model generated answer is:""") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("""--- \n ### The model is drawing information from the following Wikipedia passages:""") for i, res in enumerate(support_list): SCREAMING_SNAKE_CASE = """https://en.wikipedia.org/wiki/{}""".format(res[0].replace(""" """, """_""")) SCREAMING_SNAKE_CASE = res[1].strip() if sec_titles == "": SCREAMING_SNAKE_CASE = """[{}]({})""".format(res[0], wiki_url) else: SCREAMING_SNAKE_CASE = sec_titles.split(""" & """) SCREAMING_SNAKE_CASE = """ & """.join( ["""[{}]({}#{})""".format(sec.strip(), wiki_url, sec.strip().replace(""" """, """_""")) for sec in sec_list] ) st.markdown( """{0:02d} - **Article**: {1:<18} <br> _Section_: {2}""".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( """> <span style=\"font-family:arial; font-size:10pt;\">""" + res[-1] + """</span>""", unsafe_allow_html=True ) if action in [2, 3]: SCREAMING_SNAKE_CASE = find_nearest_training(question) SCREAMING_SNAKE_CASE = nn_train_list[0] st.markdown( """--- \n ### The most similar question in the ELI5 training set was: \n\n {}""".format(train_exple["""title"""]) ) SCREAMING_SNAKE_CASE = [ """{}. {}""".format(i + 1, """ \n""".join([line.strip() for line in ans.split("""\n""") if line.strip() != """"""])) for i, (ans, sc) in enumerate(zip(train_exple["""answers"""]["""text"""], train_exple["""answers"""]["""score"""])) if i == 0 or sc > 2 ] st.markdown("""##### Its answers were: \n\n {}""".format("""\n""".join(answers_st))) SCREAMING_SNAKE_CASE = """ --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* """ st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
556
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class __a ( unittest.TestCase ): @slow def _SCREAMING_SNAKE_CASE ( self : List[str] )-> Optional[int]: """simple docstring""" UpperCamelCase = XLMRobertaModel.from_pretrained("xlm-roberta-base" ) UpperCamelCase = torch.tensor([[0, 581, 10_269, 83, 99_942, 136, 60_742, 23, 70, 80_583, 18_276, 2]] ) # The dog is cute and lives in the garden house UpperCamelCase = torch.Size((1, 12, 768) ) # batch_size, sequence_length, embedding_vector_dim UpperCamelCase = torch.tensor( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCamelCase = model(UpperCAmelCase_ )["last_hidden_state"].detach() self.assertEqual(output.shape , UpperCAmelCase_ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , UpperCAmelCase_ , atol=1e-3 ) ) @slow def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] )-> Optional[int]: """simple docstring""" UpperCamelCase = XLMRobertaModel.from_pretrained("xlm-roberta-large" ) UpperCamelCase = torch.tensor([[0, 581, 10_269, 83, 99_942, 136, 60_742, 23, 70, 80_583, 18_276, 2]] ) # The dog is cute and lives in the garden house UpperCamelCase = torch.Size((1, 12, 1_024) ) # batch_size, sequence_length, embedding_vector_dim UpperCamelCase = torch.tensor( [[-0.0699, -0.0318, 0.0705, -0.1241, 0.0999, -0.0520, 0.1004, -0.1838, -0.4704, 0.1437, 0.0821, 0.0126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCamelCase = model(UpperCAmelCase_ )["last_hidden_state"].detach() self.assertEqual(output.shape , UpperCAmelCase_ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , UpperCAmelCase_ , atol=1e-3 ) )
556
1
'''simple docstring''' from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : List[Any] = DistilBertTokenizer _snake_case : Optional[int] = DistilBertTokenizerFast _snake_case : List[str] = True @slow def snake_case__ ( self : int ) -> Dict: '''simple docstring''' _UpperCamelCase = DistilBertTokenizer.from_pretrained('''distilbert-base-uncased''' ) _UpperCamelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=lowerCAmelCase__ ) _UpperCamelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=lowerCAmelCase__ ) _UpperCamelCase = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ ) _UpperCamelCase = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ , lowerCAmelCase__ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
98
'''simple docstring''' import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets lowercase__ : str = '\\n@article{hendrycksmath2021,\n title={Measuring Mathematical Problem Solving With the MATH Dataset},\n author={Dan Hendrycks\n and Collin Burns\n and Saurav Kadavath\n and Akul Arora\n and Steven Basart\n and Eric Tang\n and Dawn Song\n and Jacob Steinhardt},\n journal={arXiv preprint arXiv:2103.03874},\n year={2021}\n}\n' lowercase__ : str = '\\nThis metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset.\nIt first canonicalizes the inputs (e.g., converting "1/2" to "\\frac{1}{2}") and then computes accuracy.\n' lowercase__ : Dict = R'\nCalculates accuracy after canonicalizing inputs.\n\nArgs:\n predictions: list of predictions to score. Each prediction\n is a string that contains natural language and LaTex.\n references: list of reference for each prediction. Each\n reference is a string that contains natural language\n and LaTex.\nReturns:\n accuracy: accuracy after canonicalizing inputs\n (e.g., converting "1/2" to "\\frac{1}{2}")\n\nExamples:\n >>> metric = datasets.load_metric("competition_math")\n >>> results = metric.compute(references=["\\frac{1}{2}"], predictions=["1/2"])\n >>> print(results)\n {\'accuracy\': 1.0}\n' @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): """simple docstring""" def snake_case__ ( self : Dict ) -> Any: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' ), '''references''': datasets.Value('''string''' ), } ) , homepage='''https://github.com/hendrycks/math''' , codebase_urls=['''https://github.com/hendrycks/math'''] , ) def snake_case__ ( self : List[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : int ) -> List[str]: '''simple docstring''' _UpperCamelCase = 0.0 for i, j in zip(lowerCAmelCase__ , lowerCAmelCase__ ): n_correct += 1.0 if math_equivalence.is_equiv(lowerCAmelCase__ , lowerCAmelCase__ ) else 0.0 _UpperCamelCase = n_correct / len(lowerCAmelCase__ ) return { "accuracy": accuracy, }
98
1
'''simple docstring''' import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy _UpperCamelCase : Dict = logging.getLogger(__name__) def __UpperCAmelCase ( A : torch.nn.Module , A : BnbQuantizationConfig , A : Union[str, os.PathLike] = None , A : Optional[Dict[str, Union[int, str, torch.device]]] = None , A : Optional[List[str]] = None , A : Optional[Dict[Union[int, str], Union[int, str]]] = None , A : Optional[Union[str, os.PathLike]] = None , A : bool = False , ) -> Optional[Any]: UpperCAmelCase_ : Dict = bnb_quantization_config.load_in_abit UpperCAmelCase_ : List[str] = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( '''You have a version of `bitsandbytes` that is not compatible with 8bit quantization,''' ''' make sure you have the latest version of `bitsandbytes` installed.''' ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( '''You have a version of `bitsandbytes` that is not compatible with 4bit quantization,''' '''make sure you have the latest version of `bitsandbytes` installed.''' ) UpperCAmelCase_ : List[str] = [] # custom device map if isinstance(A , A ) and len(device_map.keys() ) > 1: UpperCAmelCase_ : Any = [key for key, value in device_map.items() if value in ['''disk''', '''cpu''']] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: UpperCAmelCase_ : Any = get_keys_to_not_convert(A ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(A ) UpperCAmelCase_ : Optional[Any] = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : str = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(A ) # compatibility with peft UpperCAmelCase_ : Any = load_in_abit UpperCAmelCase_ : List[str] = load_in_abit UpperCAmelCase_ : Tuple = get_parameter_device(A ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( '''It is not recommended to quantize a loaded model. ''' '''The model should be instantiated under the `init_empty_weights` context manager.''' ) UpperCAmelCase_ : List[str] = replace_with_bnb_layers(A , A , modules_to_not_convert=A ) # convert param to the right dtype UpperCAmelCase_ : List[Any] = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: UpperCAmelCase_ : Optional[Any] = name.replace('''.weight''' , '''''' ).replace('''.bias''' , '''''' ) UpperCAmelCase_ : Optional[int] = getattr(A , A , A ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(A ): param.to(A ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError('''No GPU found. A GPU is needed for quantization.''' ) logger.info( F"The model device type is {model_device.type}. However, cuda is needed for quantization." '''We move the model to cuda.''' ) return model elif weights_location is None: raise RuntimeError( F"`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} " ) else: with init_empty_weights(): UpperCAmelCase_ : Any = replace_with_bnb_layers( A , A , modules_to_not_convert=A ) UpperCAmelCase_ : List[str] = get_quantized_model_device_map( A , A , A , max_memory=A , no_split_module_classes=A , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): UpperCAmelCase_ : Any = True UpperCAmelCase_ : Optional[Any] = any(x in list(device_map.values() ) for x in ['''cpu''', '''disk'''] ) load_checkpoint_in_model( A , A , A , dtype=bnb_quantization_config.torch_dtype , offload_folder=A , offload_state_dict=A , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(A , device_map=A , offload_dir=A ) def __UpperCAmelCase ( A : Any , A : Optional[Any] , A : Optional[Any]=None , A : List[Any]=None , A : Any=None ) -> int: if device_map is None: if torch.cuda.is_available(): UpperCAmelCase_ : Any = {'''''': torch.cuda.current_device()} else: raise RuntimeError('''No GPU found. A GPU is needed for quantization.''' ) logger.info('''The device_map was not initialized.''' '''Setting device_map to `{\'\':torch.cuda.current_device()}`.''' ) if isinstance(A , A ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( '''If passing a string for `device_map`, please choose \'auto\', \'balanced\', \'balanced_low_0\' or ''' '''\'sequential\'.''' ) UpperCAmelCase_ : List[str] = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) UpperCAmelCase_ : str = {} UpperCAmelCase_ : Dict = special_dtypes UpperCAmelCase_ : List[Any] = no_split_module_classes UpperCAmelCase_ : str = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": UpperCAmelCase_ : Optional[int] = get_balanced_memory( A , low_zero=(device_map == '''balanced_low_0''') , max_memory=A , **A , ) UpperCAmelCase_ : str = max_memory UpperCAmelCase_ : Tuple = infer_auto_device_map(A , **A ) if isinstance(A , A ): # check if don't have any quantized module on the cpu UpperCAmelCase_ : Optional[Any] = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules UpperCAmelCase_ : Dict = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( ''' Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules in `torch_dtype`, you need to pass a custom `device_map` to `load_and_quantize_model`. Check https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk for more details. ''' ) else: logger.info( '''Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit''' ) del device_map_without_some_modules return device_map def __UpperCAmelCase ( A : List[str] , A : Union[str, Any] , A : Optional[int]=None , A : List[str]=None ) -> Optional[int]: if modules_to_not_convert is None: UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ , UpperCAmelCase_ : List[str] = _replace_with_bnb_layers( A , A , A , A ) if not has_been_replaced: logger.warning( '''You are loading your model in 8bit or 4bit but no linear modules were found in your model.''' ''' this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.''' ''' Please double check your model architecture, or submit an issue on github if you think this is''' ''' a bug.''' ) return model def __UpperCAmelCase ( A : Union[str, Any] , A : Optional[int] , A : Optional[int]=None , A : Optional[Any]=None , ) -> Any: UpperCAmelCase_ : Dict = False for name, module in model.named_children(): if current_key_name is None: UpperCAmelCase_ : Optional[Any] = [] current_key_name.append(A ) if isinstance(A , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` UpperCAmelCase_ : Optional[Any] = '''.'''.join(A ) UpperCAmelCase_ : Optional[int] = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: UpperCAmelCase_ : Optional[int] = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: UpperCAmelCase_ : Dict = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=A , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: UpperCAmelCase_ : List[Any] = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError('''load_in_8bit and load_in_4bit can\'t be both False''' ) UpperCAmelCase_ : List[Any] = module.weight.data if module.bias is not None: UpperCAmelCase_ : Optional[int] = module.bias.data bnb_module.requires_grad_(A ) setattr(A , A , A ) UpperCAmelCase_ : int = True if len(list(module.children() ) ) > 0: UpperCAmelCase_ , UpperCAmelCase_ : int = _replace_with_bnb_layers( A , A , A , A ) UpperCAmelCase_ : Optional[int] = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def __UpperCAmelCase ( A : Any ) -> Union[str, Any]: # Create a copy of the model with init_empty_weights(): UpperCAmelCase_ : Any = deepcopy(A ) # this has 0 cost since it is done inside `init_empty_weights` context manager` UpperCAmelCase_ : Dict = find_tied_parameters(A ) # For compatibility with Accelerate < 0.18 if isinstance(A , A ): UpperCAmelCase_ : int = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: UpperCAmelCase_ : str = sum(A , [] ) UpperCAmelCase_ : List[Any] = len(A ) > 0 # Check if it is a base model UpperCAmelCase_ : List[str] = False if hasattr(A , '''base_model_prefix''' ): UpperCAmelCase_ : str = not hasattr(A , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head UpperCAmelCase_ : str = list(model.named_children() ) UpperCAmelCase_ : List[str] = [list_modules[-1][0]] # add last module together with tied weights UpperCAmelCase_ : Tuple = set(A ) - set(A ) UpperCAmelCase_ : str = list(set(A ) ) + list(A ) # remove ".weight" from the keys UpperCAmelCase_ : List[Any] = ['''.weight''', '''.bias'''] UpperCAmelCase_ : Union[str, Any] = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: UpperCAmelCase_ : Dict = name.replace(A , '''''' ) filtered_module_names.append(A ) return filtered_module_names def __UpperCAmelCase ( A : Any ) -> Union[str, Any]: for m in model.modules(): if isinstance(A , bnb.nn.Linearabit ): return True return False def __UpperCAmelCase ( A : nn.Module ) -> int: return next(parameter.parameters() ).device def __UpperCAmelCase ( A : Union[str, Any] , A : int , A : str , A : Optional[int] , A : int , A : Optional[Any] , A : Union[str, Any] ) -> int: # if it is not quantized, we quantize and offload the quantized weights and the SCB stats if fpaa_statistics is None: set_module_tensor_to_device(A , A , 0 , dtype=A , value=A ) UpperCAmelCase_ : List[Any] = param_name UpperCAmelCase_ : int = model if "." in tensor_name: UpperCAmelCase_ : Optional[int] = tensor_name.split('''.''' ) for split in splits[:-1]: UpperCAmelCase_ : Dict = getattr(A , A ) if new_module is None: raise ValueError(F"{module} has no attribute {split}." ) UpperCAmelCase_ : List[str] = new_module UpperCAmelCase_ : Tuple = splits[-1] # offload weights UpperCAmelCase_ : Optional[Any] = False offload_weight(module._parameters[tensor_name] , A , A , index=A ) if hasattr(module._parameters[tensor_name] , '''SCB''' ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace('''weight''' , '''SCB''' ) , A , index=A , ) else: offload_weight(A , A , A , index=A ) offload_weight(A , param_name.replace('''weight''' , '''SCB''' ) , A , index=A ) set_module_tensor_to_device(A , A , '''meta''' , dtype=A , value=torch.empty(*param.size() ) )
216
'''simple docstring''' _UpperCamelCase : Optional[int] = [ (1_000, 'M'), (900, 'CM'), (500, 'D'), (400, 'CD'), (100, 'C'), (90, 'XC'), (50, 'L'), (40, 'XL'), (10, 'X'), (9, 'IX'), (5, 'V'), (4, 'IV'), (1, 'I'), ] def __UpperCAmelCase ( A : str ) -> int: UpperCAmelCase_ : Union[str, Any] = {'''I''': 1, '''V''': 5, '''X''': 1_0, '''L''': 5_0, '''C''': 1_0_0, '''D''': 5_0_0, '''M''': 1_0_0_0} UpperCAmelCase_ : List[Any] = 0 UpperCAmelCase_ : Union[str, Any] = 0 while place < len(A ): if (place + 1 < len(A )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def __UpperCAmelCase ( A : int ) -> str: UpperCAmelCase_ : Any = [] for arabic, roman in ROMAN: ((UpperCAmelCase_) , (UpperCAmelCase_)) : Dict = divmod(A , A ) result.append(roman * factor ) if number == 0: break return "".join(A ) if __name__ == "__main__": import doctest doctest.testmod()
216
1
import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() _snake_case = logging.get_logger('transformers.models.speecht5') _snake_case = { 'speech_encoder_prenet.layer_norm': 'speecht5.encoder.prenet.feature_projection.layer_norm', 'speech_encoder_prenet.post_extract_proj': 'speecht5.encoder.prenet.feature_projection.projection', 'speech_encoder_prenet.pos_conv.0': 'speecht5.encoder.prenet.pos_conv_embed.conv', 'speech_encoder_prenet.mask_emb': 'speecht5.encoder.prenet.masked_spec_embed', } _snake_case = { 'text_encoder_prenet.encoder_prenet.0': 'speecht5.encoder.prenet.embed_tokens', 'text_encoder_prenet.encoder_prenet.1.alpha': 'speecht5.encoder.prenet.encode_positions.alpha', } _snake_case = { 'speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0': 'speecht5.decoder.prenet.layers.0', 'speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0': 'speecht5.decoder.prenet.layers.1', 'speech_decoder_prenet.decoder_prenet.0.1': 'speecht5.decoder.prenet.final_layer', 'speech_decoder_prenet.decoder_prenet.1.alpha': 'speecht5.decoder.prenet.encode_positions.alpha', 'speech_decoder_prenet.spkembs_layer.0': 'speecht5.decoder.prenet.speaker_embeds_layer', } _snake_case = { 'speech_decoder_postnet.feat_out': 'speech_decoder_postnet.feat_out', 'speech_decoder_postnet.prob_out': 'speech_decoder_postnet.prob_out', 'speech_decoder_postnet.postnet.postnet.0.0': 'speech_decoder_postnet.layers.0.conv', 'speech_decoder_postnet.postnet.postnet.0.1': 'speech_decoder_postnet.layers.0.batch_norm', 'speech_decoder_postnet.postnet.postnet.1.0': 'speech_decoder_postnet.layers.1.conv', 'speech_decoder_postnet.postnet.postnet.1.1': 'speech_decoder_postnet.layers.1.batch_norm', 'speech_decoder_postnet.postnet.postnet.2.0': 'speech_decoder_postnet.layers.2.conv', 'speech_decoder_postnet.postnet.postnet.2.1': 'speech_decoder_postnet.layers.2.batch_norm', 'speech_decoder_postnet.postnet.postnet.3.0': 'speech_decoder_postnet.layers.3.conv', 'speech_decoder_postnet.postnet.postnet.3.1': 'speech_decoder_postnet.layers.3.batch_norm', 'speech_decoder_postnet.postnet.postnet.4.0': 'speech_decoder_postnet.layers.4.conv', 'speech_decoder_postnet.postnet.postnet.4.1': 'speech_decoder_postnet.layers.4.batch_norm', } _snake_case = { 'text_decoder_prenet.embed_tokens': 'speecht5.decoder.prenet.embed_tokens', } _snake_case = { 'text_decoder_postnet.output_projection': 'text_decoder_postnet.lm_head', } _snake_case = { 'encoder.layers.*.self_attn.k_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj', 'encoder.layers.*.self_attn.v_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj', 'encoder.layers.*.self_attn.q_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj', 'encoder.layers.*.self_attn.out_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj', 'encoder.layers.*.self_attn_layer_norm': 'speecht5.encoder.wrapped_encoder.layers.*.layer_norm', 'encoder.layers.*.fc1': 'speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense', 'encoder.layers.*.fc2': 'speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense', 'encoder.layers.*.final_layer_norm': 'speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'speecht5.encoder.wrapped_encoder.layer_norm', 'encoder.pos_emb.pe_k': 'speecht5.encoder.wrapped_encoder.embed_positions.pe_k', } _snake_case = { 'decoder.layers.*.self_attn.k_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj', 'decoder.layers.*.self_attn.v_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj', 'decoder.layers.*.self_attn.q_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj', 'decoder.layers.*.self_attn.out_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj', 'decoder.layers.*.self_attn_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm', 'decoder.layers.*.encoder_attn.k_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj', 'decoder.layers.*.encoder_attn.v_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj', 'decoder.layers.*.encoder_attn.q_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj', 'decoder.layers.*.encoder_attn.out_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj', 'decoder.layers.*.encoder_attn_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm', 'decoder.layers.*.fc1': 'speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense', 'decoder.layers.*.fc2': 'speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense', 'decoder.layers.*.final_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm', } _snake_case = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } _snake_case = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } _snake_case = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } _snake_case = [] _snake_case = [ 'encoder.version', 'encoder.layers.*.norm_k.weight', 'encoder.layers.*.norm_k.bias', 'decoder.version', 'decoder.layers.*.norm_k.weight', 'decoder.layers.*.norm_k.bias', 'decoder.pos_emb.pe_k', 'speech_encoder_prenet.embed_positions._float_tensor', 'text_decoder_prenet.embed_positions._float_tensor', ] _snake_case = IGNORE_KEYS + [ 'encoder.proj', 'text_encoder_prenet.*', 'speech_decoder_prenet.*', 'speech_decoder_postnet.*', ] _snake_case = IGNORE_KEYS + [ 'encoder.proj', 'speech_encoder_prenet.*', 'text_decoder_prenet.*', 'text_decoder_postnet.*', ] _snake_case = IGNORE_KEYS + [ 'encoder.proj', 'text_encoder_prenet.*', 'text_decoder_prenet.*', 'text_decoder_postnet.*', ] def _a ( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) -> Union[str, Any]: """simple docstring""" for attribute in key.split('.' ): __UpperCamelCase = getattr(__lowercase , __lowercase ) if weight_type is not None: __UpperCamelCase = getattr(__lowercase , __lowercase ).shape else: __UpperCamelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": __UpperCamelCase = value elif weight_type == "weight_g": __UpperCamelCase = value elif weight_type == "weight_v": __UpperCamelCase = value elif weight_type == "bias": __UpperCamelCase = value elif weight_type == "running_mean": __UpperCamelCase = value elif weight_type == "running_var": __UpperCamelCase = value elif weight_type == "num_batches_tracked": __UpperCamelCase = value else: __UpperCamelCase = value logger.info(F"""{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.""" ) def _a ( __lowercase , __lowercase ) -> List[str]: """simple docstring""" for key in ignore_keys: if key.endswith('.*' ): if name.startswith(key[:-1] ): return True elif ".*." in key: __UpperCamelCase , __UpperCamelCase = key.split('.*.' ) if prefix in name and suffix in name: return True elif key in name: return True return False def _a ( __lowercase , __lowercase , __lowercase ) -> int: """simple docstring""" __UpperCamelCase = [] if task == "s2t": __UpperCamelCase = hf_model.speechta.encoder.prenet.feature_encoder __UpperCamelCase = MAPPING_S2T __UpperCamelCase = IGNORE_KEYS_S2T elif task == "t2s": __UpperCamelCase = None __UpperCamelCase = MAPPING_T2S __UpperCamelCase = IGNORE_KEYS_T2S elif task == "s2s": __UpperCamelCase = hf_model.speechta.encoder.prenet.feature_encoder __UpperCamelCase = MAPPING_S2S __UpperCamelCase = IGNORE_KEYS_S2S else: raise ValueError(F"""Unsupported task: {task}""" ) for name, value in fairseq_dict.items(): if should_ignore(__lowercase , __lowercase ): logger.info(F"""{name} was ignored""" ) continue __UpperCamelCase = False if "conv_layers" in name: load_conv_layer( __lowercase , __lowercase , __lowercase , __lowercase , hf_model.config.feat_extract_norm == 'group' , ) __UpperCamelCase = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: __UpperCamelCase , __UpperCamelCase = key.split('.*.' ) if prefix in name and suffix in name: __UpperCamelCase = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: __UpperCamelCase = True if "*" in mapped_key: __UpperCamelCase = name.split(__lowercase )[0].split('.' )[-2] __UpperCamelCase = mapped_key.replace('*' , __lowercase ) if "weight_g" in name: __UpperCamelCase = 'weight_g' elif "weight_v" in name: __UpperCamelCase = 'weight_v' elif "bias" in name: __UpperCamelCase = 'bias' elif "weight" in name: __UpperCamelCase = 'weight' elif "running_mean" in name: __UpperCamelCase = 'running_mean' elif "running_var" in name: __UpperCamelCase = 'running_var' elif "num_batches_tracked" in name: __UpperCamelCase = 'num_batches_tracked' else: __UpperCamelCase = None set_recursively(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) continue if not is_used: unused_weights.append(__lowercase ) logger.warning(F"""Unused weights: {unused_weights}""" ) def _a ( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) -> Any: """simple docstring""" __UpperCamelCase = full_name.split('conv_layers.' )[-1] __UpperCamelCase = name.split('.' ) __UpperCamelCase = int(items[0] ) __UpperCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __UpperCamelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __UpperCamelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) __UpperCamelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) __UpperCamelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__lowercase ) @torch.no_grad() def _a ( __lowercase , __lowercase , __lowercase , __lowercase=None , __lowercase=None , __lowercase=None , ) -> int: """simple docstring""" if config_path is not None: __UpperCamelCase = SpeechTaConfig.from_pretrained(__lowercase ) else: __UpperCamelCase = SpeechTaConfig() if task == "s2t": __UpperCamelCase = config.max_text_positions __UpperCamelCase = SpeechTaForSpeechToText(__lowercase ) elif task == "t2s": __UpperCamelCase = 1876 __UpperCamelCase = 600 __UpperCamelCase = config.max_speech_positions __UpperCamelCase = SpeechTaForTextToSpeech(__lowercase ) elif task == "s2s": __UpperCamelCase = 1876 __UpperCamelCase = config.max_speech_positions __UpperCamelCase = SpeechTaForSpeechToSpeech(__lowercase ) else: raise ValueError(F"""Unknown task name: {task}""" ) if vocab_path: __UpperCamelCase = SpeechTaTokenizer(__lowercase , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it __UpperCamelCase = AddedToken('<mask>' , lstrip=__lowercase , rstrip=__lowercase ) __UpperCamelCase = mask_token tokenizer.add_special_tokens({'mask_token': mask_token} ) tokenizer.add_tokens(['<ctc_blank>'] ) __UpperCamelCase = SpeechTaFeatureExtractor() __UpperCamelCase = SpeechTaProcessor(tokenizer=__lowercase , feature_extractor=__lowercase ) processor.save_pretrained(__lowercase ) __UpperCamelCase = torch.load(__lowercase ) recursively_load_weights(fairseq_checkpoint['model'] , __lowercase , __lowercase ) model.save_pretrained(__lowercase ) if repo_id: print('Pushing to the hub...' ) processor.push_to_hub(__lowercase ) model.push_to_hub(__lowercase ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument( '--task', default='s2t', type=str, help='Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.', ) parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--vocab_path', default=None, type=str, help='Path to SentencePiece model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) _snake_case = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
383
import gc import threading import time import psutil import torch class lowerCAmelCase_ : """simple docstring""" def __init__( self ) -> Any: __UpperCamelCase = psutil.Process() __UpperCamelCase = False def __lowercase( self ) -> Optional[Any]: __UpperCamelCase = -1 while True: __UpperCamelCase = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def __lowercase( self ) -> Dict: __UpperCamelCase = True __UpperCamelCase = threading.Thread(target=self.peak_monitor ) __UpperCamelCase = True self.thread.start() def __lowercase( self ) -> List[str]: __UpperCamelCase = False self.thread.join() return self.cpu_memory_peak _snake_case = PeakCPUMemory() def _a ( ) -> List[Any]: """simple docstring""" __UpperCamelCase = {'time': time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem __UpperCamelCase = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): __UpperCamelCase = torch.cuda.memory_allocated(__lowercase ) torch.cuda.reset_peak_memory_stats() return measures def _a ( __lowercase ) -> Dict: """simple docstring""" __UpperCamelCase = {'time': time.time() - start_measures['time']} gc.collect() torch.cuda.empty_cache() # CPU mem __UpperCamelCase = (psutil.Process().memory_info().rss - start_measures['cpu']) / 2**20 __UpperCamelCase = (cpu_peak_tracker.stop() - start_measures['cpu']) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): __UpperCamelCase = (torch.cuda.memory_allocated(__lowercase ) - start_measures[str(__lowercase )]) / 2**20 __UpperCamelCase = (torch.cuda.max_memory_allocated(__lowercase ) - start_measures[str(__lowercase )]) / 2**20 return measures def _a ( __lowercase , __lowercase ) -> Any: """simple docstring""" print(F"""{description}:""" ) print(F"""- Time: {measures['time']:.2f}s""" ) for i in range(torch.cuda.device_count() ): print(F"""- GPU {i} allocated: {measures[str(__lowercase )]:.2f}MiB""" ) __UpperCamelCase = measures[F"""{i}-peak"""] print(F"""- GPU {i} peak: {peak:.2f}MiB""" ) print(F"""- CPU RAM allocated: {measures['cpu']:.2f}MiB""" ) print(F"""- CPU RAM peak: {measures['cpu-peak']:.2f}MiB""" )
383
1
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] = 1_0_0_0 ): """simple docstring""" snake_case_ : Optional[int] = 3 snake_case_ : int = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 1_5 == 0: result -= a a += 1 return result if __name__ == "__main__": print(F'''{solution() = }''')
716
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL a_ = logging.get_logger(__name__) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : int = ["""pixel_values"""] def __init__(self , lowercase__ = True , lowercase__ = None , lowercase__ = 0.9 , lowercase__ = PILImageResampling.BICUBIC , lowercase__ = True , lowercase__ = None , lowercase__ = 1 / 2_55 , lowercase__ = True , lowercase__ = True , lowercase__ = None , lowercase__ = None , **lowercase__ , ): super().__init__(**lowercase__ ) snake_case_ : Tuple = size if size is not None else {"""shortest_edge""": 2_24} snake_case_ : Union[str, Any] = get_size_dict(lowercase__ , default_to_square=lowercase__ ) snake_case_ : str = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24} snake_case_ : Dict = get_size_dict(lowercase__ , param_name="""crop_size""" ) snake_case_ : Union[str, Any] = do_resize snake_case_ : List[str] = size snake_case_ : str = crop_pct snake_case_ : str = resample snake_case_ : Optional[Any] = do_center_crop snake_case_ : Dict = crop_size snake_case_ : int = do_rescale snake_case_ : Optional[int] = rescale_factor snake_case_ : str = do_normalize snake_case_ : str = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN snake_case_ : List[str] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = PILImageResampling.BICUBIC , lowercase__ = None , **lowercase__ , ): snake_case_ : Tuple = get_size_dict(lowercase__ , default_to_square=lowercase__ ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(f'size must contain \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) if crop_pct is not None: if "shortest_edge" in size: snake_case_ : Optional[int] = int(size["""shortest_edge"""] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: snake_case_ : Dict = int(size["""height"""] / crop_pct ) else: snake_case_ : List[str] = (int(size["""height"""] / crop_pct ), int(size["""width"""] / crop_pct )) else: raise ValueError("""Invalid size for resize: {}""".format(lowercase__ ) ) snake_case_ : List[Any] = get_resize_output_image_size(lowercase__ , size=lowercase__ , default_to_square=lowercase__ ) else: if "shortest_edge" in size: snake_case_ : Optional[int] = get_resize_output_image_size(lowercase__ , size=size["""shortest_edge"""] , default_to_square=lowercase__ ) elif "height" in size and "width" in size: snake_case_ : int = (size["""height"""], size["""width"""]) else: raise ValueError("""Invalid size for resize: {}""".format(lowercase__ ) ) return resize(lowercase__ , size=lowercase__ , resample=lowercase__ , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): snake_case_ : int = get_size_dict(lowercase__ ) if "height" not in size or "width" not in size: raise ValueError(f'size must contain \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(lowercase__ , size=(size["""height"""], size["""width"""]) , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): return rescale(lowercase__ , scale=lowercase__ , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): return normalize(lowercase__ , mean=lowercase__ , std=lowercase__ , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ): snake_case_ : str = do_resize if do_resize is not None else self.do_resize snake_case_ : Any = crop_pct if crop_pct is not None else self.crop_pct snake_case_ : List[Any] = resample if resample is not None else self.resample snake_case_ : str = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case_ : str = do_rescale if do_rescale is not None else self.do_rescale snake_case_ : Any = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case_ : str = do_normalize if do_normalize is not None else self.do_normalize snake_case_ : List[Any] = image_mean if image_mean is not None else self.image_mean snake_case_ : int = image_std if image_std is not None else self.image_std snake_case_ : List[Any] = size if size is not None else self.size snake_case_ : Optional[Any] = get_size_dict(lowercase__ , default_to_square=lowercase__ ) snake_case_ : List[Any] = crop_size if crop_size is not None else self.crop_size snake_case_ : int = get_size_dict(lowercase__ , param_name="""crop_size""" ) snake_case_ : List[str] = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_pct is None: raise ValueError("""Crop_pct must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. snake_case_ : int = [to_numpy_array(lowercase__ ) for image in images] if do_resize: snake_case_ : str = [self.resize(image=lowercase__ , size=lowercase__ , crop_pct=lowercase__ , resample=lowercase__ ) for image in images] if do_center_crop: snake_case_ : Optional[int] = [self.center_crop(image=lowercase__ , size=lowercase__ ) for image in images] if do_rescale: snake_case_ : List[Any] = [self.rescale(image=lowercase__ , scale=lowercase__ ) for image in images] if do_normalize: snake_case_ : Optional[Any] = [self.normalize(image=lowercase__ , mean=lowercase__ , std=lowercase__ ) for image in images] snake_case_ : List[Any] = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images] snake_case_ : Dict = {"""pixel_values""": images} return BatchFeature(data=lowercase__ , tensor_type=lowercase__ )
48
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor _a : List[Any] = logging.get_logger(__name__) class lowercase_ ( a ): '''simple docstring''' def __init__( self , *a_ , **a_ ) -> None: """simple docstring""" warnings.warn( 'The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use DonutImageProcessor instead.' , a_ , ) super().__init__(*a_ , **a_ )
447
'''simple docstring''' def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] ): # "extended trapezoidal rule" # int(f) = dx/2 * (f1 + 2f2 + ... + fn) UpperCAmelCase = (boundary[1] - boundary[0]) / steps UpperCAmelCase = boundary[0] UpperCAmelCase = boundary[1] UpperCAmelCase = make_points(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCAmelCase = 0.0 y += (h / 2.0) * f(SCREAMING_SNAKE_CASE ) for i in x_i: # print(i) y += h * f(SCREAMING_SNAKE_CASE ) y += (h / 2.0) * f(SCREAMING_SNAKE_CASE ) return y def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Tuple ): UpperCAmelCase = a + h while x < (b - h): yield x UpperCAmelCase = x + h def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : Optional[Any] ): # enter your function here UpperCAmelCase = (x - 0) * (x - 0) return y def lowerCamelCase__ ( ): UpperCAmelCase = 0.0 # Lower bound of integration UpperCAmelCase = 1.0 # Upper bound of integration UpperCAmelCase = 10.0 # define number of steps or resolution UpperCAmelCase = [a, b] # define boundary of integration UpperCAmelCase = method_a(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) print(f'''y = {y}''' ) if __name__ == "__main__": main()
447
1
"""simple docstring""" def SCREAMING_SNAKE_CASE ( lowerCamelCase_ = 4000000): a__ = [] a__ ,a__ = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(lowerCamelCase_) a__ ,a__ = b, a + b return sum(lowerCamelCase_) if __name__ == "__main__": print(F'''{solution() = }''')
200
"""simple docstring""" import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( 'The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion' ) __a : Union[str, Any] = None __a : Union[str, Any] = { '7B': 1_1008, '13B': 1_3824, '30B': 1_7920, '65B': 2_2016, '70B': 2_8672, } __a : List[Any] = { '7B': 1, '7Bf': 1, '13B': 2, '13Bf': 2, '30B': 4, '65B': 8, '70B': 8, '70Bf': 8, } def SCREAMING_SNAKE_CASE ( lowerCamelCase_ , lowerCamelCase_=1 , lowerCamelCase_=256): return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3)) + multiple_of - 1) // multiple_of) def SCREAMING_SNAKE_CASE ( lowerCamelCase_): with open(lowerCamelCase_ , '''r''') as f: return json.load(lowerCamelCase_) def SCREAMING_SNAKE_CASE ( lowerCamelCase_ , lowerCamelCase_): with open(lowerCamelCase_ , '''w''') as f: json.dump(lowerCamelCase_ , lowerCamelCase_) def SCREAMING_SNAKE_CASE ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=True): os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_) a__ = os.path.join(lowerCamelCase_ , '''tmp''') os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_) a__ = read_json(os.path.join(lowerCamelCase_ , '''params.json''')) a__ = NUM_SHARDS[model_size] a__ = params['''n_layers'''] a__ = params['''n_heads'''] a__ = n_heads // num_shards a__ = params['''dim'''] a__ = dim // n_heads a__ = 10000.0 a__ = 1.0 / (base ** (torch.arange(0 , lowerCamelCase_ , 2).float() / dims_per_head)) if "n_kv_heads" in params: a__ = params['''n_kv_heads'''] # for GQA / MQA a__ = n_heads_per_shard // num_key_value_heads a__ = dim // num_key_value_heads else: # compatibility with other checkpoints a__ = n_heads a__ = n_heads_per_shard a__ = dim # permute for sliced rotary def permute(lowerCamelCase_ , lowerCamelCase_=n_heads , lowerCamelCase_=dim , lowerCamelCase_=dim): return w.view(lowerCamelCase_ , dima // n_heads // 2 , 2 , lowerCamelCase_).transpose(1 , 2).reshape(lowerCamelCase_ , lowerCamelCase_) print(f'Fetching all parameters from the checkpoint at {input_base_path}.') # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) a__ = torch.load(os.path.join(lowerCamelCase_ , '''consolidated.00.pth''') , map_location='''cpu''') else: # Sharded a__ = [ torch.load(os.path.join(lowerCamelCase_ , f'consolidated.{i:02d}.pth') , map_location='''cpu''') for i in range(lowerCamelCase_) ] a__ = 0 a__ = {'''weight_map''': {}} for layer_i in range(lowerCamelCase_): a__ = f'pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin' if model_size == "7B": # Unsharded a__ = { f'model.layers.{layer_i}.self_attn.q_proj.weight': permute( loaded[f'layers.{layer_i}.attention.wq.weight']), f'model.layers.{layer_i}.self_attn.k_proj.weight': permute( loaded[f'layers.{layer_i}.attention.wk.weight']), f'model.layers.{layer_i}.self_attn.v_proj.weight': loaded[f'layers.{layer_i}.attention.wv.weight'], f'model.layers.{layer_i}.self_attn.o_proj.weight': loaded[f'layers.{layer_i}.attention.wo.weight'], f'model.layers.{layer_i}.mlp.gate_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w1.weight'], f'model.layers.{layer_i}.mlp.down_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w2.weight'], f'model.layers.{layer_i}.mlp.up_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w3.weight'], f'model.layers.{layer_i}.input_layernorm.weight': loaded[f'layers.{layer_i}.attention_norm.weight'], f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[f'layers.{layer_i}.ffn_norm.weight'], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. a__ = { f'model.layers.{layer_i}.input_layernorm.weight': loaded[0][ f'layers.{layer_i}.attention_norm.weight' ].clone(), f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[0][ f'layers.{layer_i}.ffn_norm.weight' ].clone(), } a__ = permute( torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wq.weight'].view(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) for i in range(lowerCamelCase_) ] , dim=0 , ).reshape(lowerCamelCase_ , lowerCamelCase_)) a__ = permute( torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wk.weight'].view( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) for i in range(lowerCamelCase_) ] , dim=0 , ).reshape(lowerCamelCase_ , lowerCamelCase_) , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) a__ = torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wv.weight'].view( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) for i in range(lowerCamelCase_) ] , dim=0 , ).reshape(lowerCamelCase_ , lowerCamelCase_) a__ = torch.cat( [loaded[i][f'layers.{layer_i}.attention.wo.weight'] for i in range(lowerCamelCase_)] , dim=1) a__ = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w1.weight'] for i in range(lowerCamelCase_)] , dim=0) a__ = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w2.weight'] for i in range(lowerCamelCase_)] , dim=1) a__ = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w3.weight'] for i in range(lowerCamelCase_)] , dim=0) a__ = inv_freq for k, v in state_dict.items(): a__ = filename param_count += v.numel() torch.save(lowerCamelCase_ , os.path.join(lowerCamelCase_ , lowerCamelCase_)) a__ = f'pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin' if model_size == "7B": # Unsharded a__ = { '''model.embed_tokens.weight''': loaded['''tok_embeddings.weight'''], '''model.norm.weight''': loaded['''norm.weight'''], '''lm_head.weight''': loaded['''output.weight'''], } else: a__ = { '''model.norm.weight''': loaded[0]['''norm.weight'''], '''model.embed_tokens.weight''': torch.cat( [loaded[i]['''tok_embeddings.weight'''] for i in range(lowerCamelCase_)] , dim=1), '''lm_head.weight''': torch.cat([loaded[i]['''output.weight'''] for i in range(lowerCamelCase_)] , dim=0), } for k, v in state_dict.items(): a__ = filename param_count += v.numel() torch.save(lowerCamelCase_ , os.path.join(lowerCamelCase_ , lowerCamelCase_)) # Write configs a__ = {'''total_size''': param_count * 2} write_json(lowerCamelCase_ , os.path.join(lowerCamelCase_ , '''pytorch_model.bin.index.json''')) a__ = params['''ffn_dim_multiplier'''] if '''ffn_dim_multiplier''' in params else 1 a__ = params['''multiple_of'''] if '''multiple_of''' in params else 256 a__ = LlamaConfig( hidden_size=lowerCamelCase_ , intermediate_size=compute_intermediate_size(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) , num_attention_heads=params['''n_heads'''] , num_hidden_layers=params['''n_layers'''] , rms_norm_eps=params['''norm_eps'''] , num_key_value_heads=lowerCamelCase_ , ) config.save_pretrained(lowerCamelCase_) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print('''Loading the checkpoint in a Llama model.''') a__ = LlamaForCausalLM.from_pretrained(lowerCamelCase_ , torch_dtype=torch.floataa , low_cpu_mem_usage=lowerCamelCase_) # Avoid saving this as part of the config. del model.config._name_or_path print('''Saving in the Transformers format.''') model.save_pretrained(lowerCamelCase_ , safe_serialization=lowerCamelCase_) shutil.rmtree(lowerCamelCase_) def SCREAMING_SNAKE_CASE ( lowerCamelCase_ , lowerCamelCase_): # Initialize the tokenizer based on the `spm` model a__ = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f'Saving a {tokenizer_class.__name__} to {tokenizer_path}.') a__ = tokenizer_class(lowerCamelCase_) tokenizer.save_pretrained(lowerCamelCase_) def SCREAMING_SNAKE_CASE ( ): a__ = argparse.ArgumentParser() parser.add_argument( '''--input_dir''' , help='''Location of LLaMA weights, which contains tokenizer.model and model folders''' , ) parser.add_argument( '''--model_size''' , choices=['''7B''', '''7Bf''', '''13B''', '''13Bf''', '''30B''', '''65B''', '''70B''', '''70Bf''', '''tokenizer_only'''] , ) parser.add_argument( '''--output_dir''' , help='''Location to write HF model and tokenizer''' , ) parser.add_argument('''--safe_serialization''' , type=lowerCamelCase_ , help='''Whether or not to save using `safetensors`.''') a__ = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) a__ = os.path.join(args.input_dir , '''tokenizer.model''') write_tokenizer(args.output_dir , lowerCamelCase_) if __name__ == "__main__": main()
200
1
import sys __UpperCamelCase : Union[str, Any] = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def _UpperCAmelCase ( UpperCAmelCase : str = N ): """simple docstring""" __lowerCamelCase : Optional[Any] = -sys.maxsize - 1 for i in range(len(UpperCAmelCase ) - 12 ): __lowerCamelCase : int = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: __lowerCamelCase : List[Any] = product return largest_product if __name__ == "__main__": print(F'''{solution() = }''')
519
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class _UpperCamelCase : '''simple docstring''' def __init__( self : int , _lowerCamelCase : Collection[float] | None = None ): '''simple docstring''' if components is None: __lowerCamelCase : Optional[Any] = [] __lowerCamelCase : Dict = list(_lowerCamelCase ) def __len__( self : int ): '''simple docstring''' return len(self.__components ) def __str__( self : Any ): '''simple docstring''' return "(" + ",".join(map(_lowerCamelCase , self.__components ) ) + ")" def __add__( self : Union[str, Any] , _lowerCamelCase : Vector ): '''simple docstring''' __lowerCamelCase : Any = len(self ) if size == len(_lowerCamelCase ): __lowerCamelCase : List[str] = [self.__components[i] + other.component(_lowerCamelCase ) for i in range(_lowerCamelCase )] return Vector(_lowerCamelCase ) else: raise Exception("""must have the same size""" ) def __sub__( self : List[str] , _lowerCamelCase : Vector ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = len(self ) if size == len(_lowerCamelCase ): __lowerCamelCase : Tuple = [self.__components[i] - other.component(_lowerCamelCase ) for i in range(_lowerCamelCase )] return Vector(_lowerCamelCase ) else: # error case raise Exception("""must have the same size""" ) @overload def __mul__( self : Tuple , _lowerCamelCase : float ): '''simple docstring''' ... @overload def __mul__( self : str , _lowerCamelCase : Vector ): '''simple docstring''' ... def __mul__( self : List[str] , _lowerCamelCase : float | Vector ): '''simple docstring''' if isinstance(_lowerCamelCase , (float, int) ): __lowerCamelCase : List[Any] = [c * other for c in self.__components] return Vector(_lowerCamelCase ) elif isinstance(_lowerCamelCase , _lowerCamelCase ) and len(self ) == len(_lowerCamelCase ): __lowerCamelCase : List[str] = len(self ) __lowerCamelCase : int = [self.__components[i] * other.component(_lowerCamelCase ) for i in range(_lowerCamelCase )] return sum(_lowerCamelCase ) else: # error case raise Exception("""invalid operand!""" ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' return Vector(self.__components ) def _snake_case ( self : Optional[Any] , _lowerCamelCase : int ): '''simple docstring''' if isinstance(_lowerCamelCase , _lowerCamelCase ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception("""index out of range""" ) def _snake_case ( self : List[str] , _lowerCamelCase : int , _lowerCamelCase : float ): '''simple docstring''' assert -len(self.__components ) <= pos < len(self.__components ) __lowerCamelCase : Any = value def _snake_case ( self : Tuple ): '''simple docstring''' if len(self.__components ) == 0: raise Exception("""Vector is empty""" ) __lowerCamelCase : Union[str, Any] = [c**2 for c in self.__components] return math.sqrt(sum(_lowerCamelCase ) ) def _snake_case ( self : Dict , _lowerCamelCase : Vector , _lowerCamelCase : bool = False ): '''simple docstring''' __lowerCamelCase : List[str] = self * other __lowerCamelCase : List[Any] = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def _UpperCAmelCase ( UpperCAmelCase : int ): """simple docstring""" assert isinstance(UpperCAmelCase , UpperCAmelCase ) return Vector([0] * dimension ) def _UpperCAmelCase ( UpperCAmelCase : int , UpperCAmelCase : int ): """simple docstring""" assert isinstance(UpperCAmelCase , UpperCAmelCase ) and (isinstance(UpperCAmelCase , UpperCAmelCase )) __lowerCamelCase : Optional[Any] = [0] * dimension __lowerCamelCase : Union[str, Any] = 1 return Vector(UpperCAmelCase ) def _UpperCAmelCase ( UpperCAmelCase : float , UpperCAmelCase : Vector , UpperCAmelCase : Vector ): """simple docstring""" assert ( isinstance(UpperCAmelCase , UpperCAmelCase ) and isinstance(UpperCAmelCase , UpperCAmelCase ) and (isinstance(UpperCAmelCase , (int, float) )) ) return x * scalar + y def _UpperCAmelCase ( UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int ): """simple docstring""" random.seed(UpperCAmelCase ) __lowerCamelCase : str = [random.randint(UpperCAmelCase , UpperCAmelCase ) for _ in range(UpperCAmelCase )] return Vector(UpperCAmelCase ) class _UpperCamelCase : '''simple docstring''' def __init__( self : Optional[Any] , _lowerCamelCase : list[list[float]] , _lowerCamelCase : int , _lowerCamelCase : int ): '''simple docstring''' __lowerCamelCase : str = matrix __lowerCamelCase : Optional[int] = w __lowerCamelCase : List[Any] = h def __str__( self : Any ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = """""" for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self : Any , _lowerCamelCase : Matrix ): '''simple docstring''' if self.__width == other.width() and self.__height == other.height(): __lowerCamelCase : int = [] for i in range(self.__height ): __lowerCamelCase : str = [ self.__matrix[i][j] + other.component(_lowerCamelCase , _lowerCamelCase ) for j in range(self.__width ) ] matrix.append(_lowerCamelCase ) return Matrix(_lowerCamelCase , self.__width , self.__height ) else: raise Exception("""matrix must have the same dimension!""" ) def __sub__( self : str , _lowerCamelCase : Matrix ): '''simple docstring''' if self.__width == other.width() and self.__height == other.height(): __lowerCamelCase : List[Any] = [] for i in range(self.__height ): __lowerCamelCase : List[Any] = [ self.__matrix[i][j] - other.component(_lowerCamelCase , _lowerCamelCase ) for j in range(self.__width ) ] matrix.append(_lowerCamelCase ) return Matrix(_lowerCamelCase , self.__width , self.__height ) else: raise Exception("""matrices must have the same dimension!""" ) @overload def __mul__( self : List[Any] , _lowerCamelCase : float ): '''simple docstring''' ... @overload def __mul__( self : Optional[int] , _lowerCamelCase : Vector ): '''simple docstring''' ... def __mul__( self : Optional[Any] , _lowerCamelCase : float | Vector ): '''simple docstring''' if isinstance(_lowerCamelCase , _lowerCamelCase ): # matrix-vector if len(_lowerCamelCase ) == self.__width: __lowerCamelCase : List[str] = zero_vector(self.__height ) for i in range(self.__height ): __lowerCamelCase : Optional[int] = [ self.__matrix[i][j] * other.component(_lowerCamelCase ) for j in range(self.__width ) ] ans.change_component(_lowerCamelCase , sum(_lowerCamelCase ) ) return ans else: raise Exception( """vector must have the same size as the """ """number of columns of the matrix!""" ) elif isinstance(_lowerCamelCase , (int, float) ): # matrix-scalar __lowerCamelCase : Union[str, Any] = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(_lowerCamelCase , self.__width , self.__height ) return None def _snake_case ( self : Tuple ): '''simple docstring''' return self.__height def _snake_case ( self : Any ): '''simple docstring''' return self.__width def _snake_case ( self : Any , _lowerCamelCase : int , _lowerCamelCase : int ): '''simple docstring''' if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("""change_component: indices out of bounds""" ) def _snake_case ( self : int , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : float ): '''simple docstring''' if 0 <= x < self.__height and 0 <= y < self.__width: __lowerCamelCase : Optional[Any] = value else: raise Exception("""change_component: indices out of bounds""" ) def _snake_case ( self : Optional[Any] , _lowerCamelCase : int , _lowerCamelCase : int ): '''simple docstring''' if self.__height != self.__width: raise Exception("""Matrix is not square""" ) __lowerCamelCase : Union[str, Any] = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(_lowerCamelCase ) ): __lowerCamelCase : List[str] = minor[i][:y] + minor[i][y + 1 :] return Matrix(_lowerCamelCase , self.__width - 1 , self.__height - 1 ).determinant() def _snake_case ( self : Tuple , _lowerCamelCase : int , _lowerCamelCase : int ): '''simple docstring''' if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(_lowerCamelCase , _lowerCamelCase ) else: raise Exception("""Indices out of bounds""" ) def _snake_case ( self : int ): '''simple docstring''' if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if self.__height < 1: raise Exception("""Matrix has no element""" ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: __lowerCamelCase : int = [ self.__matrix[0][y] * self.cofactor(0 , _lowerCamelCase ) for y in range(self.__width ) ] return sum(_lowerCamelCase ) def _UpperCAmelCase ( UpperCAmelCase : int ): """simple docstring""" __lowerCamelCase : list[list[float]] = [[0] * n for _ in range(UpperCAmelCase )] return Matrix(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def _UpperCAmelCase ( UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int ): """simple docstring""" random.seed(UpperCAmelCase ) __lowerCamelCase : list[list[float]] = [ [random.randint(UpperCAmelCase , UpperCAmelCase ) for _ in range(UpperCAmelCase )] for _ in range(UpperCAmelCase ) ] return Matrix(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
519
1
from __future__ import annotations class lowerCAmelCase__ : '''simple docstring''' def __init__( self , lowercase ): _lowerCamelCase : int = data _lowerCamelCase : Node | None = None _lowerCamelCase : Node | None = None def _snake_case ( lowercase__ ): # In Order traversal of the tree if tree: display(tree.left ) print(tree.data ) display(tree.right ) def _snake_case ( lowercase__ ): return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def _snake_case ( lowercase__ ): if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def _snake_case ( ): # Main function for testing. _lowerCamelCase : Optional[int] = Node(1 ) _lowerCamelCase : Optional[Any] = Node(2 ) _lowerCamelCase : List[Any] = Node(3 ) _lowerCamelCase : int = Node(4 ) _lowerCamelCase : str = Node(5 ) _lowerCamelCase : List[Any] = Node(6 ) _lowerCamelCase : Any = Node(7 ) _lowerCamelCase : List[str] = Node(8 ) _lowerCamelCase : Dict = Node(9 ) print(is_full_binary_tree(a_ ) ) print(depth_of_tree(a_ ) ) print('Tree is: ' ) display(a_ ) if __name__ == "__main__": main()
718
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json""", # See all REALM models at https://huggingface.co/models?filter=realm } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """realm""" def __init__( self , lowercase=30522 , lowercase=768 , lowercase=128 , lowercase=12 , lowercase=12 , lowercase=8 , lowercase=3072 , lowercase="gelu_new" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=2 , lowercase=0.02 , lowercase=1E-12 , lowercase=256 , lowercase=10 , lowercase=1E-3 , lowercase=5 , lowercase=320 , lowercase=13353718 , lowercase=5000 , lowercase=1 , lowercase=0 , lowercase=2 , **lowercase , ): super().__init__(pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase ) # Common config _lowerCamelCase : str = vocab_size _lowerCamelCase : Dict = max_position_embeddings _lowerCamelCase : int = hidden_size _lowerCamelCase : Optional[Any] = retriever_proj_size _lowerCamelCase : Dict = num_hidden_layers _lowerCamelCase : Any = num_attention_heads _lowerCamelCase : int = num_candidates _lowerCamelCase : List[Any] = intermediate_size _lowerCamelCase : int = hidden_act _lowerCamelCase : Union[str, Any] = hidden_dropout_prob _lowerCamelCase : Dict = attention_probs_dropout_prob _lowerCamelCase : Union[str, Any] = initializer_range _lowerCamelCase : List[Any] = type_vocab_size _lowerCamelCase : int = layer_norm_eps # Reader config _lowerCamelCase : Tuple = span_hidden_size _lowerCamelCase : int = max_span_width _lowerCamelCase : Tuple = reader_layer_norm_eps _lowerCamelCase : Union[str, Any] = reader_beam_size _lowerCamelCase : Union[str, Any] = reader_seq_len # Retrieval config _lowerCamelCase : Optional[Any] = num_block_records _lowerCamelCase : str = searcher_beam_size
492
0
class lowerCamelCase__ : '''simple docstring''' def __init__( self :Union[str, Any] , a :str = "" , a :bool = False ) -> None: # Mapping from the first character of the prefix of the node __UpperCamelCase : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word __UpperCamelCase : Tuple = is_leaf __UpperCamelCase : Tuple = prefix def _lowerCamelCase ( self :Tuple , a :str ) -> tuple[str, str, str]: __UpperCamelCase : Dict = 0 for q, w in zip(self.prefix , a ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def _lowerCamelCase ( self :Union[str, Any] , a :list[str] ) -> None: for word in words: self.insert(a ) def _lowerCamelCase ( self :List[Any] , a :str ) -> None: # Case 1: If the word is the prefix of the node # Solution: We set the current node as leaf if self.prefix == word: __UpperCamelCase : Dict = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: __UpperCamelCase : Any = RadixNode(prefix=a , is_leaf=a ) else: __UpperCamelCase : str = self.nodes[word[0]] __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : List[Any] = incoming_node.match( a ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(a ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: __UpperCamelCase : Union[str, Any] = remaining_prefix __UpperCamelCase : Union[str, Any] = self.nodes[matching_string[0]] __UpperCamelCase : List[Any] = RadixNode(a , a ) __UpperCamelCase : Optional[int] = aux_node if remaining_word == "": __UpperCamelCase : Optional[Any] = True else: self.nodes[matching_string[0]].insert(a ) def _lowerCamelCase ( self :Tuple , a :str ) -> bool: __UpperCamelCase : Union[str, Any] = self.nodes.get(word[0] , a ) if not incoming_node: return False else: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : List[str] = incoming_node.match( a ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(a ) def _lowerCamelCase ( self :int , a :str ) -> bool: __UpperCamelCase : Optional[Any] = self.nodes.get(word[0] , a ) if not incoming_node: return False else: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Any = incoming_node.match( a ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(a ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: __UpperCamelCase : str = list(self.nodes.values() )[0] __UpperCamelCase : Union[str, Any] = merging_node.is_leaf self.prefix += merging_node.prefix __UpperCamelCase : Dict = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: __UpperCamelCase : int = False # If there is 1 edge, we merge it with its child else: __UpperCamelCase : Tuple = list(incoming_node.nodes.values() )[0] __UpperCamelCase : List[str] = merging_node.is_leaf incoming_node.prefix += merging_node.prefix __UpperCamelCase : Union[str, Any] = merging_node.nodes return True def _lowerCamelCase ( self :Tuple , a :int = 0 ) -> None: if self.prefix != "": print("-" * height , self.prefix , " (leaf)" if self.is_leaf else "" ) for value in self.nodes.values(): value.print_tree(height + 1 ) def _SCREAMING_SNAKE_CASE ( ) -> bool: '''simple docstring''' __UpperCamelCase : Union[str, Any] = "banana bananas bandana band apple all beast".split() __UpperCamelCase : Tuple = RadixNode() root.insert_many(_lowerCamelCase) assert all(root.find(_lowerCamelCase) for word in words) assert not root.find("bandanas") assert not root.find("apps") root.delete("all") assert not root.find("all") root.delete("banana") assert not root.find("banana") assert root.find("bananas") return True def _SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' assert test_trie() def _SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' __UpperCamelCase : List[Any] = RadixNode() __UpperCamelCase : List[Any] = "banana bananas bandanas bandana band apple all beast".split() root.insert_many(_lowerCamelCase) print("Words:" , _lowerCamelCase) print("Tree:") root.print_tree() if __name__ == "__main__": main()
557
from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class lowerCamelCase__ : '''simple docstring''' def _lowerCamelCase ( self :Optional[Any] , a :int ) -> Any: raise NotImplementedError() def _lowerCamelCase ( self :Any ) -> Optional[int]: raise NotImplementedError() class lowerCamelCase__ ( __lowercase): '''simple docstring''' def __init__( self :List[Any] , a :"AutoTokenizer" , a :bool = False , **a :Tuple ) -> Union[str, Any]: __UpperCamelCase : int = tokenizer __UpperCamelCase : Any = skip_prompt __UpperCamelCase : Union[str, Any] = decode_kwargs # variables used in the streaming process __UpperCamelCase : Union[str, Any] = [] __UpperCamelCase : str = 0 __UpperCamelCase : str = True def _lowerCamelCase ( self :List[str] , a :Union[str, Any] ) -> Any: if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError("TextStreamer only supports batch size 1" ) elif len(value.shape ) > 1: __UpperCamelCase : Optional[int] = value[0] if self.skip_prompt and self.next_tokens_are_prompt: __UpperCamelCase : Optional[Any] = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) __UpperCamelCase : Optional[int] = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith("\n" ): __UpperCamelCase : Optional[int] = text[self.print_len :] __UpperCamelCase : Dict = [] __UpperCamelCase : int = 0 # If the last token is a CJK character, we print the characters. elif len(a ) > 0 and self._is_chinese_char(ord(text[-1] ) ): __UpperCamelCase : Optional[int] = text[self.print_len :] self.print_len += len(a ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: __UpperCamelCase : Any = text[self.print_len : text.rfind(" " ) + 1] self.print_len += len(a ) self.on_finalized_text(a ) def _lowerCamelCase ( self :List[str] ) -> List[str]: # Flush the cache, if it exists if len(self.token_cache ) > 0: __UpperCamelCase : str = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) __UpperCamelCase : str = text[self.print_len :] __UpperCamelCase : str = [] __UpperCamelCase : int = 0 else: __UpperCamelCase : int = "" __UpperCamelCase : Optional[Any] = True self.on_finalized_text(a , stream_end=a ) def _lowerCamelCase ( self :Union[str, Any] , a :str , a :bool = False ) -> str: print(a , flush=a , end="" if not stream_end else None ) def _lowerCamelCase ( self :Optional[int] , a :Optional[Any] ) -> str: # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4e_00 and cp <= 0x9f_ff) or (cp >= 0x34_00 and cp <= 0x4d_bf) # or (cp >= 0x2_00_00 and cp <= 0x2_a6_df) # or (cp >= 0x2_a7_00 and cp <= 0x2_b7_3f) # or (cp >= 0x2_b7_40 and cp <= 0x2_b8_1f) # or (cp >= 0x2_b8_20 and cp <= 0x2_ce_af) # or (cp >= 0xf9_00 and cp <= 0xfa_ff) or (cp >= 0x2_f8_00 and cp <= 0x2_fa_1f) # ): # return True return False class lowerCamelCase__ ( __lowercase): '''simple docstring''' def __init__( self :Any , a :"AutoTokenizer" , a :bool = False , a :Optional[float] = None , **a :Dict ) -> str: super().__init__(a , a , **a ) __UpperCamelCase : str = Queue() __UpperCamelCase : Dict = None __UpperCamelCase : Optional[int] = timeout def _lowerCamelCase ( self :List[Any] , a :str , a :bool = False ) -> Dict: self.text_queue.put(a , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self :Tuple ) -> Tuple: return self def _lowerCamelCase ( self :List[Any] ) -> Dict: __UpperCamelCase : List[Any] = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
557
1
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class snake_case__(unittest.TestCase ): """simple docstring""" def snake_case ( self : Optional[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def snake_case ( self : int ): lowercase__ : Union[str, Any] = 1 lowercase__ : List[str] = 3 lowercase__ : Dict = (32, 32) lowercase__ : List[str] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE ) return image @property def snake_case ( self : int ): torch.manual_seed(0 ) lowercase__ : Any = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) return model @property def snake_case ( self : str ): torch.manual_seed(0 ) lowercase__ : str = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def snake_case ( self : Tuple ): torch.manual_seed(0 ) lowercase__ : List[Any] = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_006 , ) return RobertaSeriesModelWithTransformation(SCREAMING_SNAKE_CASE ) @property def snake_case ( self : Any ): def extract(*SCREAMING_SNAKE_CASE : Optional[int] , **SCREAMING_SNAKE_CASE : List[Any] ): class snake_case__: """simple docstring""" def __init__( self : Tuple ): lowercase__ : List[str] = torch.ones([0] ) def snake_case ( self : List[str] , SCREAMING_SNAKE_CASE : Union[str, Any] ): self.pixel_values.to(SCREAMING_SNAKE_CASE ) return self return Out() return extract def snake_case ( self : Optional[int] ): lowercase__ : List[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase__ : List[str] = self.dummy_cond_unet lowercase__ : str = PNDMScheduler(skip_prk_steps=SCREAMING_SNAKE_CASE ) lowercase__ : int = self.dummy_vae lowercase__ : Optional[int] = self.dummy_text_encoder lowercase__ : Union[str, Any] = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) lowercase__ : List[str] = 77 lowercase__ : int = self.dummy_image.to(SCREAMING_SNAKE_CASE ) lowercase__ : Optional[Any] = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk lowercase__ : Union[str, Any] = AltDiffusionImgaImgPipeline( unet=SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE , vae=SCREAMING_SNAKE_CASE , text_encoder=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE , safety_checker=SCREAMING_SNAKE_CASE , feature_extractor=self.dummy_extractor , ) lowercase__ : Union[str, Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=SCREAMING_SNAKE_CASE ) lowercase__ : int = alt_pipe.to(SCREAMING_SNAKE_CASE ) alt_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE ) lowercase__ : List[Any] = "A painting of a squirrel eating a burger" lowercase__ : List[Any] = torch.Generator(device=SCREAMING_SNAKE_CASE ).manual_seed(0 ) lowercase__ : Any = alt_pipe( [prompt] , generator=SCREAMING_SNAKE_CASE , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=SCREAMING_SNAKE_CASE , ) lowercase__ : Union[str, Any] = output.images lowercase__ : List[str] = torch.Generator(device=SCREAMING_SNAKE_CASE ).manual_seed(0 ) lowercase__ : int = alt_pipe( [prompt] , generator=SCREAMING_SNAKE_CASE , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=SCREAMING_SNAKE_CASE , return_dict=SCREAMING_SNAKE_CASE , )[0] lowercase__ : Optional[Any] = image[0, -3:, -3:, -1] lowercase__ : List[str] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase__ : Dict = np.array([0.4_427, 0.3_731, 0.4_249, 0.4_941, 0.4_546, 0.4_148, 0.4_193, 0.4_666, 0.4_499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def snake_case ( self : Tuple ): lowercase__ : Tuple = self.dummy_cond_unet lowercase__ : Tuple = PNDMScheduler(skip_prk_steps=SCREAMING_SNAKE_CASE ) lowercase__ : List[Any] = self.dummy_vae lowercase__ : List[str] = self.dummy_text_encoder lowercase__ : List[Any] = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) lowercase__ : int = 77 lowercase__ : Tuple = self.dummy_image.to(SCREAMING_SNAKE_CASE ) # put models in fp16 lowercase__ : List[str] = unet.half() lowercase__ : Union[str, Any] = vae.half() lowercase__ : List[str] = bert.half() # make sure here that pndm scheduler skips prk lowercase__ : List[str] = AltDiffusionImgaImgPipeline( unet=SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE , vae=SCREAMING_SNAKE_CASE , text_encoder=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE , safety_checker=SCREAMING_SNAKE_CASE , feature_extractor=self.dummy_extractor , ) lowercase__ : Optional[Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=SCREAMING_SNAKE_CASE ) lowercase__ : int = alt_pipe.to(SCREAMING_SNAKE_CASE ) alt_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE ) lowercase__ : Optional[int] = "A painting of a squirrel eating a burger" lowercase__ : str = torch.manual_seed(0 ) lowercase__ : Union[str, Any] = alt_pipe( [prompt] , generator=SCREAMING_SNAKE_CASE , num_inference_steps=2 , output_type="np" , image=SCREAMING_SNAKE_CASE , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def snake_case ( self : List[Any] ): lowercase__ : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) # resize to resolution that is divisible by 8 but not 16 or 32 lowercase__ : Any = init_image.resize((760, 504) ) lowercase__ : List[Any] = "BAAI/AltDiffusion" lowercase__ : Dict = AltDiffusionImgaImgPipeline.from_pretrained( SCREAMING_SNAKE_CASE , safety_checker=SCREAMING_SNAKE_CASE , ) pipe.to(SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE ) pipe.enable_attention_slicing() lowercase__ : List[Any] = "A fantasy landscape, trending on artstation" lowercase__ : Any = torch.manual_seed(0 ) lowercase__ : int = pipe( prompt=SCREAMING_SNAKE_CASE , image=SCREAMING_SNAKE_CASE , strength=0.75 , guidance_scale=7.5 , generator=SCREAMING_SNAKE_CASE , output_type="np" , ) lowercase__ : Optional[Any] = output.images[0] lowercase__ : int = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) lowercase__ : Any = np.array([0.9_358, 0.9_397, 0.9_599, 0.9_901, 1.0_000, 1.0_000, 0.9_882, 1.0_000, 1.0_000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class snake_case__(unittest.TestCase ): """simple docstring""" def snake_case ( self : Union[str, Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case ( self : Optional[Any] ): lowercase__ : Dict = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) lowercase__ : Tuple = init_image.resize((768, 512) ) lowercase__ : Any = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" ) lowercase__ : Any = "BAAI/AltDiffusion" lowercase__ : Optional[int] = AltDiffusionImgaImgPipeline.from_pretrained( SCREAMING_SNAKE_CASE , safety_checker=SCREAMING_SNAKE_CASE , ) pipe.to(SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE ) pipe.enable_attention_slicing() lowercase__ : Optional[int] = "A fantasy landscape, trending on artstation" lowercase__ : List[str] = torch.manual_seed(0 ) lowercase__ : Tuple = pipe( prompt=SCREAMING_SNAKE_CASE , image=SCREAMING_SNAKE_CASE , strength=0.75 , guidance_scale=7.5 , generator=SCREAMING_SNAKE_CASE , output_type="np" , ) lowercase__ : List[Any] = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
81
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ = { '''configuration_mgp_str''': ['''MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MgpstrConfig'''], '''processing_mgp_str''': ['''MgpstrProcessor'''], '''tokenization_mgp_str''': ['''MgpstrTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MgpstrModel''', '''MgpstrPreTrainedModel''', '''MgpstrForSceneTextRecognition''', ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
81
1
"""simple docstring""" import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class UpperCAmelCase : def __init__( self : List[str] , __lowerCamelCase : Any , __lowerCamelCase : Tuple=1_3 , __lowerCamelCase : str=6_4 , __lowerCamelCase : List[Any]=2 , __lowerCamelCase : Optional[int]=3 , __lowerCamelCase : Tuple=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Optional[Any]=3_2 , __lowerCamelCase : Tuple=5 , __lowerCamelCase : List[str]=4 , __lowerCamelCase : List[Any]=3_7 , __lowerCamelCase : str="gelu" , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : str=0.1 , __lowerCamelCase : Tuple=1_0 , __lowerCamelCase : List[str]=0.0_2 , __lowerCamelCase : int=[1, 1_6, 4, 4] , __lowerCamelCase : Optional[int]=None , ): """simple docstring""" _snake_case = parent _snake_case = batch_size _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = is_training _snake_case = use_labels _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = type_sequence_label_size _snake_case = initializer_range _snake_case = scope _snake_case = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size _snake_case = (self.image_size // 3_2) ** 2 _snake_case = num_patches + 1 def __UpperCAmelCase ( self : List[str] ): """simple docstring""" _snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case = self.get_config() return config, pixel_values, labels def __UpperCAmelCase ( self : Any ): """simple docstring""" _snake_case = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [4, 8, 1_6, 3_2], '''num_groups''': 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=__lowerCamelCase , ) def __UpperCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] ): """simple docstring""" _snake_case = ViTHybridModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() _snake_case = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCAmelCase ( self : List[Any] , __lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any] ): """simple docstring""" _snake_case = self.type_sequence_label_size _snake_case = ViTHybridForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() _snake_case = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __UpperCAmelCase ( self : Tuple ): """simple docstring""" _snake_case = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case = config_and_inputs _snake_case = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( __SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,unittest.TestCase ): A__ : List[str] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () A__ : Optional[int] = ( {'''feature-extraction''': ViTHybridModel, '''image-classification''': ViTHybridForImageClassification} if is_torch_available() else {} ) A__ : Dict = False A__ : List[Any] = False A__ : Optional[int] = False def __UpperCAmelCase ( self : Tuple ): """simple docstring""" _snake_case = ViTHybridModelTester(self ) _snake_case = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=3_7 ) def __UpperCAmelCase ( self : List[str] ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def __UpperCAmelCase ( self : Any ): """simple docstring""" pass def __UpperCAmelCase ( self : Tuple ): """simple docstring""" _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(__lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _snake_case = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCamelCase , nn.Linear ) ) def __UpperCAmelCase ( self : Dict ): """simple docstring""" _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(__lowerCamelCase ) _snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def __UpperCAmelCase ( self : Dict ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def __UpperCAmelCase ( self : List[Any] ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) def __UpperCAmelCase ( self : List[Any] ): """simple docstring""" _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = _config_zero_init(__lowerCamelCase ) for model_class in self.all_model_classes: _snake_case = model_class(config=__lowerCamelCase ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": _snake_case = [f"""{name}.{key}""" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @slow def __UpperCAmelCase ( self : List[str] ): """simple docstring""" for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = ViTHybridModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def snake_case ( ) -> List[Any]: _snake_case = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): @cached_property def __UpperCAmelCase ( self : str ): """simple docstring""" return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __UpperCAmelCase ( self : Dict ): """simple docstring""" _snake_case = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( __lowerCamelCase ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(images=__lowerCamelCase , return_tensors='''pt''' ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): _snake_case = model(**__lowerCamelCase ) # verify the logits _snake_case = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) _snake_case = torch.tensor([-1.9_0_9_0, -0.4_9_9_3, -0.2_3_8_9] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1E-4 ) ) @slow @require_accelerate def __UpperCAmelCase ( self : int ): """simple docstring""" _snake_case = ViTHybridImageProcessor.from_pretrained('''google/vit-hybrid-base-bit-384''' ) _snake_case = ViTHybridForImageClassification.from_pretrained('''google/vit-hybrid-base-bit-384''' , device_map='''auto''' ) _snake_case = prepare_img() _snake_case = image_processor(images=__lowerCamelCase , return_tensors='''pt''' ) _snake_case = model(**__lowerCamelCase ) _snake_case = outputs.logits # model predicts one of the 1000 ImageNet classes _snake_case = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , '''tabby, tabby cat''' )
103
'''simple docstring''' def lowerCAmelCase_ ( _lowerCamelCase: list ): if len(_lowerCamelCase ) < 2: return collection def circle_sort_util(_lowerCamelCase: list , _lowerCamelCase: int , _lowerCamelCase: int ) -> bool: __SCREAMING_SNAKE_CASE : Any = False if low == high: return swapped __SCREAMING_SNAKE_CASE : Any = low __SCREAMING_SNAKE_CASE : Dict = high while left < right: if collection[left] > collection[right]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = ( collection[right], collection[left], ) __SCREAMING_SNAKE_CASE : str = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = ( collection[right + 1], collection[left], ) __SCREAMING_SNAKE_CASE : str = True __SCREAMING_SNAKE_CASE : Union[str, Any] = low + int((high - low) / 2 ) __SCREAMING_SNAKE_CASE : Union[str, Any] = circle_sort_util(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : Optional[int] = circle_sort_util(_lowerCamelCase , mid + 1 , _lowerCamelCase ) return swapped or left_swap or right_swap __SCREAMING_SNAKE_CASE : Optional[Any] = True while is_not_sorted is True: __SCREAMING_SNAKE_CASE : Tuple = circle_sort_util(_lowerCamelCase , 0 , len(_lowerCamelCase ) - 1 ) return collection if __name__ == "__main__": UpperCamelCase__ : Optional[int] = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase__ : List[Any] = [int(item) for item in user_input.split(''',''')] print(circle_sort(unsorted))
578
0
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed UpperCAmelCase_ = logging.getLogger(__name__) def lowerCamelCase__ ( A__ : str=2 , A__ : Any=3 , A__ : int=16 , A__ : int = 10 , A__ : int = 2 ): '''simple docstring''' def get_dataset(A__ : List[Any] ): __lowerCamelCase = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(_UpperCamelCase , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) __lowerCamelCase = get_dataset(_UpperCamelCase ) __lowerCamelCase = get_dataset(_UpperCamelCase ) __lowerCamelCase = DataLoader(_UpperCamelCase , shuffle=_UpperCamelCase , batch_size=_UpperCamelCase , num_workers=4 ) __lowerCamelCase = DataLoader(_UpperCamelCase , shuffle=_UpperCamelCase , batch_size=_UpperCamelCase , num_workers=4 ) return (train_dataloader, valid_dataloader) def lowerCamelCase__ ( A__ : str , A__ : Dict , A__ : Optional[int] , A__ : Optional[int] , A__ : str , A__ : Tuple=None ): '''simple docstring''' __lowerCamelCase = [] for epoch in range(_UpperCamelCase ): # Train quickly model.train() for batch in dataloader: __lowerCamelCase, __lowerCamelCase = batch __lowerCamelCase = model(_UpperCamelCase ) __lowerCamelCase = torch.nn.functional.mse_loss(_UpperCamelCase , _UpperCamelCase ) accelerator.backward(_UpperCamelCase ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class lowerCamelCase__( nn.Module): def __init__( self: List[str] ): super().__init__() __lowerCamelCase = nn.Parameter(torch.randn(1 ) ) __lowerCamelCase = nn.Parameter(torch.randn(1 ) ) def lowerCAmelCase__ ( self: str , UpperCamelCase_: Any ): return x * self.a + self.b class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: Optional[int] ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __lowerCamelCase = DummyModel() __lowerCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __lowerCamelCase, __lowerCamelCase = dummy_dataloaders() __lowerCamelCase = ProjectConfiguration(total_limit=1 , project_dir=UpperCamelCase_ , automatic_checkpoint_naming=UpperCamelCase_ ) # Train baseline __lowerCamelCase = Accelerator(project_config=UpperCamelCase_ ) __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = accelerator.prepare( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def lowerCAmelCase__ ( self: Tuple ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __lowerCamelCase = DummyModel() __lowerCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __lowerCamelCase, __lowerCamelCase = dummy_dataloaders() # Train baseline __lowerCamelCase = Accelerator() __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = accelerator.prepare( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Save initial __lowerCamelCase = os.path.join(UpperCamelCase_ , """initial""" ) accelerator.save_state(UpperCamelCase_ ) ((__lowerCamelCase), (__lowerCamelCase)) = model.a.item(), model.b.item() __lowerCamelCase = optimizer.state_dict() __lowerCamelCase = train(3 , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) ((__lowerCamelCase), (__lowerCamelCase)) = model.a.item(), model.b.item() __lowerCamelCase = optimizer.state_dict() # Train partially set_seed(42 ) __lowerCamelCase = DummyModel() __lowerCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __lowerCamelCase, __lowerCamelCase = dummy_dataloaders() __lowerCamelCase = Accelerator() __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = accelerator.prepare( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) accelerator.load_state(UpperCamelCase_ ) ((__lowerCamelCase), (__lowerCamelCase)) = model.a.item(), model.b.item() __lowerCamelCase = optimizer.state_dict() self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = train(2 , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Save everything __lowerCamelCase = os.path.join(UpperCamelCase_ , """checkpoint""" ) accelerator.save_state(UpperCamelCase_ ) # Load everything back in and make sure all states work accelerator.load_state(UpperCamelCase_ ) test_rands += train(1 , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) ((__lowerCamelCase), (__lowerCamelCase)) = model.a.item(), model.b.item() __lowerCamelCase = optimizer.state_dict() self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[Any] ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __lowerCamelCase = DummyModel() __lowerCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __lowerCamelCase, __lowerCamelCase = dummy_dataloaders() __lowerCamelCase = ProjectConfiguration(automatic_checkpoint_naming=UpperCamelCase_ ) # Train baseline __lowerCamelCase = Accelerator(project_dir=UpperCamelCase_ , project_config=UpperCamelCase_ ) __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = accelerator.prepare( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Save initial accelerator.save_state() ((__lowerCamelCase), (__lowerCamelCase)) = model.a.item(), model.b.item() __lowerCamelCase = optimizer.state_dict() __lowerCamelCase = train(3 , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) ((__lowerCamelCase), (__lowerCamelCase)) = model.a.item(), model.b.item() __lowerCamelCase = optimizer.state_dict() # Train partially set_seed(42 ) __lowerCamelCase = DummyModel() __lowerCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __lowerCamelCase, __lowerCamelCase = dummy_dataloaders() __lowerCamelCase = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=UpperCamelCase_ ) __lowerCamelCase = Accelerator(project_dir=UpperCamelCase_ , project_config=UpperCamelCase_ ) __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = accelerator.prepare( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) accelerator.load_state(os.path.join(UpperCamelCase_ , """checkpoints""" , """checkpoint_0""" ) ) ((__lowerCamelCase), (__lowerCamelCase)) = model.a.item(), model.b.item() __lowerCamelCase = optimizer.state_dict() self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = train(2 , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(UpperCamelCase_ , """checkpoints""" , """checkpoint_1""" ) ) test_rands += train(1 , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) ((__lowerCamelCase), (__lowerCamelCase)) = model.a.item(), model.b.item() __lowerCamelCase = optimizer.state_dict() self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = torch.tensor([1, 2, 3] ) __lowerCamelCase = torch.tensor([2, 3, 4] ) __lowerCamelCase = DummyModel() __lowerCamelCase = torch.optim.Adam(net.parameters() ) __lowerCamelCase = Accelerator() with self.assertRaises(UpperCamelCase_ ) as ve: accelerator.register_for_checkpointing(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = str(ve.exception ) self.assertTrue("""Item at index 0""" in message ) self.assertTrue("""Item at index 1""" in message ) self.assertFalse("""Item at index 2""" in message ) self.assertFalse("""Item at index 3""" in message ) def lowerCAmelCase__ ( self: Union[str, Any] ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __lowerCamelCase = DummyModel() __lowerCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __lowerCamelCase = torch.optim.lr_scheduler.StepLR(UpperCamelCase_ , step_size=1 , gamma=0.99 ) __lowerCamelCase, __lowerCamelCase = dummy_dataloaders() __lowerCamelCase = ProjectConfiguration(automatic_checkpoint_naming=UpperCamelCase_ ) # Train baseline __lowerCamelCase = Accelerator(project_dir=UpperCamelCase_ , project_config=UpperCamelCase_ ) __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = accelerator.prepare( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Save initial accelerator.save_state() __lowerCamelCase = scheduler.state_dict() train(3 , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) self.assertNotEqual(UpperCamelCase_ , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(UpperCamelCase_ , """checkpoints""" , """checkpoint_0""" ) ) self.assertEqual(UpperCamelCase_ , scheduler.state_dict() ) def lowerCAmelCase__ ( self: str ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __lowerCamelCase = DummyModel() __lowerCamelCase = ProjectConfiguration(automatic_checkpoint_naming=UpperCamelCase_ , total_limit=2 ) # Train baseline __lowerCamelCase = Accelerator(project_dir=UpperCamelCase_ , project_config=UpperCamelCase_ ) __lowerCamelCase = accelerator.prepare(UpperCamelCase_ ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(UpperCamelCase_ , """checkpoints""" , """checkpoint_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , """checkpoints""" , """checkpoint_9""" ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , """checkpoints""" , """checkpoint_10""" ) ) ) @require_cuda def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = ["""torchrun""", F'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )] execute_subprocess_async(UpperCamelCase_ , env=os.environ.copy() ) if __name__ == "__main__": UpperCAmelCase_ = '/tmp/accelerate/state_checkpointing' UpperCAmelCase_ = DummyModel() UpperCAmelCase_ = torch.optim.Adam(params=model.parameters(), lr=1E-3) UpperCAmelCase_ = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) UpperCAmelCase_ , UpperCAmelCase_ = dummy_dataloaders() UpperCAmelCase_ = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline UpperCAmelCase_ = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision='no') if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) UpperCAmelCase_ , UpperCAmelCase_ = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: UpperCAmelCase_ = group['params'][0].device break assert param_device.type == accelerator.device.type UpperCAmelCase_ = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='cpu') for group in optimizer.param_groups: UpperCAmelCase_ = group['params'][0].device break assert ( param_device.type == torch.device('cpu').type ), f"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='on_device') for group in optimizer.param_groups: UpperCAmelCase_ = group['params'][0].device break assert ( param_device.type == accelerator.device.type ), f"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match='Unsupported optimizer map location passed'): accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='invalid') accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
715
import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class lowerCamelCase__: def __init__( self: Tuple , UpperCamelCase_: Any , UpperCamelCase_: List[Any]=14 , UpperCamelCase_: int=7 , UpperCamelCase_: Union[str, Any]=True , UpperCamelCase_: Dict=True , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: Tuple=True , UpperCamelCase_: List[str]=True , UpperCamelCase_: int=99 , UpperCamelCase_: str=32 , UpperCamelCase_: List[Any]=5 , UpperCamelCase_: Optional[int]=4 , UpperCamelCase_: List[Any]=37 , UpperCamelCase_: Optional[int]="gelu" , UpperCamelCase_: Tuple=0.1 , UpperCamelCase_: Optional[Any]=0.1 , UpperCamelCase_: List[str]=5_12 , UpperCamelCase_: Dict=16 , UpperCamelCase_: List[str]=2 , UpperCamelCase_: Optional[Any]=0.02 , UpperCamelCase_: List[str]=3 , UpperCamelCase_: Tuple=4 , UpperCamelCase_: Tuple=None , ): __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_input_mask __lowerCamelCase = use_labels __lowerCamelCase = use_mc_token_ids __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = type_sequence_label_size __lowerCamelCase = initializer_range __lowerCamelCase = num_labels __lowerCamelCase = num_choices __lowerCamelCase = scope __lowerCamelCase = self.vocab_size - 1 def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_input_mask: __lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase = None if self.use_token_type_ids: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCamelCase = None if self.use_mc_token_ids: __lowerCamelCase = ids_tensor([self.batch_size, self.num_choices] , self.seq_length ) __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __lowerCamelCase = self.get_config() __lowerCamelCase = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def lowerCAmelCase__ ( self: Dict ): return CTRLConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: str , UpperCamelCase_: Dict , UpperCamelCase_: Tuple , UpperCamelCase_: Any , UpperCamelCase_: List[str] , *UpperCamelCase_: Optional[Any] ): __lowerCamelCase = CTRLModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() model(UpperCamelCase_ , token_type_ids=UpperCamelCase_ , head_mask=UpperCamelCase_ ) model(UpperCamelCase_ , token_type_ids=UpperCamelCase_ ) __lowerCamelCase = model(UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) , config.n_layer ) def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: Dict , UpperCamelCase_: Dict , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: int , UpperCamelCase_: List[Any] , *UpperCamelCase_: Tuple ): __lowerCamelCase = CTRLLMHeadModel(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __lowerCamelCase = model(UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = self.prepare_config_and_inputs() ( ( __lowerCamelCase ), ( __lowerCamelCase ), ( __lowerCamelCase ), ( __lowerCamelCase ), ( __lowerCamelCase ), ( __lowerCamelCase ), ( __lowerCamelCase ), ( __lowerCamelCase ), ( __lowerCamelCase ), ) = config_and_inputs __lowerCamelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """head_mask""": head_mask} return config, inputs_dict def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Dict , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: str , UpperCamelCase_: Union[str, Any] , *UpperCamelCase_: Union[str, Any] ): __lowerCamelCase = self.num_labels __lowerCamelCase = CTRLForSequenceClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase = model(UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) @require_torch class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Any = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () UpperCAmelCase__ : Optional[Any] = (CTRLLMHeadModel,) if is_torch_available() else () UpperCAmelCase__ : int = ( { 'feature-extraction': CTRLModel, 'text-classification': CTRLForSequenceClassification, 'text-generation': CTRLLMHeadModel, 'zero-shot': CTRLForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase__ : List[str] = True UpperCAmelCase__ : Optional[Any] = False UpperCAmelCase__ : Optional[Any] = False def lowerCAmelCase__ ( self: Any , UpperCamelCase_: Any , UpperCamelCase_: List[str] , UpperCamelCase_: Tuple , UpperCamelCase_: Tuple , UpperCamelCase_: List[str] ): if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = CTRLModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=UpperCamelCase_ , n_embd=37 ) def lowerCAmelCase__ ( self: Optional[int] ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self: Optional[Any] ): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*UpperCamelCase_ ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCAmelCase__ ( self: List[Any] ): pass @slow def lowerCAmelCase__ ( self: Optional[Any] ): for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase = CTRLModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) @unittest.skip("""The model doesn't support left padding""" ) # and it's not used enough to be worth fixing :) def lowerCAmelCase__ ( self: Optional[Any] ): pass @require_torch class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: List[str] ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = CTRLLMHeadModel.from_pretrained("""ctrl""" ) model.to(UpperCamelCase_ ) __lowerCamelCase = torch.tensor( [[1_18_59, 0, 16_11, 8]] , dtype=torch.long , device=UpperCamelCase_ ) # Legal the president is __lowerCamelCase = [ 1_18_59, 0, 16_11, 8, 5, 1_50, 2_64_49, 2, 19, 3_48, 4_69, 3, 25_95, 48, 2_07_40, 24_65_33, 24_65_33, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a __lowerCamelCase = model.generate(UpperCamelCase_ , do_sample=UpperCamelCase_ ) self.assertListEqual(output_ids[0].tolist() , UpperCamelCase_ )
80
0
def __lowerCamelCase ( UpperCAmelCase_ : list[int] ): """simple docstring""" if not numbers: return 0 if not isinstance(UpperCAmelCase_ , (list, tuple) ) or not all( isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) for number in numbers ): raise ValueError('''numbers must be an iterable of integers''' ) a :Optional[Any] = numbers[0] for i in range(1 , len(UpperCAmelCase_ ) ): # update the maximum and minimum subarray products a :int = numbers[i] if number < 0: a , a :Optional[Any] = min_till_now, max_till_now a :Tuple = max(UpperCAmelCase_ , max_till_now * number ) a :str = min(UpperCAmelCase_ , min_till_now * number ) # update the maximum product found till now a :str = max(UpperCAmelCase_ , UpperCAmelCase_ ) return max_prod
445
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available snake_case : Any = { '''configuration_gpt_neo''': ['''GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoConfig''', '''GPTNeoOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : List[Any] = [ '''GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoForCausalLM''', '''GPTNeoForQuestionAnswering''', '''GPTNeoForSequenceClassification''', '''GPTNeoForTokenClassification''', '''GPTNeoModel''', '''GPTNeoPreTrainedModel''', '''load_tf_weights_in_gpt_neo''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Any = [ '''FlaxGPTNeoForCausalLM''', '''FlaxGPTNeoModel''', '''FlaxGPTNeoPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys snake_case : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
445
1
"""simple docstring""" from ....utils import logging __UpperCAmelCase = logging.get_logger(__name__) class __lowercase ( __lowerCamelCase ): def __init__( self : List[Any] ,A : List[Any] ,A : Optional[Any]=None ,A : str=2_048 ): '''simple docstring''' UpperCAmelCase__ : Dict = config.__dict__ UpperCAmelCase__ : List[Any] = modal_hidden_size if num_labels: UpperCAmelCase__ : List[Any] = num_labels
194
"""simple docstring""" import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def lowerCAmelCase ( __UpperCamelCase ): '''simple docstring''' if "model" in orig_key: UpperCAmelCase__ : List[str] = orig_key.replace("""model.""" , """""" ) if "norm1" in orig_key: UpperCAmelCase__ : List[Any] = orig_key.replace("""norm1""" , """attention.output.LayerNorm""" ) if "norm2" in orig_key: UpperCAmelCase__ : Optional[Any] = orig_key.replace("""norm2""" , """output.LayerNorm""" ) if "norm" in orig_key: UpperCAmelCase__ : int = orig_key.replace("""norm""" , """LayerNorm""" ) if "transformer" in orig_key: UpperCAmelCase__ : Any = orig_key.split(""".""" )[0].split("""_""" )[-1] UpperCAmelCase__ : Dict = orig_key.replace(F"transformer_{layer_num}" , F"encoder.layer.{layer_num}" ) if "mha.attn" in orig_key: UpperCAmelCase__ : Tuple = orig_key.replace("""mha.attn""" , """attention.self""" ) if "mha" in orig_key: UpperCAmelCase__ : Dict = orig_key.replace("""mha""" , """attention""" ) if "W_q" in orig_key: UpperCAmelCase__ : str = orig_key.replace("""W_q""" , """self.query""" ) if "W_k" in orig_key: UpperCAmelCase__ : List[Any] = orig_key.replace("""W_k""" , """self.key""" ) if "W_v" in orig_key: UpperCAmelCase__ : str = orig_key.replace("""W_v""" , """self.value""" ) if "ff1" in orig_key: UpperCAmelCase__ : Optional[int] = orig_key.replace("""ff1""" , """intermediate.dense""" ) if "ff2" in orig_key: UpperCAmelCase__ : Dict = orig_key.replace("""ff2""" , """output.dense""" ) if "ff" in orig_key: UpperCAmelCase__ : Any = orig_key.replace("""ff""" , """output.dense""" ) if "mlm_class" in orig_key: UpperCAmelCase__ : Any = orig_key.replace("""mlm.mlm_class""" , """cls.predictions.decoder""" ) if "mlm" in orig_key: UpperCAmelCase__ : Optional[Any] = orig_key.replace("""mlm""" , """cls.predictions.transform""" ) if "cls" not in orig_key: UpperCAmelCase__ : Dict = """yoso.""" + orig_key return orig_key def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' for key in orig_state_dict.copy().keys(): UpperCAmelCase__ : Optional[Any] = orig_state_dict.pop(__UpperCamelCase ) if ("pooler" in key) or ("sen_class" in key): continue else: UpperCAmelCase__ : Dict = val UpperCAmelCase__ : Dict = orig_state_dict["""cls.predictions.decoder.bias"""] UpperCAmelCase__ : Optional[Any] = torch.arange(__UpperCamelCase ).expand((1, -1) ) + 2 return orig_state_dict def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' UpperCAmelCase__ : int = torch.load(__UpperCamelCase , map_location="""cpu""" )["""model_state_dict"""] UpperCAmelCase__ : List[str] = YosoConfig.from_json_file(__UpperCamelCase ) UpperCAmelCase__ : Union[str, Any] = YosoForMaskedLM(__UpperCamelCase ) UpperCAmelCase__ : Optional[int] = convert_checkpoint_helper(config.max_position_embeddings , __UpperCamelCase ) print(model.load_state_dict(__UpperCamelCase ) ) model.eval() model.save_pretrained(__UpperCamelCase ) print(F"Checkpoint successfuly converted. Model saved at {pytorch_dump_path}" ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--pytorch_model_path', default=None, type=str, required=True, help='Path to YOSO pytorch checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The json file for YOSO model config.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __UpperCAmelCase = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
194
1
'''simple docstring''' import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex _UpperCAmelCase : int = logging.getLogger(__name__) class lowercase_ : """simple docstring""" def __init__( self : Tuple ) -> int: _A = False def __UpperCAmelCase ( self : Optional[int], UpperCamelCase__ : str, UpperCamelCase__ : Optional[Any], UpperCamelCase__ : int, UpperCamelCase__ : Optional[Any] ) -> Any: if not self.initialized: _A = RagRetriever( UpperCamelCase__, question_encoder_tokenizer=UpperCamelCase__, generator_tokenizer=UpperCamelCase__, index=UpperCamelCase__, init_retrieval=UpperCamelCase__, ) _A = True def __UpperCAmelCase ( self : Any ) -> List[Any]: self.retriever.index.init_index() def __UpperCAmelCase ( self : int, UpperCamelCase__ : Optional[Any], UpperCamelCase__ : Dict ) -> Optional[Any]: _A , _A = self.retriever._main_retrieve(UpperCamelCase__, UpperCamelCase__ ) return doc_ids, retrieved_doc_embeds class lowercase_ ( _UpperCamelCase ): """simple docstring""" def __init__( self : Optional[Any], UpperCamelCase__ : Optional[Any], UpperCamelCase__ : Optional[int], UpperCamelCase__ : Dict, UpperCamelCase__ : Union[str, Any], UpperCamelCase__ : int=None ) -> Optional[int]: if index is not None and index.is_initialized() and len(UpperCamelCase__ ) > 0: raise ValueError( 'When using Ray for distributed fine-tuning, ' 'you\'ll need to provide the paths instead, ' 'as the dataset and the index are loaded ' 'separately. More info in examples/rag/use_own_knowledge_dataset.py ' ) super().__init__( UpperCamelCase__, question_encoder_tokenizer=UpperCamelCase__, generator_tokenizer=UpperCamelCase__, index=UpperCamelCase__, init_retrieval=UpperCamelCase__, ) _A = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) for worker in self.retrieval_workers ] ) def __UpperCAmelCase ( self : Dict ) -> int: logger.info('initializing retrieval' ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def __UpperCAmelCase ( self : Optional[Any], UpperCamelCase__ : Dict, UpperCamelCase__ : Tuple ) -> Dict: if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. _A = self.retrieval_workers[random.randint(0, len(self.retrieval_workers ) - 1 )] _A , _A = ray.get(random_worker.retrieve.remote(UpperCamelCase__, UpperCamelCase__ ) ) else: _A , _A = self._main_retrieve(UpperCamelCase__, UpperCamelCase__ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(UpperCamelCase__ ) @classmethod def __UpperCAmelCase ( cls : List[str], UpperCamelCase__ : List[Any], UpperCamelCase__ : List[Any]=None, **UpperCamelCase__ : Optional[int] ) -> Optional[Any]: return super(UpperCamelCase__, cls ).get_tokenizers(UpperCamelCase__, UpperCamelCase__, **UpperCamelCase__ ) @classmethod def __UpperCAmelCase ( cls : Any, UpperCamelCase__ : Tuple, UpperCamelCase__ : int, UpperCamelCase__ : List[Any]=None, **UpperCamelCase__ : List[str] ) -> Tuple: _A = kwargs.pop('config', UpperCamelCase__ ) or RagConfig.from_pretrained(UpperCamelCase__, **UpperCamelCase__ ) _A = RagTokenizer.from_pretrained(UpperCamelCase__, config=UpperCamelCase__ ) _A = rag_tokenizer.question_encoder _A = rag_tokenizer.generator if indexed_dataset is not None: _A = 'custom' _A = CustomHFIndex(config.retrieval_vector_size, UpperCamelCase__ ) else: _A = cls._build_index(UpperCamelCase__ ) return cls( UpperCamelCase__, question_encoder_tokenizer=UpperCamelCase__, generator_tokenizer=UpperCamelCase__, retrieval_workers=UpperCamelCase__, index=UpperCamelCase__, )
107
import colorsys from PIL import Image # type: ignore def lowerCamelCase__ ( snake_case_ : float , snake_case_ : float , snake_case_ : int ) -> float: __snake_case = x __snake_case = y for step in range(snake_case_ ): # noqa: B007 __snake_case = a * a - b * b + x __snake_case = 2 * a * b + y __snake_case = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def lowerCamelCase__ ( snake_case_ : float ) -> tuple: if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def lowerCamelCase__ ( snake_case_ : float ) -> tuple: if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(snake_case_ , 1 , 1 ) ) def lowerCamelCase__ ( snake_case_ : int = 800 , snake_case_ : int = 600 , snake_case_ : float = -0.6 , snake_case_ : float = 0 , snake_case_ : float = 3.2 , snake_case_ : int = 50 , snake_case_ : bool = True , ) -> Image.Image: __snake_case = Image.new('''RGB''' , (image_width, image_height) ) __snake_case = img.load() # loop through the image-coordinates for image_x in range(snake_case_ ): for image_y in range(snake_case_ ): # determine the figure-coordinates based on the image-coordinates __snake_case = figure_width / image_width * image_height __snake_case = figure_center_x + (image_x / image_width - 0.5) * figure_width __snake_case = figure_center_y + (image_y / image_height - 0.5) * figure_height __snake_case = get_distance(snake_case_ , snake_case_ , snake_case_ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: __snake_case = get_color_coded_rgb(snake_case_ ) else: __snake_case = get_black_and_white_rgb(snake_case_ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure snake_case_ = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
592
0
'''simple docstring''' from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def SCREAMING_SNAKE_CASE ( a_ : NDArray[floataa] , a_ : NDArray[floataa] , a_ : list[int] , a_ : int , ): __a , __a = coefficient_matrix.shape __a , __a = constant_matrix.shape if rowsa != colsa: __a = f"Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}" raise ValueError(a_ ) if colsa != 1: __a = f"Constant matrix must be nx1 but received {rowsa}x{colsa}" raise ValueError(a_ ) if rowsa != rowsa: __a = ( 'Coefficient and constant matrices dimensions must be nxn and nx1 but ' f"received {rowsa}x{colsa} and {rowsa}x{colsa}" ) raise ValueError(a_ ) if len(a_ ) != rowsa: __a = ( 'Number of initial values must be equal to number of rows in coefficient ' f"matrix but received {len(a_ )} and {rowsa}" ) raise ValueError(a_ ) if iterations <= 0: raise ValueError('Iterations must be at least 1' ) __a = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) __a , __a = table.shape strictly_diagonally_dominant(a_ ) # Iterates the whole matrix for given number of times for _ in range(a_ ): __a = [] for row in range(a_ ): __a = 0 for col in range(a_ ): if col == row: __a = table[row][col] elif col == cols - 1: __a = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] __a = (temp + val) / denom new_val.append(a_ ) __a = new_val return [float(a_ ) for i in new_val] def SCREAMING_SNAKE_CASE ( a_ : NDArray[floataa] ): __a , __a = table.shape __a = True for i in range(0 , a_ ): __a = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError('Coefficient matrix is not strictly diagonally dominant' ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
490
'''simple docstring''' def SCREAMING_SNAKE_CASE ( a_ : int ): __a = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def SCREAMING_SNAKE_CASE ( a_ : int = 100 ): __a = 1 __a = 2 for i in range(2 , max_n + 1 ): __a = pre_numerator __a = 2 * i // 3 if i % 3 == 0 else 1 __a = cur_numerator __a = e_cont * pre_numerator + temp return sum_digits(a_ ) if __name__ == "__main__": print(f"""{solution() = }""")
490
1
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from .config import config_command_parser from .config_args import default_config_file, load_config_from_file # noqa: F401 from .default import default_command_parser from .update import update_command_parser def __snake_case ( SCREAMING_SNAKE_CASE__ : Any=None ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser(add_help=SCREAMING_SNAKE_CASE__ , allow_abbrev=SCREAMING_SNAKE_CASE__ ) # The main config parser _UpperCAmelCase : Tuple = config_command_parser(SCREAMING_SNAKE_CASE__ ) # The subparser to add commands to _UpperCAmelCase : str = config_parser.add_subparsers(title="subcommands" , dest="subcommand" ) # Then add other parsers with the parent parser default_command_parser(SCREAMING_SNAKE_CASE__ , parents=[parent_parser] ) update_command_parser(SCREAMING_SNAKE_CASE__ , parents=[parent_parser] ) return config_parser def __snake_case ( ) -> Tuple: '''simple docstring''' _UpperCAmelCase : int = get_config_parser() _UpperCAmelCase : str = config_parser.parse_args() if not hasattr(SCREAMING_SNAKE_CASE__ , "func" ): config_parser.print_help() exit(1 ) # Run args.func(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
289
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class UpperCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self : Union[str, Any] , A : Optional[Any] ): for model_result in results.values(): for batch_size, sequence_length in zip(model_result["bs"] , model_result["ss"] ): _UpperCAmelCase : List[str] = model_result["result"][batch_size][sequence_length] self.assertIsNotNone(A ) def snake_case_ ( self : Optional[Any] ): _UpperCAmelCase : Any = "sshleifer/tiny-gpt2" _UpperCAmelCase : int = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) _UpperCAmelCase : List[Any] = PyTorchBenchmark(A ) _UpperCAmelCase : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case_ ( self : Dict ): _UpperCAmelCase : List[str] = "sgugger/tiny-distilbert-classification" _UpperCAmelCase : Optional[int] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , only_pretrain_model=A , ) _UpperCAmelCase : Dict = PyTorchBenchmark(A ) _UpperCAmelCase : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case_ ( self : int ): _UpperCAmelCase : Any = "sshleifer/tiny-gpt2" _UpperCAmelCase : List[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , torchscript=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) _UpperCAmelCase : Dict = PyTorchBenchmark(A ) _UpperCAmelCase : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == "cpu" , "Cant do half precision" ) def snake_case_ ( self : List[str] ): _UpperCAmelCase : Union[str, Any] = "sshleifer/tiny-gpt2" _UpperCAmelCase : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , fpaa=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) _UpperCAmelCase : List[str] = PyTorchBenchmark(A ) _UpperCAmelCase : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case_ ( self : List[Any] ): _UpperCAmelCase : Optional[Any] = "sshleifer/tiny-gpt2" _UpperCAmelCase : int = AutoConfig.from_pretrained(A ) # set architectures equal to `None` _UpperCAmelCase : Optional[Any] = None _UpperCAmelCase : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) _UpperCAmelCase : List[Any] = PyTorchBenchmark(A , configs=[config] ) _UpperCAmelCase : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case_ ( self : int ): _UpperCAmelCase : Dict = "sshleifer/tiny-gpt2" _UpperCAmelCase : Union[str, Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) _UpperCAmelCase : Tuple = PyTorchBenchmark(A ) _UpperCAmelCase : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == "cpu" , "Can't do half precision" ) def snake_case_ ( self : List[Any] ): _UpperCAmelCase : Optional[int] = "sshleifer/tiny-gpt2" _UpperCAmelCase : str = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , fpaa=A , multi_process=A , ) _UpperCAmelCase : Tuple = PyTorchBenchmark(A ) _UpperCAmelCase : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def snake_case_ ( self : List[Any] ): _UpperCAmelCase : Optional[Any] = "sshleifer/tiny-gpt2" _UpperCAmelCase : Union[str, Any] = AutoConfig.from_pretrained(A ) _UpperCAmelCase : Dict = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) _UpperCAmelCase : List[Any] = PyTorchBenchmark(A , configs=[config] ) _UpperCAmelCase : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case_ ( self : str ): _UpperCAmelCase : List[str] = "sshleifer/tinier_bart" _UpperCAmelCase : Any = AutoConfig.from_pretrained(A ) _UpperCAmelCase : Optional[int] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) _UpperCAmelCase : int = PyTorchBenchmark(A , configs=[config] ) _UpperCAmelCase : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case_ ( self : Any ): _UpperCAmelCase : Tuple = "sshleifer/tiny-gpt2" _UpperCAmelCase : Tuple = AutoConfig.from_pretrained(A ) _UpperCAmelCase : List[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) _UpperCAmelCase : int = PyTorchBenchmark(A , configs=[config] ) _UpperCAmelCase : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def snake_case_ ( self : str ): _UpperCAmelCase : Optional[int] = "sshleifer/tinier_bart" _UpperCAmelCase : int = AutoConfig.from_pretrained(A ) _UpperCAmelCase : List[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) _UpperCAmelCase : str = PyTorchBenchmark(A , configs=[config] ) _UpperCAmelCase : int = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def snake_case_ ( self : Dict ): _UpperCAmelCase : int = "sshleifer/tiny-gpt2" with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase : Union[str, Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , save_to_csv=A , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(A , "inf_time.csv" ) , train_memory_csv_file=os.path.join(A , "train_mem.csv" ) , inference_memory_csv_file=os.path.join(A , "inf_mem.csv" ) , train_time_csv_file=os.path.join(A , "train_time.csv" ) , env_info_csv_file=os.path.join(A , "env.csv" ) , multi_process=A , ) _UpperCAmelCase : int = PyTorchBenchmark(A ) benchmark.run() self.assertTrue(Path(os.path.join(A , "inf_time.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(A , "train_time.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(A , "inf_mem.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(A , "train_mem.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(A , "env.csv" ) ).exists() ) def snake_case_ ( self : List[str] ): _UpperCAmelCase : List[Any] = "sshleifer/tiny-gpt2" def _check_summary_is_not_empty(A : int ): self.assertTrue(hasattr(A , "sequential" ) ) self.assertTrue(hasattr(A , "cumulative" ) ) self.assertTrue(hasattr(A , "current" ) ) self.assertTrue(hasattr(A , "total" ) ) with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase : int = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(A , "log.txt" ) , log_print=A , trace_memory_line_by_line=A , multi_process=A , ) _UpperCAmelCase : int = PyTorchBenchmark(A ) _UpperCAmelCase : Any = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(A , "log.txt" ) ).exists() )
289
1
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __lowerCamelCase ( lowercase , lowercase , unittest.TestCase ): lowerCamelCase__: Optional[int] = IFImgaImgSuperResolutionPipeline lowerCamelCase__: List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''width''', '''height'''} lowerCamelCase__: int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''original_image'''} ) lowerCamelCase__: str = PipelineTesterMixin.required_optional_params - {'''latents'''} def A__ ( self ) -> Optional[int]: """simple docstring""" return self._get_superresolution_dummy_components() def A__ ( self , __snake_case , __snake_case=0 ) -> Optional[Any]: """simple docstring""" if str(__snake_case ).startswith("mps" ): UpperCAmelCase: Dict = torch.manual_seed(__snake_case ) else: UpperCAmelCase: List[Any] = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) UpperCAmelCase: Dict = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(__snake_case ) ).to(__snake_case ) UpperCAmelCase: Dict = floats_tensor((1, 3, 1_6, 1_6) , rng=random.Random(__snake_case ) ).to(__snake_case ) UpperCAmelCase: Optional[int] = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def A__ ( self ) -> Tuple: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def A__ ( self ) -> List[Any]: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def A__ ( self ) -> Optional[int]: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1e-1 ) def A__ ( self ) -> int: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def A__ ( self ) -> str: """simple docstring""" self._test_save_load_local() def A__ ( self ) -> List[Any]: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
166
import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig snake_case_ : Optional[int] = { 'facebook/maskformer-swin-base-ade': ( 'https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json' ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } snake_case_ : Optional[int] = logging.get_logger(__name__) class __lowerCamelCase ( lowercase ): lowerCamelCase__: Union[str, Any] = '''maskformer''' lowerCamelCase__: Optional[int] = {'''hidden_size''': '''mask_feature_size'''} lowerCamelCase__: Optional[int] = ['''resnet''', '''swin'''] lowerCamelCase__: Optional[int] = ['''detr'''] def __init__( self , __snake_case = 2_5_6 , __snake_case = 2_5_6 , __snake_case = 0.1 , __snake_case = False , __snake_case = None , __snake_case = None , __snake_case = 0.02 , __snake_case = 1.0 , __snake_case = 1.0 , __snake_case = 1.0 , __snake_case = 20.0 , __snake_case = None , **__snake_case , ) -> List[Any]: """simple docstring""" if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k UpperCAmelCase: str = SwinConfig( image_size=3_8_4 , in_channels=3 , patch_size=4 , embed_dim=1_2_8 , depths=[2, 2, 1_8, 2] , num_heads=[4, 8, 1_6, 3_2] , window_size=1_2 , drop_path_rate=0.3 , out_features=["stage1", "stage2", "stage3", "stage4"] , ) if isinstance(__snake_case , __snake_case ): UpperCAmelCase: Union[str, Any] = backbone_config.pop("model_type" ) UpperCAmelCase: List[str] = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase: Any = config_class.from_dict(__snake_case ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F'Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. ' F'Supported model types: {",".join(self.backbones_supported )}' ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 UpperCAmelCase: Tuple = DetrConfig() else: # verify that the decoder is supported UpperCAmelCase: Dict = ( decoder_config.pop("model_type" ) if isinstance(__snake_case , __snake_case ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( F'Transformer Decoder {decoder_type} not supported, please use one of' F' {",".join(self.decoders_supported )}' ) if isinstance(__snake_case , __snake_case ): UpperCAmelCase: Union[str, Any] = CONFIG_MAPPING[decoder_type] UpperCAmelCase: Optional[Any] = config_class.from_dict(__snake_case ) UpperCAmelCase: Any = backbone_config UpperCAmelCase: Dict = decoder_config # main feature dimension for the model UpperCAmelCase: Optional[int] = fpn_feature_size UpperCAmelCase: Union[str, Any] = mask_feature_size # initializer UpperCAmelCase: Tuple = init_std UpperCAmelCase: Union[str, Any] = init_xavier_std # Hungarian matcher && loss UpperCAmelCase: Optional[int] = cross_entropy_weight UpperCAmelCase: List[str] = dice_weight UpperCAmelCase: List[Any] = mask_weight UpperCAmelCase: List[str] = use_auxiliary_loss UpperCAmelCase: List[str] = no_object_weight UpperCAmelCase: int = output_auxiliary_logits UpperCAmelCase: int = self.decoder_config.encoder_attention_heads UpperCAmelCase: Dict = self.decoder_config.num_hidden_layers super().__init__(**__snake_case ) @classmethod def A__ ( cls , __snake_case , __snake_case , **__snake_case ) -> Tuple: """simple docstring""" return cls( backbone_config=__snake_case , decoder_config=__snake_case , **__snake_case , ) def A__ ( self ) -> Dict[str, any]: """simple docstring""" UpperCAmelCase: Union[str, Any] = copy.deepcopy(self.__dict__ ) UpperCAmelCase: Union[str, Any] = self.backbone_config.to_dict() UpperCAmelCase: List[Any] = self.decoder_config.to_dict() UpperCAmelCase: Dict = self.__class__.model_type return output
166
1
"""simple docstring""" _lowerCAmelCase : List[Any] = '''Alexander Joslin''' import operator as op from .stack import Stack def lowerCamelCase_( _lowerCamelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase : Dict = {"*": op.mul, "/": op.truediv, "+": op.add, "-": op.sub} _lowerCamelCase : List[str] = Stack() _lowerCamelCase : Any = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(_lowerCamelCase ) ) elif i in operators: # RULE 2 operator_stack.push(_lowerCamelCase ) elif i == ")": # RULE 4 _lowerCamelCase : Tuple = operator_stack.peek() operator_stack.pop() _lowerCamelCase : int = operand_stack.peek() operand_stack.pop() _lowerCamelCase : Union[str, Any] = operand_stack.peek() operand_stack.pop() _lowerCamelCase : str = operators[opr](_lowerCamelCase , _lowerCamelCase ) operand_stack.push(_lowerCamelCase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": _lowerCAmelCase : Optional[Any] = '''(5 + ((4 * 2) * (2 + 3)))''' # answer = 45 print(f'''{equation} = {dijkstras_two_stack_algorithm(equation)}''')
46
__lowercase = """Alexander Joslin""" import operator as op from .stack import Stack def _lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A_ = {'''*''': op.mul, '''/''': op.truediv, '''+''': op.add, '''-''': op.sub} A_ = Stack() A_ = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(SCREAMING_SNAKE_CASE ) ) elif i in operators: # RULE 2 operator_stack.push(SCREAMING_SNAKE_CASE ) elif i == ")": # RULE 4 A_ = operator_stack.peek() operator_stack.pop() A_ = operand_stack.peek() operand_stack.pop() A_ = operand_stack.peek() operand_stack.pop() A_ = operators[opr](SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) operand_stack.push(SCREAMING_SNAKE_CASE ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": __lowercase = """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(f'{equation} = {dijkstras_two_stack_algorithm(equation)}')
203
0
"""simple docstring""" import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) def _a ( _snake_case , _snake_case ): """simple docstring""" UpperCAmelCase = RobertaPreLayerNormConfig.from_pretrained( lowerCamelCase_ , architectures=["""RobertaPreLayerNormForMaskedLM"""] ) # convert state_dict UpperCAmelCase = torch.load(hf_hub_download(repo_id=lowerCamelCase_ , filename="""pytorch_model.bin""" ) ) UpperCAmelCase = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith("""roberta.""" ): UpperCAmelCase = """roberta_prelayernorm.""" + tensor_key[len("""roberta.""" ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith(""".self.LayerNorm.weight""" ) or tensor_key.endswith(""".self.LayerNorm.bias""" ): continue UpperCAmelCase = tensor_value UpperCAmelCase = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=lowerCamelCase_ , config=lowerCamelCase_ , state_dict=lowerCamelCase_ ) model.save_pretrained(lowerCamelCase_ ) # convert tokenizer UpperCAmelCase = AutoTokenizer.from_pretrained(lowerCamelCase_ ) tokenizer.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint-repo""", default=None, type=str, required=True, help="""Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) _UpperCamelCase = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
712
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class lowerCamelCase__ : def __init__( self ,A ,): UpperCAmelCase = parent UpperCAmelCase = 13 UpperCAmelCase = 7 UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = 2 UpperCAmelCase = 99 UpperCAmelCase = 0 UpperCAmelCase = 32 UpperCAmelCase = 2 UpperCAmelCase = 4 UpperCAmelCase = 0.1 UpperCAmelCase = 0.1 UpperCAmelCase = 512 UpperCAmelCase = 16 UpperCAmelCase = 2 UpperCAmelCase = 0.02 UpperCAmelCase = 3 UpperCAmelCase = 4 UpperCAmelCase = """last""" UpperCAmelCase = True UpperCAmelCase = None UpperCAmelCase = 0 def _UpperCamelCase ( self ): UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ,dtype=tf.floataa ) UpperCAmelCase = None if self.use_input_lengths: UpperCAmelCase = ( ids_tensor([self.batch_size] ,vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length UpperCAmelCase = None if self.use_token_type_ids: UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] ,self.n_langs ) UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) UpperCAmelCase = ids_tensor([self.batch_size] ,2 ,dtype=tf.floataa ) UpperCAmelCase = ids_tensor([self.batch_size] ,self.num_choices ) UpperCAmelCase = FlaubertConfig( vocab_size=self.vocab_size ,n_special=self.n_special ,emb_dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,gelu_activation=self.gelu_activation ,sinusoidal_embeddings=self.sinusoidal_embeddings ,asm=self.asm ,causal=self.causal ,n_langs=self.n_langs ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,summary_type=self.summary_type ,use_proj=self.use_proj ,bos_token_id=self.bos_token_id ,) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _UpperCamelCase ( self ,A ,A ,A ,A ,A ,A ,A ,A ,A ,): UpperCAmelCase = TFFlaubertModel(config=A ) UpperCAmelCase = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids} UpperCAmelCase = model(A ) UpperCAmelCase = [input_ids, input_mask] UpperCAmelCase = model(A ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self ,A ,A ,A ,A ,A ,A ,A ,A ,A ,): UpperCAmelCase = TFFlaubertWithLMHeadModel(A ) UpperCAmelCase = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids} UpperCAmelCase = model(A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCamelCase ( self ,A ,A ,A ,A ,A ,A ,A ,A ,A ,): UpperCAmelCase = TFFlaubertForQuestionAnsweringSimple(A ) UpperCAmelCase = {"""input_ids""": input_ids, """lengths""": input_lengths} UpperCAmelCase = model(A ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _UpperCamelCase ( self ,A ,A ,A ,A ,A ,A ,A ,A ,A ,): UpperCAmelCase = TFFlaubertForSequenceClassification(A ) UpperCAmelCase = {"""input_ids""": input_ids, """lengths""": input_lengths} UpperCAmelCase = model(A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def _UpperCamelCase ( self ,A ,A ,A ,A ,A ,A ,A ,A ,A ,): UpperCAmelCase = self.num_labels UpperCAmelCase = TFFlaubertForTokenClassification(config=A ) UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} UpperCAmelCase = model(A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _UpperCamelCase ( self ,A ,A ,A ,A ,A ,A ,A ,A ,A ,): UpperCAmelCase = self.num_choices UpperCAmelCase = TFFlaubertForMultipleChoice(config=A ) UpperCAmelCase = tf.tile(tf.expand_dims(A ,1 ) ,(1, self.num_choices, 1) ) UpperCAmelCase = tf.tile(tf.expand_dims(A ,1 ) ,(1, self.num_choices, 1) ) UpperCAmelCase = tf.tile(tf.expand_dims(A ,1 ) ,(1, self.num_choices, 1) ) UpperCAmelCase = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } UpperCAmelCase = model(A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def _UpperCamelCase ( self ): UpperCAmelCase = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) = config_and_inputs UpperCAmelCase = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """langs""": token_type_ids, """lengths""": input_lengths, } return config, inputs_dict @require_tf class lowerCamelCase__ ( snake_case , snake_case , unittest.TestCase ): SCREAMING_SNAKE_CASE = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) SCREAMING_SNAKE_CASE = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable SCREAMING_SNAKE_CASE = ( { '''feature-extraction''': TFFlaubertModel, '''fill-mask''': TFFlaubertWithLMHeadModel, '''question-answering''': TFFlaubertForQuestionAnsweringSimple, '''text-classification''': TFFlaubertForSequenceClassification, '''token-classification''': TFFlaubertForTokenClassification, '''zero-shot''': TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def _UpperCamelCase ( self ,A ,A ,A ,A ,A ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _UpperCamelCase ( self ): UpperCAmelCase = TFFlaubertModelTester(self ) UpperCAmelCase = ConfigTester(self ,config_class=A ,emb_dim=37 ) def _UpperCamelCase ( self ): self.config_tester.run_common_tests() def _UpperCamelCase ( self ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*A ) def _UpperCamelCase ( self ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*A ) def _UpperCamelCase ( self ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*A ) def _UpperCamelCase ( self ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*A ) def _UpperCamelCase ( self ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*A ) def _UpperCamelCase ( self ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*A ) @slow def _UpperCamelCase ( self ): for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = TFFlaubertModel.from_pretrained(A ) self.assertIsNotNone(A ) @require_tf @require_sentencepiece @require_tokenizers class lowerCamelCase__ ( unittest.TestCase ): @slow def _UpperCamelCase ( self ): UpperCAmelCase = TFFlaubertModel.from_pretrained("""jplu/tf-flaubert-small-cased""" ) UpperCAmelCase = tf.convert_to_tensor( [[0, 158, 735, 2_592, 1_424, 6_727, 82, 1]] ,dtype=tf.intaa ,) # "J'aime flaubert !" UpperCAmelCase = model(A )[0] UpperCAmelCase = tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape ,A ) # compare the actual values for a slice. UpperCAmelCase = tf.convert_to_tensor( [ [ [-1.8768773, -1.566555, 0.27072418], [-1.6920038, -0.5873505, 1.9329599], [-2.9563985, -1.6993835, 1.7972052], ] ] ,dtype=tf.floataa ,) self.assertTrue(np.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1e-4 ) )
74
0
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def lowerCamelCase ( ): '''simple docstring''' __UpperCamelCase :List[Any] = [randint(-1_000 , 1_000 ) for i in range(10 )] __UpperCamelCase :Dict = randint(-5_000 , 5_000 ) return (arr, r) __lowercase = make_dataset() def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' for triplet in permutations(lowercase_ , 3 ): if sum(lowercase_ ) == target: return tuple(sorted(lowercase_ ) ) return (0, 0, 0) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' arr.sort() __UpperCamelCase :Union[str, Any] = len(lowercase_ ) for i in range(n - 1 ): __UpperCamelCase :Tuple = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def lowerCamelCase ( ): '''simple docstring''' __UpperCamelCase :Union[str, Any] = ''' from __main__ import dataset, triplet_sum1, triplet_sum2 ''' __UpperCamelCase :int = ''' triplet_sum1(*dataset) ''' __UpperCamelCase :Union[str, Any] = ''' triplet_sum2(*dataset) ''' __UpperCamelCase :Any = repeat(setup=lowercase_ , stmt=lowercase_ , repeat=5 , number=10_000 ) __UpperCamelCase :Dict = repeat(setup=lowercase_ , stmt=lowercase_ , repeat=5 , number=10_000 ) return (min(lowercase_ ), min(lowercase_ )) if __name__ == "__main__": from doctest import testmod testmod() __lowercase = solution_times() print(F'The time for naive implementation is {times[0]}.') print(F'The time for optimized implementation is {times[1]}.')
167
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset lowerCAmelCase = random.Random() def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=1.0 , lowercase_=None , lowercase_=None ) -> Union[str, Any]: '''simple docstring''' if rng is None: __UpperCAmelCase : str = global_rng __UpperCAmelCase : List[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowerCamelCase ( unittest.TestCase ): def __init__( self , lowercase__ , lowercase__=7 , lowercase__=4_0_0 , lowercase__=2_0_0_0 , lowercase__=2_0_4_8 , lowercase__=1_2_8 , lowercase__=1 , lowercase__=5_1_2 , lowercase__=3_0 , lowercase__=4_4_1_0_0 , ): __UpperCAmelCase : Optional[Any] = parent __UpperCAmelCase : Any = batch_size __UpperCAmelCase : int = min_seq_length __UpperCAmelCase : List[str] = max_seq_length __UpperCAmelCase : Dict = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __UpperCAmelCase : Any = spectrogram_length __UpperCAmelCase : List[Any] = feature_size __UpperCAmelCase : Union[str, Any] = num_audio_channels __UpperCAmelCase : Optional[int] = hop_length __UpperCAmelCase : Tuple = chunk_length __UpperCAmelCase : Any = sampling_rate def A( self): return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def A( self , lowercase__=False , lowercase__=False): def _flatten(lowercase__): return list(itertools.chain(*lowercase__)) if equal_length: __UpperCAmelCase : str = [floats_list((self.max_seq_length, self.feature_size)) for _ in range(self.batch_size)] else: # make sure that inputs increase in size __UpperCAmelCase : List[str] = [ floats_list((x, self.feature_size)) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff) ] if numpify: __UpperCAmelCase : List[str] = [np.asarray(lowercase__) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowerCamelCase ( _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : Optional[int] = TvltFeatureExtractor def A( self): __UpperCAmelCase : Dict = TvltFeatureExtractionTester(self) def A( self): __UpperCAmelCase : Optional[int] = self.feature_extraction_class(**self.feat_extract_dict) self.assertTrue(hasattr(lowercase__ , '''spectrogram_length''')) self.assertTrue(hasattr(lowercase__ , '''feature_size''')) self.assertTrue(hasattr(lowercase__ , '''num_audio_channels''')) self.assertTrue(hasattr(lowercase__ , '''hop_length''')) self.assertTrue(hasattr(lowercase__ , '''chunk_length''')) self.assertTrue(hasattr(lowercase__ , '''sampling_rate''')) def A( self): __UpperCAmelCase : str = self.feature_extraction_class(**self.feat_extract_dict) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : str = feat_extract_first.save_pretrained(lowercase__)[0] check_json_file_has_correct_format(lowercase__) __UpperCAmelCase : Optional[int] = self.feature_extraction_class.from_pretrained(lowercase__) __UpperCAmelCase : List[Any] = feat_extract_first.to_dict() __UpperCAmelCase : Union[str, Any] = feat_extract_second.to_dict() __UpperCAmelCase : Union[str, Any] = dict_first.pop('''mel_filters''') __UpperCAmelCase : Union[str, Any] = dict_second.pop('''mel_filters''') self.assertTrue(np.allclose(lowercase__ , lowercase__)) self.assertEqual(lowercase__ , lowercase__) def A( self): __UpperCAmelCase : Optional[int] = self.feature_extraction_class(**self.feat_extract_dict) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : Union[str, Any] = os.path.join(lowercase__ , '''feat_extract.json''') feat_extract_first.to_json_file(lowercase__) __UpperCAmelCase : str = self.feature_extraction_class.from_json_file(lowercase__) __UpperCAmelCase : Any = feat_extract_first.to_dict() __UpperCAmelCase : Union[str, Any] = feat_extract_second.to_dict() __UpperCAmelCase : Tuple = dict_first.pop('''mel_filters''') __UpperCAmelCase : List[str] = dict_second.pop('''mel_filters''') self.assertTrue(np.allclose(lowercase__ , lowercase__)) self.assertEqual(lowercase__ , lowercase__) def A( self): # Initialize feature_extractor __UpperCAmelCase : Optional[int] = self.feature_extraction_class(**self.feat_extract_dict) # create three inputs of length 800, 1000, and 1200 __UpperCAmelCase : Optional[int] = [floats_list((1, x))[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0)] __UpperCAmelCase : int = [np.asarray(lowercase__) for speech_input in speech_inputs] # Test not batched input __UpperCAmelCase : Dict = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' , sampling_rate=4_4_1_0_0).audio_values self.assertTrue(encoded_audios.ndim == 4) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels) # Test batched __UpperCAmelCase : List[str] = feature_extractor(lowercase__ , return_tensors='''np''' , sampling_rate=4_4_1_0_0).audio_values self.assertTrue(encoded_audios.ndim == 4) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels) # Test audio masking __UpperCAmelCase : Tuple = feature_extractor( lowercase__ , return_tensors='''np''' , sampling_rate=4_4_1_0_0 , mask_audio=lowercase__).audio_values self.assertTrue(encoded_audios.ndim == 4) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels) # Test 2-D numpy arrays are batched. __UpperCAmelCase : Any = [floats_list((1, x))[0] for x in (8_0_0, 8_0_0, 8_0_0)] __UpperCAmelCase : Optional[Any] = np.asarray(lowercase__) __UpperCAmelCase : Tuple = feature_extractor(lowercase__ , return_tensors='''np''' , sampling_rate=4_4_1_0_0).audio_values self.assertTrue(encoded_audios.ndim == 4) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels) def A( self , lowercase__): __UpperCAmelCase : Optional[int] = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''') # automatic decoding with librispeech __UpperCAmelCase : int = ds.sort('''id''').select(range(lowercase__))[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def A( self): __UpperCAmelCase : Optional[Any] = self._load_datasamples(1) __UpperCAmelCase : Tuple = TvltFeatureExtractor() __UpperCAmelCase : Tuple = feature_extractor(lowercase__ , return_tensors='''pt''').audio_values self.assertEquals(audio_values.shape , (1, 1, 1_9_2, 1_2_8)) __UpperCAmelCase : int = torch.tensor([[-0.3_0_3_2, -0.2_7_0_8], [-0.4_4_3_4, -0.4_0_0_7]]) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , lowercase__ , atol=1e-4))
462
0
import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self , a , a=13 , a=7 , a=True , a=True , a=True , a=True , a=99 , a=32 , a=5 , a=4 , a=37 , a="gelu" , a=0.1 , a=0.1 , a=5_12 , a=16 , a=2 , a=0.02 , a=4 , ) -> str: snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_attention_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_choices def _UpperCamelCase ( self ) -> Dict: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = None if self.use_attention_mask: snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = None if self.use_token_type_ids: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _UpperCamelCase ( self ) -> Dict: snake_case_ = self.prepare_config_and_inputs() snake_case_ = config_and_inputs snake_case_ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def _UpperCamelCase ( self ) -> str: snake_case_ = self.prepare_config_and_inputs() snake_case_ = config_and_inputs snake_case_ = True snake_case_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class UpperCamelCase_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase = True lowerCAmelCase = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def _UpperCamelCase ( self ) -> Dict: snake_case_ = FlaxBertModelTester(self ) @slow def _UpperCamelCase ( self ) -> List[str]: snake_case_ = FlaxBertModel.from_pretrained('bert-base-cased' ) snake_case_ = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCamelCase_ )
704
import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor lowercase = logging.get_logger(__name__) class UpperCamelCase_ ( snake_case_ ): '''simple docstring''' def __init__( self , *a , **a ) -> None: warnings.warn( 'The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use YolosImageProcessor instead.' , a , ) super().__init__(*a , **a )
607
0
'''simple docstring''' import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures lowercase_ = logging.get_logger(__name__) @dataclass class __A : '''simple docstring''' __lowerCamelCase : str = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(glue_processors.keys() )} ) __lowerCamelCase : str = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) __lowerCamelCase : int = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __lowerCamelCase : bool = field( default=A , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def a__ (self ) -> Optional[Any]: """simple docstring""" _a = self.task_name.lower() class __A ( A ): '''simple docstring''' __lowerCamelCase : List[Any] = 'train' __lowerCamelCase : Tuple = 'dev' __lowerCamelCase : Tuple = 'test' class __A ( A ): '''simple docstring''' __lowerCamelCase : GlueDataTrainingArguments __lowerCamelCase : str __lowerCamelCase : List[InputFeatures] def __init__(self , A , A , A = None , A = Split.train , A = None , ) -> Optional[Any]: """simple docstring""" warnings.warn( '''This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets ''' '''library. You can have a look at this example script for pointers: ''' '''https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py''' , A , ) _a = args _a = glue_processors[args.task_name]() _a = glue_output_modes[args.task_name] if isinstance(A , A ): try: _a = Split[mode] except KeyError: raise KeyError('''mode is not a valid split name''' ) # Load data features from cache or dataset file _a = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}''' , ) _a = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) _a , _a = label_list[2], label_list[1] _a = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _a = cached_features_file + '''.lock''' with FileLock(A ): if os.path.exists(A ) and not args.overwrite_cache: _a = time.time() _a = torch.load(A ) logger.info( f'''Loading features from cached file {cached_features_file} [took %.3f s]''' , time.time() - start ) else: logger.info(f'''Creating features from dataset file at {args.data_dir}''' ) if mode == Split.dev: _a = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: _a = self.processor.get_test_examples(args.data_dir ) else: _a = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: _a = examples[:limit_length] _a = glue_convert_examples_to_features( A , A , max_length=args.max_seq_length , label_list=A , output_mode=self.output_mode , ) _a = time.time() torch.save(self.features , A ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__(self ) -> Any: """simple docstring""" return len(self.features ) def __getitem__(self , A ) -> InputFeatures: """simple docstring""" return self.features[i] def a__ (self ) -> int: """simple docstring""" return self.label_list
11
'''simple docstring''' import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def lowerCAmelCase (__A , __A , __A): """simple docstring""" if isinstance(__A , torch.Tensor): return image elif isinstance(__A , PIL.Image.Image): _a = [image] if isinstance(image[0] , PIL.Image.Image): _a = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos''']))[None, :] for i in image] _a = np.concatenate(__A , axis=0) _a = np.array(__A).astype(np.floataa) / 2_55.0 _a = image.transpose(0 , 3 , 1 , 2) _a = 2.0 * image - 1.0 _a = torch.from_numpy(__A) elif isinstance(image[0] , torch.Tensor): _a = torch.cat(__A , dim=0) return image def lowerCAmelCase (__A , __A , __A , __A=0.99_95): """simple docstring""" if not isinstance(__A , np.ndarray): _a = True _a = va.device _a = va.cpu().numpy() _a = va.cpu().numpy() _a = np.sum(va * va / (np.linalg.norm(__A) * np.linalg.norm(__A))) if np.abs(__A) > DOT_THRESHOLD: _a = (1 - t) * va + t * va else: _a = np.arccos(__A) _a = np.sin(__A) _a = theta_a * t _a = np.sin(__A) _a = np.sin(theta_a - theta_t) / sin_theta_a _a = sin_theta_t / sin_theta_a _a = sa * va + sa * va if inputs_are_torch: _a = torch.from_numpy(__A).to(__A) return va def lowerCAmelCase (__A , __A): """simple docstring""" _a = F.normalize(__A , dim=-1) _a = F.normalize(__A , dim=-1) return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2) def lowerCAmelCase (__A , __A): """simple docstring""" for param in model.parameters(): _a = value class __A ( A ): '''simple docstring''' def __init__(self , A , A , A , A , A , A , A , A=None , A=None , A=None , ) -> str: """simple docstring""" super().__init__() self.register_modules( vae=A , text_encoder=A , clip_model=A , tokenizer=A , unet=A , scheduler=A , feature_extractor=A , coca_model=A , coca_tokenizer=A , coca_transform=A , ) _a = ( feature_extractor.size if isinstance(feature_extractor.size , A ) else feature_extractor.size['''shortest_edge'''] ) _a = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , A ) set_requires_grad(self.clip_model , A ) def a__ (self , A = "auto" ) -> Union[str, Any]: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _a = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(A ) def a__ (self ) -> Optional[Any]: """simple docstring""" self.enable_attention_slicing(A ) def a__ (self ) -> int: """simple docstring""" set_requires_grad(self.vae , A ) def a__ (self ) -> Union[str, Any]: """simple docstring""" set_requires_grad(self.vae , A ) def a__ (self ) -> Dict: """simple docstring""" set_requires_grad(self.unet , A ) def a__ (self ) -> str: """simple docstring""" set_requires_grad(self.unet , A ) def a__ (self , A , A , A ) -> Optional[Any]: """simple docstring""" _a = min(int(num_inference_steps * strength ) , A ) _a = max(num_inference_steps - init_timestep , 0 ) _a = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def a__ (self , A , A , A , A , A , A=None ) -> List[str]: """simple docstring""" if not isinstance(A , torch.Tensor ): raise ValueError(f'''`image` has to be of type `torch.Tensor` but is {type(A )}''' ) _a = image.to(device=A , dtype=A ) if isinstance(A , A ): _a = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(A ) ] _a = torch.cat(A , dim=0 ) else: _a = self.vae.encode(A ).latent_dist.sample(A ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _a = 0.18215 * init_latents _a = init_latents.repeat_interleave(A , dim=0 ) _a = randn_tensor(init_latents.shape , generator=A , device=A , dtype=A ) # get latents _a = self.scheduler.add_noise(A , A , A ) _a = init_latents return latents def a__ (self , A ) -> Tuple: """simple docstring""" _a = self.coca_transform(A ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): _a = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) _a = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split('''<end_of_text>''' )[0].replace('''<start_of_text>''' , '''''' ).rstrip(''' .,''' ) def a__ (self , A , A ) -> List[Any]: """simple docstring""" _a = self.feature_extractor.preprocess(A ) _a = torch.from_numpy(clip_image_input['''pixel_values'''][0] ).unsqueeze(0 ).to(self.device ).half() _a = self.clip_model.get_image_features(A ) _a = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=A ) _a = image_embeddings_clip.repeat_interleave(A , dim=0 ) return image_embeddings_clip @torch.enable_grad() def a__ (self , A , A , A , A , A , A , A , ) -> Union[str, Any]: """simple docstring""" _a = latents.detach().requires_grad_() _a = self.scheduler.scale_model_input(A , A ) # predict the noise residual _a = self.unet(A , A , encoder_hidden_states=A ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): _a = self.scheduler.alphas_cumprod[timestep] _a = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _a = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 _a = torch.sqrt(A ) _a = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , A ): _a = self.scheduler.sigmas[index] _a = latents - sigma * noise_pred else: raise ValueError(f'''scheduler type {type(self.scheduler )} not supported''' ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _a = 1 / 0.18215 * sample _a = self.vae.decode(A ).sample _a = (image / 2 + 0.5).clamp(0 , 1 ) _a = transforms.Resize(self.feature_extractor_size )(A ) _a = self.normalize(A ).to(latents.dtype ) _a = self.clip_model.get_image_features(A ) _a = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=A ) _a = spherical_dist_loss(A , A ).mean() * clip_guidance_scale _a = -torch.autograd.grad(A , A )[0] if isinstance(self.scheduler , A ): _a = latents.detach() + grads * (sigma**2) _a = noise_pred_original else: _a = noise_pred_original - torch.sqrt(A ) * grads return noise_pred, latents @torch.no_grad() def __call__(self , A , A , A = None , A = None , A = 512 , A = 512 , A = 0.6 , A = 50 , A = 7.5 , A = 1 , A = 0.0 , A = 100 , A = None , A = "pil" , A = True , A = 0.8 , A = 0.1 , A = 0.1 , ) -> str: """simple docstring""" if isinstance(A , A ) and len(A ) != batch_size: raise ValueError(f'''You have passed {batch_size} batch_size, but only {len(A )} generators.''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if isinstance(A , torch.Generator ) and batch_size > 1: _a = [generator] + [None] * (batch_size - 1) _a = [ ('''model''', self.coca_model is None), ('''tokenizer''', self.coca_tokenizer is None), ('''transform''', self.coca_transform is None), ] _a = [x[0] for x in coca_is_none if x[1]] _a = ''', '''.join(A ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(A ): raise ValueError( f'''Content prompt is None and CoCa [{coca_is_none_str}] is None.''' f'''Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) _a = self.get_image_description(A ) if style_prompt is None: if len(A ): raise ValueError( f'''Style prompt is None and CoCa [{coca_is_none_str}] is None.''' f''' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) _a = self.get_image_description(A ) # get prompt text embeddings for content and style _a = self.tokenizer( A , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=A , return_tensors='''pt''' , ) _a = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] _a = self.tokenizer( A , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=A , return_tensors='''pt''' , ) _a = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] _a = slerp(A , A , A ) # duplicate text embeddings for each generation per prompt _a = text_embeddings.repeat_interleave(A , dim=0 ) # set timesteps _a = '''offset''' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) _a = {} if accepts_offset: _a = 1 self.scheduler.set_timesteps(A , **A ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) _a , _a = self.get_timesteps(A , A , self.device ) _a = timesteps[:1].repeat(A ) # Preprocess image _a = preprocess(A , A , A ) _a = self.prepare_latents( A , A , A , text_embeddings.dtype , self.device , A ) _a = preprocess(A , A , A ) _a = self.prepare_latents( A , A , A , text_embeddings.dtype , self.device , A ) _a = slerp(A , A , A ) if clip_guidance_scale > 0: _a = self.get_clip_image_embeddings(A , A ) _a = self.get_clip_image_embeddings(A , A ) _a = slerp( A , A , A ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _a = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _a = content_text_input.input_ids.shape[-1] _a = self.tokenizer([''''''] , padding='''max_length''' , max_length=A , return_tensors='''pt''' ) _a = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt _a = uncond_embeddings.repeat_interleave(A , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _a = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _a = (batch_size, self.unet.config.in_channels, height // 8, width // 8) _a = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps _a = torch.randn(A , generator=A , device='''cpu''' , dtype=A ).to( self.device ) else: _a = torch.randn(A , generator=A , device=self.device , dtype=A ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) _a = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _a = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _a = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _a = {} if accepts_eta: _a = eta # check if the scheduler accepts generator _a = '''generator''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: _a = generator with self.progress_bar(total=A ): for i, t in enumerate(A ): # expand the latents if we are doing classifier free guidance _a = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _a = self.scheduler.scale_model_input(A , A ) # predict the noise residual _a = self.unet(A , A , encoder_hidden_states=A ).sample # perform classifier free guidance if do_classifier_free_guidance: _a , _a = noise_pred.chunk(2 ) _a = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: _a = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) _a , _a = self.cond_fn( A , A , A , A , A , A , A , ) # compute the previous noisy sample x_t -> x_t-1 _a = self.scheduler.step(A , A , A , **A ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _a = 1 / 0.18215 * latents _a = self.vae.decode(A ).sample _a = (image / 2 + 0.5).clamp(0 , 1 ) _a = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _a = self.numpy_to_pil(A ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=A , nsfw_content_detected=A )
11
1
"""simple docstring""" def a_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Tuple ): '''simple docstring''' lowercase__ : Optional[Any] = (boundary[1] - boundary[0]) / steps lowercase__ : Optional[int] = boundary[0] lowercase__ : int = boundary[1] lowercase__ : List[str] = make_points(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) lowercase__ : Optional[int] = 0.0 y += (h / 2.0) * f(_lowerCAmelCase ) for i in x_i: # print(i) y += h * f(_lowerCAmelCase ) y += (h / 2.0) * f(_lowerCAmelCase ) return y def a_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Any ): '''simple docstring''' lowercase__ : List[Any] = a + h while x < (b - h): yield x lowercase__ : Tuple = x + h def a_ ( _lowerCAmelCase : Union[str, Any] ): # enter your function here '''simple docstring''' lowercase__ : Any = (x - 0) * (x - 0) return y def a_ ( ): '''simple docstring''' lowercase__ : Union[str, Any] = 0.0 # Lower bound of integration lowercase__ : List[Any] = 1.0 # Upper bound of integration lowercase__ : str = 1_0.0 # define number of steps or resolution lowercase__ : Dict = [a, b] # define boundary of integration lowercase__ : int = method_a(_lowerCAmelCase , _lowerCAmelCase ) print(f"""y = {y}""" ) if __name__ == "__main__": main()
720
"""simple docstring""" from collections.abc import Sequence def a_ ( _lowerCAmelCase : Sequence[float] , _lowerCAmelCase : float ): '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(_lowerCAmelCase ) ) def a_ ( _lowerCAmelCase : Sequence[float] , _lowerCAmelCase : float ): '''simple docstring''' lowercase__ : int = 0.0 for coeff in reversed(_lowerCAmelCase ): lowercase__ : List[Any] = result * x + coeff return result if __name__ == "__main__": _UpperCamelCase : int = (0.0, 0.0, 5.0, 9.3, 7.0) _UpperCamelCase : Dict = 1_0.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
645
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ : int = { "configuration_blip_2": [ "BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Blip2Config", "Blip2QFormerConfig", "Blip2VisionConfig", ], "processing_blip_2": ["Blip2Processor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[Any] = [ "BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST", "Blip2Model", "Blip2QFormerModel", "Blip2PreTrainedModel", "Blip2ForConditionalGeneration", "Blip2VisionModel", ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys a__ : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
622
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : int ="Speech2TextFeatureExtractor" a : int ="Speech2TextTokenizer" def __init__( self , snake_case__ , snake_case__ ): """simple docstring""" super().__init__(snake_case__ , snake_case__ ) lowerCAmelCase : Any = self.feature_extractor lowerCAmelCase : str = False def __call__( self , *snake_case__ , **snake_case__ ): """simple docstring""" if self._in_target_context_manager: return self.current_processor(*snake_case__ , **snake_case__ ) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." ) lowerCAmelCase : Any = kwargs.pop("raw_speech" ) else: lowerCAmelCase : Optional[int] = kwargs.pop("audio" , snake_case__ ) lowerCAmelCase : Union[str, Any] = kwargs.pop("sampling_rate" , snake_case__ ) lowerCAmelCase : str = kwargs.pop("text" , snake_case__ ) if len(snake_case__ ) > 0: lowerCAmelCase : int = args[0] lowerCAmelCase : List[Any] = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: lowerCAmelCase : Dict = self.feature_extractor(snake_case__ , *snake_case__ , sampling_rate=snake_case__ , **snake_case__ ) if text is not None: lowerCAmelCase : int = self.tokenizer(snake_case__ , **snake_case__ ) if text is None: return inputs elif audio is None: return encodings else: lowerCAmelCase : Dict = encodings["input_ids"] return inputs def lowercase__ ( self , *snake_case__ , **snake_case__ ): """simple docstring""" return self.tokenizer.batch_decode(*snake_case__ , **snake_case__ ) def lowercase__ ( self , *snake_case__ , **snake_case__ ): """simple docstring""" return self.tokenizer.decode(*snake_case__ , **snake_case__ ) @contextmanager def lowercase__ ( self ): """simple docstring""" warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) lowerCAmelCase : List[str] = True lowerCAmelCase : Any = self.tokenizer yield lowerCAmelCase : Optional[Any] = self.feature_extractor lowerCAmelCase : Dict = False
645
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _UpperCAmelCase : List[str] = { """configuration_efficientformer""": [ """EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """EfficientFormerConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Tuple = ["""EfficientFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Tuple = [ """EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """EfficientFormerForImageClassification""", """EfficientFormerForImageClassificationWithTeacher""", """EfficientFormerModel""", """EfficientFormerPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Union[str, Any] = [ """TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFEfficientFormerForImageClassification""", """TFEfficientFormerForImageClassificationWithTeacher""", """TFEfficientFormerModel""", """TFEfficientFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys _UpperCAmelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
474
'''simple docstring''' from string import ascii_uppercase _UpperCAmelCase : Optional[int] = {char: i for i, char in enumerate(ascii_uppercase)} _UpperCAmelCase : Optional[int] = dict(enumerate(ascii_uppercase)) def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = len(lowerCamelCase) __lowerCAmelCase = 0 while True: if x == i: __lowerCAmelCase = 0 if len(lowerCamelCase) == len(lowerCamelCase): break key += key[i] i += 1 return key def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = '''''' __lowerCAmelCase = 0 for letter in message: if letter == " ": cipher_text += " " else: __lowerCAmelCase = (dicta[letter] - dicta[key_new[i]]) % 2_6 i += 1 cipher_text += dicta[x] return cipher_text def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = '''''' __lowerCAmelCase = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: __lowerCAmelCase = (dicta[letter] + dicta[key_new[i]] + 2_6) % 2_6 i += 1 or_txt += dicta[x] return or_txt def __magic_name__( ): __lowerCAmelCase = '''THE GERMAN ATTACK''' __lowerCAmelCase = '''SECRET''' __lowerCAmelCase = generate_key(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = cipher_text(lowerCamelCase, lowerCamelCase) print(F"""Encrypted Text = {s}""") print(F"""Original Text = {original_text(lowerCamelCase, lowerCamelCase)}""") if __name__ == "__main__": import doctest doctest.testmod() main()
474
1
from string import ascii_uppercase a_ = {str(ord(c) - 55): c for c in ascii_uppercase} def __lowerCAmelCase ( A_ : int , A_ : int ) -> str: if isinstance(A_ , A_ ): raise TypeError("int() can't convert non-string with explicit base" ) if num < 0: raise ValueError("parameter must be positive int" ) if isinstance(A_ , A_ ): raise TypeError("'str' object cannot be interpreted as an integer" ) if isinstance(A_ , A_ ): raise TypeError("'float' object cannot be interpreted as an integer" ) if base in (0, 1): raise ValueError("base must be >= 2" ) if base > 36: raise ValueError("base must be <= 36" ) __UpperCAmelCase = "" __UpperCAmelCase = 0 __UpperCAmelCase = 0 while div != 1: __UpperCAmelCase , __UpperCAmelCase = divmod(A_ , A_ ) if base >= 11 and 9 < mod < 36: __UpperCAmelCase = ALPHABET_VALUES[str(A_ )] else: __UpperCAmelCase = str(A_ ) new_value += actual_value __UpperCAmelCase = num // base __UpperCAmelCase = div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(A_ ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 37): for num in range(1000): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
221
import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def __lowerCAmelCase ( A_ : Features ) -> Optional[int]: __UpperCAmelCase = np.inf def set_batch_size(A_ : FeatureType ) -> None: nonlocal batch_size if isinstance(A_ , A_ ): __UpperCAmelCase = min(A_ , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(A_ , A_ ): __UpperCAmelCase = min(A_ , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(A_ , A_ ) and feature.dtype == "binary": __UpperCAmelCase = min(A_ , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(A_ , A_ ) return None if batch_size is np.inf else batch_size class UpperCAmelCase__ ( snake_case ): """simple docstring""" def __init__( self: Optional[Any] , __lowerCAmelCase: NestedDataStructureLike[PathLike] , __lowerCAmelCase: Optional[NamedSplit] = None , __lowerCAmelCase: Optional[Features] = None , __lowerCAmelCase: str = None , __lowerCAmelCase: bool = False , __lowerCAmelCase: bool = False , __lowerCAmelCase: Optional[int] = None , **__lowerCAmelCase: List[Any] , ) -> Any: '''simple docstring''' super().__init__( __lowerCAmelCase , split=__lowerCAmelCase , features=__lowerCAmelCase , cache_dir=__lowerCAmelCase , keep_in_memory=__lowerCAmelCase , streaming=__lowerCAmelCase , num_proc=__lowerCAmelCase , **__lowerCAmelCase , ) __UpperCAmelCase = path_or_paths if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else {self.split: path_or_paths} __UpperCAmelCase = _PACKAGED_DATASETS_MODULES["parquet"][1] __UpperCAmelCase = Parquet( cache_dir=__lowerCAmelCase , data_files=__lowerCAmelCase , features=__lowerCAmelCase , hash=__lowerCAmelCase , **__lowerCAmelCase , ) def _UpperCAmelCase ( self: Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' if self.streaming: __UpperCAmelCase = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None self.builder.download_and_prepare( download_config=__lowerCAmelCase , download_mode=__lowerCAmelCase , verification_mode=__lowerCAmelCase , base_path=__lowerCAmelCase , num_proc=self.num_proc , ) __UpperCAmelCase = self.builder.as_dataset( split=self.split , verification_mode=__lowerCAmelCase , in_memory=self.keep_in_memory ) return dataset class UpperCAmelCase__ : """simple docstring""" def __init__( self: Optional[int] , __lowerCAmelCase: Dataset , __lowerCAmelCase: Union[PathLike, BinaryIO] , __lowerCAmelCase: Optional[int] = None , **__lowerCAmelCase: Optional[int] , ) -> Dict: '''simple docstring''' __UpperCAmelCase = dataset __UpperCAmelCase = path_or_buf __UpperCAmelCase = batch_size or get_writer_batch_size(dataset.features ) __UpperCAmelCase = parquet_writer_kwargs def _UpperCAmelCase ( self: Optional[Any] ) -> int: '''simple docstring''' __UpperCAmelCase = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , "wb+" ) as buffer: __UpperCAmelCase = self._write(file_obj=__lowerCAmelCase , batch_size=__lowerCAmelCase , **self.parquet_writer_kwargs ) else: __UpperCAmelCase = self._write(file_obj=self.path_or_buf , batch_size=__lowerCAmelCase , **self.parquet_writer_kwargs ) return written def _UpperCAmelCase ( self: Tuple , __lowerCAmelCase: BinaryIO , __lowerCAmelCase: int , **__lowerCAmelCase: List[Any] ) -> int: '''simple docstring''' __UpperCAmelCase = 0 __UpperCAmelCase = parquet_writer_kwargs.pop("path_or_buf" , __lowerCAmelCase ) __UpperCAmelCase = self.dataset.features.arrow_schema __UpperCAmelCase = pq.ParquetWriter(__lowerCAmelCase , schema=__lowerCAmelCase , **__lowerCAmelCase ) for offset in logging.tqdm( range(0 , len(self.dataset ) , __lowerCAmelCase ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating parquet from Arrow format" , ): __UpperCAmelCase = query_table( table=self.dataset._data , key=slice(__lowerCAmelCase , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(__lowerCAmelCase ) written += batch.nbytes writer.close() return written
221
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Optional[int] = logging.get_logger(__name__) __A : List[str] = { '''caidas/swin2sr-classicalsr-x2-64''': ( '''https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json''' ), } class _UpperCAmelCase ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ : Tuple = 'swin2sr' SCREAMING_SNAKE_CASE_ : Optional[int] = { 'hidden_size': 'embed_dim', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : Any , A : Any=64 , A : Optional[Any]=1 , A : Dict=3 , A : Any=1_80 , A : Optional[Any]=[6, 6, 6, 6, 6, 6] , A : Union[str, Any]=[6, 6, 6, 6, 6, 6] , A : Tuple=8 , A : int=2.0 , A : List[str]=True , A : int=0.0 , A : Any=0.0 , A : Dict=0.1 , A : Optional[Any]="gelu" , A : List[Any]=False , A : int=0.02 , A : Union[str, Any]=1e-5 , A : List[Any]=2 , A : List[Any]=1.0 , A : Any="1conv" , A : Dict="pixelshuffle" , **A : Dict , ) -> List[str]: super().__init__(**UpperCamelCase_ ) lowercase_ : Optional[Any] = image_size lowercase_ : Any = patch_size lowercase_ : Optional[int] = num_channels lowercase_ : str = embed_dim lowercase_ : Any = depths lowercase_ : str = len(UpperCamelCase_ ) lowercase_ : Any = num_heads lowercase_ : Dict = window_size lowercase_ : Dict = mlp_ratio lowercase_ : Optional[int] = qkv_bias lowercase_ : List[str] = hidden_dropout_prob lowercase_ : Dict = attention_probs_dropout_prob lowercase_ : Optional[Any] = drop_path_rate lowercase_ : Optional[Any] = hidden_act lowercase_ : List[str] = use_absolute_embeddings lowercase_ : Any = layer_norm_eps lowercase_ : str = initializer_range lowercase_ : int = upscale lowercase_ : Tuple = img_range lowercase_ : Dict = resi_connection lowercase_ : Tuple = upsampler
714
"""simple docstring""" import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class _UpperCAmelCase ( _A ): def __init__( self : Optional[int] , A : Optional[Any]=0.01 , A : int=10_00 ) -> Optional[int]: lowercase_ : Dict = p_stop lowercase_ : Optional[Any] = max_length def __iter__( self : Dict ) -> Dict: lowercase_ : str = 0 lowercase_ : Optional[int] = False while not stop and count < self.max_length: yield count count += 1 lowercase_ : List[str] = random.random() < self.p_stop class _UpperCAmelCase ( unittest.TestCase ): def A ( self : List[Any] , A : Any , A : Union[str, Any] , A : Optional[Any]=False , A : Dict=True ) -> str: lowercase_ : Tuple = [ BatchSamplerShard(A , 2 , A , split_batches=A , even_batches=A ) for i in range(2 ) ] lowercase_ : Optional[Any] = [list(A ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(A ) for shard in batch_sampler_shards] , [len(A ) for e in expected] ) self.assertListEqual(A , A ) def A ( self : Dict ) -> Tuple: # Check the shards when the dataset is a round multiple of total batch size. lowercase_ : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) lowercase_ : List[str] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(A , A ) lowercase_ : Tuple = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. lowercase_ : Tuple = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) lowercase_ : int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(A , A ) lowercase_ : str = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) lowercase_ : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. lowercase_ : Tuple = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) lowercase_ : List[str] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(A , A ) lowercase_ : Union[str, Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) lowercase_ : str = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. lowercase_ : Tuple = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) lowercase_ : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(A , A ) lowercase_ : Any = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) lowercase_ : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is very small. lowercase_ : str = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) lowercase_ : Optional[Any] = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(A , A ) lowercase_ : Any = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) lowercase_ : List[str] = [[], []] self.check_batch_sampler_shards(A , A ) def A ( self : str ) -> str: # Check the shards when the dataset is a round multiple of batch size. lowercase_ : List[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) lowercase_ : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) lowercase_ : Dict = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is not a round multiple of batch size. lowercase_ : List[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) lowercase_ : int = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) lowercase_ : Any = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) lowercase_ : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. lowercase_ : Tuple = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) lowercase_ : str = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) lowercase_ : Dict = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) lowercase_ : int = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is very small. lowercase_ : Optional[Any] = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) lowercase_ : Dict = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(A , A , split_batches=A ) lowercase_ : Optional[Any] = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) lowercase_ : str = [[], []] self.check_batch_sampler_shards(A , A , split_batches=A ) def A ( self : str ) -> int: # Check the shards when the dataset is a round multiple of total batch size. lowercase_ : str = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) lowercase_ : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) lowercase_ : Dict = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. lowercase_ : List[Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) lowercase_ : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) lowercase_ : List[Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) lowercase_ : str = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. lowercase_ : List[Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) lowercase_ : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) lowercase_ : Union[str, Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) lowercase_ : str = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. lowercase_ : List[str] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) lowercase_ : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) lowercase_ : str = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) lowercase_ : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is very small. lowercase_ : List[str] = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) lowercase_ : Tuple = [[[0, 1]], []] self.check_batch_sampler_shards(A , A , even_batches=A ) lowercase_ : List[Any] = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) lowercase_ : Optional[Any] = [[], []] self.check_batch_sampler_shards(A , A , even_batches=A ) def A ( self : Optional[Any] ) -> Union[str, Any]: # Check the shards when the dataset is a round multiple of batch size. lowercase_ : Any = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) lowercase_ : int = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) lowercase_ : int = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size. lowercase_ : List[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) lowercase_ : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) lowercase_ : List[str] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) lowercase_ : str = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. lowercase_ : Dict = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) lowercase_ : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) lowercase_ : Dict = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) lowercase_ : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is very small. lowercase_ : Optional[int] = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) lowercase_ : Union[str, Any] = [[[0, 1]], []] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) lowercase_ : List[str] = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) lowercase_ : Dict = [[], []] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) def A ( self : str ) -> str: lowercase_ : str = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] lowercase_ : Tuple = [BatchSamplerShard(A , 2 , A , even_batches=A ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def A ( self : Union[str, Any] , A : Union[str, Any] , A : Tuple , A : Dict , A : str=False , A : Any=2 , A : Optional[int]=False ) -> Optional[Any]: random.seed(A ) lowercase_ : Any = list(A ) lowercase_ : Optional[int] = [ IterableDatasetShard( A , batch_size=A , drop_last=A , num_processes=A , process_index=A , split_batches=A , ) for i in range(A ) ] lowercase_ : Any = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(A ) iterable_dataset_lists.append(list(A ) ) lowercase_ : List[Any] = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size lowercase_ : Dict = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(A ) , len(A ) ) self.assertTrue(len(A ) % shard_batch_size == 0 ) lowercase_ : Optional[int] = [] for idx in range(0 , len(A ) , A ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(A ) < len(A ): reference += reference self.assertListEqual(A , reference[: len(A )] ) def A ( self : Optional[Any] ) -> List[str]: lowercase_ : int = 42 lowercase_ : Tuple = RandomIterableDataset() self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) # Edge case with a very small dataset lowercase_ : List[str] = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) def A ( self : Optional[Any] ) -> Tuple: lowercase_ : List[str] = BatchSampler(range(16 ) , batch_size=4 , drop_last=A ) lowercase_ : int = SkipBatchSampler(A , 2 ) self.assertListEqual(list(A ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def A ( self : List[str] ) -> Union[str, Any]: lowercase_ : int = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def A ( self : Dict ) -> int: lowercase_ : Optional[Any] = DataLoader(list(range(16 ) ) , batch_size=4 ) lowercase_ : Union[str, Any] = skip_first_batches(A , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def A ( self : List[str] ) -> str: lowercase_ : Any = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def A ( self : Optional[Any] ) -> Optional[int]: Accelerator() lowercase_ : Tuple = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
141
0
import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = DDIMPipeline snake_case_ = UNCONDITIONAL_IMAGE_GENERATION_PARAMS snake_case_ = PipelineTesterMixin.required_optional_params - { '''num_images_per_prompt''', '''latents''', '''callback''', '''callback_steps''', } snake_case_ = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS snake_case_ = False def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) __lowerCamelCase = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) __lowerCamelCase = DDIMScheduler() __lowerCamelCase = {'unet': unet, 'scheduler': scheduler} return components def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__=0 ) -> List[Any]: '''simple docstring''' if str(lowerCamelCase__ ).startswith('mps' ): __lowerCamelCase = torch.manual_seed(lowerCamelCase__ ) else: __lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) __lowerCamelCase = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = 'cpu' __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = self.pipeline_class(**lowerCamelCase__ ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs(lowerCamelCase__ ) __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) __lowerCamelCase = np.array( [1.0_00e00, 5.7_17e-01, 4.7_17e-01, 1.0_00e00, 0.0_00e00, 1.0_00e00, 3.0_00e-04, 0.0_00e00, 9.0_00e-04] ) __lowerCamelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCamelCase__ , 1e-3 ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def lowercase_ ( self ) -> Dict: '''simple docstring''' super().test_save_load_local(expected_max_difference=3e-3 ) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=3e-3 ) def lowercase_ ( self ) -> Dict: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = 'google/ddpm-cifar10-32' __lowerCamelCase = UNetaDModel.from_pretrained(lowerCamelCase__ ) __lowerCamelCase = DDIMScheduler() __lowerCamelCase = DDIMPipeline(unet=lowerCamelCase__ , scheduler=lowerCamelCase__ ) ddim.to(lowerCamelCase__ ) ddim.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = ddim(generator=lowerCamelCase__ , eta=0.0 , output_type='numpy' ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __lowerCamelCase = np.array([0.17_23, 0.16_17, 0.16_00, 0.16_26, 0.14_97, 0.15_13, 0.15_05, 0.14_42, 0.14_53] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = 'google/ddpm-ema-bedroom-256' __lowerCamelCase = UNetaDModel.from_pretrained(lowerCamelCase__ ) __lowerCamelCase = DDIMScheduler.from_pretrained(lowerCamelCase__ ) __lowerCamelCase = DDIMPipeline(unet=lowerCamelCase__ , scheduler=lowerCamelCase__ ) ddpm.to(lowerCamelCase__ ) ddpm.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = ddpm(generator=lowerCamelCase__ , output_type='numpy' ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) __lowerCamelCase = np.array([0.00_60, 0.02_01, 0.03_44, 0.00_24, 0.00_18, 0.00_02, 0.00_22, 0.00_00, 0.00_69] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
469
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def lowerCamelCase_ ( ) -> Union[str, Any]: """simple docstring""" __lowerCamelCase = ArgumentParser('Accelerate CLI tool' , usage='accelerate <command> [<args>]' , allow_abbrev=UpperCamelCase__ ) __lowerCamelCase = parser.add_subparsers(help='accelerate command helpers' ) # Register commands get_config_parser(subparsers=UpperCamelCase__ ) env_command_parser(subparsers=UpperCamelCase__ ) launch_command_parser(subparsers=UpperCamelCase__ ) tpu_command_parser(subparsers=UpperCamelCase__ ) test_command_parser(subparsers=UpperCamelCase__ ) # Let's go __lowerCamelCase = parser.parse_args() if not hasattr(UpperCamelCase__ , 'func' ): parser.print_help() exit(1 ) # Run args.func(UpperCamelCase__ ) if __name__ == "__main__": main()
469
1
import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case :Optional[Any] =logging.get_logger(__name__) __snake_case :str ={ 'kakaobrain/align-base': 'https://huggingface.co/kakaobrain/align-base/resolve/main/config.json', } class lowerCAmelCase__ ( _lowerCamelCase ): A_ : Optional[int] = 'align_text_model' def __init__( self : List[Any] , __UpperCamelCase : Any=30_522 , __UpperCamelCase : Dict=768 , __UpperCamelCase : int=12 , __UpperCamelCase : int=12 , __UpperCamelCase : Optional[int]=3_072 , __UpperCamelCase : Tuple="gelu" , __UpperCamelCase : int=0.1 , __UpperCamelCase : Tuple=0.1 , __UpperCamelCase : List[str]=512 , __UpperCamelCase : Tuple=2 , __UpperCamelCase : int=0.0_2 , __UpperCamelCase : Any=1e-12 , __UpperCamelCase : Dict=0 , __UpperCamelCase : Optional[int]="absolute" , __UpperCamelCase : List[Any]=True , **__UpperCamelCase : Any , ) -> str: super().__init__(**__UpperCamelCase ) A = vocab_size A = hidden_size A = num_hidden_layers A = num_attention_heads A = hidden_act A = intermediate_size A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_vocab_size A = initializer_range A = layer_norm_eps A = position_embedding_type A = use_cache A = pad_token_id @classmethod def __UpperCamelCase ( cls : Any , __UpperCamelCase : Union[str, os.PathLike] , **__UpperCamelCase : Dict ) -> "PretrainedConfig": cls._set_token_in_kwargs(__UpperCamelCase ) A , A = cls.get_config_dict(__UpperCamelCase , **__UpperCamelCase ) # get the text config dict if we are loading from AlignConfig if config_dict.get('model_type' ) == "align": A = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__UpperCamelCase , **__UpperCamelCase ) class lowerCAmelCase__ ( _lowerCamelCase ): A_ : Tuple = 'align_vision_model' def __init__( self : Any , __UpperCamelCase : int = 3 , __UpperCamelCase : int = 600 , __UpperCamelCase : float = 2.0 , __UpperCamelCase : float = 3.1 , __UpperCamelCase : int = 8 , __UpperCamelCase : List[int] = [3, 3, 5, 3, 5, 5, 3] , __UpperCamelCase : List[int] = [32, 16, 24, 40, 80, 112, 192] , __UpperCamelCase : List[int] = [16, 24, 40, 80, 112, 192, 320] , __UpperCamelCase : List[int] = [] , __UpperCamelCase : List[int] = [1, 2, 2, 2, 1, 2, 1] , __UpperCamelCase : List[int] = [1, 2, 2, 3, 3, 4, 1] , __UpperCamelCase : List[int] = [1, 6, 6, 6, 6, 6, 6] , __UpperCamelCase : float = 0.2_5 , __UpperCamelCase : str = "swish" , __UpperCamelCase : int = 2_560 , __UpperCamelCase : str = "mean" , __UpperCamelCase : float = 0.0_2 , __UpperCamelCase : float = 0.0_0_1 , __UpperCamelCase : float = 0.9_9 , __UpperCamelCase : float = 0.2 , **__UpperCamelCase : Optional[Any] , ) -> int: super().__init__(**__UpperCamelCase ) A = num_channels A = image_size A = width_coefficient A = depth_coefficient A = depth_divisor A = kernel_sizes A = in_channels A = out_channels A = depthwise_padding A = strides A = num_block_repeats A = expand_ratios A = squeeze_expansion_ratio A = hidden_act A = hidden_dim A = pooling_type A = initializer_range A = batch_norm_eps A = batch_norm_momentum A = drop_connect_rate A = sum(__UpperCamelCase ) * 4 @classmethod def __UpperCamelCase ( cls : Dict , __UpperCamelCase : Union[str, os.PathLike] , **__UpperCamelCase : int ) -> "PretrainedConfig": cls._set_token_in_kwargs(__UpperCamelCase ) A , A = cls.get_config_dict(__UpperCamelCase , **__UpperCamelCase ) # get the vision config dict if we are loading from AlignConfig if config_dict.get('model_type' ) == "align": A = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__UpperCamelCase , **__UpperCamelCase ) class lowerCAmelCase__ ( _lowerCamelCase ): A_ : str = 'align' A_ : int = True def __init__( self : Dict , __UpperCamelCase : Optional[int]=None , __UpperCamelCase : Any=None , __UpperCamelCase : Optional[int]=640 , __UpperCamelCase : List[Any]=1.0 , __UpperCamelCase : Optional[Any]=0.0_2 , **__UpperCamelCase : List[Any] , ) -> Tuple: super().__init__(**__UpperCamelCase ) if text_config is None: A = {} logger.info('text_config is None. Initializing the AlignTextConfig with default values.' ) if vision_config is None: A = {} logger.info('vision_config is None. Initializing the AlignVisionConfig with default values.' ) A = AlignTextConfig(**__UpperCamelCase ) A = AlignVisionConfig(**__UpperCamelCase ) A = projection_dim A = temperature_init_value A = initializer_range @classmethod def __UpperCamelCase ( cls : Any , __UpperCamelCase : AlignTextConfig , __UpperCamelCase : AlignVisionConfig , **__UpperCamelCase : Optional[int] ) -> Union[str, Any]: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__UpperCamelCase ) def __UpperCamelCase ( self : Tuple ) -> int: A = copy.deepcopy(self.__dict__ ) A = self.text_config.to_dict() A = self.vision_config.to_dict() A = self.__class__.model_type return output
224
def lowerCamelCase_ ( lowerCAmelCase__ : list ) -> int: '''simple docstring''' if not grid or not grid[0]: raise TypeError('The grid does not contain the appropriate information' ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] A = grid[0] for row_n in range(1 , len(lowerCAmelCase__ ) ): A = grid[row_n] A = fill_row(lowerCAmelCase__ , lowerCAmelCase__ ) A = grid[row_n] return grid[-1][-1] def lowerCamelCase_ ( lowerCAmelCase__ : list , lowerCAmelCase__ : list ) -> list: '''simple docstring''' current_row[0] += row_above[0] for cell_n in range(1 , len(lowerCAmelCase__ ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
224
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE ( metaclass=__a ): """simple docstring""" __A = ["torch", "torchsde"] def __init__( self : List[Any] , *__lowerCAmelCase : int , **__lowerCAmelCase : Tuple ): """simple docstring""" requires_backends(self , ['torch', 'torchsde'] ) @classmethod def a ( cls : Optional[int] , *__lowerCAmelCase : List[str] , **__lowerCAmelCase : int ): """simple docstring""" requires_backends(cls , ['torch', 'torchsde'] ) @classmethod def a ( cls : int , *__lowerCAmelCase : Any , **__lowerCAmelCase : Dict ): """simple docstring""" requires_backends(cls , ['torch', 'torchsde'] )
309
'''simple docstring''' import operator as op snake_case = '''scaler.pt''' snake_case = '''pytorch_model''' snake_case = '''random_states''' snake_case = '''optimizer''' snake_case = '''scheduler''' snake_case = '''pytorch_model.bin''' snake_case = '''pytorch_model.bin.index.json''' snake_case = '''model.safetensors''' snake_case = '''model.safetensors.index.json''' snake_case = '''1.10.2''' snake_case = '''py38''' snake_case = '''4.17.0''' snake_case = ['''ml.p3.16xlarge''', '''ml.p3dn.24xlarge''', '''ml.p4dn.24xlarge'''] snake_case = ['''FULL_SHARD''', '''SHARD_GRAD_OP''', '''NO_SHARD''', '''HYBRID_SHARD''', '''HYBRID_SHARD_ZERO2'''] snake_case = ['''TRANSFORMER_BASED_WRAP''', '''SIZE_BASED_WRAP''', '''NO_WRAP'''] snake_case = ['''BACKWARD_PRE''', '''BACKWARD_POST''', '''NO_PREFETCH'''] snake_case = ['''FULL_STATE_DICT''', '''LOCAL_STATE_DICT''', '''SHARDED_STATE_DICT'''] snake_case = '''2.0.1''' snake_case = ['''pdsh''', '''standard''', '''openmpi''', '''mvapich'''] snake_case = ['''default''', '''reduce-overhead''', '''max-autotune'''] snake_case = {'''>''': op.gt, '''>=''': op.ge, '''==''': op.eq, '''!=''': op.ne, '''<=''': op.le, '''<''': op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 snake_case = [ '''nnodes''', '''nproc_per_node''', '''rdzv_backend''', '''rdzv_endpoint''', '''rdzv_id''', '''rdzv_conf''', '''standalone''', '''max_restarts''', '''monitor_interval''', '''start_method''', '''role''', '''module''', '''m''', '''no_python''', '''run_path''', '''log_dir''', '''r''', '''redirects''', '''t''', '''tee''', '''node_rank''', '''master_addr''', '''master_port''', ] snake_case = ['''DEEPSPEED''', '''MULTI_GPU''', '''FSDP''', '''MEGATRON_LM'''] snake_case = ['''DEEPSPEED''', '''MULTI_XPU''', '''FSDP''']
309
1
snake_case = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ snake_case = [{"""type""": """code""", """content""": INSTALL_CONTENT}] snake_case = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
488
from __future__ import annotations from cmath import sqrt def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" if a == 0: raise ValueError("Coefficient 'a' must not be zero." ) SCREAMING_SNAKE_CASE : List[str] = b * b - 4 * a * c SCREAMING_SNAKE_CASE : str = (-b + sqrt(lowercase )) / (2 * a) SCREAMING_SNAKE_CASE : Any = (-b - sqrt(lowercase )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = quadratic_roots(a=5 , b=6 , c=1 ) print(F'''The solutions are: {solutiona} and {solutiona}''' ) if __name__ == "__main__": main()
488
1
'''simple docstring''' __SCREAMING_SNAKE_CASE = {} def __a ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str ): # if we are absent twice, or late 3 consecutive days, # no further prize strings are possible if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on a__ : Any = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one a__ : Any = _calculate(days - 1 , UpperCAmelCase_ , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 a__ : List[Any] = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter a__ : List[Any] = _calculate(days - 1 , UpperCAmelCase_ , 0 ) a__ : List[str] = state_late + state_absent + state_ontime a__ : Tuple = prizestrings return prizestrings def __a ( lowerCAmelCase__ : List[Any] = 30 ): return _calculate(UpperCAmelCase_ , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
688
"""simple docstring""" from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig SCREAMING_SNAKE_CASE = logging.get_logger(__name__) # General docstring SCREAMING_SNAKE_CASE = """MobileNetV1Config""" # Base docstring SCREAMING_SNAKE_CASE = """google/mobilenet_v1_1.0_224""" SCREAMING_SNAKE_CASE = [1, 1_024, 7, 7] # Image classification docstring SCREAMING_SNAKE_CASE = """google/mobilenet_v1_1.0_224""" SCREAMING_SNAKE_CASE = """tabby, tabby cat""" SCREAMING_SNAKE_CASE = [ """google/mobilenet_v1_1.0_224""", """google/mobilenet_v1_0.75_192""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=None )-> int: """simple docstring""" UpperCamelCase = {} if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): UpperCamelCase = model.mobilenet_va else: UpperCamelCase = model UpperCamelCase = "MobilenetV1/Conv2d_0/" UpperCamelCase = backbone.conv_stem.convolution.weight UpperCamelCase = backbone.conv_stem.normalization.bias UpperCamelCase = backbone.conv_stem.normalization.weight UpperCamelCase = backbone.conv_stem.normalization.running_mean UpperCamelCase = backbone.conv_stem.normalization.running_var for i in range(13 ): UpperCamelCase = i + 1 UpperCamelCase = i * 2 UpperCamelCase = backbone.layer[pt_index] UpperCamelCase = F"MobilenetV1/Conv2d_{tf_index}_depthwise/" UpperCamelCase = pointer.convolution.weight UpperCamelCase = pointer.normalization.bias UpperCamelCase = pointer.normalization.weight UpperCamelCase = pointer.normalization.running_mean UpperCamelCase = pointer.normalization.running_var UpperCamelCase = backbone.layer[pt_index + 1] UpperCamelCase = F"MobilenetV1/Conv2d_{tf_index}_pointwise/" UpperCamelCase = pointer.convolution.weight UpperCamelCase = pointer.normalization.bias UpperCamelCase = pointer.normalization.weight UpperCamelCase = pointer.normalization.running_mean UpperCamelCase = pointer.normalization.running_var if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): UpperCamelCase = "MobilenetV1/Logits/Conv2d_1c_1x1/" UpperCamelCase = model.classifier.weight UpperCamelCase = model.classifier.bias return tf_to_pt_map def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )-> List[str]: """simple docstring""" try: import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise # Load weights from TF model UpperCamelCase = tf.train.list_variables(UpperCAmelCase_ ) UpperCamelCase = {} for name, shape in init_vars: logger.info(F"Loading TF weight {name} with shape {shape}" ) UpperCamelCase = tf.train.load_variable(UpperCAmelCase_ , UpperCAmelCase_ ) UpperCamelCase = array # Build TF to PyTorch weights loading map UpperCamelCase = _build_tf_to_pytorch_map(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) for name, pointer in tf_to_pt_map.items(): logger.info(F"Importing {name}" ) if name not in tf_weights: logger.info(F"{name} not in tf pre-trained weights, skipping" ) continue UpperCamelCase = tf_weights[name] if "depthwise_weights" in name: logger.info("Transposing depthwise" ) UpperCamelCase = np.transpose(UpperCAmelCase_ , (2, 3, 0, 1) ) elif "weights" in name: logger.info("Transposing" ) if len(pointer.shape ) == 2: # copying into linear layer UpperCamelCase = array.squeeze().transpose() else: UpperCamelCase = np.transpose(UpperCAmelCase_ , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(F"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" ) logger.info(F"Initialize PyTorch weight {name} {array.shape}" ) UpperCamelCase = torch.from_numpy(UpperCAmelCase_ ) tf_weights.pop(UpperCAmelCase_ , UpperCAmelCase_ ) tf_weights.pop(name + "/RMSProp" , UpperCAmelCase_ ) tf_weights.pop(name + "/RMSProp_1" , UpperCAmelCase_ ) tf_weights.pop(name + "/ExponentialMovingAverage" , UpperCAmelCase_ ) logger.info(F"Weights not copied to PyTorch model: {', '.join(tf_weights.keys() )}" ) return model def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ )-> torch.Tensor: """simple docstring""" UpperCamelCase , UpperCamelCase = features.shape[-2:] UpperCamelCase , UpperCamelCase = conv_layer.stride UpperCamelCase , UpperCamelCase = conv_layer.kernel_size if in_height % stride_height == 0: UpperCamelCase = max(kernel_height - stride_height , 0 ) else: UpperCamelCase = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: UpperCamelCase = max(kernel_width - stride_width , 0 ) else: UpperCamelCase = max(kernel_width - (in_width % stride_width) , 0 ) UpperCamelCase = pad_along_width // 2 UpperCamelCase = pad_along_width - pad_left UpperCamelCase = pad_along_height // 2 UpperCamelCase = pad_along_height - pad_top UpperCamelCase = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(UpperCAmelCase_ , UpperCAmelCase_ , "constant" , 0.0 ) class __a ( nn.Module ): def __init__( self : List[Any] , UpperCAmelCase_ : MobileNetVaConfig , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] = 1 , UpperCAmelCase_ : Optional[int] = 1 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional[bool] = True , UpperCAmelCase_ : Optional[bool or str] = True , )-> None: """simple docstring""" super().__init__() UpperCamelCase = config if in_channels % groups != 0: raise ValueError(f"Input channels ({in_channels}) are not divisible by {groups} groups." ) if out_channels % groups != 0: raise ValueError(f"Output channels ({out_channels}) are not divisible by {groups} groups." ) UpperCamelCase = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) UpperCamelCase = nn.Convad( in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , kernel_size=UpperCAmelCase_ , stride=UpperCAmelCase_ , padding=UpperCAmelCase_ , groups=UpperCAmelCase_ , bias=UpperCAmelCase_ , padding_mode="zeros" , ) if use_normalization: UpperCamelCase = nn.BatchNormad( num_features=UpperCAmelCase_ , eps=config.layer_norm_eps , momentum=0.9997 , affine=UpperCAmelCase_ , track_running_stats=UpperCAmelCase_ , ) else: UpperCamelCase = None if use_activation: if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): UpperCamelCase = ACTaFN[use_activation] elif isinstance(config.hidden_act , UpperCAmelCase_ ): UpperCamelCase = ACTaFN[config.hidden_act] else: UpperCamelCase = config.hidden_act else: UpperCamelCase = None def _SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase_ : torch.Tensor )-> torch.Tensor: """simple docstring""" if self.config.tf_padding: UpperCamelCase = apply_tf_padding(UpperCAmelCase_ , self.convolution ) UpperCamelCase = self.convolution(UpperCAmelCase_ ) if self.normalization is not None: UpperCamelCase = self.normalization(UpperCAmelCase_ ) if self.activation is not None: UpperCamelCase = self.activation(UpperCAmelCase_ ) return features class __a ( _lowerCAmelCase ): UpperCamelCase_ : List[str] = MobileNetVaConfig UpperCamelCase_ : Dict = load_tf_weights_in_mobilenet_va UpperCamelCase_ : List[str] = '''mobilenet_v1''' UpperCamelCase_ : Optional[int] = '''pixel_values''' UpperCamelCase_ : List[Any] = False def _SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase_ : Union[nn.Linear, nn.Convad] )-> None: """simple docstring""" if isinstance(UpperCAmelCase_ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(UpperCAmelCase_ , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) SCREAMING_SNAKE_CASE = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ SCREAMING_SNAKE_CASE = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( '''The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.''' , _lowerCAmelCase , ) class __a ( _lowerCAmelCase ): def __init__( self : str , UpperCAmelCase_ : MobileNetVaConfig , UpperCAmelCase_ : bool = True )-> Optional[int]: """simple docstring""" super().__init__(UpperCAmelCase_ ) UpperCamelCase = config UpperCamelCase = 32 UpperCamelCase = max(int(depth * config.depth_multiplier ) , config.min_depth ) UpperCamelCase = MobileNetVaConvLayer( UpperCAmelCase_ , in_channels=config.num_channels , out_channels=UpperCAmelCase_ , kernel_size=3 , stride=2 , ) UpperCamelCase = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] UpperCamelCase = nn.ModuleList() for i in range(13 ): UpperCamelCase = out_channels if strides[i] == 2 or i == 0: depth *= 2 UpperCamelCase = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( UpperCAmelCase_ , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , kernel_size=3 , stride=strides[i] , groups=UpperCAmelCase_ , ) ) self.layer.append( MobileNetVaConvLayer( UpperCAmelCase_ , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , kernel_size=1 , ) ) UpperCamelCase = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def _SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase_ : Dict )-> List[str]: """simple docstring""" raise NotImplementedError @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=UpperCAmelCase_ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase_ : Optional[torch.Tensor] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[bool] = None , )-> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: """simple docstring""" UpperCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values" ) UpperCamelCase = self.conv_stem(UpperCAmelCase_ ) UpperCamelCase = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): UpperCamelCase = layer_module(UpperCAmelCase_ ) if output_hidden_states: UpperCamelCase = all_hidden_states + (hidden_states,) UpperCamelCase = hidden_states if self.pooler is not None: UpperCamelCase = torch.flatten(self.pooler(UpperCAmelCase_ ) , start_dim=1 ) else: UpperCamelCase = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=UpperCAmelCase_ , pooler_output=UpperCAmelCase_ , hidden_states=UpperCAmelCase_ , ) @add_start_docstrings( ''' MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , _lowerCAmelCase , ) class __a ( _lowerCAmelCase ): def __init__( self : str , UpperCAmelCase_ : MobileNetVaConfig )-> None: """simple docstring""" super().__init__(UpperCAmelCase_ ) UpperCamelCase = config.num_labels UpperCamelCase = MobileNetVaModel(UpperCAmelCase_ ) UpperCamelCase = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head UpperCamelCase = nn.Dropout(config.classifier_dropout_prob , inplace=UpperCAmelCase_ ) UpperCamelCase = nn.Linear(UpperCAmelCase_ , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=UpperCAmelCase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase_ : Optional[torch.Tensor] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[torch.Tensor] = None , UpperCAmelCase_ : Optional[bool] = None , )-> Union[tuple, ImageClassifierOutputWithNoAttention]: """simple docstring""" UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase = self.mobilenet_va(UpperCAmelCase_ , output_hidden_states=UpperCAmelCase_ , return_dict=UpperCAmelCase_ ) UpperCamelCase = outputs.pooler_output if return_dict else outputs[1] UpperCamelCase = self.classifier(self.dropout(UpperCAmelCase_ ) ) UpperCamelCase = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: UpperCamelCase = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): UpperCamelCase = "single_label_classification" else: UpperCamelCase = "multi_label_classification" if self.config.problem_type == "regression": UpperCamelCase = MSELoss() if self.num_labels == 1: UpperCamelCase = loss_fct(logits.squeeze() , labels.squeeze() ) else: UpperCamelCase = loss_fct(UpperCAmelCase_ , UpperCAmelCase_ ) elif self.config.problem_type == "single_label_classification": UpperCamelCase = CrossEntropyLoss() UpperCamelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": UpperCamelCase = BCEWithLogitsLoss() UpperCamelCase = loss_fct(UpperCAmelCase_ , UpperCAmelCase_ ) if not return_dict: UpperCamelCase = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=UpperCAmelCase_ , logits=UpperCAmelCase_ , hidden_states=outputs.hidden_states , )
554
0
'''simple docstring''' import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class A__ : """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Dict=1_3 , lowerCAmelCase__ : List[str]=7 , lowerCAmelCase__ : Union[str, Any]=True , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : List[Any]=9_9 , lowerCAmelCase__ : str=3_2 , lowerCAmelCase__ : Union[str, Any]=5 , lowerCAmelCase__ : Optional[int]=4 , lowerCAmelCase__ : Tuple=3_7 , lowerCAmelCase__ : str="gelu" , lowerCAmelCase__ : Optional[Any]=0.1 , lowerCAmelCase__ : Any=0.1 , lowerCAmelCase__ : Optional[int]=5_1_2 , lowerCAmelCase__ : int=1_6 , lowerCAmelCase__ : str=2 , lowerCAmelCase__ : int=0.02 , lowerCAmelCase__ : int=3 , lowerCAmelCase__ : Dict=4 , lowerCAmelCase__ : Any=None , ) -> str: """simple docstring""" _UpperCAmelCase : int = parent _UpperCAmelCase : int = batch_size _UpperCAmelCase : Optional[Any] = seq_length _UpperCAmelCase : List[Any] = is_training _UpperCAmelCase : Dict = use_input_mask _UpperCAmelCase : Optional[int] = use_token_type_ids _UpperCAmelCase : Tuple = use_labels _UpperCAmelCase : int = vocab_size _UpperCAmelCase : Dict = hidden_size _UpperCAmelCase : Optional[int] = num_hidden_layers _UpperCAmelCase : str = num_attention_heads _UpperCAmelCase : str = intermediate_size _UpperCAmelCase : Dict = hidden_act _UpperCAmelCase : str = hidden_dropout_prob _UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob _UpperCAmelCase : Any = max_position_embeddings _UpperCAmelCase : str = type_vocab_size _UpperCAmelCase : int = type_sequence_label_size _UpperCAmelCase : Any = initializer_range _UpperCAmelCase : Dict = num_labels _UpperCAmelCase : str = num_choices _UpperCAmelCase : Optional[int] = scope def _lowerCAmelCase ( self : str ) -> Dict: """simple docstring""" _UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase : Tuple = None if self.use_input_mask: _UpperCAmelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : Union[str, Any] = None if self.use_token_type_ids: _UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase : Optional[Any] = None _UpperCAmelCase : int = None _UpperCAmelCase : List[Any] = None if self.use_labels: _UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase : str = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCAmelCase ( self : int ) -> Any: """simple docstring""" return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , ) def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[Any] ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : List[Any] = NystromformerModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase : Any = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase ) _UpperCAmelCase : Optional[int] = model(__UpperCamelCase , token_type_ids=__UpperCamelCase ) _UpperCAmelCase : Optional[int] = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : List[str] ) -> str: """simple docstring""" _UpperCAmelCase : int = NystromformerForMaskedLM(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase : List[str] = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCAmelCase ( self : int , lowerCAmelCase__ : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Union[str, Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : List[str] = NystromformerForQuestionAnswering(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase : Dict = model( __UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , start_positions=__UpperCamelCase , end_positions=__UpperCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : int ) -> Dict: """simple docstring""" _UpperCAmelCase : Any = self.num_labels _UpperCAmelCase : Tuple = NystromformerForSequenceClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase : List[str] = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str , lowerCAmelCase__ : Dict ) -> Any: """simple docstring""" _UpperCAmelCase : Union[str, Any] = self.num_labels _UpperCAmelCase : Union[str, Any] = NystromformerForTokenClassification(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase : Optional[int] = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Any , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : List[str] = self.num_choices _UpperCAmelCase : Dict = NystromformerForMultipleChoice(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase : List[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase : Optional[int] = model( __UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" _UpperCAmelCase : Tuple = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) : Tuple = config_and_inputs _UpperCAmelCase : Dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class A__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Union[str, Any] = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) UpperCamelCase_ : List[str] = ( { '''feature-extraction''': NystromformerModel, '''fill-mask''': NystromformerForMaskedLM, '''question-answering''': NystromformerForQuestionAnswering, '''text-classification''': NystromformerForSequenceClassification, '''token-classification''': NystromformerForTokenClassification, '''zero-shot''': NystromformerForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase_ : Union[str, Any] = False UpperCamelCase_ : List[str] = False def _lowerCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" _UpperCAmelCase : int = NystromformerModelTester(self ) _UpperCAmelCase : str = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=3_7 ) def _lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def _lowerCAmelCase ( self : List[Any] ) -> int: """simple docstring""" _UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def _lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _UpperCAmelCase : Dict = type self.model_tester.create_and_check_model(*__UpperCamelCase ) def _lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCamelCase ) def _lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" _UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__UpperCamelCase ) def _lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" _UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCamelCase ) def _lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCamelCase ) def _lowerCAmelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" _UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCamelCase ) @slow def _lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : List[Any] = NystromformerModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) @require_torch class A__ ( unittest.TestCase ): """simple docstring""" @slow def _lowerCAmelCase ( self : int ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : int = NystromformerModel.from_pretrained("uw-madison/nystromformer-512" ) _UpperCAmelCase : Any = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): _UpperCAmelCase : Optional[int] = model(__UpperCamelCase )[0] _UpperCAmelCase : Dict = torch.Size((1, 6, 7_6_8) ) self.assertEqual(output.shape , __UpperCamelCase ) _UpperCAmelCase : Dict = torch.tensor( [[[-0.4532, -0.0936, 0.5137], [-0.2676, 0.0628, 0.6186], [-0.3629, -0.1726, 0.4716]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCamelCase , atol=1e-4 ) ) @slow def _lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : List[str] = "the [MASK] of Belgium is Brussels" _UpperCAmelCase : str = AutoTokenizer.from_pretrained("uw-madison/nystromformer-512" ) _UpperCAmelCase : Optional[int] = NystromformerForMaskedLM.from_pretrained("uw-madison/nystromformer-512" ) _UpperCAmelCase : Optional[int] = tokenizer(__UpperCamelCase , return_tensors="pt" ) with torch.no_grad(): _UpperCAmelCase : int = model(encoding.input_ids ).logits _UpperCAmelCase : Dict = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(__UpperCamelCase ) , "capital" )
715
'''simple docstring''' import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class A__ : """simple docstring""" def __init__( self : List[str] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Any=sys.maxsize ) -> Tuple: """simple docstring""" _UpperCAmelCase : List[Any] = "bilinear" _UpperCAmelCase : Union[str, Any] = max_size _UpperCAmelCase : Tuple = short_edge_length def __call__( self : List[str] , lowerCAmelCase__ : List[str] ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = [] for img in imgs: _UpperCAmelCase , _UpperCAmelCase : List[Any] = img.shape[:2] # later: provide list and randomly choose index for resize _UpperCAmelCase : List[Any] = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img _UpperCAmelCase : List[Any] = size * 1.0 / min(lowerCAmelCase__ , lowerCAmelCase__ ) if h < w: _UpperCAmelCase , _UpperCAmelCase : str = size, scale * w else: _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = scale * h, size if max(lowerCAmelCase__ , lowerCAmelCase__ ) > self.max_size: _UpperCAmelCase : List[Any] = self.max_size * 1.0 / max(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Any = newh * scale _UpperCAmelCase : str = neww * scale _UpperCAmelCase : Union[str, Any] = int(neww + 0.5 ) _UpperCAmelCase : Optional[int] = int(newh + 0.5 ) if img.dtype == np.uinta: _UpperCAmelCase : Optional[Any] = Image.fromarray(lowerCAmelCase__ ) _UpperCAmelCase : Any = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) _UpperCAmelCase : Optional[Any] = np.asarray(lowerCAmelCase__ ) else: _UpperCAmelCase : Tuple = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw _UpperCAmelCase : str = nn.functional.interpolate( lowerCAmelCase__ , (newh, neww) , mode=self.interp_method , align_corners=lowerCAmelCase__ ).squeeze(0 ) img_augs.append(lowerCAmelCase__ ) return img_augs class A__ : """simple docstring""" def __init__( self : str , lowerCAmelCase__ : Optional[int] ) -> Tuple: """simple docstring""" _UpperCAmelCase : Union[str, Any] = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) _UpperCAmelCase : str = cfg.INPUT.FORMAT _UpperCAmelCase : List[Any] = cfg.SIZE_DIVISIBILITY _UpperCAmelCase : int = cfg.PAD_VALUE _UpperCAmelCase : Optional[int] = cfg.INPUT.MAX_SIZE_TEST _UpperCAmelCase : Tuple = cfg.MODEL.DEVICE _UpperCAmelCase : Union[str, Any] = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) _UpperCAmelCase : Optional[int] = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) _UpperCAmelCase : Any = lambda lowerCAmelCase__ : (x - self.pixel_mean) / self.pixel_std def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : List[str] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Dict = tuple(max(lowerCAmelCase__ ) for s in zip(*[img.shape for img in images] ) ) _UpperCAmelCase : str = [im.shape[-2:] for im in images] _UpperCAmelCase : Any = [ nn.functional.pad( lowerCAmelCase__ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(lowerCAmelCase__ , lowerCAmelCase__ ) ] return torch.stack(lowerCAmelCase__ ), torch.tensor(lowerCAmelCase__ ) def __call__( self : Optional[int] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any]=False ) -> str: """simple docstring""" with torch.no_grad(): if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : Any = [images] if single_image: assert len(lowerCAmelCase__ ) == 1 for i in range(len(lowerCAmelCase__ ) ): if isinstance(images[i] , torch.Tensor ): images.insert(lowerCAmelCase__ , images.pop(lowerCAmelCase__ ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( lowerCAmelCase__ , torch.as_tensor(img_tensorize(images.pop(lowerCAmelCase__ ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge _UpperCAmelCase : Any = torch.tensor([im.shape[:2] for im in images] ) _UpperCAmelCase : str = self.aug(lowerCAmelCase__ ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic _UpperCAmelCase : int = [self.normalizer(lowerCAmelCase__ ) for x in images] # now pad them to do the following operations _UpperCAmelCase , _UpperCAmelCase : Optional[int] = self.pad(lowerCAmelCase__ ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad _UpperCAmelCase : int = torch.true_divide(lowerCAmelCase__ , lowerCAmelCase__ ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def __UpperCAmelCase ( a_: Union[str, Any], a_: Optional[int] ): boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def __UpperCAmelCase ( a_: Tuple, a_: Tuple[int, int] ): assert torch.isfinite(a_ ).all(), "Box tensor contains infinite or NaN!" _UpperCAmelCase , _UpperCAmelCase : Tuple = box_size tensor[:, 0].clamp_(min=0, max=a_ ) tensor[:, 1].clamp_(min=0, max=a_ ) tensor[:, 2].clamp_(min=0, max=a_ ) tensor[:, 3].clamp_(min=0, max=a_ )
257
0
'''simple docstring''' import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) def UpperCamelCase ( a ) -> Optional[int]: '''simple docstring''' __magic_name__ = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: __magic_name__ = 128 elif "12-12" in model_name: __magic_name__ = 12 __magic_name__ = 12 elif "14-14" in model_name: __magic_name__ = 14 __magic_name__ = 14 elif "16-16" in model_name: __magic_name__ = 16 __magic_name__ = 16 else: raise ValueError('''Model not supported''' ) __magic_name__ = '''huggingface/label-files''' if "speech-commands" in model_name: __magic_name__ = 35 __magic_name__ = '''speech-commands-v2-id2label.json''' else: __magic_name__ = 527 __magic_name__ = '''audioset-id2label.json''' __magic_name__ = json.load(open(hf_hub_download(a , a , repo_type='''dataset''' ) , '''r''' ) ) __magic_name__ = {int(a ): v for k, v in idalabel.items()} __magic_name__ = idalabel __magic_name__ = {v: k for k, v in idalabel.items()} return config def UpperCamelCase ( a ) -> List[Any]: '''simple docstring''' if "module.v" in name: __magic_name__ = name.replace('''module.v''' , '''audio_spectrogram_transformer''' ) if "cls_token" in name: __magic_name__ = name.replace('''cls_token''' , '''embeddings.cls_token''' ) if "dist_token" in name: __magic_name__ = name.replace('''dist_token''' , '''embeddings.distillation_token''' ) if "pos_embed" in name: __magic_name__ = name.replace('''pos_embed''' , '''embeddings.position_embeddings''' ) if "patch_embed.proj" in name: __magic_name__ = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) # transformer blocks if "blocks" in name: __magic_name__ = name.replace('''blocks''' , '''encoder.layer''' ) if "attn.proj" in name: __magic_name__ = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: __magic_name__ = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: __magic_name__ = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: __magic_name__ = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: __magic_name__ = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: __magic_name__ = name.replace('''mlp.fc2''' , '''output.dense''' ) # final layernorm if "audio_spectrogram_transformer.norm" in name: __magic_name__ = name.replace('''audio_spectrogram_transformer.norm''' , '''audio_spectrogram_transformer.layernorm''' ) # classifier head if "module.mlp_head.0" in name: __magic_name__ = name.replace('''module.mlp_head.0''' , '''classifier.layernorm''' ) if "module.mlp_head.1" in name: __magic_name__ = name.replace('''module.mlp_head.1''' , '''classifier.dense''' ) return name def UpperCamelCase ( a , a ) -> List[Any]: '''simple docstring''' for key in orig_state_dict.copy().keys(): __magic_name__ = orig_state_dict.pop(a ) if "qkv" in key: __magic_name__ = key.split('''.''' ) __magic_name__ = int(key_split[3] ) __magic_name__ = config.hidden_size if "weight" in key: __magic_name__ = val[:dim, :] __magic_name__ = val[dim : dim * 2, :] __magic_name__ = val[-dim:, :] else: __magic_name__ = val[:dim] __magic_name__ = val[dim : dim * 2] __magic_name__ = val[-dim:] else: __magic_name__ = val return orig_state_dict def UpperCamelCase ( a ) -> Optional[Any]: '''simple docstring''' __magic_name__ = [ '''module.v.head.weight''', '''module.v.head.bias''', '''module.v.head_dist.weight''', '''module.v.head_dist.bias''', ] for k in ignore_keys: state_dict.pop(a , a ) @torch.no_grad() def UpperCamelCase ( a , a , a=False ) -> List[Any]: '''simple docstring''' __magic_name__ = get_audio_spectrogram_transformer_config(a ) __magic_name__ = { '''ast-finetuned-audioset-10-10-0.4593''': ( '''https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.450''': ( '''https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.448''': ( '''https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.448-v2''': ( '''https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1''' ), '''ast-finetuned-audioset-12-12-0.447''': ( '''https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1''' ), '''ast-finetuned-audioset-14-14-0.443''': ( '''https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1''' ), '''ast-finetuned-audioset-16-16-0.442''': ( '''https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1''' ), '''ast-finetuned-speech-commands-v2''': ( '''https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1''' ), } # load original state_dict __magic_name__ = model_name_to_url[model_name] __magic_name__ = torch.hub.load_state_dict_from_url(a , map_location='''cpu''' ) # remove some keys remove_keys(a ) # rename some keys __magic_name__ = convert_state_dict(a , a ) # load 🤗 model __magic_name__ = ASTForAudioClassification(a ) model.eval() model.load_state_dict(a ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 __magic_name__ = -4.2_67_73_93 if '''speech-commands''' not in model_name else -6.84_59_78 __magic_name__ = 4.5_68_99_74 if '''speech-commands''' not in model_name else 5.5_65_45_26 __magic_name__ = 1024 if '''speech-commands''' not in model_name else 128 __magic_name__ = ASTFeatureExtractor(mean=a , std=a , max_length=a ) if "speech-commands" in model_name: __magic_name__ = load_dataset('''speech_commands''' , '''v0.02''' , split='''validation''' ) __magic_name__ = dataset[0]['''audio''']['''array'''] else: __magic_name__ = hf_hub_download( repo_id='''nielsr/audio-spectogram-transformer-checkpoint''' , filename='''sample_audio.flac''' , repo_type='''dataset''' , ) __magic_name__ , __magic_name__ = torchaudio.load(a ) __magic_name__ = waveform.squeeze().numpy() __magic_name__ = feature_extractor(a , sampling_rate=1_6000 , return_tensors='''pt''' ) # forward pass __magic_name__ = model(**a ) __magic_name__ = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": __magic_name__ = torch.tensor([-0.87_60, -7.00_42, -8.66_02] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": __magic_name__ = torch.tensor([-1.19_86, -7.09_03, -8.27_18] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": __magic_name__ = torch.tensor([-2.61_28, -8.00_80, -9.43_44] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": __magic_name__ = torch.tensor([-1.50_80, -7.45_34, -8.89_17] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": __magic_name__ = torch.tensor([-0.50_50, -6.58_33, -8.08_43] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": __magic_name__ = torch.tensor([-0.38_26, -7.03_36, -8.24_13] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": __magic_name__ = torch.tensor([-1.21_13, -6.91_01, -8.34_70] ) elif model_name == "ast-finetuned-speech-commands-v2": __magic_name__ = torch.tensor([6.15_89, -8.05_66, -8.79_84] ) else: raise ValueError('''Unknown model name''' ) if not torch.allclose(logits[0, :3] , a , atol=1e-4 ): raise ValueError('''Logits don\'t match''' ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(a ).mkdir(exist_ok=a ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(a ) print(F'''Saving feature extractor to {pytorch_dump_folder_path}''' ) feature_extractor.save_pretrained(a ) if push_to_hub: print('''Pushing model and feature extractor to the hub...''' ) model.push_to_hub(F'''MIT/{model_name}''' ) feature_extractor.push_to_hub(F'''MIT/{model_name}''' ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="ast-finetuned-audioset-10-10-0.4593", type=str, help="Name of the Audio Spectrogram Transformer model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) _lowerCAmelCase = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
432
'''simple docstring''' _lowerCAmelCase = "\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" _lowerCAmelCase = [{"type": "code", "content": INSTALL_CONTENT}] _lowerCAmelCase = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
432
1
"""simple docstring""" from itertools import count def _A ( __lowercase = 50 ): """simple docstring""" lowerCamelCase__ = [1] * min_block_length for n in count(__lowercase ): fill_count_functions.append(1 ) for block_length in range(__lowercase , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 100_0000: break return n if __name__ == "__main__": print(F'{solution() = }')
258
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __magic_name__ = { """configuration_bloom""": ["""BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BloomConfig""", """BloomOnnxConfig"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ["""BloomTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ """BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST""", """BloomForCausalLM""", """BloomModel""", """BloomPreTrainedModel""", """BloomForSequenceClassification""", """BloomForTokenClassification""", """BloomForQuestionAnswering""", ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
258
1
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} __lowerCAmelCase = { '''tokenizer_file''': { '''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json''', }, } __lowerCAmelCase = { '''gpt-neox-20b''': 2_048, } class __magic_name__ ( _UpperCamelCase ): lowerCAmelCase : Optional[Any] = VOCAB_FILES_NAMES lowerCAmelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase : Union[str, Any] = ['input_ids', 'attention_mask'] def __init__( self : str ,_UpperCAmelCase : Dict=None ,_UpperCAmelCase : Any=None ,_UpperCAmelCase : int=None ,_UpperCAmelCase : str="<|endoftext|>" ,_UpperCAmelCase : List[Any]="<|endoftext|>" ,_UpperCAmelCase : Any="<|endoftext|>" ,_UpperCAmelCase : Optional[Any]=False ,**_UpperCAmelCase : Any ,): super().__init__( _UpperCAmelCase ,_UpperCAmelCase ,tokenizer_file=_UpperCAmelCase ,unk_token=_UpperCAmelCase ,bos_token=_UpperCAmelCase ,eos_token=_UpperCAmelCase ,add_prefix_space=_UpperCAmelCase ,**_UpperCAmelCase ,) _a : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' ,_UpperCAmelCase ) != add_prefix_space: _a : Optional[Any] = getattr(_UpperCAmelCase ,pre_tok_state.pop('type' ) ) _a : List[str] = add_prefix_space _a : List[Any] = pre_tok_class(**_UpperCAmelCase ) _a : Optional[int] = add_prefix_space def __lowercase ( self : Tuple ,_UpperCAmelCase : str ,_UpperCAmelCase : Optional[str] = None ): _a : str = self._tokenizer.model.save(_UpperCAmelCase ,name=_UpperCAmelCase ) return tuple(_UpperCAmelCase ) def __lowercase ( self : Tuple ,_UpperCAmelCase : "Conversation" ): _a : Optional[int] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_UpperCAmelCase ,add_special_tokens=_UpperCAmelCase ) + [self.eos_token_id] ) if len(_UpperCAmelCase ) > self.model_max_length: _a : Optional[Any] = input_ids[-self.model_max_length :] return input_ids
358
'''simple docstring''' import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Dict: return params[f"""{prefix}/{prefix}/relpos_bias/rel_embedding"""][:, i, :] def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_="attention" ) -> int: _a : int = np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/key/kernel"""][:, i, :, :] ) _a : Dict = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) _a : Any = np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/out/kernel"""][:, i, :, :] ) _a : int = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) _a : List[str] = np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/query/kernel"""][:, i, :, :] ) _a : Dict = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) _a : List[str] = np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/value/kernel"""][:, i, :, :] ) _a : int = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False ) -> Optional[Any]: if split_mlp_wi: _a : Dict = params[f"""{prefix}/{prefix}/mlp/wi_0/kernel"""][:, i, :] _a : Dict = params[f"""{prefix}/{prefix}/mlp/wi_1/kernel"""][:, i, :] _a : Optional[int] = (wi_a, wi_a) else: _a : Tuple = params[f"""{prefix}/{prefix}/mlp/wi/kernel"""][:, i, :] _a : Tuple = params[f"""{prefix}/{prefix}/mlp/wo/kernel"""][:, i, :] return wi, wo def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Any: return params[f"""{prefix}/{prefix}/{layer_name}/scale"""][:, i] def __lowerCamelCase ( lowerCAmelCase_ , *, lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = False ) -> Any: _a : Dict = traverse_util.flatten_dict(variables['target'] ) _a : Tuple = {'/'.join(lowerCAmelCase_ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi _a : int = 'encoder/encoder/mlp/wi_0/kernel' in old print('Split MLP:' , lowerCAmelCase_ ) _a : str = collections.OrderedDict() # Shared embeddings. _a : List[str] = old['token_embedder/embedding'] # Encoder. for i in range(lowerCAmelCase_ ): # Block i, layer 0 (Self Attention). _a : Any = tax_layer_norm_lookup(lowerCAmelCase_ , lowerCAmelCase_ , 'encoder' , 'pre_attention_layer_norm' ) _a , _a , _a , _a : List[str] = tax_attention_lookup(lowerCAmelCase_ , lowerCAmelCase_ , 'encoder' , 'attention' ) _a : str = layer_norm _a : Union[str, Any] = k.T _a : Dict = o.T _a : int = q.T _a : List[str] = v.T # Block i, layer 1 (MLP). _a : Optional[int] = tax_layer_norm_lookup(lowerCAmelCase_ , lowerCAmelCase_ , 'encoder' , 'pre_mlp_layer_norm' ) _a , _a : Any = tax_mlp_lookup(lowerCAmelCase_ , lowerCAmelCase_ , 'encoder' , lowerCAmelCase_ ) _a : Optional[Any] = layer_norm if split_mlp_wi: _a : Tuple = wi[0].T _a : List[str] = wi[1].T else: _a : Union[str, Any] = wi.T _a : Any = wo.T if scalable_attention: # convert the rel_embedding of each layer _a : Any = tax_relpos_bias_lookup( lowerCAmelCase_ , lowerCAmelCase_ , 'encoder' ).T _a : Optional[Any] = old['encoder/encoder_norm/scale'] if not scalable_attention: _a : Union[str, Any] = tax_relpos_bias_lookup( lowerCAmelCase_ , 0 , 'encoder' ).T _a : Any = tax_relpos_bias_lookup( lowerCAmelCase_ , 0 , 'decoder' ).T if not is_encoder_only: # Decoder. for i in range(lowerCAmelCase_ ): # Block i, layer 0 (Self Attention). _a : Dict = tax_layer_norm_lookup(lowerCAmelCase_ , lowerCAmelCase_ , 'decoder' , 'pre_self_attention_layer_norm' ) _a , _a , _a , _a : Union[str, Any] = tax_attention_lookup(lowerCAmelCase_ , lowerCAmelCase_ , 'decoder' , 'self_attention' ) _a : str = layer_norm _a : List[Any] = k.T _a : Union[str, Any] = o.T _a : int = q.T _a : List[Any] = v.T # Block i, layer 1 (Cross Attention). _a : List[Any] = tax_layer_norm_lookup(lowerCAmelCase_ , lowerCAmelCase_ , 'decoder' , 'pre_cross_attention_layer_norm' ) _a , _a , _a , _a : Optional[int] = tax_attention_lookup(lowerCAmelCase_ , lowerCAmelCase_ , 'decoder' , 'encoder_decoder_attention' ) _a : str = layer_norm _a : Union[str, Any] = k.T _a : Union[str, Any] = o.T _a : Any = q.T _a : str = v.T # Block i, layer 2 (MLP). _a : str = tax_layer_norm_lookup(lowerCAmelCase_ , lowerCAmelCase_ , 'decoder' , 'pre_mlp_layer_norm' ) _a , _a : int = tax_mlp_lookup(lowerCAmelCase_ , lowerCAmelCase_ , 'decoder' , lowerCAmelCase_ ) _a : List[str] = layer_norm if split_mlp_wi: _a : List[str] = wi[0].T _a : Union[str, Any] = wi[1].T else: _a : Optional[Any] = wi.T _a : List[str] = wo.T if scalable_attention: # convert the rel_embedding of each layer _a : int = tax_relpos_bias_lookup(lowerCAmelCase_ , lowerCAmelCase_ , 'decoder' ).T _a : List[Any] = old['decoder/decoder_norm/scale'] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: _a : List[Any] = old['decoder/logits_dense/kernel'].T return new def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> str: _a : List[str] = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: _a : Tuple = state_dict['shared.weight'] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: _a : Union[str, Any] = state_dict['shared.weight'] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('Using shared word embeddings as lm_head.' ) _a : Optional[Any] = state_dict['shared.weight'] return state_dict def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> int: _a : Any = checkpoints.load_tax_checkpoint(lowerCAmelCase_ ) _a : str = convert_tax_to_pytorch( lowerCAmelCase_ , num_layers=config.num_layers , is_encoder_only=lowerCAmelCase_ , scalable_attention=lowerCAmelCase_ ) _a : Dict = make_state_dict(lowerCAmelCase_ , lowerCAmelCase_ ) model.load_state_dict(lowerCAmelCase_ , strict=lowerCAmelCase_ ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = False , lowerCAmelCase_ = False , ) -> str: _a : int = MTaConfig.from_json_file(lowerCAmelCase_ ) print(f"""Building PyTorch model from configuration: {config}""" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: _a : Any = UMTaEncoderModel(lowerCAmelCase_ ) else: _a : Optional[int] = UMTaForConditionalGeneration(lowerCAmelCase_ ) # Load weights from tf checkpoint load_tax_weights_in_ta(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(lowerCAmelCase_ ) # Verify that we can load the checkpoint. model.from_pretrained(lowerCAmelCase_ ) print('Done' ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) parser.add_argument( '''--scalable_attention''', action='''store_true''', help='''Whether the model uses scaled attention (umt5 model)''', default=False, ) __lowerCAmelCase = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
358
1
import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class _lowercase ( UpperCamelCase_ ): def __init__( self :str , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Optional[Any] ) -> List[str]: __SCREAMING_SNAKE_CASE : Union[str, Any] = dataset __SCREAMING_SNAKE_CASE : Optional[Any] = process __SCREAMING_SNAKE_CASE : Union[str, Any] = params def __len__( self :Tuple ) -> Any: return len(self.dataset ) def __getitem__( self :List[str] , lowerCAmelCase__ :Optional[Any] ) -> int: __SCREAMING_SNAKE_CASE : List[Any] = self.dataset[i] __SCREAMING_SNAKE_CASE : Optional[int] = self.process(UpperCamelCase__ , **self.params ) return processed class _lowercase ( UpperCamelCase_ ): def __init__( self :Dict , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :List[Any]=None ) -> str: __SCREAMING_SNAKE_CASE : List[Any] = loader __SCREAMING_SNAKE_CASE : List[Any] = infer __SCREAMING_SNAKE_CASE : int = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether __SCREAMING_SNAKE_CASE : Optional[int] = None __SCREAMING_SNAKE_CASE : List[str] = loader_batch_size # Internal bookkeeping __SCREAMING_SNAKE_CASE : Optional[int] = None __SCREAMING_SNAKE_CASE : int = None def __len__( self :int ) -> str: return len(self.loader ) def __iter__( self :List[str] ) -> int: __SCREAMING_SNAKE_CASE : Optional[int] = iter(self.loader ) return self def __magic_name__( self :List[str] ) -> int: if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice __SCREAMING_SNAKE_CASE : Optional[Any] = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) __SCREAMING_SNAKE_CASE : Union[str, Any] = {} for k, element in self._loader_batch_data.items(): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): # Convert ModelOutput to tuple first __SCREAMING_SNAKE_CASE : Dict = element.to_tuple() if isinstance(element[0] , torch.Tensor ): __SCREAMING_SNAKE_CASE : Dict = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): __SCREAMING_SNAKE_CASE : Union[str, Any] = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(UpperCamelCase__ , UpperCamelCase__ ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): __SCREAMING_SNAKE_CASE : Union[str, Any] = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): __SCREAMING_SNAKE_CASE : List[str] = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around __SCREAMING_SNAKE_CASE : int = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers __SCREAMING_SNAKE_CASE : Union[str, Any] = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers __SCREAMING_SNAKE_CASE : Tuple = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. __SCREAMING_SNAKE_CASE : Tuple = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 __SCREAMING_SNAKE_CASE : Any = self._loader_batch_data.__class__(UpperCamelCase__ ) self._loader_batch_index += 1 return result def __magic_name__( self :Union[str, Any] ) -> List[str]: if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch __SCREAMING_SNAKE_CASE : Tuple = next(self.iterator ) __SCREAMING_SNAKE_CASE : List[Any] = self.infer(UpperCamelCase__ , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(UpperCamelCase__ , torch.Tensor ): __SCREAMING_SNAKE_CASE : Optional[int] = processed else: __SCREAMING_SNAKE_CASE : int = list(processed.keys() )[0] __SCREAMING_SNAKE_CASE : int = processed[key] if isinstance(UpperCamelCase__ , UpperCamelCase__ ): __SCREAMING_SNAKE_CASE : List[Any] = len(UpperCamelCase__ ) else: __SCREAMING_SNAKE_CASE : Dict = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. __SCREAMING_SNAKE_CASE : List[Any] = observed_batch_size # Setting internal index to unwrap the batch __SCREAMING_SNAKE_CASE : List[Any] = processed __SCREAMING_SNAKE_CASE : int = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class _lowercase ( UpperCamelCase_ ): def __init__( self :str , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Union[str, Any]=None ) -> Any: super().__init__(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def __iter__( self :Union[str, Any] ) -> Tuple: __SCREAMING_SNAKE_CASE : Tuple = iter(self.loader ) __SCREAMING_SNAKE_CASE : List[Any] = None return self def __magic_name__( self :List[str] ) -> Optional[Any]: if self.subiterator is None: __SCREAMING_SNAKE_CASE : Dict = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item __SCREAMING_SNAKE_CASE : Any = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators __SCREAMING_SNAKE_CASE : Optional[Any] = self.infer(next(self.iterator ) , **self.params ) __SCREAMING_SNAKE_CASE : Union[str, Any] = next(self.subiterator ) return processed class _lowercase ( UpperCamelCase_ ): def __iter__( self :Tuple ) -> str: __SCREAMING_SNAKE_CASE : Dict = iter(self.loader ) return self def __magic_name__( self :List[str] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : List[Any] = False __SCREAMING_SNAKE_CASE : Optional[int] = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: __SCREAMING_SNAKE_CASE : Tuple = self.loader_batch_item() __SCREAMING_SNAKE_CASE : Any = item.pop('''is_last''' ) accumulator.append(UpperCamelCase__ ) if is_last: return accumulator while not is_last: __SCREAMING_SNAKE_CASE : Any = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(UpperCamelCase__ , torch.Tensor ): __SCREAMING_SNAKE_CASE : Tuple = processed else: __SCREAMING_SNAKE_CASE : Union[str, Any] = list(processed.keys() )[0] __SCREAMING_SNAKE_CASE : List[str] = processed[key] if isinstance(UpperCamelCase__ , UpperCamelCase__ ): __SCREAMING_SNAKE_CASE : List[Any] = len(UpperCamelCase__ ) else: __SCREAMING_SNAKE_CASE : int = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. __SCREAMING_SNAKE_CASE : List[str] = observed_batch_size __SCREAMING_SNAKE_CASE : List[Any] = processed __SCREAMING_SNAKE_CASE : str = 0 while self._loader_batch_index < self.loader_batch_size: __SCREAMING_SNAKE_CASE : Any = self.loader_batch_item() __SCREAMING_SNAKE_CASE : List[Any] = item.pop('''is_last''' ) accumulator.append(UpperCamelCase__ ) if is_last: return accumulator else: __SCREAMING_SNAKE_CASE : int = processed __SCREAMING_SNAKE_CASE : List[str] = item.pop('''is_last''' ) accumulator.append(UpperCamelCase__ ) return accumulator class _lowercase ( UpperCamelCase_ ): def __init__( self :Optional[Any] , lowerCAmelCase__ :Dataset , lowerCAmelCase__ :str ) -> List[Any]: __SCREAMING_SNAKE_CASE : Optional[Any] = dataset __SCREAMING_SNAKE_CASE : Dict = key def __len__( self :Optional[int] ) -> List[Any]: return len(self.dataset ) def __getitem__( self :Dict , lowerCAmelCase__ :Tuple ) -> Any: return self.dataset[i][self.key] class _lowercase ( UpperCamelCase_ ): def __init__( self :List[Any] , lowerCAmelCase__ :Dataset , lowerCAmelCase__ :str , lowerCAmelCase__ :str ) -> Dict: __SCREAMING_SNAKE_CASE : str = dataset __SCREAMING_SNAKE_CASE : List[str] = keya __SCREAMING_SNAKE_CASE : Tuple = keya def __len__( self :List[str] ) -> int: return len(self.dataset ) def __getitem__( self :Union[str, Any] , lowerCAmelCase__ :Any ) -> List[str]: return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
712
from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _lowercase ( A__ ): '''simple docstring''' def __init__( self :List[str] , lowerCAmelCase__ :TransformeraDModel , lowerCAmelCase__ :AutoencoderKL , lowerCAmelCase__ :KarrasDiffusionSchedulers , lowerCAmelCase__ :Optional[Dict[int, str]] = None , ) -> List[Any]: super().__init__() self.register_modules(transformer=lowerCAmelCase__ , vae=lowerCAmelCase__ , scheduler=lowerCAmelCase__ ) # create a imagenet -> id dictionary for easier use __SCREAMING_SNAKE_CASE : Dict = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(''',''' ): __SCREAMING_SNAKE_CASE : int = int(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = dict(sorted(self.labels.items() ) ) def __magic_name__( self :List[Any] , lowerCAmelCase__ :Union[str, List[str]] ) -> List[int]: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = list(lowerCAmelCase__ ) for l in label: if l not in self.labels: raise ValueError( f'''{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.''' ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self :Tuple , lowerCAmelCase__ :List[int] , lowerCAmelCase__ :float = 4.0 , lowerCAmelCase__ :Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCAmelCase__ :int = 50 , lowerCAmelCase__ :Optional[str] = "pil" , lowerCAmelCase__ :bool = True , ) -> Union[ImagePipelineOutput, Tuple]: __SCREAMING_SNAKE_CASE : Any = len(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self.transformer.config.sample_size __SCREAMING_SNAKE_CASE : Optional[Any] = self.transformer.config.in_channels __SCREAMING_SNAKE_CASE : Union[str, Any] = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=lowerCAmelCase__ , device=self.device , dtype=self.transformer.dtype , ) __SCREAMING_SNAKE_CASE : Optional[Any] = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents __SCREAMING_SNAKE_CASE : str = torch.tensor(lowerCAmelCase__ , device=self.device ).reshape(-1 ) __SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([1_000] * batch_size , device=self.device ) __SCREAMING_SNAKE_CASE : Tuple = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(lowerCAmelCase__ ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: __SCREAMING_SNAKE_CASE : Optional[int] = latent_model_input[: len(lowerCAmelCase__ ) // 2] __SCREAMING_SNAKE_CASE : Optional[Any] = torch.cat([half, half] , dim=0 ) __SCREAMING_SNAKE_CASE : Dict = self.scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = t if not torch.is_tensor(lowerCAmelCase__ ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) __SCREAMING_SNAKE_CASE : Optional[int] = latent_model_input.device.type == '''mps''' if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : Tuple = torch.floataa if is_mps else torch.floataa else: __SCREAMING_SNAKE_CASE : List[Any] = torch.intaa if is_mps else torch.intaa __SCREAMING_SNAKE_CASE : List[str] = torch.tensor([timesteps] , dtype=lowerCAmelCase__ , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: __SCREAMING_SNAKE_CASE : str = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __SCREAMING_SNAKE_CASE : str = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output __SCREAMING_SNAKE_CASE : Optional[Any] = self.transformer( lowerCAmelCase__ , timestep=lowerCAmelCase__ , class_labels=lowerCAmelCase__ ).sample # perform guidance if guidance_scale > 1: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[str] = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[int] = torch.split(lowerCAmelCase__ , len(lowerCAmelCase__ ) // 2 , dim=0 ) __SCREAMING_SNAKE_CASE : Union[str, Any] = uncond_eps + guidance_scale * (cond_eps - uncond_eps) __SCREAMING_SNAKE_CASE : Any = torch.cat([half_eps, half_eps] , dim=0 ) __SCREAMING_SNAKE_CASE : Optional[Any] = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : str = torch.split(lowerCAmelCase__ , lowerCAmelCase__ , dim=1 ) else: __SCREAMING_SNAKE_CASE : Optional[Any] = noise_pred # compute previous image: x_t -> x_t-1 __SCREAMING_SNAKE_CASE : Tuple = self.scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ).prev_sample if guidance_scale > 1: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[int] = latent_model_input.chunk(2 , dim=0 ) else: __SCREAMING_SNAKE_CASE : List[str] = latent_model_input __SCREAMING_SNAKE_CASE : Dict = 1 / self.vae.config.scaling_factor * latents __SCREAMING_SNAKE_CASE : Tuple = self.vae.decode(lowerCAmelCase__ ).sample __SCREAMING_SNAKE_CASE : int = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __SCREAMING_SNAKE_CASE : Dict = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __SCREAMING_SNAKE_CASE : str = self.numpy_to_pil(lowerCAmelCase__ ) if not return_dict: return (samples,) return ImagePipelineOutput(images=lowerCAmelCase__ )
260
0
from ..utils import DummyObject, requires_backends class a__ ( metaclass=UpperCamelCase__ ): a : int = ["""torch""", """scipy"""] def __init__( self , *A , **A ) -> str: '''simple docstring''' requires_backends(self , ["torch", "scipy"] ) @classmethod def lowerCAmelCase_ ( cls , *A , **A ) -> Any: '''simple docstring''' requires_backends(cls , ["torch", "scipy"] ) @classmethod def lowerCAmelCase_ ( cls , *A , **A ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["torch", "scipy"] )
515
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format="%(message)s") def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> np.ndarray: return input_array.reshape((input_array.size, 1)) def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase) -> np.ndarray: a = np.nan for i in range(__UpperCamelCase): a = features[:, labels == i] a = data.mean(1) # Centralize the data of class i a = data - column_reshape(__UpperCamelCase) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(__UpperCamelCase , centered_data.T) else: # If covariance_sum is np.nan (i.e. first loop) a = np.dot(__UpperCamelCase , centered_data.T) return covariance_sum / features.shape[1] def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase) -> np.ndarray: a = features.mean(1) a = np.nan for i in range(__UpperCamelCase): a = features[:, labels == i] a = data.shape[1] a = data.mean(1) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(__UpperCamelCase) - column_reshape(__UpperCamelCase) , (column_reshape(__UpperCamelCase) - column_reshape(__UpperCamelCase)).T , ) else: # If covariance_sum is np.nan (i.e. first loop) a = device_data * np.dot( column_reshape(__UpperCamelCase) - column_reshape(__UpperCamelCase) , (column_reshape(__UpperCamelCase) - column_reshape(__UpperCamelCase)).T , ) return covariance_sum / features.shape[1] def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase) -> np.ndarray: # Check if the features have been loaded if features.any(): a = features.mean(1) # Center the dataset a = features - np.reshape(__UpperCamelCase , (data_mean.size, 1)) a = np.dot(__UpperCamelCase , centered_data.T) / features.shape[1] a , a = np.linalg.eigh(__UpperCamelCase) # Take all the columns in the reverse order (-1), and then takes only the first a = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space a = np.dot(filtered_eigenvectors.T , __UpperCamelCase) logging.info("Principal Component Analysis computed") return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=__UpperCamelCase) logging.error("Dataset empty") raise AssertionError def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase) -> np.ndarray: assert classes > dimensions # Check if features have been already loaded if features.any: a , a = eigh( covariance_between_classes(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase) , covariance_within_classes(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase) , ) a = eigenvectors[:, ::-1][:, :dimensions] a , a , a = np.linalg.svd(__UpperCamelCase) a = svd_matrix[:, 0:dimensions] a = np.dot(filtered_svd_matrix.T , __UpperCamelCase) logging.info("Linear Discriminant Analysis computed") return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=__UpperCamelCase) logging.error("Dataset empty") raise AssertionError def SCREAMING_SNAKE_CASE ( ) -> None: # Create dummy dataset with 2 classes and 3 features a = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]]) a = np.array([0, 0, 0, 1, 1]) a = 2 a = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(__UpperCamelCase) as error_info: a = linear_discriminant_analysis( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase) if isinstance(__UpperCamelCase , np.ndarray): raise AssertionError( "Did not raise AssertionError for dimensions > classes") assert error_info.type is AssertionError def SCREAMING_SNAKE_CASE ( ) -> None: a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) a = 2 a = np.array([[6.92_820_323, 8.66_025_404, 10.39_230_485], [3.0, 3.0, 3.0]]) with pytest.raises(__UpperCamelCase) as error_info: a = principal_component_analysis(__UpperCamelCase , __UpperCamelCase) if not np.allclose(__UpperCamelCase , __UpperCamelCase): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
515
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : str = { 'SCUT-DLVCLab/lilt-roberta-en-base': ( 'https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json' ), } class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): lowercase__ = "lilt" def __init__( self , __UpperCamelCase=3_0522 , __UpperCamelCase=768 , __UpperCamelCase=12 , __UpperCamelCase=12 , __UpperCamelCase=3072 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=512 , __UpperCamelCase=2 , __UpperCamelCase=0.0_2 , __UpperCamelCase=1E-12 , __UpperCamelCase=0 , __UpperCamelCase="absolute" , __UpperCamelCase=None , __UpperCamelCase=4 , __UpperCamelCase=1024 , **__UpperCamelCase , ): '''simple docstring''' super().__init__(pad_token_id=__UpperCamelCase , **__UpperCamelCase ) __a : Optional[Any] = vocab_size __a : Union[str, Any] = hidden_size __a : Optional[int] = num_hidden_layers __a : Tuple = num_attention_heads __a : int = hidden_act __a : int = intermediate_size __a : Optional[int] = hidden_dropout_prob __a : int = attention_probs_dropout_prob __a : str = max_position_embeddings __a : Optional[int] = type_vocab_size __a : Union[str, Any] = initializer_range __a : str = layer_norm_eps __a : List[Any] = position_embedding_type __a : str = classifier_dropout __a : Optional[Any] = channel_shrink_ratio __a : List[str] = max_ad_position_embeddings
706
'''simple docstring''' from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): lowercase__ = "" lowercase__ = "hf-legacy" # "hf://"" is reserved for hffs def __init__( self , __UpperCamelCase = None , __UpperCamelCase = None , **__UpperCamelCase , ): '''simple docstring''' super().__init__(self , **__UpperCamelCase ) __a : int = repo_info __a : int = token __a : Any = None def __lowerCamelCase ( self ): '''simple docstring''' if self.dir_cache is None: __a : Union[str, Any] = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes __a : List[str] = { """name""": hf_file.rfilename, """size""": None, """type""": """file""", } self.dir_cache.update( { str(__UpperCamelCase ): {"""name""": str(__UpperCamelCase ), """size""": None, """type""": """directory"""} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = "rb" , **__UpperCamelCase , ): '''simple docstring''' if not isinstance(self.repo_info , __UpperCamelCase ): raise NotImplementedError(f"""Open is only implemented for dataset repositories, but got {self.repo_info}""" ) __a : Any = hf_hub_url(self.repo_info.id , __UpperCamelCase , revision=self.repo_info.sha ) return fsspec.open( __UpperCamelCase , mode=__UpperCamelCase , headers=get_authentication_headers_for_url(__UpperCamelCase , use_auth_token=self.token ) , client_kwargs={"""trust_env""": True} , ).open() def __lowerCamelCase ( self , __UpperCamelCase , **__UpperCamelCase ): '''simple docstring''' self._get_dirs() __a : str = self._strip_protocol(__UpperCamelCase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(__UpperCamelCase ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase=False , **__UpperCamelCase ): '''simple docstring''' self._get_dirs() __a : int = PurePosixPath(path.strip("""/""" ) ) __a : List[str] = {} for p, f in self.dir_cache.items(): __a : str = PurePosixPath(p.strip("""/""" ) ) __a : Optional[int] = p.parent if root == path: __a : List[str] = f __a : str = list(paths.values() ) if detail: return out else: return sorted(f["""name"""] for f in out )
697
0
import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = '''''' lowerCAmelCase_ = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) lowerCAmelCase_ = None # compression type in fsspec. ex: "gzip" lowerCAmelCase_ = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self : str , _A : str = "" , _A : Optional[str] = None , _A : Optional[dict] = None , **_A : List[Any] ): """simple docstring""" super().__init__(self , **_A ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode __SCREAMING_SNAKE_CASE : Tuple = fsspec.open( _A , mode='''rb''' , protocol=_A , compression=self.compression , client_kwargs={ '''requote_redirect_url''': False, # see https://github.com/huggingface/datasets/pull/5459 '''trust_env''': True, # Enable reading proxy env variables. **(target_options or {}).pop('''client_kwargs''' , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) __SCREAMING_SNAKE_CASE : Optional[Any] = os.path.basename(self.file.path.split('''::''' )[0] ) __SCREAMING_SNAKE_CASE : Optional[int] = ( self.compressed_name[: self.compressed_name.rindex('''.''' )] if '''.''' in self.compressed_name else self.compressed_name ) __SCREAMING_SNAKE_CASE : Any = None @classmethod def UpperCAmelCase__ ( cls : List[str] , _A : Optional[int] ): """simple docstring""" return super()._strip_protocol(_A ).lstrip('''/''' ) def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" if self.dir_cache is None: __SCREAMING_SNAKE_CASE : List[str] = {**self.file.fs.info(self.file.path ), '''name''': self.uncompressed_name} __SCREAMING_SNAKE_CASE : Union[str, Any] = {f['''name''']: f} def UpperCAmelCase__ ( self : Dict , _A : str ): """simple docstring""" return self.file.open().read() def UpperCAmelCase__ ( self : Any , _A : str , _A : str = "rb" , _A : Tuple=None , _A : Union[str, Any]=True , _A : Dict=None , **_A : List[Any] , ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = self._strip_protocol(_A ) if mode != "rb": raise ValueError(F'''Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'''' ) return self.file.open() class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = '''bz2''' lowerCAmelCase_ = '''bz2''' lowerCAmelCase_ = '''.bz2''' class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = '''gzip''' lowerCAmelCase_ = '''gzip''' lowerCAmelCase_ = '''.gz''' class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = '''lz4''' lowerCAmelCase_ = '''lz4''' lowerCAmelCase_ = '''.lz4''' class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = '''xz''' lowerCAmelCase_ = '''xz''' lowerCAmelCase_ = '''.xz''' class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = '''zstd''' lowerCAmelCase_ = '''zstd''' lowerCAmelCase_ = '''.zst''' def __init__( self : str , _A : str , _A : str = "rb" , _A : Optional[str] = None , _A : Optional[dict] = None , _A : int = DEFAULT_BLOCK_SIZE , **_A : str , ): """simple docstring""" super().__init__( fo=_A , mode=_A , target_protocol=_A , target_options=_A , block_size=_A , **_A , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 __SCREAMING_SNAKE_CASE : Optional[Any] = self.file.__enter__ class __UpperCamelCase : """simple docstring""" def __init__( self : int , _A : Optional[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = file_ def __enter__( self : int ): """simple docstring""" self._file.__enter__() return self def __exit__( self : Any , *_A : int , **_A : List[Any] ): """simple docstring""" self._file.__exit__(*_A , **_A ) def __iter__( self : List[Any] ): """simple docstring""" return iter(self._file ) def UpperCAmelCase__ ( self : int ): """simple docstring""" return next(self._file ) def __getattr__( self : Dict , _A : Optional[int] ): """simple docstring""" return getattr(self._file , _A ) def fixed_enter(*_A : List[str] , **_A : str ): return WrappedFile(_enter(*_A , **_A ) ) __SCREAMING_SNAKE_CASE : Optional[int] = fixed_enter
74
import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __UpperCamelCase ( lowerCAmelCase__ , unittest.TestCase ): """simple docstring""" lowerCAmelCase_ = MobileBertTokenizer lowerCAmelCase_ = MobileBertTokenizerFast lowerCAmelCase_ = True lowerCAmelCase_ = True lowerCAmelCase_ = filter_non_english lowerCAmelCase_ = '''google/mobilebert-uncased''' def UpperCAmelCase__ ( self : Dict ): """simple docstring""" super().setUp() __SCREAMING_SNAKE_CASE : List[str] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] __SCREAMING_SNAKE_CASE : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) __SCREAMING_SNAKE_CASE : int = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def UpperCAmelCase__ ( self : Tuple , _A : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = '''UNwant\u00E9d,running''' __SCREAMING_SNAKE_CASE : List[str] = '''unwanted, running''' return input_text, output_text def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer_class(self.vocab_file ) __SCREAMING_SNAKE_CASE : List[str] = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_A , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) , [9, 6, 7, 12, 10, 11] ) def UpperCAmelCase__ ( self : int ): """simple docstring""" if not self.test_rust_tokenizer: return __SCREAMING_SNAKE_CASE : List[str] = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Optional[Any] = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE : Optional[Any] = '''UNwant\u00E9d,running''' __SCREAMING_SNAKE_CASE : Any = tokenizer.tokenize(_A ) __SCREAMING_SNAKE_CASE : Optional[Any] = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) __SCREAMING_SNAKE_CASE : Dict = tokenizer.encode(_A , add_special_tokens=_A ) __SCREAMING_SNAKE_CASE : str = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) __SCREAMING_SNAKE_CASE : Any = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE : str = tokenizer.encode(_A ) __SCREAMING_SNAKE_CASE : Any = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) # With lower casing __SCREAMING_SNAKE_CASE : Any = self.get_tokenizer(do_lower_case=_A ) __SCREAMING_SNAKE_CASE : List[str] = self.get_rust_tokenizer(do_lower_case=_A ) __SCREAMING_SNAKE_CASE : List[str] = '''UNwant\u00E9d,running''' __SCREAMING_SNAKE_CASE : Any = tokenizer.tokenize(_A ) __SCREAMING_SNAKE_CASE : Optional[int] = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) __SCREAMING_SNAKE_CASE : Any = tokenizer.encode(_A , add_special_tokens=_A ) __SCREAMING_SNAKE_CASE : List[str] = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) __SCREAMING_SNAKE_CASE : int = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE : Any = tokenizer.encode(_A ) __SCREAMING_SNAKE_CASE : Optional[int] = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = BasicTokenizer(do_lower_case=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = BasicTokenizer(do_lower_case=_A , strip_accents=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = BasicTokenizer(do_lower_case=_A , strip_accents=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = BasicTokenizer(do_lower_case=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = BasicTokenizer(do_lower_case=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def UpperCAmelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = BasicTokenizer(do_lower_case=_A , strip_accents=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = BasicTokenizer(do_lower_case=_A , strip_accents=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = BasicTokenizer(do_lower_case=_A , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] __SCREAMING_SNAKE_CASE : Dict = {} for i, token in enumerate(_A ): __SCREAMING_SNAKE_CASE : List[str] = i __SCREAMING_SNAKE_CASE : str = WordpieceTokenizer(vocab=_A , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def UpperCAmelCase__ ( self : str ): """simple docstring""" self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def UpperCAmelCase__ ( self : Any ): """simple docstring""" self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def UpperCAmelCase__ ( self : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(_A ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) self.assertListEqual( [rust_tokenizer.tokenize(_A ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) @slow def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = self.tokenizer_class.from_pretrained('''google/mobilebert-uncased''' ) __SCREAMING_SNAKE_CASE : Tuple = tokenizer.encode('''sequence builders''' , add_special_tokens=_A ) __SCREAMING_SNAKE_CASE : int = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_A ) __SCREAMING_SNAKE_CASE : Any = tokenizer.build_inputs_with_special_tokens(_A ) __SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.build_inputs_with_special_tokens(_A , _A ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __SCREAMING_SNAKE_CASE : Optional[Any] = self.rust_tokenizer_class.from_pretrained(_A , **_A ) __SCREAMING_SNAKE_CASE : str = F'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' __SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer_r.encode_plus( _A , return_attention_mask=_A , return_token_type_ids=_A , return_offsets_mapping=_A , add_special_tokens=_A , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer_r.do_lower_case if hasattr(_A , '''do_lower_case''' ) else False __SCREAMING_SNAKE_CASE : Optional[Any] = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def UpperCAmelCase__ ( self : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = ['''的''', '''人''', '''有'''] __SCREAMING_SNAKE_CASE : int = ''''''.join(_A ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __SCREAMING_SNAKE_CASE : str = True __SCREAMING_SNAKE_CASE : int = self.tokenizer_class.from_pretrained(_A , **_A ) __SCREAMING_SNAKE_CASE : int = self.rust_tokenizer_class.from_pretrained(_A , **_A ) __SCREAMING_SNAKE_CASE : List[str] = tokenizer_p.encode(_A , add_special_tokens=_A ) __SCREAMING_SNAKE_CASE : Tuple = tokenizer_r.encode(_A , add_special_tokens=_A ) __SCREAMING_SNAKE_CASE : Optional[int] = tokenizer_r.convert_ids_to_tokens(_A ) __SCREAMING_SNAKE_CASE : int = tokenizer_p.convert_ids_to_tokens(_A ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(_A , _A ) self.assertListEqual(_A , _A ) __SCREAMING_SNAKE_CASE : Optional[Any] = False __SCREAMING_SNAKE_CASE : Any = self.rust_tokenizer_class.from_pretrained(_A , **_A ) __SCREAMING_SNAKE_CASE : List[str] = self.tokenizer_class.from_pretrained(_A , **_A ) __SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r.encode(_A , add_special_tokens=_A ) __SCREAMING_SNAKE_CASE : int = tokenizer_p.encode(_A , add_special_tokens=_A ) __SCREAMING_SNAKE_CASE : Dict = tokenizer_r.convert_ids_to_tokens(_A ) __SCREAMING_SNAKE_CASE : int = tokenizer_p.convert_ids_to_tokens(_A ) # it is expected that only the first Chinese character is not preceded by "##". __SCREAMING_SNAKE_CASE : List[Any] = [ F'''##{token}''' if idx != 0 else token for idx, token in enumerate(_A ) ] self.assertListEqual(_A , _A ) self.assertListEqual(_A , _A )
74
1
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) @dataclass class lowerCAmelCase_ ( __A ): '''simple docstring''' _lowercase = [ 'no_inference', 'no_cuda', 'no_tpu', 'no_speed', 'no_memory', 'no_env_print', 'no_multi_process', ] def __init__( self , **__UpperCAmelCase ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: SCREAMING_SNAKE_CASE_ : Union[str, Any] =deprecated_arg[3:] SCREAMING_SNAKE_CASE_ : str =not kwargs.pop(__UpperCAmelCase ) logger.warning( F"""{deprecated_arg} is depreciated. Please use --no-{positive_arg} or""" F""" {positive_arg}={kwargs[positive_arg]}""" ) SCREAMING_SNAKE_CASE_ : List[Any] =kwargs.pop('tpu_name' , self.tpu_name ) SCREAMING_SNAKE_CASE_ : Optional[Any] =kwargs.pop('device_idx' , self.device_idx ) SCREAMING_SNAKE_CASE_ : str =kwargs.pop('eager_mode' , self.eager_mode ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =kwargs.pop('use_xla' , self.use_xla ) super().__init__(**__UpperCAmelCase ) _lowercase = field( default=__A , metadata={'help': 'Name of TPU'} , ) _lowercase = field( default=0 , metadata={'help': 'CPU / GPU device index. Defaults to 0.'} , ) _lowercase = field(default=__A , metadata={'help': 'Benchmark models in eager model.'} ) _lowercase = field( default=__A , metadata={ 'help': 'Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.' } , ) @cached_property def __lowerCamelCase ( self ): requires_backends(self , ['tf'] ) SCREAMING_SNAKE_CASE_ : Any =None if self.tpu: try: if self.tpu_name: SCREAMING_SNAKE_CASE_ : Optional[int] =tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: SCREAMING_SNAKE_CASE_ : int =tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: SCREAMING_SNAKE_CASE_ : int =None return tpu @cached_property def __lowerCamelCase ( self ): requires_backends(self , ['tf'] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) SCREAMING_SNAKE_CASE_ : str =tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , 'GPU' ) SCREAMING_SNAKE_CASE_ : Optional[int] =tf.distribute.OneDeviceStrategy(device=F"""/gpu:{self.device_idx}""" ) else: tf.config.set_visible_devices([] , 'GPU' ) # disable GPU SCREAMING_SNAKE_CASE_ : Any =tf.distribute.OneDeviceStrategy(device=F"""/cpu:{self.device_idx}""" ) return strategy @property def __lowerCamelCase ( self ): requires_backends(self , ['tf'] ) return self._setup_tpu is not None @property def __lowerCamelCase ( self ): requires_backends(self , ['tf'] ) return self._setup_strategy @property def __lowerCamelCase ( self ): requires_backends(self , ['tf'] ) return tf.config.list_physical_devices('GPU' ) @property def __lowerCamelCase ( self ): requires_backends(self , ['tf'] ) if self.cuda: return len(self.gpu_list ) return 0 @property def __lowerCamelCase ( self ): return self.n_gpu > 0
718
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class lowerCAmelCase_ ( __A ): '''simple docstring''' _lowercase = ['pixel_values'] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = IMAGENET_DEFAULT_MEAN , __UpperCAmelCase = IMAGENET_DEFAULT_STD , **__UpperCAmelCase , ): super().__init__(**__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : Tuple =size if size is not None else {'shortest_edge': 224} SCREAMING_SNAKE_CASE_ : List[Any] =get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : List[str] =crop_size if crop_size is not None else {'height': 224, 'width': 224} SCREAMING_SNAKE_CASE_ : Union[str, Any] =get_size_dict(__UpperCAmelCase , param_name='crop_size' ) SCREAMING_SNAKE_CASE_ : Tuple =do_resize SCREAMING_SNAKE_CASE_ : Dict =size SCREAMING_SNAKE_CASE_ : Tuple =resample SCREAMING_SNAKE_CASE_ : List[str] =do_center_crop SCREAMING_SNAKE_CASE_ : Optional[int] =crop_size SCREAMING_SNAKE_CASE_ : int =do_rescale SCREAMING_SNAKE_CASE_ : List[Any] =rescale_factor SCREAMING_SNAKE_CASE_ : Any =do_normalize SCREAMING_SNAKE_CASE_ : Tuple =image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN SCREAMING_SNAKE_CASE_ : Tuple =image_std if image_std is not None else IMAGENET_DEFAULT_STD def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = None , **__UpperCAmelCase , ): SCREAMING_SNAKE_CASE_ : Optional[Any] =get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: SCREAMING_SNAKE_CASE_ : List[str] =int((256 / 224) * size['shortest_edge'] ) SCREAMING_SNAKE_CASE_ : Optional[Any] =get_resize_output_image_size(__UpperCAmelCase , size=__UpperCAmelCase , default_to_square=__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : Tuple ={'height': output_size[0], 'width': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( F"""Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}""" ) return resize( __UpperCAmelCase , size=(size_dict['height'], size_dict['width']) , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ): SCREAMING_SNAKE_CASE_ : List[Any] =get_size_dict(__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""Size dict must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(__UpperCAmelCase , size=(size['height'], size['width']) , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ): return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ): return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ): SCREAMING_SNAKE_CASE_ : Optional[int] =do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE_ : List[str] =resample if resample is not None else self.resample SCREAMING_SNAKE_CASE_ : Tuple =do_center_crop if do_center_crop is not None else self.do_center_crop SCREAMING_SNAKE_CASE_ : Union[str, Any] =do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE_ : Tuple =rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE_ : Tuple =do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE_ : int =image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE_ : List[Any] =image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE_ : List[str] =size if size is not None else self.size SCREAMING_SNAKE_CASE_ : Any =get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] =crop_size if crop_size is not None else self.crop_size SCREAMING_SNAKE_CASE_ : Optional[Any] =get_size_dict(__UpperCAmelCase , param_name='crop_size' ) SCREAMING_SNAKE_CASE_ : Optional[Any] =make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE_ : Any =[to_numpy_array(__UpperCAmelCase ) for image in images] if do_resize: SCREAMING_SNAKE_CASE_ : Dict =[self.resize(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) for image in images] if do_center_crop: SCREAMING_SNAKE_CASE_ : Any =[self.center_crop(__UpperCAmelCase , __UpperCAmelCase ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE_ : List[Any] =[self.rescale(__UpperCAmelCase , __UpperCAmelCase ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE_ : List[str] =[self.normalize(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) for image in images] SCREAMING_SNAKE_CASE_ : Tuple =[to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] SCREAMING_SNAKE_CASE_ : Tuple ={'pixel_values': images} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
153
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class a_ : UpperCamelCase_ : Any = XGLMConfig UpperCamelCase_ : int = {} UpperCamelCase_ : Tuple = "gelu" def __init__( self : Optional[int] , snake_case__ : Tuple , snake_case__ : List[str]=14 , snake_case__ : Union[str, Any]=7 , snake_case__ : Optional[Any]=True , snake_case__ : Optional[int]=True , snake_case__ : Union[str, Any]=True , snake_case__ : Tuple=99 , snake_case__ : Optional[Any]=32 , snake_case__ : List[Any]=2 , snake_case__ : Optional[Any]=4 , snake_case__ : List[str]=37 , snake_case__ : Optional[Any]="gelu" , snake_case__ : str=0.1 , snake_case__ : List[Any]=0.1 , snake_case__ : List[Any]=512 , snake_case__ : List[Any]=0.02 , ): lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = seq_length lowerCAmelCase__ = is_training lowerCAmelCase__ = use_input_mask lowerCAmelCase__ = use_labels lowerCAmelCase__ = vocab_size lowerCAmelCase__ = d_model lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = ffn_dim lowerCAmelCase__ = activation_function lowerCAmelCase__ = activation_dropout lowerCAmelCase__ = attention_dropout lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = initializer_range lowerCAmelCase__ = None lowerCAmelCase__ = 0 lowerCAmelCase__ = 2 lowerCAmelCase__ = 1 def _SCREAMING_SNAKE_CASE ( self : List[str] ): return XGLMConfig.from_pretrained("""facebook/xglm-564M""" ) def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) lowerCAmelCase__ = None if self.use_input_mask: lowerCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase__ = self.get_config() lowerCAmelCase__ = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def _SCREAMING_SNAKE_CASE ( self : Dict ): return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=snake_case__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=snake_case__ , ) def _SCREAMING_SNAKE_CASE ( self : str ): lowerCAmelCase__ = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) = config_and_inputs lowerCAmelCase__ = { """input_ids""": input_ids, """head_mask""": head_mask, } return config, inputs_dict @require_tf class a_ ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : str = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () UpperCamelCase_ : Union[str, Any] = (TFXGLMForCausalLM,) if is_tf_available() else () UpperCamelCase_ : Tuple = ( {"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {} ) UpperCamelCase_ : List[Any] = False UpperCamelCase_ : Optional[Any] = False UpperCamelCase_ : str = False def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): lowerCAmelCase__ = TFXGLMModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=snake_case__ , n_embd=37 ) def _SCREAMING_SNAKE_CASE ( self : Dict ): self.config_tester.run_common_tests() @slow def _SCREAMING_SNAKE_CASE ( self : int ): for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = TFXGLMModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) @unittest.skip(reason="""Currently, model embeddings are going to undergo a major refactor.""" ) def _SCREAMING_SNAKE_CASE ( self : str ): super().test_resize_token_embeddings() @require_tf class a_ ( unittest.TestCase ): @slow def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : Optional[int]=True ): lowerCAmelCase__ = TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) lowerCAmelCase__ = tf.convert_to_tensor([[2, 268, 9865]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off lowerCAmelCase__ = [2, 268, 9865, 67, 11, 1988, 57252, 9865, 5, 984, 67, 1988, 213838, 1658, 53, 70446, 33, 6657, 278, 1581] # fmt: on lowerCAmelCase__ = model.generate(snake_case__ , do_sample=snake_case__ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , snake_case__ ) @slow def _SCREAMING_SNAKE_CASE ( self : Tuple ): lowerCAmelCase__ = XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) lowerCAmelCase__ = TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) tf.random.set_seed(0 ) lowerCAmelCase__ = tokenizer("""Today is a nice day and""" , return_tensors="""tf""" ) lowerCAmelCase__ = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(""":/CPU:0""" ): lowerCAmelCase__ = model.generate(snake_case__ , do_sample=snake_case__ , seed=[7, 0] ) lowerCAmelCase__ = tokenizer.decode(output_ids[0] , skip_special_tokens=snake_case__ ) lowerCAmelCase__ = ( """Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due""" ) self.assertEqual(snake_case__ , snake_case__ ) @slow def _SCREAMING_SNAKE_CASE ( self : List[str] ): lowerCAmelCase__ = TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) lowerCAmelCase__ = XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) lowerCAmelCase__ = """left""" # use different length sentences to test batching lowerCAmelCase__ = [ """This is an extremelly long sentence that only exists to test the ability of the model to cope with """ """left-padding, such as in batched generation. The output for the sequence below should be the same """ """regardless of whether left padding is applied or not. When""", """Hello, my dog is a little""", ] lowerCAmelCase__ = tokenizer(snake_case__ , return_tensors="""tf""" , padding=snake_case__ ) lowerCAmelCase__ = inputs["""input_ids"""] lowerCAmelCase__ = model.generate(input_ids=snake_case__ , attention_mask=inputs["""attention_mask"""] , max_new_tokens=12 ) lowerCAmelCase__ = tokenizer(sentences[0] , return_tensors="""tf""" ).input_ids lowerCAmelCase__ = model.generate(input_ids=snake_case__ , max_new_tokens=12 ) lowerCAmelCase__ = tokenizer(sentences[1] , return_tensors="""tf""" ).input_ids lowerCAmelCase__ = model.generate(input_ids=snake_case__ , max_new_tokens=12 ) lowerCAmelCase__ = tokenizer.batch_decode(snake_case__ , skip_special_tokens=snake_case__ ) lowerCAmelCase__ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=snake_case__ ) lowerCAmelCase__ = tokenizer.decode(output_padded[0] , skip_special_tokens=snake_case__ ) lowerCAmelCase__ = [ """This is an extremelly long sentence that only exists to test the ability of the model to cope with """ """left-padding, such as in batched generation. The output for the sequence below should be the same """ """regardless of whether left padding is applied or not. When left padding is applied, the sequence will be """ """a single""", """Hello, my dog is a little bit of a shy one, but he is very friendly""", ] self.assertListEqual(snake_case__ , snake_case__ ) self.assertListEqual(snake_case__ , [non_padded_sentence, padded_sentence] )
644
"""simple docstring""" def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" return " ".join( """""".join(word[::-1] ) if len(lowerCamelCase__ ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words("Hey wollef sroirraw"))
644
1
def UpperCamelCase_ ( __a ) -> bool: a__ : Tuple = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def UpperCamelCase_ ( __a = 5_000 ) -> int: a__ : List[Any] = [(i * (3 * i - 1)) // 2 for i in range(1 , __a )] for i, pentagonal_i in enumerate(__a ): for j in range(__a , len(__a ) ): a__ : Dict = pentagonal_nums[j] a__ : Optional[Any] = pentagonal_i + pentagonal_j a__ : str = pentagonal_j - pentagonal_i if is_pentagonal(__a ) and is_pentagonal(__a ): return b return -1 if __name__ == "__main__": print(f"""{solution() = }""")
717
import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class A__ ( A__ ): """simple docstring""" _lowercase = 'MCTCTFeatureExtractor' _lowercase = 'AutoTokenizer' def __init__( self : Union[str, Any] , lowerCamelCase__ : Any , lowerCamelCase__ : List[Any] ): super().__init__(lowerCamelCase__ , lowerCamelCase__ ) a__ : int = self.feature_extractor a__ : Any = False def __call__( self : str , *lowerCamelCase__ : Optional[Any] , **lowerCamelCase__ : List[Any] ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*lowerCamelCase__ , **lowerCamelCase__ ) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." ) a__ : Optional[Any] = kwargs.pop("raw_speech" ) else: a__ : int = kwargs.pop("audio" , lowerCamelCase__ ) a__ : Dict = kwargs.pop("sampling_rate" , lowerCamelCase__ ) a__ : List[str] = kwargs.pop("text" , lowerCamelCase__ ) if len(lowerCamelCase__ ) > 0: a__ : Optional[int] = args[0] a__ : List[str] = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: a__ : Dict = self.feature_extractor(lowerCamelCase__ , *lowerCamelCase__ , sampling_rate=lowerCamelCase__ , **lowerCamelCase__ ) if text is not None: a__ : str = self.tokenizer(lowerCamelCase__ , **lowerCamelCase__ ) if text is None: return inputs elif audio is None: return encodings else: a__ : Union[str, Any] = encodings["input_ids"] return inputs def _UpperCamelCase( self : str , *lowerCamelCase__ : Dict , **lowerCamelCase__ : str ): return self.tokenizer.batch_decode(*lowerCamelCase__ , **lowerCamelCase__ ) def _UpperCamelCase( self : str , *lowerCamelCase__ : List[Any] , **lowerCamelCase__ : Optional[Any] ): # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*lowerCamelCase__ , **lowerCamelCase__ ) a__ : Any = kwargs.pop("input_features" , lowerCamelCase__ ) a__ : Any = kwargs.pop("labels" , lowerCamelCase__ ) if len(lowerCamelCase__ ) > 0: a__ : Optional[int] = args[0] a__ : Any = args[1:] if input_features is not None: a__ : str = self.feature_extractor.pad(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) if labels is not None: a__ : Dict = self.tokenizer.pad(lowerCamelCase__ , **lowerCamelCase__ ) if labels is None: return input_features elif input_features is None: return labels else: a__ : List[str] = labels["input_ids"] return input_features def _UpperCamelCase( self : List[Any] , *lowerCamelCase__ : Optional[int] , **lowerCamelCase__ : Any ): return self.tokenizer.decode(*lowerCamelCase__ , **lowerCamelCase__ ) @contextmanager def _UpperCamelCase( self : Optional[Any] ): warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) a__ : str = True a__ : List[Any] = self.tokenizer yield a__ : Any = self.feature_extractor a__ : List[str] = False
151
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """funnel-transformer/small""": """https://huggingface.co/funnel-transformer/small/resolve/main/config.json""", """funnel-transformer/small-base""": """https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json""", """funnel-transformer/medium""": """https://huggingface.co/funnel-transformer/medium/resolve/main/config.json""", """funnel-transformer/medium-base""": """https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json""", """funnel-transformer/intermediate""": ( """https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json""" ), """funnel-transformer/intermediate-base""": ( """https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json""" ), """funnel-transformer/large""": """https://huggingface.co/funnel-transformer/large/resolve/main/config.json""", """funnel-transformer/large-base""": """https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json""", """funnel-transformer/xlarge""": """https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json""", """funnel-transformer/xlarge-base""": """https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json""", } class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = '''funnel''' lowerCAmelCase_ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', } def __init__( self : Dict , _A : Any=3_0522 , _A : Tuple=[4, 4, 4] , _A : Optional[Any]=None , _A : int=2 , _A : Any=768 , _A : str=12 , _A : Any=64 , _A : Union[str, Any]=3072 , _A : Any="gelu_new" , _A : List[Any]=0.1 , _A : List[Any]=0.1 , _A : List[Any]=0.0 , _A : int=0.1 , _A : Optional[int]=None , _A : Tuple=1e-9 , _A : Optional[Any]="mean" , _A : Dict="relative_shift" , _A : int=True , _A : List[str]=True , _A : List[Any]=True , **_A : List[Any] , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = vocab_size __SCREAMING_SNAKE_CASE : Dict = block_sizes __SCREAMING_SNAKE_CASE : Optional[Any] = [1] * len(_A ) if block_repeats is None else block_repeats assert len(_A ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." __SCREAMING_SNAKE_CASE : Union[str, Any] = num_decoder_layers __SCREAMING_SNAKE_CASE : Union[str, Any] = d_model __SCREAMING_SNAKE_CASE : int = n_head __SCREAMING_SNAKE_CASE : int = d_head __SCREAMING_SNAKE_CASE : Dict = d_inner __SCREAMING_SNAKE_CASE : Any = hidden_act __SCREAMING_SNAKE_CASE : Any = hidden_dropout __SCREAMING_SNAKE_CASE : List[str] = attention_dropout __SCREAMING_SNAKE_CASE : Union[str, Any] = activation_dropout __SCREAMING_SNAKE_CASE : List[Any] = initializer_range __SCREAMING_SNAKE_CASE : List[Any] = initializer_std __SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps assert pooling_type in [ "mean", "max", ], F'''Got {pooling_type} for `pooling_type` but only \'mean\' and \'max\' are supported.''' __SCREAMING_SNAKE_CASE : Optional[Any] = pooling_type assert attention_type in [ "relative_shift", "factorized", ], F'''Got {attention_type} for `attention_type` but only \'relative_shift\' and \'factorized\' are supported.''' __SCREAMING_SNAKE_CASE : int = attention_type __SCREAMING_SNAKE_CASE : Dict = separate_cls __SCREAMING_SNAKE_CASE : Optional[int] = truncate_seq __SCREAMING_SNAKE_CASE : Any = pool_q_only super().__init__(**_A ) @property def UpperCAmelCase__ ( self : Any ): """simple docstring""" return sum(self.block_sizes ) @num_hidden_layers.setter def UpperCAmelCase__ ( self : Dict , _A : List[Any] ): """simple docstring""" raise NotImplementedError( '''This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.''' ) @property def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" return len(self.block_sizes ) @num_blocks.setter def UpperCAmelCase__ ( self : Optional[int] , _A : Optional[Any] ): """simple docstring""" raise NotImplementedError('''This model does not support the setting of `num_blocks`. Please set `block_sizes`.''' )
74
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowercase : Optional[Any] = abspath(join(dirname(dirname(dirname(__file__))), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ ) -> List[Any]: from transformers.testing_utils import pytest_terminal_summary_main lowercase : Dict = terminalreporter.config.getoption("""--make-reports""" ) if make_reports: pytest_terminal_summary_main(SCREAMING_SNAKE_CASE__ , id=SCREAMING_SNAKE_CASE__ )
336
0
import os def __lowerCamelCase ( A__ : str = "matrix.txt" ) -> int: with open(os.path.join(os.path.dirname(A__ ) , A__ ) ) as in_file: lowerCamelCase_ : Tuple = in_file.read() lowerCamelCase_ : List[str] = [[int(A__ ) for cell in row.split(""",""" )] for row in data.strip().splitlines()] lowerCamelCase_ : Union[str, Any] = [[0 for cell in row] for row in grid] lowerCamelCase_ : Optional[Any] = len(grid[0] ) lowerCamelCase_ : int = [[0 for i in range(A__ )] for j in range(A__ )] lowerCamelCase_ : str = grid[0][0] for i in range(1 , A__ ): lowerCamelCase_ : List[str] = grid[0][i] + dp[0][i - 1] for i in range(1 , A__ ): lowerCamelCase_ : str = grid[i][0] + dp[i - 1][0] for i in range(1 , A__ ): for j in range(1 , A__ ): lowerCamelCase_ : Union[str, Any] = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(F'{solution() = }')
709
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor snake_case__ : Optional[int] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE_ (a__ ): '''simple docstring''' def __init__( self : Any , *__a : Union[str, Any] , **__a : List[str] ) ->None: warnings.warn( """The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use PerceiverImageProcessor instead.""" , __a , ) super().__init__(*__a , **__a )
171
0
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) lowerCAmelCase = pytest.mark.integration @pytest.mark.parametrize('''path''' , ['''paws''', '''csv'''] ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" inspect_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ = path + '''.py''' assert script_name in os.listdir(SCREAMING_SNAKE_CASE ) assert "__pycache__" not in os.listdir(SCREAMING_SNAKE_CASE ) @pytest.mark.filterwarnings('''ignore:inspect_metric is deprecated:FutureWarning''' ) @pytest.mark.filterwarnings('''ignore:metric_module_factory is deprecated:FutureWarning''' ) @pytest.mark.parametrize('''path''' , ['''accuracy'''] ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" inspect_metric(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ = path + '''.py''' assert script_name in os.listdir(SCREAMING_SNAKE_CASE ) assert "__pycache__" not in os.listdir(SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( '''path, config_name, expected_splits''' , [ ('''squad''', '''plain_text''', ['''train''', '''validation''']), ('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']), ('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']), ] , ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = get_dataset_config_info(SCREAMING_SNAKE_CASE , config_name=SCREAMING_SNAKE_CASE ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( '''path, config_name, expected_exception''' , [ ('''paws''', None, ValueError), ] , ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" with pytest.raises(SCREAMING_SNAKE_CASE ): get_dataset_config_info(SCREAMING_SNAKE_CASE , config_name=SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( '''path, expected''' , [ ('''squad''', '''plain_text'''), ('''acronym_identification''', '''default'''), ('''lhoestq/squad''', '''plain_text'''), ('''lhoestq/test''', '''default'''), ('''lhoestq/demo1''', '''lhoestq--demo1'''), ('''dalle-mini/wit''', '''dalle-mini--wit'''), ] , ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = get_dataset_config_names(SCREAMING_SNAKE_CASE ) assert expected in config_names @pytest.mark.parametrize( '''path, expected_configs, expected_splits_in_first_config''' , [ ('''squad''', ['''plain_text'''], ['''train''', '''validation''']), ('''dalle-mini/wit''', ['''dalle-mini--wit'''], ['''train''']), ('''paws''', ['''labeled_final''', '''labeled_swap''', '''unlabeled_final'''], ['''train''', '''test''', '''validation''']), ] , ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = get_dataset_infos(SCREAMING_SNAKE_CASE ) assert list(infos.keys() ) == expected_configs lowercase__ = expected_configs[0] assert expected_config in infos lowercase__ = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( '''path, expected_config, expected_splits''' , [ ('''squad''', '''plain_text''', ['''train''', '''validation''']), ('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']), ('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']), ] , ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = get_dataset_infos(SCREAMING_SNAKE_CASE ) assert expected_config in infos lowercase__ = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( '''path, config_name, expected_exception''' , [ ('''paws''', None, ValueError), ] , ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" with pytest.raises(SCREAMING_SNAKE_CASE ): get_dataset_split_names(SCREAMING_SNAKE_CASE , config_name=SCREAMING_SNAKE_CASE )
43
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class a ( lowercase , unittest.TestCase ): UpperCamelCase : Any = KandinskyImgaImgPipeline UpperCamelCase : int = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image"""] UpperCamelCase : Optional[Any] = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", ] UpperCamelCase : Union[str, Any] = [ """generator""", """height""", """width""", """strength""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] UpperCamelCase : List[str] = False @property def __snake_case ( self ): return 32 @property def __snake_case ( self ): return 32 @property def __snake_case ( self ): return self.time_input_dim @property def __snake_case ( self ): return self.time_input_dim * 4 @property def __snake_case ( self ): return 100 @property def __snake_case ( self ): UpperCAmelCase__ : str = XLMRobertaTokenizerFast.from_pretrained('YiYiXu/tiny-random-mclip-base' ) return tokenizer @property def __snake_case ( self ): torch.manual_seed(0 ) UpperCAmelCase__ : Optional[int] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_005 , ) UpperCAmelCase__ : Tuple = MultilingualCLIP(UpperCamelCase_ ) UpperCAmelCase__ : List[Any] = text_encoder.eval() return text_encoder @property def __snake_case ( self ): torch.manual_seed(0 ) UpperCAmelCase__ : Optional[Any] = { 'in_channels': 4, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'text_image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'text_image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } UpperCAmelCase__ : Optional[Any] = UNetaDConditionModel(**UpperCamelCase_ ) return model @property def __snake_case ( self ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __snake_case ( self ): torch.manual_seed(0 ) UpperCAmelCase__ : Optional[Any] = VQModel(**self.dummy_movq_kwargs ) return model def __snake_case ( self ): UpperCAmelCase__ : Union[str, Any] = self.dummy_text_encoder UpperCAmelCase__ : int = self.dummy_tokenizer UpperCAmelCase__ : int = self.dummy_unet UpperCAmelCase__ : Optional[Any] = self.dummy_movq UpperCAmelCase__ : Any = { 'num_train_timesteps': 1_000, 'beta_schedule': 'linear', 'beta_start': 0.00085, 'beta_end': 0.012, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } UpperCAmelCase__ : List[Any] = DDIMScheduler(**UpperCamelCase_ ) UpperCAmelCase__ : Tuple = { 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_=0 ): UpperCAmelCase__ : int = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) UpperCAmelCase__ : Optional[Any] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(UpperCamelCase_ ) # create init_image UpperCAmelCase__ : Optional[int] = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) UpperCAmelCase__ : int = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase__ : Union[str, Any] = Image.fromarray(np.uinta(UpperCamelCase_ ) ).convert('RGB' ).resize((256, 256) ) if str(UpperCamelCase_ ).startswith('mps' ): UpperCAmelCase__ : Dict = torch.manual_seed(UpperCamelCase_ ) else: UpperCAmelCase__ : Optional[int] = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) UpperCAmelCase__ : Tuple = { 'prompt': 'horse', 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 10, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def __snake_case ( self ): UpperCAmelCase__ : Optional[int] = 'cpu' UpperCAmelCase__ : Any = self.get_dummy_components() UpperCAmelCase__ : Any = self.pipeline_class(**UpperCamelCase_ ) UpperCAmelCase__ : Tuple = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) UpperCAmelCase__ : List[Any] = pipe(**self.get_dummy_inputs(UpperCamelCase_ ) ) UpperCAmelCase__ : Optional[int] = output.images UpperCAmelCase__ : Dict = pipe( **self.get_dummy_inputs(UpperCamelCase_ ) , return_dict=UpperCamelCase_ , )[0] UpperCAmelCase__ : Dict = image[0, -3:, -3:, -1] UpperCAmelCase__ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase__ : Any = np.array( [0.61474943, 0.6073539, 0.43308544, 0.5928269, 0.47493595, 0.46755973, 0.4613838, 0.45368797, 0.50119233] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class a ( unittest.TestCase ): def __snake_case ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __snake_case ( self ): UpperCAmelCase__ : str = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/kandinsky_img2img_frog.npy' ) UpperCAmelCase__ : List[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) UpperCAmelCase__ : Any = 'A red cartoon frog, 4k' UpperCAmelCase__ : Union[str, Any] = KandinskyPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-prior' , torch_dtype=torch.floataa ) pipe_prior.to(UpperCamelCase_ ) UpperCAmelCase__ : Any = KandinskyImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1' , torch_dtype=torch.floataa ) UpperCAmelCase__ : Optional[Any] = pipeline.to(UpperCamelCase_ ) pipeline.set_progress_bar_config(disable=UpperCamelCase_ ) UpperCAmelCase__ : List[Any] = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = pipe_prior( UpperCamelCase_ , generator=UpperCamelCase_ , num_inference_steps=5 , negative_prompt='' , ).to_tuple() UpperCAmelCase__ : Optional[Any] = pipeline( UpperCamelCase_ , image=UpperCamelCase_ , image_embeds=UpperCamelCase_ , negative_image_embeds=UpperCamelCase_ , generator=UpperCamelCase_ , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='np' , ) UpperCAmelCase__ : Union[str, Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCamelCase_ , UpperCamelCase_ )
110
0
SCREAMING_SNAKE_CASE__ : int = 6_5_5_2_1 def _A ( lowerCamelCase ): a__ : List[str] = 1 a__ : Optional[int] = 0 for plain_chr in plain_text: a__ : Union[str, Any] = (a + ord(lowerCamelCase )) % MOD_ADLER a__ : Union[str, Any] = (b + a) % MOD_ADLER return (b << 16) | a
629
import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def _A ( lowerCamelCase ): a__ : List[str] = [] if isinstance(lowerCamelCase , lowerCamelCase ): for v in tree.values(): shapes.extend(_fetch_dims(lowerCamelCase ) ) elif isinstance(lowerCamelCase , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(lowerCamelCase ) ) elif isinstance(lowerCamelCase , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError("Not supported" ) return shapes @torch.jit.ignore def _A ( lowerCamelCase , lowerCamelCase ): a__ : List[str] = [] for d in reversed(lowerCamelCase ): idx.append(flat_idx % d ) a__ : Union[str, Any] = flat_idx // d return tuple(reversed(lowerCamelCase ) ) @torch.jit.ignore def _A ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , ): # start_edges and end_edges both indicate whether, starting from any given # dimension, the start/end index is at the top/bottom edge of the # corresponding tensor, modeled as a tree def reduce_edge_list(lowerCamelCase ) -> None: a__ : int = True for i in range(len(lowerCamelCase ) ): a__ : Optional[Any] = -1 * (i + 1) l[reversed_idx] &= tally a__ : Tuple = l[reversed_idx] if start_edges is None: a__ : Optional[int] = [s == 0 for s in start] reduce_edge_list(lowerCamelCase ) if end_edges is None: a__ : Union[str, Any] = [e == (d - 1) for e, d in zip(lowerCamelCase , lowerCamelCase )] reduce_edge_list(lowerCamelCase ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(lowerCamelCase ) == 0: return [()] elif len(lowerCamelCase ) == 1: return [(slice(start[0] , end[0] + 1 ),)] a__ : List[Tuple[slice, ...]] = [] a__ : List[slice] = [] # Dimensions common to start and end can be selected directly for s, e in zip(lowerCamelCase , lowerCamelCase ): if s == e: path_list.append(slice(lowerCamelCase , s + 1 ) ) else: break a__ : Tuple[slice, ...] = tuple(lowerCamelCase ) a__ : Optional[Any] = len(lowerCamelCase ) # start == end, and we're done if divergence_idx == len(lowerCamelCase ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None a__ : Optional[Any] = start[divergence_idx] return tuple( path + (slice(lowerCamelCase , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None a__ : List[str] = end[divergence_idx] return tuple( path + (slice(lowerCamelCase , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) a__ : Optional[int] = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def _A ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): a__ : Optional[int] = t.shape[:no_batch_dims] a__ : List[str] = list(_flat_idx_to_idx(lowerCamelCase , lowerCamelCase ) ) # _get_minimal_slice_set is inclusive a__ : Dict = list(_flat_idx_to_idx(flat_end - 1 , lowerCamelCase ) ) # Get an ordered list of slices to perform a__ : str = _get_minimal_slice_set( lowerCamelCase , lowerCamelCase , lowerCamelCase , ) a__ : Any = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def _A ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = False , lowerCamelCase = None , lowerCamelCase = False , ): if not (len(lowerCamelCase ) > 0): raise ValueError("Must provide at least one input" ) a__ : str = [shape[:no_batch_dims] for shape in _fetch_dims(lowerCamelCase )] a__ : Dict = tuple([max(lowerCamelCase ) for s in zip(*lowerCamelCase )] ) def _prep_inputs(lowerCamelCase ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: a__ : Any = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) a__ : Optional[Any] = t.reshape(-1 , *t.shape[no_batch_dims:] ) else: a__ : Dict = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t a__ : Dict[str, Any] = tensor_tree_map(_prep_inputs , lowerCamelCase ) a__ : str = None if _out is not None: a__ : Optional[int] = tensor_tree_map(lambda lowerCamelCase : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) a__ : Optional[Any] = 1 for d in orig_batch_dims: flat_batch_dim *= d a__ : Tuple = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(lowerCamelCase ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t a__ : str = 0 a__ : Any = prepped_outputs for _ in range(lowerCamelCase ): # Chunk the input if not low_mem: a__ : str = _select_chunk else: a__ : Tuple = partial( _chunk_slice , flat_start=lowerCamelCase , flat_end=min(lowerCamelCase , i + chunk_size ) , no_batch_dims=len(lowerCamelCase ) , ) a__ : Dict[str, Any] = tensor_tree_map(lowerCamelCase , lowerCamelCase ) # Run the layer on the chunk a__ : Any = layer(**lowerCamelCase ) # Allocate space for the output if out is None: a__ : Optional[Any] = tensor_tree_map(lambda lowerCamelCase : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , lowerCamelCase ) # Put the chunk in its pre-allocated space if isinstance(lowerCamelCase , lowerCamelCase ): def assign(lowerCamelCase , lowerCamelCase ) -> None: for k, v in da.items(): if isinstance(lowerCamelCase , lowerCamelCase ): assign(lowerCamelCase , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: a__ : Dict = da[k] assign(lowerCamelCase , lowerCamelCase ) elif isinstance(lowerCamelCase , lowerCamelCase ): for xa, xa in zip(lowerCamelCase , lowerCamelCase ): if _add_into_out: xa[i : i + chunk_size] += xa else: a__ : Dict = xa elif isinstance(lowerCamelCase , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: a__ : Dict = output_chunk else: raise ValueError("Not supported" ) i += chunk_size a__ : Any = tensor_tree_map(lambda lowerCamelCase : t.view(orig_batch_dims + t.shape[1:] ) , lowerCamelCase ) return out class __lowerCAmelCase : def __init__( self , snake_case = 512 , ) -> List[str]: """simple docstring""" a__ : int = max_chunk_size a__ : Optional[int] = None a__ : Optional[tuple] = None def _snake_case ( self , snake_case , snake_case , snake_case ) -> int: """simple docstring""" logging.info("Tuning chunk size..." ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size a__ : List[int] = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] a__ : List[str] = [c for c in candidates if c > min_chunk_size] a__ : Optional[int] = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(snake_case ) -> bool: try: with torch.no_grad(): fn(*snake_case , chunk_size=snake_case ) return True except RuntimeError: return False a__ : Union[str, Any] = 0 a__ : Dict = len(snake_case ) - 1 while i > min_viable_chunk_size_index: a__ : Any = test_chunk_size(candidates[i] ) if not viable: a__ : List[Any] = (min_viable_chunk_size_index + i) // 2 else: a__ : Tuple = i a__ : Any = (i + len(snake_case ) - 1) // 2 return candidates[min_viable_chunk_size_index] def _snake_case ( self , snake_case , snake_case ) -> bool: """simple docstring""" a__ : str = True for aa, aa in zip(snake_case , snake_case ): assert type(snake_case ) == type(snake_case ) if isinstance(snake_case , (list, tuple) ): consistent &= self._compare_arg_caches(snake_case , snake_case ) elif isinstance(snake_case , snake_case ): a__ : Union[str, Any] = [v for _, v in sorted(aa.items() , key=lambda snake_case : x[0] )] a__ : List[Any] = [v for _, v in sorted(aa.items() , key=lambda snake_case : x[0] )] consistent &= self._compare_arg_caches(snake_case , snake_case ) else: consistent &= aa == aa return consistent def _snake_case ( self , snake_case , snake_case , snake_case , ) -> int: """simple docstring""" a__ : List[Any] = True a__ : tuple = tree_map(lambda snake_case : a.shape if isinstance(snake_case , torch.Tensor ) else a , snake_case , snake_case ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(snake_case ) a__ : Union[str, Any] = self._compare_arg_caches(self.cached_arg_data , snake_case ) else: # Otherwise, we can reuse the precomputed value a__ : Optional[int] = False if not consistent: a__ : List[str] = self._determine_favorable_chunk_size( snake_case , snake_case , snake_case , ) a__ : List[str] = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
629
1
"""simple docstring""" from __future__ import annotations import collections import pprint from pathlib import Path def lowerCamelCase ( _UpperCamelCase : str ) -> str: '''simple docstring''' return "".join(sorted(_UpperCamelCase ) ) def lowerCamelCase ( _UpperCamelCase : str ) -> list[str]: '''simple docstring''' return word_by_signature[signature(_UpperCamelCase )] UpperCAmelCase : str = Path(__file__).parent.joinpath('words.txt').read_text(encoding='utf-8') UpperCAmelCase : Optional[Any] = sorted({word.strip().lower() for word in data.splitlines()}) UpperCAmelCase : Dict = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": UpperCAmelCase : Union[str, Any] = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('anagrams.txt', 'w') as file: file.write('all_anagrams = \n ') file.write(pprint.pformat(all_anagrams))
139
"""simple docstring""" import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class lowerCamelCase__ ( A , A ): """simple docstring""" __a = 1 @register_to_config def __init__( self : Dict , UpperCamelCase : int = 1_000 , UpperCamelCase : Optional[Union[np.ndarray, List[float]]] = None ): '''simple docstring''' self.set_timesteps(UpperCamelCase ) # standard deviation of the initial noise distribution __UpperCAmelCase : str = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. __UpperCAmelCase : int = 4 # running values __UpperCAmelCase : Union[str, Any] = [] def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : int , UpperCamelCase : Union[str, torch.device] = None ): '''simple docstring''' __UpperCAmelCase : Optional[int] = num_inference_steps __UpperCAmelCase : Tuple = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1] __UpperCAmelCase : Union[str, Any] = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: __UpperCAmelCase : Dict = torch.tensor(self.config.trained_betas , dtype=torch.floataa ) else: __UpperCAmelCase : int = torch.sin(steps * math.pi / 2 ) ** 2 __UpperCAmelCase : Union[str, Any] = (1.0 - self.betas**2) ** 0.5 __UpperCAmelCase : Optional[Any] = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1] __UpperCAmelCase : Any = timesteps.to(UpperCamelCase ) __UpperCAmelCase : List[Any] = [] def lowerCamelCase__ ( self : Dict , UpperCamelCase : torch.FloatTensor , UpperCamelCase : int , UpperCamelCase : torch.FloatTensor , UpperCamelCase : bool = True , ): '''simple docstring''' if self.num_inference_steps is None: raise ValueError( """Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler""" ) __UpperCAmelCase : List[Any] = (self.timesteps == timestep).nonzero().item() __UpperCAmelCase : List[str] = timestep_index + 1 __UpperCAmelCase : Optional[Any] = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(UpperCamelCase ) if len(self.ets ) == 1: __UpperCAmelCase : List[Any] = self.ets[-1] elif len(self.ets ) == 2: __UpperCAmelCase : List[str] = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: __UpperCAmelCase : Tuple = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: __UpperCAmelCase : int = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) __UpperCAmelCase : int = self._get_prev_sample(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCamelCase ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : torch.FloatTensor , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : List[str] ): '''simple docstring''' return sample def lowerCamelCase__ ( self : Dict , UpperCamelCase : str , UpperCamelCase : Optional[int] , UpperCamelCase : Optional[int] , UpperCamelCase : List[str] ): '''simple docstring''' __UpperCAmelCase : Dict = self.alphas[timestep_index] __UpperCAmelCase : List[str] = self.betas[timestep_index] __UpperCAmelCase : List[str] = self.alphas[prev_timestep_index] __UpperCAmelCase : Tuple = self.betas[prev_timestep_index] __UpperCAmelCase : Dict = (sample - sigma * ets) / max(UpperCamelCase , 1e-8 ) __UpperCAmelCase : Union[str, Any] = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self : Tuple ): '''simple docstring''' return self.config.num_train_timesteps
139
1
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowercase : Any = logging.get_logger(__name__) __lowercase : Dict = '''▁''' __lowercase : Optional[Any] = {'''vocab_file''': '''spiece.model'''} __lowercase : str = { '''vocab_file''': { '''google/reformer-crime-and-punishment''': ( '''https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model''' ) } } __lowercase : Optional[int] = { '''google/reformer-crime-and-punishment''': 5_2_4_2_8_8, } class lowerCAmelCase ( __UpperCAmelCase ): """simple docstring""" __lowercase :List[Any] = VOCAB_FILES_NAMES __lowercase :Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __lowercase :Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase :Tuple = ['''input_ids''', '''attention_mask'''] def __init__( self , UpperCamelCase__ , UpperCamelCase__="</s>" , UpperCamelCase__="<unk>" , UpperCamelCase__=[] , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> List[str]: '''simple docstring''' lowerCamelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , additional_special_tokens=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , ) lowerCamelCase_ = vocab_file lowerCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__SCREAMING_SNAKE_CASE ) @property def _lowerCAmelCase ( self ) -> Tuple: '''simple docstring''' return self.sp_model.get_piece_size() def _lowerCAmelCase ( self ) -> int: '''simple docstring''' lowerCamelCase_ = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> str: '''simple docstring''' lowerCamelCase_ = self.__dict__.copy() lowerCamelCase_ = None return state def __setstate__( self , UpperCamelCase__ ) -> Any: '''simple docstring''' lowerCamelCase_ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowerCamelCase_ = {} lowerCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowerCAmelCase ( self , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' return self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' return self.sp_model.piece_to_id(__SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' if index < self.sp_model.get_piece_size(): lowerCamelCase_ = self.sp_model.IdToPiece(__SCREAMING_SNAKE_CASE ) return token def _lowerCAmelCase ( self , UpperCamelCase__ ) -> int: '''simple docstring''' lowerCamelCase_ = [] lowerCamelCase_ = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) + token lowerCamelCase_ = [] else: current_sub_tokens.append(__SCREAMING_SNAKE_CASE ) out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) return out_string.strip() def _lowerCAmelCase ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> Optional[int]: '''simple docstring''' if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCamelCase_ = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(__SCREAMING_SNAKE_CASE , '''wb''' ) as fi: lowerCamelCase_ = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
716
"""simple docstring""" import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" __lowercase :Tuple = FlaxAutoencoderKL @property def _lowerCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = 4 lowerCamelCase_ = 3 lowerCamelCase_ = (32, 32) lowerCamelCase_ = jax.random.PRNGKey(0 ) lowerCamelCase_ = jax.random.uniform(UpperCamelCase__ , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def _lowerCAmelCase ( self ) -> int: '''simple docstring''' lowerCamelCase_ = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } lowerCamelCase_ = self.dummy_input return init_dict, inputs_dict
66
0
'''simple docstring''' def _UpperCamelCase ( UpperCamelCase__ = 1_0_0 ): UpperCAmelCase__ : int = 0 UpperCAmelCase__ : str = 0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(f"""{solution() = }""")
407
'''simple docstring''' import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def _UpperCamelCase ( UpperCamelCase__ ): UpperCAmelCase__ : Any = int(UpperCamelCase__ ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = t // 3_6_0_0, (t // 6_0) % 6_0, t % 6_0 return f'''{h}:{m:02d}:{s:02d}''' if h != 0 else f'''{m:02d}:{s:02d}''' def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=3_0_0 ): # docstyle-ignore return f''' <div> {prefix} <progress value=\'{value}\' max=\'{total}\' style=\'width:{width}px; height:20px; vertical-align: middle;\'></progress> {label} </div> ''' def _UpperCamelCase ( UpperCamelCase__ ): UpperCAmelCase__ : Dict = """<table border=\"1\" class=\"dataframe\">\n""" html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += f''' <th>{i}</th>\n''' html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: UpperCAmelCase__ : Any = f'''{elt:.6f}''' if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else str(UpperCamelCase__ ) html_code += f''' <td>{elt}</td>\n''' html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class _snake_case : lowerCAmelCase :int = 5 lowerCAmelCase :List[str] = 0.2 def __init__( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = 300 , ): UpperCAmelCase__ : List[Any] = total UpperCAmelCase__ : Optional[int] = """""" if prefix is None else prefix UpperCAmelCase__ : Optional[int] = leave UpperCAmelCase__ : List[str] = parent UpperCAmelCase__ : Optional[Any] = width UpperCAmelCase__ : int = None UpperCAmelCase__ : List[str] = None UpperCAmelCase__ : List[Any] = None def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase = False , _lowerCamelCase = None): UpperCAmelCase__ : List[Any] = value if comment is not None: UpperCAmelCase__ : List[str] = comment if self.last_value is None: UpperCAmelCase__ : Any = time.time() UpperCAmelCase__ : List[Any] = value UpperCAmelCase__ : Union[str, Any] = None UpperCAmelCase__ : List[Any] = self.warmup UpperCAmelCase__ : Any = 1 self.update_bar(_lowerCamelCase) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total): if self.first_calls > 0: self.first_calls -= 1 UpperCAmelCase__ : str = time.time() UpperCAmelCase__ : List[str] = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: UpperCAmelCase__ : List[str] = self.elapsed_time / (value - self.start_value) else: UpperCAmelCase__ : Optional[Any] = None if value >= self.total: UpperCAmelCase__ : Union[str, Any] = self.total UpperCAmelCase__ : Tuple = None if not self.leave: self.close() elif self.average_time_per_item is not None: UpperCAmelCase__ : str = self.average_time_per_item * (self.total - value) self.update_bar(_lowerCamelCase) UpperCAmelCase__ : str = value UpperCAmelCase__ : str = current_time if self.average_time_per_item is None: UpperCAmelCase__ : Tuple = 1 else: UpperCAmelCase__ : Optional[Any] = max(int(self.update_every / self.average_time_per_item) , 1) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase=None): UpperCAmelCase__ : Tuple = """ """ * (len(str(self.total)) - len(str(_lowerCamelCase))) + str(_lowerCamelCase) if self.elapsed_time is None: UpperCAmelCase__ : str = f'''[{spaced_value}/{self.total} : < :''' elif self.predicted_remaining is None: UpperCAmelCase__ : List[Any] = f'''[{spaced_value}/{self.total} {format_time(self.elapsed_time)}''' else: UpperCAmelCase__ : str = ( f'''[{spaced_value}/{self.total} {format_time(self.elapsed_time)} <''' f''' {format_time(self.predicted_remaining)}''' ) self.label += f''', {1/self.average_time_per_item:.2f} it/s''' self.label += "]" if self.comment is None or len(self.comment) == 0 else f''', {self.comment}]''' self.display() def snake_case__ ( self): UpperCAmelCase__ : int = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: UpperCAmelCase__ : Optional[Any] = disp.display(disp.HTML(self.html_code) , display_id=_lowerCamelCase) else: self.output.update(disp.HTML(self.html_code)) def snake_case__ ( self): if self.parent is None and self.output is not None: self.output.update(disp.HTML("""""")) class _snake_case ( a__ ): def __init__( self , _lowerCamelCase , _lowerCamelCase=None): super().__init__(_lowerCamelCase) UpperCAmelCase__ : Optional[int] = None if column_names is None else [column_names] UpperCAmelCase__ : List[str] = None def snake_case__ ( self): UpperCAmelCase__ : List[str] = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: UpperCAmelCase__ : Any = disp.display(disp.HTML(self.html_code) , display_id=_lowerCamelCase) else: self.output.update(disp.HTML(self.html_code)) def snake_case__ ( self , _lowerCamelCase): if self.inner_table is None: UpperCAmelCase__ : Any = [list(values.keys()), list(values.values())] else: UpperCAmelCase__ : int = self.inner_table[0] if len(self.inner_table) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(_lowerCamelCase) UpperCAmelCase__ : str = columns self.inner_table.append([values[c] for c in columns]) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=300): UpperCAmelCase__ : Optional[int] = NotebookProgressBar(_lowerCamelCase , prefix=_lowerCamelCase , parent=self , width=_lowerCamelCase) return self.child_bar def snake_case__ ( self): UpperCAmelCase__ : int = None self.display() class _snake_case ( a__ ): def __init__( self): UpperCAmelCase__ : Union[str, Any] = None UpperCAmelCase__ : Any = None UpperCAmelCase__ : Tuple = False def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase): UpperCAmelCase__ : Union[str, Any] = """Epoch""" if args.evaluation_strategy == IntervalStrategy.EPOCH else """Step""" UpperCAmelCase__ : str = 0 UpperCAmelCase__ : List[str] = 0 UpperCAmelCase__ : Optional[Any] = [self.first_column] + ["""Training Loss"""] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append("""Validation Loss""") UpperCAmelCase__ : Union[str, Any] = NotebookTrainingTracker(state.max_steps , _lowerCamelCase) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase): UpperCAmelCase__ : int = int(state.epoch) if int(state.epoch) == state.epoch else f'''{state.epoch:.2f}''' self.training_tracker.update( state.global_step + 1 , comment=f'''Epoch {epoch}/{state.num_train_epochs}''' , force_update=self._force_next_update , ) UpperCAmelCase__ : str = False def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , **_lowerCamelCase): if not has_length(_lowerCamelCase): return if self.prediction_bar is None: if self.training_tracker is not None: UpperCAmelCase__ : Dict = self.training_tracker.add_child(len(_lowerCamelCase)) else: UpperCAmelCase__ : Dict = NotebookProgressBar(len(_lowerCamelCase)) self.prediction_bar.update(1) else: self.prediction_bar.update(self.prediction_bar.value + 1) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase): if self.prediction_bar is not None: self.prediction_bar.close() UpperCAmelCase__ : Tuple = None def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , **_lowerCamelCase): # Only for when there is no evaluation if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: UpperCAmelCase__ : List[str] = {"""Training Loss""": logs["""loss"""]} # First column is necessarily Step sine we're not in epoch eval strategy UpperCAmelCase__ : Optional[Any] = state.global_step self.training_tracker.write_line(_lowerCamelCase) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , **_lowerCamelCase): if self.training_tracker is not None: UpperCAmelCase__ : Optional[int] = {"""Training Loss""": """No log""", """Validation Loss""": """No log"""} for log in reversed(state.log_history): if "loss" in log: UpperCAmelCase__ : Optional[int] = log["""loss"""] break if self.first_column == "Epoch": UpperCAmelCase__ : Any = int(state.epoch) else: UpperCAmelCase__ : str = state.global_step UpperCAmelCase__ : str = """eval""" for k in metrics: if k.endswith("""_loss"""): UpperCAmelCase__ : int = re.sub(r"""\_loss$""" , """""" , _lowerCamelCase) UpperCAmelCase__ : Optional[Any] = metrics.pop("""total_flos""" , _lowerCamelCase) UpperCAmelCase__ : Union[str, Any] = metrics.pop("""epoch""" , _lowerCamelCase) UpperCAmelCase__ : List[Any] = metrics.pop(f'''{metric_key_prefix}_runtime''' , _lowerCamelCase) UpperCAmelCase__ : Optional[Any] = metrics.pop(f'''{metric_key_prefix}_samples_per_second''' , _lowerCamelCase) UpperCAmelCase__ : Optional[int] = metrics.pop(f'''{metric_key_prefix}_steps_per_second''' , _lowerCamelCase) UpperCAmelCase__ : Optional[int] = metrics.pop(f'''{metric_key_prefix}_jit_compilation_time''' , _lowerCamelCase) for k, v in metrics.items(): if k == f'''{metric_key_prefix}_loss''': UpperCAmelCase__ : List[str] = v else: UpperCAmelCase__ : Tuple = k.split("""_""") UpperCAmelCase__ : Union[str, Any] = """ """.join([part.capitalize() for part in splits[1:]]) UpperCAmelCase__ : int = v self.training_tracker.write_line(_lowerCamelCase) self.training_tracker.remove_child() UpperCAmelCase__ : List[str] = None # Evaluation takes a long time so we should force the next update. UpperCAmelCase__ : Union[str, Any] = True def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase): self.training_tracker.update( state.global_step , comment=f'''Epoch {int(state.epoch)}/{state.num_train_epochs}''' , force_update=_lowerCamelCase) UpperCAmelCase__ : Optional[int] = None
407
1
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __A( unittest.TestCase ): """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=18 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=4_00 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , ): UpperCamelCase__ = size if size is not None else {"""height""": 18, """width""": 18} UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = num_channels UpperCamelCase__ = image_size UpperCamelCase__ = min_resolution UpperCamelCase__ = max_resolution UpperCamelCase__ = do_resize UpperCamelCase__ = size UpperCamelCase__ = apply_ocr def UpperCAmelCase_ (self ): return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class __A( __lowerCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = LayoutLMvaImageProcessor if is_pytesseract_available() else None def UpperCAmelCase_ (self ): UpperCamelCase__ = LayoutLMvaImageProcessingTester(self ) @property def UpperCAmelCase_ (self ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ (self ): UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """do_resize""" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """size""" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """apply_ocr""" ) ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) UpperCamelCase__ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def UpperCAmelCase_ (self ): pass def UpperCAmelCase_ (self ): # Initialize image_processing UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE_ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , Image.Image ) # Test not batched input UpperCamelCase__ = image_processing(image_inputs[0] , return_tensors="""pt""" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) self.assertIsInstance(encoding.words , SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(encoding.boxes , SCREAMING_SNAKE_CASE_ ) # Test batched UpperCamelCase__ = image_processing(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def UpperCAmelCase_ (self ): # Initialize image_processing UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , numpify=SCREAMING_SNAKE_CASE_ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , np.ndarray ) # Test not batched input UpperCamelCase__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched UpperCamelCase__ = image_processing(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def UpperCAmelCase_ (self ): # Initialize image_processing UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , torchify=SCREAMING_SNAKE_CASE_ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ) # Test not batched input UpperCamelCase__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched UpperCamelCase__ = image_processing(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def UpperCAmelCase_ (self ): # with apply_OCR = True UpperCamelCase__ = LayoutLMvaImageProcessor() from datasets import load_dataset UpperCamelCase__ = load_dataset("""hf-internal-testing/fixtures_docvqa""" , split="""test""" ) UpperCamelCase__ = Image.open(ds[0]["""file"""] ).convert("""RGB""" ) UpperCamelCase__ = image_processing(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 UpperCamelCase__ = [["""11:14""", """to""", """11:39""", """a.m""", """11:39""", """to""", """11:44""", """a.m.""", """11:44""", """a.m.""", """to""", """12:25""", """p.m.""", """12:25""", """to""", """12:58""", """p.m.""", """12:58""", """to""", """4:00""", """p.m.""", """2:00""", """to""", """5:00""", """p.m.""", """Coffee""", """Break""", """Coffee""", """will""", """be""", """served""", """for""", """men""", """and""", """women""", """in""", """the""", """lobby""", """adjacent""", """to""", """exhibit""", """area.""", """Please""", """move""", """into""", """exhibit""", """area.""", """(Exhibits""", """Open)""", """TRRF""", """GENERAL""", """SESSION""", """(PART""", """|)""", """Presiding:""", """Lee""", """A.""", """Waller""", """TRRF""", """Vice""", """President""", """“Introductory""", """Remarks”""", """Lee""", """A.""", """Waller,""", """TRRF""", """Vice""", """Presi-""", """dent""", """Individual""", """Interviews""", """with""", """TRRF""", """Public""", """Board""", """Members""", """and""", """Sci-""", """entific""", """Advisory""", """Council""", """Mem-""", """bers""", """Conducted""", """by""", """TRRF""", """Treasurer""", """Philip""", """G.""", """Kuehn""", """to""", """get""", """answers""", """which""", """the""", """public""", """refrigerated""", """warehousing""", """industry""", """is""", """looking""", """for.""", """Plus""", """questions""", """from""", """the""", """floor.""", """Dr.""", """Emil""", """M.""", """Mrak,""", """University""", """of""", """Cal-""", """ifornia,""", """Chairman,""", """TRRF""", """Board;""", """Sam""", """R.""", """Cecil,""", """University""", """of""", """Georgia""", """College""", """of""", """Agriculture;""", """Dr.""", """Stanley""", """Charm,""", """Tufts""", """University""", """School""", """of""", """Medicine;""", """Dr.""", """Robert""", """H.""", """Cotton,""", """ITT""", """Continental""", """Baking""", """Company;""", """Dr.""", """Owen""", """Fennema,""", """University""", """of""", """Wis-""", """consin;""", """Dr.""", """Robert""", """E.""", """Hardenburg,""", """USDA.""", """Questions""", """and""", """Answers""", """Exhibits""", """Open""", """Capt.""", """Jack""", """Stoney""", """Room""", """TRRF""", """Scientific""", """Advisory""", """Council""", """Meeting""", """Ballroom""", """Foyer"""]] # noqa: E231 UpperCamelCase__ = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(encoding.boxes , SCREAMING_SNAKE_CASE_ ) # with apply_OCR = False UpperCamelCase__ = LayoutLMvaImageProcessor(apply_ocr=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = image_processing(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
86
import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def __magic_name__ ( __a : int , __a : List[str] , __a : str=[] ): '''simple docstring''' UpperCamelCase__ = size[0] - overlap_pixels * 2 UpperCamelCase__ = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels UpperCamelCase__ = np.ones((size_y, size_x) , dtype=np.uinta ) * 255 UpperCamelCase__ = np.pad(__a , mode="""linear_ramp""" , pad_width=__a , end_values=0 ) if "l" in remove_borders: UpperCamelCase__ = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: UpperCamelCase__ = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: UpperCamelCase__ = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: UpperCamelCase__ = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def __magic_name__ ( __a : int , __a : Dict , __a : Optional[int] ): '''simple docstring''' return max(__a , min(__a , __a ) ) def __magic_name__ ( __a : [int] , __a : [int] , __a : [int] ): '''simple docstring''' return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def __magic_name__ ( __a : [int] , __a : int , __a : [int] ): '''simple docstring''' UpperCamelCase__ = list(__a ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap UpperCamelCase__ = clamp_rect(__a , [0, 0] , [image_size[0], image_size[1]] ) return rect def __magic_name__ ( __a : Optional[int] , __a : Tuple , __a : str , __a : List[Any] ): '''simple docstring''' UpperCamelCase__ = Image.new("""RGB""" , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(__a , (original_slice, 0) ) return result def __magic_name__ ( __a : int , __a : int ): '''simple docstring''' UpperCamelCase__ = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) UpperCamelCase__ = tile.crop(__a ) return tile def __magic_name__ ( __a : List[str] , __a : Any ): '''simple docstring''' UpperCamelCase__ = n % d return n - divisor class __A( __lowerCamelCase ): """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 3_50 , ): super().__init__( vae=SCREAMING_SNAKE_CASE_ , text_encoder=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , unet=SCREAMING_SNAKE_CASE_ , low_res_scheduler=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , max_noise_level=SCREAMING_SNAKE_CASE_ , ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): torch.manual_seed(0 ) UpperCamelCase__ = ( min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ), min(image.size[0] , (x + 1) * tile_size ), min(image.size[1] , (y + 1) * tile_size ), ) UpperCamelCase__ = add_overlap_rect(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , image.size ) UpperCamelCase__ = image.crop(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] UpperCamelCase__ = translated_slice_x - (original_image_slice / 2) UpperCamelCase__ = max(0 , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = squeeze_tile(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = to_input.size UpperCamelCase__ = to_input.resize((tile_size, tile_size) , Image.BICUBIC ) UpperCamelCase__ = super(SCREAMING_SNAKE_CASE_ , self ).__call__(image=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).images[0] UpperCamelCase__ = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC ) UpperCamelCase__ = unsqueeze_tile(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC ) UpperCamelCase__ = [] if x == 0: remove_borders.append("""l""" ) elif crop_rect[2] == image.size[0]: remove_borders.append("""r""" ) if y == 0: remove_borders.append("""t""" ) elif crop_rect[3] == image.size[1]: remove_borders.append("""b""" ) UpperCamelCase__ = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=SCREAMING_SNAKE_CASE_ ) , mode="""L""" , ) final_image.paste( SCREAMING_SNAKE_CASE_ , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , SCREAMING_SNAKE_CASE_ ) @torch.no_grad() def __call__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 75 , SCREAMING_SNAKE_CASE_ = 9.0 , SCREAMING_SNAKE_CASE_ = 50 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 1_28 , SCREAMING_SNAKE_CASE_ = 32 , SCREAMING_SNAKE_CASE_ = 32 , ): UpperCamelCase__ = Image.new("""RGB""" , (image.size[0] * 4, image.size[1] * 4) ) UpperCamelCase__ = math.ceil(image.size[0] / tile_size ) UpperCamelCase__ = math.ceil(image.size[1] / tile_size ) UpperCamelCase__ = tcx * tcy UpperCamelCase__ = 0 for y in range(SCREAMING_SNAKE_CASE_ ): for x in range(SCREAMING_SNAKE_CASE_ ): self._process_tile( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , prompt=SCREAMING_SNAKE_CASE_ , num_inference_steps=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , noise_level=SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ , num_images_per_prompt=SCREAMING_SNAKE_CASE_ , eta=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , latents=SCREAMING_SNAKE_CASE_ , ) current_count += 1 if callback is not None: callback({"""progress""": current_count / total_tile_count, """image""": final_image} ) return final_image def __magic_name__ ( ): '''simple docstring''' UpperCamelCase__ = """stabilityai/stable-diffusion-x4-upscaler""" UpperCamelCase__ = StableDiffusionTiledUpscalePipeline.from_pretrained(__a , revision="""fp16""" , torch_dtype=torch.floataa ) UpperCamelCase__ = pipe.to("""cuda""" ) UpperCamelCase__ = Image.open("""../../docs/source/imgs/diffusers_library.jpg""" ) def callback(__a : Optional[int] ): print(f"progress: {obj['progress']:.4f}" ) obj["image"].save("""diffusers_library_progress.jpg""" ) UpperCamelCase__ = pipe(image=__a , prompt="""Black font, white background, vector""" , noise_level=40 , callback=__a ) final_image.save("""diffusers_library.jpg""" ) if __name__ == "__main__": main()
86
1
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) _lowerCAmelCase : Dict = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } _lowerCAmelCase : Optional[int] = { "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } _lowerCAmelCase : Union[str, Any] = {"facebook/blenderbot-3B": 1_2_8} class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = ['input_ids', 'attention_mask'] _lowerCAmelCase = BlenderbotTokenizer def __init__( self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase="replace" , lowerCamelCase="<s>" , lowerCamelCase="</s>" , lowerCamelCase="</s>" , lowerCamelCase="<s>" , lowerCamelCase="<unk>" , lowerCamelCase="<pad>" , lowerCamelCase="<mask>" , lowerCamelCase=False , lowerCamelCase=True , **lowerCamelCase , ) -> Any: """simple docstring""" super().__init__( lowerCamelCase , lowerCamelCase , tokenizer_file=lowerCamelCase , errors=lowerCamelCase , bos_token=lowerCamelCase , eos_token=lowerCamelCase , sep_token=lowerCamelCase , cls_token=lowerCamelCase , unk_token=lowerCamelCase , pad_token=lowerCamelCase , mask_token=lowerCamelCase , add_prefix_space=lowerCamelCase , trim_offsets=lowerCamelCase , **lowerCamelCase , ) snake_case__ : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , lowerCamelCase ) != add_prefix_space: snake_case__ : Optional[int] = getattr(lowerCamelCase , pre_tok_state.pop('''type''' ) ) snake_case__ : Optional[int] = add_prefix_space snake_case__ : List[str] = pre_tok_class(**lowerCamelCase ) snake_case__ : str = add_prefix_space snake_case__ : Any = '''post_processor''' snake_case__ : Any = getattr(self.backend_tokenizer , lowerCamelCase , lowerCamelCase ) if tokenizer_component_instance: snake_case__ : str = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: snake_case__ : Optional[int] = tuple(state['''sep'''] ) if "cls" in state: snake_case__ : List[str] = tuple(state['''cls'''] ) snake_case__ : Tuple = False if state.get('''add_prefix_space''' , lowerCamelCase ) != add_prefix_space: snake_case__ : str = add_prefix_space snake_case__ : Union[str, Any] = True if state.get('''trim_offsets''' , lowerCamelCase ) != trim_offsets: snake_case__ : List[Any] = trim_offsets snake_case__ : Union[str, Any] = True if changes_to_apply: snake_case__ : int = getattr(lowerCamelCase , state.pop('''type''' ) ) snake_case__ : Optional[Any] = component_class(**lowerCamelCase ) setattr(self.backend_tokenizer , lowerCamelCase , lowerCamelCase ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def lowercase__ ( self ) -> str: """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def lowercase__ ( self , lowerCamelCase ) -> str: """simple docstring""" snake_case__ : Optional[int] = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else value snake_case__ : Any = value def lowercase__ ( self , *lowerCamelCase , **lowerCamelCase ) -> BatchEncoding: """simple docstring""" snake_case__ : Any = kwargs.get('''is_split_into_words''' , lowerCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowerCamelCase , **lowerCamelCase ) def lowercase__ ( self , *lowerCamelCase , **lowerCamelCase ) -> BatchEncoding: """simple docstring""" snake_case__ : List[Any] = kwargs.get('''is_split_into_words''' , lowerCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*lowerCamelCase , **lowerCamelCase ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None ) -> Tuple[str]: """simple docstring""" snake_case__ : Any = self._tokenizer.model.save(lowerCamelCase , name=lowerCamelCase ) return tuple(lowerCamelCase ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None ) -> List[int]: """simple docstring""" snake_case__ : List[Any] = [self.sep_token_id] snake_case__ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None ) -> List[Any]: """simple docstring""" return token_ids_a + [self.eos_token_id] def lowercase__ ( self , lowerCamelCase ) -> List[int]: """simple docstring""" snake_case__ : Optional[Any] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(''' ''' + text ) else: # Generated responses should contain them already. inputs.append(lowerCamelCase ) snake_case__ : List[str] = ''' '''.join(lowerCamelCase ) snake_case__ : List[Any] = self.encode(lowerCamelCase ) if len(lowerCamelCase ) > self.model_max_length: snake_case__ : int = input_ids[-self.model_max_length :] logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
261
'''simple docstring''' from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def _A ( snake_case__ : int , snake_case__ : int , snake_case__ : Optional[Any]=None , snake_case__ : Any=None ): if attention_mask is None: snake_case__ : Optional[int] = tf.cast(tf.math.not_equal(snake_case__ , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class snake_case : """simple docstring""" _lowerCAmelCase = OPTConfig _lowerCAmelCase = {} _lowerCAmelCase = 'gelu' def __init__( self , lowerCamelCase , lowerCamelCase=13 , lowerCamelCase=7 , lowerCamelCase=True , lowerCamelCase=False , lowerCamelCase=99 , lowerCamelCase=16 , lowerCamelCase=2 , lowerCamelCase=4 , lowerCamelCase=4 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=20 , lowerCamelCase=2 , lowerCamelCase=1 , lowerCamelCase=0 , lowerCamelCase=16 , lowerCamelCase=16 , ) -> List[str]: """simple docstring""" snake_case__ : List[str] = parent snake_case__ : List[str] = batch_size snake_case__ : str = seq_length snake_case__ : Union[str, Any] = is_training snake_case__ : Union[str, Any] = use_labels snake_case__ : Optional[int] = vocab_size snake_case__ : Any = hidden_size snake_case__ : Dict = num_hidden_layers snake_case__ : Optional[int] = num_attention_heads snake_case__ : Optional[int] = intermediate_size snake_case__ : List[Any] = hidden_act snake_case__ : List[Any] = hidden_dropout_prob snake_case__ : Union[str, Any] = attention_probs_dropout_prob snake_case__ : Optional[Any] = max_position_embeddings snake_case__ : Union[str, Any] = eos_token_id snake_case__ : Optional[int] = pad_token_id snake_case__ : Dict = bos_token_id snake_case__ : List[Any] = embed_dim snake_case__ : Tuple = word_embed_proj_dim snake_case__ : Any = False def lowercase__ ( self ) -> Optional[Any]: """simple docstring""" snake_case__ : Tuple = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) snake_case__ : str = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) snake_case__ : Union[str, Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) snake_case__ : int = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowerCamelCase , **self.config_updates , ) snake_case__ : Dict = prepare_opt_inputs_dict(lowerCamelCase , lowerCamelCase ) return config, inputs_dict def lowercase__ ( self , lowerCamelCase , lowerCamelCase ) -> Optional[Any]: """simple docstring""" snake_case__ : Dict = TFOPTModel(config=lowerCamelCase ) snake_case__ : str = inputs_dict['''input_ids'''] snake_case__ : List[str] = input_ids[:1, :] snake_case__ : Tuple = inputs_dict['''attention_mask'''][:1, :] snake_case__ : Optional[Any] = 1 # first forward pass snake_case__ : List[Any] = model(lowerCamelCase , attention_mask=lowerCamelCase , use_cache=lowerCamelCase ) snake_case__ ,snake_case__ : Union[str, Any] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids snake_case__ : Union[str, Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case__ : Optional[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and snake_case__ : Optional[Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) snake_case__ : str = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) snake_case__ : str = model(lowerCamelCase , attention_mask=lowerCamelCase )[0] snake_case__ : int = model(lowerCamelCase , attention_mask=lowerCamelCase , past_key_values=lowerCamelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice snake_case__ : Optional[int] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) snake_case__ : Any = output_from_no_past[:, -3:, random_slice_idx] snake_case__ : int = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowerCamelCase , lowerCamelCase , rtol=1E-3 ) @require_tf class snake_case ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): """simple docstring""" _lowerCAmelCase = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () _lowerCAmelCase = (TFOPTForCausalLM,) if is_tf_available() else () _lowerCAmelCase = ( {'feature-extraction': TFOPTModel, 'text-generation': TFOPTForCausalLM} if is_tf_available() else {} ) _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = 1_0 def lowercase__ ( self ) -> Optional[Any]: """simple docstring""" snake_case__ : Any = TFOPTModelTester(self ) snake_case__ : List[str] = ConfigTester(self , config_class=lowerCamelCase ) def lowercase__ ( self ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def lowercase__ ( self ) -> int: """simple docstring""" snake_case__ : Any = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCamelCase ) def lowercase__ ( self ) -> str: """simple docstring""" snake_case__ ,snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(lowerCamelCase , lowerCamelCase ): if hasattr(lowerCamelCase , '''weight''' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(lowerCamelCase , '''weight''' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings snake_case__ : Tuple = model_class(config=lowerCamelCase ) snake_case__ : Tuple = _get_word_embedding_weight(lowerCamelCase , model.get_input_embeddings() ) snake_case__ : List[Any] = _get_word_embedding_weight(lowerCamelCase , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(lowerCamelCase ) snake_case__ : int = _get_word_embedding_weight(lowerCamelCase , model.get_input_embeddings() ) snake_case__ : Optional[Any] = _get_word_embedding_weight(lowerCamelCase , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. snake_case__ : Any = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , lowerCamelCase ) # check that weights remain the same after resizing snake_case__ : int = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: snake_case__ : Optional[int] = False self.assertTrue(lowerCamelCase ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , lowerCamelCase ) snake_case__ : Union[str, Any] = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: snake_case__ : Optional[Any] = False self.assertTrue(lowerCamelCase ) def _A ( snake_case__ : Optional[Any] ): return tf.constant(snake_case__ , dtype=tf.intaa ) @require_tf class snake_case ( unittest.TestCase ): """simple docstring""" _lowerCAmelCase = 9_9 def lowercase__ ( self ) -> Optional[Any]: """simple docstring""" snake_case__ : Any = tf.ones((4, 1) , dtype=tf.intaa ) * 2 snake_case__ : int = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) snake_case__ : Dict = input_ids.shape[0] snake_case__ : Optional[Any] = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class snake_case ( unittest.TestCase ): """simple docstring""" @slow def lowercase__ ( self ) -> str: """simple docstring""" snake_case__ : Optional[Any] = TFOPTModel.from_pretrained('''facebook/opt-350m''' ) snake_case__ : List[str] = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) snake_case__ : Optional[Any] = tf.not_equal(lowerCamelCase , model.config.pad_token_id ) with tf.GradientTape(): snake_case__ : List[str] = model(input_ids=lowerCamelCase , attention_mask=lowerCamelCase ).last_hidden_state snake_case__ : Dict = (1, 11, 512) self.assertEqual(output.shape , lowerCamelCase ) snake_case__ : int = tf.constant( [[-0.2_873, -1.9_218, -0.3_033], [-1.2_710, -0.1_338, -0.1_902], [0.4_095, 0.1_214, -1.3_121]] ) self.assertTrue(np.allclose(output[:, :3, :3] , lowerCamelCase , atol=4E-3 ) ) snake_case__ : Optional[int] = tf.function(lowerCamelCase , jit_compile=lowerCamelCase ) snake_case__ : Dict = xla_generate(lowerCamelCase , lowerCamelCase )[0] self.assertTrue(np.allclose(output[:, :3, :3] , lowerCamelCase , atol=4E-2 ) ) @require_tf @slow class snake_case ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ) -> int: """simple docstring""" super().setUp() snake_case__ : str = '''facebook/opt-350m''' def lowercase__ ( self ) -> str: """simple docstring""" snake_case__ : List[Any] = TFOPTForCausalLM.from_pretrained(self.path_model ) snake_case__ : List[str] = GPTaTokenizer.from_pretrained(self.path_model ) snake_case__ : Dict = [ '''Today is a beautiful day and I want to''', '''In the city of''', '''Paris is the capital of France and''', '''Computers and mobile phones have taken''', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False snake_case__ : Union[str, Any] = tokenizer(lowerCamelCase , return_tensors='''tf''' , padding=lowerCamelCase , add_special_tokens=lowerCamelCase ) snake_case__ : List[Any] = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) snake_case__ : Tuple = tf.constant( [ [1.3_851, -13.8_923, -10.5_229, -10.7_533, -0.2_309, -10.2_384, -0.5_365, -9.0_947, -5.1_670], [-4.7_073, -10.6_276, -3.9_415, -21.5_242, -0.2_822, -0.2_822, -0.2_822, -0.2_822, -0.2_822], [0.6_247, -3.4_229, -8.9_179, -1.4_297, -14.1_650, 1.4_146, -9.0_218, -0.2_703, -0.2_703], [6.4_783, -1.9_913, -10.7_926, -2.3_336, 1.5_092, -0.9_974, -6.8_213, 1.3_477, 1.3_477], ] ) self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1E-4 ) ) snake_case__ : Optional[Any] = tf.function(lowerCamelCase , jit_compile=lowerCamelCase ) snake_case__ : int = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1E-4 ) ) @require_tf @slow class snake_case ( unittest.TestCase ): """simple docstring""" @property def lowercase__ ( self ) -> int: """simple docstring""" return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def lowercase__ ( self ) -> Optional[Any]: """simple docstring""" snake_case__ : Union[str, Any] = '''facebook/opt-125m''' snake_case__ : Dict = [ '''Today is a beautiful day and I want to''', '''In the city of New York, the city''', '''Paris is the capital of France and the capital''', '''Computers and mobile phones have taken over the''', ] snake_case__ : Dict = [] snake_case__ : Dict = GPTaTokenizer.from_pretrained(lowerCamelCase ) snake_case__ : Union[str, Any] = TFOPTForCausalLM.from_pretrained(lowerCamelCase ) for prompt in self.prompts: snake_case__ : Tuple = tokenizer(lowerCamelCase , return_tensors='''tf''' ).input_ids snake_case__ : Optional[int] = model.generate(lowerCamelCase , max_length=10 ) snake_case__ : Optional[int] = tokenizer.batch_decode(lowerCamelCase , skip_special_tokens=lowerCamelCase ) predicted_outputs += generated_string self.assertListEqual(lowerCamelCase , lowerCamelCase ) def lowercase__ ( self ) -> Optional[Any]: """simple docstring""" snake_case__ : Dict = '''facebook/opt-350m''' snake_case__ : Optional[Any] = GPTaTokenizer.from_pretrained(lowerCamelCase ) snake_case__ : Optional[int] = TFOPTForCausalLM.from_pretrained(lowerCamelCase ) snake_case__ : str = '''left''' # use different length sentences to test batching snake_case__ : List[str] = [ '''Hello, my dog is a little''', '''Today, I''', ] snake_case__ : List[str] = tokenizer(lowerCamelCase , return_tensors='''tf''' , padding=lowerCamelCase ) snake_case__ : Tuple = inputs['''input_ids'''] snake_case__ : Any = model.generate(input_ids=lowerCamelCase , attention_mask=inputs['''attention_mask'''] ) snake_case__ : Tuple = tokenizer(sentences[0] , return_tensors='''tf''' ).input_ids snake_case__ : Union[str, Any] = model.generate(input_ids=lowerCamelCase ) snake_case__ : str = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['''attention_mask'''][-1] , tf.intaa ) ) snake_case__ : Optional[int] = tokenizer(sentences[1] , return_tensors='''tf''' ).input_ids snake_case__ : int = model.generate(input_ids=lowerCamelCase , max_length=model.config.max_length - num_paddings ) snake_case__ : int = tokenizer.batch_decode(lowerCamelCase , skip_special_tokens=lowerCamelCase ) snake_case__ : Optional[int] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCamelCase ) snake_case__ : Tuple = tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCamelCase ) snake_case__ : Any = [ '''Hello, my dog is a little bit of a dork.\nI\'m a little bit''', '''Today, I was in the middle of a conversation with a friend about the''', ] self.assertListEqual(lowerCamelCase , lowerCamelCase ) self.assertListEqual(lowerCamelCase , [non_padded_sentence, padded_sentence] ) def lowercase__ ( self ) -> Dict: """simple docstring""" snake_case__ : str = '''facebook/opt-350m''' snake_case__ : int = [ '''Today is a beautiful day and I want to''', '''In the city of San Francisco, the city''', '''Paris is the capital of France and the capital''', '''Computers and mobile phones have taken over the''', ] snake_case__ : Optional[Any] = [] snake_case__ : Dict = GPTaTokenizer.from_pretrained(lowerCamelCase ) snake_case__ : Optional[int] = TFOPTForCausalLM.from_pretrained(lowerCamelCase ) for prompt in self.prompts: snake_case__ : List[str] = tokenizer(lowerCamelCase , return_tensors='''tf''' ).input_ids snake_case__ : int = model.generate(lowerCamelCase , max_length=10 ) snake_case__ : Tuple = tokenizer.batch_decode(lowerCamelCase , skip_special_tokens=lowerCamelCase ) predicted_outputs += generated_string self.assertListEqual(lowerCamelCase , lowerCamelCase )
261
1
'''simple docstring''' from math import sqrt def __UpperCAmelCase ( SCREAMING_SNAKE_CASE__: int ) -> int: """simple docstring""" __a = 0 for i in range(1, int(sqrt(SCREAMING_SNAKE_CASE__ ) + 1 ) ): if n % i == 0 and i != sqrt(SCREAMING_SNAKE_CASE__ ): total += i + n // i elif i == sqrt(SCREAMING_SNAKE_CASE__ ): total += i return total - n def __UpperCAmelCase ( SCREAMING_SNAKE_CASE__: int = 10000 ) -> int: """simple docstring""" __a = sum( i for i in range(1, SCREAMING_SNAKE_CASE__ ) if sum_of_divisors(sum_of_divisors(SCREAMING_SNAKE_CASE__ ) ) == i and sum_of_divisors(SCREAMING_SNAKE_CASE__ ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
270
'''simple docstring''' from maths.prime_factors import prime_factors def __UpperCAmelCase ( SCREAMING_SNAKE_CASE__: int ) -> int: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ): __a = f"""Input value of [number={number}] must be an integer""" raise TypeError(SCREAMING_SNAKE_CASE__ ) if number < 1: raise ValueError('Input must be a positive integer' ) return -1 if len(prime_factors(SCREAMING_SNAKE_CASE__ ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
270
1
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __a ( __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : int , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : str ) -> Optional[Any]: """simple docstring""" with open(__UpperCAmelCase ) as metadata_file: lowerCamelCase_ : List[str] = json.load(__UpperCAmelCase ) lowerCamelCase_ : Optional[int] = LukeConfig(use_entity_aware_attention=__UpperCAmelCase , **metadata["model_config"] ) # Load in the weights from the checkpoint_path lowerCamelCase_ : Optional[Any] = torch.load(__UpperCAmelCase , map_location="cpu" )["module"] # Load the entity vocab file lowerCamelCase_ : Optional[Any] = load_original_entity_vocab(__UpperCAmelCase ) # add an entry for [MASK2] lowerCamelCase_ : Union[str, Any] = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 lowerCamelCase_ : Optional[Any] = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks lowerCamelCase_ : Any = AddedToken("<ent>" , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) lowerCamelCase_ : Union[str, Any] = AddedToken("<ent2>" , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f"Saving tokenizer to {pytorch_dump_folder_path}" ) tokenizer.save_pretrained(__UpperCAmelCase ) with open(os.path.join(__UpperCAmelCase , "tokenizer_config.json" ) , "r" ) as f: lowerCamelCase_ : Any = json.load(__UpperCAmelCase ) lowerCamelCase_ : Optional[Any] = "MLukeTokenizer" with open(os.path.join(__UpperCAmelCase , "tokenizer_config.json" ) , "w" ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase ) with open(os.path.join(__UpperCAmelCase , MLukeTokenizer.vocab_files_names["entity_vocab_file"] ) , "w" ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase ) lowerCamelCase_ : Tuple = MLukeTokenizer.from_pretrained(__UpperCAmelCase ) # Initialize the embeddings of the special tokens lowerCamelCase_ : Optional[int] = tokenizer.convert_tokens_to_ids(["@"] )[0] lowerCamelCase_ : Dict = tokenizer.convert_tokens_to_ids(["#"] )[0] lowerCamelCase_ : Optional[int] = state_dict["embeddings.word_embeddings.weight"] lowerCamelCase_ : List[Any] = word_emb[ent_init_index].unsqueeze(0 ) lowerCamelCase_ : str = word_emb[enta_init_index].unsqueeze(0 ) lowerCamelCase_ : List[str] = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: lowerCamelCase_ : List[Any] = state_dict[bias_name] lowerCamelCase_ : Any = decoder_bias[ent_init_index].unsqueeze(0 ) lowerCamelCase_ : List[Any] = decoder_bias[enta_init_index].unsqueeze(0 ) lowerCamelCase_ : Optional[int] = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: lowerCamelCase_ : str = f"encoder.layer.{layer_index}.attention.self." lowerCamelCase_ : Optional[Any] = state_dict[prefix + matrix_name] lowerCamelCase_ : List[str] = state_dict[prefix + matrix_name] lowerCamelCase_ : str = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks lowerCamelCase_ : Optional[int] = state_dict["entity_embeddings.entity_embeddings.weight"] lowerCamelCase_ : List[str] = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 ) lowerCamelCase_ : Union[str, Any] = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' lowerCamelCase_ : Optional[int] = state_dict["entity_predictions.bias"] lowerCamelCase_ : Dict = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 ) lowerCamelCase_ : Dict = torch.cat([entity_prediction_bias, entity_mask_bias] ) lowerCamelCase_ : str = LukeForMaskedLM(config=__UpperCAmelCase ).eval() state_dict.pop("entity_predictions.decoder.weight" ) state_dict.pop("lm_head.decoder.weight" ) state_dict.pop("lm_head.decoder.bias" ) lowerCamelCase_ : str = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("lm_head" ) or key.startswith("entity_predictions" )): lowerCamelCase_ : str = state_dict[key] else: lowerCamelCase_ : Optional[int] = state_dict[key] lowerCamelCase_ , lowerCamelCase_ : Union[str, Any] = model.load_state_dict(__UpperCAmelCase , strict=__UpperCAmelCase ) if set(__UpperCAmelCase ) != {"luke.embeddings.position_ids"}: raise ValueError(f"Unexpected unexpected_keys: {unexpected_keys}" ) if set(__UpperCAmelCase ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f"Unexpected missing_keys: {missing_keys}" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs lowerCamelCase_ : str = MLukeTokenizer.from_pretrained(__UpperCAmelCase , task="entity_classification" ) lowerCamelCase_ : Union[str, Any] = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)." lowerCamelCase_ : Any = (0, 9) lowerCamelCase_ : List[Any] = tokenizer(__UpperCAmelCase , entity_spans=[span] , return_tensors="pt" ) lowerCamelCase_ : Any = model(**__UpperCAmelCase ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base lowerCamelCase_ : Any = torch.Size((1, 33, 768) ) lowerCamelCase_ : Optional[int] = torch.tensor([[0.0_8_9_2, 0.0_5_9_6, -0.2_8_1_9], [0.0_1_3_4, 0.1_1_9_9, 0.0_5_7_3], [-0.0_1_6_9, 0.0_9_2_7, 0.0_6_4_4]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f"Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , __UpperCAmelCase , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base lowerCamelCase_ : Union[str, Any] = torch.Size((1, 1, 768) ) lowerCamelCase_ : str = torch.tensor([[-0.1_4_8_2, 0.0_6_0_9, 0.0_3_2_2]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f"Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is" f" {expected_shape}" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , __UpperCAmelCase , atol=1e-4 ): raise ValueError # Verify masked word/entity prediction lowerCamelCase_ : Any = MLukeTokenizer.from_pretrained(__UpperCAmelCase ) lowerCamelCase_ : Optional[Any] = "Tokyo is the capital of <mask>." lowerCamelCase_ : Optional[int] = (24, 30) lowerCamelCase_ : Dict = tokenizer(__UpperCAmelCase , entity_spans=[span] , return_tensors="pt" ) lowerCamelCase_ : List[Any] = model(**__UpperCAmelCase ) lowerCamelCase_ : Dict = encoding["input_ids"][0].tolist() lowerCamelCase_ : Tuple = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>" ) ) lowerCamelCase_ : str = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(__UpperCAmelCase ) lowerCamelCase_ : Optional[Any] = outputs.entity_logits[0][0].argmax().item() lowerCamelCase_ : Tuple = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("en:" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(__UpperCAmelCase ) ) model.save_pretrained(__UpperCAmelCase ) def __a ( __UpperCAmelCase : List[str] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ : int = ["[MASK]", "[PAD]", "[UNK]"] lowerCamelCase_ : int = [json.loads(__UpperCAmelCase ) for line in open(__UpperCAmelCase )] lowerCamelCase_ : Optional[Any] = {} for entry in data: lowerCamelCase_ : str = entry["id"] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: lowerCamelCase_ : Union[str, Any] = entity_id break lowerCamelCase_ : Any = f"{language}:{entity_name}" lowerCamelCase_ : int = entity_id return new_mapping if __name__ == "__main__": snake_case_ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) snake_case_ : Tuple = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
488
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: snake_case_ : Optional[Any] = None snake_case_ : Tuple = logging.get_logger(__name__) snake_case_ : str = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} snake_case_ : int = { "vocab_file": { "facebook/mbart-large-en-ro": ( "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model" ), "facebook/mbart-large-cc25": ( "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/mbart-large-en-ro": "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json", "facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json", }, } snake_case_ : Optional[Any] = { "facebook/mbart-large-en-ro": 1024, "facebook/mbart-large-cc25": 1024, } # fmt: off snake_case_ : Any = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] class snake_case_ ( __A ): '''simple docstring''' lowerCamelCase = VOCAB_FILES_NAMES lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase = ["input_ids", "attention_mask"] lowerCamelCase = MBartTokenizer lowerCamelCase = [] lowerCamelCase = [] def __init__( self : Optional[Any] , __magic_name__ : Tuple=None , __magic_name__ : int=None , __magic_name__ : Dict="<s>" , __magic_name__ : int="</s>" , __magic_name__ : List[str]="</s>" , __magic_name__ : List[Any]="<s>" , __magic_name__ : Optional[int]="<unk>" , __magic_name__ : Any="<pad>" , __magic_name__ : Any="<mask>" , __magic_name__ : Optional[Any]=None , __magic_name__ : List[Any]=None , __magic_name__ : str=None , **__magic_name__ : List[str] , ) -> str: # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase_ : Dict = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else mask_token super().__init__( vocab_file=__magic_name__ , tokenizer_file=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , unk_token=__magic_name__ , pad_token=__magic_name__ , mask_token=__magic_name__ , src_lang=__magic_name__ , tgt_lang=__magic_name__ , additional_special_tokens=__magic_name__ , **__magic_name__ , ) lowerCamelCase_ : List[str] = vocab_file lowerCamelCase_ : Optional[Any] = False if not self.vocab_file else True lowerCamelCase_ : List[str] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"additional_special_tokens": _additional_special_tokens} ) lowerCamelCase_ : str = { lang_code: self.convert_tokens_to_ids(__magic_name__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } lowerCamelCase_ : Optional[int] = src_lang if src_lang is not None else "en_XX" lowerCamelCase_ : Optional[Any] = self.convert_tokens_to_ids(self._src_lang ) lowerCamelCase_ : List[str] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __SCREAMING_SNAKE_CASE ( self : str ) -> str: return self._src_lang @src_lang.setter def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : str ) -> None: lowerCamelCase_ : int = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]: lowerCamelCase_ : Any = [self.sep_token_id] lowerCamelCase_ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : Dict , __magic_name__ : str , __magic_name__ : Optional[str] , __magic_name__ : Optional[str] , **__magic_name__ : Any ) -> List[str]: if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) lowerCamelCase_ : Optional[Any] = src_lang lowerCamelCase_ : Tuple = self(__magic_name__ , add_special_tokens=__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ ) lowerCamelCase_ : Union[str, Any] = self.convert_tokens_to_ids(__magic_name__ ) lowerCamelCase_ : List[Any] = tgt_lang_id return inputs def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : List[str] , __magic_name__ : str = "en_XX" , __magic_name__ : Optional[List[str]] = None , __magic_name__ : str = "ro_RO" , **__magic_name__ : Optional[int] , ) -> BatchEncoding: lowerCamelCase_ : Optional[int] = src_lang lowerCamelCase_ : Any = tgt_lang return super().prepare_seqaseq_batch(__magic_name__ , __magic_name__ , **__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: return self.set_src_lang_special_tokens(self.src_lang ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Any: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : Tuple ) -> None: lowerCamelCase_ : Union[str, Any] = self.convert_tokens_to_ids(__magic_name__ ) lowerCamelCase_ : Any = [] lowerCamelCase_ : str = [self.eos_token_id, self.cur_lang_code] lowerCamelCase_ : List[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase_ : int = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase_ : str = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : str ) -> None: lowerCamelCase_ : Dict = self.convert_tokens_to_ids(__magic_name__ ) lowerCamelCase_ : Any = [] lowerCamelCase_ : List[Any] = [self.eos_token_id, self.cur_lang_code] lowerCamelCase_ : List[str] = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase_ : List[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase_ : int = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(__magic_name__ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory." ) return lowerCamelCase_ : Optional[Any] = os.path.join( __magic_name__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__magic_name__ ): copyfile(self.vocab_file , __magic_name__ ) return (out_vocab_file,)
488
1
"""simple docstring""" def _snake_case ( UpperCAmelCase_ : list ): if len(UpperCAmelCase_ ) <= 1: return lst A__ = 1 while i < len(UpperCAmelCase_ ): if lst[i - 1] <= lst[i]: i += 1 else: A__ , A__ = lst[i], lst[i - 1] i -= 1 if i == 0: A__ = 1 return lst if __name__ == "__main__": SCREAMING_SNAKE_CASE_ : Union[str, Any] = input('Enter numbers separated by a comma:\n').strip() SCREAMING_SNAKE_CASE_ : Union[str, Any] = [int(item) for item in user_input.split(',')] print(gnome_sort(unsorted))
500
"""simple docstring""" from typing import Dict, Optional import numpy as np import datasets SCREAMING_SNAKE_CASE_ : Tuple = '\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n' SCREAMING_SNAKE_CASE_ : Optional[int] = '\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric("mean_iou")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mean_iou\': 0.47750000000000004, \'mean_accuracy\': 0.5916666666666666, \'overall_accuracy\': 0.5263157894736842, \'per_category_iou\': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), \'per_category_accuracy\': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n' SCREAMING_SNAKE_CASE_ : int = '\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}' def _snake_case ( UpperCAmelCase_ : str , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : bool , UpperCAmelCase_ : Optional[Dict[int, int]] = None , UpperCAmelCase_ : bool = False , ): if label_map is not None: for old_id, new_id in label_map.items(): A__ = new_id # turn into Numpy arrays A__ = np.array(UpperCAmelCase_ ) A__ = np.array(UpperCAmelCase_ ) if reduce_labels: A__ = 255 A__ = label - 1 A__ = 255 A__ = label != ignore_index A__ = np.not_equal(UpperCAmelCase_ , UpperCAmelCase_ ) A__ = pred_label[mask] A__ = np.array(UpperCAmelCase_ )[mask] A__ = pred_label[pred_label == label] A__ = np.histogram(UpperCAmelCase_ , bins=UpperCAmelCase_ , range=(0, num_labels - 1) )[0] A__ = np.histogram(UpperCAmelCase_ , bins=UpperCAmelCase_ , range=(0, num_labels - 1) )[0] A__ = np.histogram(UpperCAmelCase_ , bins=UpperCAmelCase_ , range=(0, num_labels - 1) )[0] A__ = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def _snake_case ( UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : bool , UpperCAmelCase_ : Optional[Dict[int, int]] = None , UpperCAmelCase_ : bool = False , ): A__ = np.zeros((num_labels,) , dtype=np.floataa ) A__ = np.zeros((num_labels,) , dtype=np.floataa ) A__ = np.zeros((num_labels,) , dtype=np.floataa ) A__ = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(UpperCAmelCase_ , UpperCAmelCase_ ): A__ , A__ , A__ , A__ = intersect_and_union( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def _snake_case ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : bool , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[Dict[int, int]] = None , UpperCAmelCase_ : bool = False , ): A__ , A__ , A__ , A__ = total_intersect_and_union( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # compute metrics A__ = {} A__ = total_area_intersect.sum() / total_area_label.sum() A__ = total_area_intersect / total_area_union A__ = total_area_intersect / total_area_label A__ = np.nanmean(UpperCAmelCase_ ) A__ = np.nanmean(UpperCAmelCase_ ) A__ = all_acc A__ = iou A__ = acc if nan_to_num is not None: A__ = {metric: np.nan_to_num(UpperCAmelCase_ , nan=UpperCAmelCase_ ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class a ( datasets.Metric ): """simple docstring""" def UpperCamelCase ( self: str ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { """predictions""": datasets.Sequence(datasets.Sequence(datasets.Value("""uint16""" ) ) ), """references""": datasets.Sequence(datasets.Sequence(datasets.Value("""uint16""" ) ) ), } ) , reference_urls=[ """https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py""" ] , ) def UpperCamelCase ( self: str , UpperCamelCase: Union[str, Any] , UpperCamelCase: Optional[Any] , UpperCamelCase: int , UpperCamelCase: bool , UpperCamelCase: Optional[int] = None , UpperCamelCase: Optional[Dict[int, int]] = None , UpperCamelCase: bool = False , ): """simple docstring""" A__ = mean_iou( results=UpperCamelCase , gt_seg_maps=UpperCamelCase , num_labels=UpperCamelCase , ignore_index=UpperCamelCase , nan_to_num=UpperCamelCase , label_map=UpperCamelCase , reduce_labels=UpperCamelCase , ) return iou_result
500
1
import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() _a : str = logging.get_logger(__name__) def a_ ( __magic_name__ , __magic_name__ ) -> int: """simple docstring""" snake_case : Any = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F"encoder.deit.blocks.{i}.norm1.weight", F"encoder.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"encoder.deit.blocks.{i}.norm1.bias", F"encoder.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (F"encoder.deit.blocks.{i}.attn.proj.weight", F"encoder.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (F"encoder.deit.blocks.{i}.attn.proj.bias", F"encoder.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append( (F"encoder.deit.blocks.{i}.norm2.weight", F"encoder.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"encoder.deit.blocks.{i}.norm2.bias", F"encoder.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append( (F"encoder.deit.blocks.{i}.mlp.fc1.weight", F"encoder.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append( (F"encoder.deit.blocks.{i}.mlp.fc1.bias", F"encoder.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append( (F"encoder.deit.blocks.{i}.mlp.fc2.weight", F"encoder.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"encoder.deit.blocks.{i}.mlp.fc2.bias", F"encoder.encoder.layer.{i}.output.dense.bias") ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ('''encoder.deit.cls_token''', '''encoder.embeddings.cls_token'''), ('''encoder.deit.pos_embed''', '''encoder.embeddings.position_embeddings'''), ('''encoder.deit.patch_embed.proj.weight''', '''encoder.embeddings.patch_embeddings.projection.weight'''), ('''encoder.deit.patch_embed.proj.bias''', '''encoder.embeddings.patch_embeddings.projection.bias'''), ('''encoder.deit.norm.weight''', '''encoder.layernorm.weight'''), ('''encoder.deit.norm.bias''', '''encoder.layernorm.bias'''), ] ) return rename_keys def a_ ( __magic_name__ , __magic_name__ ) -> Any: """simple docstring""" for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) snake_case : Dict = state_dict.pop(F"encoder.deit.blocks.{i}.attn.qkv.weight" ) snake_case : Union[str, Any] = in_proj_weight[ : encoder_config.hidden_size, : ] snake_case : Any = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] snake_case : Optional[Any] = in_proj_weight[ -encoder_config.hidden_size :, : ] def a_ ( __magic_name__ , __magic_name__ , __magic_name__ ) -> Any: """simple docstring""" snake_case : Union[str, Any] = dct.pop(__magic_name__ ) snake_case : List[Any] = val def a_ ( __magic_name__ ) -> List[str]: """simple docstring""" if "handwritten" in checkpoint_url: snake_case : Any = '''https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg''' # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: snake_case : List[Any] = '''https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg''' snake_case : List[Any] = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw ).convert('''RGB''' ) return im @torch.no_grad() def a_ ( __magic_name__ , __magic_name__ ) -> Tuple: """simple docstring""" snake_case : Any = ViTConfig(image_size=384 , qkv_bias=__magic_name__ ) snake_case : Optional[Any] = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: snake_case : Optional[int] = 768 elif "large" in checkpoint_url: # use ViT-large encoder snake_case : Union[str, Any] = 1_024 snake_case : Union[str, Any] = 4_096 snake_case : Any = 24 snake_case : List[Any] = 16 snake_case : Union[str, Any] = 1_024 else: raise ValueError('''Should either find \'base\' or \'large\' in checkpoint URL''' ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: snake_case : List[str] = False snake_case : int = '''relu''' snake_case : int = 1_024 snake_case : Tuple = True snake_case : Dict = False snake_case : Dict = False # load HuggingFace model snake_case : Union[str, Any] = ViTModel(__magic_name__ , add_pooling_layer=__magic_name__ ) snake_case : Dict = TrOCRForCausalLM(__magic_name__ ) snake_case : Any = VisionEncoderDecoderModel(encoder=__magic_name__ , decoder=__magic_name__ ) model.eval() # load state_dict of original model, rename some keys snake_case : List[str] = torch.hub.load_state_dict_from_url(__magic_name__ , map_location='''cpu''' , check_hash=__magic_name__ )['''model'''] snake_case : int = create_rename_keys(__magic_name__ , __magic_name__ ) for src, dest in rename_keys: rename_key(__magic_name__ , __magic_name__ , __magic_name__ ) read_in_q_k_v(__magic_name__ , __magic_name__ ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): snake_case : Union[str, Any] = state_dict.pop(__magic_name__ ) if key.startswith('''decoder''' ) and "output_projection" not in key: snake_case : List[str] = val else: snake_case : Dict = val # load state dict model.load_state_dict(__magic_name__ ) # Check outputs on an image snake_case : int = ViTImageProcessor(size=encoder_config.image_size ) snake_case : Union[str, Any] = RobertaTokenizer.from_pretrained('''roberta-large''' ) snake_case : Tuple = TrOCRProcessor(__magic_name__ , __magic_name__ ) snake_case : Dict = processor(images=prepare_img(__magic_name__ ) , return_tensors='''pt''' ).pixel_values # verify logits snake_case : Optional[int] = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) snake_case : Any = model(pixel_values=__magic_name__ , decoder_input_ids=__magic_name__ ) snake_case : List[Any] = outputs.logits snake_case : Union[str, Any] = torch.Size([1, 1, 50_265] ) if "trocr-base-handwritten" in checkpoint_url: snake_case : Optional[int] = torch.tensor( [-1.4502, -4.6683, -0.5347, -2.9291, 9.1435, -3.0571, 8.9764, 1.7560, 8.7358, -1.5311] ) elif "trocr-large-handwritten" in checkpoint_url: snake_case : Any = torch.tensor( [-2.6437, -1.3129, -2.2596, -5.3455, 6.3539, 1.7604, 5.4991, 1.4702, 5.6113, 2.0170] ) elif "trocr-base-printed" in checkpoint_url: snake_case : Any = torch.tensor( [-5.6816, -5.8388, 1.1398, -6.9034, 6.8505, -2.4393, 1.2284, -1.0232, -1.9661, -3.9210] ) elif "trocr-large-printed" in checkpoint_url: snake_case : Union[str, Any] = torch.tensor( [-6.0162, -7.0959, 4.4155, -5.1063, 7.0468, -3.1631, 2.6466, -0.3081, -0.8106, -1.7535] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10] , __magic_name__ , atol=1e-3 ), "First elements of logits not as expected" Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(__magic_name__ ) print(F"Saving processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(__magic_name__ ) if __name__ == "__main__": _a : Tuple = argparse.ArgumentParser() parser.add_argument( '--checkpoint_url', default='https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt', type=str, help='URL to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) _a : Optional[Any] = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
598
from __future__ import annotations import bisect def a_ ( __magic_name__ , __magic_name__ , __magic_name__ = 0 , __magic_name__ = -1 ) -> int: """simple docstring""" if hi < 0: snake_case : Optional[int] = len(__magic_name__ ) while lo < hi: snake_case : List[Any] = lo + (hi - lo) // 2 if sorted_collection[mid] < item: snake_case : List[str] = mid + 1 else: snake_case : Tuple = mid return lo def a_ ( __magic_name__ , __magic_name__ , __magic_name__ = 0 , __magic_name__ = -1 ) -> int: """simple docstring""" if hi < 0: snake_case : Any = len(__magic_name__ ) while lo < hi: snake_case : List[Any] = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: snake_case : Optional[Any] = mid + 1 else: snake_case : List[Any] = mid return lo def a_ ( __magic_name__ , __magic_name__ , __magic_name__ = 0 , __magic_name__ = -1 ) -> None: """simple docstring""" sorted_collection.insert(bisect_left(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) , __magic_name__ ) def a_ ( __magic_name__ , __magic_name__ , __magic_name__ = 0 , __magic_name__ = -1 ) -> None: """simple docstring""" sorted_collection.insert(bisect_right(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) , __magic_name__ ) def a_ ( __magic_name__ , __magic_name__ ) -> int | None: """simple docstring""" snake_case : List[str] = 0 snake_case : Optional[Any] = len(__magic_name__ ) - 1 while left <= right: snake_case : Optional[int] = left + (right - left) // 2 snake_case : Any = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: snake_case : Optional[Any] = midpoint - 1 else: snake_case : List[str] = midpoint + 1 return None def a_ ( __magic_name__ , __magic_name__ ) -> int | None: """simple docstring""" snake_case : Tuple = bisect.bisect_left(__magic_name__ , __magic_name__ ) if index != len(__magic_name__ ) and sorted_collection[index] == item: return index return None def a_ ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> int | None: """simple docstring""" if right < left: return None snake_case : Tuple = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(__magic_name__ , __magic_name__ , __magic_name__ , midpoint - 1 ) else: return binary_search_by_recursion(__magic_name__ , __magic_name__ , midpoint + 1 , __magic_name__ ) if __name__ == "__main__": _a : Optional[Any] = input('Enter numbers separated by comma:\n').strip() _a : List[str] = sorted(int(item) for item in user_input.split(',')) _a : str = int(input('Enter a single number to be found in the list:\n')) _a : Tuple = binary_search(collection, target) if result is None: print(f"{target} was not found in {collection}.") else: print(f"{target} was found at position {result} in {collection}.")
598
1
'''simple docstring''' from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class __A : def __init__( self , UpperCamelCase_ , UpperCamelCase_=12 , UpperCamelCase_=7 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=99 , UpperCamelCase_=32 , UpperCamelCase_=32 , UpperCamelCase_=2 , UpperCamelCase_=4 , UpperCamelCase_=37 , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=5_12 , UpperCamelCase_=0.0_2 , UpperCamelCase_=0 , UpperCamelCase_=None , ): __UpperCAmelCase : Union[str, Any] = parent __UpperCAmelCase : Union[str, Any] = batch_size __UpperCAmelCase : Optional[Any] = seq_length __UpperCAmelCase : Dict = is_training __UpperCAmelCase : List[Any] = use_input_mask __UpperCAmelCase : Union[str, Any] = use_labels __UpperCAmelCase : Optional[int] = vocab_size __UpperCAmelCase : List[Any] = hidden_size __UpperCAmelCase : Optional[Any] = projection_dim __UpperCAmelCase : Dict = num_hidden_layers __UpperCAmelCase : List[str] = num_attention_heads __UpperCAmelCase : int = intermediate_size __UpperCAmelCase : List[str] = dropout __UpperCAmelCase : Union[str, Any] = attention_dropout __UpperCAmelCase : Any = max_position_embeddings __UpperCAmelCase : Union[str, Any] = initializer_range __UpperCAmelCase : Optional[Any] = scope __UpperCAmelCase : str = bos_token_id def _snake_case ( self ): __UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : List[str] = None if self.use_input_mask: __UpperCAmelCase : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: __UpperCAmelCase : List[Any] = input_mask.numpy() __UpperCAmelCase , __UpperCAmelCase : List[Any] = input_mask.shape __UpperCAmelCase : Tuple = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(UpperCamelCase_ ): __UpperCAmelCase : Any = 1 __UpperCAmelCase : Any = 0 __UpperCAmelCase : List[str] = self.get_config() return config, input_ids, tf.convert_to_tensor(UpperCamelCase_ ) def _snake_case ( self ): return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : str = TFBlipTextModel(config=UpperCamelCase_ ) __UpperCAmelCase : List[str] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , training=UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = model(UpperCamelCase_ , training=UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _snake_case ( self ): __UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = config_and_inputs __UpperCAmelCase : Tuple = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class __A (__magic_name__ , unittest.TestCase ): snake_case :Optional[Any] = (TFBlipTextModel,) if is_tf_available() else () snake_case :Any = False snake_case :Dict = False snake_case :Dict = False def _snake_case ( self ): __UpperCAmelCase : Union[str, Any] = BlipTextModelTester(self ) __UpperCAmelCase : Tuple = ConfigTester(self , config_class=UpperCamelCase_ , hidden_size=37 ) def _snake_case ( self ): self.config_tester.run_common_tests() def _snake_case ( self ): __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def _snake_case ( self ): pass def _snake_case ( self ): pass @unittest.skip(reason="Blip does not use inputs_embeds" ) def _snake_case ( self ): pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING" ) def _snake_case ( self ): pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING" ) def _snake_case ( self ): pass @slow def _snake_case ( self ): for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Tuple = TFBlipTextModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_=True ): super().test_pt_tf_model_equivalence(allow_missing_keys=UpperCamelCase_ )
10
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class __A (TensorFormatter[Mapping, "torch.Tensor", Mapping] ): def __init__( self , UpperCamelCase_=None , **UpperCamelCase_ ): super().__init__(features=UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = torch_tensor_kwargs import torch # noqa import torch at initialization def _snake_case ( self , UpperCamelCase_ ): import torch if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and column: if all( isinstance(UpperCamelCase_ , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(UpperCamelCase_ ) return column def _snake_case ( self , UpperCamelCase_ ): import torch if isinstance(UpperCamelCase_ , (str, bytes, type(UpperCamelCase_ )) ): return value elif isinstance(UpperCamelCase_ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() __UpperCAmelCase : int = {} if isinstance(UpperCamelCase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): __UpperCAmelCase : Optional[int] = {"dtype": torch.intaa} elif isinstance(UpperCamelCase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): __UpperCAmelCase : str = {"dtype": torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(UpperCamelCase_ , PIL.Image.Image ): __UpperCAmelCase : str = np.asarray(UpperCamelCase_ ) return torch.tensor(UpperCamelCase_ , **{**default_dtype, **self.torch_tensor_kwargs} ) def _snake_case ( self , UpperCamelCase_ ): import torch # support for torch, tf, jax etc. if hasattr(UpperCamelCase_ , "__array__" ) and not isinstance(UpperCamelCase_ , torch.Tensor ): __UpperCAmelCase : Dict = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(UpperCamelCase_ , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(UpperCamelCase_ ) for substruct in data_struct] ) elif isinstance(UpperCamelCase_ , (list, tuple) ): return self._consolidate([self.recursive_tensorize(UpperCamelCase_ ) for substruct in data_struct] ) return self._tensorize(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): return map_nested(self._recursive_tensorize , UpperCamelCase_ , map_list=UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : List[str] = self.numpy_arrow_extractor().extract_row(UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = self.python_features_decoder.decode_row(UpperCamelCase_ ) return self.recursive_tensorize(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_column(UpperCamelCase_ ) __UpperCAmelCase : Optional[Any] = self.python_features_decoder.decode_column(UpperCamelCase_ , pa_table.column_names[0] ) __UpperCAmelCase : List[Any] = self.recursive_tensorize(UpperCamelCase_ ) __UpperCAmelCase : List[str] = self._consolidate(UpperCamelCase_ ) return column def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : int = self.numpy_arrow_extractor().extract_batch(UpperCamelCase_ ) __UpperCAmelCase : Any = self.python_features_decoder.decode_batch(UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = self.recursive_tensorize(UpperCamelCase_ ) for column_name in batch: __UpperCAmelCase : Tuple = self._consolidate(batch[column_name] ) return batch
10
1
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=a_ ) class A ( a_ ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization lowercase_ = field(default='question-answering-extractive' ,metadata={'include_in_asdict_even_if_is_default': True} ) lowercase_ = Features({'question': Value('string' ), 'context': Value('string' )} ) lowercase_ = Features( { 'answers': Sequence( { 'text': Value('string' ), 'answer_start': Value('int32' ), } ) } ) lowercase_ = 'question' lowercase_ = 'context' lowercase_ = 'answers' @property def __lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
22
"""simple docstring""" import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case_ ( a_ ,unittest.TestCase ): __lowerCAmelCase = FunnelTokenizer __lowerCAmelCase = FunnelTokenizerFast __lowerCAmelCase = True __lowerCAmelCase = True def snake_case_ ( self ): super().setUp() a_ : int = [ "<unk>", "<cls>", "<sep>", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] a_ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def snake_case_ ( self , **a_ ): return FunnelTokenizer.from_pretrained(self.tmpdirname , **a_ ) def snake_case_ ( self , **a_ ): return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **a_ ) def snake_case_ ( self , a_ ): a_ : int = "UNwant\u00E9d,running" a_ : List[Any] = "unwanted, running" return input_text, output_text def snake_case_ ( self ): a_ : int = self.tokenizer_class(self.vocab_file ) a_ : List[Any] = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(a_ , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(a_ ) , [7, 4, 5, 1_0, 8, 9] ) def snake_case_ ( self ): a_ : List[str] = self.get_tokenizers(do_lower_case=a_ ) for tokenizer in tokenizers: a_ : Dict = tokenizer("UNwant\u00E9d,running" ) a_ : int = len(inputs["input_ids"] ) - 1 self.assertListEqual(inputs["token_type_ids"] , [2] + [0] * sentence_len ) a_ : Dict = tokenizer("UNwant\u00E9d,running" , "UNwant\u00E9d,running" ) self.assertListEqual(inputs["token_type_ids"] , [2] + [0] * sentence_len + [1] * sentence_len )
237
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class __SCREAMING_SNAKE_CASE : '''simple docstring''' SCREAMING_SNAKE_CASE__ :Any = LEDConfig SCREAMING_SNAKE_CASE__ :str = {} SCREAMING_SNAKE_CASE__ :List[str] = "gelu" def __init__( self : List[Any] , __a : Union[str, Any] , __a : List[Any]=13 , __a : int=7 , __a : str=True , __a : Any=False , __a : str=99 , __a : str=32 , __a : Union[str, Any]=2 , __a : Optional[Any]=4 , __a : List[Any]=37 , __a : List[Any]=0.1 , __a : Tuple=0.1 , __a : Dict=20 , __a : str=2 , __a : Dict=1 , __a : Any=0 , __a : List[Any]=4 , ) -> List[Any]: _UpperCamelCase : Optional[Any] = parent _UpperCamelCase : List[str] = batch_size _UpperCamelCase : str = seq_length _UpperCamelCase : str = is_training _UpperCamelCase : Any = use_labels _UpperCamelCase : Any = vocab_size _UpperCamelCase : List[str] = hidden_size _UpperCamelCase : Optional[Any] = num_hidden_layers _UpperCamelCase : Dict = num_attention_heads _UpperCamelCase : Optional[Any] = intermediate_size _UpperCamelCase : int = hidden_dropout_prob _UpperCamelCase : Dict = attention_probs_dropout_prob _UpperCamelCase : str = max_position_embeddings _UpperCamelCase : int = eos_token_id _UpperCamelCase : Dict = pad_token_id _UpperCamelCase : Optional[Any] = bos_token_id _UpperCamelCase : str = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after _UpperCamelCase : List[str] = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests _UpperCamelCase : int = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def __SCREAMING_SNAKE_CASE ( self : int ) -> str: _UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _UpperCamelCase : Optional[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _UpperCamelCase : Tuple = tf.concat([input_ids, eos_tensor] , axis=1 ) _UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase : List[Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) _UpperCamelCase : Dict = prepare_led_inputs_dict(__a , __a , __a ) _UpperCamelCase : Union[str, Any] = tf.concat( [tf.zeros_like(__a )[:, :-1], tf.ones_like(__a )[:, -1:]] , axis=-1 , ) _UpperCamelCase : Union[str, Any] = global_attention_mask return config, inputs_dict def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : List[Any] , __a : int ) -> Tuple: _UpperCamelCase : Tuple = TFLEDModel(config=__a ).get_decoder() _UpperCamelCase : Tuple = inputs_dict["input_ids"] _UpperCamelCase : int = input_ids[:1, :] _UpperCamelCase : List[str] = inputs_dict["attention_mask"][:1, :] _UpperCamelCase : List[Any] = 1 # first forward pass _UpperCamelCase : Any = model(__a , attention_mask=__a , use_cache=__a ) _UpperCamelCase, _UpperCamelCase : Union[str, Any] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _UpperCamelCase : Any = ids_tensor((self.batch_size, 3) , config.vocab_size ) _UpperCamelCase : Any = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _UpperCamelCase : List[str] = tf.concat([input_ids, next_tokens] , axis=-1 ) _UpperCamelCase : Union[str, Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _UpperCamelCase : Tuple = model(__a , attention_mask=__a )[0] _UpperCamelCase : int = model(__a , attention_mask=__a , past_key_values=__a )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _UpperCamelCase : List[Any] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _UpperCamelCase : List[str] = output_from_no_past[:, -3:, random_slice_idx] _UpperCamelCase : Optional[int] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__a , __a , rtol=1e-3 ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_=None ,lowercase_=None ,lowercase_=None ,lowercase_=None ,) -> Dict: """simple docstring""" if attention_mask is None: _UpperCamelCase : str = tf.cast(tf.math.not_equal(lowercase_ ,config.pad_token_id ) ,tf.inta ) if decoder_attention_mask is None: _UpperCamelCase : str = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape ,dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] ,config.pad_token_id ) ,tf.inta ), ] ,axis=-1 ,) if head_mask is None: _UpperCamelCase : List[str] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _UpperCamelCase : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Any = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () SCREAMING_SNAKE_CASE__ :List[str] = (TFLEDForConditionalGeneration,) if is_tf_available() else () SCREAMING_SNAKE_CASE__ :List[str] = ( { "conversational": TFLEDForConditionalGeneration, "feature-extraction": TFLEDModel, "summarization": TFLEDForConditionalGeneration, "text2text-generation": TFLEDForConditionalGeneration, "translation": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE__ :Tuple = True SCREAMING_SNAKE_CASE__ :str = False SCREAMING_SNAKE_CASE__ :Optional[Any] = False SCREAMING_SNAKE_CASE__ :int = False def __SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: _UpperCamelCase : int = TFLEDModelTester(self ) _UpperCamelCase : Any = ConfigTester(self , config_class=__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: self.config_tester.run_common_tests() def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: _UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__a ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: _UpperCamelCase, _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase : Optional[int] = tf.zeros_like(inputs_dict["attention_mask"] ) _UpperCamelCase : Union[str, Any] = 2 _UpperCamelCase : str = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict["global_attention_mask"] , ) _UpperCamelCase : Dict = True _UpperCamelCase : str = self.model_tester.seq_length _UpperCamelCase : Union[str, Any] = self.model_tester.encoder_seq_length def check_decoder_attentions_output(__a : Optional[int] ): _UpperCamelCase : Optional[int] = outputs.decoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(__a : Optional[Any] ): _UpperCamelCase : Union[str, Any] = [t.numpy() for t in outputs.encoder_attentions] _UpperCamelCase : List[Any] = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: _UpperCamelCase : Dict = True _UpperCamelCase : Optional[Any] = False _UpperCamelCase : int = False _UpperCamelCase : Optional[int] = model_class(__a ) _UpperCamelCase : int = model(self._prepare_for_class(__a , __a ) ) _UpperCamelCase : Any = len(__a ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) if self.is_encoder_decoder: _UpperCamelCase : Optional[Any] = model_class(__a ) _UpperCamelCase : List[Any] = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_decoder_attentions_output(__a ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _UpperCamelCase : int = True _UpperCamelCase : Tuple = model_class(__a ) _UpperCamelCase : str = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) # Check attention is always last and order is fine _UpperCamelCase : Any = True _UpperCamelCase : List[str] = True _UpperCamelCase : Tuple = model_class(__a ) _UpperCamelCase : int = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__a ) ) self.assertEqual(model.config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) @unittest.skip("LED keeps using potentially symbolic tensors in conditionals and breaks tracing." ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Dict: pass def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: # TODO: Head-masking not yet implement pass def lowercase__ ( lowercase_ ) -> Union[str, Any]: """simple docstring""" return tf.constant(lowercase_ ,dtype=tf.intaa ) lowerCamelCase__ = 1E-4 @slow @require_tf class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: _UpperCamelCase : Any = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ).led # change to intended input here _UpperCamelCase : int = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) _UpperCamelCase : Tuple = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) _UpperCamelCase : Optional[Any] = prepare_led_inputs_dict(model.config , __a , __a ) _UpperCamelCase : Optional[int] = model(**__a )[0] _UpperCamelCase : Optional[int] = (1, 1024, 768) self.assertEqual(output.shape , __a ) # change to expected output here _UpperCamelCase : Tuple = tf.convert_to_tensor( [[2.30_50, 2.82_79, 0.65_31], [-1.84_57, -0.14_55, -3.56_61], [-1.01_86, 0.45_86, -2.20_43]] , ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1e-3 ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> str: _UpperCamelCase : Optional[int] = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ) # change to intended input here _UpperCamelCase : Optional[int] = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) _UpperCamelCase : List[str] = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) _UpperCamelCase : Optional[Any] = prepare_led_inputs_dict(model.config , __a , __a ) _UpperCamelCase : Union[str, Any] = model(**__a )[0] _UpperCamelCase : int = (1, 1024, model.config.vocab_size) self.assertEqual(output.shape , __a ) # change to expected output here _UpperCamelCase : Optional[int] = tf.convert_to_tensor( [[33.65_07, 6.45_72, 16.80_89], [5.87_39, -2.42_38, 11.29_02], [-3.21_39, -4.31_49, 4.27_83]] , ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1e-3 , rtol=1e-3 )
51
"""simple docstring""" from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar lowerCamelCase__ = TypeVar("KEY") lowerCamelCase__ = TypeVar("VAL") @dataclass(frozen=_UpperCamelCase , slots=_UpperCamelCase ) class __SCREAMING_SNAKE_CASE ( Generic[KEY, VAL] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :KEY SCREAMING_SNAKE_CASE__ :VAL class __SCREAMING_SNAKE_CASE ( _Item ): '''simple docstring''' def __init__( self : List[str] ) -> None: super().__init__(__a , __a ) def __bool__( self : Dict ) -> bool: return False lowerCamelCase__ = _DeletedItem() class __SCREAMING_SNAKE_CASE ( MutableMapping[KEY, VAL] ): '''simple docstring''' def __init__( self : int , __a : int = 8 , __a : float = 0.75 ) -> None: _UpperCamelCase : str = initial_block_size _UpperCamelCase : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 _UpperCamelCase : List[str] = capacity_factor _UpperCamelCase : Dict = 0 def __SCREAMING_SNAKE_CASE ( self : int , __a : KEY ) -> int: return hash(__a ) % len(self._buckets ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : int ) -> int: return (ind + 1) % len(self._buckets ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : int , __a : KEY , __a : VAL ) -> bool: _UpperCamelCase : List[Any] = self._buckets[ind] if not stored: _UpperCamelCase : Tuple = _Item(__a , __a ) self._len += 1 return True elif stored.key == key: _UpperCamelCase : Union[str, Any] = _Item(__a , __a ) return True else: return False def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> bool: _UpperCamelCase : Any = len(self._buckets ) * self._capacity_factor return len(self ) >= int(__a ) def __SCREAMING_SNAKE_CASE ( self : str ) -> bool: if len(self._buckets ) <= self._initial_block_size: return False _UpperCamelCase : List[str] = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : int ) -> None: _UpperCamelCase : Any = self._buckets _UpperCamelCase : List[Any] = [None] * new_size _UpperCamelCase : List[str] = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def __SCREAMING_SNAKE_CASE ( self : int ) -> None: self._resize(len(self._buckets ) * 2 ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> None: self._resize(len(self._buckets ) // 2 ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : KEY ) -> Iterator[int]: _UpperCamelCase : str = self._get_bucket_index(__a ) for _ in range(len(self._buckets ) ): yield ind _UpperCamelCase : Tuple = self._get_next_ind(__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : KEY , __a : VAL ) -> None: for ind in self._iterate_buckets(__a ): if self._try_set(__a , __a , __a ): break def __setitem__( self : int , __a : KEY , __a : VAL ) -> None: if self._is_full(): self._size_up() self._add_item(__a , __a ) def __delitem__( self : str , __a : KEY ) -> None: for ind in self._iterate_buckets(__a ): _UpperCamelCase : Tuple = self._buckets[ind] if item is None: raise KeyError(__a ) if item is _deleted: continue if item.key == key: _UpperCamelCase : List[Any] = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : str , __a : KEY ) -> VAL: for ind in self._iterate_buckets(__a ): _UpperCamelCase : Tuple = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(__a ) def __len__( self : List[Any] ) -> int: return self._len def __iter__( self : List[str] ) -> Iterator[KEY]: yield from (item.key for item in self._buckets if item) def __repr__( self : List[str] ) -> str: _UpperCamelCase : Optional[int] = " ,".join( F'''{item.key}: {item.val}''' for item in self._buckets if item ) return F'''HashMap({val_string})'''
51
1
"""simple docstring""" def a_ ( lowercase__ :Dict ): if not numbers: return 0 if not isinstance(lowercase__, (list, tuple) ) or not all( isinstance(lowercase__, lowercase__ ) for number in numbers ): raise ValueError("""numbers must be an iterable of integers""" ) __lowerCamelCase = numbers[0] for i in range(1, len(lowercase__ ) ): # update the maximum and minimum subarray products __lowerCamelCase = numbers[i] if number < 0: __lowerCamelCase = min_till_now, max_till_now __lowerCamelCase = max(lowercase__, max_till_now * number ) __lowerCamelCase = min(lowercase__, min_till_now * number ) # update the maximum product found till now __lowerCamelCase = max(lowercase__, lowercase__ ) return max_prod
281
def _a ( lowerCamelCase ): if num < 0: return False lowerCamelCase : int = num lowerCamelCase : int = 0 while num > 0: lowerCamelCase : str = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
681
0
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class _UpperCAmelCase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = None ): '''simple docstring''' super().__init__() lowerCAmelCase__ :Dict = pad_token_id lowerCAmelCase__ :Any = max_length lowerCAmelCase__ :Optional[Any] = vocab lowerCAmelCase__ :Optional[int] = merges lowerCAmelCase__ :Dict = BytePairTokenizer(_lowerCAmelCase , _lowerCAmelCase , sequence_length=_lowerCAmelCase ) @classmethod def snake_case_ ( cls , _lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' lowerCAmelCase__ :int = [" ".join(_lowerCAmelCase ) for m in tokenizer.bpe_ranks.keys()] lowerCAmelCase__ :Dict = tokenizer.get_vocab() return cls(_lowerCAmelCase , _lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase ) @classmethod def snake_case_ ( cls , _lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = GPTaTokenizer.from_pretrained(_lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase ) return cls.from_tokenizer(_lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase ) @classmethod def snake_case_ ( cls , _lowerCAmelCase ): '''simple docstring''' return cls(**_lowerCAmelCase ) def snake_case_ ( self ): '''simple docstring''' return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase = None ): '''simple docstring''' lowerCAmelCase__ :Dict = self.tf_tokenizer(_lowerCAmelCase ) lowerCAmelCase__ :str = tf.ones_like(_lowerCAmelCase ) if self.pad_token_id is not None: # pad the tokens up to max length lowerCAmelCase__ :Optional[Any] = max_length if max_length is not None else self.max_length if max_length is not None: lowerCAmelCase__ ,lowerCAmelCase__ :int = pad_model_inputs( _lowerCAmelCase , max_seq_length=_lowerCAmelCase , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
111
import gc import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _UpperCAmelCase ( _A , unittest.TestCase ): """simple docstring""" A = KandinskyVaaPipeline A = [ '''image_embeds''', '''negative_image_embeds''', ] A = ['''image_embeds''', '''negative_image_embeds'''] A = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] A = False @property def snake_case_ ( self ): '''simple docstring''' return 32 @property def snake_case_ ( self ): '''simple docstring''' return 32 @property def snake_case_ ( self ): '''simple docstring''' return self.time_input_dim @property def snake_case_ ( self ): '''simple docstring''' return self.time_input_dim * 4 @property def snake_case_ ( self ): '''simple docstring''' return 100 @property def snake_case_ ( self ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ :List[str] = { "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } lowerCAmelCase__ :List[str] = UNetaDConditionModel(**_lowerCAmelCase ) return model @property def snake_case_ ( self ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def snake_case_ ( self ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ :Optional[Any] = VQModel(**self.dummy_movq_kwargs ) return model def snake_case_ ( self ): '''simple docstring''' lowerCAmelCase__ :int = self.dummy_unet lowerCAmelCase__ :List[str] = self.dummy_movq lowerCAmelCase__ :List[Any] = DDIMScheduler( num_train_timesteps=1_000 , beta_schedule="linear" , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=_lowerCAmelCase , set_alpha_to_one=_lowerCAmelCase , steps_offset=1 , prediction_type="epsilon" , thresholding=_lowerCAmelCase , ) lowerCAmelCase__ :Optional[Any] = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase=0 ): '''simple docstring''' lowerCAmelCase__ :List[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) lowerCAmelCase__ :Any = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _lowerCAmelCase ) if str(_lowerCAmelCase ).startswith("mps" ): lowerCAmelCase__ :List[Any] = torch.manual_seed(_lowerCAmelCase ) else: lowerCAmelCase__ :Optional[int] = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) lowerCAmelCase__ :Optional[int] = { "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "guidance_scale": 4.0, "num_inference_steps": 2, "output_type": "np", } return inputs def snake_case_ ( self ): '''simple docstring''' lowerCAmelCase__ :int = "cpu" lowerCAmelCase__ :Dict = self.get_dummy_components() lowerCAmelCase__ :Tuple = self.pipeline_class(**_lowerCAmelCase ) lowerCAmelCase__ :List[Any] = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowerCAmelCase__ :str = pipe(**self.get_dummy_inputs(_lowerCAmelCase ) ) lowerCAmelCase__ :Dict = output.images lowerCAmelCase__ :str = pipe( **self.get_dummy_inputs(_lowerCAmelCase ) , return_dict=_lowerCAmelCase , )[0] lowerCAmelCase__ :Tuple = image[0, -3:, -3:, -1] lowerCAmelCase__ :List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ :Tuple = np.array( [0.623_7976, 1.0, 0.3644_1332, 1.0, 0.7063_9634, 0.2987_7186, 0.8565_2125, 0.521_6843, 0.5445_4046] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self ): '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self ): '''simple docstring''' lowerCAmelCase__ :int = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy" ) lowerCAmelCase__ :str = KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(_lowerCAmelCase ) lowerCAmelCase__ :str = KandinskyVaaPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder" , torch_dtype=torch.floataa ) lowerCAmelCase__ :Union[str, Any] = pipeline.to(_lowerCAmelCase ) pipeline.set_progress_bar_config(disable=_lowerCAmelCase ) lowerCAmelCase__ :Optional[int] = "red cat, 4k photo" lowerCAmelCase__ :Tuple = torch.Generator(device="cuda" ).manual_seed(0 ) lowerCAmelCase__ ,lowerCAmelCase__ :Dict = pipe_prior( _lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=5 , negative_prompt="" , ).to_tuple() lowerCAmelCase__ :List[Any] = torch.Generator(device="cuda" ).manual_seed(0 ) lowerCAmelCase__ :List[str] = pipeline( image_embeds=_lowerCAmelCase , negative_image_embeds=_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=100 , output_type="np" , ) lowerCAmelCase__ :int = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(_lowerCAmelCase , _lowerCAmelCase )
111
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin SCREAMING_SNAKE_CASE__ = False @skip_mps class _UpperCamelCase( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Dict = StableDiffusionAttendAndExcitePipeline __SCREAMING_SNAKE_CASE : Tuple = False __SCREAMING_SNAKE_CASE : List[str] = TEXT_TO_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_BATCH_PARAMS.union({'''token_indices'''} ) __SCREAMING_SNAKE_CASE : List[str] = TEXT_TO_IMAGE_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def __lowerCAmelCase ( cls : List[Any] ): '''simple docstring''' super().setUpClass() torch.use_deterministic_algorithms(SCREAMING_SNAKE_CASE__ ) @classmethod def __lowerCAmelCase ( cls : Optional[int] ): '''simple docstring''' super().tearDownClass() torch.use_deterministic_algorithms(SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Dict ): '''simple docstring''' torch.manual_seed(0 ) __a : Tuple = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=1 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=SCREAMING_SNAKE_CASE__ , ) __a : List[Any] = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=SCREAMING_SNAKE_CASE__ , set_alpha_to_one=SCREAMING_SNAKE_CASE__ , ) torch.manual_seed(0 ) __a : str = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) __a : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='gelu' , projection_dim=5_1_2 , ) __a : Tuple = CLIPTextModel(SCREAMING_SNAKE_CASE__ ) __a : Dict = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __a : Any = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def __lowerCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : str=0 ): '''simple docstring''' if str(SCREAMING_SNAKE_CASE__ ).startswith('mps' ): __a : Tuple = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) else: __a : Union[str, Any] = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) __a : List[str] = { 'prompt': 'a cat and a frog', 'token_indices': [2, 5], 'generator': generator, 'num_inference_steps': 1, 'guidance_scale': 6.0, 'output_type': 'numpy', 'max_iter_to_alter': 2, 'thresholds': {0: 0.7}, } return inputs def __lowerCAmelCase ( self : Dict ): '''simple docstring''' __a : Tuple = 'cpu' __a : Optional[int] = self.get_dummy_components() __a : Union[str, Any] = self.pipeline_class(**SCREAMING_SNAKE_CASE__ ) pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __a : int = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) __a : int = pipe(**SCREAMING_SNAKE_CASE__ ).images __a : Optional[int] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 6_4, 6_4, 3) ) __a : Optional[Any] = np.array( [0.63_905_364, 0.62_897_307, 0.48_599_017, 0.5_133_624, 0.5_550_048, 0.45_769_516, 0.50_326_973, 0.5_023_139, 0.45_384_496] ) __a : Any = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(SCREAMING_SNAKE_CASE__ , 1e-3 ) def __lowerCAmelCase ( self : int ): '''simple docstring''' super().test_cpu_offload_forward_pass(expected_max_diff=5e-4 ) def __lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __lowerCAmelCase ( self : Dict ): '''simple docstring''' self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7e-4 ) def __lowerCAmelCase ( self : int ): '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def __lowerCAmelCase ( self : str ): '''simple docstring''' super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5e-4 ) def __lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' super().test_save_load_local(expected_max_difference=5e-4 ) def __lowerCAmelCase ( self : Dict ): '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=4e-4 ) @require_torch_gpu @slow class _UpperCamelCase( unittest.TestCase ): @classmethod def __lowerCAmelCase ( cls : str ): '''simple docstring''' super().setUpClass() torch.use_deterministic_algorithms(SCREAMING_SNAKE_CASE__ ) @classmethod def __lowerCAmelCase ( cls : Tuple ): '''simple docstring''' super().tearDownClass() torch.use_deterministic_algorithms(SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self : int ): '''simple docstring''' __a : List[str] = torch.manual_seed(5_1 ) __a : Optional[int] = StableDiffusionAttendAndExcitePipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , safety_checker=SCREAMING_SNAKE_CASE__ , torch_dtype=torch.floataa ) pipe.to('cuda' ) __a : List[str] = 'a painting of an elephant with glasses' __a : Any = [5, 7] __a : Tuple = pipe( prompt=SCREAMING_SNAKE_CASE__ , token_indices=SCREAMING_SNAKE_CASE__ , guidance_scale=7.5 , generator=SCREAMING_SNAKE_CASE__ , num_inference_steps=5 , max_iter_to_alter=5 , output_type='numpy' , ).images[0] __a : Any = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy' ) assert np.abs((expected_image - image).max() ) < 5e-1
47
import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() __lowerCamelCase : Any = [ "word_embeddings_layernorm.weight", "word_embeddings_layernorm.bias", "input_layernorm.weight", "input_layernorm.bias", "post_attention_layernorm.weight", "post_attention_layernorm.bias", "self_attention.dense.bias", "mlp.dense_4h_to_h.bias", "ln_f.weight", "ln_f.bias", ] __lowerCamelCase : Any = [ "mlp.dense_4h_to_h.weight", "self_attention.dense.weight", ] def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> Optional[int]: A__ : Dict ={ '''word_embeddings.weight''': '''word_embeddings.weight''', '''word_embeddings.norm.weight''': '''word_embeddings_layernorm.weight''', '''word_embeddings.norm.bias''': '''word_embeddings_layernorm.bias''', '''weight''': '''ln_f.weight''', '''bias''': '''ln_f.bias''', } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks A__ : Optional[Any] =int(re.match(R'''.*layer_(\d*).*''', snake_case_ )[1] ) layer_number -= 3 return f'h.{layer_number}.' + key def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Any: if dtype == torch.bool: return 1 / 8 A__ : int =re.search(R'''[^\d](\d+)$''', str(snake_case_ ) ) if bit_search is None: raise ValueError(f'`dtype` is not a valid dtype: {dtype}.' ) A__ : Optional[int] =int(bit_search.groups()[0] ) return bit_size // 8 def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) -> Any: # Construct model if bloom_config_file == "": A__ : Optional[int] =BloomConfig() else: A__ : Union[str, Any] =BloomConfig.from_json_file(snake_case_ ) if shard_model: A__ : Any =os.listdir(snake_case_ ) A__ : Dict =sorted(filter(lambda snake_case_ : s.startswith('''layer''' ) and "model_00" in s, snake_case_ ) ) A__ : List[str] ={'''weight_map''': {}, '''metadata''': {}} A__ : Optional[int] =0 A__ : Tuple =None A__ : Dict =BloomConfig() for j, file in enumerate(snake_case_ ): print('''Processing file: {}'''.format(snake_case_ ) ) A__ : List[Any] =None for i in range(snake_case_ ): # load all TP files A__ : str =file.replace('''model_00''', f'model_0{i}' ) A__ : int =torch.load(os.path.join(snake_case_, snake_case_ ), map_location='''cpu''' ) # Rename keys in the transformers names A__ : int =list(temp.keys() ) for key in keys: A__ : Union[str, Any] =temp.pop(snake_case_ ) if tensors is None: A__ : Any =temp else: for key in tensors.keys(): if any(key.endswith(snake_case_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel A__ : List[str] =1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks A__ : str =torch.cat([tensors[key], temp[key]], dim=snake_case_ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(snake_case_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): A__ : Tuple =tensors[key] / pretraining_tp torch.save( snake_case_, os.path.join( snake_case_, '''pytorch_model_{}-of-{}.bin'''.format(str(j + 1 ).zfill(5 ), str(len(snake_case_ ) ).zfill(5 ) ), ), ) for key in tensors.keys(): A__ : List[str] =tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: A__ : List[str] ='''pytorch_model_{}-of-{}.bin'''.format( str(j + 1 ).zfill(5 ), str(len(snake_case_ ) ).zfill(5 ) ) A__ : Any =BloomConfig() A__ : Optional[Any] =pytorch_dump_folder_path + '''/''' + CONFIG_NAME A__ : Union[str, Any] =total_size with open(snake_case_, '''w''', encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) with open(os.path.join(snake_case_, WEIGHTS_NAME + '''.index.json''' ), '''w''', encoding='''utf-8''' ) as f: A__ : str =json.dumps(snake_case_, indent=2, sort_keys=snake_case_ ) + '''\n''' f.write(snake_case_ ) else: A__ : Tuple =BloomModel(snake_case_ ) A__ : Optional[Any] =os.listdir(snake_case_ ) A__ : Union[str, Any] =sorted(filter(lambda snake_case_ : s.startswith('''layer''' ) and "model_00" in s, snake_case_ ) ) A__ : Union[str, Any] =None for i, file in enumerate(snake_case_ ): A__ : int =None for i in range(snake_case_ ): # load all TP files A__ : List[str] =file.replace('''model_00''', f'model_0{i}' ) A__ : Optional[int] =torch.load(os.path.join(snake_case_, snake_case_ ), map_location='''cpu''' ) # Rename keys in the transformers names A__ : Union[str, Any] =list(temp.keys() ) for key in keys: A__ : Union[str, Any] =temp.pop(snake_case_ ) if tensors is None: A__ : Union[str, Any] =temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(snake_case_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel A__ : List[Any] =1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks A__ : Dict =torch.cat([tensors[key], temp[key]], dim=snake_case_ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(snake_case_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): A__ : Tuple =tensors[key] / pretraining_tp A__ : int =model.load_state_dict(snake_case_, strict=snake_case_ ) assert not other_keys.unexpected_keys, f'The keys {other_keys.unexpected_keys} are unexpected' if missing_keys is None: A__ : List[Any] =set(other_keys.missing_keys ) else: A__ : Tuple =missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, f'The keys {missing_keys} are missing' # Save pytorch-model os.makedirs(snake_case_, exist_ok=snake_case_ ) A__ : Dict =pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME A__ : Optional[int] =pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(f'Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}' ) if config.torch_dtype is not None: A__ : int =model.to(config.torch_dtype ) torch.save(model.state_dict(), snake_case_ ) print(f'Save configuration file to {pytorch_config_dump_path}' ) with open(snake_case_, '''w''', encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __lowerCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--bloom_checkpoint_path", default=None, type=str, required=True, help="Path to the Megatron-LM checkpoint path.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--bloom_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--shard_model", action="store_true", help="An optional setting to shard the output model \nThis enables sharding the converted checkpoint", ) parser.add_argument( "--pretraining_tp", default=4, type=int, help="Pretraining TP rank that has been used when training the model in Megatron-LM \n", ) __lowerCamelCase : Tuple = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
416
0
'''simple docstring''' from maths.prime_factors import prime_factors def __lowerCamelCase ( __lowerCAmelCase : int ) -> int: if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): snake_case = F'''Input value of [number={number}] must be an integer''' raise TypeError(__lowerCAmelCase ) if number < 1: raise ValueError("""Input must be a positive integer""" ) return -1 if len(prime_factors(__lowerCAmelCase ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
517
'''simple docstring''' import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : List[str] )-> Optional[int]: snake_case = inspect.getfile(accelerate.test_utils ) snake_case = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_script.py"""] ) snake_case = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def lowerCAmelCase ( self : int )-> List[str]: snake_case = f''' {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} '''.split() snake_case = [sys.executable] + distributed_args execute_subprocess_async(__snake_case , env=os.environ.copy() )
517
1
'''simple docstring''' import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class __snake_case ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self ): snake_case__ : List[str] = inspect.getfile(accelerate.test_utils ) snake_case__ : Any = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_script.py"""] ) snake_case__ : List[str] = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_distributed_data_loop.py"""] ) snake_case__ : Optional[int] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_ops.py"""] ) @require_multi_gpu def __UpperCamelCase ( self ): print(f"Found {torch.cuda.device_count()} devices." ) snake_case__ : List[Any] = ["""torchrun""", f"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__SCREAMING_SNAKE_CASE , env=os.environ.copy() ) @require_multi_gpu def __UpperCamelCase ( self ): print(f"Found {torch.cuda.device_count()} devices." ) snake_case__ : Union[str, Any] = ["""torchrun""", f"--nproc_per_node={torch.cuda.device_count()}", self.operation_file_path] print(f"Command: {cmd}" ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__SCREAMING_SNAKE_CASE , env=os.environ.copy() ) @require_multi_gpu def __UpperCamelCase ( self ): snake_case__ : Tuple = ["""torchrun""", f"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__SCREAMING_SNAKE_CASE , env=os.environ.copy() ) @require_multi_gpu def __UpperCamelCase ( self ): print(f"Found {torch.cuda.device_count()} devices, using 2 devices only" ) snake_case__ : Optional[Any] = ["""torchrun""", f"--nproc_per_node={torch.cuda.device_count()}", self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices="""0,1""" ): execute_subprocess_async(__SCREAMING_SNAKE_CASE , env=os.environ.copy() ) if __name__ == "__main__": A_ : Union[str, Any] = Accelerator() A_ : List[Any] = (accelerator.state.process_index + 2, 10) A_ : Tuple = torch.randint(0, 10, shape).to(accelerator.device) A_ : List[Any] = "" A_ : Any = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." A_ : Any = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." A_ : Optional[Any] = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
38
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "encoder.layer_norm_for_extract": "layer_norm_for_extract", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "label_embs_concat": "label_embeddings_concat", "mask_emb": "masked_spec_embed", "spk_proj": "speaker_proj", } SCREAMING_SNAKE_CASE = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "label_embeddings_concat", "speaker_proj", "layer_norm_for_extract", ] def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[int]: for attribute in key.split("." ): UpperCAmelCase_ = getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if weight_type is not None: UpperCAmelCase_ = getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).shape else: UpperCAmelCase_ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": UpperCAmelCase_ = value elif weight_type == "weight_g": UpperCAmelCase_ = value elif weight_type == "weight_v": UpperCAmelCase_ = value elif weight_type == "bias": UpperCAmelCase_ = value else: UpperCAmelCase_ = value logger.info(f'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Dict: UpperCAmelCase_ = [] UpperCAmelCase_ = fairseq_model.state_dict() UpperCAmelCase_ = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase_ = False if "conv_layers" in name: load_conv_layer( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == "group" , ) UpperCAmelCase_ = True else: for key, mapped_key in MAPPING.items(): UpperCAmelCase_ = "unispeech_sat." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: if "layer_norm_for_extract" in name and (".".join(name.split("." )[:-1] ) != key): # special case since naming is very similar continue UpperCAmelCase_ = True if "*" in mapped_key: UpperCAmelCase_ = name.split(__SCREAMING_SNAKE_CASE )[0].split("." )[-2] UpperCAmelCase_ = mapped_key.replace("*" , __SCREAMING_SNAKE_CASE ) if "weight_g" in name: UpperCAmelCase_ = "weight_g" elif "weight_v" in name: UpperCAmelCase_ = "weight_v" elif "bias" in name: UpperCAmelCase_ = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase_ = "weight" else: UpperCAmelCase_ = None set_recursively(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(__SCREAMING_SNAKE_CASE ) logger.warning(f'''Unused weights: {unused_weights}''' ) def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Any: UpperCAmelCase_ = full_name.split("conv_layers." )[-1] UpperCAmelCase_ = name.split("." ) UpperCAmelCase_ = int(items[0] ) UpperCAmelCase_ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) UpperCAmelCase_ = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) UpperCAmelCase_ = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.''' ) UpperCAmelCase_ = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) UpperCAmelCase_ = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__SCREAMING_SNAKE_CASE ) @torch.no_grad() def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=True ) -> Optional[Any]: if config_path is not None: UpperCAmelCase_ = UniSpeechSatConfig.from_pretrained(__SCREAMING_SNAKE_CASE ) else: UpperCAmelCase_ = UniSpeechSatConfig() UpperCAmelCase_ = "" if is_finetuned: UpperCAmelCase_ = UniSpeechSatForCTC(__SCREAMING_SNAKE_CASE ) else: UpperCAmelCase_ = UniSpeechSatForPreTraining(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) UpperCAmelCase_ = model[0].eval() recursively_load_weights(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) hf_wavavec.save_pretrained(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) SCREAMING_SNAKE_CASE = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
579
0
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging _SCREAMING_SNAKE_CASE = { """cola""": 2, """mnli""": 3, """mrpc""": 2, """sst-2""": 2, """sts-b""": 1, """qqp""": 2, """qnli""": 2, """rte""": 2, """wnli""": 2, } logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a=None ): # Initialise PyTorch model snake_case_ : Dict = XLNetConfig.from_json_file(__a ) snake_case_ : List[Any] = finetuning_task.lower() if finetuning_task is not None else '' if finetuning_task in GLUE_TASKS_NUM_LABELS: print(f"""Building PyTorch XLNetForSequenceClassification model from configuration: {config}""" ) snake_case_ : List[str] = finetuning_task snake_case_ : Optional[Any] = GLUE_TASKS_NUM_LABELS[finetuning_task] snake_case_ : List[Any] = XLNetForSequenceClassification(__a ) elif "squad" in finetuning_task: snake_case_ : Optional[int] = finetuning_task snake_case_ : Union[str, Any] = XLNetForQuestionAnswering(__a ) else: snake_case_ : List[str] = XLNetLMHeadModel(__a ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(__a , __a , __a ) # Save pytorch-model snake_case_ : Tuple = os.path.join(__a , __a ) snake_case_ : Union[str, Any] = os.path.join(__a , __a ) print(f"""Save PyTorch model to {os.path.abspath(__a )}""" ) torch.save(model.state_dict() , __a ) print(f"""Save configuration file to {os.path.abspath(__a )}""" ) with open(__a , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--xlnet_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained XLNet model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the folder to store the PyTorch model or dataset/vocab.""", ) parser.add_argument( """--finetuning_task""", default=None, type=str, help="""Name of a task on which the XLNet TensorFlow model was fine-tuned""", ) _SCREAMING_SNAKE_CASE = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
534
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__ ( __a , __a ): # Load checkpoint snake_case_ : Union[str, Any] = torch.load(__a , map_location='cpu' ) snake_case_ : Union[str, Any] = chkpt['model'] # We have the base model one level deeper than the original XLM repository snake_case_ : str = {} for k, v in state_dict.items(): if "pred_layer" in k: snake_case_ : Tuple = v else: snake_case_ : Dict = v snake_case_ : Tuple = chkpt['params'] snake_case_ : List[Any] = {n: v for n, v in config.items() if not isinstance(__a , (torch.FloatTensor, numpy.ndarray) )} snake_case_ : Optional[int] = chkpt['dico_word2id'] snake_case_ : List[str] = {s + '</w>' if s.find('@@' ) == -1 and i > 13 else s.replace('@@' , '' ): i for s, i in vocab.items()} # Save pytorch-model snake_case_ : List[str] = pytorch_dump_folder_path + '/' + WEIGHTS_NAME snake_case_ : Dict = pytorch_dump_folder_path + '/' + CONFIG_NAME snake_case_ : Any = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['vocab_file'] print(f"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(__a , __a ) print(f"""Save configuration file to {pytorch_config_dump_path}""" ) with open(__a , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(__a , indent=2 ) + '\n' ) print(f"""Save vocab file to {pytorch_config_dump_path}""" ) with open(__a , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(__a , indent=2 ) + '\n' ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xlm_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
534
1
'''simple docstring''' import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class A ( _a ): lowercase_ = 'Wav2Vec2FeatureExtractor' lowercase_ = 'AutoTokenizer' def __init__( self : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] ) -> Union[str, Any]: """simple docstring""" super().__init__(lowerCAmelCase_ , lowerCAmelCase_ ) _a = self.feature_extractor _a = False @classmethod def __lowerCAmelCase ( cls : Optional[Any] , lowerCAmelCase_ : Optional[Any] , **lowerCAmelCase_ : Optional[Any] ) -> Tuple: """simple docstring""" try: return super().from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) except OSError: warnings.warn( F'Loading a tokenizer inside {cls.__name__} from a config that does not' ''' include a `tokenizer_class` attribute is deprecated and will be ''' '''removed in v5. Please add `\'tokenizer_class\': \'Wav2Vec2CTCTokenizer\'`''' ''' attribute to either your `config.json` or `tokenizer_config.json` ''' '''file to suppress this warning: ''' , lowerCAmelCase_ , ) _a = WavaVecaFeatureExtractor.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) _a = WavaVecaCTCTokenizer.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) return cls(feature_extractor=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ ) def __call__( self : str , *lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : Any ) -> Optional[int]: """simple docstring""" if self._in_target_context_manager: return self.current_processor(*lowerCAmelCase_ , **lowerCAmelCase_ ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) _a = kwargs.pop('''raw_speech''' ) else: _a = kwargs.pop('''audio''' , lowerCAmelCase_ ) _a = kwargs.pop('''sampling_rate''' , lowerCAmelCase_ ) _a = kwargs.pop('''text''' , lowerCAmelCase_ ) if len(lowerCAmelCase_ ) > 0: _a = args[0] _a = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: _a = self.feature_extractor(lowerCAmelCase_ , *lowerCAmelCase_ , sampling_rate=lowerCAmelCase_ , **lowerCAmelCase_ ) if text is not None: _a = self.tokenizer(lowerCAmelCase_ , **lowerCAmelCase_ ) if text is None: return inputs elif audio is None: return encodings else: _a = encodings['''input_ids'''] return inputs def __lowerCAmelCase ( self : str , *lowerCAmelCase_ : List[str] , **lowerCAmelCase_ : Any ) -> Any: """simple docstring""" if self._in_target_context_manager: return self.current_processor.pad(*lowerCAmelCase_ , **lowerCAmelCase_ ) _a = kwargs.pop('''input_features''' , lowerCAmelCase_ ) _a = kwargs.pop('''labels''' , lowerCAmelCase_ ) if len(lowerCAmelCase_ ) > 0: _a = args[0] _a = args[1:] if input_features is not None: _a = self.feature_extractor.pad(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) if labels is not None: _a = self.tokenizer.pad(lowerCAmelCase_ , **lowerCAmelCase_ ) if labels is None: return input_features elif input_features is None: return labels else: _a = labels['''input_ids'''] return input_features def __lowerCAmelCase ( self : Optional[int] , *lowerCAmelCase_ : List[str] , **lowerCAmelCase_ : List[str] ) -> Optional[Any]: """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) def __lowerCAmelCase ( self : Tuple , *lowerCAmelCase_ : Tuple , **lowerCAmelCase_ : List[Any] ) -> List[str]: """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) @contextmanager def __lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) _a = True _a = self.tokenizer yield _a = self.feature_extractor _a = False
22
def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : list ) -> float: SCREAMING_SNAKE_CASE_ : Dict =0 while len(UpperCAmelCase_ ) > 1: SCREAMING_SNAKE_CASE_ : Tuple =0 # Consider two files with minimum cost to be merged for _ in range(2 ): SCREAMING_SNAKE_CASE_ : int =files.index(min(UpperCAmelCase_ ) ) temp += files[min_index] files.pop(UpperCAmelCase_ ) files.append(UpperCAmelCase_ ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
443
0
import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ ): # Initialise PyTorch model __SCREAMING_SNAKE_CASE : Optional[int] = AlbertConfig.from_json_file(lowercase__ ) print(F'''Building PyTorch model from configuration: {config}''' ) __SCREAMING_SNAKE_CASE : int = AlbertForPreTraining(lowercase__ ) # Load weights from tf checkpoint load_tf_weights_in_albert(lowercase__ , lowercase__ , lowercase__ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , lowercase__ ) if __name__ == "__main__": __lowerCAmelCase : str =argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--albert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained ALBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __lowerCAmelCase : Any =parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
704
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class _lowercase ( unittest.TestCase ): '''simple docstring''' def __magic_name__( self :Union[str, Any] , lowerCAmelCase__ :str , lowerCAmelCase__ :int ) -> Optional[int]: return f'''gaussian_noise_s={seed}_shape={'_'.join([str(lowerCAmelCase__ ) for s in shape] )}.npy''' def __magic_name__( self :List[str] ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :int=0 , lowerCAmelCase__ :Any=(4, 4, 64, 64) , lowerCAmelCase__ :List[Any]=False ) -> List[str]: __SCREAMING_SNAKE_CASE : Optional[int] = jnp.bfloataa if fpaa else jnp.floataa __SCREAMING_SNAKE_CASE : Optional[int] = jnp.array(load_hf_numpy(self.get_file_format(lowerCAmelCase__ , lowerCAmelCase__ ) ) , dtype=lowerCAmelCase__ ) return image def __magic_name__( self :Tuple , lowerCAmelCase__ :Tuple=False , lowerCAmelCase__ :int="CompVis/stable-diffusion-v1-4" ) -> Tuple: __SCREAMING_SNAKE_CASE : Optional[Any] = jnp.bfloataa if fpaa else jnp.floataa __SCREAMING_SNAKE_CASE : Optional[int] = '''bf16''' if fpaa else None __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Any = FlaxUNetaDConditionModel.from_pretrained( lowerCAmelCase__ , subfolder='''unet''' , dtype=lowerCAmelCase__ , revision=lowerCAmelCase__ ) return model, params def __magic_name__( self :Any , lowerCAmelCase__ :str=0 , lowerCAmelCase__ :Optional[int]=(4, 77, 768) , lowerCAmelCase__ :str=False ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : str = jnp.bfloataa if fpaa else jnp.floataa __SCREAMING_SNAKE_CASE : Any = jnp.array(load_hf_numpy(self.get_file_format(lowerCAmelCase__ , lowerCAmelCase__ ) ) , dtype=lowerCAmelCase__ ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]], [17, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]], [8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]], [3, 1_000, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]], # fmt: on ] ) def __magic_name__( self :str , lowerCAmelCase__ :str , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[int] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : int = self.get_unet_model(model_id='''CompVis/stable-diffusion-v1-4''' , fpaa=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = self.get_latents(lowerCAmelCase__ , fpaa=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = self.get_encoder_hidden_states(lowerCAmelCase__ , fpaa=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = model.apply( {'''params''': params} , lowerCAmelCase__ , jnp.array(lowerCAmelCase__ , dtype=jnp.intaa ) , encoder_hidden_states=lowerCAmelCase__ , ).sample assert sample.shape == latents.shape __SCREAMING_SNAKE_CASE : int = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __SCREAMING_SNAKE_CASE : Tuple = jnp.array(lowerCAmelCase__ , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]], [17, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]], [8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]], [3, 1_000, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]], # fmt: on ] ) def __magic_name__( self :List[Any] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :str ) -> str: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = self.get_unet_model(model_id='''stabilityai/stable-diffusion-2''' , fpaa=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = self.get_latents(lowerCAmelCase__ , shape=(4, 4, 96, 96) , fpaa=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = self.get_encoder_hidden_states(lowerCAmelCase__ , shape=(4, 77, 1_024) , fpaa=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = model.apply( {'''params''': params} , lowerCAmelCase__ , jnp.array(lowerCAmelCase__ , dtype=jnp.intaa ) , encoder_hidden_states=lowerCAmelCase__ , ).sample assert sample.shape == latents.shape __SCREAMING_SNAKE_CASE : Optional[Any] = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __SCREAMING_SNAKE_CASE : str = jnp.array(lowerCAmelCase__ , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-2 )
260
0
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class _UpperCamelCase ( __snake_case ): """simple docstring""" lowerCAmelCase = 42 @flax_register_to_config class _UpperCamelCase ( nn.Module , __snake_case , __snake_case ): """simple docstring""" lowerCAmelCase = 3_2 lowerCAmelCase = 4 lowerCAmelCase = 4 lowerCAmelCase = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) lowerCAmelCase = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") lowerCAmelCase = False lowerCAmelCase = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0) lowerCAmelCase = 2 lowerCAmelCase = 8 lowerCAmelCase = None lowerCAmelCase = 1_2_8_0 lowerCAmelCase = 0.0 lowerCAmelCase = False lowerCAmelCase = jnp.floataa lowerCAmelCase = True lowerCAmelCase = 0 lowerCAmelCase = False def _UpperCAmelCase ( self , a__ ) -> FrozenDict: # init input tensors A = (1, self.in_channels, self.sample_size, self.sample_size) A = jnp.zeros(a__ , dtype=jnp.floataa ) A = jnp.ones((1,) , dtype=jnp.intaa ) A = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) A , A = jax.random.split(a__ ) A = {"""params""": params_rng, """dropout""": dropout_rng} return self.init(a__ , a__ , a__ , a__ )["params"] def _UpperCAmelCase ( self ) -> str: A = self.block_out_channels A = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( """At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.""" ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. A = self.num_attention_heads or self.attention_head_dim # input A = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time A = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) A = FlaxTimestepEmbedding(a__ , dtype=self.dtype ) A = self.only_cross_attention if isinstance(a__ , a__ ): A = (only_cross_attention,) * len(self.down_block_types ) if isinstance(a__ , a__ ): A = (num_attention_heads,) * len(self.down_block_types ) # down A = [] A = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): A = output_channel A = block_out_channels[i] A = i == len(a__ ) - 1 if down_block_type == "CrossAttnDownBlock2D": A = FlaxCrossAttnDownBlockaD( in_channels=a__ , out_channels=a__ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: A = FlaxDownBlockaD( in_channels=a__ , out_channels=a__ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(a__ ) A = down_blocks # mid A = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up A = [] A = list(reversed(a__ ) ) A = list(reversed(a__ ) ) A = list(reversed(a__ ) ) A = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): A = output_channel A = reversed_block_out_channels[i] A = reversed_block_out_channels[min(i + 1 , len(a__ ) - 1 )] A = i == len(a__ ) - 1 if up_block_type == "CrossAttnUpBlock2D": A = FlaxCrossAttnUpBlockaD( in_channels=a__ , out_channels=a__ , prev_output_channel=a__ , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: A = FlaxUpBlockaD( in_channels=a__ , out_channels=a__ , prev_output_channel=a__ , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(a__ ) A = output_channel A = up_blocks # out A = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) A = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , a__ , a__ , a__ , a__=None , a__=None , a__ = True , a__ = False , ) -> Union[FlaxUNetaDConditionOutput, Tuple]: # 1. time if not isinstance(a__ , jnp.ndarray ): A = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(a__ , jnp.ndarray ) and len(timesteps.shape ) == 0: A = timesteps.astype(dtype=jnp.floataa ) A = jnp.expand_dims(a__ , 0 ) A = self.time_proj(a__ ) A = self.time_embedding(a__ ) # 2. pre-process A = jnp.transpose(a__ , (0, 2, 3, 1) ) A = self.conv_in(a__ ) # 3. down A = (sample,) for down_block in self.down_blocks: if isinstance(a__ , a__ ): A , A = down_block(a__ , a__ , a__ , deterministic=not train ) else: A , A = down_block(a__ , a__ , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: A = () for down_block_res_sample, down_block_additional_residual in zip( a__ , a__ ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) A = new_down_block_res_samples # 4. mid A = self.mid_block(a__ , a__ , a__ , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: A = down_block_res_samples[-(self.layers_per_block + 1) :] A = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(a__ , a__ ): A = up_block( a__ , temb=a__ , encoder_hidden_states=a__ , res_hidden_states_tuple=a__ , deterministic=not train , ) else: A = up_block(a__ , temb=a__ , res_hidden_states_tuple=a__ , deterministic=not train ) # 6. post-process A = self.conv_norm_out(a__ ) A = nn.silu(a__ ) A = self.conv_out(a__ ) A = jnp.transpose(a__ , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=a__ )
641
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin _lowercase : Optional[int] = False @skip_mps class _UpperCamelCase ( __snake_case , __snake_case , __snake_case , unittest.TestCase ): """simple docstring""" lowerCAmelCase = StableDiffusionAttendAndExcitePipeline lowerCAmelCase = False lowerCAmelCase = TEXT_TO_IMAGE_PARAMS lowerCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS.union({'token_indices'} ) lowerCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def _UpperCAmelCase ( cls ) -> List[Any]: super().setUpClass() torch.use_deterministic_algorithms(a__ ) @classmethod def _UpperCAmelCase ( cls ) -> Tuple: super().tearDownClass() torch.use_deterministic_algorithms(a__ ) def _UpperCAmelCase ( self ) -> Dict: torch.manual_seed(0 ) A = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=a__ , ) A = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="""scaled_linear""" , clip_sample=a__ , set_alpha_to_one=a__ , ) torch.manual_seed(0 ) A = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) A = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=512 , ) A = CLIPTextModel(a__ ) A = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) A = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _UpperCAmelCase ( self , a__ , a__=0 ) -> Optional[Any]: if str(a__ ).startswith("""mps""" ): A = torch.manual_seed(a__ ) else: A = torch.Generator(device=a__ ).manual_seed(a__ ) A = A = { """prompt""": """a cat and a frog""", """token_indices""": [2, 5], """generator""": generator, """num_inference_steps""": 1, """guidance_scale""": 6.0, """output_type""": """numpy""", """max_iter_to_alter""": 2, """thresholds""": {0: 0.7}, } return inputs def _UpperCAmelCase ( self ) -> Union[str, Any]: A = """cpu""" A = self.get_dummy_components() A = self.pipeline_class(**a__ ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) A = self.get_dummy_inputs(a__ ) A = pipe(**a__ ).images A = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 64, 64, 3) ) A = np.array( [0.63_90_53_64, 0.62_89_73_07, 0.48_59_90_17, 0.5_13_36_24, 0.5_55_00_48, 0.45_76_95_16, 0.50_32_69_73, 0.5_02_31_39, 0.45_38_44_96] ) A = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(a__ , 1e-3 ) def _UpperCAmelCase ( self ) -> List[Any]: super().test_cpu_offload_forward_pass(expected_max_diff=5e-4 ) def _UpperCAmelCase ( self ) -> Dict: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def _UpperCAmelCase ( self ) -> Any: self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7e-4 ) def _UpperCAmelCase ( self ) -> Optional[Any]: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def _UpperCAmelCase ( self ) -> str: super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5e-4 ) def _UpperCAmelCase ( self ) -> int: super().test_save_load_local(expected_max_difference=5e-4 ) def _UpperCAmelCase ( self ) -> Optional[Any]: super().test_save_load_optional_components(expected_max_difference=4e-4 ) @require_torch_gpu @slow class _UpperCamelCase ( unittest.TestCase ): """simple docstring""" @classmethod def _UpperCAmelCase ( cls ) -> Tuple: super().setUpClass() torch.use_deterministic_algorithms(a__ ) @classmethod def _UpperCAmelCase ( cls ) -> Dict: super().tearDownClass() torch.use_deterministic_algorithms(a__ ) def _UpperCAmelCase ( self ) -> Optional[Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase ( self ) -> int: A = torch.manual_seed(51 ) A = StableDiffusionAttendAndExcitePipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , safety_checker=a__ , torch_dtype=torch.floataa ) pipe.to("""cuda""" ) A = """a painting of an elephant with glasses""" A = [5, 7] A = pipe( prompt=a__ , token_indices=a__ , guidance_scale=7.5 , generator=a__ , num_inference_steps=5 , max_iter_to_alter=5 , output_type="""numpy""" , ).images[0] A = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy""" ) assert np.abs((expected_image - image).max() ) < 5e-1
641
1
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser _lowercase = re.compile(r'\s+') def __lowerCAmelCase ( _UpperCamelCase ) -> Tuple: '''simple docstring''' return {"hash": hashlib.mda(re.sub(_UpperCamelCase , """""" , example["""content"""] ).encode("""utf-8""" ) ).hexdigest()} def __lowerCAmelCase ( _UpperCamelCase ) -> Tuple: '''simple docstring''' lowerCamelCase__: List[Any] = [len(_UpperCamelCase ) for line in example["""content"""].splitlines()] return {"line_mean": np.mean(_UpperCamelCase ), "line_max": max(_UpperCamelCase )} def __lowerCAmelCase ( _UpperCamelCase ) -> List[str]: '''simple docstring''' lowerCamelCase__: Tuple = np.mean([c.isalnum() for c in example["""content"""]] ) return {"alpha_frac": alpha_frac} def __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase ) -> Any: '''simple docstring''' if example["hash"] in uniques: uniques.remove(example["""hash"""] ) return True else: return False def __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase=5 ) -> Tuple: '''simple docstring''' lowerCamelCase__: Any = ["""auto-generated""", """autogenerated""", """automatically generated"""] lowerCamelCase__: Dict = example["""content"""].splitlines() for _, line in zip(range(_UpperCamelCase ) , _UpperCamelCase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase=5 , _UpperCamelCase=0.05 ) -> Optional[Any]: '''simple docstring''' lowerCamelCase__: int = ["""unit tests""", """test file""", """configuration file"""] lowerCamelCase__: Tuple = example["""content"""].splitlines() lowerCamelCase__: Optional[Any] = 0 lowerCamelCase__: List[Any] = 0 # first test for _, line in zip(range(_UpperCamelCase ) , _UpperCamelCase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test lowerCamelCase__: Optional[Any] = example["""content"""].count("""\n""" ) lowerCamelCase__: Tuple = int(coeff * nlines ) for line in lines: count_config += line.lower().count("""config""" ) count_test += line.lower().count("""test""" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def __lowerCAmelCase ( _UpperCamelCase ) -> Optional[Any]: '''simple docstring''' lowerCamelCase__: Tuple = ["""def """, """class """, """for """, """while """] lowerCamelCase__: Union[str, Any] = example["""content"""].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase=4 ) -> str: '''simple docstring''' lowerCamelCase__: Union[str, Any] = example["""content"""].splitlines() lowerCamelCase__: Tuple = 0 for line in lines: counter += line.lower().count("""=""" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def __lowerCAmelCase ( _UpperCamelCase ) -> Any: '''simple docstring''' lowerCamelCase__: Union[str, Any] = tokenizer(example["""content"""] , truncation=_UpperCamelCase )["""input_ids"""] lowerCamelCase__: int = len(example["""content"""] ) / len(_UpperCamelCase ) return {"ratio": ratio} def __lowerCAmelCase ( _UpperCamelCase ) -> Dict: '''simple docstring''' lowerCamelCase__: str = {} results.update(get_hash(_UpperCamelCase ) ) results.update(line_stats(_UpperCamelCase ) ) results.update(alpha_stats(_UpperCamelCase ) ) results.update(char_token_ratio(_UpperCamelCase ) ) results.update(is_autogenerated(_UpperCamelCase ) ) results.update(is_config_or_test(_UpperCamelCase ) ) results.update(has_no_keywords(_UpperCamelCase ) ) results.update(has_few_assignments(_UpperCamelCase ) ) return results def __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' if not check_uniques(_UpperCamelCase , _UpperCamelCase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def __lowerCAmelCase ( _UpperCamelCase ) -> Tuple: '''simple docstring''' with open(_UpperCamelCase , """rb""" ) as f_in: with gzip.open(str(_UpperCamelCase ) + """.gz""" , """wb""" , compresslevel=6 ) as f_out: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) os.unlink(_UpperCamelCase ) # Settings _lowercase = HfArgumentParser(PreprocessingArguments) _lowercase = parser.parse_args() if args.num_workers is None: _lowercase = multiprocessing.cpu_count() _lowercase = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset _lowercase = time.time() _lowercase = load_dataset(args.dataset_name, split='train') print(F"""Time to load dataset: {time.time()-t_start:.2f}""") # Run preprocessing _lowercase = time.time() _lowercase = ds.map(preprocess, num_proc=args.num_workers) print(F"""Time to preprocess dataset: {time.time()-t_start:.2f}""") # Deduplicate hashes _lowercase = set(ds.unique('hash')) _lowercase = len(uniques) / len(ds) print(F"""Fraction of duplicates: {1-frac:.2%}""") # Deduplicate data and apply heuristics _lowercase = time.time() _lowercase = ds.filter(filter, fn_kwargs={'uniques': uniques, 'args': args}) print(F"""Time to filter dataset: {time.time()-t_start:.2f}""") print(F"""Size of filtered dataset: {len(ds_filter)}""") # Deduplicate with minhash and jaccard similarity if args.near_deduplication: _lowercase = time.time() _lowercase , _lowercase = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(F"""Time to deduplicate dataset: {time.time()-t_start:.2f}""") print(F"""Size of deduplicate dataset: {len(ds_filter)}""") # Save data in batches of samples_per_file _lowercase = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / 'duplicate_clusters.json', 'w') as f: json.dump(duplicate_clusters, f) _lowercase = output_dir / 'data' data_dir.mkdir(exist_ok=True) _lowercase = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): _lowercase = str(data_dir / F"""file-{file_number+1:012}.json""") _lowercase = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(F"""Time to save dataset: {time.time()-t_start:.2f}""")
242
from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { 'google/efficientnet-b7': 'https://huggingface.co/google/efficientnet-b7/resolve/main/config.json', } class lowerCamelCase__ ( A__ ): __lowerCamelCase = """efficientnet""" def __init__( self : List[Any] , __a : int = 3 , __a : int = 600 , __a : float = 2.0 , __a : float = 3.1 , __a : int = 8 , __a : List[int] = [3, 3, 5, 3, 5, 5, 3] , __a : List[int] = [32, 16, 24, 40, 80, 112, 192] , __a : List[int] = [16, 24, 40, 80, 112, 192, 320] , __a : List[int] = [] , __a : List[int] = [1, 2, 2, 2, 1, 2, 1] , __a : List[int] = [1, 2, 2, 3, 3, 4, 1] , __a : List[int] = [1, 6, 6, 6, 6, 6, 6] , __a : float = 0.25 , __a : str = "swish" , __a : int = 2560 , __a : str = "mean" , __a : float = 0.02 , __a : float = 0.001 , __a : float = 0.99 , __a : float = 0.5 , __a : float = 0.2 , **__a : Optional[Any] , ): '''simple docstring''' super().__init__(**__a ) lowerCamelCase__: str = num_channels lowerCamelCase__: Optional[Any] = image_size lowerCamelCase__: str = width_coefficient lowerCamelCase__: int = depth_coefficient lowerCamelCase__: Optional[Any] = depth_divisor lowerCamelCase__: Union[str, Any] = kernel_sizes lowerCamelCase__: str = in_channels lowerCamelCase__: int = out_channels lowerCamelCase__: Union[str, Any] = depthwise_padding lowerCamelCase__: List[str] = strides lowerCamelCase__: Tuple = num_block_repeats lowerCamelCase__: int = expand_ratios lowerCamelCase__: List[str] = squeeze_expansion_ratio lowerCamelCase__: Tuple = hidden_act lowerCamelCase__: Optional[Any] = hidden_dim lowerCamelCase__: List[Any] = pooling_type lowerCamelCase__: Optional[int] = initializer_range lowerCamelCase__: Any = batch_norm_eps lowerCamelCase__: Union[str, Any] = batch_norm_momentum lowerCamelCase__: List[str] = dropout_rate lowerCamelCase__: Dict = drop_connect_rate lowerCamelCase__: Dict = sum(__a ) * 4 class lowerCamelCase__ ( A__ ): __lowerCamelCase = version.parse("""1.11""" ) @property def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCamelCase_ ( self : Any ): '''simple docstring''' return 1e-5
242
1
import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class _A ( unittest.TestCase): def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = 3 SCREAMING_SNAKE_CASE_ : str = 250 SCREAMING_SNAKE_CASE_ : Dict = ids_tensor((batch_size, length) , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Tuple = torch.ones((batch_size, length) , device=_SCREAMING_SNAKE_CASE , dtype=torch.float ) / length return input_ids, scores def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = self._get_tensors(5 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = self._get_tensors(9 ) self.assertFalse(criteria(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = self._get_tensors(10 ) self.assertTrue(criteria(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = MaxLengthCriteria(max_length=10 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = self._get_tensors(5 ) self.assertFalse(criteria(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = self._get_tensors(9 ) self.assertFalse(criteria(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = self._get_tensors(10 ) self.assertTrue(criteria(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = self._get_tensors(5 ) self.assertFalse(criteria(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = self._get_tensors(9 ) self.assertFalse(criteria(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = self._get_tensors(10 ) self.assertTrue(criteria(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) SCREAMING_SNAKE_CASE_ : Optional[int] = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = self._get_tensors(5 ) SCREAMING_SNAKE_CASE_ : Dict = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) SCREAMING_SNAKE_CASE_ : List[Any] = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def UpperCAmelCase ( self ): """simple docstring""" validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(_SCREAMING_SNAKE_CASE ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) SCREAMING_SNAKE_CASE_ : Dict = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , 1 )
511
from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase : Any = logging.get_logger(__name__) lowerCAmelCase : List[str] = { 'nielsr/canine-s': 20_48, } # Unicode defines 1,114,112 total “codepoints” lowerCAmelCase : int = 1_11_41_12 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py lowerCAmelCase : Union[str, Any] = 0 lowerCAmelCase : Any = 0XE_0_0_0 lowerCAmelCase : Tuple = 0XE_0_0_1 lowerCAmelCase : List[Any] = 0XE_0_0_2 lowerCAmelCase : int = 0XE_0_0_3 lowerCAmelCase : List[Any] = 0XE_0_0_4 # Maps special codepoints to human-readable names. lowerCAmelCase : Dict[int, str] = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. lowerCAmelCase : Dict[str, int] = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class _A ( __magic_name__): SCREAMING_SNAKE_CASE : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , _SCREAMING_SNAKE_CASE=chr(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE=chr(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE=chr(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE=chr(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE=chr(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE=chr(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=2048 , **_SCREAMING_SNAKE_CASE , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else bos_token SCREAMING_SNAKE_CASE_ : Dict = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else eos_token SCREAMING_SNAKE_CASE_ : Optional[Any] = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else sep_token SCREAMING_SNAKE_CASE_ : str = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else cls_token SCREAMING_SNAKE_CASE_ : Optional[int] = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE_ : str = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else mask_token super().__init__( bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE , model_max_length=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # Creates a mapping for looking up the IDs of special symbols. SCREAMING_SNAKE_CASE_ : Dict[str, int] = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): SCREAMING_SNAKE_CASE_ : str = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. SCREAMING_SNAKE_CASE_ : Dict[int, str] = { codepoint: name for name, codepoint in self._special_codepoints.items() } SCREAMING_SNAKE_CASE_ : int = UNICODE_VOCAB_SIZE SCREAMING_SNAKE_CASE_ : Optional[int] = len(self._special_codepoints ) @property def UpperCAmelCase ( self ): """simple docstring""" return self._unicode_vocab_size def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" return list(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" try: return ord(_SCREAMING_SNAKE_CASE ) except TypeError: raise ValueError(f"invalid token: '{token}'" ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(_SCREAMING_SNAKE_CASE ) except TypeError: raise ValueError(f"invalid id: {index}" ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" return "".join(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : Optional[int] = [self.cls_token_id] SCREAMING_SNAKE_CASE_ : int = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_SCREAMING_SNAKE_CASE , token_ids_a=_SCREAMING_SNAKE_CASE , already_has_special_tokens=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Optional[Any] = [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] if token_ids_a is not None: result += ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] return result def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : List[Any] = [self.cls_token_id] SCREAMING_SNAKE_CASE_ : int = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ): """simple docstring""" return ()
511
1
"""simple docstring""" from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE_ ( snake_case__ ): """simple docstring""" __snake_case : List[str] = """new-model""" if is_tf_available(): class SCREAMING_SNAKE_CASE_ ( snake_case__ ): """simple docstring""" __snake_case : Optional[int] = NewModelConfig @require_tf class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" @slow def __lowercase ( self :Any ): __lowerCamelCase : Tuple ='''bert-base-cased''' __lowerCamelCase : str =AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) __lowerCamelCase : List[str] =TFAutoModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) @slow def __lowercase ( self :Union[str, Any] ): __lowerCamelCase : Optional[int] ='''bert-base-cased''' __lowerCamelCase : str =AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) __lowerCamelCase : List[Any] =TFAutoModelForPreTraining.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) @slow def __lowercase ( self :Dict ): for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase : Tuple =AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) __lowerCamelCase : List[Any] =TFAutoModelForCausalLM.from_pretrained(__lowercase ) __lowerCamelCase , __lowerCamelCase : Optional[Any] =TFAutoModelForCausalLM.from_pretrained(__lowercase , output_loading_info=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) @slow def __lowercase ( self :Any ): for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase : List[Any] =AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) __lowerCamelCase : Union[str, Any] =TFAutoModelWithLMHead.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) @slow def __lowercase ( self :Tuple ): for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase : List[str] =AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) __lowerCamelCase : Dict =TFAutoModelForMaskedLM.from_pretrained(__lowercase ) __lowerCamelCase , __lowerCamelCase : Optional[Any] =TFAutoModelForMaskedLM.from_pretrained(__lowercase , output_loading_info=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) @slow def __lowercase ( self :List[str] ): for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase : Dict =AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) __lowerCamelCase : Tuple =TFAutoModelForSeqaSeqLM.from_pretrained(__lowercase ) __lowerCamelCase , __lowerCamelCase : int =TFAutoModelForSeqaSeqLM.from_pretrained(__lowercase , output_loading_info=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) @slow def __lowercase ( self :Optional[Any] ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __lowerCamelCase : Optional[int] =AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) __lowerCamelCase : Optional[Any] =TFAutoModelForSequenceClassification.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) @slow def __lowercase ( self :int ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __lowerCamelCase : Tuple =AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) __lowerCamelCase : Union[str, Any] =TFAutoModelForQuestionAnswering.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) @slow @require_tensorflow_probability def __lowercase ( self :Dict ): for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: __lowerCamelCase : Any =AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) __lowerCamelCase : Tuple =TFAutoModelForTableQuestionAnswering.from_pretrained(__lowercase ) __lowerCamelCase , __lowerCamelCase : Optional[int] =TFAutoModelForTableQuestionAnswering.from_pretrained( __lowercase , output_loading_info=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) def __lowercase ( self :Optional[int] ): __lowerCamelCase : Optional[Any] =TFAutoModelWithLMHead.from_pretrained(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) self.assertEqual(model.num_parameters() , 1_4410 ) self.assertEqual(model.num_parameters(only_trainable=__lowercase ) , 1_4410 ) def __lowercase ( self :List[str] ): __lowerCamelCase : str =TFAutoModelWithLMHead.from_pretrained(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) self.assertEqual(model.num_parameters() , 1_4410 ) self.assertEqual(model.num_parameters(only_trainable=__lowercase ) , 1_4410 ) def __lowercase ( self :Tuple ): # For the auto model mapping, FunnelConfig has two models: FunnelModel and FunnelBaseModel __lowerCamelCase : Optional[int] =TFAutoModel.from_pretrained('''sgugger/funnel-random-tiny''' ) self.assertIsInstance(__lowercase , __lowercase ) __lowerCamelCase : int =copy.deepcopy(model.config ) __lowerCamelCase : Union[str, Any] =['''FunnelBaseModel'''] __lowerCamelCase : Tuple =TFAutoModel.from_config(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(__lowercase ) __lowerCamelCase : Optional[Any] =TFAutoModel.from_pretrained(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) def __lowercase ( self :Union[str, Any] ): try: AutoConfig.register('''new-model''' , __lowercase ) __lowerCamelCase : Optional[Any] =[ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(__lowercase ): auto_class.register(__lowercase , __lowercase ) auto_class.register(__lowercase , __lowercase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowercase ): auto_class.register(__lowercase , __lowercase ) # Now that the config is registered, it can be used as any other config with the auto-API __lowerCamelCase : Union[str, Any] =BertModelTester(self ).get_config() __lowerCamelCase : Optional[int] =NewModelConfig(**tiny_config.to_dict() ) __lowerCamelCase : Tuple =auto_class.from_config(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(__lowercase ) __lowerCamelCase : int =auto_class.from_pretrained(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def __lowercase ( self :str ): with self.assertRaisesRegex( __lowercase , '''bert-base is not a local folder and is not a valid model identifier''' ): __lowerCamelCase : int =TFAutoModel.from_pretrained('''bert-base''' ) def __lowercase ( self :List[str] ): with self.assertRaisesRegex( __lowercase , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): __lowerCamelCase : List[str] =TFAutoModel.from_pretrained(__lowercase , revision='''aaaaaa''' ) def __lowercase ( self :Any ): with self.assertRaisesRegex( __lowercase , '''hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin''' , ): __lowerCamelCase : List[str] =TFAutoModel.from_pretrained('''hf-internal-testing/config-no-model''' ) def __lowercase ( self :Union[str, Any] ): with self.assertRaisesRegex(__lowercase , '''Use `from_pt=True` to load this model''' ): __lowerCamelCase : Any =TFAutoModel.from_pretrained('''hf-internal-testing/tiny-bert-pt-only''' ) def __lowercase ( self :Tuple ): # Make sure we have cached the model. __lowerCamelCase : Optional[Any] =TFAutoModel.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: __lowerCamelCase : Dict =TFAutoModel.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint __lowerCamelCase : Tuple =TFAutoModel.from_pretrained('''ArthurZ/tiny-random-bert-sharded''' ) with RequestCounter() as counter: __lowerCamelCase : str =TFAutoModel.from_pretrained('''ArthurZ/tiny-random-bert-sharded''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
363
"""simple docstring""" import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self :Tuple ): __lowerCamelCase : Any =Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) __lowerCamelCase : Any =Vector() def __lowercase ( self :Dict ): __lowerCamelCase : Tuple =Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(__lowercase ) , '''(0,0,0,0,0,1)''' ) def __lowercase ( self :Dict ): __lowerCamelCase : int =Vector([1, 2, 3, 4] ) self.assertEqual(len(__lowercase ) , 4 ) def __lowercase ( self :Dict ): __lowerCamelCase : Optional[Any] =Vector([1, 2] ) __lowerCamelCase : Dict =Vector([1, 2, 3, 4, 5] ) __lowerCamelCase : List[Any] =Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) __lowerCamelCase : int =Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 ) def __lowercase ( self :Optional[int] ): __lowerCamelCase : Tuple =Vector([1, 2, 3] ) __lowerCamelCase : Any =Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def __lowercase ( self :str ): __lowerCamelCase : Union[str, Any] =Vector([1, 2, 3] ) __lowerCamelCase : int =Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def __lowercase ( self :int ): __lowerCamelCase : List[Any] =Vector([1, 2, 3] ) __lowerCamelCase : List[Any] =Vector([2, -1, 4] ) # for test of dot product __lowerCamelCase : Any =Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , '''(3.0,6.0,9.0)''' ) self.assertEqual((a * b) , 0 ) def __lowercase ( self :List[Any] ): self.assertEqual(str(zero_vector(10 ) ).count('''0''' ) , 10 ) def __lowercase ( self :Union[str, Any] ): self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , '''(0,1,0)''' ) def __lowercase ( self :List[Any] ): __lowerCamelCase : Any =Vector([1, 2, 3] ) __lowerCamelCase : Optional[int] =Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , __lowercase , __lowercase ) ) , '''(3,4,7)''' ) def __lowercase ( self :Dict ): __lowerCamelCase : List[Any] =Vector([1, 0, 0, 0, 0, 0] ) __lowerCamelCase : Optional[int] =x.copy() self.assertEqual(str(__lowercase ) , str(__lowercase ) ) def __lowercase ( self :int ): __lowerCamelCase : str =Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(__lowercase ) , '''(0,1,0)''' ) def __lowercase ( self :int ): __lowerCamelCase : Any =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual('''|1,2,3|\n|2,4,5|\n|6,7,8|\n''' , str(__lowercase ) ) def __lowercase ( self :int ): __lowerCamelCase : Tuple =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __lowerCamelCase : List[Any] =[[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(__lowercase , __lowercase ) ) def __lowercase ( self :Optional[int] ): __lowerCamelCase : Optional[Any] =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __lowerCamelCase : Tuple =[[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(__lowercase , __lowercase ) ) def __lowercase ( self :Tuple ): __lowerCamelCase : Tuple =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def __lowercase ( self :int ): __lowerCamelCase : Union[str, Any] =Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) __lowerCamelCase : Tuple =Vector([1, 2, 3] ) self.assertEqual('''(14,32,50)''' , str(a * x ) ) self.assertEqual('''|2,4,6|\n|8,10,12|\n|14,16,18|\n''' , str(a * 2 ) ) def __lowercase ( self :Optional[Any] ): __lowerCamelCase : Optional[int] =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual('''|1,2,5|\n|2,4,5|\n|6,7,8|\n''' , str(__lowercase ) ) def __lowercase ( self :str ): __lowerCamelCase : str =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.01 ) def __lowercase ( self :Optional[int] ): __lowerCamelCase : List[str] =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __lowerCamelCase : List[str] =Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('''|2,4,10|\n|4,8,10|\n|12,14,18|\n''' , str(a + b ) ) def __lowercase ( self :Union[str, Any] ): __lowerCamelCase : int =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __lowerCamelCase : Optional[int] =Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('''|0,0,-4|\n|0,0,0|\n|0,0,-2|\n''' , str(a - b ) ) def __lowercase ( self :Any ): self.assertEqual( '''|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n''' , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
363
1
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __lowercase : str = 16 __lowercase : Any = 32 def lowerCamelCase (_SCREAMING_SNAKE_CASE : Accelerator , _SCREAMING_SNAKE_CASE : int = 16 ): __a : Optional[int] = AutoTokenizer.from_pretrained('bert-base-cased' ) __a : Optional[Any] = load_dataset('glue' , 'mrpc' ) def tokenize_function(_SCREAMING_SNAKE_CASE : List[str] ): # max_length=None => use the model max length (it's actually the default) __a : Dict = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __a : List[str] = datasets.map( _SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __a : Optional[Any] = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(_SCREAMING_SNAKE_CASE : Tuple ): # On TPU it's best to pad everything to the same length or training will be very slow. __a : Tuple = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __a : Any = 16 elif accelerator.mixed_precision != "no": __a : Optional[Any] = 8 else: __a : List[str] = None return tokenizer.pad( _SCREAMING_SNAKE_CASE , padding='longest' , max_length=_SCREAMING_SNAKE_CASE , pad_to_multiple_of=_SCREAMING_SNAKE_CASE , return_tensors='pt' , ) # Instantiate dataloaders. __a : List[str] = DataLoader( tokenized_datasets['train'] , shuffle=_SCREAMING_SNAKE_CASE , collate_fn=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE ) __a : List[Any] = DataLoader( tokenized_datasets['validation'] , shuffle=_SCREAMING_SNAKE_CASE , collate_fn=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders __lowercase : str = mocked_dataloaders # noqa: F811 def lowerCamelCase (_SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Any ): # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS' , _SCREAMING_SNAKE_CASE ) == "1": __a : List[Any] = 2 # Initialize accelerator __a : Dict = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __a : Any = config['lr'] __a : List[Any] = int(config['num_epochs'] ) __a : Any = int(config['seed'] ) __a : int = int(config['batch_size'] ) __a : Optional[int] = evaluate.load('glue' , 'mrpc' ) # If the batch size is too big we use gradient accumulation __a : str = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: __a : Optional[Any] = batch_size // MAX_GPU_BATCH_SIZE __a : Dict = MAX_GPU_BATCH_SIZE set_seed(_SCREAMING_SNAKE_CASE ) __a , __a : Optional[Any] = get_dataloaders(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __a : Tuple = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=_SCREAMING_SNAKE_CASE ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __a : List[str] = model.to(accelerator.device ) # Instantiate optimizer __a : List[str] = AdamW(params=model.parameters() , lr=_SCREAMING_SNAKE_CASE ) # Instantiate scheduler __a : Any = get_linear_schedule_with_warmup( optimizer=_SCREAMING_SNAKE_CASE , num_warmup_steps=100 , num_training_steps=(len(_SCREAMING_SNAKE_CASE ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __a , __a , __a , __a , __a : Dict = accelerator.prepare( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Now we train the model for epoch in range(_SCREAMING_SNAKE_CASE ): model.train() for step, batch in enumerate(_SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __a : List[Any] = model(**_SCREAMING_SNAKE_CASE ) __a : List[str] = outputs.loss __a : List[str] = loss / gradient_accumulation_steps accelerator.backward(_SCREAMING_SNAKE_CASE ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() __a : Optional[int] = 0 for step, batch in enumerate(_SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __a : Tuple = model(**_SCREAMING_SNAKE_CASE ) __a : Optional[int] = outputs.logits.argmax(dim=-1 ) __a , __a : Optional[int] = accelerator.gather((predictions, batch['labels']) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(_SCREAMING_SNAKE_CASE ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples __a : List[str] = predictions[: len(eval_dataloader.dataset ) - samples_seen] __a : Tuple = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=_SCREAMING_SNAKE_CASE , references=_SCREAMING_SNAKE_CASE , ) __a : Any = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , _SCREAMING_SNAKE_CASE ) def lowerCamelCase (): __a : Optional[Any] = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) __a : Optional[Any] = parser.parse_args() __a : List[Any] = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
476
'''simple docstring''' import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __lowercase : Tuple = 16 __lowercase : int = 32 def lowerCamelCase (_SCREAMING_SNAKE_CASE : Optional[Any] ): return int(x / 2**20 ) class __UpperCamelCase : def __enter__( self ): '''simple docstring''' gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero __a : Union[str, Any] = torch.cuda.memory_allocated() return self def __exit__( self , *__a ): '''simple docstring''' gc.collect() torch.cuda.empty_cache() __a : List[str] = torch.cuda.memory_allocated() __a : Union[str, Any] = torch.cuda.max_memory_allocated() __a : int = bamb(self.end - self.begin ) __a : Tuple = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def lowerCamelCase (_SCREAMING_SNAKE_CASE : Accelerator , _SCREAMING_SNAKE_CASE : int = 16 , _SCREAMING_SNAKE_CASE : str = "bert-base-cased" , _SCREAMING_SNAKE_CASE : int = 320 , _SCREAMING_SNAKE_CASE : int = 160 , ): __a : Union[str, Any] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) __a : int = load_dataset( 'glue' , 'mrpc' , split={'train': F"""train[:{n_train}]""", 'validation': F"""validation[:{n_val}]"""} ) def tokenize_function(_SCREAMING_SNAKE_CASE : List[str] ): # max_length=None => use the model max length (it's actually the default) __a : Optional[int] = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __a : Dict = datasets.map( _SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=_SCREAMING_SNAKE_CASE ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __a : List[Any] = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(_SCREAMING_SNAKE_CASE : int ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_SCREAMING_SNAKE_CASE , padding='max_length' , max_length=128 , return_tensors='pt' ) return tokenizer.pad(_SCREAMING_SNAKE_CASE , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. __a : Any = DataLoader( tokenized_datasets['train'] , shuffle=_SCREAMING_SNAKE_CASE , collate_fn=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE ) __a : List[str] = DataLoader( tokenized_datasets['validation'] , shuffle=_SCREAMING_SNAKE_CASE , collate_fn=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE ) return train_dataloader, eval_dataloader def lowerCamelCase (_SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Optional[Any] ): # Initialize accelerator __a : Optional[int] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __a : Tuple = config['lr'] __a : List[Any] = int(config['num_epochs'] ) __a : List[Any] = int(config['seed'] ) __a : List[str] = int(config['batch_size'] ) __a : Optional[Any] = args.model_name_or_path set_seed(_SCREAMING_SNAKE_CASE ) __a , __a : Dict = get_dataloaders(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , args.n_train , args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __a : Tuple = AutoModelForSequenceClassification.from_pretrained(_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE ) # Instantiate optimizer __a : Optional[int] = ( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __a : str = optimizer_cls(params=model.parameters() , lr=_SCREAMING_SNAKE_CASE ) if accelerator.state.deepspeed_plugin is not None: __a : int = accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: __a : Optional[Any] = 1 __a : List[Any] = (len(_SCREAMING_SNAKE_CASE ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __a : int = get_linear_schedule_with_warmup( optimizer=_SCREAMING_SNAKE_CASE , num_warmup_steps=0 , num_training_steps=_SCREAMING_SNAKE_CASE , ) else: __a : Dict = DummyScheduler(_SCREAMING_SNAKE_CASE , total_num_steps=_SCREAMING_SNAKE_CASE , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __a , __a , __a , __a , __a : str = accelerator.prepare( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # We need to keep track of how many total steps we have iterated over __a : List[str] = 0 # We also need to keep track of the stating epoch so files are named properly __a : Dict = 0 # Now we train the model __a : Optional[Any] = {} for epoch in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(_SCREAMING_SNAKE_CASE ): __a : int = model(**_SCREAMING_SNAKE_CASE ) __a : str = outputs.loss __a : Dict = loss / gradient_accumulation_steps accelerator.backward(_SCREAMING_SNAKE_CASE ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print('Memory before entering the train : {}'.format(bamb(tracemalloc.begin ) ) ) accelerator.print('Memory consumed at the end of the train (end-begin): {}'.format(tracemalloc.used ) ) accelerator.print('Peak Memory consumed during the train (max-begin): {}'.format(tracemalloc.peaked ) ) accelerator.print( 'Total Peak Memory consumed during the train (max): {}'.format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) __a : int = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[F"""epoch-{epoch}"""] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , 'peak_memory_utilization.json' ) , 'w' ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowerCamelCase (): __a : List[str] = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' , type=_SCREAMING_SNAKE_CASE , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=_SCREAMING_SNAKE_CASE , ) parser.add_argument( '--output_dir' , type=_SCREAMING_SNAKE_CASE , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--peak_memory_upper_bound' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , help='The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.' , ) parser.add_argument( '--n_train' , type=_SCREAMING_SNAKE_CASE , default=320 , help='Number of training examples to use.' , ) parser.add_argument( '--n_val' , type=_SCREAMING_SNAKE_CASE , default=160 , help='Number of validation examples to use.' , ) parser.add_argument( '--num_epochs' , type=_SCREAMING_SNAKE_CASE , default=1 , help='Number of train epochs.' , ) __a : List[Any] = parser.parse_args() __a : str = {'lr': 2e-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16} training_function(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
476
1
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node _UpperCamelCase : str =4 _UpperCamelCase : Optional[Any] =3 class _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" pass def lowerCamelCase_ ( A_ ): for shard in shards: for i in range(A_ ): yield {"i": i, "shard": shard} def lowerCamelCase_ ( ): __lowerCamelCase = int(os.environ['''RANK'''] ) __lowerCamelCase = int(os.environ['''WORLD_SIZE'''] ) __lowerCamelCase = ArgumentParser() parser.add_argument('''--streaming''' , type=A_ ) parser.add_argument('''--local_rank''' , type=A_ ) parser.add_argument('''--num_workers''' , type=A_ , default=0 ) __lowerCamelCase = parser.parse_args() __lowerCamelCase = args.streaming __lowerCamelCase = args.num_workers __lowerCamelCase = {'''shards''': [f'''shard_{shard_idx}''' for shard_idx in range(A_ )]} __lowerCamelCase = IterableDataset.from_generator(A_ , gen_kwargs=A_ ) if not streaming: __lowerCamelCase = Dataset.from_list(list(A_ ) ) __lowerCamelCase = split_dataset_by_node(A_ , rank=A_ , world_size=A_ ) __lowerCamelCase = torch.utils.data.DataLoader(A_ , num_workers=A_ ) __lowerCamelCase = NUM_SHARDS * NUM_ITEMS_PER_SHARD __lowerCamelCase = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) __lowerCamelCase = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f'''local_size {local_size} != expected_local_size {expected_local_size}''' ) if __name__ == "__main__": main()
708
'''simple docstring''' import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version _UpperCamelCase : Optional[int] =version.parse(importlib_metadata.version("nltk")) if NLTK_VERSION >= version.Version("3.6.4"): from nltk import word_tokenize _UpperCamelCase : Any ="\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n" _UpperCamelCase : Optional[Any] ="\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n" _UpperCamelCase : List[str] ="\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n 'meteor': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric('meteor')\n >>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"]\n >>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results[\"meteor\"], 4))\n 0.6944\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _SCREAMING_SNAKE_CASE ( datasets.Metric ): """simple docstring""" def _lowerCamelCase ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'''] , reference_urls=[ '''https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score''', '''https://en.wikipedia.org/wiki/METEOR''', ] , ) def _lowerCamelCase ( self , _snake_case ): """simple docstring""" import nltk nltk.download('''wordnet''' ) if NLTK_VERSION >= version.Version('''3.6.5''' ): nltk.download('''punkt''' ) if NLTK_VERSION >= version.Version('''3.6.6''' ): nltk.download('''omw-1.4''' ) def _lowerCamelCase ( self , _snake_case , _snake_case , _snake_case=0.9 , _snake_case=3 , _snake_case=0.5 ): """simple docstring""" if NLTK_VERSION >= version.Version('''3.6.5''' ): __lowerCamelCase = [ meteor_score.single_meteor_score( word_tokenize(_snake_case ) , word_tokenize(_snake_case ) , alpha=_snake_case , beta=_snake_case , gamma=_snake_case ) for ref, pred in zip(_snake_case , _snake_case ) ] else: __lowerCamelCase = [ meteor_score.single_meteor_score(_snake_case , _snake_case , alpha=_snake_case , beta=_snake_case , gamma=_snake_case ) for ref, pred in zip(_snake_case , _snake_case ) ] return {"meteor": np.mean(_snake_case )}
575
0
"""simple docstring""" import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": __UpperCAmelCase = '''%20'''.join(argv[1:]) if len(argv) > 1 else quote(str(input('''Search: '''))) print('''Googling.....''') __UpperCAmelCase = f"https://www.google.com/search?q={query}&num=100" __UpperCAmelCase = requests.get( url, headers={'''User-Agent''': str(UserAgent().random)}, ) try: __UpperCAmelCase = ( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''yuRUbf'''}) .find('''a''') .get('''href''') ) except AttributeError: __UpperCAmelCase = parse_qs( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''kCrYT'''}) .find('''a''') .get('''href''') )['''url'''][0] webbrowser.open(link)
642
'''simple docstring''' from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class __lowerCamelCase : """simple docstring""" a = 42 a = None a = None A : Optional[Any] = namedtuple('''CoinsDistribResult''', '''moves excess''') def lowerCAmelCase__ ( lowerCamelCase : TreeNode | None ): if root is None: return 0 # Validation def count_nodes(lowerCamelCase : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(lowerCamelCase : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(lowerCamelCase ) != count_coins(lowerCamelCase ): raise ValueError('The nodes number should be same as the number of coins' ) # Main calculation def get_distrib(lowerCamelCase : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 ,1 ) _A , _A : Optional[Any] = get_distrib(node.left ) _A , _A : Any = get_distrib(node.right ) _A : str = 1 - left_distrib_excess _A : Union[str, Any] = 1 - right_distrib_excess _A : Any = ( left_distrib_moves + right_distrib_moves + abs(lowerCamelCase ) + abs(lowerCamelCase ) ) _A : str = node.data - coins_to_left - coins_to_right return CoinsDistribResult(lowerCamelCase ,lowerCamelCase ) return get_distrib(lowerCamelCase )[0] if __name__ == "__main__": import doctest doctest.testmod()
128
0
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _lowerCAmelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = ["input_features", "is_longer"] def __init__( self : Tuple , _A : Tuple=64 , _A : Any=4_8000 , _A : List[str]=480 , _A : Optional[int]=10 , _A : List[Any]=1024 , _A : str=0.0 , _A : Union[str, Any]=False , _A : float = 0 , _A : float = 1_4000 , _A : int = None , _A : str = "fusion" , _A : str = "repeatpad" , **_A : Union[str, Any] , ): super().__init__( feature_size=_A , sampling_rate=_A , padding_value=_A , return_attention_mask=_A , **_A , ) _UpperCamelCase = top_db _UpperCamelCase = truncation _UpperCamelCase = padding _UpperCamelCase = fft_window_size _UpperCamelCase = (fft_window_size >> 1) + 1 _UpperCamelCase = hop_length _UpperCamelCase = max_length_s _UpperCamelCase = max_length_s * sampling_rate _UpperCamelCase = sampling_rate _UpperCamelCase = frequency_min _UpperCamelCase = frequency_max _UpperCamelCase = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_A , min_frequency=_A , max_frequency=_A , sampling_rate=_A , norm=_A , mel_scale='''htk''' , ) _UpperCamelCase = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_A , min_frequency=_A , max_frequency=_A , sampling_rate=_A , norm='''slaney''' , mel_scale='''slaney''' , ) def UpperCamelCase_ ( self : int ): _UpperCamelCase = copy.deepcopy(self.__dict__ ) _UpperCamelCase = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def UpperCamelCase_ ( self : List[Any] , _A : np.array , _A : Optional[np.array] = None ): _UpperCamelCase = spectrogram( _A , window_function(self.fft_window_size , '''hann''' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=_A , log_mel='''dB''' , ) return log_mel_spectrogram.T def UpperCamelCase_ ( self : Union[str, Any] , _A : List[Any] , _A : Optional[Any] , _A : List[Any] ): _UpperCamelCase = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk _UpperCamelCase = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk _UpperCamelCase = [0] # randomly choose index for each part _UpperCamelCase = np.random.choice(ranges[0] ) _UpperCamelCase = np.random.choice(ranges[1] ) _UpperCamelCase = np.random.choice(ranges[2] ) _UpperCamelCase = mel[idx_front : idx_front + chunk_frames, :] _UpperCamelCase = mel[idx_middle : idx_middle + chunk_frames, :] _UpperCamelCase = mel[idx_back : idx_back + chunk_frames, :] _UpperCamelCase = torch.tensor(mel[None, None, :] ) _UpperCamelCase = torch.nn.functional.interpolate( _A , size=[chunk_frames, 64] , mode='''bilinear''' , align_corners=_A ) _UpperCamelCase = mel_shrink[0][0].numpy() _UpperCamelCase = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def UpperCamelCase_ ( self : Optional[int] , _A : np.array , _A : int , _A : str , _A : int ): if waveform.shape[0] > max_length: if truncation == "rand_trunc": _UpperCamelCase = True # random crop to max_length (for compatibility) -> this should be handled by self.pad _UpperCamelCase = len(_A ) - max_length _UpperCamelCase = np.random.randint(0 , overflow + 1 ) _UpperCamelCase = waveform[idx : idx + max_length] _UpperCamelCase = self._np_extract_fbank_features(_A , self.mel_filters_slaney )[None, :] elif truncation == "fusion": _UpperCamelCase = self._np_extract_fbank_features(_A , self.mel_filters ) _UpperCamelCase = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed _UpperCamelCase = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. _UpperCamelCase = np.stack([mel, mel, mel, mel] , axis=0 ) _UpperCamelCase = False else: _UpperCamelCase = self._random_mel_fusion(_A , _A , _A ) _UpperCamelCase = True else: raise NotImplementedError(F"""data_truncating {truncation} not implemented""" ) else: _UpperCamelCase = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": _UpperCamelCase = int(max_length / len(_A ) ) _UpperCamelCase = np.stack(np.tile(_A , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": _UpperCamelCase = int(max_length / len(_A ) ) _UpperCamelCase = np.stack(np.tile(_A , _A ) ) _UpperCamelCase = np.pad(_A , (0, max_length - waveform.shape[0]) , mode='''constant''' , constant_values=0 ) if truncation == "fusion": _UpperCamelCase = self._np_extract_fbank_features(_A , self.mel_filters ) _UpperCamelCase = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: _UpperCamelCase = self._np_extract_fbank_features(_A , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : str , _A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _A : str = None , _A : Optional[str] = None , _A : Optional[int] = None , _A : Optional[int] = None , _A : Optional[Union[str, TensorType]] = None , **_A : str , ): _UpperCamelCase = truncation if truncation is not None else self.truncation _UpperCamelCase = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" F""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" F""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) _UpperCamelCase = isinstance(_A , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) _UpperCamelCase = is_batched_numpy or ( isinstance(_A , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _UpperCamelCase = [np.asarray(_A , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_A , np.ndarray ): _UpperCamelCase = np.asarray(_A , dtype=np.floataa ) elif isinstance(_A , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _UpperCamelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _UpperCamelCase = [np.asarray(_A )] # convert to mel spectrogram, truncate and pad if needed. _UpperCamelCase = [ self._get_input_mel(_A , max_length if max_length else self.nb_max_samples , _A , _A ) for waveform in raw_speech ] _UpperCamelCase = [] _UpperCamelCase = [] for mel, longer in padded_inputs: input_mel.append(_A ) is_longer.append(_A ) if truncation == "fusion" and sum(_A ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer _UpperCamelCase = np.random.randint(0 , len(_A ) ) _UpperCamelCase = True if isinstance(input_mel[0] , _A ): _UpperCamelCase = [np.asarray(_A , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool _UpperCamelCase = [[longer] for longer in is_longer] _UpperCamelCase = {'''input_features''': input_mel, '''is_longer''': is_longer} _UpperCamelCase = BatchFeature(_A ) if return_tensors is not None: _UpperCamelCase = input_features.convert_to_tensors(_A ) return input_features
71
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _lowerCAmelCase = {"configuration_unispeech": ["UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP", "UniSpeechConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ "UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST", "UniSpeechForCTC", "UniSpeechForPreTraining", "UniSpeechForSequenceClassification", "UniSpeechModel", "UniSpeechPreTrainedModel", ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
71
1
'''simple docstring''' import argparse import torch from transformers import GPTaLMHeadModel, RobertaForMaskedLM if __name__ == "__main__": _UpperCAmelCase : int = argparse.ArgumentParser( description=( '''Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned''' ''' Distillation''' ) ) parser.add_argument('''--model_type''', default='''roberta''', choices=['''roberta''', '''gpt2''']) parser.add_argument('''--model_name''', default='''roberta-large''', type=str) parser.add_argument('''--dump_checkpoint''', default='''serialization_dir/tf_roberta_048131723.pth''', type=str) parser.add_argument('''--vocab_transform''', action='''store_true''') _UpperCAmelCase : Optional[int] = parser.parse_args() if args.model_type == "roberta": _UpperCAmelCase : Tuple = RobertaForMaskedLM.from_pretrained(args.model_name) _UpperCAmelCase : Optional[Any] = '''roberta''' elif args.model_type == "gpt2": _UpperCAmelCase : List[Any] = GPTaLMHeadModel.from_pretrained(args.model_name) _UpperCAmelCase : List[Any] = '''transformer''' _UpperCAmelCase : List[Any] = model.state_dict() _UpperCAmelCase : str = {} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: _UpperCAmelCase : Tuple = state_dict[F"""{prefix}.{param_name}"""] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: _UpperCAmelCase : Any = F"""{prefix}.embeddings.{w}.weight""" _UpperCAmelCase : Union[str, Any] = state_dict[param_name] for w in ["weight", "bias"]: _UpperCAmelCase : int = F"""{prefix}.embeddings.LayerNorm.{w}""" _UpperCAmelCase : Tuple = state_dict[param_name] # Transformer Blocks # _UpperCAmelCase : Dict = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: _UpperCAmelCase : Any = state_dict[ F"""{prefix}.h.{teacher_idx}.{layer}.{w}""" ] _UpperCAmelCase : List[str] = state_dict[F"""{prefix}.h.{teacher_idx}.attn.bias"""] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: _UpperCAmelCase : Optional[int] = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}""" ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: _UpperCAmelCase : Optional[Any] = state_dict[F"""{layer}"""] if args.vocab_transform: for w in ["weight", "bias"]: _UpperCAmelCase : str = state_dict[F"""lm_head.dense.{w}"""] _UpperCAmelCase : List[str] = state_dict[F"""lm_head.layer_norm.{w}"""] elif args.model_type == "gpt2": for w in ["weight", "bias"]: _UpperCAmelCase : Optional[int] = state_dict[F"""{prefix}.ln_f.{w}"""] _UpperCAmelCase : List[Any] = state_dict['''lm_head.weight'''] print(F"""N layers selected for distillation: {std_idx}""") print(F"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(F"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
72
'''simple docstring''' import logging import os import threading import time try: import warnings except ImportError: lowerCAmelCase_ = None try: import msvcrt except ImportError: lowerCAmelCase_ = None try: import fcntl except ImportError: lowerCAmelCase_ = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: lowerCAmelCase_ = OSError # Data # ------------------------------------------------ lowerCAmelCase_ = [ 'Timeout', 'BaseFileLock', 'WindowsFileLock', 'UnixFileLock', 'SoftFileLock', 'FileLock', ] lowerCAmelCase_ = '3.0.12' lowerCAmelCase_ = None def A__ ( ): '''simple docstring''' global _logger UpperCamelCase : List[str] = _logger or logging.getLogger(__name__) return _logger class UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase ) -> int: '''simple docstring''' UpperCamelCase : Tuple = lock_file return None def __str__( self ) -> Optional[Any]: '''simple docstring''' UpperCamelCase : Union[str, Any] = f'''The file lock \'{self.lock_file}\' could not be acquired.''' return temp class UpperCAmelCase_ : """simple docstring""" def __init__( self , lowerCamelCase ) -> int: '''simple docstring''' UpperCamelCase : Optional[int] = lock return None def __enter__( self ) -> Optional[int]: '''simple docstring''' return self.lock def __exit__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> List[Any]: '''simple docstring''' self.lock.release() return None class UpperCAmelCase_ : """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase=-1 , lowerCamelCase=None ) -> List[str]: '''simple docstring''' UpperCamelCase : Tuple = max_filename_length if max_filename_length is not None else 2_55 # Hash the filename if it's too long UpperCamelCase : int = self.hash_filename_if_too_long(lowerCamelCase , lowerCamelCase ) # The path to the lock file. UpperCamelCase : str = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. UpperCamelCase : Dict = None # The default timeout value. UpperCamelCase : Dict = timeout # We use this lock primarily for the lock counter. UpperCamelCase : Any = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. UpperCamelCase : Any = 0 return None @property def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' return self._lock_file @property def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' return self._timeout @timeout.setter def SCREAMING_SNAKE_CASE__ ( self , lowerCamelCase ) -> List[str]: '''simple docstring''' UpperCamelCase : Optional[Any] = float(lowerCamelCase ) return None def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' raise NotImplementedError() def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' raise NotImplementedError() @property def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' return self._lock_file_fd is not None def SCREAMING_SNAKE_CASE__ ( self , lowerCamelCase=None , lowerCamelCase=0.05 ) -> Union[str, Any]: '''simple docstring''' if timeout is None: UpperCamelCase : Union[str, Any] = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 UpperCamelCase : str = id(self ) UpperCamelCase : Union[str, Any] = self._lock_file UpperCamelCase : Union[str, Any] = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(f'''Attempting to acquire lock {lock_id} on {lock_filename}''' ) self._acquire() if self.is_locked: logger().debug(f'''Lock {lock_id} acquired on {lock_filename}''' ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(f'''Timeout on acquiring lock {lock_id} on {lock_filename}''' ) raise Timeout(self._lock_file ) else: logger().debug( f'''Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...''' ) time.sleep(lowerCamelCase ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: UpperCamelCase : Tuple = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def SCREAMING_SNAKE_CASE__ ( self , lowerCamelCase=False ) -> Optional[int]: '''simple docstring''' with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: UpperCamelCase : Optional[Any] = id(self ) UpperCamelCase : Tuple = self._lock_file logger().debug(f'''Attempting to release lock {lock_id} on {lock_filename}''' ) self._release() UpperCamelCase : List[str] = 0 logger().debug(f'''Lock {lock_id} released on {lock_filename}''' ) return None def __enter__( self ) -> List[Any]: '''simple docstring''' self.acquire() return self def __exit__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Optional[Any]: '''simple docstring''' self.release() return None def __del__( self ) -> List[str]: '''simple docstring''' self.release(force=lowerCamelCase ) return None def SCREAMING_SNAKE_CASE__ ( self , lowerCamelCase , lowerCamelCase ) -> str: '''simple docstring''' UpperCamelCase : Tuple = os.path.basename(lowerCamelCase ) if len(lowerCamelCase ) > max_length and max_length > 0: UpperCamelCase : str = os.path.dirname(lowerCamelCase ) UpperCamelCase : Any = str(hash(lowerCamelCase ) ) UpperCamelCase : Dict = filename[: max_length - len(lowerCamelCase ) - 8] + "..." + hashed_filename + ".lock" return os.path.join(lowerCamelCase , lowerCamelCase ) else: return path class UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase=-1 , lowerCamelCase=None ) -> Optional[int]: '''simple docstring''' from .file_utils import relative_to_absolute_path super().__init__(lowerCamelCase , timeout=lowerCamelCase , max_filename_length=lowerCamelCase ) UpperCamelCase : List[str] = "\\\\?\\" + relative_to_absolute_path(self.lock_file ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' UpperCamelCase : List[str] = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: UpperCamelCase : str = os.open(self._lock_file , lowerCamelCase ) except OSError: pass else: try: msvcrt.locking(lowerCamelCase , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(lowerCamelCase ) else: UpperCamelCase : Dict = fd return None def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' UpperCamelCase : str = self._lock_file_fd UpperCamelCase : List[Any] = None msvcrt.locking(lowerCamelCase , msvcrt.LK_UNLCK , 1 ) os.close(lowerCamelCase ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase=-1 , lowerCamelCase=None ) -> List[Any]: '''simple docstring''' UpperCamelCase : Optional[int] = os.statvfs(os.path.dirname(lowerCamelCase ) ).f_namemax super().__init__(lowerCamelCase , timeout=lowerCamelCase , max_filename_length=lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' UpperCamelCase : int = os.O_RDWR | os.O_CREAT | os.O_TRUNC UpperCamelCase : Union[str, Any] = os.open(self._lock_file , lowerCamelCase ) try: fcntl.flock(lowerCamelCase , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(lowerCamelCase ) else: UpperCamelCase : Any = fd return None def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCamelCase : Union[str, Any] = self._lock_file_fd UpperCamelCase : str = None fcntl.flock(lowerCamelCase , fcntl.LOCK_UN ) os.close(lowerCamelCase ) return None class UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase : Dict = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: UpperCamelCase : Union[str, Any] = os.open(self._lock_file , lowerCamelCase ) except OSError: pass else: UpperCamelCase : Dict = fd return None def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' os.close(self._lock_file_fd ) UpperCamelCase : Optional[Any] = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None lowerCAmelCase_ = None if msvcrt: lowerCAmelCase_ = WindowsFileLock elif fcntl: lowerCAmelCase_ = UnixFileLock else: lowerCAmelCase_ = SoftFileLock if warnings is not None: warnings.warn('only soft file lock is available')
173
0
"""simple docstring""" UpperCAmelCase_ : str = 8.314_4598 def _lowerCAmelCase(a : float , a : float ) -> float: if temperature < 0: raise Exception('''Temperature cannot be less than 0 K''' ) if molar_mass <= 0: raise Exception('''Molar mass cannot be less than or equal to 0 kg/mol''' ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example UpperCAmelCase_ : Optional[Any] = 3_0_0 UpperCAmelCase_ : Tuple = 2_8 UpperCAmelCase_ : Optional[Any] = rms_speed_of_molecule(temperature, molar_mass) print(f"Vrms of Nitrogen gas at 300 K is {vrms} m/s")
721
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase_ : int = { '''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''], '''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''], '''processing_wav2vec2''': ['''Wav2Vec2Processor'''], '''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Dict = [ '''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Wav2Vec2ForAudioFrameClassification''', '''Wav2Vec2ForCTC''', '''Wav2Vec2ForMaskedLM''', '''Wav2Vec2ForPreTraining''', '''Wav2Vec2ForSequenceClassification''', '''Wav2Vec2ForXVector''', '''Wav2Vec2Model''', '''Wav2Vec2PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : int = [ '''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWav2Vec2ForCTC''', '''TFWav2Vec2Model''', '''TFWav2Vec2PreTrainedModel''', '''TFWav2Vec2ForSequenceClassification''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : str = [ '''FlaxWav2Vec2ForCTC''', '''FlaxWav2Vec2ForPreTraining''', '''FlaxWav2Vec2Model''', '''FlaxWav2Vec2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys UpperCAmelCase_ : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
165
0
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class _a ( unittest.TestCase ): """simple docstring""" def __A ( self : Union[str, Any] ): A_ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) A_ = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(UpperCAmelCase ) A_ = -1 A_ = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCAmelCase ) A_ = model.generate(UpperCAmelCase , max_new_tokens=10 , do_sample=UpperCAmelCase ) A_ = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: A_ = TextStreamer(UpperCAmelCase ) model.generate(UpperCAmelCase , max_new_tokens=10 , do_sample=UpperCAmelCase , streamer=UpperCAmelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer A_ = cs.out[:-1] self.assertEqual(UpperCAmelCase , UpperCAmelCase ) def __A ( self : Tuple ): A_ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) A_ = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(UpperCAmelCase ) A_ = -1 A_ = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCAmelCase ) A_ = model.generate(UpperCAmelCase , max_new_tokens=10 , do_sample=UpperCAmelCase ) A_ = tokenizer.decode(greedy_ids[0] ) A_ = TextIteratorStreamer(UpperCAmelCase ) A_ = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} A_ = Thread(target=model.generate , kwargs=UpperCAmelCase ) thread.start() A_ = "" for new_text in streamer: streamer_text += new_text self.assertEqual(UpperCAmelCase , UpperCAmelCase ) def __A ( self : List[str] ): A_ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) A_ = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(UpperCAmelCase ) A_ = -1 A_ = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCAmelCase ) A_ = model.generate(UpperCAmelCase , max_new_tokens=10 , do_sample=UpperCAmelCase ) A_ = greedy_ids[:, input_ids.shape[1] :] A_ = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: A_ = TextStreamer(UpperCAmelCase , skip_prompt=UpperCAmelCase ) model.generate(UpperCAmelCase , max_new_tokens=10 , do_sample=UpperCAmelCase , streamer=UpperCAmelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer A_ = cs.out[:-1] self.assertEqual(UpperCAmelCase , UpperCAmelCase ) def __A ( self : Optional[Any] ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them A_ = AutoTokenizer.from_pretrained("distilgpt2" ) A_ = AutoModelForCausalLM.from_pretrained("distilgpt2" ).to(UpperCAmelCase ) A_ = -1 A_ = torch.ones((1, 5) , device=UpperCAmelCase ).long() * model.config.bos_token_id with CaptureStdout() as cs: A_ = TextStreamer(UpperCAmelCase , skip_special_tokens=UpperCAmelCase ) model.generate(UpperCAmelCase , max_new_tokens=1 , do_sample=UpperCAmelCase , streamer=UpperCAmelCase ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token A_ = cs.out[:-1] # Remove the final "\n" A_ = tokenizer(UpperCAmelCase , return_tensors="pt" ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def __A ( self : int ): A_ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) A_ = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(UpperCAmelCase ) A_ = -1 A_ = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCAmelCase ) A_ = TextIteratorStreamer(UpperCAmelCase , timeout=0.001 ) A_ = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} A_ = Thread(target=model.generate , kwargs=UpperCAmelCase ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(UpperCAmelCase ): A_ = "" for new_text in streamer: streamer_text += new_text
86
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib __a :List[Any] = get_logger() __a :Optional[dict] = None class _a ( TensorFormatter[Mapping, 'jax.Array', Mapping] ): """simple docstring""" def __init__( self : str , UpperCAmelCase : int=None , UpperCAmelCase : List[str]=None , **UpperCAmelCase : List[Any] ): super().__init__(features=UpperCAmelCase ) import jax from jaxlib.xla_client import Device if isinstance(UpperCAmelCase , UpperCAmelCase ): raise ValueError( f'''Expected {device} to be a `str` not {type(UpperCAmelCase )}, as `jaxlib.xla_extension.Device` ''' "is not serializable neither with `pickle` nor with `dill`. Instead you can surround " "the device with `str()` to get its string identifier that will be internally mapped " "to the actual `jaxlib.xla_extension.Device`." ) A_ = device if isinstance(UpperCAmelCase , UpperCAmelCase ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: A_ = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f'''Device with string identifier {self.device} not listed among the available ''' f'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ''' f'''device: {str(jax.devices()[0] )}.''' ) A_ = str(jax.devices()[0] ) A_ = jnp_array_kwargs @staticmethod def __A ( ): import jax return {str(UpperCAmelCase ): device for device in jax.devices()} def __A ( self : Optional[int] , UpperCAmelCase : int ): import jax import jax.numpy as jnp if isinstance(UpperCAmelCase , UpperCAmelCase ) and column: if all( isinstance(UpperCAmelCase , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(UpperCAmelCase , axis=0 ) return column def __A ( self : List[str] , UpperCAmelCase : str ): import jax import jax.numpy as jnp if isinstance(UpperCAmelCase , (str, bytes, type(UpperCAmelCase )) ): return value elif isinstance(UpperCAmelCase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() A_ = {} if isinstance(UpperCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: A_ = {"dtype": jnp.intaa} else: A_ = {"dtype": jnp.intaa} elif isinstance(UpperCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): A_ = {"dtype": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(UpperCAmelCase , PIL.Image.Image ): A_ = np.asarray(UpperCAmelCase ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: A_ = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(UpperCAmelCase , **{**default_dtype, **self.jnp_array_kwargs} ) def __A ( self : Any , UpperCAmelCase : Dict ): import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(UpperCAmelCase , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(UpperCAmelCase , "__array__" ) and not isinstance(UpperCAmelCase , jax.Array ): A_ = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(UpperCAmelCase , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(UpperCAmelCase ) for substruct in data_struct] ) elif isinstance(UpperCAmelCase , (list, tuple) ): return self._consolidate([self.recursive_tensorize(UpperCAmelCase ) for substruct in data_struct] ) return self._tensorize(UpperCAmelCase ) def __A ( self : Tuple , UpperCAmelCase : dict ): return map_nested(self._recursive_tensorize , UpperCAmelCase , map_list=UpperCAmelCase ) def __A ( self : Dict , UpperCAmelCase : pa.Table ): A_ = self.numpy_arrow_extractor().extract_row(UpperCAmelCase ) A_ = self.python_features_decoder.decode_row(UpperCAmelCase ) return self.recursive_tensorize(UpperCAmelCase ) def __A ( self : Any , UpperCAmelCase : pa.Table ): A_ = self.numpy_arrow_extractor().extract_column(UpperCAmelCase ) A_ = self.python_features_decoder.decode_column(UpperCAmelCase , pa_table.column_names[0] ) A_ = self.recursive_tensorize(UpperCAmelCase ) A_ = self._consolidate(UpperCAmelCase ) return column def __A ( self : Dict , UpperCAmelCase : pa.Table ): A_ = self.numpy_arrow_extractor().extract_batch(UpperCAmelCase ) A_ = self.python_features_decoder.decode_batch(UpperCAmelCase ) A_ = self.recursive_tensorize(UpperCAmelCase ) for column_name in batch: A_ = self._consolidate(batch[column_name] ) return batch
86
1
"""simple docstring""" from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging _lowercase : int = logging.get_logger(__name__) _lowercase : Any = { 'Salesforce/codegen-350M-nl': 'https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json', 'Salesforce/codegen-350M-multi': 'https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json', 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json', 'Salesforce/codegen-2B-nl': 'https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json', 'Salesforce/codegen-2B-multi': 'https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json', 'Salesforce/codegen-2B-mono': 'https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json', 'Salesforce/codegen-6B-nl': 'https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json', 'Salesforce/codegen-6B-multi': 'https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json', 'Salesforce/codegen-6B-mono': 'https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json', 'Salesforce/codegen-16B-nl': 'https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json', 'Salesforce/codegen-16B-multi': 'https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json', 'Salesforce/codegen-16B-mono': 'https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json', } class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Optional[Any] = "codegen" a__ : Tuple = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : List[str] , _lowercase : Optional[int]=5_04_00 , _lowercase : List[str]=20_48 , _lowercase : Optional[int]=20_48 , _lowercase : Tuple=40_96 , _lowercase : Optional[Any]=28 , _lowercase : Tuple=16 , _lowercase : str=64 , _lowercase : Dict=None , _lowercase : Any="gelu_new" , _lowercase : Any=0.0 , _lowercase : Dict=0.0 , _lowercase : Dict=0.0 , _lowercase : str=1E-5 , _lowercase : Union[str, Any]=0.02 , _lowercase : List[str]=True , _lowercase : Dict=5_02_56 , _lowercase : str=5_02_56 , _lowercase : Any=False , **_lowercase : Optional[Any] , ): __UpperCAmelCase = vocab_size __UpperCAmelCase = n_ctx __UpperCAmelCase = n_positions __UpperCAmelCase = n_embd __UpperCAmelCase = n_layer __UpperCAmelCase = n_head __UpperCAmelCase = n_inner __UpperCAmelCase = rotary_dim __UpperCAmelCase = activation_function __UpperCAmelCase = resid_pdrop __UpperCAmelCase = embd_pdrop __UpperCAmelCase = attn_pdrop __UpperCAmelCase = layer_norm_epsilon __UpperCAmelCase = initializer_range __UpperCAmelCase = use_cache __UpperCAmelCase = bos_token_id __UpperCAmelCase = eos_token_id super().__init__( bos_token_id=_lowercase , eos_token_id=_lowercase , tie_word_embeddings=_lowercase , **_lowercase ) class _UpperCAmelCase ( _lowerCAmelCase ): def __init__( self : int , _lowercase : PretrainedConfig , _lowercase : str = "default" , _lowercase : List[PatchingSpec] = None , _lowercase : bool = False , ): super().__init__(_lowercase , task=_lowercase , patching_specs=_lowercase , use_past=_lowercase ) if not getattr(self._config , '''pad_token_id''' , _lowercase ): # TODO: how to do that better? __UpperCAmelCase = 0 @property def a ( self : Optional[Any] ): __UpperCAmelCase = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(_lowercase , direction='''inputs''' ) __UpperCAmelCase = {0: '''batch''', 1: '''past_sequence + sequence'''} else: __UpperCAmelCase = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def a ( self : Dict ): return self._config.n_layer @property def a ( self : Tuple ): return self._config.n_head def a ( self : Tuple , _lowercase : PreTrainedTokenizer , _lowercase : int = -1 , _lowercase : int = -1 , _lowercase : bool = False , _lowercase : Optional[TensorType] = None , ): __UpperCAmelCase = super(_lowercase , self ).generate_dummy_inputs( _lowercase , batch_size=_lowercase , seq_length=_lowercase , is_pair=_lowercase , framework=_lowercase ) # We need to order the input in the way they appears in the forward() __UpperCAmelCase = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __UpperCAmelCase , __UpperCAmelCase = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values __UpperCAmelCase = seqlen + 2 __UpperCAmelCase = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __UpperCAmelCase = [ (torch.zeros(_lowercase ), torch.zeros(_lowercase )) for _ in range(self.num_layers ) ] __UpperCAmelCase = common_inputs['''attention_mask'''] if self.use_past: __UpperCAmelCase = ordered_inputs['''attention_mask'''].dtype __UpperCAmelCase = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(_lowercase , _lowercase , dtype=_lowercase )] , dim=1 ) return ordered_inputs @property def a ( self : Any ): return 13
397
"""simple docstring""" import argparse import os from . import ( ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BART_PRETRAINED_MODEL_ARCHIVE_LIST, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, BartConfig, BertConfig, CamembertConfig, CTRLConfig, DistilBertConfig, DPRConfig, ElectraConfig, FlaubertConfig, GPTaConfig, LayoutLMConfig, LxmertConfig, OpenAIGPTConfig, RobertaConfig, TaConfig, TFAlbertForPreTraining, TFBartForConditionalGeneration, TFBartForSequenceClassification, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFCamembertForMaskedLM, TFCTRLLMHeadModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, TFElectraForPreTraining, TFFlaubertWithLMHeadModel, TFGPTaLMHeadModel, TFLayoutLMForMaskedLM, TFLxmertForPreTraining, TFLxmertVisualFeatureEncoder, TFOpenAIGPTLMHeadModel, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForSequenceClassification, TFTaForConditionalGeneration, TFTransfoXLLMHeadModel, TFWavaVecaModel, TFXLMRobertaForMaskedLM, TFXLMWithLMHeadModel, TFXLNetLMHeadModel, TransfoXLConfig, WavaVecaConfig, WavaVecaModel, XLMConfig, XLMRobertaConfig, XLNetConfig, is_torch_available, load_pytorch_checkpoint_in_tfa_model, ) from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging if is_torch_available(): import numpy as np import torch from . import ( AlbertForPreTraining, BartForConditionalGeneration, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, CamembertForMaskedLM, CTRLLMHeadModel, DistilBertForMaskedLM, DistilBertForQuestionAnswering, DPRContextEncoder, DPRQuestionEncoder, DPRReader, ElectraForPreTraining, FlaubertWithLMHeadModel, GPTaLMHeadModel, LayoutLMForMaskedLM, LxmertForPreTraining, LxmertVisualFeatureEncoder, OpenAIGPTLMHeadModel, RobertaForMaskedLM, RobertaForSequenceClassification, TaForConditionalGeneration, TransfoXLLMHeadModel, XLMRobertaForMaskedLM, XLMWithLMHeadModel, XLNetLMHeadModel, ) logging.set_verbosity_info() _lowercase : List[str] = { 'bart': ( BartConfig, TFBartForConditionalGeneration, TFBartForSequenceClassification, BartForConditionalGeneration, BART_PRETRAINED_MODEL_ARCHIVE_LIST, ), 'bert': ( BertConfig, TFBertForPreTraining, BertForPreTraining, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'bert-base-cased-finetuned-mrpc': ( BertConfig, TFBertForSequenceClassification, BertForSequenceClassification, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'dpr': ( DPRConfig, TFDPRQuestionEncoder, TFDPRContextEncoder, TFDPRReader, DPRQuestionEncoder, DPRContextEncoder, DPRReader, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ), 'gpt2': ( GPTaConfig, TFGPTaLMHeadModel, GPTaLMHeadModel, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'xlnet': ( XLNetConfig, TFXLNetLMHeadModel, XLNetLMHeadModel, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'xlm': ( XLMConfig, TFXLMWithLMHeadModel, XLMWithLMHeadModel, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'xlm-roberta': ( XLMRobertaConfig, TFXLMRobertaForMaskedLM, XLMRobertaForMaskedLM, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'transfo-xl': ( TransfoXLConfig, TFTransfoXLLMHeadModel, TransfoXLLMHeadModel, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'openai-gpt': ( OpenAIGPTConfig, TFOpenAIGPTLMHeadModel, OpenAIGPTLMHeadModel, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'roberta': ( RobertaConfig, TFRobertaForCausalLM, TFRobertaForMaskedLM, RobertaForMaskedLM, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'layoutlm': ( LayoutLMConfig, TFLayoutLMForMaskedLM, LayoutLMForMaskedLM, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, ), 'roberta-large-mnli': ( RobertaConfig, TFRobertaForSequenceClassification, RobertaForSequenceClassification, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'camembert': ( CamembertConfig, TFCamembertForMaskedLM, CamembertForMaskedLM, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'flaubert': ( FlaubertConfig, TFFlaubertWithLMHeadModel, FlaubertWithLMHeadModel, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'distilbert': ( DistilBertConfig, TFDistilBertForMaskedLM, DistilBertForMaskedLM, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'distilbert-base-distilled-squad': ( DistilBertConfig, TFDistilBertForQuestionAnswering, DistilBertForQuestionAnswering, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'lxmert': ( LxmertConfig, TFLxmertForPreTraining, LxmertForPreTraining, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'lxmert-visual-feature-encoder': ( LxmertConfig, TFLxmertVisualFeatureEncoder, LxmertVisualFeatureEncoder, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'ctrl': ( CTRLConfig, TFCTRLLMHeadModel, CTRLLMHeadModel, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'albert': ( AlbertConfig, TFAlbertForPreTraining, AlbertForPreTraining, ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 't5': ( TaConfig, TFTaForConditionalGeneration, TaForConditionalGeneration, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'electra': ( ElectraConfig, TFElectraForPreTraining, ElectraForPreTraining, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'wav2vec2': ( WavaVecaConfig, TFWavaVecaModel, WavaVecaModel, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), } def lowercase__ ( snake_case_ :str , snake_case_ :Union[str, Any] , snake_case_ :Tuple , snake_case_ :List[str] , snake_case_ :List[Any]=False , snake_case_ :List[Any]=True ): if model_type not in MODEL_CLASSES: raise ValueError(F'''Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.''' ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = MODEL_CLASSES[model_type] # Initialise TF model if config_file in aws_config_map: __UpperCAmelCase = cached_file(snake_case_ , snake_case_ , force_download=not use_cached_models ) __UpperCAmelCase = config_class.from_json_file(snake_case_ ) __UpperCAmelCase = True __UpperCAmelCase = True print(F'''Building TensorFlow model from configuration: {config}''' ) __UpperCAmelCase = model_class(snake_case_ ) # Load weights from tf checkpoint if pytorch_checkpoint_path in aws_config_map.keys(): __UpperCAmelCase = cached_file( snake_case_ , snake_case_ , force_download=not use_cached_models ) # Load PyTorch checkpoint in tf2 model: __UpperCAmelCase = load_pytorch_checkpoint_in_tfa_model(snake_case_ , snake_case_ ) if compare_with_pt_model: __UpperCAmelCase = tf_model(tf_model.dummy_inputs , training=snake_case_ ) # build the network __UpperCAmelCase = torch.load(snake_case_ , map_location='''cpu''' ) __UpperCAmelCase = pt_model_class.from_pretrained( pretrained_model_name_or_path=snake_case_ , config=snake_case_ , state_dict=snake_case_ ) with torch.no_grad(): __UpperCAmelCase = pt_model(**pt_model.dummy_inputs ) __UpperCAmelCase = pto[0].numpy() __UpperCAmelCase = tfo[0].numpy() __UpperCAmelCase = np.amax(np.abs(np_pt - np_tf ) ) print(F'''Max absolute difference between models outputs {diff}''' ) assert diff <= 2E-2, F'''Error, model absolute difference is >2e-2: {diff}''' # Save pytorch-model print(F'''Save TensorFlow model to {tf_dump_path}''' ) tf_model.save_weights(snake_case_ , save_format='''h5''' ) def lowercase__ ( snake_case_ :Union[str, Any] , snake_case_ :List[str] , snake_case_ :int=None , snake_case_ :Optional[int]=None , snake_case_ :List[str]=False , snake_case_ :Optional[int]=False , snake_case_ :Dict=False , snake_case_ :List[Any]=False , ): if args_model_type is None: __UpperCAmelCase = list(MODEL_CLASSES.keys() ) else: __UpperCAmelCase = [args_model_type] for j, model_type in enumerate(snake_case_ , start=1 ): print('''=''' * 100 ) print(F''' Converting model type {j}/{len(snake_case_ )}: {model_type}''' ) print('''=''' * 100 ) if model_type not in MODEL_CLASSES: raise ValueError(F'''Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.''' ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = MODEL_CLASSES[model_type] if model_shortcut_names_or_path is None: __UpperCAmelCase = list(aws_model_maps.keys() ) if config_shortcut_names_or_path is None: __UpperCAmelCase = model_shortcut_names_or_path for i, (model_shortcut_name, config_shortcut_name) in enumerate( zip(snake_case_ , snake_case_ ) , start=1 ): print('''-''' * 100 ) if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name: if not only_convert_finetuned_models: print(F''' Skipping finetuned checkpoint {model_shortcut_name}''' ) continue __UpperCAmelCase = model_shortcut_name elif only_convert_finetuned_models: print(F''' Skipping not finetuned checkpoint {model_shortcut_name}''' ) continue print( F''' Converting checkpoint {i}/{len(snake_case_ )}: {model_shortcut_name} - model_type {model_type}''' ) print('''-''' * 100 ) if config_shortcut_name in aws_config_map: __UpperCAmelCase = cached_file(snake_case_ , snake_case_ , force_download=not use_cached_models ) else: __UpperCAmelCase = config_shortcut_name if model_shortcut_name in aws_model_maps: __UpperCAmelCase = cached_file(snake_case_ , snake_case_ , force_download=not use_cached_models ) else: __UpperCAmelCase = model_shortcut_name if os.path.isfile(snake_case_ ): __UpperCAmelCase = '''converted_model''' convert_pt_checkpoint_to_tf( model_type=snake_case_ , pytorch_checkpoint_path=snake_case_ , config_file=snake_case_ , tf_dump_path=os.path.join(snake_case_ , model_shortcut_name + '''-tf_model.h5''' ) , compare_with_pt_model=snake_case_ , ) if remove_cached_files: os.remove(snake_case_ ) os.remove(snake_case_ ) if __name__ == "__main__": _lowercase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_dump_path', default=None, type=str, required=True, help='Path to the output Tensorflow dump file.' ) parser.add_argument( '--model_type', default=None, type=str, help=( f"""Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and """ 'convert all the models from AWS.' ), ) parser.add_argument( '--pytorch_checkpoint_path', default=None, type=str, help=( 'Path to the PyTorch checkpoint path or shortcut name to download from AWS. ' 'If not given, will download and convert all the checkpoints from AWS.' ), ) parser.add_argument( '--config_file', default=None, type=str, help=( 'The config json file corresponding to the pre-trained model. \n' 'This specifies the model architecture. If not given and ' '--pytorch_checkpoint_path is not given or is a shortcut name ' 'use the configuration associated to the shortcut name on the AWS' ), ) parser.add_argument( '--compare_with_pt_model', action='store_true', help='Compare Tensorflow and PyTorch model predictions.' ) parser.add_argument( '--use_cached_models', action='store_true', help='Use cached models if possible instead of updating to latest checkpoint versions.', ) parser.add_argument( '--remove_cached_files', action='store_true', help='Remove pytorch models after conversion (save memory when converting in batches).', ) parser.add_argument('--only_convert_finetuned_models', action='store_true', help='Only convert finetuned models.') _lowercase : List[Any] = parser.parse_args() # if args.pytorch_checkpoint_path is not None: # convert_pt_checkpoint_to_tf(args.model_type.lower(), # args.pytorch_checkpoint_path, # args.config_file if args.config_file is not None else args.pytorch_checkpoint_path, # args.tf_dump_path, # compare_with_pt_model=args.compare_with_pt_model, # use_cached_models=args.use_cached_models) # else: convert_all_pt_checkpoints_to_tf( args.model_type.lower() if args.model_type is not None else None, args.tf_dump_path, model_shortcut_names_or_path=[args.pytorch_checkpoint_path] if args.pytorch_checkpoint_path is not None else None, config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None, compare_with_pt_model=args.compare_with_pt_model, use_cached_models=args.use_cached_models, remove_cached_files=args.remove_cached_files, only_convert_finetuned_models=args.only_convert_finetuned_models, )
397
1
'''simple docstring''' import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed lowercase__ : Optional[int] = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(F'''{bindir}/../../examples/pytorch/translation'''): from run_translation import main # noqa set_seed(42) lowercase__ : Optional[int] = "sshleifer/student_marian_en_ro_6_1" lowercase__ : List[str] = "sshleifer/tiny-mbart" @require_torch class lowerCamelCase ( lowerCamelCase ): '''simple docstring''' def lowerCAmelCase__ ( self : str , UpperCAmelCase__ : Optional[Any]=False , UpperCAmelCase__ : Optional[int]=None , UpperCAmelCase__ : Optional[int]=True , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : Optional[int]=True , UpperCAmelCase__ : Dict=True , ) ->Union[str, Any]: UpperCAmelCase_ = self.run_trainer( eval_steps=1 , max_len=12 , model_name=UpperCAmelCase__ , num_train_epochs=1 , distributed=UpperCAmelCase__ , extra_args_str=UpperCAmelCase__ , predict_with_generate=UpperCAmelCase__ , do_train=UpperCAmelCase__ , do_eval=UpperCAmelCase__ , do_predict=UpperCAmelCase__ , ) UpperCAmelCase_ = TrainerState.load_from_json(os.path.join(UpperCAmelCase__ , '''trainer_state.json''' ) ).log_history if not do_eval: return UpperCAmelCase_ = [log for log in logs if '''eval_loss''' in log.keys()] UpperCAmelCase_ = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats UpperCAmelCase_ = eval_metrics[-1] assert isinstance(last_step_stats['''eval_bleu'''] , UpperCAmelCase__ ) assert not math.isnan(float(last_step_stats['''eval_loss'''] ) ), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def lowerCAmelCase__ ( self : List[Any] ) ->Tuple: self.run_seqaseq_quick() @require_torch_multi_gpu def lowerCAmelCase__ ( self : Tuple ) ->List[str]: self.run_seqaseq_quick(distributed=UpperCAmelCase__ ) @require_torch_multi_gpu def lowerCAmelCase__ ( self : Optional[Any] ) ->Dict: self.run_seqaseq_quick(distributed=UpperCAmelCase__ ) @unittest.skip('''Requires an update of the env running those tests''' ) @require_torch_multi_gpu @require_fairscale def lowerCAmelCase__ ( self : Optional[Any] ) ->int: self.run_seqaseq_quick(distributed=UpperCAmelCase__ , extra_args_str='''--sharded_ddp simple''' ) @unittest.skip('''Requires an update of the env running those tests''' ) @require_torch_multi_gpu @require_fairscale def lowerCAmelCase__ ( self : Optional[Any] ) ->Union[str, Any]: self.run_seqaseq_quick(distributed=UpperCAmelCase__ , extra_args_str='''--sharded_ddp simple --fp16''' ) @unittest.skip('''Requires an update of the env running those tests''' ) @require_torch_multi_gpu @require_fairscale def lowerCAmelCase__ ( self : Optional[Any] ) ->str: self.run_seqaseq_quick(distributed=UpperCAmelCase__ , extra_args_str='''--sharded_ddp zero_dp_2''' , predict_with_generate=UpperCAmelCase__ ) @unittest.skip('''Requires an update of the env running those tests''' ) @require_torch_multi_gpu @require_fairscale def lowerCAmelCase__ ( self : Optional[int] ) ->str: self.run_seqaseq_quick( distributed=UpperCAmelCase__ , extra_args_str='''--sharded_ddp zero_dp_2 --fp16''' , predict_with_generate=UpperCAmelCase__ ) @require_apex @require_torch_gpu def lowerCAmelCase__ ( self : Optional[int] ) ->List[Any]: # XXX: apex breaks the trainer if it's run twice e.g. run_seq2seq.main() from the same # program and it breaks other tests that run from the same pytest worker, therefore until this is # sorted out it must be run only in an external program, that is distributed=True in this # test and only under one or more gpus - if we want cpu will need to make a special test # # specifically to the problem traced it to self.optimizer.step() - if it's run 2nd time via # 2nd main() call it botches the future eval. # self.run_seqaseq_quick(distributed=UpperCAmelCase__ , extra_args_str='''--fp16 --fp16_backend=apex''' ) # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=UpperCAmelCase__ , extra_args_str='''--fp16 --fp16_backend=apex''' ) @parameterized.expand(['''base''', '''low''', '''high''', '''mixed'''] ) @require_torch_multi_gpu def lowerCAmelCase__ ( self : str , UpperCAmelCase__ : Optional[Any] ) ->Optional[int]: # as each sub-test is slow-ish split into multiple sub-tests to avoid CI timeout UpperCAmelCase_ = { # test with the default log_level - should be info and thus log info once '''base''': {'''extra_args_str''': '''''', '''n_matches''': 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes '''low''': {'''extra_args_str''': '''--log_level debug --log_level_replica debug''', '''n_matches''': 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica '''high''': {'''extra_args_str''': '''--log_level error --log_level_replica debug''', '''n_matches''': 1}, # test with high log_level and log_level_replica - should be quiet on all processes '''mixed''': {'''extra_args_str''': '''--log_level error --log_level_replica error''', '''n_matches''': 0}, } UpperCAmelCase_ = experiments[experiment_id] UpperCAmelCase_ = {'''distributed''': True, '''predict_with_generate''': False, '''do_eval''': False, '''do_predict''': False} UpperCAmelCase_ = '''Running training''' with CaptureStderr() as cl: self.run_seqaseq_quick(**UpperCAmelCase__ , extra_args_str=data['''extra_args_str'''] ) UpperCAmelCase_ = len(re.findall(UpperCAmelCase__ , cl.err ) ) self.assertEqual(UpperCAmelCase__ , data['''n_matches'''] ) @slow def lowerCAmelCase__ ( self : Optional[Any] ) ->List[str]: UpperCAmelCase_ = self.run_trainer( eval_steps=2 , max_len=128 , model_name=UpperCAmelCase__ , learning_rate=3e-4 , num_train_epochs=10 , distributed=UpperCAmelCase__ , ) # Check metrics UpperCAmelCase_ = TrainerState.load_from_json(os.path.join(UpperCAmelCase__ , '''trainer_state.json''' ) ).log_history UpperCAmelCase_ = [log for log in logs if '''eval_loss''' in log.keys()] UpperCAmelCase_ = eval_metrics[0] UpperCAmelCase_ = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats['''eval_bleu'''] , UpperCAmelCase__ ) # test if do_predict saves generations and metrics UpperCAmelCase_ = os.listdir(UpperCAmelCase__ ) UpperCAmelCase_ = {os.path.basename(UpperCAmelCase__ ) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def lowerCAmelCase__ ( self : List[Any] ) ->Union[str, Any]: from transformers.training_args import OptimizerNames def train_and_return_metrics(UpperCAmelCase__ : str ) -> Tuple[int, float]: UpperCAmelCase_ = '''--skip_memory_metrics 0''' UpperCAmelCase_ = self.run_trainer( max_len=128 , model_name=UpperCAmelCase__ , learning_rate=3e-4 , num_train_epochs=1 , optim=UpperCAmelCase__ , distributed=UpperCAmelCase__ , extra_args_str=UpperCAmelCase__ , do_eval=UpperCAmelCase__ , do_predict=UpperCAmelCase__ , n_gpus_to_use=1 , ) # Check metrics UpperCAmelCase_ = TrainerState.load_from_json(Path(UpperCAmelCase__ , '''trainer_state.json''' ) ).log_history UpperCAmelCase_ = int(logs[0]['''train_mem_gpu_peaked_delta'''] / 2**20 ) UpperCAmelCase_ = int(logs[0]['''train_mem_gpu_alloc_delta'''] / 2**20 ) UpperCAmelCase_ = logs[0]['''train_loss'''] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value ) UpperCAmelCase_ = gpu_alloc_mem_orig - gpu_alloc_mem_bnb UpperCAmelCase_ = gpu_peak_mem_orig + gpu_alloc_mem_orig UpperCAmelCase_ = gpu_peak_mem_bnb + gpu_alloc_mem_bnb UpperCAmelCase_ = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings UpperCAmelCase_ = 120 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( UpperCAmelCase__ , UpperCAmelCase__ , '''should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got''' f""" a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and""" f""" gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB""" , ) self.assertGreater( UpperCAmelCase__ , UpperCAmelCase__ , '''should use ~150MB less total gpu memory with BNB, compared to without it for this model but got''' f""" a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and""" f""" gpu_total_mem_bnb={gpu_total_mem_bnb}MB""" , ) self.assertEqual( UpperCAmelCase__ , UpperCAmelCase__ , f"""loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}""" ) def lowerCAmelCase__ ( self : List[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : str , UpperCAmelCase__ : int , UpperCAmelCase__ : float = 3e-3 , UpperCAmelCase__ : str = "adafactor" , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : str = None , UpperCAmelCase__ : int = 0 , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : int = None , ) ->str: UpperCAmelCase_ = self.test_file_dir / '''../fixtures/tests_samples/wmt_en_ro''' UpperCAmelCase_ = self.get_auto_remove_tmp_dir() UpperCAmelCase_ = f""" --model_name_or_path {model_name} --train_file {data_dir}/train.json --validation_file {data_dir}/val.json --test_file {data_dir}/test.json --output_dir {output_dir} --overwrite_output_dir --max_train_samples 8 --max_source_length {max_len} --max_target_length {max_len} --do_train --num_train_epochs {str(UpperCAmelCase__ )} --per_device_train_batch_size 4 --learning_rate {learning_rate} --warmup_steps 8 --logging_steps 0 --logging_strategy no --save_steps {str(UpperCAmelCase__ )} --group_by_length --label_smoothing_factor 0.1 --target_lang ro_RO --source_lang en_XX """.split() UpperCAmelCase_ = f""" --do_eval --per_device_eval_batch_size 4 --max_eval_samples 8 --val_max_target_length {max_len} --evaluation_strategy steps --eval_steps {str(UpperCAmelCase__ )} """.split() UpperCAmelCase_ = ''' --do_predict '''.split() UpperCAmelCase_ = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += f"""--optim {optim}""".split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: UpperCAmelCase_ = get_gpu_count() UpperCAmelCase_ = get_torch_dist_unique_port() UpperCAmelCase_ = f""" -m torch.distributed.run --nproc_per_node={n_gpus_to_use} --master_port={master_port} {self.examples_dir_str}/pytorch/translation/run_translation.py """.split() UpperCAmelCase_ = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(UpperCAmelCase__ , env=self.get_env() ) else: UpperCAmelCase_ = ['''run_translation.py'''] + args with patch.object(UpperCAmelCase__ , '''argv''' , UpperCAmelCase__ ): main() return output_dir
390
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowerCamelCase ( metaclass=lowerCamelCase ): '''simple docstring''' lowerCAmelCase__ = ['''onnx'''] def __init__( self : List[Any] , *UpperCAmelCase__ : Union[str, Any] , **UpperCAmelCase__ : Tuple ) ->Union[str, Any]: requires_backends(self , ['''onnx'''] ) @classmethod def lowerCAmelCase__ ( cls : List[Any] , *UpperCAmelCase__ : Tuple , **UpperCAmelCase__ : Optional[Any] ) ->Any: requires_backends(cls , ['''onnx'''] ) @classmethod def lowerCAmelCase__ ( cls : Any , *UpperCAmelCase__ : Tuple , **UpperCAmelCase__ : List[Any] ) ->Optional[Any]: requires_backends(cls , ['''onnx'''] )
390
1
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch lowerCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): lowerCamelCase_ =['pixel_values'] def __init__( self : Any , __lowerCAmelCase : bool = True , __lowerCAmelCase : Dict[str, int] = None , __lowerCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , __lowerCAmelCase : bool = True , __lowerCAmelCase : Union[int, float] = 1 / 255 , __lowerCAmelCase : bool = True , __lowerCAmelCase : Dict[str, int] = None , __lowerCAmelCase : bool = True , **__lowerCAmelCase : str , ) -> None: super().__init__(**__lowerCAmelCase) lowercase_ = size if size is not None else {"""shortest_edge""": 224} lowercase_ = get_size_dict(__lowerCAmelCase , default_to_square=__lowerCAmelCase) lowercase_ = crop_size if crop_size is not None else {"""height""": 256, """width""": 256} lowercase_ = get_size_dict(__lowerCAmelCase , param_name="crop_size") lowercase_ = do_resize lowercase_ = size lowercase_ = resample lowercase_ = do_rescale lowercase_ = rescale_factor lowercase_ = do_center_crop lowercase_ = crop_size lowercase_ = do_flip_channel_order def __UpperCAmelCase ( self : int , __lowerCAmelCase : np.ndarray , __lowerCAmelCase : Dict[str, int] , __lowerCAmelCase : PILImageResampling = PIL.Image.BILINEAR , __lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCAmelCase : str , ) -> np.ndarray: lowercase_ = get_size_dict(__lowerCAmelCase , default_to_square=__lowerCAmelCase) if "shortest_edge" not in size: raise ValueError(F'The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}') lowercase_ = get_resize_output_image_size(__lowerCAmelCase , size=size["shortest_edge"] , default_to_square=__lowerCAmelCase) return resize(__lowerCAmelCase , size=__lowerCAmelCase , resample=__lowerCAmelCase , data_format=__lowerCAmelCase , **__lowerCAmelCase) def __UpperCAmelCase ( self : List[Any] , __lowerCAmelCase : np.ndarray , __lowerCAmelCase : Dict[str, int] , __lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCAmelCase : Any , ) -> np.ndarray: lowercase_ = get_size_dict(__lowerCAmelCase) if "height" not in size or "width" not in size: raise ValueError(F'The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}') return center_crop(__lowerCAmelCase , size=(size["height"], size["width"]) , data_format=__lowerCAmelCase , **__lowerCAmelCase) def __UpperCAmelCase ( self : int , __lowerCAmelCase : np.ndarray , __lowerCAmelCase : Union[int, float] , __lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCAmelCase : Union[str, Any] , ) -> Optional[Any]: return rescale(__lowerCAmelCase , scale=__lowerCAmelCase , data_format=__lowerCAmelCase , **__lowerCAmelCase) def __UpperCAmelCase ( self : str , __lowerCAmelCase : np.ndarray , __lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None) -> np.ndarray: return flip_channel_order(__lowerCAmelCase , data_format=__lowerCAmelCase) def __UpperCAmelCase ( self : List[str] , __lowerCAmelCase : ImageInput , __lowerCAmelCase : bool = None , __lowerCAmelCase : Dict[str, int] = None , __lowerCAmelCase : PILImageResampling = None , __lowerCAmelCase : bool = None , __lowerCAmelCase : float = None , __lowerCAmelCase : bool = None , __lowerCAmelCase : Dict[str, int] = None , __lowerCAmelCase : bool = None , __lowerCAmelCase : Optional[Union[str, TensorType]] = None , __lowerCAmelCase : ChannelDimension = ChannelDimension.FIRST , **__lowerCAmelCase : Dict , ) -> PIL.Image.Image: lowercase_ = do_resize if do_resize is not None else self.do_resize lowercase_ = resample if resample is not None else self.resample lowercase_ = do_rescale if do_rescale is not None else self.do_rescale lowercase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase_ = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase_ = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) lowercase_ = size if size is not None else self.size lowercase_ = get_size_dict(__lowerCAmelCase , default_to_square=__lowerCAmelCase) lowercase_ = crop_size if crop_size is not None else self.crop_size lowercase_ = get_size_dict(__lowerCAmelCase , param_name="crop_size") lowercase_ = make_list_of_images(__lowerCAmelCase) if not valid_images(__lowerCAmelCase): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray.") if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True.") if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True.") if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True.") # All transformations expect numpy arrays. lowercase_ = [to_numpy_array(__lowerCAmelCase) for image in images] if do_resize: lowercase_ = [self.resize(image=__lowerCAmelCase , size=__lowerCAmelCase , resample=__lowerCAmelCase) for image in images] if do_center_crop: lowercase_ = [self.center_crop(image=__lowerCAmelCase , size=__lowerCAmelCase) for image in images] if do_rescale: lowercase_ = [self.rescale(image=__lowerCAmelCase , scale=__lowerCAmelCase) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: lowercase_ = [self.flip_channel_order(image=__lowerCAmelCase) for image in images] lowercase_ = [to_channel_dimension_format(__lowerCAmelCase , __lowerCAmelCase) for image in images] lowercase_ = {"""pixel_values""": images} return BatchFeature(data=__lowerCAmelCase , tensor_type=__lowerCAmelCase) def __UpperCAmelCase ( self : int , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Tuple] = None) -> List[str]: lowercase_ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__lowerCAmelCase) != len(__lowerCAmelCase): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits") if is_torch_tensor(__lowerCAmelCase): lowercase_ = target_sizes.numpy() lowercase_ = [] for idx in range(len(__lowerCAmelCase)): lowercase_ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0) , size=target_sizes[idx] , mode="bilinear" , align_corners=__lowerCAmelCase) lowercase_ = resized_logits[0].argmax(dim=0) semantic_segmentation.append(__lowerCAmelCase) else: lowercase_ = logits.argmax(dim=1) lowercase_ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
714
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCAmelCase_ : Any = logging.get_logger(__name__) class lowercase ( __lowerCamelCase ): lowerCamelCase_ =['pixel_values'] def __init__( self : Optional[int] , __lowerCAmelCase : bool = True , __lowerCAmelCase : int = 32 , __lowerCAmelCase : List[str]=PILImageResampling.BILINEAR , __lowerCAmelCase : bool = True , **__lowerCAmelCase : Union[str, Any] , ) -> None: lowercase_ = do_resize lowercase_ = do_rescale lowercase_ = size_divisor lowercase_ = resample super().__init__(**__lowerCAmelCase) def __UpperCAmelCase ( self : List[str] , __lowerCAmelCase : np.ndarray , __lowerCAmelCase : int , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[ChannelDimension] = None , **__lowerCAmelCase : Any) -> np.ndarray: lowercase_ , lowercase_ = get_image_size(__lowerCAmelCase) # Rounds the height and width down to the closest multiple of size_divisor lowercase_ = height // size_divisor * size_divisor lowercase_ = width // size_divisor * size_divisor lowercase_ = resize(__lowerCAmelCase , (new_h, new_w) , resample=__lowerCAmelCase , data_format=__lowerCAmelCase , **__lowerCAmelCase) return image def __UpperCAmelCase ( self : str , __lowerCAmelCase : np.ndarray , __lowerCAmelCase : float , __lowerCAmelCase : Optional[ChannelDimension] = None , **__lowerCAmelCase : int) -> np.ndarray: return rescale(image=__lowerCAmelCase , scale=__lowerCAmelCase , data_format=__lowerCAmelCase , **__lowerCAmelCase) def __UpperCAmelCase ( self : Optional[Any] , __lowerCAmelCase : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , __lowerCAmelCase : Optional[bool] = None , __lowerCAmelCase : Optional[int] = None , __lowerCAmelCase : str=None , __lowerCAmelCase : Optional[bool] = None , __lowerCAmelCase : Optional[Union[TensorType, str]] = None , __lowerCAmelCase : ChannelDimension = ChannelDimension.FIRST , **__lowerCAmelCase : List[str] , ) -> BatchFeature: lowercase_ = do_resize if do_resize is not None else self.do_resize lowercase_ = do_rescale if do_rescale is not None else self.do_rescale lowercase_ = size_divisor if size_divisor is not None else self.size_divisor lowercase_ = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError("size_divisor is required for resizing") lowercase_ = make_list_of_images(__lowerCAmelCase) if not valid_images(__lowerCAmelCase): raise ValueError("Invalid image(s)") # All transformations expect numpy arrays. lowercase_ = [to_numpy_array(__lowerCAmelCase) for img in images] if do_resize: lowercase_ = [self.resize(__lowerCAmelCase , size_divisor=__lowerCAmelCase , resample=__lowerCAmelCase) for image in images] if do_rescale: lowercase_ = [self.rescale(__lowerCAmelCase , scale=1 / 255) for image in images] lowercase_ = [to_channel_dimension_format(__lowerCAmelCase , __lowerCAmelCase) for image in images] lowercase_ = {"pixel_values": images} return BatchFeature(data=__lowerCAmelCase , tensor_type=__lowerCAmelCase)
461
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase = {"configuration_glpn": ["GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP", "GLPNConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["GLPNFeatureExtractor"] UpperCamelCase = ["GLPNImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "GLPN_PRETRAINED_MODEL_ARCHIVE_LIST", "GLPNForDepthEstimation", "GLPNLayer", "GLPNModel", "GLPNPreTrainedModel", ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
66
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> tuple[float, float]: # Check if the input is valid if not len(SCREAMING_SNAKE_CASE ) == len(SCREAMING_SNAKE_CASE ) == 3: raise ValueError('Please enter a valid equation.' ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError('Both a & b of two equations can\'t be zero.' ) # Extract the coefficients _lowercase , _lowercase , _lowercase : Tuple = equationa _lowercase , _lowercase , _lowercase : Dict = equationa # Calculate the determinants of the matrices _lowercase : str = aa * ba - aa * ba _lowercase : Any = ca * ba - ca * ba _lowercase : Optional[int] = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError('Infinite solutions. (Consistent system)' ) else: raise ValueError('No solution. (Inconsistent system)' ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: _lowercase : Union[str, Any] = determinant_x / determinant _lowercase : Tuple = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
66
1
'''simple docstring''' import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex lowercase : Dict = logging.getLogger(__name__) class __lowercase : """simple docstring""" def __init__( self ) -> Optional[int]: A : int = False def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: if not self.initialized: A : str = RagRetriever( __UpperCAmelCase , question_encoder_tokenizer=__UpperCAmelCase , generator_tokenizer=__UpperCAmelCase , index=__UpperCAmelCase , init_retrieval=__UpperCAmelCase , ) A : Tuple = True def snake_case ( self ) -> int: self.retriever.index.init_index() def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase ) -> str: A : str = self.retriever._main_retrieve(__UpperCAmelCase , __UpperCAmelCase ) return doc_ids, retrieved_doc_embeds class __lowercase ( _SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None ) -> Optional[Any]: if index is not None and index.is_initialized() and len(__UpperCAmelCase ) > 0: raise ValueError( '''When using Ray for distributed fine-tuning, ''' '''you\'ll need to provide the paths instead, ''' '''as the dataset and the index are loaded ''' '''separately. More info in examples/rag/use_own_knowledge_dataset.py ''' ) super().__init__( __UpperCAmelCase , question_encoder_tokenizer=__UpperCAmelCase , generator_tokenizer=__UpperCAmelCase , index=__UpperCAmelCase , init_retrieval=__UpperCAmelCase , ) A : Optional[int] = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) for worker in self.retrieval_workers ] ) def snake_case ( self ) -> Union[str, Any]: logger.info('''initializing retrieval''' ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. A : List[Any] = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] A : Union[str, Any] = ray.get(random_worker.retrieve.remote(__UpperCAmelCase , __UpperCAmelCase ) ) else: A : Any = self._main_retrieve(__UpperCAmelCase , __UpperCAmelCase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__UpperCAmelCase ) @classmethod def snake_case ( cls , __UpperCAmelCase , __UpperCAmelCase=None , **__UpperCAmelCase ) -> Any: return super(__UpperCAmelCase , cls ).get_tokenizers(__UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) @classmethod def snake_case ( cls , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , **__UpperCAmelCase ) -> Dict: A : int = kwargs.pop('''config''' , __UpperCAmelCase ) or RagConfig.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) A : Tuple = RagTokenizer.from_pretrained(__UpperCAmelCase , config=__UpperCAmelCase ) A : Any = rag_tokenizer.question_encoder A : int = rag_tokenizer.generator if indexed_dataset is not None: A : Optional[int] = '''custom''' A : Tuple = CustomHFIndex(config.retrieval_vector_size , __UpperCAmelCase ) else: A : Union[str, Any] = cls._build_index(__UpperCAmelCase ) return cls( __UpperCAmelCase , question_encoder_tokenizer=__UpperCAmelCase , generator_tokenizer=__UpperCAmelCase , retrieval_workers=__UpperCAmelCase , index=__UpperCAmelCase , )
701
import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex lowercase : Dict = logging.getLogger(__name__) class __lowercase : """simple docstring""" def __init__( self ) -> Optional[int]: A : int = False def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: if not self.initialized: A : str = RagRetriever( __UpperCAmelCase , question_encoder_tokenizer=__UpperCAmelCase , generator_tokenizer=__UpperCAmelCase , index=__UpperCAmelCase , init_retrieval=__UpperCAmelCase , ) A : Tuple = True def snake_case ( self ) -> int: self.retriever.index.init_index() def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase ) -> str: A , A : str = self.retriever._main_retrieve(__UpperCAmelCase , __UpperCAmelCase ) return doc_ids, retrieved_doc_embeds class __lowercase ( _SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None ) -> Optional[Any]: if index is not None and index.is_initialized() and len(__UpperCAmelCase ) > 0: raise ValueError( '''When using Ray for distributed fine-tuning, ''' '''you\'ll need to provide the paths instead, ''' '''as the dataset and the index are loaded ''' '''separately. More info in examples/rag/use_own_knowledge_dataset.py ''' ) super().__init__( __UpperCAmelCase , question_encoder_tokenizer=__UpperCAmelCase , generator_tokenizer=__UpperCAmelCase , index=__UpperCAmelCase , init_retrieval=__UpperCAmelCase , ) A : Optional[int] = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) for worker in self.retrieval_workers ] ) def snake_case ( self ) -> Union[str, Any]: logger.info('''initializing retrieval''' ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. A : List[Any] = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] A , A : Union[str, Any] = ray.get(random_worker.retrieve.remote(__UpperCAmelCase , __UpperCAmelCase ) ) else: A , A : Any = self._main_retrieve(__UpperCAmelCase , __UpperCAmelCase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__UpperCAmelCase ) @classmethod def snake_case ( cls , __UpperCAmelCase , __UpperCAmelCase=None , **__UpperCAmelCase ) -> Any: return super(__UpperCAmelCase , cls ).get_tokenizers(__UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) @classmethod def snake_case ( cls , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , **__UpperCAmelCase ) -> Dict: A : int = kwargs.pop('''config''' , __UpperCAmelCase ) or RagConfig.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) A : Tuple = RagTokenizer.from_pretrained(__UpperCAmelCase , config=__UpperCAmelCase ) A : Any = rag_tokenizer.question_encoder A : int = rag_tokenizer.generator if indexed_dataset is not None: A : Optional[int] = '''custom''' A : Tuple = CustomHFIndex(config.retrieval_vector_size , __UpperCAmelCase ) else: A : Union[str, Any] = cls._build_index(__UpperCAmelCase ) return cls( __UpperCAmelCase , question_encoder_tokenizer=__UpperCAmelCase , generator_tokenizer=__UpperCAmelCase , retrieval_workers=__UpperCAmelCase , index=__UpperCAmelCase , )
423
0
# flake8: noqa # Lint as: python3 _lowerCAmelCase = [ "VerificationMode", "Version", "disable_progress_bar", "enable_progress_bar", "is_progress_bar_enabled", "experimental", ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
10
import sys from collections import defaultdict class lowerCAmelCase_ : def __init__( self : Optional[int] ): _UpperCamelCase = [] def UpperCamelCase_ ( self : Any , _A : str ): return self.node_position[vertex] def UpperCamelCase_ ( self : Optional[Any] , _A : List[str] , _A : Union[str, Any] ): _UpperCamelCase = pos def UpperCamelCase_ ( self : Any , _A : List[str] , _A : int , _A : Optional[Any] , _A : Union[str, Any] ): if start > size // 2 - 1: return else: if 2 * start + 2 >= size: _UpperCamelCase = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: _UpperCamelCase = 2 * start + 1 else: _UpperCamelCase = 2 * start + 2 if heap[smallest_child] < heap[start]: _UpperCamelCase , _UpperCamelCase = heap[smallest_child], positions[smallest_child] _UpperCamelCase , _UpperCamelCase = ( heap[start], positions[start], ) _UpperCamelCase , _UpperCamelCase = temp, tempa _UpperCamelCase = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , _A ) self.top_to_bottom(_A , _A , _A , _A ) def UpperCamelCase_ ( self : List[str] , _A : Tuple , _A : Optional[Any] , _A : int , _A : Optional[int] ): _UpperCamelCase = position[index] while index != 0: _UpperCamelCase = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: _UpperCamelCase = heap[parent] _UpperCamelCase = position[parent] self.set_position(position[parent] , _A ) else: _UpperCamelCase = val _UpperCamelCase = temp self.set_position(_A , _A ) break _UpperCamelCase = parent else: _UpperCamelCase = val _UpperCamelCase = temp self.set_position(_A , 0 ) def UpperCamelCase_ ( self : int , _A : Tuple , _A : int ): _UpperCamelCase = len(_A ) // 2 - 1 for i in range(_A , -1 , -1 ): self.top_to_bottom(_A , _A , len(_A ) , _A ) def UpperCamelCase_ ( self : Any , _A : int , _A : List[str] ): _UpperCamelCase = positions[0] _UpperCamelCase = sys.maxsize self.top_to_bottom(_A , 0 , len(_A ) , _A ) return temp def _snake_case ( __snake_case ): _UpperCamelCase = Heap() _UpperCamelCase = [0] * len(__snake_case ) _UpperCamelCase = [-1] * len(__snake_case ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph _UpperCamelCase = [] # Heap of Distance of vertices from their neighboring vertex _UpperCamelCase = [] for vertex in range(len(__snake_case ) ): distance_tv.append(sys.maxsize ) positions.append(__snake_case ) heap.node_position.append(__snake_case ) _UpperCamelCase = [] _UpperCamelCase = 1 _UpperCamelCase = sys.maxsize for neighbor, distance in adjacency_list[0]: _UpperCamelCase = 0 _UpperCamelCase = distance heap.heapify(__snake_case , __snake_case ) for _ in range(1 , len(__snake_case ) ): _UpperCamelCase = heap.delete_minimum(__snake_case , __snake_case ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) _UpperCamelCase = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(__snake_case )] ): _UpperCamelCase = distance heap.bottom_to_top( __snake_case , heap.get_position(__snake_case ) , __snake_case , __snake_case ) _UpperCamelCase = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > _lowerCAmelCase = int(input("Enter number of edges: ").strip()) _lowerCAmelCase = defaultdict(list) for _ in range(edges_number): _lowerCAmelCase = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
10
1
import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _snake_case : @staticmethod def lowercase__ ( *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' pass @is_pipeline_test @require_torch @require_vision class _snake_case ( unittest.TestCase ): __lowerCAmelCase : Dict = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Any = pipeline("""visual-question-answering""" , model="""hf-internal-testing/tiny-vilt-random-vqa""") lowercase__ : Any = [ { """image""": Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png"""), """question""": """How many cats are there?""", }, { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """question""": """How many cats are there?""", }, ] return vqa_pipeline, examples def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : str = vqa_pipeline(SCREAMING_SNAKE_CASE_ , top_k=1) self.assertEqual( SCREAMING_SNAKE_CASE_ , [ [{"""score""": ANY(SCREAMING_SNAKE_CASE_), """answer""": ANY(SCREAMING_SNAKE_CASE_)}], [{"""score""": ANY(SCREAMING_SNAKE_CASE_), """answer""": ANY(SCREAMING_SNAKE_CASE_)}], ] , ) @require_torch def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[Any] = pipeline("""visual-question-answering""" , model="""hf-internal-testing/tiny-vilt-random-vqa""") lowercase__ : Optional[int] = """./tests/fixtures/tests_samples/COCO/000000039769.png""" lowercase__ : Dict = """How many cats are there?""" lowercase__ : Optional[int] = vqa_pipeline(image=SCREAMING_SNAKE_CASE_ , question="""How many cats are there?""" , top_k=2) self.assertEqual( SCREAMING_SNAKE_CASE_ , [{"""score""": ANY(SCREAMING_SNAKE_CASE_), """answer""": ANY(SCREAMING_SNAKE_CASE_)}, {"""score""": ANY(SCREAMING_SNAKE_CASE_), """answer""": ANY(SCREAMING_SNAKE_CASE_)}]) lowercase__ : Optional[int] = vqa_pipeline({"""image""": image, """question""": question} , top_k=2) self.assertEqual( SCREAMING_SNAKE_CASE_ , [{"""score""": ANY(SCREAMING_SNAKE_CASE_), """answer""": ANY(SCREAMING_SNAKE_CASE_)}, {"""score""": ANY(SCREAMING_SNAKE_CASE_), """answer""": ANY(SCREAMING_SNAKE_CASE_)}]) @slow @require_torch def lowercase__ ( self): '''simple docstring''' lowercase__ : List[Any] = pipeline("""visual-question-answering""" , model="""dandelin/vilt-b32-finetuned-vqa""") lowercase__ : Optional[Any] = """./tests/fixtures/tests_samples/COCO/000000039769.png""" lowercase__ : List[Any] = """How many cats are there?""" lowercase__ : int = vqa_pipeline(image=SCREAMING_SNAKE_CASE_ , question=SCREAMING_SNAKE_CASE_ , top_k=2) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4) , [{"""score""": 0.8_7_9_9, """answer""": """2"""}, {"""score""": 0.2_9_6, """answer""": """1"""}]) lowercase__ : Any = vqa_pipeline({"""image""": image, """question""": question} , top_k=2) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4) , [{"""score""": 0.8_7_9_9, """answer""": """2"""}, {"""score""": 0.2_9_6, """answer""": """1"""}]) lowercase__ : List[Any] = vqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4) , [[{"""score""": 0.8_7_9_9, """answer""": """2"""}, {"""score""": 0.2_9_6, """answer""": """1"""}]] * 2 , ) @require_tf @unittest.skip("""Visual question answering not implemented in TF""") def lowercase__ ( self): '''simple docstring''' pass
715
# Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() lowerCamelCase__ : Optional[int] = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model lowerCamelCase__ : str = { # fairseq: """wmt19-ru-en""": {"""length_penalty""": 1.1}, """wmt19-en-ru""": {"""length_penalty""": 1.15}, """wmt19-en-de""": {"""length_penalty""": 1.0}, """wmt19-de-en""": {"""length_penalty""": 1.1}, # allenai: """wmt16-en-de-dist-12-1""": {"""length_penalty""": 0.6}, """wmt16-en-de-dist-6-1""": {"""length_penalty""": 0.6}, """wmt16-en-de-12-1""": {"""length_penalty""": 0.8}, """wmt19-de-en-6-6-base""": {"""length_penalty""": 0.6}, """wmt19-de-en-6-6-big""": {"""length_penalty""": 0.6}, } # this remaps the different models to their organization names lowerCamelCase__ : Optional[Any] = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: lowerCamelCase__ : Any = """facebook""" for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: lowerCamelCase__ : Optional[int] = """allenai""" def UpperCamelCase ( lowercase_ ) -> str: '''simple docstring''' lowercase__ : int = dict((re.sub(R"""@@$""" , """""" , lowercase_ ), v) if k.endswith("""@@""" ) else (re.sub(R"""$""" , """</w>""" , lowercase_ ), v) for k, v in d.items() ) lowercase__ : Optional[Any] = """<s> <pad> </s> <unk>""".split() # restore the special tokens for k in keep_keys: del da[F'{k}</w>'] lowercase__ : Optional[Any] = d[k] # restore return da def UpperCamelCase ( lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' assert os.path.exists(lowercase_ ) os.makedirs(lowercase_ , exist_ok=lowercase_ ) print(F'Writing results to {pytorch_dump_folder_path}' ) # handle various types of models lowercase__ : Optional[Any] = basename(lowercase_ ) lowercase__ : Union[str, Any] = dirname(lowercase_ ) lowercase__ : Tuple = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel lowercase__ : Optional[Any] = cls.hub_models() lowercase__ : str = {"""bpe""": """fastbpe""", """tokenizer""": """moses"""} lowercase__ : Tuple = """.""" # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(F'using checkpoint {checkpoint_file}' ) lowercase__ : Dict = hub_utils.from_pretrained( lowercase_ , lowercase_ , lowercase_ , archive_map=lowercase_ , **lowercase_ ) lowercase__ : Union[str, Any] = vars(chkpt["""args"""]["""model"""] ) lowercase__ : Union[str, Any] = args["""source_lang"""] lowercase__ : Dict = args["""target_lang"""] lowercase__ : List[str] = dirname(lowercase_ ) lowercase__ : Tuple = basename(lowercase_ ) # dicts lowercase__ : Any = os.path.join(lowercase_ , F'dict.{src_lang}.txt' ) lowercase__ : Union[str, Any] = os.path.join(lowercase_ , F'dict.{tgt_lang}.txt' ) lowercase__ : int = Dictionary.load(lowercase_ ) lowercase__ : int = rewrite_dict_keys(src_dict.indices ) lowercase__ : Optional[int] = len(lowercase_ ) lowercase__ : Any = os.path.join(lowercase_ , """vocab-src.json""" ) print(F'Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records' ) with open(lowercase_ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowercase_ , ensure_ascii=lowercase_ , indent=lowercase_ ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab lowercase__ : List[Any] = True for k in src_vocab.keys(): if not k.islower(): lowercase__ : Any = False break lowercase__ : Optional[Any] = Dictionary.load(lowercase_ ) lowercase__ : List[str] = rewrite_dict_keys(tgt_dict.indices ) lowercase__ : Union[str, Any] = len(lowercase_ ) lowercase__ : Tuple = os.path.join(lowercase_ , """vocab-tgt.json""" ) print(F'Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records' ) with open(lowercase_ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowercase_ , ensure_ascii=lowercase_ , indent=lowercase_ ) ) # merges_file (bpecodes) lowercase__ : str = os.path.join(lowercase_ , VOCAB_FILES_NAMES["""merges_file"""] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" lowercase__ : Tuple = os.path.join(lowercase_ , lowercase_ ) if os.path.exists(lowercase_ ): break with open(lowercase_ , encoding="""utf-8""" ) as fin: lowercase__ : List[str] = fin.read() lowercase__ : List[str] = re.sub(R""" \d+$""" , """""" , lowercase_ , 0 , re.M ) # remove frequency number print(F'Generating {merges_file}' ) with open(lowercase_ , """w""" , encoding="""utf-8""" ) as fout: fout.write(lowercase_ ) # model config lowercase__ : int = os.path.join(lowercase_ , """config.json""" ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", F'need to extend tokenizer to support bpe={args["bpe"]}' assert args["tokenizer"] == "moses", F'need to extend tokenizer to support bpe={args["tokenizer"]}' lowercase__ : List[Any] = { """architectures""": ["""FSMTForConditionalGeneration"""], """model_type""": """fsmt""", """activation_dropout""": args["""activation_dropout"""], """activation_function""": """relu""", """attention_dropout""": args["""attention_dropout"""], """d_model""": args["""decoder_embed_dim"""], """dropout""": args["""dropout"""], """init_std""": 0.02, """max_position_embeddings""": args["""max_source_positions"""], """num_hidden_layers""": args["""encoder_layers"""], """src_vocab_size""": src_vocab_size, """tgt_vocab_size""": tgt_vocab_size, """langs""": [src_lang, tgt_lang], """encoder_attention_heads""": args["""encoder_attention_heads"""], """encoder_ffn_dim""": args["""encoder_ffn_embed_dim"""], """encoder_layerdrop""": args["""encoder_layerdrop"""], """encoder_layers""": args["""encoder_layers"""], """decoder_attention_heads""": args["""decoder_attention_heads"""], """decoder_ffn_dim""": args["""decoder_ffn_embed_dim"""], """decoder_layerdrop""": args["""decoder_layerdrop"""], """decoder_layers""": args["""decoder_layers"""], """bos_token_id""": 0, """pad_token_id""": 1, """eos_token_id""": 2, """is_encoder_decoder""": True, """scale_embedding""": not args["""no_scale_embedding"""], """tie_word_embeddings""": args["""share_all_embeddings"""], } # good hparam defaults to start with lowercase__ : str = 5 lowercase__ : Union[str, Any] = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: lowercase__ : Any = best_score_hparams[model_dir]["""length_penalty"""] else: lowercase__ : int = 1.0 print(F'Generating {fsmt_model_config_file}' ) with open(lowercase_ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowercase_ , ensure_ascii=lowercase_ , indent=lowercase_ ) ) # tokenizer config lowercase__ : Tuple = os.path.join(lowercase_ , lowercase_ ) lowercase__ : Optional[Any] = { """langs""": [src_lang, tgt_lang], """model_max_length""": 10_24, """do_lower_case""": do_lower_case, } print(F'Generating {fsmt_tokenizer_config_file}' ) with open(lowercase_ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowercase_ , ensure_ascii=lowercase_ , indent=lowercase_ ) ) # model lowercase__ : Union[str, Any] = chkpt["""models"""][0] lowercase__ : Dict = model.state_dict() # rename keys to start with 'model.' lowercase__ : Dict = OrderedDict(("""model.""" + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys lowercase__ : int = [ """model.model""", """model.encoder.version""", """model.decoder.version""", """model.encoder_embed_tokens.weight""", """model.decoder_embed_tokens.weight""", """model.encoder.embed_positions._float_tensor""", """model.decoder.embed_positions._float_tensor""", ] for k in ignore_keys: model_state_dict.pop(lowercase_ , lowercase_ ) lowercase__ : Dict = FSMTConfig.from_pretrained(lowercase_ ) lowercase__ : Optional[Any] = FSMTForConditionalGeneration(lowercase_ ) # check that it loads ok model_new.load_state_dict(lowercase_ , strict=lowercase_ ) # save lowercase__ : Optional[int] = os.path.join(lowercase_ , lowercase_ ) print(F'Generating {pytorch_weights_dump_path}' ) torch.save(lowercase_ , lowercase_ ) print("""Conversion is done!""" ) print("""\nLast step is to upload the files to s3""" ) print(F'cd {data_root}' ) print(F'transformers-cli upload {model_dir}' ) if __name__ == "__main__": lowerCamelCase__ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( """--fsmt_checkpoint_path""", default=None, type=str, required=True, help=( """Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,""" """ bpecodes, etc.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowerCamelCase__ : List[str] = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
495
0
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("""TEST_SAGEMAKER""" , """False""" ) ) is not True , reason="""Skipping test because should only be run when releasing minor transformers version""" , ) @pytest.mark.usefixtures("""sm_env""" ) @parameterized_class( [ { """framework""": """pytorch""", """script""": """run_glue.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.p3.16xlarge""", """results""": {"""train_runtime""": 6_50, """eval_accuracy""": 0.7, """eval_loss""": 0.6}, }, { """framework""": """pytorch""", """script""": """run_ddp.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.p3.16xlarge""", """results""": {"""train_runtime""": 6_00, """eval_accuracy""": 0.7, """eval_loss""": 0.6}, }, { """framework""": """tensorflow""", """script""": """run_tf_dist.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.p3.16xlarge""", """results""": {"""train_runtime""": 6_00, """eval_accuracy""": 0.6, """eval_loss""": 0.7}, }, ] ) class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _lowerCamelCase ( self ): if self.framework == "pytorch": subprocess.run( f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="""utf-8""" , check=__lowerCAmelCase , ) assert hasattr(self , """env""" ) def _lowerCamelCase ( self , __lowerCAmelCase ): UpperCamelCase__ = f"""{self.env.base_job_name}-{instance_count}-{"ddp" if "ddp" in self.script else "smd"}""" # distributed data settings UpperCamelCase__ = {"""smdistributed""": {"""dataparallel""": {"""enabled""": True}}} if self.script != """run_ddp.py""" else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=__lowerCAmelCase , instance_count=__lowerCAmelCase , instance_type=self.instance_type , debugger_hook_config=__lowerCAmelCase , hyperparameters={**self.env.distributed_hyperparameters, """model_name_or_path""": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=__lowerCAmelCase , py_version="""py36""" , ) def _lowerCamelCase ( self , __lowerCAmelCase ): TrainingJobAnalytics(__lowerCAmelCase ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(2,)] ) def _lowerCamelCase ( self , __lowerCAmelCase ): # create estimator UpperCamelCase__ = self.create_estimator(__lowerCAmelCase ) # run training estimator.fit() # result dataframe UpperCamelCase__ = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis UpperCamelCase__ = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) UpperCamelCase__ = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping UpperCamelCase__ = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 999999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"""{estimator.latest_training_job.name}.json""" , """w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , __lowerCAmelCase )
619
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase__ = { "vocab_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/vocab.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/vocab.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/vocab.json", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json", "roberta-large-openai-detector": ( "https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json" ), }, "merges_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/merges.txt", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/merges.txt", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/merges.txt", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt", "roberta-large-openai-detector": ( "https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt" ), }, "tokenizer_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/tokenizer.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/tokenizer.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json", "roberta-base-openai-detector": ( "https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json" ), "roberta-large-openai-detector": ( "https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json" ), }, } UpperCamelCase__ = { "roberta-base": 512, "roberta-large": 512, "roberta-large-mnli": 512, "distilroberta-base": 512, "roberta-base-openai-detector": 512, "roberta-large-openai-detector": 512, } class __SCREAMING_SNAKE_CASE ( _a ): snake_case : Optional[Any] = VOCAB_FILES_NAMES snake_case : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP snake_case : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case : Dict = ["""input_ids""", """attention_mask"""] snake_case : List[Any] = RobertaTokenizer def __init__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase="replace" , __lowerCAmelCase="<s>" , __lowerCAmelCase="</s>" , __lowerCAmelCase="</s>" , __lowerCAmelCase="<s>" , __lowerCAmelCase="<unk>" , __lowerCAmelCase="<pad>" , __lowerCAmelCase="<mask>" , __lowerCAmelCase=False , __lowerCAmelCase=True , **__lowerCAmelCase , ): super().__init__( __lowerCAmelCase , __lowerCAmelCase , tokenizer_file=__lowerCAmelCase , errors=__lowerCAmelCase , bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , sep_token=__lowerCAmelCase , cls_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , mask_token=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase , **__lowerCAmelCase , ) UpperCamelCase__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , __lowerCAmelCase ) != add_prefix_space: UpperCamelCase__ = getattr(__lowerCAmelCase , pre_tok_state.pop("""type""" ) ) UpperCamelCase__ = add_prefix_space UpperCamelCase__ = pre_tok_class(**__lowerCAmelCase ) UpperCamelCase__ = add_prefix_space UpperCamelCase__ = """post_processor""" UpperCamelCase__ = getattr(self.backend_tokenizer , __lowerCAmelCase , __lowerCAmelCase ) if tokenizer_component_instance: UpperCamelCase__ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: UpperCamelCase__ = tuple(state["""sep"""] ) if "cls" in state: UpperCamelCase__ = tuple(state["""cls"""] ) UpperCamelCase__ = False if state.get("""add_prefix_space""" , __lowerCAmelCase ) != add_prefix_space: UpperCamelCase__ = add_prefix_space UpperCamelCase__ = True if state.get("""trim_offsets""" , __lowerCAmelCase ) != trim_offsets: UpperCamelCase__ = trim_offsets UpperCamelCase__ = True if changes_to_apply: UpperCamelCase__ = getattr(__lowerCAmelCase , state.pop("""type""" ) ) UpperCamelCase__ = component_class(**__lowerCAmelCase ) setattr(self.backend_tokenizer , __lowerCAmelCase , __lowerCAmelCase ) @property def _lowerCamelCase ( self ): if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def _lowerCamelCase ( self , __lowerCAmelCase ): UpperCamelCase__ = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else value UpperCamelCase__ = value def _lowerCamelCase ( self , *__lowerCAmelCase , **__lowerCAmelCase ): UpperCamelCase__ = kwargs.get("""is_split_into_words""" , __lowerCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__lowerCAmelCase , **__lowerCAmelCase ) def _lowerCamelCase ( self , *__lowerCAmelCase , **__lowerCAmelCase ): UpperCamelCase__ = kwargs.get("""is_split_into_words""" , __lowerCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*__lowerCAmelCase , **__lowerCAmelCase ) def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = None ): UpperCamelCase__ = self._tokenizer.model.save(__lowerCAmelCase , name=__lowerCAmelCase ) return tuple(__lowerCAmelCase ) def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase=None ): UpperCamelCase__ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = None ): UpperCamelCase__ = [self.sep_token_id] UpperCamelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
619
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __a = {"""configuration_unispeech""": ["""UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP""", """UniSpeechConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ """UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST""", """UniSpeechForCTC""", """UniSpeechForPreTraining""", """UniSpeechForSequenceClassification""", """UniSpeechModel""", """UniSpeechPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
689
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class UpperCamelCase__( lowerCAmelCase__ ): """simple docstring""" _A = "Wav2Vec2FeatureExtractor" _A = "AutoTokenizer" def __init__( self : List[Any] , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any] ): """simple docstring""" super().__init__(snake_case__ , snake_case__ ) A =self.feature_extractor A =False @classmethod def _a ( cls : List[str] , snake_case__ : Union[str, Any] , **snake_case__ : Dict ): """simple docstring""" try: return super().from_pretrained(snake_case__ , **snake_case__ ) except OSError: warnings.warn( f'''Loading a tokenizer inside {cls.__name__} from a config that does not''' " include a `tokenizer_class` attribute is deprecated and will be " "removed in v5. Please add `'tokenizer_class': 'Wav2Vec2CTCTokenizer'`" " attribute to either your `config.json` or `tokenizer_config.json` " "file to suppress this warning: " , snake_case__ , ) A =WavaVecaFeatureExtractor.from_pretrained(snake_case__ , **snake_case__ ) A =WavaVecaCTCTokenizer.from_pretrained(snake_case__ , **snake_case__ ) return cls(feature_extractor=snake_case__ , tokenizer=snake_case__ ) def __call__( self : Optional[Any] , *snake_case__ : Union[str, Any] , **snake_case__ : Optional[int] ): """simple docstring""" if self._in_target_context_manager: return self.current_processor(*snake_case__ , **snake_case__ ) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." ) A =kwargs.pop("raw_speech" ) else: A =kwargs.pop("audio" , snake_case__ ) A =kwargs.pop("sampling_rate" , snake_case__ ) A =kwargs.pop("text" , snake_case__ ) if len(snake_case__ ) > 0: A =args[0] A =args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: A =self.feature_extractor(snake_case__ , *snake_case__ , sampling_rate=snake_case__ , **snake_case__ ) if text is not None: A =self.tokenizer(snake_case__ , **snake_case__ ) if text is None: return inputs elif audio is None: return encodings else: A =encodings["input_ids"] return inputs def _a ( self : Tuple , *snake_case__ : Union[str, Any] , **snake_case__ : Union[str, Any] ): """simple docstring""" if self._in_target_context_manager: return self.current_processor.pad(*snake_case__ , **snake_case__ ) A =kwargs.pop("input_features" , snake_case__ ) A =kwargs.pop("labels" , snake_case__ ) if len(snake_case__ ) > 0: A =args[0] A =args[1:] if input_features is not None: A =self.feature_extractor.pad(snake_case__ , *snake_case__ , **snake_case__ ) if labels is not None: A =self.tokenizer.pad(snake_case__ , **snake_case__ ) if labels is None: return input_features elif input_features is None: return labels else: A =labels["input_ids"] return input_features def _a ( self : List[str] , *snake_case__ : Dict , **snake_case__ : int ): """simple docstring""" return self.tokenizer.batch_decode(*snake_case__ , **snake_case__ ) def _a ( self : List[str] , *snake_case__ : Optional[int] , **snake_case__ : List[Any] ): """simple docstring""" return self.tokenizer.decode(*snake_case__ , **snake_case__ ) @contextmanager def _a ( self : int ): """simple docstring""" warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) A =True A =self.tokenizer yield A =self.feature_extractor A =False
689
1
def UpperCAmelCase_ (_lowerCAmelCase : str , _lowerCAmelCase : str = " " ): __UpperCamelCase : List[Any] = [] __UpperCamelCase : Union[str, Any] = 0 for index, char in enumerate(_lowerCAmelCase ): if char == separator: split_words.append(string[last_index:index] ) __UpperCamelCase : Any = index + 1 elif index + 1 == len(_lowerCAmelCase ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
327
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def UpperCAmelCase_ (): __UpperCamelCase : Any = ArgumentParser("Accelerate CLI tool" , usage="accelerate <command> [<args>]" , allow_abbrev=_lowerCAmelCase ) __UpperCamelCase : Optional[Any] = parser.add_subparsers(help="accelerate command helpers" ) # Register commands get_config_parser(subparsers=_lowerCAmelCase ) env_command_parser(subparsers=_lowerCAmelCase ) launch_command_parser(subparsers=_lowerCAmelCase ) tpu_command_parser(subparsers=_lowerCAmelCase ) test_command_parser(subparsers=_lowerCAmelCase ) # Let's go __UpperCamelCase : int = parser.parse_args() if not hasattr(_lowerCAmelCase , "func" ): parser.print_help() exit(1 ) # Run args.func(_lowerCAmelCase ) if __name__ == "__main__": main()
327
1
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCAmelCase__ ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): a : List[str] = StableDiffusionDiffEditPipeline a : Dict = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""height""", """width""", """image"""} | {"""image_latents"""} a : int = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {"""image"""} | {"""image_latents"""} a : Tuple = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess a : List[Any] = frozenset([] ) def UpperCAmelCase_ ( self ) -> List[Any]: torch.manual_seed(0 ) __lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=A__ , ) __lowerCAmelCase = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" , clip_sample=A__ , set_alpha_to_one=A__ , ) __lowerCAmelCase = DDIMInverseScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" , clip_sample=A__ , set_alpha_to_zero=A__ , ) torch.manual_seed(0 ) __lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __lowerCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="gelu" , projection_dim=512 , ) __lowerCAmelCase = CLIPTextModel(A__ ) __lowerCAmelCase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) __lowerCAmelCase = { "unet": unet, "scheduler": scheduler, "inverse_scheduler": inverse_scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def UpperCAmelCase_ ( self , UpperCamelCase , UpperCamelCase=0 ) -> Tuple: __lowerCAmelCase = floats_tensor((1, 16, 16) , rng=random.Random(A__ ) ).to(A__ ) __lowerCAmelCase = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(A__ ) ).to(A__ ) if str(A__ ).startswith("mps" ): __lowerCAmelCase = torch.manual_seed(A__ ) else: __lowerCAmelCase = torch.Generator(device=A__ ).manual_seed(A__ ) __lowerCAmelCase = { "prompt": "a dog and a newt", "mask_image": mask, "image_latents": latents, "generator": generator, "num_inference_steps": 2, "inpaint_strength": 1.0, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def UpperCAmelCase_ ( self , UpperCamelCase , UpperCamelCase=0 ) -> int: __lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(A__ ) ).to(A__ ) __lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowerCAmelCase = Image.fromarray(np.uinta(A__ ) ).convert("RGB" ) if str(A__ ).startswith("mps" ): __lowerCAmelCase = torch.manual_seed(A__ ) else: __lowerCAmelCase = torch.Generator(device=A__ ).manual_seed(A__ ) __lowerCAmelCase = { "image": image, "source_prompt": "a cat and a frog", "target_prompt": "a dog and a newt", "generator": generator, "num_inference_steps": 2, "num_maps_per_mask": 2, "mask_encode_strength": 1.0, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def UpperCAmelCase_ ( self , UpperCamelCase , UpperCamelCase=0 ) -> str: __lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(A__ ) ).to(A__ ) __lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowerCAmelCase = Image.fromarray(np.uinta(A__ ) ).convert("RGB" ) if str(A__ ).startswith("mps" ): __lowerCAmelCase = torch.manual_seed(A__ ) else: __lowerCAmelCase = torch.Generator(device=A__ ).manual_seed(A__ ) __lowerCAmelCase = { "image": image, "prompt": "a cat and a frog", "generator": generator, "num_inference_steps": 2, "inpaint_strength": 1.0, "guidance_scale": 6.0, "decode_latents": True, "output_type": "numpy", } return inputs def UpperCAmelCase_ ( self ) -> str: if not hasattr(self.pipeline_class , "_optional_components" ): return __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = self.pipeline_class(**A__ ) pipe.to(A__ ) pipe.set_progress_bar_config(disable=A__ ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(A__ , A__ , A__ ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) __lowerCAmelCase = self.get_dummy_inputs(A__ ) __lowerCAmelCase = pipe(**A__ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(A__ ) __lowerCAmelCase = self.pipeline_class.from_pretrained(A__ ) pipe_loaded.to(A__ ) pipe_loaded.set_progress_bar_config(disable=A__ ) for optional_component in pipe._optional_components: self.assertTrue( getattr(A__ , A__ ) is None , F'''`{optional_component}` did not stay set to None after loading.''' , ) __lowerCAmelCase = self.get_dummy_inputs(A__ ) __lowerCAmelCase = pipe_loaded(**A__ )[0] __lowerCAmelCase = np.abs(output - output_loaded ).max() self.assertLess(A__ , 1E-4 ) def UpperCAmelCase_ ( self ) -> int: __lowerCAmelCase = "cpu" __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = self.pipeline_class(**A__ ) pipe.to(A__ ) pipe.set_progress_bar_config(disable=A__ ) __lowerCAmelCase = self.get_dummy_mask_inputs(A__ ) __lowerCAmelCase = pipe.generate_mask(**A__ ) __lowerCAmelCase = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) __lowerCAmelCase = np.array([0] * 9 ) __lowerCAmelCase = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(A__ , 1E-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def UpperCAmelCase_ ( self ) -> Any: __lowerCAmelCase = "cpu" __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = self.pipeline_class(**A__ ) pipe.to(A__ ) pipe.set_progress_bar_config(disable=A__ ) __lowerCAmelCase = self.get_dummy_inversion_inputs(A__ ) __lowerCAmelCase = pipe.invert(**A__ ).images __lowerCAmelCase = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) __lowerCAmelCase = np.array( [0.51_50, 0.51_34, 0.50_43, 0.53_76, 0.46_94, 0.5_10_50, 0.50_15, 0.44_07, 0.47_99] , ) __lowerCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(A__ , 1E-3 ) def UpperCAmelCase_ ( self ) -> int: super().test_inference_batch_single_identical(expected_max_diff=5E-3 ) def UpperCAmelCase_ ( self ) -> int: __lowerCAmelCase = "cpu" __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = {"beta_start": 0.0_00_85, "beta_end": 0.0_12, "beta_schedule": "scaled_linear"} __lowerCAmelCase = DPMSolverMultistepScheduler(**A__ ) __lowerCAmelCase = DPMSolverMultistepInverseScheduler(**A__ ) __lowerCAmelCase = self.pipeline_class(**A__ ) pipe.to(A__ ) pipe.set_progress_bar_config(disable=A__ ) __lowerCAmelCase = self.get_dummy_inversion_inputs(A__ ) __lowerCAmelCase = pipe.invert(**A__ ).images __lowerCAmelCase = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) __lowerCAmelCase = np.array( [0.51_50, 0.51_34, 0.50_43, 0.53_76, 0.46_94, 0.5_10_50, 0.50_15, 0.44_07, 0.47_99] , ) __lowerCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(A__ , 1E-3 ) @require_torch_gpu @slow class UpperCAmelCase__ ( unittest.TestCase ): def UpperCAmelCase_ ( self ) -> List[str]: super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def UpperCAmelCase_ ( cls ) -> Any: __lowerCAmelCase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png" ) __lowerCAmelCase = raw_image.convert("RGB" ).resize((768, 768) ) __lowerCAmelCase = raw_image def UpperCAmelCase_ ( self ) -> Optional[Any]: __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = StableDiffusionDiffEditPipeline.from_pretrained( "stabilityai/stable-diffusion-2-1" , safety_checker=A__ , torch_dtype=torch.floataa ) __lowerCAmelCase = DDIMScheduler.from_config(pipe.scheduler.config ) __lowerCAmelCase = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=A__ ) __lowerCAmelCase = "a bowl of fruit" __lowerCAmelCase = "a bowl of pears" __lowerCAmelCase = pipe.generate_mask( image=self.raw_image , source_prompt=A__ , target_prompt=A__ , generator=A__ , ) __lowerCAmelCase = pipe.invert( prompt=A__ , image=self.raw_image , inpaint_strength=0.7 , generator=A__ ).latents __lowerCAmelCase = pipe( prompt=A__ , mask_image=A__ , image_latents=A__ , generator=A__ , negative_prompt=A__ , inpaint_strength=0.7 , output_type="numpy" , ).images[0] __lowerCAmelCase = ( np.array( load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/diffedit/pears.png" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1 def UpperCAmelCase_ ( self ) -> List[Any]: __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = StableDiffusionDiffEditPipeline.from_pretrained( "stabilityai/stable-diffusion-2-1" , safety_checker=A__ , torch_dtype=torch.floataa ) __lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) __lowerCAmelCase = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=A__ ) __lowerCAmelCase = "a bowl of fruit" __lowerCAmelCase = "a bowl of pears" __lowerCAmelCase = pipe.generate_mask( image=self.raw_image , source_prompt=A__ , target_prompt=A__ , generator=A__ , ) __lowerCAmelCase = pipe.invert( prompt=A__ , image=self.raw_image , inpaint_strength=0.7 , generator=A__ , num_inference_steps=25 , ).latents __lowerCAmelCase = pipe( prompt=A__ , mask_image=A__ , image_latents=A__ , generator=A__ , negative_prompt=A__ , inpaint_strength=0.7 , num_inference_steps=25 , output_type="numpy" , ).images[0] __lowerCAmelCase = ( np.array( load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/diffedit/pears.png" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1
700
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase : Union[str, Any] = { '''configuration_distilbert''': [ '''DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DistilBertConfig''', '''DistilBertOnnxConfig''', ], '''tokenization_distilbert''': ['''DistilBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple = ['''DistilBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple = [ '''DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DistilBertForMaskedLM''', '''DistilBertForMultipleChoice''', '''DistilBertForQuestionAnswering''', '''DistilBertForSequenceClassification''', '''DistilBertForTokenClassification''', '''DistilBertModel''', '''DistilBertPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[str] = [ '''TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDistilBertForMaskedLM''', '''TFDistilBertForMultipleChoice''', '''TFDistilBertForQuestionAnswering''', '''TFDistilBertForSequenceClassification''', '''TFDistilBertForTokenClassification''', '''TFDistilBertMainLayer''', '''TFDistilBertModel''', '''TFDistilBertPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[int] = [ '''FlaxDistilBertForMaskedLM''', '''FlaxDistilBertForMultipleChoice''', '''FlaxDistilBertForQuestionAnswering''', '''FlaxDistilBertForSequenceClassification''', '''FlaxDistilBertForTokenClassification''', '''FlaxDistilBertModel''', '''FlaxDistilBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys lowerCAmelCase : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
39
0
import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py a__ = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. a__ = direct_transformers_import(PATH_TO_TRANSFORMERS) a__ = transformers.models.auto.configuration_auto.CONFIG_MAPPING a__ = { # used to compute the property `self.chunk_length` '''EncodecConfig''': ['''overlap'''], # used as `self.bert_model = BertModel(config, ...)` '''DPRConfig''': True, # not used in modeling files, but it's an important information '''FSMTConfig''': ['''langs'''], # used internally in the configuration class file '''GPTNeoConfig''': ['''attention_types'''], # used internally in the configuration class file '''EsmConfig''': ['''is_folding_model'''], # used during training (despite we don't have training script for these models yet) '''Mask2FormerConfig''': ['''ignore_value'''], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) '''OneFormerConfig''': ['''ignore_value''', '''norm'''], # used during preprocessing and collation, see `collating_graphormer.py` '''GraphormerConfig''': ['''spatial_pos_max'''], # used internally in the configuration class file '''T5Config''': ['''feed_forward_proj'''], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally '''MT5Config''': ['''feed_forward_proj''', '''tokenizer_class'''], '''UMT5Config''': ['''feed_forward_proj''', '''tokenizer_class'''], # used internally in the configuration class file '''LongT5Config''': ['''feed_forward_proj'''], # used internally in the configuration class file '''SwitchTransformersConfig''': ['''feed_forward_proj'''], # having default values other than `1e-5` - we can't fix them without breaking '''BioGptConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''GLPNConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''SegformerConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''CvtConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''PerceiverConfig''': ['''layer_norm_eps'''], # used internally to calculate the feature size '''InformerConfig''': ['''num_static_real_features''', '''num_time_features'''], # used internally to calculate the feature size '''TimeSeriesTransformerConfig''': ['''num_static_real_features''', '''num_time_features'''], # used internally to calculate the feature size '''AutoformerConfig''': ['''num_static_real_features''', '''num_time_features'''], # used internally to calculate `mlp_dim` '''SamVisionConfig''': ['''mlp_ratio'''], # For (head) training, but so far not implemented '''ClapAudioConfig''': ['''num_classes'''], # Not used, but providing useful information to users '''SpeechT5HifiGanConfig''': ['''sampling_rate'''], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { '''CLIPSegConfig''': True, '''DeformableDetrConfig''': True, '''DetaConfig''': True, '''DinatConfig''': True, '''DonutSwinConfig''': True, '''EfficientFormerConfig''': True, '''FSMTConfig''': True, '''JukeboxConfig''': True, '''LayoutLMv2Config''': True, '''MaskFormerSwinConfig''': True, '''MT5Config''': True, '''NatConfig''': True, '''OneFormerConfig''': True, '''PerceiverConfig''': True, '''RagConfig''': True, '''SpeechT5Config''': True, '''SwinConfig''': True, '''Swin2SRConfig''': True, '''Swinv2Config''': True, '''SwitchTransformersConfig''': True, '''TableTransformerConfig''': True, '''TapasConfig''': True, '''TransfoXLConfig''': True, '''UniSpeechConfig''': True, '''UniSpeechSatConfig''': True, '''WavLMConfig''': True, '''WhisperConfig''': True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) '''JukeboxPriorConfig''': True, # TODO: @Younes (for `is_decoder`) '''Pix2StructTextConfig''': True, } ) def A__ (snake_case : str , snake_case : int , snake_case : Optional[Any] , snake_case : Optional[Any] ) -> Any: __UpperCamelCase : Any = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( F'''config.{attribute}''' in modeling_source or F'''getattr(config, "{attribute}"''' in modeling_source or F'''getattr(self.config, "{attribute}"''' in modeling_source ): __UpperCamelCase : str = True # Deal with multi-line cases elif ( re.search( rF'''getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*"{attribute}"''' , snake_case , ) is not None ): __UpperCamelCase : Optional[int] = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: __UpperCamelCase : Optional[Any] = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files __UpperCamelCase : Any = [ """bos_index""", """eos_index""", """pad_index""", """unk_index""", """mask_index""", """image_size""", """use_cache""", """out_features""", """out_indices""", ] __UpperCamelCase : str = ["""encoder_no_repeat_ngram_size"""] # Special cases to be allowed __UpperCamelCase : str = True if not attribute_used: __UpperCamelCase : Optional[Any] = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: __UpperCamelCase : Optional[int] = True elif attribute in ["tie_word_embeddings"] and default_value is False: __UpperCamelCase : List[str] = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: __UpperCamelCase : Optional[Any] = True elif attribute.endswith("""_token_id""" ): __UpperCamelCase : int = True # configuration class specific cases if not case_allowed: __UpperCamelCase : Tuple = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) __UpperCamelCase : int = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def A__ (snake_case : List[Any] ) -> Dict: __UpperCamelCase : Optional[Any] = dict(inspect.signature(config_class.__init__ ).parameters ) __UpperCamelCase : Optional[Any] = [x for x in list(signature.keys() ) if x not in ["""self""", """kwargs"""]] __UpperCamelCase : str = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass __UpperCamelCase : Dict = {} if len(config_class.attribute_map ) > 0: __UpperCamelCase : Dict = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files __UpperCamelCase : List[Any] = inspect.getsourcefile(snake_case ) __UpperCamelCase : List[Any] = os.path.dirname(snake_case ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. __UpperCamelCase : List[Any] = [os.path.join(snake_case , snake_case ) for fn in os.listdir(snake_case ) if fn.startswith("""modeling_""" )] # Get the source code strings __UpperCamelCase : Any = [] for path in modeling_paths: if os.path.isfile(snake_case ): with open(snake_case ) as fp: modeling_sources.append(fp.read() ) __UpperCamelCase : List[str] = [] for config_param, default_value in zip(snake_case , snake_case ): # `attributes` here is all the variant names for `config_param` __UpperCamelCase : str = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(snake_case , snake_case , snake_case , snake_case ): unused_attributes.append(attributes[0] ) return sorted(snake_case ) def A__ () -> Dict: __UpperCamelCase : Dict = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) __UpperCamelCase : Tuple = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda snake_case : inspect.isclass(snake_case ) and issubclass(snake_case , snake_case ) and inspect.getmodule(snake_case ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: __UpperCamelCase : List[str] = check_config_attributes_being_used(snake_case ) if len(snake_case ) > 0: __UpperCamelCase : List[Any] = unused_attributes if len(snake_case ) > 0: __UpperCamelCase : str = """The following configuration classes contain unused attributes in the corresponding modeling files:\n""" for name, attributes in configs_with_unused_attributes.items(): error += F'''{name}: {attributes}\n''' raise ValueError(snake_case ) if __name__ == "__main__": check_config_attributes()
279
import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging a__ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE_ ( _UpperCamelCase ): """simple docstring""" __magic_name__ : Dict = 'linear' __magic_name__ : Dict = 'cosine' __magic_name__ : Optional[int] = 'cosine_with_restarts' __magic_name__ : List[str] = 'polynomial' __magic_name__ : Any = 'constant' __magic_name__ : Union[str, Any] = 'constant_with_warmup' __magic_name__ : str = 'piecewise_constant' def A__ (snake_case : Optimizer , snake_case : int = -1 ) -> Optional[Any]: return LambdaLR(snake_case , lambda snake_case : 1 , last_epoch=snake_case ) def A__ (snake_case : Optimizer , snake_case : int , snake_case : int = -1 ) -> List[Any]: def lr_lambda(snake_case : int ): if current_step < num_warmup_steps: return float(snake_case ) / float(max(1.0 , snake_case ) ) return 1.0 return LambdaLR(snake_case , snake_case , last_epoch=snake_case ) def A__ (snake_case : Optimizer , snake_case : str , snake_case : int = -1 ) -> Union[str, Any]: __UpperCamelCase : Optional[Any] = {} __UpperCamelCase : int = step_rules.split(""",""" ) for rule_str in rule_list[:-1]: __UpperCamelCase , __UpperCamelCase : Tuple = rule_str.split(""":""" ) __UpperCamelCase : int = int(snake_case ) __UpperCamelCase : Union[str, Any] = float(snake_case ) __UpperCamelCase : Optional[int] = value __UpperCamelCase : Dict = float(rule_list[-1] ) def create_rules_function(snake_case : List[str] , snake_case : Any ): def rule_func(snake_case : int ) -> float: __UpperCamelCase : Any = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(snake_case ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func __UpperCamelCase : Tuple = create_rules_function(snake_case , snake_case ) return LambdaLR(snake_case , snake_case , last_epoch=snake_case ) def A__ (snake_case : int , snake_case : Optional[Any] , snake_case : Union[str, Any] , snake_case : str=-1 ) -> str: def lr_lambda(snake_case : int ): if current_step < num_warmup_steps: return float(snake_case ) / float(max(1 , snake_case ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(snake_case , snake_case , snake_case ) def A__ (snake_case : Optimizer , snake_case : int , snake_case : int , snake_case : float = 0.5 , snake_case : int = -1 ) -> List[str]: def lr_lambda(snake_case : Dict ): if current_step < num_warmup_steps: return float(snake_case ) / float(max(1 , snake_case ) ) __UpperCamelCase : Dict = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(snake_case ) * 2.0 * progress )) ) return LambdaLR(snake_case , snake_case , snake_case ) def A__ (snake_case : Optimizer , snake_case : int , snake_case : int , snake_case : int = 1 , snake_case : int = -1 ) -> Tuple: def lr_lambda(snake_case : Optional[int] ): if current_step < num_warmup_steps: return float(snake_case ) / float(max(1 , snake_case ) ) __UpperCamelCase : List[str] = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(snake_case ) * progress) % 1.0) )) ) return LambdaLR(snake_case , snake_case , snake_case ) def A__ (snake_case : List[str] , snake_case : Optional[Any] , snake_case : Optional[int] , snake_case : str=1e-7 , snake_case : List[str]=1.0 , snake_case : Dict=-1 ) -> Tuple: __UpperCamelCase : Tuple = optimizer.defaults["""lr"""] if not (lr_init > lr_end): raise ValueError(F'''lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})''' ) def lr_lambda(snake_case : int ): if current_step < num_warmup_steps: return float(snake_case ) / float(max(1 , snake_case ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: __UpperCamelCase : List[str] = lr_init - lr_end __UpperCamelCase : Any = num_training_steps - num_warmup_steps __UpperCamelCase : List[str] = 1 - (current_step - num_warmup_steps) / decay_steps __UpperCamelCase : List[Any] = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(snake_case , snake_case , snake_case ) a__ = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def A__ (snake_case : Union[str, SchedulerType] , snake_case : Optimizer , snake_case : Optional[str] = None , snake_case : Optional[int] = None , snake_case : Optional[int] = None , snake_case : int = 1 , snake_case : float = 1.0 , snake_case : int = -1 , ) -> Dict: __UpperCamelCase : List[str] = SchedulerType(snake_case ) __UpperCamelCase : int = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(snake_case , last_epoch=snake_case ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(snake_case , step_rules=snake_case , last_epoch=snake_case ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(F'''{name} requires `num_warmup_steps`, please provide that argument.''' ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(snake_case , num_warmup_steps=snake_case , last_epoch=snake_case ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(F'''{name} requires `num_training_steps`, please provide that argument.''' ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( snake_case , num_warmup_steps=snake_case , num_training_steps=snake_case , num_cycles=snake_case , last_epoch=snake_case , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( snake_case , num_warmup_steps=snake_case , num_training_steps=snake_case , power=snake_case , last_epoch=snake_case , ) return schedule_func( snake_case , num_warmup_steps=snake_case , num_training_steps=snake_case , last_epoch=snake_case )
279
1
import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Any: lowerCamelCase__ : Union[str, Any] = BigBirdConfig.from_json_file(a__ ) print(F"""Building PyTorch model from configuration: {config}""" ) if is_trivia_qa: lowerCamelCase__ : str = BigBirdForQuestionAnswering(a__ ) else: lowerCamelCase__ : List[Any] = BigBirdForPreTraining(a__ ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(a__ , a__ , is_trivia_qa=a__ ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(a__ ) if __name__ == "__main__": _UpperCAmelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--big_bird_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_trivia_qa""", action="""store_true""", help="""Whether to convert a model with a trivia_qa head.""" ) _UpperCAmelCase : List[str] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
716
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _UpperCAmelCase : Optional[Any] = { """configuration_clip""": [ """CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CLIPConfig""", """CLIPOnnxConfig""", """CLIPTextConfig""", """CLIPVisionConfig""", ], """processing_clip""": ["""CLIPProcessor"""], """tokenization_clip""": ["""CLIPTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : int = ["""CLIPTokenizerFast"""] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Optional[int] = ["""CLIPFeatureExtractor"""] _UpperCAmelCase : Union[str, Any] = ["""CLIPImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : int = [ """CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """CLIPModel""", """CLIPPreTrainedModel""", """CLIPTextModel""", """CLIPTextModelWithProjection""", """CLIPVisionModel""", """CLIPVisionModelWithProjection""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Tuple = [ """TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFCLIPModel""", """TFCLIPPreTrainedModel""", """TFCLIPTextModel""", """TFCLIPVisionModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Optional[int] = [ """FlaxCLIPModel""", """FlaxCLIPPreTrainedModel""", """FlaxCLIPTextModel""", """FlaxCLIPTextPreTrainedModel""", """FlaxCLIPVisionModel""", """FlaxCLIPVisionPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys _UpperCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
188
0
"""simple docstring""" import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE = [ """word_embeddings_layernorm.weight""", """word_embeddings_layernorm.bias""", """input_layernorm.weight""", """input_layernorm.bias""", """post_attention_layernorm.weight""", """post_attention_layernorm.bias""", """self_attention.dense.bias""", """mlp.dense_4h_to_h.bias""", """ln_f.weight""", """ln_f.bias""", ] __SCREAMING_SNAKE_CASE = [ """mlp.dense_4h_to_h.weight""", """self_attention.dense.weight""", ] def __a ( a, a ): """simple docstring""" _a = { "word_embeddings.weight": "word_embeddings.weight", "word_embeddings.norm.weight": "word_embeddings_layernorm.weight", "word_embeddings.norm.bias": "word_embeddings_layernorm.bias", "weight": "ln_f.weight", "bias": "ln_f.bias", } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks _a = int(re.match(R".*layer_(\d*).*", a )[1] ) layer_number -= 3 return F'h.{layer_number}.' + key def __a ( a ): """simple docstring""" if dtype == torch.bool: return 1 / 8 _a = re.search(R"[^\d](\d+)$", str(a ) ) if bit_search is None: raise ValueError(F'`dtype` is not a valid dtype: {dtype}.' ) _a = int(bit_search.groups()[0] ) return bit_size // 8 def __a ( a, a, a, a, a ): """simple docstring""" if bloom_config_file == "": _a = BloomConfig() else: _a = BloomConfig.from_json_file(a ) if shard_model: _a = os.listdir(a ) _a = sorted(filter(lambda a : s.startswith("layer" ) and "model_00" in s, a ) ) _a = {"weight_map": {}, "metadata": {}} _a = 0 _a = None _a = BloomConfig() for j, file in enumerate(a ): print("Processing file: {}".format(a ) ) _a = None for i in range(a ): # load all TP files _a = file.replace("model_00", F'model_0{i}' ) _a = torch.load(os.path.join(a, a ), map_location="cpu" ) # Rename keys in the transformers names _a = list(temp.keys() ) for key in keys: _a = temp.pop(a ) if tensors is None: _a = temp else: for key in tensors.keys(): if any(key.endswith(a ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel _a = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks _a = torch.cat([tensors[key], temp[key]], dim=a ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(a ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): _a = tensors[key] / pretraining_tp torch.save( a, os.path.join( a, "pytorch_model_{}-of-{}.bin".format(str(j + 1 ).zfill(5 ), str(len(a ) ).zfill(5 ) ), ), ) for key in tensors.keys(): _a = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: _a = "pytorch_model_{}-of-{}.bin".format( str(j + 1 ).zfill(5 ), str(len(a ) ).zfill(5 ) ) _a = BloomConfig() _a = pytorch_dump_folder_path + "/" + CONFIG_NAME _a = total_size with open(a, "w", encoding="utf-8" ) as f: f.write(config.to_json_string() ) with open(os.path.join(a, WEIGHTS_NAME + ".index.json" ), "w", encoding="utf-8" ) as f: _a = json.dumps(a, indent=2, sort_keys=a ) + "\n" f.write(a ) else: _a = BloomModel(a ) _a = os.listdir(a ) _a = sorted(filter(lambda a : s.startswith("layer" ) and "model_00" in s, a ) ) _a = None for i, file in enumerate(a ): _a = None for i in range(a ): # load all TP files _a = file.replace("model_00", F'model_0{i}' ) _a = torch.load(os.path.join(a, a ), map_location="cpu" ) # Rename keys in the transformers names _a = list(temp.keys() ) for key in keys: _a = temp.pop(a ) if tensors is None: _a = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(a ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel _a = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks _a = torch.cat([tensors[key], temp[key]], dim=a ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(a ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): _a = tensors[key] / pretraining_tp _a = model.load_state_dict(a, strict=a ) assert not other_keys.unexpected_keys, F'The keys {other_keys.unexpected_keys} are unexpected' if missing_keys is None: _a = set(other_keys.missing_keys ) else: _a = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, F'The keys {missing_keys} are missing' # Save pytorch-model os.makedirs(a, exist_ok=a ) _a = pytorch_dump_folder_path + "/" + WEIGHTS_NAME _a = pytorch_dump_folder_path + "/" + CONFIG_NAME print(F'Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}' ) if config.torch_dtype is not None: _a = model.to(config.torch_dtype ) torch.save(model.state_dict(), a ) print(F'Save configuration file to {pytorch_config_dump_path}' ) with open(a, "w", encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( """--bloom_checkpoint_path""", default=None, type=str, required=True, help="""Path to the Megatron-LM checkpoint path.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--bloom_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--shard_model""", action="""store_true""", help="""An optional setting to shard the output model \nThis enables sharding the converted checkpoint""", ) parser.add_argument( """--pretraining_tp""", default=4, type=int, help="""Pretraining TP rank that has been used when training the model in Megatron-LM \n""", ) __SCREAMING_SNAKE_CASE = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
388
"""simple docstring""" from math import ceil def __a ( a, a ): """simple docstring""" _a = list(range(0, a ) ) _a = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check _a = [] for i in device_map_blocks: if device_map_blocks.count(a ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(a ) # Missing blocks _a = [i for i in blocks if i not in device_map_blocks] _a = [i for i in device_map_blocks if i not in blocks] if len(a ) != 0: raise ValueError( "Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device." " These attention blocks were specified more than once: " + str(a ) ) if len(a ) != 0: raise ValueError( "There are attention blocks for this model that are not specified in the device_map. Add these attention " "blocks to a device on the device_map: " + str(a ) ) if len(a ) != 0: raise ValueError( "The device_map contains more attention blocks than this model has. Remove these from the device_map:" + str(a ) ) def __a ( a, a ): """simple docstring""" _a = list(range(a ) ) _a = int(ceil(n_layers / len(a ) ) ) _a = [layers[i : i + n_blocks] for i in range(0, a, a )] return dict(zip(a, a ) )
388
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() A__: Optional[int] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Optional[int] ) -> Any: # initialize config if "resnet-50" in model_name: _a : Tuple =ResNetConfig.from_pretrained("""microsoft/resnet-50""" ) elif "resnet-101" in model_name: _a : Dict =ResNetConfig.from_pretrained("""microsoft/resnet-101""" ) else: raise ValueError("""Model name should include either resnet50 or resnet101""" ) _a : Dict =DetrConfig(use_timm_backbone=_lowerCamelCase ,backbone_config=_lowerCamelCase ) # set label attributes _a : Any ="""panoptic""" in model_name if is_panoptic: _a : Tuple =250 else: _a : Tuple =91 _a : int ="""huggingface/label-files""" _a : Optional[int] ="""coco-detection-id2label.json""" _a : str =json.load(open(hf_hub_download(_lowerCamelCase ,_lowerCamelCase ,repo_type="""dataset""" ) ,"""r""" ) ) _a : Union[str, Any] ={int(_lowerCamelCase ): v for k, v in idalabel.items()} _a : List[str] =idalabel _a : Optional[int] ={v: k for k, v in idalabel.items()} return config, is_panoptic def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Any ) -> Optional[int]: # here we list all keys to be renamed (original name on the left, our name on the right) _a : List[str] =[] # stem # fmt: off rename_keys.append(("""backbone.0.body.conv1.weight""", """backbone.conv_encoder.model.embedder.embedder.convolution.weight""") ) rename_keys.append(("""backbone.0.body.bn1.weight""", """backbone.conv_encoder.model.embedder.embedder.normalization.weight""") ) rename_keys.append(("""backbone.0.body.bn1.bias""", """backbone.conv_encoder.model.embedder.embedder.normalization.bias""") ) rename_keys.append(("""backbone.0.body.bn1.running_mean""", """backbone.conv_encoder.model.embedder.embedder.normalization.running_mean""") ) rename_keys.append(("""backbone.0.body.bn1.running_var""", """backbone.conv_encoder.model.embedder.embedder.normalization.running_var""") ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight", ) ) rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight", ) ) rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias", ) ) rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean", ) ) rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var", ) ) # 3 convs for i in range(3 ): rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight", ) ) rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight", ) ) rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias", ) ) rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean", ) ) rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var", ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( F"transformer.encoder.layers.{i}.self_attn.out_proj.weight", F"encoder.layers.{i}.self_attn.out_proj.weight", ) ) rename_keys.append( (F"transformer.encoder.layers.{i}.self_attn.out_proj.bias", F"encoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear1.weight", F"encoder.layers.{i}.fc1.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear1.bias", F"encoder.layers.{i}.fc1.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear2.weight", F"encoder.layers.{i}.fc2.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear2.bias", F"encoder.layers.{i}.fc2.bias") ) rename_keys.append( (F"transformer.encoder.layers.{i}.norm1.weight", F"encoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append( (F"transformer.encoder.layers.{i}.norm1.bias", F"encoder.layers.{i}.self_attn_layer_norm.bias") ) rename_keys.append( (F"transformer.encoder.layers.{i}.norm2.weight", F"encoder.layers.{i}.final_layer_norm.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.norm2.bias", F"encoder.layers.{i}.final_layer_norm.bias") ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( F"transformer.decoder.layers.{i}.self_attn.out_proj.weight", F"decoder.layers.{i}.self_attn.out_proj.weight", ) ) rename_keys.append( (F"transformer.decoder.layers.{i}.self_attn.out_proj.bias", F"decoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append( ( F"transformer.decoder.layers.{i}.multihead_attn.out_proj.weight", F"decoder.layers.{i}.encoder_attn.out_proj.weight", ) ) rename_keys.append( ( F"transformer.decoder.layers.{i}.multihead_attn.out_proj.bias", F"decoder.layers.{i}.encoder_attn.out_proj.bias", ) ) rename_keys.append((F"transformer.decoder.layers.{i}.linear1.weight", F"decoder.layers.{i}.fc1.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear1.bias", F"decoder.layers.{i}.fc1.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear2.weight", F"decoder.layers.{i}.fc2.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear2.bias", F"decoder.layers.{i}.fc2.bias") ) rename_keys.append( (F"transformer.decoder.layers.{i}.norm1.weight", F"decoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append( (F"transformer.decoder.layers.{i}.norm1.bias", F"decoder.layers.{i}.self_attn_layer_norm.bias") ) rename_keys.append( (F"transformer.decoder.layers.{i}.norm2.weight", F"decoder.layers.{i}.encoder_attn_layer_norm.weight") ) rename_keys.append( (F"transformer.decoder.layers.{i}.norm2.bias", F"decoder.layers.{i}.encoder_attn_layer_norm.bias") ) rename_keys.append( (F"transformer.decoder.layers.{i}.norm3.weight", F"decoder.layers.{i}.final_layer_norm.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm3.bias", F"decoder.layers.{i}.final_layer_norm.bias") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ] ) return rename_keys def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Optional[Any] ,_UpperCAmelCase : Tuple ,_UpperCAmelCase : List[Any] ) -> int: _a : Any =state_dict.pop(_lowerCamelCase ) _a : Any =val def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : Optional[Any]=False ) -> Tuple: _a : Any ="""""" if is_panoptic: _a : Dict ="""detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) _a : Optional[int] =state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight" ) _a : Optional[int] =state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict _a : List[str] =in_proj_weight[:256, :] _a : List[Any] =in_proj_bias[:256] _a : List[str] =in_proj_weight[256:512, :] _a : Optional[int] =in_proj_bias[256:512] _a : str =in_proj_weight[-256:, :] _a : Optional[int] =in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention _a : Optional[Any] =state_dict.pop(F"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight" ) _a : Optional[int] =state_dict.pop(F"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict _a : List[str] =in_proj_weight[:256, :] _a : Union[str, Any] =in_proj_bias[:256] _a : List[str] =in_proj_weight[256:512, :] _a : Any =in_proj_bias[256:512] _a : Any =in_proj_weight[-256:, :] _a : Tuple =in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention _a : List[Any] =state_dict.pop( F"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight" ) _a : int =state_dict.pop(F"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias" ) # next, add query, keys and values (in that order) of cross-attention to the state dict _a : List[Any] =in_proj_weight_cross_attn[:256, :] _a : Dict =in_proj_bias_cross_attn[:256] _a : Union[str, Any] =in_proj_weight_cross_attn[256:512, :] _a : Tuple =in_proj_bias_cross_attn[256:512] _a : Any =in_proj_weight_cross_attn[-256:, :] _a : Tuple =in_proj_bias_cross_attn[-256:] def SCREAMING_SNAKE_CASE_ ( ) -> Union[str, Any]: _a : str ="""http://images.cocodataset.org/val2017/000000039769.jpg""" _a : Union[str, Any] =Image.open(requests.get(_lowerCamelCase ,stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Union[str, Any] ,_UpperCAmelCase : Optional[int]=None ,_UpperCAmelCase : Dict=False ) -> Optional[Any]: _a , _a : int =get_detr_config(_lowerCamelCase ) # load original model from torch hub _a : str ={ """detr-resnet-50""": """detr_resnet50""", """detr-resnet-101""": """detr_resnet101""", } logger.info(F"Converting model {model_name}..." ) _a : Any =torch.hub.load("""facebookresearch/detr""" ,model_name_to_original_name[model_name] ,pretrained=_lowerCamelCase ).eval() _a : int =detr.state_dict() # rename keys for src, dest in create_rename_keys(_lowerCamelCase ): if is_panoptic: _a : Any ="""detr.""" + src rename_key(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) # query, key and value matrices need special treatment read_in_q_k_v(_lowerCamelCase ,is_panoptic=_lowerCamelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them _a : int ="""detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): _a : str =state_dict.pop(_lowerCamelCase ) _a : Optional[int] =val elif "class_labels_classifier" in key or "bbox_predictor" in key: _a : Tuple =state_dict.pop(_lowerCamelCase ) _a : str =val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: _a : Optional[int] =state_dict.pop(_lowerCamelCase ) _a : str =val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): _a : int =state_dict.pop(_lowerCamelCase ) _a : Optional[Any] =val # finally, create HuggingFace model and load state dict _a : str =DetrForSegmentation(_lowerCamelCase ) if is_panoptic else DetrForObjectDetection(_lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) model.eval() # verify our conversion on an image _a : Any ="""coco_panoptic""" if is_panoptic else """coco_detection""" _a : Union[str, Any] =DetrImageProcessor(format=_lowerCamelCase ) _a : List[Any] =processor(images=prepare_img() ,return_tensors="""pt""" ) _a : Any =encoding["""pixel_values"""] _a : Tuple =detr(_lowerCamelCase ) _a : int =model(_lowerCamelCase ) assert torch.allclose(outputs.logits ,original_outputs["""pred_logits"""] ,atol=1e-3 ) assert torch.allclose(outputs.pred_boxes ,original_outputs["""pred_boxes"""] ,atol=1e-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks ,original_outputs["""pred_masks"""] ,atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) model.save_pretrained(_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) if push_to_hub: # Upload model and image processor to the hub logger.info("""Uploading PyTorch model and image processor to the hub...""" ) model.push_to_hub(F"nielsr/{model_name}" ) processor.push_to_hub(F"nielsr/{model_name}" ) if __name__ == "__main__": A__: Dict = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''detr-resnet-50''', type=str, choices=['''detr-resnet-50''', '''detr-resnet-101'''], help='''Name of the DETR model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the model to the hub or not.''') A__: Optional[Any] = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
700
'''simple docstring''' from functools import lru_cache def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ) -> set: _a : Any =2 _a : Tuple =set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(_UpperCAmelCase ) if n > 1: factors.add(_UpperCAmelCase ) return factors @lru_cache def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ) -> int: return len(unique_prime_factors(_UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list ) -> bool: return len(set(_UpperCAmelCase ) ) in (0, 1) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ) -> list: _a : int =2 while True: # Increment each value of a generated range _a : str =[base + i for i in range(_UpperCAmelCase )] # Run elements through out unique_prime_factors function # Append our target number to the end. _a : List[Any] =[upf_len(_UpperCAmelCase ) for x in group] checker.append(_UpperCAmelCase ) # If all numbers in the list are equal, return the group variable. if equality(_UpperCAmelCase ): return group # Increment our base variable by 1 base += 1 def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int = 4 ) -> int: _a : Optional[int] =run(_UpperCAmelCase ) return results[0] if len(_UpperCAmelCase ) else None if __name__ == "__main__": print(solution())
506
0
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( '''stable diffusion controlnet''', '''0.22.0''', '''Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.''', standard_warn=False, stacklevel=3, )
382
from __future__ import annotations def UpperCAmelCase ( UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase )-> dict[str, float]: '''simple docstring''' if (voltage, current, resistance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if resistance < 0: raise ValueError('''Resistance cannot be negative''' ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
393
0
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class lowercase ( TensorFormatter[Mapping, "torch.Tensor", Mapping] ): '''simple docstring''' def __init__( self : Optional[int] , __lowerCamelCase : int=None , **__lowerCamelCase : List[str] ) -> Union[str, Any]: '''simple docstring''' super().__init__(features=__lowerCamelCase ) lowerCamelCase__ = torch_tensor_kwargs import torch # noqa import torch at initialization def a__ ( self : Tuple , __lowerCamelCase : List[str] ) -> Union[str, Any]: '''simple docstring''' import torch if isinstance(__lowerCamelCase , __lowerCamelCase ) and column: if all( isinstance(__lowerCamelCase , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(__lowerCamelCase ) return column def a__ ( self : Optional[Any] , __lowerCamelCase : Optional[Any] ) -> Any: '''simple docstring''' import torch if isinstance(__lowerCamelCase , (str, bytes, type(__lowerCamelCase )) ): return value elif isinstance(__lowerCamelCase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() lowerCamelCase__ = {} if isinstance(__lowerCamelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): lowerCamelCase__ = {"dtype": torch.intaa} elif isinstance(__lowerCamelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): lowerCamelCase__ = {"dtype": torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(__lowerCamelCase , PIL.Image.Image ): lowerCamelCase__ = np.asarray(__lowerCamelCase ) return torch.tensor(__lowerCamelCase , **{**default_dtype, **self.torch_tensor_kwargs} ) def a__ ( self : int , __lowerCamelCase : Dict ) -> Any: '''simple docstring''' import torch # support for torch, tf, jax etc. if hasattr(__lowerCamelCase , "__array__" ) and not isinstance(__lowerCamelCase , torch.Tensor ): lowerCamelCase__ = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(__lowerCamelCase , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(__lowerCamelCase ) for substruct in data_struct] ) elif isinstance(__lowerCamelCase , (list, tuple) ): return self._consolidate([self.recursive_tensorize(__lowerCamelCase ) for substruct in data_struct] ) return self._tensorize(__lowerCamelCase ) def a__ ( self : Tuple , __lowerCamelCase : dict ) -> Tuple: '''simple docstring''' return map_nested(self._recursive_tensorize , __lowerCamelCase , map_list=__lowerCamelCase ) def a__ ( self : Dict , __lowerCamelCase : pa.Table ) -> Mapping: '''simple docstring''' lowerCamelCase__ = self.numpy_arrow_extractor().extract_row(__lowerCamelCase ) lowerCamelCase__ = self.python_features_decoder.decode_row(__lowerCamelCase ) return self.recursive_tensorize(__lowerCamelCase ) def a__ ( self : List[Any] , __lowerCamelCase : pa.Table ) -> "torch.Tensor": '''simple docstring''' lowerCamelCase__ = self.numpy_arrow_extractor().extract_column(__lowerCamelCase ) lowerCamelCase__ = self.python_features_decoder.decode_column(__lowerCamelCase , pa_table.column_names[0] ) lowerCamelCase__ = self.recursive_tensorize(__lowerCamelCase ) lowerCamelCase__ = self._consolidate(__lowerCamelCase ) return column def a__ ( self : Optional[int] , __lowerCamelCase : pa.Table ) -> Mapping: '''simple docstring''' lowerCamelCase__ = self.numpy_arrow_extractor().extract_batch(__lowerCamelCase ) lowerCamelCase__ = self.python_features_decoder.decode_batch(__lowerCamelCase ) lowerCamelCase__ = self.recursive_tensorize(__lowerCamelCase ) for column_name in batch: lowerCamelCase__ = self._consolidate(batch[column_name] ) return batch
187
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowercase ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = StableDiffusionDiffEditPipeline lowerCAmelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"height", "width", "image"} | {"image_latents"} lowerCAmelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {"image"} | {"image_latents"} lowerCAmelCase__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowerCAmelCase__ = frozenset([] ) def a__ ( self : int ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=__lowerCamelCase , ) lowerCamelCase__ = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="scaled_linear" , clip_sample=__lowerCamelCase , set_alpha_to_one=__lowerCamelCase , ) lowerCamelCase__ = DDIMInverseScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="scaled_linear" , clip_sample=__lowerCamelCase , set_alpha_to_zero=__lowerCamelCase , ) torch.manual_seed(0 ) lowerCamelCase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowerCamelCase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="gelu" , projection_dim=512 , ) lowerCamelCase__ = CLIPTextModel(__lowerCamelCase ) lowerCamelCase__ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) lowerCamelCase__ = { "unet": unet, "scheduler": scheduler, "inverse_scheduler": inverse_scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def a__ ( self : List[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any=0 ) -> Tuple: '''simple docstring''' lowerCamelCase__ = floats_tensor((1, 16, 16) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) lowerCamelCase__ = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) if str(__lowerCamelCase ).startswith("mps" ): lowerCamelCase__ = torch.manual_seed(__lowerCamelCase ) else: lowerCamelCase__ = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) lowerCamelCase__ = { "prompt": "a dog and a newt", "mask_image": mask, "image_latents": latents, "generator": generator, "num_inference_steps": 2, "inpaint_strength": 1.0, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def a__ ( self : str , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int]=0 ) -> Optional[Any]: '''simple docstring''' lowerCamelCase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) lowerCamelCase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCamelCase__ = Image.fromarray(np.uinta(__lowerCamelCase ) ).convert("RGB" ) if str(__lowerCamelCase ).startswith("mps" ): lowerCamelCase__ = torch.manual_seed(__lowerCamelCase ) else: lowerCamelCase__ = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) lowerCamelCase__ = { "image": image, "source_prompt": "a cat and a frog", "target_prompt": "a dog and a newt", "generator": generator, "num_inference_steps": 2, "num_maps_per_mask": 2, "mask_encode_strength": 1.0, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def a__ ( self : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str]=0 ) -> List[Any]: '''simple docstring''' lowerCamelCase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) lowerCamelCase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCamelCase__ = Image.fromarray(np.uinta(__lowerCamelCase ) ).convert("RGB" ) if str(__lowerCamelCase ).startswith("mps" ): lowerCamelCase__ = torch.manual_seed(__lowerCamelCase ) else: lowerCamelCase__ = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) lowerCamelCase__ = { "image": image, "prompt": "a cat and a frog", "generator": generator, "num_inference_steps": 2, "inpaint_strength": 1.0, "guidance_scale": 6.0, "decode_latents": True, "output_type": "numpy", } return inputs def a__ ( self : Tuple ) -> str: '''simple docstring''' if not hasattr(self.pipeline_class , "_optional_components" ): return lowerCamelCase__ = self.get_dummy_components() lowerCamelCase__ = self.pipeline_class(**__lowerCamelCase ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) lowerCamelCase__ = self.get_dummy_inputs(__lowerCamelCase ) lowerCamelCase__ = pipe(**__lowerCamelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(__lowerCamelCase ) lowerCamelCase__ = self.pipeline_class.from_pretrained(__lowerCamelCase ) pipe_loaded.to(__lowerCamelCase ) pipe_loaded.set_progress_bar_config(disable=__lowerCamelCase ) for optional_component in pipe._optional_components: self.assertTrue( getattr(__lowerCamelCase , __lowerCamelCase ) is None , f'''`{optional_component}` did not stay set to None after loading.''' , ) lowerCamelCase__ = self.get_dummy_inputs(__lowerCamelCase ) lowerCamelCase__ = pipe_loaded(**__lowerCamelCase )[0] lowerCamelCase__ = np.abs(output - output_loaded ).max() self.assertLess(__lowerCamelCase , 1E-4 ) def a__ ( self : List[str] ) -> List[Any]: '''simple docstring''' lowerCamelCase__ = "cpu" lowerCamelCase__ = self.get_dummy_components() lowerCamelCase__ = self.pipeline_class(**__lowerCamelCase ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) lowerCamelCase__ = self.get_dummy_mask_inputs(__lowerCamelCase ) lowerCamelCase__ = pipe.generate_mask(**__lowerCamelCase ) lowerCamelCase__ = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) lowerCamelCase__ = np.array([0] * 9 ) lowerCamelCase__ = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(__lowerCamelCase , 1E-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def a__ ( self : List[str] ) -> List[str]: '''simple docstring''' lowerCamelCase__ = "cpu" lowerCamelCase__ = self.get_dummy_components() lowerCamelCase__ = self.pipeline_class(**__lowerCamelCase ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) lowerCamelCase__ = self.get_dummy_inversion_inputs(__lowerCamelCase ) lowerCamelCase__ = pipe.invert(**__lowerCamelCase ).images lowerCamelCase__ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowerCamelCase__ = np.array( [0.5_1_5_0, 0.5_1_3_4, 0.5_0_4_3, 0.5_3_7_6, 0.4_6_9_4, 0.5_1_0_5_0, 0.5_0_1_5, 0.4_4_0_7, 0.4_7_9_9] , ) lowerCamelCase__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__lowerCamelCase , 1E-3 ) def a__ ( self : Tuple ) -> Tuple: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=5E-3 ) def a__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' lowerCamelCase__ = "cpu" lowerCamelCase__ = self.get_dummy_components() lowerCamelCase__ = {"beta_start": 0.0_0_0_8_5, "beta_end": 0.0_1_2, "beta_schedule": "scaled_linear"} lowerCamelCase__ = DPMSolverMultistepScheduler(**__lowerCamelCase ) lowerCamelCase__ = DPMSolverMultistepInverseScheduler(**__lowerCamelCase ) lowerCamelCase__ = self.pipeline_class(**__lowerCamelCase ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) lowerCamelCase__ = self.get_dummy_inversion_inputs(__lowerCamelCase ) lowerCamelCase__ = pipe.invert(**__lowerCamelCase ).images lowerCamelCase__ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowerCamelCase__ = np.array( [0.5_1_5_0, 0.5_1_3_4, 0.5_0_4_3, 0.5_3_7_6, 0.4_6_9_4, 0.5_1_0_5_0, 0.5_0_1_5, 0.4_4_0_7, 0.4_7_9_9] , ) lowerCamelCase__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__lowerCamelCase , 1E-3 ) @require_torch_gpu @slow class lowercase ( unittest.TestCase ): '''simple docstring''' def a__ ( self : Optional[int] ) -> int: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def a__ ( cls : int ) -> List[Any]: '''simple docstring''' lowerCamelCase__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png" ) lowerCamelCase__ = raw_image.convert("RGB" ).resize((768, 768) ) lowerCamelCase__ = raw_image def a__ ( self : Optional[Any] ) -> str: '''simple docstring''' lowerCamelCase__ = torch.manual_seed(0 ) lowerCamelCase__ = StableDiffusionDiffEditPipeline.from_pretrained( "stabilityai/stable-diffusion-2-1" , safety_checker=__lowerCamelCase , torch_dtype=torch.floataa ) lowerCamelCase__ = DDIMScheduler.from_config(pipe.scheduler.config ) lowerCamelCase__ = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=__lowerCamelCase ) lowerCamelCase__ = "a bowl of fruit" lowerCamelCase__ = "a bowl of pears" lowerCamelCase__ = pipe.generate_mask( image=self.raw_image , source_prompt=__lowerCamelCase , target_prompt=__lowerCamelCase , generator=__lowerCamelCase , ) lowerCamelCase__ = pipe.invert( prompt=__lowerCamelCase , image=self.raw_image , inpaint_strength=0.7 , generator=__lowerCamelCase ).latents lowerCamelCase__ = pipe( prompt=__lowerCamelCase , mask_image=__lowerCamelCase , image_latents=__lowerCamelCase , generator=__lowerCamelCase , negative_prompt=__lowerCamelCase , inpaint_strength=0.7 , output_type="numpy" , ).images[0] lowerCamelCase__ = ( np.array( load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/diffedit/pears.png" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1 def a__ ( self : List[str] ) -> Dict: '''simple docstring''' lowerCamelCase__ = torch.manual_seed(0 ) lowerCamelCase__ = StableDiffusionDiffEditPipeline.from_pretrained( "stabilityai/stable-diffusion-2-1" , safety_checker=__lowerCamelCase , torch_dtype=torch.floataa ) lowerCamelCase__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) lowerCamelCase__ = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=__lowerCamelCase ) lowerCamelCase__ = "a bowl of fruit" lowerCamelCase__ = "a bowl of pears" lowerCamelCase__ = pipe.generate_mask( image=self.raw_image , source_prompt=__lowerCamelCase , target_prompt=__lowerCamelCase , generator=__lowerCamelCase , ) lowerCamelCase__ = pipe.invert( prompt=__lowerCamelCase , image=self.raw_image , inpaint_strength=0.7 , generator=__lowerCamelCase , num_inference_steps=25 , ).latents lowerCamelCase__ = pipe( prompt=__lowerCamelCase , mask_image=__lowerCamelCase , image_latents=__lowerCamelCase , generator=__lowerCamelCase , negative_prompt=__lowerCamelCase , inpaint_strength=0.7 , num_inference_steps=25 , output_type="numpy" , ).images[0] lowerCamelCase__ = ( np.array( load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/diffedit/pears.png" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1
187
1