code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowercase__ =logging.get_logger(__name__) class UpperCamelCase__ ( enum.Enum ): _SCREAMING_SNAKE_CASE : List[str] = 0 _SCREAMING_SNAKE_CASE : Optional[int] = 1 @add_end_docstrings(__lowercase ) class UpperCamelCase__ ( __lowercase ): _SCREAMING_SNAKE_CASE : int = "generated" def __init__(self : Dict , *snake_case_ : Optional[Any] , **snake_case_ : List[Any] ): super().__init__(*snake_case_ , **snake_case_ ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def lowerCAmelCase (self : Any , snake_case_ : Optional[Any]=None , snake_case_ : Dict=None , snake_case_ : List[Any]=None , snake_case_ : Dict=None , snake_case_ : Any=None , snake_case_ : int=None , **snake_case_ : List[str] , ): __a : Dict = {} if truncation is not None: __a : str = truncation __a : Tuple = generate_kwargs __a : Optional[int] = {} if return_tensors is not None and return_type is None: __a : int = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: __a : str = return_type if clean_up_tokenization_spaces is not None: __a : Union[str, Any] = clean_up_tokenization_spaces if stop_sequence is not None: __a : Dict = self.tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) if len(snake_case_ ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) __a : Tuple = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def lowerCAmelCase (self : List[Any] , snake_case_ : int , snake_case_ : int , snake_case_ : int ): return True def lowerCAmelCase (self : List[Any] , *snake_case_ : str , snake_case_ : Dict ): __a : Tuple = self.model.config.prefix if self.model.config.prefix is not None else '''''' if isinstance(args[0] , snake_case_ ): if self.tokenizer.pad_token_id is None: raise ValueError('''Please make sure that the tokenizer has a pad_token_id when using a batch input''' ) __a : List[str] = ([prefix + arg for arg in args[0]],) __a : List[Any] = True elif isinstance(args[0] , snake_case_ ): __a : str = (prefix + args[0],) __a : int = False else: raise ValueError( f" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`" ) __a : Any = self.tokenizer(*snake_case_ , padding=snake_case_ , truncation=snake_case_ , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__(self : int , *snake_case_ : Optional[int] , **snake_case_ : List[str] ): __a : str = super().__call__(*snake_case_ , **snake_case_ ) if ( isinstance(args[0] , snake_case_ ) and all(isinstance(snake_case_ , snake_case_ ) for el in args[0] ) and all(len(snake_case_ ) == 1 for res in result ) ): return [res[0] for res in result] return result def lowerCAmelCase (self : Optional[Any] , snake_case_ : List[Any] , snake_case_ : Optional[Any]=TruncationStrategy.DO_NOT_TRUNCATE , **snake_case_ : int ): __a : Optional[int] = self._parse_and_tokenize(snake_case_ , truncation=snake_case_ , **snake_case_ ) return inputs def lowerCAmelCase (self : Any , snake_case_ : List[str] , **snake_case_ : Union[str, Any] ): if self.framework == "pt": __a , __a : List[str] = model_inputs['''input_ids'''].shape elif self.framework == "tf": __a , __a : List[Any] = tf.shape(model_inputs['''input_ids'''] ).numpy() __a : Optional[Any] = generate_kwargs.get('''min_length''' , self.model.config.min_length ) __a : Union[str, Any] = generate_kwargs.get('''max_length''' , self.model.config.max_length ) self.check_inputs(snake_case_ , generate_kwargs['''min_length'''] , generate_kwargs['''max_length'''] ) __a : str = self.model.generate(**snake_case_ , **snake_case_ ) __a : Union[str, Any] = output_ids.shape[0] if self.framework == "pt": __a : Optional[Any] = output_ids.reshape(snake_case_ , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": __a : int = tf.reshape(snake_case_ , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def lowerCAmelCase (self : Dict , snake_case_ : Dict , snake_case_ : List[str]=ReturnType.TEXT , snake_case_ : str=False ): __a : Optional[int] = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: __a : Optional[Any] = {f"{self.return_name}_token_ids": output_ids} elif return_type == ReturnType.TEXT: __a : str = { f"{self.return_name}_text": self.tokenizer.decode( snake_case_ , skip_special_tokens=snake_case_ , clean_up_tokenization_spaces=snake_case_ , ) } records.append(snake_case_ ) return records @add_end_docstrings(__lowercase ) class UpperCamelCase__ ( __lowercase ): _SCREAMING_SNAKE_CASE : Tuple = "summary" def __call__(self : Optional[Any] , *snake_case_ : Optional[int] , **snake_case_ : List[str] ): return super().__call__(*snake_case_ , **snake_case_ ) def lowerCAmelCase (self : Union[str, Any] , snake_case_ : int , snake_case_ : int , snake_case_ : int ): if max_length < min_length: logger.warning(f"Your min_length={min_length} must be inferior than your max_length={max_length}." ) if input_length < max_length: logger.warning( f"Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is " '''a summarization task, where outputs shorter than the input are typically wanted, you might ''' f"consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})" ) @add_end_docstrings(__lowercase ) class UpperCamelCase__ ( __lowercase ): _SCREAMING_SNAKE_CASE : Dict = "translation" def lowerCAmelCase (self : Union[str, Any] , snake_case_ : int , snake_case_ : int , snake_case_ : int ): if input_length > 0.9 * max_length: logger.warning( f"Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider " '''increasing your max_length manually, e.g. translator(\'...\', max_length=400)''' ) return True def lowerCAmelCase (self : Any , *snake_case_ : int , snake_case_ : Optional[int]=TruncationStrategy.DO_NOT_TRUNCATE , snake_case_ : Any=None , snake_case_ : Tuple=None ): if getattr(self.tokenizer , '''_build_translation_inputs''' , snake_case_ ): return self.tokenizer._build_translation_inputs( *snake_case_ , return_tensors=self.framework , truncation=snake_case_ , src_lang=snake_case_ , tgt_lang=snake_case_ ) else: return super()._parse_and_tokenize(*snake_case_ , truncation=snake_case_ ) def lowerCAmelCase (self : Optional[int] , snake_case_ : int=None , snake_case_ : str=None , **snake_case_ : Optional[Any] ): __a , __a , __a : str = super()._sanitize_parameters(**snake_case_ ) if src_lang is not None: __a : Optional[int] = src_lang if tgt_lang is not None: __a : Tuple = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. __a : int = kwargs.get('''task''' , self.task ) __a : Union[str, Any] = task.split('''_''' ) if task and len(snake_case_ ) == 4: # translation, XX, to YY __a : str = items[1] __a : str = items[3] return preprocess_params, forward_params, postprocess_params def __call__(self : Optional[int] , *snake_case_ : Optional[Any] , **snake_case_ : Any ): return super().__call__(*snake_case_ , **snake_case_ )
521
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class UpperCamelCase__ : @staticmethod def lowerCAmelCase (*snake_case_ : int , **snake_case_ : List[str] ): pass @is_pipeline_test @require_vision @require_timm @require_torch class UpperCamelCase__ ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : Any = MODEL_FOR_OBJECT_DETECTION_MAPPING def lowerCAmelCase (self : Tuple , snake_case_ : Union[str, Any] , snake_case_ : List[Any] , snake_case_ : Dict ): __a : Union[str, Any] = ObjectDetectionPipeline(model=snake_case_ , image_processor=snake_case_ ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def lowerCAmelCase (self : Tuple , snake_case_ : List[str] , snake_case_ : Any ): __a : Any = object_detector('''./tests/fixtures/tests_samples/COCO/000000039769.png''' , threshold=0.0 ) self.assertGreater(len(snake_case_ ) , 0 ) for detected_object in outputs: self.assertEqual( snake_case_ , { '''score''': ANY(snake_case_ ), '''label''': ANY(snake_case_ ), '''box''': {'''xmin''': ANY(snake_case_ ), '''ymin''': ANY(snake_case_ ), '''xmax''': ANY(snake_case_ ), '''ymax''': ANY(snake_case_ )}, } , ) import datasets __a : List[Any] = datasets.load_dataset('''hf-internal-testing/fixtures_image_utils''' , '''image''' , split='''test''' ) __a : List[str] = [ Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ), '''http://images.cocodataset.org/val2017/000000039769.jpg''', # RGBA dataset[0]['''file'''], # LA dataset[1]['''file'''], # L dataset[2]['''file'''], ] __a : Optional[int] = object_detector(snake_case_ , threshold=0.0 ) self.assertEqual(len(snake_case_ ) , len(snake_case_ ) ) for outputs in batch_outputs: self.assertGreater(len(snake_case_ ) , 0 ) for detected_object in outputs: self.assertEqual( snake_case_ , { '''score''': ANY(snake_case_ ), '''label''': ANY(snake_case_ ), '''box''': {'''xmin''': ANY(snake_case_ ), '''ymin''': ANY(snake_case_ ), '''xmax''': ANY(snake_case_ ), '''ymax''': ANY(snake_case_ )}, } , ) @require_tf @unittest.skip('''Object detection not implemented in TF''' ) def lowerCAmelCase (self : int ): pass @require_torch def lowerCAmelCase (self : Tuple ): __a : str = '''hf-internal-testing/tiny-detr-mobilenetsv3''' __a : int = AutoModelForObjectDetection.from_pretrained(snake_case_ ) __a : int = AutoFeatureExtractor.from_pretrained(snake_case_ ) __a : Union[str, Any] = ObjectDetectionPipeline(model=snake_case_ , feature_extractor=snake_case_ ) __a : List[str] = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' , threshold=0.0 ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ {'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 1_5_9, '''ymin''': 1_2_0, '''xmax''': 4_8_0, '''ymax''': 3_5_9}}, {'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 1_5_9, '''ymin''': 1_2_0, '''xmax''': 4_8_0, '''ymax''': 3_5_9}}, ] , ) __a : Dict = object_detector( [ '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''http://images.cocodataset.org/val2017/000000039769.jpg''', ] , threshold=0.0 , ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ [ {'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 1_5_9, '''ymin''': 1_2_0, '''xmax''': 4_8_0, '''ymax''': 3_5_9}}, {'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 1_5_9, '''ymin''': 1_2_0, '''xmax''': 4_8_0, '''ymax''': 3_5_9}}, ], [ {'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 1_5_9, '''ymin''': 1_2_0, '''xmax''': 4_8_0, '''ymax''': 3_5_9}}, {'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 1_5_9, '''ymin''': 1_2_0, '''xmax''': 4_8_0, '''ymax''': 3_5_9}}, ], ] , ) @require_torch @slow def lowerCAmelCase (self : List[Any] ): __a : Optional[Any] = '''facebook/detr-resnet-50''' __a : int = AutoModelForObjectDetection.from_pretrained(snake_case_ ) __a : str = AutoFeatureExtractor.from_pretrained(snake_case_ ) __a : Tuple = ObjectDetectionPipeline(model=snake_case_ , feature_extractor=snake_case_ ) __a : Union[str, Any] = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ {'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_0, '''xmax''': 1_7_5, '''ymax''': 1_1_7}}, {'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 3_3_3, '''ymin''': 7_2, '''xmax''': 3_6_8, '''ymax''': 1_8_7}}, {'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 6_3_9, '''ymax''': 4_7_3}}, {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 1_3, '''ymin''': 5_2, '''xmax''': 3_1_4, '''ymax''': 4_7_0}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 3_4_5, '''ymin''': 2_3, '''xmax''': 6_4_0, '''ymax''': 3_6_8}}, ] , ) __a : Optional[Any] = object_detector( [ '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''http://images.cocodataset.org/val2017/000000039769.jpg''', ] ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ [ {'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_0, '''xmax''': 1_7_5, '''ymax''': 1_1_7}}, {'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 3_3_3, '''ymin''': 7_2, '''xmax''': 3_6_8, '''ymax''': 1_8_7}}, {'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 6_3_9, '''ymax''': 4_7_3}}, {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 1_3, '''ymin''': 5_2, '''xmax''': 3_1_4, '''ymax''': 4_7_0}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 3_4_5, '''ymin''': 2_3, '''xmax''': 6_4_0, '''ymax''': 3_6_8}}, ], [ {'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_0, '''xmax''': 1_7_5, '''ymax''': 1_1_7}}, {'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 3_3_3, '''ymin''': 7_2, '''xmax''': 3_6_8, '''ymax''': 1_8_7}}, {'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 6_3_9, '''ymax''': 4_7_3}}, {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 1_3, '''ymin''': 5_2, '''xmax''': 3_1_4, '''ymax''': 4_7_0}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 3_4_5, '''ymin''': 2_3, '''xmax''': 6_4_0, '''ymax''': 3_6_8}}, ], ] , ) @require_torch @slow def lowerCAmelCase (self : Optional[int] ): __a : Any = '''facebook/detr-resnet-50''' __a : Optional[Any] = pipeline('''object-detection''' , model=snake_case_ ) __a : Optional[int] = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ {'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_0, '''xmax''': 1_7_5, '''ymax''': 1_1_7}}, {'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 3_3_3, '''ymin''': 7_2, '''xmax''': 3_6_8, '''ymax''': 1_8_7}}, {'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 6_3_9, '''ymax''': 4_7_3}}, {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 1_3, '''ymin''': 5_2, '''xmax''': 3_1_4, '''ymax''': 4_7_0}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 3_4_5, '''ymin''': 2_3, '''xmax''': 6_4_0, '''ymax''': 3_6_8}}, ] , ) __a : List[str] = object_detector( [ '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''http://images.cocodataset.org/val2017/000000039769.jpg''', ] ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ [ {'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_0, '''xmax''': 1_7_5, '''ymax''': 1_1_7}}, {'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 3_3_3, '''ymin''': 7_2, '''xmax''': 3_6_8, '''ymax''': 1_8_7}}, {'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 6_3_9, '''ymax''': 4_7_3}}, {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 1_3, '''ymin''': 5_2, '''xmax''': 3_1_4, '''ymax''': 4_7_0}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 3_4_5, '''ymin''': 2_3, '''xmax''': 6_4_0, '''ymax''': 3_6_8}}, ], [ {'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_0, '''xmax''': 1_7_5, '''ymax''': 1_1_7}}, {'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 3_3_3, '''ymin''': 7_2, '''xmax''': 3_6_8, '''ymax''': 1_8_7}}, {'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 6_3_9, '''ymax''': 4_7_3}}, {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 1_3, '''ymin''': 5_2, '''xmax''': 3_1_4, '''ymax''': 4_7_0}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 3_4_5, '''ymin''': 2_3, '''xmax''': 6_4_0, '''ymax''': 3_6_8}}, ], ] , ) @require_torch @slow def lowerCAmelCase (self : Union[str, Any] ): __a : Tuple = 0.9985 __a : Tuple = '''facebook/detr-resnet-50''' __a : int = pipeline('''object-detection''' , model=snake_case_ ) __a : Optional[Any] = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' , threshold=snake_case_ ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 1_3, '''ymin''': 5_2, '''xmax''': 3_1_4, '''ymax''': 4_7_0}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 3_4_5, '''ymin''': 2_3, '''xmax''': 6_4_0, '''ymax''': 3_6_8}}, ] , ) @require_torch @require_pytesseract @slow def lowerCAmelCase (self : List[str] ): __a : Optional[int] = '''Narsil/layoutlmv3-finetuned-funsd''' __a : Any = 0.9993 __a : Tuple = pipeline('''object-detection''' , model=snake_case_ , threshold=snake_case_ ) __a : Optional[Any] = object_detector( '''https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png''' ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ {'''score''': 0.9993, '''label''': '''I-ANSWER''', '''box''': {'''xmin''': 2_9_4, '''ymin''': 2_5_4, '''xmax''': 3_4_3, '''ymax''': 2_6_4}}, {'''score''': 0.9993, '''label''': '''I-ANSWER''', '''box''': {'''xmin''': 2_9_4, '''ymin''': 2_5_4, '''xmax''': 3_4_3, '''ymax''': 2_6_4}}, ] , )
521
1
"""simple docstring""" def lowercase (snake_case__ : str ) -> str: '''simple docstring''' return " ".join( """""".join(word[::-1] ) if len(snake_case__ ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('Hey wollef sroirraw'))
529
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input a = 'Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine' def lowercase () -> Optional[Any]: '''simple docstring''' lowerCAmelCase = _ask_options( """In which compute environment are you running?""" , ["""This machine""", """AWS (Amazon SageMaker)"""] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: lowerCAmelCase = get_sagemaker_input() else: lowerCAmelCase = get_cluster_input() return config def lowercase (snake_case__ : List[str]=None ) -> int: '''simple docstring''' if subparsers is not None: lowerCAmelCase = subparsers.add_parser("""config""" , description=snake_case__ ) else: lowerCAmelCase = argparse.ArgumentParser("""Accelerate config command""" , description=snake_case__ ) parser.add_argument( """--config_file""" , default=snake_case__ , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ) , ) if subparsers is not None: parser.set_defaults(func=snake_case__ ) return parser def lowercase (snake_case__ : str ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase = get_user_input() if args.config_file is not None: lowerCAmelCase = args.config_file else: if not os.path.isdir(snake_case__ ): os.makedirs(snake_case__ ) lowerCAmelCase = default_yaml_config_file if config_file.endswith(""".json""" ): config.to_json_file(snake_case__ ) else: config.to_yaml_file(snake_case__ ) print(f'''accelerate configuration saved at {config_file}''' ) def lowercase () -> Optional[int]: '''simple docstring''' lowerCAmelCase = config_command_parser() lowerCAmelCase = parser.parse_args() config_command(snake_case__ ) if __name__ == "__main__": main()
529
1
import operator as op def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = [] SCREAMING_SNAKE_CASE : Any = lambda lowercase , lowercase : int(x / y ) # noqa: E731 integer division operation SCREAMING_SNAKE_CASE : str = { "^": op.pow, "*": op.mul, "/": div, "+": op.add, "-": op.sub, } # operators & their respective operation # print table header print("Symbol".center(8 ) , "Action".center(12 ) , "Stack" , sep=" | " ) print("-" * (30 + len(lowercase )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(lowercase ) # append x to stack # output in tabular format print(x.rjust(8 ) , ("push(" + x + ")").ljust(12 ) , ",".join(lowercase ) , sep=" | " ) else: SCREAMING_SNAKE_CASE : Any = stack.pop() # pop stack # output in tabular format print("".rjust(8 ) , ("pop(" + b + ")").ljust(12 ) , ",".join(lowercase ) , sep=" | " ) SCREAMING_SNAKE_CASE : int = stack.pop() # pop stack # output in tabular format print("".rjust(8 ) , ("pop(" + a + ")").ljust(12 ) , ",".join(lowercase ) , sep=" | " ) stack.append( str(opr[x](int(lowercase ) , int(lowercase ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ("push(" + a + x + b + ")").ljust(12 ) , ",".join(lowercase ) , sep=" | " , ) return int(stack[0] ) if __name__ == "__main__": snake_case = input("""\n\nEnter a Postfix Equation (space separated) = """).split(""" """) print("""\n\tResult = """, solve(Postfix))
62
"""simple docstring""" class __lowerCAmelCase : '''simple docstring''' def __init__( self ): """simple docstring""" snake_case_ :Optional[Any] = 0 snake_case_ :Dict = 0 snake_case_ :Any = {} def _a ( self , a ): """simple docstring""" if vertex not in self.adjacency: snake_case_ :str = {} self.num_vertices += 1 def _a ( self , a , a , a ): """simple docstring""" self.add_vertex(a ) self.add_vertex(a ) if head == tail: return snake_case_ :List[Any] = weight snake_case_ :str = weight def _a ( self ): """simple docstring""" snake_case_ :Optional[int] = self.get_edges() for edge in edges: snake_case_ , snake_case_ , snake_case_ :Any = edge edges.remove((tail, head, weight) ) for i in range(len(a ) ): snake_case_ :Dict = list(edges[i] ) edges.sort(key=lambda a : e[2] ) for i in range(len(a ) - 1 ): if edges[i][2] >= edges[i + 1][2]: snake_case_ :Tuple = edges[i][2] + 1 for edge in edges: snake_case_ , snake_case_ , snake_case_ :Any = edge snake_case_ :Dict = weight snake_case_ :int = weight def __str__( self ): """simple docstring""" snake_case_ :List[Any] = "" for tail in self.adjacency: for head in self.adjacency[tail]: snake_case_ :List[Any] = self.adjacency[head][tail] string += F'''{head} -> {tail} == {weight}\n''' return string.rstrip("\n" ) def _a ( self ): """simple docstring""" snake_case_ :int = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def _a ( self ): """simple docstring""" return self.adjacency.keys() @staticmethod def _a ( a=None , a=None ): """simple docstring""" snake_case_ :Optional[Any] = Graph() if vertices is None: snake_case_ :int = [] if edges is None: snake_case_ :Any = [] for vertex in vertices: g.add_vertex(a ) for edge in edges: g.add_edge(*a ) return g class __lowerCAmelCase : '''simple docstring''' def __init__( self ): """simple docstring""" snake_case_ :Dict = {} snake_case_ :Optional[int] = {} def __len__( self ): """simple docstring""" return len(self.parent ) def _a ( self , a ): """simple docstring""" if item in self.parent: return self.find(a ) snake_case_ :Optional[Any] = item snake_case_ :str = 0 return item def _a ( self , a ): """simple docstring""" if item not in self.parent: return self.make_set(a ) if item != self.parent[item]: snake_case_ :Optional[int] = self.find(self.parent[item] ) return self.parent[item] def _a ( self , a , a ): """simple docstring""" snake_case_ :Any = self.find(a ) snake_case_ :str = self.find(a ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: snake_case_ :Union[str, Any] = roota return roota if self.rank[roota] < self.rank[roota]: snake_case_ :Any = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 snake_case_ :Union[str, Any] = roota return roota return None @staticmethod def _a ( a ): """simple docstring""" snake_case_ :Any = graph.num_vertices snake_case_ :Any = Graph.UnionFind() snake_case_ :Optional[Any] = [] while num_components > 1: snake_case_ :List[Any] = {} for vertex in graph.get_vertices(): snake_case_ :str = -1 snake_case_ :Tuple = graph.get_edges() for edge in edges: snake_case_ , snake_case_ , snake_case_ :Optional[int] = edge edges.remove((tail, head, weight) ) for edge in edges: snake_case_ , snake_case_ , snake_case_ :Optional[int] = edge snake_case_ :List[Any] = union_find.find(a ) snake_case_ :Union[str, Any] = union_find.find(a ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: snake_case_ :Optional[int] = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: snake_case_ :Tuple = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: snake_case_ , snake_case_ , snake_case_ :List[Any] = cheap_edge[vertex] if union_find.find(a ) != union_find.find(a ): union_find.union(a , a ) mst_edges.append(cheap_edge[vertex] ) snake_case_ :List[Any] = num_components - 1 snake_case_ :Any = Graph.build(edges=a ) return mst
584
0
import argparse snake_case_ : Any ='''docs/source/_static/js/custom.js''' def UpperCAmelCase ( lowerCAmelCase__ ): '''simple docstring''' with open(lowerCAmelCase__ , encoding="utf-8" , newline="\n" ) as f: __A = f.readlines() __A = 0 # First let's put the right version while not lines[index].startswith("const stableVersion =" ): index += 1 __A = F"""const stableVersion = \"v{version}\"\n""" # Then update the dictionary while not lines[index].startswith("const versionMapping = {" ): index += 1 # We go until the end while not lines[index].startswith("}" ): index += 1 # We add the new version at the end lines[index - 1] += F""" \"v{version}\": \"v{version}\",\n""" with open(lowerCAmelCase__ , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(lowerCAmelCase__ ) if __name__ == "__main__": snake_case_ : Dict =argparse.ArgumentParser() parser.add_argument('''--version''', help='''Release version.''') snake_case_ : Union[str, Any] =parser.parse_args() update_custom_js(args.version)
711
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class a__ : def __init__( self , lowercase__ , lowercase__=13 , lowercase__=10 , lowercase__=3 , lowercase__=2 , lowercase__=2 , lowercase__=True , lowercase__=True , lowercase__=32 , lowercase__=5 , lowercase__=4 , lowercase__=37 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=10 , lowercase__=0.02 , lowercase__="divided_space_time" , lowercase__=None , ) -> Any: __A = parent __A = batch_size __A = image_size __A = num_channels __A = patch_size __A = num_frames __A = is_training __A = use_labels __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = attention_type __A = initializer_range __A = scope __A = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token __A = (image_size // patch_size) ** 2 __A = (num_frames) * self.num_patches_per_frame + 1 def _lowerCamelCase ( self ) -> Any: __A = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) __A = None if self.use_labels: __A = ids_tensor([self.batch_size] , self.num_labels ) __A = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self ) -> List[Any]: __A = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) __A = self.num_labels return config def _lowerCamelCase ( self , lowercase__ , lowercase__ , lowercase__ ) -> Dict: __A = TimesformerModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() __A = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self , lowercase__ , lowercase__ , lowercase__ ) -> List[str]: __A = TimesformerForVideoClassification(lowercase__ ) model.to(lowercase__ ) model.eval() __A = model(lowercase__ ) # verify the logits shape __A = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , lowercase__ ) def _lowerCamelCase ( self ) -> Union[str, Any]: __A = self.prepare_config_and_inputs() __A , __A , __A = config_and_inputs __A = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class a__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): UpperCAmelCase_ : Optional[Any] = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () UpperCAmelCase_ : Optional[Any] = ( {'feature-extraction': TimesformerModel, 'video-classification': TimesformerForVideoClassification} if is_torch_available() else {} ) UpperCAmelCase_ : List[str] = False UpperCAmelCase_ : str = False UpperCAmelCase_ : str = False UpperCAmelCase_ : Dict = False def _lowerCamelCase ( self ) -> int: __A = TimesformerModelTester(self ) __A = ConfigTester( self , config_class=lowercase__ , has_text_modality=lowercase__ , hidden_size=37 ) def _lowerCamelCase ( self , lowercase__ , lowercase__ , lowercase__=False ) -> int: __A = copy.deepcopy(lowercase__ ) if return_labels: if model_class in get_values(lowercase__ ): __A = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase__ ) return inputs_dict def _lowerCamelCase ( self ) -> Any: self.config_tester.run_common_tests() @unittest.skip(reason="TimeSformer does not use inputs_embeds" ) def _lowerCamelCase ( self ) -> Optional[Any]: pass def _lowerCamelCase ( self ) -> int: __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(lowercase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __A = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase__ , nn.Linear ) ) def _lowerCamelCase ( self ) -> int: __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(lowercase__ ) __A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A = [*signature.parameters.keys()] __A = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowercase__ ) def _lowerCamelCase ( self ) -> List[Any]: __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def _lowerCamelCase ( self ) -> Dict: __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*lowercase__ ) @slow def _lowerCamelCase ( self ) -> Optional[Any]: for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = TimesformerModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) def _lowerCamelCase ( self ) -> str: if not self.has_attentions: pass else: __A , __A = self.model_tester.prepare_config_and_inputs_for_common() __A = True for model_class in self.all_model_classes: __A = self.model_tester.seq_length __A = self.model_tester.num_frames __A = True __A = False __A = True __A = model_class(lowercase__ ) model.to(lowercase__ ) model.eval() with torch.no_grad(): __A = model(**self._prepare_for_class(lowercase__ , lowercase__ ) ) __A = outputs.attentions self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __A = True __A = model_class(lowercase__ ) model.to(lowercase__ ) model.eval() with torch.no_grad(): __A = model(**self._prepare_for_class(lowercase__ , lowercase__ ) ) __A = outputs.attentions self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) __A = len(lowercase__ ) # Check attention is always last and order is fine __A = True __A = True __A = model_class(lowercase__ ) model.to(lowercase__ ) model.eval() with torch.no_grad(): __A = model(**self._prepare_for_class(lowercase__ , lowercase__ ) ) self.assertEqual(out_len + 1 , len(lowercase__ ) ) __A = outputs.attentions self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def _lowerCamelCase ( self ) -> Union[str, Any]: def check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ): __A = model_class(lowercase__ ) model.to(lowercase__ ) model.eval() with torch.no_grad(): __A = model(**self._prepare_for_class(lowercase__ , lowercase__ ) ) __A = outputs.hidden_states __A = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(lowercase__ ) , lowercase__ ) __A = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = True check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __A = True check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ) def UpperCAmelCase ( ): '''simple docstring''' __A = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" , filename="eating_spaghetti.npy" , repo_type="dataset" ) __A = np.load(lowerCAmelCase__ ) return list(lowerCAmelCase__ ) @require_torch @require_vision class a__ ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self ) -> int: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def _lowerCamelCase ( self ) -> Optional[int]: __A = TimesformerForVideoClassification.from_pretrained("facebook/timesformer-base-finetuned-k400" ).to( lowercase__ ) __A = self.default_image_processor __A = prepare_video() __A = image_processor(video[:8] , return_tensors="pt" ).to(lowercase__ ) # forward pass with torch.no_grad(): __A = model(**lowercase__ ) # verify the logits __A = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , lowercase__ ) __A = torch.tensor([-0.3016, -0.7713, -0.4205] ).to(lowercase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase__ , atol=1e-4 ) )
205
0
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=__A ) class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = field(default='''summarization''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) UpperCamelCase_ = Features({'''text''': Value('''string''' )} ) UpperCamelCase_ = Features({'''summary''': Value('''string''' )} ) UpperCamelCase_ = "text" UpperCamelCase_ = "summary" @property def A__ ( self : int ) -> Dict[str, str]: '''simple docstring''' return {self.text_column: "text", self.summary_column: "summary"}
94
"""simple docstring""" import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def __snake_case ( __A ) -> Any: lowercase : List[str] = os.path.join(args.tf_model_dir ,"""parameters.json""" ) lowercase : Any = json.loads(open(__A ).read() ) if not params: raise ValueError( F'''It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.''' ) if not args.output.endswith(""".pt""" ): lowercase : List[str] = args.output + """.pt""" lowercase : Dict = OrderedDict() with tf.device("""/CPU:0""" ): lowercase : Any = tf.train.load_checkpoint(args.tf_model_dir ) lowercase : List[Any] = reader.get_variable_to_shape_map() for key_name in shapes.keys(): lowercase : Optional[Any] = reader.get_tensor(__A ).astype(np.floataa ) if key_name.endswith("""/adam_m""" ) or key_name.endswith("""/adam_v""" ): continue if key_name.startswith("""pasts/""" ): if key_name.startswith("""pasts/mlp""" ): lowercase : str = int(key_name[9] ) elif key_name.startswith("""pasts/out""" ): lowercase : List[Any] = 8 lowercase : Optional[int] = """model.sqout.%d.weight""" % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time lowercase : int = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase : int = torch.tensor(__A ) elif key_name.startswith("""model/moe""" ): lowercase : Optional[int] = int(key_name[9:].split("""/""" )[0] ) if key_name.endswith("""/switch_gating/kernel""" ): lowercase : Any = """model.blocks.%d.feed_forward.mlp.router.classifier.weight""" % player lowercase : List[Any] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase : Tuple = torch.tensor(__A ) elif key_name.endswith("""/softmlp/kernel""" ): lowercase : str = """model.blocks.%d.feed_forward.soft_bypass_mlp.weight""" % player lowercase : Optional[int] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase : Optional[int] = torch.tensor(__A ) elif key_name.endswith("""/wo/kernel""" ) or key_name.endswith("""/wi/kernel""" ): lowercase : Union[str, Any] = key_name[-9:-7] for i in range(16 ): lowercase : int = """model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight""" % (player, i, nlayer) lowercase : str = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided lowercase : List[Any] = torch.tensor(__A ) elif key_name.startswith("""model/mlp""" ): lowercase : Any = int(key_name[9:].split("""/""" )[0] ) if key_name.endswith("""/p1/kernel""" ): lowercase : Dict = """model.blocks.%d.feed_forward.mlp.wi.weight""" % player lowercase : Any = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase : int = torch.tensor(__A ) elif key_name.endswith("""/p1/bias""" ): lowercase : Tuple = """model.blocks.%d.feed_forward.mlp.wi.bias""" % player lowercase : Tuple = vnp.copy() # same because it is one dimensional lowercase : Tuple = torch.tensor(__A ) elif key_name.endswith("""/p2/kernel""" ): lowercase : int = """model.blocks.%d.feed_forward.mlp.wo.weight""" % player lowercase : Any = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase : Optional[Any] = torch.tensor(__A ) elif key_name.endswith("""/p2/bias""" ): lowercase : Any = """model.blocks.%d.feed_forward.mlp.wo.bias""" % player lowercase : str = vnp.copy() # same because it is one dimensional lowercase : str = torch.tensor(__A ) elif key_name.startswith("""model/ln""" ): lowercase : Union[str, Any] = int(key_name[8:].split("""/""" )[0] ) if key_name.endswith("""/b""" ): lowercase : Any = """model.blocks.%d.feed_forward.norm.bias""" % player lowercase : List[str] = vnp.copy() # same because it is one dimensional lowercase : Any = torch.tensor(__A ) elif key_name.endswith("""/g""" ): lowercase : int = """model.blocks.%d.feed_forward.norm.weight""" % player lowercase : Union[str, Any] = vnp.copy() # same because it is one dimensional lowercase : Optional[Any] = torch.tensor(__A ) elif key_name.startswith("""model/att""" ): lowercase : Optional[int] = int(key_name[9:].split("""/""" )[0] ) if key_name.endswith("""/qkv/kernel""" ): lowercase : Optional[int] = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum lowercase : Any = state[:, 0, :, :] lowercase : List[Any] = state[:, 1, :, :] lowercase : Optional[Any] = state[:, 2, :, :] lowercase : Dict = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase : List[str] = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase : Optional[Any] = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase : str = """model.blocks.%d.self_attn.self_attn.q_proj.weight""" % player lowercase : Optional[int] = torch.tensor(__A ) lowercase : int = """model.blocks.%d.self_attn.self_attn.k_proj.weight""" % player lowercase : Optional[Any] = torch.tensor(__A ) lowercase : Tuple = """model.blocks.%d.self_attn.self_attn.v_proj.weight""" % player lowercase : List[str] = torch.tensor(__A ) elif key_name.endswith("""/o/kernel""" ): lowercase : Any = """model.blocks.%d.self_attn.self_attn.out_proj.weight""" % player lowercase : List[Any] = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase : Optional[int] = torch.tensor(__A ) elif key_name.startswith("""model/an""" ): lowercase : Tuple = int(key_name[8:].split("""/""" )[0] ) if key_name.endswith("""/b""" ): lowercase : List[str] = """model.blocks.%d.self_attn.norm.bias""" % player lowercase : List[str] = vnp.copy() # same because it is one dimensional lowercase : int = torch.tensor(__A ) elif key_name.endswith("""/g""" ): lowercase : Any = """model.blocks.%d.self_attn.norm.weight""" % player lowercase : Union[str, Any] = vnp.copy() # same because it is one dimensional lowercase : int = torch.tensor(__A ) elif ( key_name.startswith("""model/wte""" ) or key_name.startswith("""model/wpe""" ) or key_name.startswith("""model/ete""" ) ): lowercase : Any = {"""wte""": """embed_tokens""", """wpe""": """position_embeddings""", """ete""": """extra_position_embeddings"""}[ key_name[-3:] ] lowercase : Optional[int] = """model.%s.weight""" % nlayer lowercase : Any = vnp.copy() # same in embedded lowercase : Dict = torch.tensor(__A ) if key_name.startswith("""model/wte""" ): lowercase : Optional[Any] = """lm_head.weight""" lowercase : int = vnp.copy() # same in embedded lowercase : str = torch.tensor(__A ) elif key_name.startswith("""model/wob""" ): lowercase : str = """final_logits_bias""" lowercase : List[str] = vnp.copy() # same in embedded lowercase : str = state.reshape((1, -1) ) lowercase : Tuple = torch.tensor(__A ) elif key_name == "model/dense/kernel": lowercase : Dict = """model.last_project.weight""" lowercase : Dict = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase : int = torch.tensor(__A ) elif key_name == "model/dense_1/bias": lowercase : List[str] = """model.last_project.bias""" lowercase : Dict = vnp.copy() # same because it is one dimensional lowercase : List[str] = torch.tensor(__A ) torch.save(__A ,args.output ) if __name__ == "__main__": lowerCAmelCase: Tuple =argparse.ArgumentParser( description="model converter.", formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument("--tf_model_dir", metavar="PATH", type=str, required=True, help="import model") parser.add_argument("--output", metavar="PATH", type=str, required=True, help="output model") lowerCAmelCase: Tuple =parser.parse_args() convert_tf_gptsan_to_pt(args)
607
0
'''simple docstring''' import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCAmelCase ( UpperCamelCase_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase_ = DDIMPipeline lowerCamelCase_ = UNCONDITIONAL_IMAGE_GENERATION_PARAMS lowerCamelCase_ = PipelineTesterMixin.required_optional_params - { '''num_images_per_prompt''', '''latents''', '''callback''', '''callback_steps''', } lowerCamelCase_ = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS lowerCamelCase_ = False def lowerCAmelCase_ ( self ): """simple docstring""" torch.manual_seed(0 ) A_ : Optional[Any] = UNetaDModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) A_ : Dict = DDIMScheduler() A_ : Dict = {"unet": unet, "scheduler": scheduler} return components def lowerCAmelCase_ ( self , lowercase , lowercase=0 ): """simple docstring""" if str(__A ).startswith('mps' ): A_ : Union[str, Any] = torch.manual_seed(__A ) else: A_ : Union[str, Any] = torch.Generator(device=__A ).manual_seed(__A ) A_ : Optional[int] = { "batch_size": 1, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def lowerCAmelCase_ ( self ): """simple docstring""" A_ : str = "cpu" A_ : List[str] = self.get_dummy_components() A_ : List[Any] = self.pipeline_class(**__A ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) A_ : int = self.get_dummy_inputs(__A ) A_ : Any = pipe(**__A ).images A_ : Any = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 3_2, 3_2, 3) ) A_ : int = np.array( [1.0_00E00, 5.7_17E-01, 4.7_17E-01, 1.0_00E00, 0.0_00E00, 1.0_00E00, 3.0_00E-04, 0.0_00E00, 9.0_00E-04] ) A_ : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__A , 1E-3 ) def lowerCAmelCase_ ( self ): """simple docstring""" super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def lowerCAmelCase_ ( self ): """simple docstring""" super().test_save_load_local(expected_max_difference=3E-3 ) def lowerCAmelCase_ ( self ): """simple docstring""" super().test_save_load_optional_components(expected_max_difference=3E-3 ) def lowerCAmelCase_ ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Any = "google/ddpm-cifar10-32" A_ : Optional[Any] = UNetaDModel.from_pretrained(__A ) A_ : int = DDIMScheduler() A_ : Union[str, Any] = DDIMPipeline(unet=__A , scheduler=__A ) ddim.to(__A ) ddim.set_progress_bar_config(disable=__A ) A_ : Tuple = torch.manual_seed(0 ) A_ : List[Any] = ddim(generator=__A , eta=0.0 , output_type='numpy' ).images A_ : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) A_ : Tuple = np.array([0.1723, 0.1617, 0.1600, 0.1626, 0.1497, 0.1513, 0.1505, 0.1442, 0.1453] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Optional[int] = "google/ddpm-ema-bedroom-256" A_ : List[Any] = UNetaDModel.from_pretrained(__A ) A_ : Union[str, Any] = DDIMScheduler.from_pretrained(__A ) A_ : Tuple = DDIMPipeline(unet=__A , scheduler=__A ) ddpm.to(__A ) ddpm.set_progress_bar_config(disable=__A ) A_ : Any = torch.manual_seed(0 ) A_ : Any = ddpm(generator=__A , output_type='numpy' ).images A_ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 2_5_6, 2_5_6, 3) A_ : str = np.array([0.0060, 0.0201, 0.0344, 0.0024, 0.0018, 0.0002, 0.0022, 0.0000, 0.0069] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
703
def UpperCamelCase ( __lowercase : str ): '''simple docstring''' A_ : int = len(__lowercase ) A_ : List[Any] = sum(__lowercase ) A_ : List[str] = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 ,n + 1 ): A_ : Optional[Any] = True for i in range(1 ,s + 1 ): A_ : Tuple = False for i in range(1 ,n + 1 ): for j in range(1 ,s + 1 ): A_ : Dict = dp[i][j - 1] if arr[i - 1] <= j: A_ : Dict = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) ,-1 ,-1 ): if dp[n][j] is True: A_ : List[Any] = s - 2 * j break return diff
70
0
"""simple docstring""" def __A (_SCREAMING_SNAKE_CASE ) ->str: """simple docstring""" if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError('\'float\' object cannot be interpreted as an integer' ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError('\'str\' object cannot be interpreted as an integer' ) if num == 0: return "0b0" lowerCAmelCase__ :Any = False if num < 0: lowerCAmelCase__ :Tuple = True lowerCAmelCase__ :Optional[Any] = -num lowerCAmelCase__ :list[int] = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(_SCREAMING_SNAKE_CASE ) for e in binary ) return "0b" + "".join(str(_SCREAMING_SNAKE_CASE ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
93
def a ( snake_case__: int ): '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ): raise ValueError('''Input must be an integer''' ) if input_num <= 0: raise ValueError('''Input must be positive''' ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
97
0
import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class a_( lowercase__ , unittest.TestCase ): """simple docstring""" __snake_case : Optional[Any] =BertTokenizer __snake_case : Tuple =BertTokenizerFast __snake_case : List[Any] =True __snake_case : str =True __snake_case : int =filter_non_english def __UpperCamelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" super().setUp() SCREAMING_SNAKE_CASE = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens])) def __UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase__ : Union[str, Any]) -> int: """simple docstring""" SCREAMING_SNAKE_CASE = 'UNwant\u00E9d,running' SCREAMING_SNAKE_CASE = 'unwanted, running' return input_text, output_text def __UpperCamelCase ( self : List[Any]) -> int: """simple docstring""" SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file) SCREAMING_SNAKE_CASE = tokenizer.tokenize('UNwant\u00E9d,running') self.assertListEqual(lowerCAmelCase__ , ['un', '##want', '##ed', ',', 'runn', '##ing']) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__) , [9, 6, 7, 1_2, 1_0, 1_1]) def __UpperCamelCase ( self : Any) -> Union[str, Any]: """simple docstring""" if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE = 'UNwant\u00E9d,running' SCREAMING_SNAKE_CASE = tokenizer.tokenize(lowerCAmelCase__) SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) SCREAMING_SNAKE_CASE = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE = tokenizer.encode(lowerCAmelCase__) SCREAMING_SNAKE_CASE = rust_tokenizer.encode(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) # With lower casing SCREAMING_SNAKE_CASE = self.get_tokenizer(do_lower_case=lowerCAmelCase__) SCREAMING_SNAKE_CASE = self.get_rust_tokenizer(do_lower_case=lowerCAmelCase__) SCREAMING_SNAKE_CASE = 'UNwant\u00E9d,running' SCREAMING_SNAKE_CASE = tokenizer.tokenize(lowerCAmelCase__) SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) SCREAMING_SNAKE_CASE = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE = tokenizer.encode(lowerCAmelCase__) SCREAMING_SNAKE_CASE = rust_tokenizer.encode(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) def __UpperCamelCase ( self : Optional[int]) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz') , ['ah', '\u535A', '\u63A8', 'zz']) def __UpperCamelCase ( self : Dict) -> int: """simple docstring""" SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=lowerCAmelCase__) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ') , ['hello', '!', 'how', 'are', 'you', '?']) self.assertListEqual(tokenizer.tokenize('H\u00E9llo') , ['hello']) def __UpperCamelCase ( self : List[Any]) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=lowerCAmelCase__ , strip_accents=lowerCAmelCase__) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ') , ['hällo', '!', 'how', 'are', 'you', '?']) self.assertListEqual(tokenizer.tokenize('H\u00E9llo') , ['h\u00E9llo']) def __UpperCamelCase ( self : Union[str, Any]) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=lowerCAmelCase__ , strip_accents=lowerCAmelCase__) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ') , ['hallo', '!', 'how', 'are', 'you', '?']) self.assertListEqual(tokenizer.tokenize('H\u00E9llo') , ['hello']) def __UpperCamelCase ( self : int) -> int: """simple docstring""" SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=lowerCAmelCase__) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ') , ['hallo', '!', 'how', 'are', 'you', '?']) self.assertListEqual(tokenizer.tokenize('H\u00E9llo') , ['hello']) def __UpperCamelCase ( self : str) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=lowerCAmelCase__) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ') , ['HeLLo', '!', 'how', 'Are', 'yoU', '?']) def __UpperCamelCase ( self : List[str]) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=lowerCAmelCase__ , strip_accents=lowerCAmelCase__) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ') , ['HäLLo', '!', 'how', 'Are', 'yoU', '?']) def __UpperCamelCase ( self : int) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=lowerCAmelCase__ , strip_accents=lowerCAmelCase__) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ') , ['HaLLo', '!', 'how', 'Are', 'yoU', '?']) def __UpperCamelCase ( self : str) -> int: """simple docstring""" SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=lowerCAmelCase__ , never_split=['[UNK]']) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]') , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]']) def __UpperCamelCase ( self : Union[str, Any]) -> str: """simple docstring""" SCREAMING_SNAKE_CASE = BasicTokenizer() SCREAMING_SNAKE_CASE = 'a\n\'ll !!to?\'d of, can\'t.' SCREAMING_SNAKE_CASE = ['a', '\'', 'll', '!', '!', 'to', '?', '\'', 'd', 'of', ',', 'can', '\'', 't', '.'] self.assertListEqual(tokenizer.tokenize(lowerCAmelCase__) , lowerCAmelCase__) def __UpperCamelCase ( self : Any) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] SCREAMING_SNAKE_CASE = {} for i, token in enumerate(lowerCAmelCase__): SCREAMING_SNAKE_CASE = i SCREAMING_SNAKE_CASE = WordpieceTokenizer(vocab=lowerCAmelCase__ , unk_token='[UNK]') self.assertListEqual(tokenizer.tokenize('') , []) self.assertListEqual(tokenizer.tokenize('unwanted running') , ['un', '##want', '##ed', 'runn', '##ing']) self.assertListEqual(tokenizer.tokenize('unwantedX running') , ['[UNK]', 'runn', '##ing']) def __UpperCamelCase ( self : Any) -> str: """simple docstring""" self.assertTrue(_is_whitespace(' ')) self.assertTrue(_is_whitespace('\t')) self.assertTrue(_is_whitespace('\r')) self.assertTrue(_is_whitespace('\n')) self.assertTrue(_is_whitespace('\u00A0')) self.assertFalse(_is_whitespace('A')) self.assertFalse(_is_whitespace('-')) def __UpperCamelCase ( self : List[str]) -> Optional[int]: """simple docstring""" self.assertTrue(_is_control('\u0005')) self.assertFalse(_is_control('A')) self.assertFalse(_is_control(' ')) self.assertFalse(_is_control('\t')) self.assertFalse(_is_control('\r')) def __UpperCamelCase ( self : int) -> str: """simple docstring""" self.assertTrue(_is_punctuation('-')) self.assertTrue(_is_punctuation('$')) self.assertTrue(_is_punctuation('`')) self.assertTrue(_is_punctuation('.')) self.assertFalse(_is_punctuation('A')) self.assertFalse(_is_punctuation(' ')) def __UpperCamelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(lowerCAmelCase__) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']]) self.assertListEqual( [rust_tokenizer.tokenize(lowerCAmelCase__) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']]) @slow def __UpperCamelCase ( self : Dict) -> str: """simple docstring""" SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained('bert-base-uncased') SCREAMING_SNAKE_CASE = tokenizer.encode('sequence builders' , add_special_tokens=lowerCAmelCase__) SCREAMING_SNAKE_CASE = tokenizer.encode('multi-sequence build' , add_special_tokens=lowerCAmelCase__) SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__) SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ , lowerCAmelCase__) assert encoded_sentence == [1_0_1] + text + [1_0_2] assert encoded_pair == [1_0_1] + text + [1_0_2] + text_a + [1_0_2] def __UpperCamelCase ( self : Any) -> str: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})'''): SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__) SCREAMING_SNAKE_CASE = f'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' SCREAMING_SNAKE_CASE = tokenizer_r.encode_plus( lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE = tokenizer_r.do_lower_case if hasattr(lowerCAmelCase__ , 'do_lower_case') else False SCREAMING_SNAKE_CASE = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), 'Allen'), ((2_1, 2_3), '##NL'), ((2_3, 2_4), '##P'), ((2_5, 3_3), 'sentence'), ((3_3, 3_4), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), 'allen'), ((2_1, 2_3), '##nl'), ((2_3, 2_4), '##p'), ((2_5, 3_3), 'sentence'), ((3_3, 3_4), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'])) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping']) def __UpperCamelCase ( self : Tuple) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE = ['的', '人', '有'] SCREAMING_SNAKE_CASE = ''.join(lowerCAmelCase__) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})'''): SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__) SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__) SCREAMING_SNAKE_CASE = tokenizer_p.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) SCREAMING_SNAKE_CASE = tokenizer_r.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) SCREAMING_SNAKE_CASE = tokenizer_r.convert_ids_to_tokens(lowerCAmelCase__) SCREAMING_SNAKE_CASE = tokenizer_p.convert_ids_to_tokens(lowerCAmelCase__) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__) SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__) SCREAMING_SNAKE_CASE = tokenizer_r.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) SCREAMING_SNAKE_CASE = tokenizer_p.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) SCREAMING_SNAKE_CASE = tokenizer_r.convert_ids_to_tokens(lowerCAmelCase__) SCREAMING_SNAKE_CASE = tokenizer_p.convert_ids_to_tokens(lowerCAmelCase__) # it is expected that only the first Chinese character is not preceded by "##". SCREAMING_SNAKE_CASE = [ f'''##{token}''' if idx != 0 else token for idx, token in enumerate(lowerCAmelCase__) ] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__)
259
import os import re import shutil import sys import tempfile import unittest import black __UpperCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. __UpperCAmelCase = " def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n" class a_( unittest.TestCase ): """simple docstring""" def __UpperCamelCase ( self : Optional[int]) -> int: """simple docstring""" SCREAMING_SNAKE_CASE = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , 'models/bert/')) SCREAMING_SNAKE_CASE = self.transformer_dir shutil.copy( os.path.join(lowerCAmelCase__ , 'src/transformers/models/bert/modeling_bert.py') , os.path.join(self.transformer_dir , 'models/bert/modeling_bert.py') , ) def __UpperCamelCase ( self : Optional[int]) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE = 'src/transformers' shutil.rmtree(self.transformer_dir) def __UpperCamelCase ( self : Optional[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Dict=None) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE = comment + f'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: SCREAMING_SNAKE_CASE = comment + f'''\nclass {class_name}(nn.Module):\n''' + overwrite_result SCREAMING_SNAKE_CASE = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_1_9) SCREAMING_SNAKE_CASE = black.format_str(lowerCAmelCase__ , mode=lowerCAmelCase__) SCREAMING_SNAKE_CASE = os.path.join(self.transformer_dir , 'new_code.py') with open(lowerCAmelCase__ , 'w' , newline='\n') as f: f.write(lowerCAmelCase__) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(lowerCAmelCase__)) == 0) else: check_copies.is_copy_consistent(f.name , overwrite=lowerCAmelCase__) with open(lowerCAmelCase__ , 'r') as f: self.assertTrue(f.read() , lowerCAmelCase__) def __UpperCamelCase ( self : List[Any]) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE = check_copies.find_code_in_transformers('models.bert.modeling_bert.BertLMPredictionHead') self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__) def __UpperCamelCase ( self : Optional[int]) -> Optional[Any]: """simple docstring""" # Base copy consistency self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead' , 'BertLMPredictionHead' , REFERENCE_CODE + '\n' , ) # With no empty line at the end self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead' , 'BertLMPredictionHead' , lowerCAmelCase__ , ) # Copy consistency with rename self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel' , 'TestModelLMPredictionHead' , re.sub('Bert' , 'TestModel' , lowerCAmelCase__) , ) # Copy consistency with a really long name SCREAMING_SNAKE_CASE = 'TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( f'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}''' , f'''{long_class_name}LMPredictionHead''' , re.sub('Bert' , lowerCAmelCase__ , lowerCAmelCase__) , ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel' , 'TestModelLMPredictionHead' , lowerCAmelCase__ , overwrite_result=re.sub('Bert' , 'TestModel' , lowerCAmelCase__) , ) def __UpperCamelCase ( self : Optional[int]) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE = check_copies.LOCALIZED_READMES['README_zh-hans.md'] SCREAMING_SNAKE_CASE = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the' ' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for' ' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong' ' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.' ' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),' ' released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and' ' lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same' ' method has been applied to compress GPT2 into' ' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into' ' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),' ' Multilingual BERT into' ' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German' ' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**' ' (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders' ' as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang' ' Luong, Quoc V. Le, Christopher D. Manning.' ) SCREAMING_SNAKE_CASE = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) SCREAMING_SNAKE_CASE = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.' ' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文' ' [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and' ' lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same' ' method has been applied to compress GPT2 into' ' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into' ' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),' ' Multilingual BERT into' ' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German' ' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自' ' Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather' ' than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,' ' Christopher D. Manning 发布。\n' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = check_copies.convert_to_localized_md( lowerCAmelCase__ , lowerCAmelCase__ , localized_readme['format_model_list']) self.assertFalse(lowerCAmelCase__) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = check_copies.convert_to_localized_md( lowerCAmelCase__ , lowerCAmelCase__ , localized_readme['format_model_list']) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(lowerCAmelCase__) SCREAMING_SNAKE_CASE = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the' ' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for' ' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong' ' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.' ) SCREAMING_SNAKE_CASE = ( '1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and' ' the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) SCREAMING_SNAKE_CASE = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = check_copies.convert_to_localized_md( lowerCAmelCase__ , lowerCAmelCase__ , localized_readme['format_model_list']) # Check if the model link is synchronized. self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__)
259
1
"""simple docstring""" import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class lowerCAmelCase__ ( lowercase__ ): lowercase__ : Dict = (DPMSolverSDEScheduler,) lowercase__ : List[Any] = 10 def lowercase_ ( self , **UpperCamelCase__ ): '''simple docstring''' A__ = { '''num_train_timesteps''': 11_00, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''noise_sampler_seed''': 0, } config.update(**UpperCAmelCase__ ) return config def lowercase_ ( self ): '''simple docstring''' for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=UpperCAmelCase__ ) def lowercase_ ( self ): '''simple docstring''' for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=UpperCAmelCase__ , beta_end=UpperCAmelCase__ ) def lowercase_ ( self ): '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=UpperCAmelCase__ ) def lowercase_ ( self ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase__ ) def lowercase_ ( self ): '''simple docstring''' A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config() A__ = scheduler_class(**UpperCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) A__ = self.dummy_model() A__ = self.dummy_sample_deter * scheduler.init_noise_sigma A__ = sample.to(UpperCAmelCase__ ) for i, t in enumerate(scheduler.timesteps ): A__ = scheduler.scale_model_input(UpperCAmelCase__ , UpperCAmelCase__ ) A__ = model(UpperCAmelCase__ , UpperCAmelCase__ ) A__ = scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) A__ = output.prev_sample A__ = torch.sum(torch.abs(UpperCAmelCase__ ) ) A__ = torch.mean(torch.abs(UpperCAmelCase__ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_67.47_82_10_44_92_18_75 ) < 1e-2 assert abs(result_mean.item() - 0.2178_7059_6456_5277 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_71.59_35_21_11_81_64_06 ) < 1e-2 assert abs(result_mean.item() - 0.2_2342_9068_9229_9652 ) < 1e-3 else: assert abs(result_sum.item() - 1_62.52_38_34_22_85_15_62 ) < 1e-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1e-3 def lowercase_ ( self ): '''simple docstring''' A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config(prediction_type="v_prediction" ) A__ = scheduler_class(**UpperCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) A__ = self.dummy_model() A__ = self.dummy_sample_deter * scheduler.init_noise_sigma A__ = sample.to(UpperCAmelCase__ ) for i, t in enumerate(scheduler.timesteps ): A__ = scheduler.scale_model_input(UpperCAmelCase__ , UpperCAmelCase__ ) A__ = model(UpperCAmelCase__ , UpperCAmelCase__ ) A__ = scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) A__ = output.prev_sample A__ = torch.sum(torch.abs(UpperCAmelCase__ ) ) A__ = torch.mean(torch.abs(UpperCAmelCase__ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_24.77_14_92_00_43_94_53 ) < 1e-2 assert abs(result_mean.item() - 0.1_6226_2890_1481_6284 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_28.1_66_33_60_59_57_03 ) < 1e-2 assert abs(result_mean.item() - 0.1_6688_3260_0116_7297 ) < 1e-3 else: assert abs(result_sum.item() - 1_19.8_48_75_48_82_81_25 ) < 1e-2 assert abs(result_mean.item() - 0.1560_5306_6253_6621 ) < 1e-3 def lowercase_ ( self ): '''simple docstring''' A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config() A__ = scheduler_class(**UpperCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=UpperCAmelCase__ ) A__ = self.dummy_model() A__ = self.dummy_sample_deter.to(UpperCAmelCase__ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: A__ = scheduler.scale_model_input(UpperCAmelCase__ , UpperCAmelCase__ ) A__ = model(UpperCAmelCase__ , UpperCAmelCase__ ) A__ = scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) A__ = output.prev_sample A__ = torch.sum(torch.abs(UpperCAmelCase__ ) ) A__ = torch.mean(torch.abs(UpperCAmelCase__ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_67.46_95_73_97_46_09_38 ) < 1e-2 assert abs(result_mean.item() - 0.2_1805_9346_0798_2635 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_71.59_35_36_37_69_53_12 ) < 1e-2 assert abs(result_mean.item() - 0.2_2342_9083_8241_5771 ) < 1e-3 else: assert abs(result_sum.item() - 1_62.52_38_34_22_85_15_62 ) < 1e-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1e-3 def lowercase_ ( self ): '''simple docstring''' A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config() A__ = scheduler_class(**UpperCAmelCase__ , use_karras_sigmas=UpperCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=UpperCAmelCase__ ) A__ = self.dummy_model() A__ = self.dummy_sample_deter.to(UpperCAmelCase__ ) * scheduler.init_noise_sigma A__ = sample.to(UpperCAmelCase__ ) for t in scheduler.timesteps: A__ = scheduler.scale_model_input(UpperCAmelCase__ , UpperCAmelCase__ ) A__ = model(UpperCAmelCase__ , UpperCAmelCase__ ) A__ = scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) A__ = output.prev_sample A__ = torch.sum(torch.abs(UpperCAmelCase__ ) ) A__ = torch.mean(torch.abs(UpperCAmelCase__ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_76.66_97_41_35_74_21_88 ) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1e-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_77.63_65_35_64_45_31_25 ) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1e-2 else: assert abs(result_sum.item() - 1_70.3_13_52_23_38_86_72 ) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1e-2
337
'''simple docstring''' from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) # TODO Update this UpperCamelCase_ = { """facebook/esm-1b""": """https://huggingface.co/facebook/esm-1b/resolve/main/config.json""", # See all ESM models at https://huggingface.co/models?filter=esm } class __SCREAMING_SNAKE_CASE ( lowercase__ ): lowerCamelCase_ = 'esm' def __init__( self : Optional[Any] , UpperCAmelCase__ : str=None , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : Any=None , UpperCAmelCase__ : int=768 , UpperCAmelCase__ : Union[str, Any]=12 , UpperCAmelCase__ : List[Any]=12 , UpperCAmelCase__ : Optional[Any]=3072 , UpperCAmelCase__ : Dict=0.1 , UpperCAmelCase__ : int=0.1 , UpperCAmelCase__ : int=1026 , UpperCAmelCase__ : Tuple=0.02 , UpperCAmelCase__ : Optional[int]=1E-12 , UpperCAmelCase__ : List[Any]="absolute" , UpperCAmelCase__ : int=True , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : str=False , UpperCAmelCase__ : int=False , UpperCAmelCase__ : Optional[Any]=None , UpperCAmelCase__ : List[str]=None , **UpperCAmelCase__ : int , ): '''simple docstring''' super().__init__(pad_token_id=UpperCAmelCase__ , mask_token_id=UpperCAmelCase__ , **UpperCAmelCase__ ) lowercase : Any =vocab_size lowercase : List[Any] =hidden_size lowercase : Any =num_hidden_layers lowercase : Optional[Any] =num_attention_heads lowercase : Tuple =intermediate_size lowercase : int =hidden_dropout_prob lowercase : Dict =attention_probs_dropout_prob lowercase : Optional[int] =max_position_embeddings lowercase : Union[str, Any] =initializer_range lowercase : Tuple =layer_norm_eps lowercase : Union[str, Any] =position_embedding_type lowercase : List[Any] =use_cache lowercase : Dict =emb_layer_norm_before lowercase : Optional[Any] =token_dropout lowercase : Union[str, Any] =is_folding_model if is_folding_model: if esmfold_config is None: logger.info('''No esmfold_config supplied for folding model, using default values.''' ) lowercase : Any =EsmFoldConfig() elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): lowercase : Optional[int] =EsmFoldConfig(**UpperCAmelCase__ ) lowercase : Union[str, Any] =esmfold_config if vocab_list is None: logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' ) lowercase : int =get_default_vocab_list() else: lowercase : Tuple =vocab_list else: lowercase : Union[str, Any] =None lowercase : Dict =None if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , UpperCAmelCase__ ): raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' ) def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' lowercase : Union[str, Any] =super().to_dict() if isinstance(self.esmfold_config , UpperCAmelCase__ ): lowercase : Optional[Any] =self.esmfold_config.to_dict() return output @dataclass class __SCREAMING_SNAKE_CASE : lowerCamelCase_ = None lowerCamelCase_ = True lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = 0 lowerCamelCase_ = True lowerCamelCase_ = False lowerCamelCase_ = 1_28 lowerCamelCase_ = None def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' if self.trunk is None: lowercase : str =TrunkConfig() elif isinstance(self.trunk , UpperCAmelCase__ ): lowercase : int =TrunkConfig(**self.trunk ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' lowercase : str =asdict(self ) lowercase : Union[str, Any] =self.trunk.to_dict() return output @dataclass class __SCREAMING_SNAKE_CASE : lowerCamelCase_ = 48 lowerCamelCase_ = 10_24 lowerCamelCase_ = 1_28 lowerCamelCase_ = 32 lowerCamelCase_ = 32 lowerCamelCase_ = 32 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = False lowerCamelCase_ = 4 lowerCamelCase_ = 1_28 lowerCamelCase_ = None def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' if self.structure_module is None: lowercase : Any =StructureModuleConfig() elif isinstance(self.structure_module , UpperCAmelCase__ ): lowercase : Union[str, Any] =StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F'''`max_recycles` should be positive, got {self.max_recycles}.''' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got''' F''' {self.sequence_state_dim} and {self.sequence_state_dim}.''' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got''' F''' {self.pairwise_state_dim} and {self.pairwise_state_dim}.''' ) lowercase : str =self.sequence_state_dim // self.sequence_head_width lowercase : int =self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got''' F''' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.''' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got''' F''' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.''' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F'''`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.''' ) if self.dropout >= 0.4: raise ValueError(F'''`dropout` should not be greater than 0.4, got {self.dropout}.''' ) def lowerCamelCase_ ( self : Any ): '''simple docstring''' lowercase : List[Any] =asdict(self ) lowercase : Any =self.structure_module.to_dict() return output @dataclass class __SCREAMING_SNAKE_CASE : lowerCamelCase_ = 3_84 lowerCamelCase_ = 1_28 lowerCamelCase_ = 16 lowerCamelCase_ = 1_28 lowerCamelCase_ = 12 lowerCamelCase_ = 4 lowerCamelCase_ = 8 lowerCamelCase_ = 0.1 lowerCamelCase_ = 8 lowerCamelCase_ = 1 lowerCamelCase_ = 2 lowerCamelCase_ = 7 lowerCamelCase_ = 10 lowerCamelCase_ = 1E-8 lowerCamelCase_ = 1E5 def lowerCamelCase_ ( self : Dict ): '''simple docstring''' return asdict(self ) def _lowerCAmelCase ( ) -> Optional[int]: return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
92
0
def __lowerCAmelCase ( _UpperCamelCase : int ) -> str: '''simple docstring''' if isinstance(_UpperCamelCase , _UpperCamelCase ): raise TypeError('\'float\' object cannot be interpreted as an integer' ) if isinstance(_UpperCamelCase , _UpperCamelCase ): raise TypeError('\'str\' object cannot be interpreted as an integer' ) if num == 0: return "0b0" SCREAMING_SNAKE_CASE = False if num < 0: SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = -num SCREAMING_SNAKE_CASE = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(_UpperCamelCase ) for e in binary ) return "0b" + "".join(str(_UpperCamelCase ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
673
import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version a_ : List[str] = version.parse(importlib_metadata.version("nltk")) if NLTK_VERSION >= version.Version("3.6.4"): from nltk import word_tokenize a_ : Dict = "\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n" a_ : str = "\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n" a_ : int = "\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n 'meteor': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric('meteor')\n >>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"]\n >>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results[\"meteor\"], 4))\n 0.6944\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase ( datasets.Metric ): def UpperCamelCase ( self : str ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'] , reference_urls=[ 'https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score', 'https://en.wikipedia.org/wiki/METEOR', ] , ) def UpperCamelCase ( self : Dict , snake_case__ : int ): """simple docstring""" import nltk nltk.download('wordnet' ) if NLTK_VERSION >= version.Version('3.6.5' ): nltk.download('punkt' ) if NLTK_VERSION >= version.Version('3.6.6' ): nltk.download('omw-1.4' ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : str , snake_case__ : List[Any] , snake_case__ : List[Any]=0.9 , snake_case__ : Optional[Any]=3 , snake_case__ : Any=0.5 ): """simple docstring""" if NLTK_VERSION >= version.Version('3.6.5' ): SCREAMING_SNAKE_CASE = [ meteor_score.single_meteor_score( word_tokenize(snake_case__ ) , word_tokenize(snake_case__ ) , alpha=snake_case__ , beta=snake_case__ , gamma=snake_case__ ) for ref, pred in zip(snake_case__ , snake_case__ ) ] else: SCREAMING_SNAKE_CASE = [ meteor_score.single_meteor_score(snake_case__ , snake_case__ , alpha=snake_case__ , beta=snake_case__ , gamma=snake_case__ ) for ref, pred in zip(snake_case__ , snake_case__ ) ] return {"meteor": np.mean(snake_case__ )}
673
1
'''simple docstring''' import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger A = get_logger(__name__) A = R'''\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n''' class __SCREAMING_SNAKE_CASE : '''simple docstring''' @add_start_docstrings(UpperCamelCase ) def __call__( self : Optional[int] ,UpperCamelCase : jnp.ndarray ,UpperCamelCase : jnp.ndarray ) -> Optional[Any]: raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class __SCREAMING_SNAKE_CASE : '''simple docstring''' @add_start_docstrings(UpperCamelCase ) def __call__( self : List[Any] ,UpperCamelCase : jnp.ndarray ,UpperCamelCase : jnp.ndarray ) -> Tuple: raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class __SCREAMING_SNAKE_CASE ( A_ ): '''simple docstring''' @add_start_docstrings(UpperCamelCase ) def __call__( self : Union[str, Any] ,UpperCamelCase : jnp.ndarray ,UpperCamelCase : jnp.ndarray ,UpperCamelCase : int ,**UpperCamelCase : List[str] ) -> Dict: for processor in self: _lowercase : Dict = inspect.signature(processor.__call__ ).parameters if len(UpperCamelCase ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( F'''Make sure that all the required parameters: {list(function_args.keys() )} for ''' F'''{processor.__class__} are passed to the logits processor.''' ) _lowercase : Optional[int] = processor(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,**UpperCamelCase ) else: _lowercase : Optional[Any] = processor(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) return scores class __SCREAMING_SNAKE_CASE ( A_ ): '''simple docstring''' def __init__( self : Tuple ,UpperCamelCase : float ) -> Optional[Any]: if not isinstance(UpperCamelCase ,UpperCamelCase ) or not (temperature > 0): raise ValueError(F'''`temperature` has to be a strictly positive float, but is {temperature}''' ) _lowercase : Any = temperature def __call__( self : List[Any] ,UpperCamelCase : jnp.ndarray ,UpperCamelCase : jnp.ndarray ,UpperCamelCase : int ) -> str: _lowercase : Optional[int] = scores / self.temperature return scores class __SCREAMING_SNAKE_CASE ( A_ ): '''simple docstring''' def __init__( self : Dict ,UpperCamelCase : float ,UpperCamelCase : float = -float('Inf' ) ,UpperCamelCase : int = 1 ) -> Optional[int]: if not isinstance(UpperCamelCase ,UpperCamelCase ) or (top_p < 0 or top_p > 1.0): raise ValueError(F'''`top_p` has to be a float > 0 and < 1, but is {top_p}''' ) if not isinstance(UpperCamelCase ,UpperCamelCase ) or (min_tokens_to_keep < 1): raise ValueError(F'''`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}''' ) _lowercase : Optional[Any] = top_p _lowercase : Union[str, Any] = filter_value _lowercase : Dict = min_tokens_to_keep def __call__( self : Dict ,UpperCamelCase : jnp.ndarray ,UpperCamelCase : jnp.ndarray ,UpperCamelCase : int ) -> Tuple: _lowercase : Tuple = lax.top_k(UpperCamelCase ,scores.shape[-1] ) _lowercase : Dict = jnp.full_like(UpperCamelCase ,self.filter_value ) _lowercase : str = jax.nn.softmax(UpperCamelCase ,axis=-1 ).cumsum(axis=-1 ) _lowercase : List[Any] = cumulative_probs < self.top_p # include the token that is higher than top_p as well _lowercase : Tuple = jnp.roll(UpperCamelCase ,1 ) score_mask |= score_mask.at[:, 0].set(UpperCamelCase ) # min tokens to keep _lowercase : str = score_mask.at[:, : self.min_tokens_to_keep].set(UpperCamelCase ) _lowercase : Union[str, Any] = jnp.where(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) _lowercase : List[str] = jax.lax.sort_key_val(UpperCamelCase ,UpperCamelCase )[-1] return next_scores class __SCREAMING_SNAKE_CASE ( A_ ): '''simple docstring''' def __init__( self : Optional[int] ,UpperCamelCase : int ,UpperCamelCase : float = -float('Inf' ) ,UpperCamelCase : int = 1 ) -> List[Any]: if not isinstance(UpperCamelCase ,UpperCamelCase ) or top_k <= 0: raise ValueError(F'''`top_k` has to be a strictly positive integer, but is {top_k}''' ) _lowercase : Optional[Any] = max(UpperCamelCase ,UpperCamelCase ) _lowercase : Tuple = filter_value def __call__( self : Tuple ,UpperCamelCase : jnp.ndarray ,UpperCamelCase : jnp.ndarray ,UpperCamelCase : int ) -> int: _lowercase : int = scores.shape _lowercase : str = jnp.full(batch_size * vocab_size ,self.filter_value ) _lowercase : Dict = min(self.top_k ,scores.shape[-1] ) # Safety check _lowercase : Optional[Any] = lax.top_k(UpperCamelCase ,UpperCamelCase ) _lowercase : Union[str, Any] = jnp.broadcast_to((jnp.arange(UpperCamelCase ) * vocab_size)[:, None] ,(batch_size, topk) ).flatten() _lowercase : Tuple = topk_scores.flatten() _lowercase : Tuple = topk_indices.flatten() + shift _lowercase : Optional[int] = next_scores_flat.at[topk_indices_flat].set(UpperCamelCase ) _lowercase : str = next_scores_flat.reshape(UpperCamelCase ,UpperCamelCase ) return next_scores class __SCREAMING_SNAKE_CASE ( A_ ): '''simple docstring''' def __init__( self : Optional[int] ,UpperCamelCase : int ) -> Tuple: _lowercase : Optional[int] = bos_token_id def __call__( self : Tuple ,UpperCamelCase : jnp.ndarray ,UpperCamelCase : jnp.ndarray ,UpperCamelCase : int ) -> Optional[int]: _lowercase : int = jnp.full(scores.shape ,-float('inf' ) ) _lowercase : Optional[int] = 1 - jnp.bool_(cur_len - 1 ) _lowercase : List[str] = jnp.where(UpperCamelCase ,new_scores.at[:, self.bos_token_id].set(0 ) ,UpperCamelCase ) return scores class __SCREAMING_SNAKE_CASE ( A_ ): '''simple docstring''' def __init__( self : str ,UpperCamelCase : int ,UpperCamelCase : int ) -> List[str]: _lowercase : Union[str, Any] = max_length _lowercase : Union[str, Any] = eos_token_id def __call__( self : str ,UpperCamelCase : jnp.ndarray ,UpperCamelCase : jnp.ndarray ,UpperCamelCase : int ) -> str: _lowercase : Dict = jnp.full(scores.shape ,-float('inf' ) ) _lowercase : Union[str, Any] = 1 - jnp.bool_(cur_len - self.max_length + 1 ) _lowercase : Union[str, Any] = jnp.where(UpperCamelCase ,new_scores.at[:, self.eos_token_id].set(0 ) ,UpperCamelCase ) return scores class __SCREAMING_SNAKE_CASE ( A_ ): '''simple docstring''' def __init__( self : Dict ,UpperCamelCase : int ,UpperCamelCase : int ) -> Any: if not isinstance(UpperCamelCase ,UpperCamelCase ) or min_length < 0: raise ValueError(F'''`min_length` has to be a positive integer, but is {min_length}''' ) if not isinstance(UpperCamelCase ,UpperCamelCase ) or eos_token_id < 0: raise ValueError(F'''`eos_token_id` has to be a positive integer, but is {eos_token_id}''' ) _lowercase : Union[str, Any] = min_length _lowercase : List[str] = eos_token_id def __call__( self : List[str] ,UpperCamelCase : jnp.ndarray ,UpperCamelCase : jnp.ndarray ,UpperCamelCase : int ) -> Dict: _lowercase : List[Any] = 1 - jnp.clip(cur_len - self.min_length ,0 ,1 ) _lowercase : Dict = jnp.where(UpperCamelCase ,scores.at[:, self.eos_token_id].set(-float('inf' ) ) ,UpperCamelCase ) return scores class __SCREAMING_SNAKE_CASE ( A_ ): '''simple docstring''' def __init__( self : Optional[Any] ,UpperCamelCase : Optional[int] ,UpperCamelCase : Tuple ) -> Optional[int]: _lowercase : str = list(UpperCamelCase ) _lowercase : Optional[Any] = begin_index def __call__( self : Tuple ,UpperCamelCase : int ,UpperCamelCase : List[str] ,UpperCamelCase : int ) -> Optional[int]: _lowercase : Tuple = 1 - jnp.bool_(cur_len - self.begin_index ) _lowercase : Optional[int] = jnp.where(UpperCamelCase ,scores.at[:, self.begin_suppress_tokens].set(-float('inf' ) ) ,UpperCamelCase ) return scores class __SCREAMING_SNAKE_CASE ( A_ ): '''simple docstring''' def __init__( self : Union[str, Any] ,UpperCamelCase : list ) -> List[str]: _lowercase : Union[str, Any] = list(UpperCamelCase ) def __call__( self : str ,UpperCamelCase : jnp.ndarray ,UpperCamelCase : jnp.ndarray ,UpperCamelCase : int ) -> List[Any]: _lowercase : int = scores.at[..., self.suppress_tokens].set(-float('inf' ) ) return scores class __SCREAMING_SNAKE_CASE ( A_ ): '''simple docstring''' def __init__( self : Optional[int] ,UpperCamelCase : str ) -> int: _lowercase : Tuple = dict(UpperCamelCase ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. _lowercase : Optional[int] = jnp.ones((max(force_token_map.keys() ) + 1) ,dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: _lowercase : List[str] = force_token_array.at[index].set(UpperCamelCase ) _lowercase : List[str] = jnp.intaa(UpperCamelCase ) def __call__( self : Union[str, Any] ,UpperCamelCase : jnp.ndarray ,UpperCamelCase : jnp.ndarray ,UpperCamelCase : int ) -> Optional[int]: def _force_token(UpperCamelCase : int ): _lowercase : Optional[int] = scores.shape[0] _lowercase : int = self.force_token_array[generation_idx] _lowercase : Tuple = jnp.ones_like(UpperCamelCase ,dtype=scores.dtype ) * -float('inf' ) _lowercase : Optional[int] = jnp.zeros((batch_size, 1) ,dtype=scores.dtype ) _lowercase : Any = lax.dynamic_update_slice(UpperCamelCase ,UpperCamelCase ,(0, current_token) ) return new_scores _lowercase : List[Any] = lax.cond( cur_len >= self.force_token_array.shape[0] ,lambda: scores ,lambda: lax.cond( self.force_token_array[cur_len] >= 0 ,lambda: _force_token(UpperCamelCase ) ,lambda: scores ,) ,) return scores class __SCREAMING_SNAKE_CASE ( A_ ): '''simple docstring''' def __init__( self : Optional[int] ,UpperCamelCase : List[Any] ,UpperCamelCase : Union[str, Any] ,UpperCamelCase : Tuple ) -> int: _lowercase : Optional[int] = generate_config.eos_token_id _lowercase : int = generate_config.no_timestamps_token_id _lowercase : Tuple = generate_config.no_timestamps_token_id + 1 _lowercase : Dict = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(UpperCamelCase ,'max_initial_timestamp_index' ): _lowercase : List[str] = generate_config.max_initial_timestamp_index else: _lowercase : int = model_config.vocab_size if self.max_initial_timestamp_index is None: _lowercase : int = model_config.vocab_size def __call__( self : Tuple ,UpperCamelCase : Union[str, Any] ,UpperCamelCase : Dict ,UpperCamelCase : List[str] ) -> Optional[Any]: _lowercase : Dict = scores.at[:, self.no_timestamps_token_id].set(-float('inf' ) ) def handle_pairs(UpperCamelCase : Union[str, Any] ,UpperCamelCase : Dict ): _lowercase : Any = jnp.where((cur_len - self.begin_index) >= 1 ,UpperCamelCase ,UpperCamelCase ) _lowercase : List[Any] = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin ,True and last_was_timestamp ,UpperCamelCase ,) _lowercase : int = jnp.where((cur_len - self.begin_index) < 2 ,UpperCamelCase ,UpperCamelCase ) _lowercase : List[str] = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin ,UpperCamelCase ,UpperCamelCase ,) return jnp.where( UpperCamelCase ,jnp.where( penultimate_was_timestamp > 0 ,scores_k.at[self.timestamp_begin :].set(-float('inf' ) ) ,scores_k.at[: self.eos_token_id].set(-float('inf' ) ) ,) ,UpperCamelCase ,) _lowercase : Any = jax.vmap(UpperCamelCase )(UpperCamelCase ,UpperCamelCase ) _lowercase : str = jnp.where(cur_len == self.begin_index ,UpperCamelCase ,UpperCamelCase ) _lowercase : Tuple = jnp.where( self.max_initial_timestamp_index is not None ,True and apply_max_initial_timestamp ,UpperCamelCase ,) _lowercase : List[Any] = self.timestamp_begin + self.max_initial_timestamp_index _lowercase : Optional[int] = jnp.where( UpperCamelCase ,scores.at[:, last_allowed + 1 :].set(-float('inf' ) ) ,UpperCamelCase ,) # if sum of probability over timestamps is above any other token, sample timestamp _lowercase : Dict = jax.nn.log_softmax(UpperCamelCase ,axis=-1 ) def handle_cumulative_probs(UpperCamelCase : Dict ,UpperCamelCase : Tuple ): _lowercase : Tuple = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] ,axis=-1 ) _lowercase : Tuple = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob ,scores_k.at[: self.timestamp_begin].set(-float('inf' ) ) ,UpperCamelCase ,) _lowercase : Any = jax.vmap(UpperCamelCase )(UpperCamelCase ,UpperCamelCase ) return scores
125
import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class UpperCAmelCase__ ( A_ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ = BertJapaneseTokenizer UpperCAmelCase_ = False UpperCAmelCase_ = True def lowerCAmelCase_ ( self : int ): """simple docstring""" super().setUp() _lowercase : Dict = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''こんにちは''', '''こん''', '''にちは''', '''ばんは''', '''##こん''', '''##にちは''', '''##ばんは''', '''世界''', '''##世界''', '''、''', '''##、''', '''。''', '''##。''', ] _lowercase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def lowerCAmelCase_ ( self : Dict , UpperCamelCase : Dict ): """simple docstring""" _lowercase : List[str] = '''こんにちは、世界。 \nこんばんは、世界。''' _lowercase : List[str] = '''こんにちは 、 世界 。 こんばんは 、 世界 。''' return input_text, output_text def lowerCAmelCase_ ( self : Optional[int] , UpperCamelCase : Tuple ): """simple docstring""" _lowercase , _lowercase : Optional[Any] = self.get_input_output_texts(UpperCamelCase ) _lowercase : Union[str, Any] = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) _lowercase : Tuple = tokenizer.decode(UpperCamelCase , clean_up_tokenization_spaces=UpperCamelCase ) return text, ids def lowerCAmelCase_ ( self : List[str] ): """simple docstring""" pass # TODO add if relevant def lowerCAmelCase_ ( self : str ): """simple docstring""" pass # TODO add if relevant def lowerCAmelCase_ ( self : List[str] ): """simple docstring""" pass # TODO add if relevant def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" _lowercase : str = self.tokenizer_class(self.vocab_file ) _lowercase : List[str] = tokenizer.tokenize('''こんにちは、世界。\nこんばんは、世界。''' ) self.assertListEqual(UpperCamelCase , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) def lowerCAmelCase_ ( self : Optional[Any] ): """simple docstring""" _lowercase : Optional[int] = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''mecab''' ) self.assertIsNotNone(UpperCamelCase ) _lowercase : Any = '''こんにちは、世界。\nこんばんは、世界。''' _lowercase : List[Any] = tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) _lowercase : Any = os.path.join(self.tmpdirname , '''tokenizer.bin''' ) with open(UpperCamelCase , '''wb''' ) as handle: pickle.dump(UpperCamelCase , UpperCamelCase ) with open(UpperCamelCase , '''rb''' ) as handle: _lowercase : int = pickle.load(UpperCamelCase ) _lowercase : Tuple = tokenizer_new.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def lowerCAmelCase_ ( self : List[str] ): """simple docstring""" _lowercase : str = MecabTokenizer(mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def lowerCAmelCase_ ( self : Union[str, Any] ): """simple docstring""" try: _lowercase : List[str] = MecabTokenizer(mecab_dic='''unidic_lite''' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def lowerCAmelCase_ ( self : Optional[Any] ): """simple docstring""" try: _lowercase : Any = MecabTokenizer(mecab_dic='''unidic''' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def lowerCAmelCase_ ( self : Union[str, Any] ): """simple docstring""" _lowercase : Tuple = MecabTokenizer(do_lower_case=UpperCamelCase , mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iphone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def lowerCAmelCase_ ( self : int ): """simple docstring""" try: _lowercase : Tuple = MecabTokenizer( do_lower_case=UpperCamelCase , normalize_text=UpperCamelCase , mecab_option='''-d /usr/local/lib/mecab/dic/jumandic''' ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) def lowerCAmelCase_ ( self : Dict ): """simple docstring""" _lowercase : Dict = MecabTokenizer(normalize_text=UpperCamelCase , mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。'''] , ) @require_sudachi def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" _lowercase : Any = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''sudachi''' ) self.assertIsNotNone(UpperCamelCase ) _lowercase : Dict = '''こんにちは、世界。\nこんばんは、世界。''' _lowercase : Dict = tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) _lowercase : Union[str, Any] = os.path.join(self.tmpdirname , '''tokenizer.bin''' ) with open(UpperCamelCase , '''wb''' ) as handle: pickle.dump(UpperCamelCase , UpperCamelCase ) with open(UpperCamelCase , '''rb''' ) as handle: _lowercase : Tuple = pickle.load(UpperCamelCase ) _lowercase : Tuple = tokenizer_new.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) @require_sudachi def lowerCAmelCase_ ( self : Dict ): """simple docstring""" _lowercase : Dict = SudachiTokenizer(sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def lowerCAmelCase_ ( self : Optional[Any] ): """simple docstring""" _lowercase : List[str] = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''A''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国''', '''人''', '''参政''', '''権'''] ) @require_sudachi def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" _lowercase : Dict = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''B''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国人''', '''参政権'''] ) @require_sudachi def lowerCAmelCase_ ( self : Dict ): """simple docstring""" _lowercase : List[str] = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''C''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国人参政権'''] ) @require_sudachi def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" _lowercase : str = SudachiTokenizer(do_lower_case=UpperCamelCase , sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iphone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" _lowercase : Optional[Any] = SudachiTokenizer(normalize_text=UpperCamelCase , sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', '''\u3000''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def lowerCAmelCase_ ( self : Dict ): """simple docstring""" _lowercase : Optional[Any] = SudachiTokenizer(trim_whitespace=UpperCamelCase , sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) @require_jumanpp def lowerCAmelCase_ ( self : Any ): """simple docstring""" _lowercase : List[Any] = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''jumanpp''' ) self.assertIsNotNone(UpperCamelCase ) _lowercase : Optional[int] = '''こんにちは、世界。\nこんばんは、世界。''' _lowercase : str = tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) _lowercase : Tuple = os.path.join(self.tmpdirname , '''tokenizer.bin''' ) with open(UpperCamelCase , '''wb''' ) as handle: pickle.dump(UpperCamelCase , UpperCamelCase ) with open(UpperCamelCase , '''rb''' ) as handle: _lowercase : List[Any] = pickle.load(UpperCamelCase ) _lowercase : Any = tokenizer_new.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) @require_jumanpp def lowerCAmelCase_ ( self : Optional[Any] ): """simple docstring""" _lowercase : Optional[Any] = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" _lowercase : Dict = JumanppTokenizer(do_lower_case=UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iphone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def lowerCAmelCase_ ( self : Dict ): """simple docstring""" _lowercase : Dict = JumanppTokenizer(normalize_text=UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''ア''', '''ッ''', '''フ''', '''゚''', '''ル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" _lowercase : Optional[int] = JumanppTokenizer(trim_whitespace=UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れた''', '''。'''] , ) @require_jumanpp def lowerCAmelCase_ ( self : Optional[int] ): """simple docstring""" _lowercase : str = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize('''ありがとうございますm(_ _)m見つけるのが大変です。''' ) , ['''ありがとう''', '''ございます''', '''m(_ _)m''', '''見つける''', '''の''', '''が''', '''大変です''', '''。'''] , ) def lowerCAmelCase_ ( self : Dict ): """simple docstring""" _lowercase : Tuple = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こんにちは''', '''こん''', '''にちは''', '''ばんは''', '''##こん''', '''##にちは''', '''##ばんは'''] _lowercase : int = {} for i, token in enumerate(UpperCamelCase ): _lowercase : Optional[Any] = i _lowercase : str = WordpieceTokenizer(vocab=UpperCamelCase , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''こんにちは''' ) , ['''こんにちは'''] ) self.assertListEqual(tokenizer.tokenize('''こんばんは''' ) , ['''こん''', '''##ばんは'''] ) self.assertListEqual(tokenizer.tokenize('''こんばんは こんばんにちは こんにちは''' ) , ['''こん''', '''##ばんは''', '''[UNK]''', '''こんにちは'''] ) def lowerCAmelCase_ ( self : Optional[Any] ): """simple docstring""" _lowercase : List[Any] = BertJapaneseTokenizer.from_pretrained('''nlp-waseda/roberta-base-japanese-with-auto-jumanpp''' ) _lowercase : Dict = tokenizer.subword_tokenizer _lowercase : Dict = subword_tokenizer.tokenize('''国境 の 長い トンネル を 抜ける と 雪国 であった 。''' ) self.assertListEqual(UpperCamelCase , ['''▁国境''', '''▁の''', '''▁長い''', '''▁トンネル''', '''▁を''', '''▁抜ける''', '''▁と''', '''▁雪''', '''国''', '''▁であった''', '''▁。'''] ) _lowercase : int = subword_tokenizer.tokenize('''こんばんは こんばん にち は こんにちは''' ) self.assertListEqual(UpperCamelCase , ['''▁こん''', '''ばん''', '''は''', '''▁こん''', '''ばん''', '''▁に''', '''ち''', '''▁は''', '''▁こんにちは'''] ) def lowerCAmelCase_ ( self : Union[str, Any] ): """simple docstring""" _lowercase : str = self.tokenizer_class.from_pretrained('''cl-tohoku/bert-base-japanese''' ) _lowercase : str = tokenizer.encode('''ありがとう。''' , add_special_tokens=UpperCamelCase ) _lowercase : List[Any] = tokenizer.encode('''どういたしまして。''' , add_special_tokens=UpperCamelCase ) _lowercase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(UpperCamelCase ) _lowercase : Optional[Any] = tokenizer.build_inputs_with_special_tokens(UpperCamelCase , UpperCamelCase ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class UpperCAmelCase__ ( A_ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ = BertJapaneseTokenizer UpperCAmelCase_ = False def lowerCAmelCase_ ( self : Union[str, Any] ): """simple docstring""" super().setUp() _lowercase : Dict = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。'''] _lowercase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def lowerCAmelCase_ ( self : Optional[int] , **UpperCamelCase : Optional[int] ): """simple docstring""" return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type='''character''' , **UpperCamelCase ) def lowerCAmelCase_ ( self : List[str] , UpperCamelCase : List[Any] ): """simple docstring""" _lowercase : Tuple = '''こんにちは、世界。 \nこんばんは、世界。''' _lowercase : List[str] = '''こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。''' return input_text, output_text def lowerCAmelCase_ ( self : str ): """simple docstring""" pass # TODO add if relevant def lowerCAmelCase_ ( self : Optional[Any] ): """simple docstring""" pass # TODO add if relevant def lowerCAmelCase_ ( self : Optional[Any] ): """simple docstring""" pass # TODO add if relevant def lowerCAmelCase_ ( self : str ): """simple docstring""" _lowercase : List[Any] = self.tokenizer_class(self.vocab_file , subword_tokenizer_type='''character''' ) _lowercase : List[Any] = tokenizer.tokenize('''こんにちは、世界。 \nこんばんは、世界。''' ) self.assertListEqual( UpperCamelCase , ['''こ''', '''ん''', '''に''', '''ち''', '''は''', '''、''', '''世''', '''界''', '''。''', '''こ''', '''ん''', '''ば''', '''ん''', '''は''', '''、''', '''世''', '''界''', '''。'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCamelCase ) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] ) def lowerCAmelCase_ ( self : int ): """simple docstring""" _lowercase : List[Any] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。'''] _lowercase : int = {} for i, token in enumerate(UpperCamelCase ): _lowercase : Dict = i _lowercase : List[str] = CharacterTokenizer(vocab=UpperCamelCase , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''こんにちは''' ) , ['''こ''', '''ん''', '''に''', '''ち''', '''は'''] ) self.assertListEqual(tokenizer.tokenize('''こんにちほ''' ) , ['''こ''', '''ん''', '''に''', '''ち''', '''[UNK]'''] ) def lowerCAmelCase_ ( self : str ): """simple docstring""" _lowercase : List[Any] = self.tokenizer_class.from_pretrained('''cl-tohoku/bert-base-japanese-char''' ) _lowercase : Tuple = tokenizer.encode('''ありがとう。''' , add_special_tokens=UpperCamelCase ) _lowercase : Optional[Any] = tokenizer.encode('''どういたしまして。''' , add_special_tokens=UpperCamelCase ) _lowercase : List[Any] = tokenizer.build_inputs_with_special_tokens(UpperCamelCase ) _lowercase : Optional[Any] = tokenizer.build_inputs_with_special_tokens(UpperCamelCase , UpperCamelCase ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class UpperCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : int ): """simple docstring""" _lowercase : int = '''cl-tohoku/bert-base-japanese''' _lowercase : Any = AutoTokenizer.from_pretrained(UpperCamelCase ) self.assertIsInstance(UpperCamelCase , UpperCamelCase ) class UpperCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : Union[str, Any] ): """simple docstring""" _lowercase : Any = '''cl-tohoku/bert-base-japanese''' with self.assertLogs('''transformers''' , level='''WARNING''' ) as cm: BertTokenizer.from_pretrained(UpperCamelCase ) self.assertTrue( cm.records[0].message.startswith( '''The tokenizer class you load from this checkpoint is not the same type as the class this function''' ''' is called from.''' ) ) _lowercase : Any = '''bert-base-cased''' with self.assertLogs('''transformers''' , level='''WARNING''' ) as cm: BertJapaneseTokenizer.from_pretrained(UpperCamelCase ) self.assertTrue( cm.records[0].message.startswith( '''The tokenizer class you load from this checkpoint is not the same type as the class this function''' ''' is called from.''' ) )
322
0
'''simple docstring''' def _lowerCamelCase ( lowerCamelCase_ : int = 4000000 ): """simple docstring""" UpperCAmelCase_ : str = [0, 1] UpperCAmelCase_ : Optional[int] = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 UpperCAmelCase_ : Dict = 0 for j in range(len(lowerCamelCase_ ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(f'''{solution() = }''')
705
'''simple docstring''' def _lowerCamelCase ( lowerCamelCase_ : Union[str, Any] ): """simple docstring""" if collection == []: return [] # get some information about the collection UpperCAmelCase_ : str = len(lowerCamelCase_ ) UpperCAmelCase_ : int = max(lowerCamelCase_ ) UpperCAmelCase_ : int = min(lowerCamelCase_ ) # create the counting array UpperCAmelCase_ : List[str] = coll_max + 1 - coll_min UpperCAmelCase_ : List[Any] = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , lowerCamelCase_ ): UpperCAmelCase_ : Optional[int] = counting_arr[i] + counting_arr[i - 1] # create the output collection UpperCAmelCase_ : str = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , lowerCamelCase_ ) ): UpperCAmelCase_ : Optional[int] = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def _lowerCamelCase ( lowerCamelCase_ : Any ): """simple docstring""" return "".join([chr(lowerCamelCase_ ) for i in counting_sort([ord(lowerCamelCase_ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string('''thisisthestring''') == "eghhiiinrsssttt" snake_case__ : Any = input('''Enter numbers separated by a comma:\n''').strip() snake_case__ : int = [int(item) for item in user_input.split(''',''')] print(counting_sort(unsorted))
389
0
'''simple docstring''' import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate __lowerCAmelCase = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("""""", """|""", """|"""), datarow=DataRow("""""", """|""", """|"""), padding=1, with_header_hide=None, ) __lowerCAmelCase = [] __lowerCAmelCase = [] __lowerCAmelCase = {"""type""": """section""", """text""": {"""type""": """plain_text""", """text""": """No failed tests! 🤗""", """emoji""": True}} __lowerCAmelCase = [ { """type""": """header""", """text""": { """type""": """plain_text""", """text""": f'''🤗 Accelerate nightly {os.environ.get('TEST_TYPE', '')} test results''', """emoji""": True, }, } ] __lowerCAmelCase = 0 for log in Path().glob("""*.log"""): __lowerCAmelCase = 0 with open(log, """r""") as f: for line in f: __lowerCAmelCase = json.loads(line) if line.get("""nodeid""", """""") != "": __lowerCAmelCase = line["""nodeid"""] if line.get("""duration""", None) is not None: __lowerCAmelCase = f'''{line['duration']:.4f}''' if line.get("""outcome""", """""") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("""_""")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) __lowerCAmelCase = [] log.unlink() __lowerCAmelCase = """""" __lowerCAmelCase = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += f"*{name[1:]}: {num_failed} failed test*\n" else: message += f"*{name[1:]}: {num_failed} failed tests*\n" __lowerCAmelCase = [] __lowerCAmelCase = {} for test in failed_tests: __lowerCAmelCase = test[0].split("""::""") __lowerCAmelCase = data[0].split("""/""")[-1] if data[0] not in filesafailed: __lowerCAmelCase = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) __lowerCAmelCase = [test[0] for test in failed_table] __lowerCAmelCase = list(set(files)) # Count number of instances in failed_tests __lowerCAmelCase = [] for file in individual_files: table.append([file, len(filesafailed[file])]) __lowerCAmelCase = tabulate( table, headers=["""Test Location""", """Num Failed"""], tablefmt=hf_table_format, stralign="""right""", ) message += f"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3_0_0_0: __lowerCAmelCase = """Too many failed tests, please see the full report in the Action results.""" __lowerCAmelCase = len(err) + 1_0 __lowerCAmelCase = message[: 3_0_0_0 - offset] + f'''\n...\n```\n{err}''' print(f'''### {message}''') else: __lowerCAmelCase = """No failed tests! 🤗""" print(f'''## {message}''') payload.append(no_error_payload) if os.environ.get("""TEST_TYPE""", """""") != "": from slack_sdk import WebClient __lowerCAmelCase = WebClient(token=os.environ["""SLACK_API_TOKEN"""]) if message != "No failed tests! 🤗": __lowerCAmelCase = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": message, }, } payload.append(md_report) __lowerCAmelCase = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": """*For more details:*""", }, """accessory""": { """type""": """button""", """text""": { """type""": """plain_text""", """text""": """Check Action results""", """emoji""": True, }, """url""": f'''https://github.com/{os.environ['GITHUB_REPOSITORY']}/actions/runs/{os.environ['GITHUB_RUN_ID']}''', }, } payload.append(action_button) __lowerCAmelCase = { """type""": """context""", """elements""": [ { """type""": """plain_text""", """text""": f'''Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}''', } ], } payload.append(date_report) __lowerCAmelCase = client.chat_postMessage(channel="""#accelerate-ci-daily""", text=message, blocks=payload) __lowerCAmelCase = response.data["""ts"""] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name __lowerCAmelCase = """""" for i, row in enumerate(test_failures): if row[0] != test_class: __lowerCAmelCase = row[0] else: __lowerCAmelCase = """""" __lowerCAmelCase = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": f'''Test location: {test_location}\n```\n{tabulate(test_failures, headers=['Class', 'Test'], tablefmt=hf_table_format, stralign='right')}\n```''', }, } client.chat_postMessage( channel="""#accelerate-ci-daily""", thread_ts=ts, blocks=[payload], )
229
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json""", """allenai/longformer-large-4096""": """https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json""", """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json""" ), } class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" __UpperCAmelCase : List[str] = '''longformer''' def __init__( self : Optional[Any] ,_a : Union[List[int], int] = 512 ,_a : int = 2 ,_a : int = 1 ,_a : int = 0 ,_a : int = 2 ,_a : int = 3_0522 ,_a : int = 768 ,_a : int = 12 ,_a : int = 12 ,_a : int = 3072 ,_a : str = "gelu" ,_a : float = 0.1 ,_a : float = 0.1 ,_a : int = 512 ,_a : int = 2 ,_a : float = 0.02 ,_a : float = 1E-12 ,_a : bool = False ,**_a : Union[str, Any] ,): '''simple docstring''' super().__init__(pad_token_id=_a ,**_a ) _a : Tuple = attention_window _a : int = sep_token_id _a : Dict = bos_token_id _a : str = eos_token_id _a : Tuple = vocab_size _a : Tuple = hidden_size _a : Union[str, Any] = num_hidden_layers _a : List[str] = num_attention_heads _a : int = hidden_act _a : List[str] = intermediate_size _a : Any = hidden_dropout_prob _a : Any = attention_probs_dropout_prob _a : Optional[int] = max_position_embeddings _a : Any = type_vocab_size _a : List[Any] = initializer_range _a : Tuple = layer_norm_eps _a : Optional[int] = onnx_export class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" def __init__( self : Optional[int] ,_a : "PretrainedConfig" ,_a : str = "default" ,_a : "List[PatchingSpec]" = None ): '''simple docstring''' super().__init__(_a ,_a ,_a ) _a : int = True @property def __lowercase ( self : List[Any] ): '''simple docstring''' if self.task == "multiple-choice": _a : Union[str, Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _a : str = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('global_attention_mask', dynamic_axis), ] ) @property def __lowercase ( self : List[Any] ): '''simple docstring''' _a : List[str] = super().outputs if self.task == "default": _a : List[str] = {0: 'batch'} return outputs @property def __lowercase ( self : Optional[int] ): '''simple docstring''' return 1E-4 @property def __lowercase ( self : List[str] ): '''simple docstring''' return max(super().default_onnx_opset ,14 ) def __lowercase ( self : int ,_a : "PreTrainedTokenizerBase" ,_a : int = -1 ,_a : int = -1 ,_a : bool = False ,_a : Optional[TensorType] = None ,): '''simple docstring''' _a : Union[str, Any] = super().generate_dummy_inputs( preprocessor=_a ,batch_size=_a ,seq_length=_a ,is_pair=_a ,framework=_a ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly _a : Optional[int] = torch.zeros_like(inputs['input_ids'] ) # make every second token global _a : List[str] = 1 return inputs
229
1
"""simple docstring""" import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowercase_ ( __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' @register_to_config def __init__( self : str , *, _UpperCAmelCase : int = 4 , _UpperCAmelCase : int = 768 , _UpperCAmelCase : int , _UpperCAmelCase : List[str] , ): super().__init__() _A = nn.Parameter(torch.zeros(_UpperCAmelCase ) ) # parameters for additional clip time embeddings _A = nn.Linear(_UpperCAmelCase , _UpperCAmelCase ) _A = nn.Linear(_UpperCAmelCase , _UpperCAmelCase ) # parameters for encoder hidden states _A = clip_extra_context_tokens _A = nn.Linear( _UpperCAmelCase , self.clip_extra_context_tokens * cross_attention_dim ) _A = nn.Linear(_UpperCAmelCase , _UpperCAmelCase ) _A = nn.LayerNorm(_UpperCAmelCase ) def lowerCAmelCase_ ( self : int , *, _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : str ): if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings _A = image_embeddings.shape[0] _A = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) _A = classifier_free_guidance_embeddings.expand( _UpperCAmelCase , -1 ) _A = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] _A = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... _A = self.embedding_proj(_UpperCAmelCase ) _A = self.clip_image_embeddings_project_to_time_embeddings(_UpperCAmelCase ) _A = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" _A = self.clip_extra_context_tokens_proj(_UpperCAmelCase ) _A = clip_extra_context_tokens.reshape(_UpperCAmelCase , -1 , self.clip_extra_context_tokens ) _A = clip_extra_context_tokens.permute(0 , 2 , 1 ) _A = self.encoder_hidden_states_proj(_UpperCAmelCase ) _A = self.text_encoder_hidden_states_norm(_UpperCAmelCase ) _A = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
505
"""simple docstring""" from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
505
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowerCAmelCase = { 'configuration_squeezebert': [ 'SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SqueezeBertConfig', 'SqueezeBertOnnxConfig', ], 'tokenization_squeezebert': ['SqueezeBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = ['SqueezeBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ 'SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'SqueezeBertForMaskedLM', 'SqueezeBertForMultipleChoice', 'SqueezeBertForQuestionAnswering', 'SqueezeBertForSequenceClassification', 'SqueezeBertForTokenClassification', 'SqueezeBertModel', 'SqueezeBertModule', 'SqueezeBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
264
"""simple docstring""" def UpperCamelCase ( _A ) -> int: lowercase : Dict = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def UpperCamelCase ( _A = 100 ) -> int: lowercase : Union[str, Any] = 1 lowercase : Tuple = 2 for i in range(2 , max_n + 1 ): lowercase : Any = pre_numerator lowercase : Dict = 2 * i // 3 if i % 3 == 0 else 1 lowercase : Optional[Any] = cur_numerator lowercase : str = e_cont * pre_numerator + temp return sum_digits(_A ) if __name__ == "__main__": print(F'{solution() = }')
264
1
import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class lowerCamelCase ( _UpperCamelCase , unittest.TestCase ): __lowerCamelCase = RoCBertTokenizer __lowerCamelCase = None __lowerCamelCase = False __lowerCamelCase = True __lowerCamelCase = filter_non_english def lowerCAmelCase_ ( self ) -> Dict: '''simple docstring''' super().setUp() snake_case: Any = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "你", "好", "是", "谁", "a", "b", "c", "d"] snake_case: List[str] = {} snake_case: Tuple = {} for i, value in enumerate(__a ): snake_case: List[str] = i snake_case: Optional[Any] = i snake_case: Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case: Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_shape_file"""] ) snake_case: Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_pronunciation_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) with open(self.word_shape_file , """w""" , encoding="""utf-8""" ) as word_shape_writer: json.dump(__a , __a , ensure_ascii=__a ) with open(self.word_pronunciation_file , """w""" , encoding="""utf-8""" ) as word_pronunciation_writer: json.dump(__a , __a , ensure_ascii=__a ) def lowerCAmelCase_ ( self ) -> Optional[int]: '''simple docstring''' snake_case: Tuple = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) snake_case: int = tokenizer.tokenize("""你好[SEP]你是谁""" ) self.assertListEqual(__a , ["""你""", """好""", """[SEP]""", """你""", """是""", """谁"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(__a ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(__a ) , [5, 6, 2, 5, 7, 8] ) def lowerCAmelCase_ ( self ) -> Dict: '''simple docstring''' snake_case: Dict = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) , ["""ah""", """\u535A""", """\u63A8""", """zz"""] ) def lowerCAmelCase_ ( self ) -> Any: '''simple docstring''' snake_case: List[Any] = RoCBertBasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def lowerCAmelCase_ ( self ) -> Tuple: '''simple docstring''' snake_case: Optional[Any] = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""h\u00E9llo"""] ) def lowerCAmelCase_ ( self ) -> str: '''simple docstring''' snake_case: Dict = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case: List[str] = RoCBertBasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def lowerCAmelCase_ ( self ) -> Optional[int]: '''simple docstring''' snake_case: Tuple = RoCBertBasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def lowerCAmelCase_ ( self ) -> List[str]: '''simple docstring''' snake_case: Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def lowerCAmelCase_ ( self ) -> List[Any]: '''simple docstring''' snake_case: Tuple = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def lowerCAmelCase_ ( self ) -> int: '''simple docstring''' snake_case: int = RoCBertBasicTokenizer(do_lower_case=__a , never_split=["""[UNK]"""] ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] ) def lowerCAmelCase_ ( self ) -> Optional[Any]: '''simple docstring''' snake_case: Optional[int] = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] snake_case: Any = {} for i, token in enumerate(__a ): snake_case: str = i snake_case: Optional[int] = RoCBertWordpieceTokenizer(vocab=__a , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) , ["""un""", """##want""", """##ed""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) , ["""[UNK]""", """runn""", """##ing"""] ) def lowerCAmelCase_ ( self ) -> Optional[Any]: '''simple docstring''' self.assertTrue(_is_whitespace(""" """ ) ) self.assertTrue(_is_whitespace("""\t""" ) ) self.assertTrue(_is_whitespace("""\r""" ) ) self.assertTrue(_is_whitespace("""\n""" ) ) self.assertTrue(_is_whitespace("""\u00A0""" ) ) self.assertFalse(_is_whitespace("""A""" ) ) self.assertFalse(_is_whitespace("""-""" ) ) def lowerCAmelCase_ ( self ) -> Dict: '''simple docstring''' self.assertTrue(_is_control("""\u0005""" ) ) self.assertFalse(_is_control("""A""" ) ) self.assertFalse(_is_control(""" """ ) ) self.assertFalse(_is_control("""\t""" ) ) self.assertFalse(_is_control("""\r""" ) ) def lowerCAmelCase_ ( self ) -> Optional[int]: '''simple docstring''' self.assertTrue(_is_punctuation("""-""" ) ) self.assertTrue(_is_punctuation("""$""" ) ) self.assertTrue(_is_punctuation("""`""" ) ) self.assertTrue(_is_punctuation(""".""" ) ) self.assertFalse(_is_punctuation("""A""" ) ) self.assertFalse(_is_punctuation(""" """ ) ) def lowerCAmelCase_ ( self ) -> List[Any]: '''simple docstring''' snake_case: Optional[Any] = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(__a ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) if self.test_rust_tokenizer: snake_case: Tuple = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(__a ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) def lowerCAmelCase_ ( self ) -> Optional[Any]: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): snake_case: int = self.rust_tokenizer_class.from_pretrained(__a , **__a ) snake_case: Union[str, Any] = F"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." snake_case: Optional[Any] = tokenizer_r.encode_plus( __a , return_attention_mask=__a , return_token_type_ids=__a , return_offsets_mapping=__a , add_special_tokens=__a , ) snake_case: List[Any] = tokenizer_r.do_lower_case if hasattr(__a , """do_lower_case""" ) else False snake_case: Dict = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["""offset_mapping"""] ) def lowerCAmelCase_ ( self ) -> List[Any]: '''simple docstring''' snake_case: Optional[Any] = ["的", "人", "有"] snake_case: int = "".join(__a ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): snake_case: int = True snake_case: Any = self.tokenizer_class.from_pretrained(__a , **__a ) snake_case: Optional[Any] = self.rust_tokenizer_class.from_pretrained(__a , **__a ) snake_case: int = tokenizer_p.encode(__a , add_special_tokens=__a ) snake_case: int = tokenizer_r.encode(__a , add_special_tokens=__a ) snake_case: List[Any] = tokenizer_r.convert_ids_to_tokens(__a ) snake_case: Union[str, Any] = tokenizer_p.convert_ids_to_tokens(__a ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(__a , __a ) self.assertListEqual(__a , __a ) snake_case: Any = False snake_case: Dict = self.rust_tokenizer_class.from_pretrained(__a , **__a ) snake_case: Any = self.tokenizer_class.from_pretrained(__a , **__a ) snake_case: Any = tokenizer_r.encode(__a , add_special_tokens=__a ) snake_case: Any = tokenizer_p.encode(__a , add_special_tokens=__a ) snake_case: Union[str, Any] = tokenizer_r.convert_ids_to_tokens(__a ) snake_case: Dict = tokenizer_p.convert_ids_to_tokens(__a ) # it is expected that only the first Chinese character is not preceded by "##". snake_case: Any = [ F"##{token}" if idx != 0 else token for idx, token in enumerate(__a ) ] self.assertListEqual(__a , __a ) self.assertListEqual(__a , __a ) @slow def lowerCAmelCase_ ( self ) -> Any: '''simple docstring''' snake_case: Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) snake_case: Optional[int] = tokenizer.encode("""你好""" , add_special_tokens=__a ) snake_case: Dict = tokenizer.encode("""你是谁""" , add_special_tokens=__a ) snake_case: Union[str, Any] = tokenizer.build_inputs_with_special_tokens(__a ) snake_case: Tuple = tokenizer.build_inputs_with_special_tokens(__a , __a ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def lowerCAmelCase_ ( self ) -> int: '''simple docstring''' snake_case: Optional[Any] = self.get_tokenizers(do_lower_case=__a ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): snake_case: int = "你好,你是谁" snake_case: Any = tokenizer.tokenize(__a ) snake_case: Optional[Any] = tokenizer.convert_tokens_to_ids(__a ) snake_case: List[str] = tokenizer.convert_tokens_to_shape_ids(__a ) snake_case: Any = tokenizer.convert_tokens_to_pronunciation_ids(__a ) snake_case: Optional[int] = tokenizer.prepare_for_model( __a , __a , __a , add_special_tokens=__a ) snake_case: Tuple = tokenizer.encode_plus(__a , add_special_tokens=__a ) self.assertEqual(__a , __a )
707
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING __lowerCAmelCase : List[str] = logging.get_logger(__name__) __lowerCAmelCase : Union[str, Any] = { 'Salesforce/instruct-blip-flan-t5': 'https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json', } class lowerCamelCase ( __snake_case ): __lowerCamelCase = 'instructblip_vision_model' def __init__( self , __lowerCamelCase=14_08 , __lowerCamelCase=61_44 , __lowerCamelCase=39 , __lowerCamelCase=16 , __lowerCamelCase=2_24 , __lowerCamelCase=14 , __lowerCamelCase="gelu" , __lowerCamelCase=1e-6 , __lowerCamelCase=0.0 , __lowerCamelCase=1e-10 , __lowerCamelCase=True , **__lowerCamelCase , ) -> Dict: '''simple docstring''' super().__init__(**__lowerCamelCase ) snake_case: Union[str, Any] = hidden_size snake_case: List[str] = intermediate_size snake_case: List[Any] = num_hidden_layers snake_case: Optional[Any] = num_attention_heads snake_case: str = patch_size snake_case: Optional[int] = image_size snake_case: str = initializer_range snake_case: Tuple = attention_dropout snake_case: List[str] = layer_norm_eps snake_case: Dict = hidden_act snake_case: Any = qkv_bias @classmethod def lowerCAmelCase_ ( cls , __lowerCamelCase , **__lowerCamelCase ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(__lowerCamelCase ) snake_case , snake_case: Any = cls.get_config_dict(__lowerCamelCase , **__lowerCamelCase ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get("""model_type""" ) == "instructblip": snake_case: Dict = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(__lowerCamelCase , **__lowerCamelCase ) class lowerCamelCase ( __snake_case ): __lowerCamelCase = 'instructblip_qformer' def __init__( self , __lowerCamelCase=3_05_22 , __lowerCamelCase=7_68 , __lowerCamelCase=12 , __lowerCamelCase=12 , __lowerCamelCase=30_72 , __lowerCamelCase="gelu" , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=5_12 , __lowerCamelCase=0.02 , __lowerCamelCase=1e-12 , __lowerCamelCase=0 , __lowerCamelCase="absolute" , __lowerCamelCase=2 , __lowerCamelCase=14_08 , **__lowerCamelCase , ) -> str: '''simple docstring''' super().__init__(pad_token_id=__lowerCamelCase , **__lowerCamelCase ) snake_case: Optional[Any] = vocab_size snake_case: Union[str, Any] = hidden_size snake_case: str = num_hidden_layers snake_case: Union[str, Any] = num_attention_heads snake_case: List[str] = hidden_act snake_case: Dict = intermediate_size snake_case: List[Any] = hidden_dropout_prob snake_case: Tuple = attention_probs_dropout_prob snake_case: Tuple = max_position_embeddings snake_case: Any = initializer_range snake_case: List[str] = layer_norm_eps snake_case: Dict = position_embedding_type snake_case: Optional[Any] = cross_attention_frequency snake_case: Optional[Any] = encoder_hidden_size @classmethod def lowerCAmelCase_ ( cls , __lowerCamelCase , **__lowerCamelCase ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(__lowerCamelCase ) snake_case , snake_case: Union[str, Any] = cls.get_config_dict(__lowerCamelCase , **__lowerCamelCase ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get("""model_type""" ) == "instructblip": snake_case: List[Any] = config_dict["""qformer_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(__lowerCamelCase , **__lowerCamelCase ) class lowerCamelCase ( __snake_case ): __lowerCamelCase = 'instructblip' __lowerCamelCase = True def __init__( self , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=32 , **__lowerCamelCase ) -> List[Any]: '''simple docstring''' super().__init__(**__lowerCamelCase ) if vision_config is None: snake_case: Any = {} logger.info("""vision_config is None. initializing the InstructBlipVisionConfig with default values.""" ) if qformer_config is None: snake_case: List[Any] = {} logger.info("""qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.""" ) if text_config is None: snake_case: List[Any] = {} logger.info("""text_config is None. Initializing the text config with default values (`OPTConfig`).""" ) snake_case: int = InstructBlipVisionConfig(**__lowerCamelCase ) snake_case: int = InstructBlipQFormerConfig(**__lowerCamelCase ) snake_case: int = text_config["""model_type"""] if """model_type""" in text_config else """opt""" snake_case: Optional[int] = CONFIG_MAPPING[text_model_type](**__lowerCamelCase ) snake_case: Optional[int] = self.text_config.tie_word_embeddings snake_case: Any = self.text_config.is_encoder_decoder snake_case: List[str] = num_query_tokens snake_case: Any = self.vision_config.hidden_size snake_case: Any = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES snake_case: Any = 1.0 snake_case: List[str] = 0.02 @classmethod def lowerCAmelCase_ ( cls , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase , ) -> List[Any]: '''simple docstring''' return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **__lowerCamelCase , ) def lowerCAmelCase_ ( self ) -> Any: '''simple docstring''' snake_case: str = copy.deepcopy(self.__dict__ ) snake_case: Any = self.vision_config.to_dict() snake_case: Dict = self.qformer_config.to_dict() snake_case: List[str] = self.text_config.to_dict() snake_case: List[Any] = self.__class__.model_type return output
164
0
import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class lowerCAmelCase_ : def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=13, SCREAMING_SNAKE_CASE_=30, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=32, SCREAMING_SNAKE_CASE_=5, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=37, SCREAMING_SNAKE_CASE_="gelu", SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=10, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=2, ) -> Any: UpperCamelCase : Dict = parent UpperCamelCase : Optional[int] = batch_size UpperCamelCase : Tuple = image_size UpperCamelCase : List[Any] = patch_size UpperCamelCase : Union[str, Any] = num_channels UpperCamelCase : Union[str, Any] = is_training UpperCamelCase : Any = use_labels UpperCamelCase : Union[str, Any] = hidden_size UpperCamelCase : List[Any] = num_hidden_layers UpperCamelCase : Union[str, Any] = num_attention_heads UpperCamelCase : Optional[Any] = intermediate_size UpperCamelCase : str = hidden_act UpperCamelCase : Tuple = hidden_dropout_prob UpperCamelCase : int = attention_probs_dropout_prob UpperCamelCase : Optional[Any] = type_sequence_label_size UpperCamelCase : Optional[int] = initializer_range UpperCamelCase : Optional[Any] = scope UpperCamelCase : List[Any] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) UpperCamelCase : Union[str, Any] = (image_size // patch_size) ** 2 UpperCamelCase : str = num_patches + 2 def snake_case_ ( self ) -> Tuple: UpperCamelCase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase : str = None if self.use_labels: UpperCamelCase : Optional[int] = ids_tensor([self.batch_size], self.type_sequence_label_size ) UpperCamelCase : Union[str, Any] = self.get_config() return config, pixel_values, labels def snake_case_ ( self ) -> Optional[int]: return DeiTConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=SCREAMING_SNAKE_CASE_, initializer_range=self.initializer_range, encoder_stride=self.encoder_stride, ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: UpperCamelCase : int = DeiTModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Any = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Tuple: UpperCamelCase : Optional[int] = DeiTForMaskedImageModeling(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.reconstruction.shape, (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCamelCase : Union[str, Any] = 1 UpperCamelCase : Tuple = DeiTForMaskedImageModeling(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.reconstruction.shape, (self.batch_size, 1, self.image_size, self.image_size) ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> List[Any]: UpperCamelCase : int = self.type_sequence_label_size UpperCamelCase : Dict = DeiTForImageClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Dict = model(SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCamelCase : str = 1 UpperCamelCase : List[Any] = DeiTForImageClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def snake_case_ ( self ) -> Dict: UpperCamelCase : str = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) : Dict = config_and_inputs UpperCamelCase : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase_ ( a__ , a__ , unittest.TestCase ): UpperCAmelCase__ : Optional[Any] = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) UpperCAmelCase__ : Optional[int] = ( { "feature-extraction": DeiTModel, "image-classification": (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) UpperCAmelCase__ : Dict = False UpperCAmelCase__ : Union[str, Any] = False UpperCAmelCase__ : Optional[int] = False def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : str = DeiTModelTester(self ) UpperCamelCase : str = ConfigTester(self, config_class=SCREAMING_SNAKE_CASE_, has_text_modality=SCREAMING_SNAKE_CASE_, hidden_size=37 ) def snake_case_ ( self ) -> Tuple: self.config_tester.run_common_tests() @unittest.skip(reason='DeiT does not use inputs_embeds' ) def snake_case_ ( self ) -> str: pass def snake_case_ ( self ) -> List[Any]: UpperCamelCase , UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : List[Any] = model_class(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) UpperCamelCase : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE_, nn.Linear ) ) def snake_case_ ( self ) -> Optional[int]: UpperCamelCase , UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : Union[str, Any] = model_class(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase : List[str] = [*signature.parameters.keys()] UpperCamelCase : Any = ['pixel_values'] self.assertListEqual(arg_names[:1], SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> str: UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Dict: UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Dict: UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=False ) -> Optional[Any]: UpperCamelCase : str = super()._prepare_for_class(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, return_labels=SCREAMING_SNAKE_CASE_ ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def snake_case_ ( self ) -> str: if not self.model_tester.is_training: return UpperCamelCase , UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase : int = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(SCREAMING_SNAKE_CASE_ ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue UpperCamelCase : List[Any] = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.train() UpperCamelCase : Dict = self._prepare_for_class(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, return_labels=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = model(**SCREAMING_SNAKE_CASE_ ).loss loss.backward() def snake_case_ ( self ) -> Dict: UpperCamelCase , UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return UpperCamelCase : Tuple = False UpperCamelCase : int = True for model_class in self.all_model_classes: if model_class in get_values(SCREAMING_SNAKE_CASE_ ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue UpperCamelCase : str = model_class(SCREAMING_SNAKE_CASE_ ) model.gradient_checkpointing_enable() model.to(SCREAMING_SNAKE_CASE_ ) model.train() UpperCamelCase : Any = self._prepare_for_class(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, return_labels=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = model(**SCREAMING_SNAKE_CASE_ ).loss loss.backward() def snake_case_ ( self ) -> Optional[int]: UpperCamelCase , UpperCamelCase : str = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase : List[Any] = [ {'title': 'multi_label_classification', 'num_labels': 2, 'dtype': torch.float}, {'title': 'single_label_classification', 'num_labels': 1, 'dtype': torch.long}, {'title': 'regression', 'num_labels': 1, 'dtype': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(SCREAMING_SNAKE_CASE_ ), *get_values(SCREAMING_SNAKE_CASE_ ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F"""Testing {model_class} with {problem_type["title"]}""" ): UpperCamelCase : Dict = problem_type['title'] UpperCamelCase : Optional[int] = problem_type['num_labels'] UpperCamelCase : Dict = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.train() UpperCamelCase : Optional[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, return_labels=SCREAMING_SNAKE_CASE_ ) if problem_type["num_labels"] > 1: UpperCamelCase : int = inputs['labels'].unsqueeze(1 ).repeat(1, problem_type['num_labels'] ) UpperCamelCase : Tuple = inputs['labels'].to(problem_type['dtype'] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=SCREAMING_SNAKE_CASE_ ) as warning_list: UpperCamelCase : List[Any] = model(**SCREAMING_SNAKE_CASE_ ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F"""Something is going wrong in the regression problem: intercepted {w.message}""" ) loss.backward() @slow def snake_case_ ( self ) -> Union[str, Any]: for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase : Tuple = DeiTModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def UpperCamelCase ( ) -> List[str]: UpperCamelCase : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowerCAmelCase_ ( unittest.TestCase ): @cached_property def snake_case_ ( self ) -> List[str]: return ( DeiTImageProcessor.from_pretrained('facebook/deit-base-distilled-patch16-224' ) if is_vision_available() else None ) @slow def snake_case_ ( self ) -> Union[str, Any]: UpperCamelCase : Tuple = DeiTForImageClassificationWithTeacher.from_pretrained('facebook/deit-base-distilled-patch16-224' ).to( SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = self.default_image_processor UpperCamelCase : List[Any] = prepare_img() UpperCamelCase : Tuple = image_processor(images=SCREAMING_SNAKE_CASE_, return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): UpperCamelCase : int = model(**SCREAMING_SNAKE_CASE_ ) # verify the logits UpperCamelCase : Dict = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = torch.tensor([-1.02_66, 0.19_12, -1.28_61] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3], SCREAMING_SNAKE_CASE_, atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def snake_case_ ( self ) -> str: UpperCamelCase : str = DeiTModel.from_pretrained( 'facebook/deit-base-distilled-patch16-224', torch_dtype=torch.floataa, device_map='auto' ) UpperCamelCase : List[Any] = self.default_image_processor UpperCamelCase : Optional[int] = prepare_img() UpperCamelCase : Any = image_processor(images=SCREAMING_SNAKE_CASE_, return_tensors='pt' ) UpperCamelCase : Optional[int] = inputs.pixel_values.to(SCREAMING_SNAKE_CASE_ ) # forward pass to make sure inference works in fp16 with torch.no_grad(): UpperCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_ )
40
import math import random def UpperCamelCase ( snake_case__ : float , snake_case__ : bool = False ) -> float: if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value __UpperCAmelCase = 0.02 def UpperCamelCase ( snake_case__ : int , snake_case__ : int ) -> float: UpperCamelCase : Optional[Any] = float(2 * (random.randint(1 , 100 )) - 1 ) for _ in range(snake_case__ ): # Forward propagation UpperCamelCase : str = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? UpperCamelCase : int = (expected / 100) - layer_a # Error delta UpperCamelCase : List[str] = layer_1_error * sigmoid_function(snake_case__ , snake_case__ ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 100 if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase = int(input('''Expected value: ''')) __UpperCAmelCase = int(input('''Number of propagations: ''')) print(forward_propagation(expected, number_propagations))
40
1
'''simple docstring''' import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class __UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase ): __lowercase = 1 @register_to_config def __init__( self , lowerCAmelCase_ = 10_00 , lowerCAmelCase_ = None ): """simple docstring""" self.set_timesteps(lowerCAmelCase_ ) # standard deviation of the initial noise distribution _snake_case = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. _snake_case = 4 # running values _snake_case = [] def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ): """simple docstring""" _snake_case = num_inference_steps _snake_case = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1] _snake_case = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: _snake_case = torch.tensor(self.config.trained_betas , dtype=torch.floataa ) else: _snake_case = torch.sin(steps * math.pi / 2 ) ** 2 _snake_case = (1.0 - self.betas**2) ** 0.5 _snake_case = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1] _snake_case = timesteps.to(lowerCAmelCase_ ) _snake_case = [] def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = True , ): """simple docstring""" if self.num_inference_steps is None: raise ValueError( 'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler' ) _snake_case = (self.timesteps == timestep).nonzero().item() _snake_case = timestep_index + 1 _snake_case = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(lowerCAmelCase_ ) if len(self.ets ) == 1: _snake_case = self.ets[-1] elif len(self.ets ) == 2: _snake_case = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: _snake_case = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: _snake_case = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) _snake_case = self._get_prev_sample(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" return sample def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = self.alphas[timestep_index] _snake_case = self.betas[timestep_index] _snake_case = self.alphas[prev_timestep_index] _snake_case = self.betas[prev_timestep_index] _snake_case = (sample - sigma * ets) / max(lowerCAmelCase_ , 1E-8 ) _snake_case = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self ): """simple docstring""" return self.config.num_train_timesteps
542
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class __UpperCAmelCase : def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=13 , lowerCAmelCase_=7 , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=99 , lowerCAmelCase_=32 , lowerCAmelCase_=5 , lowerCAmelCase_=4 , lowerCAmelCase_=37 , lowerCAmelCase_="gelu" , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.1 , lowerCAmelCase_=5_12 , lowerCAmelCase_=16 , lowerCAmelCase_=2 , lowerCAmelCase_=0.02 , lowerCAmelCase_=3 , lowerCAmelCase_=4 , lowerCAmelCase_=None , ): """simple docstring""" _snake_case = parent _snake_case = batch_size _snake_case = seq_length _snake_case = is_training _snake_case = use_token_type_ids _snake_case = use_labels _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = type_vocab_size _snake_case = type_sequence_label_size _snake_case = initializer_range _snake_case = num_labels _snake_case = num_choices _snake_case = scope _snake_case = self.vocab_size - 1 def lowerCamelCase ( self ): """simple docstring""" _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case = None if self.use_token_type_ids: _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _snake_case = None _snake_case = None _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _snake_case = ids_tensor([self.batch_size] , self.num_choices ) _snake_case = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) _snake_case = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , *lowerCAmelCase_ ): """simple docstring""" _snake_case = OpenAIGPTModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , head_mask=lowerCAmelCase_ ) _snake_case = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) _snake_case = model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , *lowerCAmelCase_ ): """simple docstring""" _snake_case = OpenAIGPTLMHeadModel(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , *lowerCAmelCase_ ): """simple docstring""" _snake_case = OpenAIGPTDoubleHeadsModel(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , *lowerCAmelCase_ ): """simple docstring""" _snake_case = self.num_labels _snake_case = OpenAIGPTForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.prepare_config_and_inputs() ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ) = config_and_inputs _snake_case = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask, } return config, inputs_dict @require_torch class __UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): __lowercase = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) __lowercase = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly __lowercase = ( { """feature-extraction""": OpenAIGPTModel, """text-classification""": OpenAIGPTForSequenceClassification, """text-generation""": OpenAIGPTLMHeadModel, """zero-shot""": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False ): """simple docstring""" _snake_case = super()._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": _snake_case = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=lowerCAmelCase_ , ) _snake_case = inputs_dict['labels'] _snake_case = inputs_dict['labels'] _snake_case = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=lowerCAmelCase_ , ) _snake_case = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ ) return inputs_dict def lowerCamelCase ( self ): """simple docstring""" _snake_case = OpenAIGPTModelTester(self ) _snake_case = ConfigTester(self , config_class=lowerCAmelCase_ , n_embd=37 ) def lowerCamelCase ( self ): """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*lowerCAmelCase_ ) @slow def lowerCamelCase ( self ): """simple docstring""" for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = OpenAIGPTModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @require_torch class __UpperCAmelCase ( unittest.TestCase ): @slow def lowerCamelCase ( self ): """simple docstring""" _snake_case = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt' ) model.to(lowerCAmelCase_ ) _snake_case = torch.tensor([[4_81, 47_35, 5_44]] , dtype=torch.long , device=lowerCAmelCase_ ) # the president is _snake_case = [ 4_81, 47_35, 5_44, 2_46, 9_63, 8_70, 7_62, 2_39, 2_44, 4_04_77, 2_44, 2_49, 7_19, 8_81, 4_87, 5_44, 2_40, 2_44, 6_03, 4_81, ] # the president is a very good man. " \n " i\'m sure he is, " said the _snake_case = model.generate(lowerCAmelCase_ , do_sample=lowerCAmelCase_ ) self.assertListEqual(output_ids[0].tolist() , lowerCAmelCase_ )
542
1
import math from collections.abc import Callable def __lowercase ( snake_case, snake_case, snake_case ): """simple docstring""" __magic_name__ :float = xa __magic_name__ :float = xa while True: if x_n == x_na or function(snake_case__ ) == function(snake_case__ ): raise ZeroDivisionError('''float division by zero, could not find root''' ) __magic_name__ :float = x_na - ( function(snake_case__ ) / ((function(snake_case__ ) - function(snake_case__ )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 1_0**-5: return x_na __magic_name__ :Any = x_na __magic_name__ :Any = x_na def __lowercase ( snake_case ): """simple docstring""" return math.pow(snake_case__, 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
0
'''simple docstring''' import fire from utils import calculate_rouge, save_json def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__=None , **snake_case__ ): '''simple docstring''' A : Optional[Any] = [x.strip() for x in open(snake_case__ ).readlines()] A : Tuple = [x.strip() for x in open(snake_case__ ).readlines()][: len(snake_case__ )] A : Union[str, Any] = calculate_rouge(snake_case__ , snake_case__ , **snake_case__ ) if save_path is not None: save_json(snake_case__ , snake_case__ , indent=snake_case__ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
634
0
import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel UpperCamelCase_ = logging.getLogger(__name__) def _UpperCAmelCase ( A , A ): '''simple docstring''' if os.path.exists(lowerCamelCase__ ): if os.path.exists(os.path.join(lowerCamelCase__ , "config.json" ) ) and os.path.isfile( os.path.join(lowerCamelCase__ , "config.json" ) ): os.remove(os.path.join(lowerCamelCase__ , "config.json" ) ) if os.path.exists(os.path.join(lowerCamelCase__ , "pytorch_model.bin" ) ) and os.path.isfile( os.path.join(lowerCamelCase__ , "pytorch_model.bin" ) ): os.remove(os.path.join(lowerCamelCase__ , "pytorch_model.bin" ) ) else: os.makedirs(lowerCamelCase__ ) model.save_pretrained(lowerCamelCase__ ) def _UpperCAmelCase ( A , A=False ): '''simple docstring''' UpperCAmelCase__ =2 if unlogit: UpperCAmelCase__ =torch.pow(lowerCamelCase__ , lowerCamelCase__ ) UpperCAmelCase__ =p * torch.log(lowerCamelCase__ ) UpperCAmelCase__ =0 return -plogp.sum(dim=-1 ) def _UpperCAmelCase ( A ): '''simple docstring''' logger.info("lv, h >\t" + "\t".join(F"""{x + 1}""" for x in range(len(lowerCamelCase__ ) ) ) ) for row in range(len(lowerCamelCase__ ) ): if tensor.dtype != torch.long: logger.info(F"""layer {row + 1}:\t""" + "\t".join(F"""{x:.5f}""" for x in tensor[row].cpu().data ) ) else: logger.info(F"""layer {row + 1}:\t""" + "\t".join(F"""{x:d}""" for x in tensor[row].cpu().data ) ) def _UpperCAmelCase ( A , A , A , A=True , A=True , A=None , A=False ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ =model.config.num_hidden_layers, model.config.num_attention_heads UpperCAmelCase__ =torch.zeros(lowerCamelCase__ , lowerCamelCase__ ).to(args.device ) UpperCAmelCase__ =torch.zeros(lowerCamelCase__ , lowerCamelCase__ ).to(args.device ) if head_mask is None: UpperCAmelCase__ =torch.ones(lowerCamelCase__ , lowerCamelCase__ ).to(args.device ) head_mask.requires_grad_(requires_grad=lowerCamelCase__ ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: UpperCAmelCase__ =None UpperCAmelCase__ =0.0 UpperCAmelCase__ =0.0 for step, inputs in enumerate(tqdm(lowerCamelCase__ , desc="Iteration" , disable=args.local_rank not in [-1, 0] ) ): UpperCAmelCase__ =tuple(t.to(args.device ) for t in inputs ) ((UpperCAmelCase__ ) , ) =inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) UpperCAmelCase__ =model(lowerCamelCase__ , labels=lowerCamelCase__ , head_mask=lowerCamelCase__ ) # (loss), lm_logits, presents, (all hidden_states), (attentions) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ =( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(lowerCamelCase__ ): UpperCAmelCase__ =entropy(attn.detach() , lowerCamelCase__ ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(lowerCamelCase__ ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: UpperCAmelCase__ =2 UpperCAmelCase__ =torch.pow(torch.pow(lowerCamelCase__ , lowerCamelCase__ ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-2_0 if not args.dont_normalize_global_importance: UpperCAmelCase__ =(head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info("Attention entropies" ) print_ad_tensor(lowerCamelCase__ ) if compute_importance: logger.info("Head importance scores" ) print_ad_tensor(lowerCamelCase__ ) logger.info("Head ranked by importance scores" ) UpperCAmelCase__ =torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) UpperCAmelCase__ =torch.arange( head_importance.numel() , device=args.device ) UpperCAmelCase__ =head_ranks.view_as(lowerCamelCase__ ) print_ad_tensor(lowerCamelCase__ ) return attn_entropy, head_importance, total_loss def _UpperCAmelCase ( A , A , A ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ =compute_heads_importance(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , compute_entropy=lowerCamelCase__ ) UpperCAmelCase__ =1 / loss # instead of downsteam score use the LM loss logger.info("Pruning: original score: %f, threshold: %f" , lowerCamelCase__ , original_score * args.masking_threshold ) UpperCAmelCase__ =torch.ones_like(lowerCamelCase__ ) UpperCAmelCase__ =max(1 , int(new_head_mask.numel() * args.masking_amount ) ) UpperCAmelCase__ =original_score while current_score >= original_score * args.masking_threshold: UpperCAmelCase__ =new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads UpperCAmelCase__ =float("Inf" ) UpperCAmelCase__ =head_importance.view(-1 ).sort()[1] if len(lowerCamelCase__ ) <= num_to_mask: print("BREAK BY num_to_mask" ) break # mask heads UpperCAmelCase__ =current_heads_to_mask[:num_to_mask] logger.info("Heads to mask: %s" , str(current_heads_to_mask.tolist() ) ) UpperCAmelCase__ =new_head_mask.view(-1 ) UpperCAmelCase__ =0.0 UpperCAmelCase__ =new_head_mask.view_as(lowerCamelCase__ ) UpperCAmelCase__ =new_head_mask.clone().detach() print_ad_tensor(lowerCamelCase__ ) # Compute metric and head importance again UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ =compute_heads_importance( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , compute_entropy=lowerCamelCase__ , head_mask=lowerCamelCase__ ) UpperCAmelCase__ =1 / loss logger.info( "Masking: current score: %f, remaining heads %d (%.1f percents)" , lowerCamelCase__ , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , ) logger.info("Final head mask" ) print_ad_tensor(lowerCamelCase__ ) np.save(os.path.join(args.output_dir , "head_mask.npy" ) , head_mask.detach().cpu().numpy() ) return head_mask def _UpperCAmelCase ( A , A , A , A ): '''simple docstring''' UpperCAmelCase__ =datetime.now() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ =compute_heads_importance( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , compute_entropy=lowerCamelCase__ , compute_importance=lowerCamelCase__ , head_mask=lowerCamelCase__ ) UpperCAmelCase__ =1 / loss UpperCAmelCase__ =datetime.now() - before_time UpperCAmelCase__ =sum(p.numel() for p in model.parameters() ) UpperCAmelCase__ ={ layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(lowerCamelCase__ ) ) } for k, v in heads_to_prune.items(): if isinstance(lowerCamelCase__ , lowerCamelCase__ ): UpperCAmelCase__ =[ v, ] assert sum(len(lowerCamelCase__ ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(lowerCamelCase__ ) UpperCAmelCase__ =sum(p.numel() for p in model.parameters() ) UpperCAmelCase__ =datetime.now() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ =compute_heads_importance( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , compute_entropy=lowerCamelCase__ , compute_importance=lowerCamelCase__ , head_mask=lowerCamelCase__ , actually_pruned=lowerCamelCase__ , ) UpperCAmelCase__ =1 / loss UpperCAmelCase__ =datetime.now() - before_time logger.info( "Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)" , lowerCamelCase__ , lowerCamelCase__ , pruned_num_params / original_num_params * 100 , ) logger.info("Pruning: score with masking: %f score with pruning: %f" , lowerCamelCase__ , lowerCamelCase__ ) logger.info("Pruning: speed ratio (original timing / new timing): %f percents" , original_time / new_time * 100 ) save_model(lowerCamelCase__ , args.output_dir ) def _UpperCAmelCase ( ): '''simple docstring''' UpperCAmelCase__ =argparse.ArgumentParser() # Required parameters parser.add_argument( "--data_dir" , default=lowerCamelCase__ , type=lowerCamelCase__ , required=lowerCamelCase__ , help="The input data dir. Should contain the .tsv files (or other data files) for the task." , ) parser.add_argument( "--model_name_or_path" , default=lowerCamelCase__ , type=lowerCamelCase__ , required=lowerCamelCase__ , help="Path to pretrained model or model identifier from huggingface.co/models" , ) parser.add_argument( "--output_dir" , default=lowerCamelCase__ , type=lowerCamelCase__ , required=lowerCamelCase__ , help="The output directory where the model predictions and checkpoints will be written." , ) # Other parameters parser.add_argument( "--config_name" , default="" , type=lowerCamelCase__ , help="Pretrained config name or path if not the same as model_name_or_path" , ) parser.add_argument( "--tokenizer_name" , default="" , type=lowerCamelCase__ , help="Pretrained tokenizer name or path if not the same as model_name_or_path" , ) parser.add_argument( "--cache_dir" , default=lowerCamelCase__ , type=lowerCamelCase__ , help="Where do you want to store the pre-trained models downloaded from s3" , ) parser.add_argument( "--data_subset" , type=lowerCamelCase__ , default=-1 , help="If > 0: limit the data to a subset of data_subset instances." ) parser.add_argument( "--overwrite_output_dir" , action="store_true" , help="Whether to overwrite data in output directory" ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) parser.add_argument( "--dont_normalize_importance_by_layer" , action="store_true" , help="Don\'t normalize importance score by layers" ) parser.add_argument( "--dont_normalize_global_importance" , action="store_true" , help="Don\'t normalize all importance scores between 0 and 1" , ) parser.add_argument( "--try_masking" , action="store_true" , help="Whether to try to mask head until a threshold of accuracy." ) parser.add_argument( "--masking_threshold" , default=0.9 , type=lowerCamelCase__ , help="masking threshold in term of metrics (stop masking when metric < threshold * original metric value)." , ) parser.add_argument( "--masking_amount" , default=0.1 , type=lowerCamelCase__ , help="Amount to heads to masking at each masking step." ) parser.add_argument("--metric_name" , default="acc" , type=lowerCamelCase__ , help="Metric to use for head masking." ) parser.add_argument( "--max_seq_length" , default=128 , type=lowerCamelCase__ , help=( "The maximum total input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, sequences shorter padded." ) , ) parser.add_argument("--batch_size" , default=1 , type=lowerCamelCase__ , help="Batch size." ) parser.add_argument("--seed" , type=lowerCamelCase__ , default=42 ) parser.add_argument("--local_rank" , type=lowerCamelCase__ , default=-1 , help="local_rank for distributed training on gpus" ) parser.add_argument("--no_cuda" , action="store_true" , help="Whether not to use CUDA when available" ) parser.add_argument("--server_ip" , type=lowerCamelCase__ , default="" , help="Can be used for distant debugging." ) parser.add_argument("--server_port" , type=lowerCamelCase__ , default="" , help="Can be used for distant debugging." ) UpperCAmelCase__ =parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=lowerCamelCase__ ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: UpperCAmelCase__ =torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu" ) UpperCAmelCase__ =0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) UpperCAmelCase__ =torch.device("cuda" , args.local_rank ) UpperCAmelCase__ =1 torch.distributed.init_process_group(backend="nccl" ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info("device: {} n_gpu: {}, distributed: {}".format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) UpperCAmelCase__ =GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: UpperCAmelCase__ =nn.parallel.DistributedDataParallel( lowerCamelCase__ , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=lowerCamelCase__ ) elif args.n_gpu > 1: UpperCAmelCase__ =nn.DataParallel(lowerCamelCase__ ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=lowerCamelCase__ ) torch.save(lowerCamelCase__ , os.path.join(args.output_dir , "run_args.bin" ) ) logger.info("Training/evaluation parameters %s" , lowerCamelCase__ ) # Prepare dataset UpperCAmelCase__ =np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) UpperCAmelCase__ =(torch.from_numpy(lowerCamelCase__ ),) UpperCAmelCase__ =TensorDataset(*lowerCamelCase__ ) UpperCAmelCase__ =RandomSampler(lowerCamelCase__ ) UpperCAmelCase__ =DataLoader(lowerCamelCase__ , sampler=lowerCamelCase__ , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: UpperCAmelCase__ =mask_heads(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) prune_heads(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) if __name__ == "__main__": main()
721
from __future__ import annotations from math import gcd def _UpperCAmelCase ( A , A = 2 , A = 1 , A = 3 , ): '''simple docstring''' if num < 2: raise ValueError("The input value cannot be less than 2" ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(A , A , A ) -> int: return (pow(A , 2 ) + step) % modulus for _ in range(A ): # These track the position within the cycle detection logic. UpperCAmelCase__ =seed UpperCAmelCase__ =seed while True: # At each iteration, the tortoise moves one step and the hare moves two. UpperCAmelCase__ =rand_fn(A , A , A ) UpperCAmelCase__ =rand_fn(A , A , A ) UpperCAmelCase__ =rand_fn(A , A , A ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. UpperCAmelCase__ =gcd(hare - tortoise , A ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. UpperCAmelCase__ =hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument( 'num', type=int, help='The value to find a divisor of', ) parser.add_argument( '--attempts', type=int, default=3, help='The number of attempts before giving up', ) UpperCamelCase_ = parser.parse_args() UpperCamelCase_ = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(f"""{args.num} is probably prime""") else: UpperCamelCase_ = args.num // divisor print(f"""{args.num} = {divisor} * {quotient}""")
510
0
def __lowerCAmelCase ( __magic_name__ , __magic_name__ , __magic_name__ ): _lowercase: str = len(__magic_name__ ) _lowercase: Optional[Any] = [[0] * n for i in range(__magic_name__ )] for i in range(__magic_name__ ): _lowercase: Optional[Any] = y_points[i] for i in range(2 , __magic_name__ ): for j in range(__magic_name__ , __magic_name__ ): _lowercase: List[Any] = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
226
def __lowerCAmelCase ( __magic_name__ = 1_0_0 ): _lowercase: Dict = set() _lowercase: List[Any] = 0 _lowercase: List[Any] = n + 1 # maximum limit for a in range(2 , __magic_name__ ): for b in range(2 , __magic_name__ ): _lowercase: int = a**b # calculates the current power collect_powers.add(__magic_name__ ) # adds the result to the set return len(__magic_name__ ) if __name__ == "__main__": print('Number of terms ', solution(int(str(input()).strip())))
226
1
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" A__ : Dict = ["pixel_values"] def __init__( self : List[str] , _snake_case : bool = True , _snake_case : Dict[str, int] = None , _snake_case : PILImageResampling = PILImageResampling.BICUBIC , _snake_case : bool = True , _snake_case : Dict[str, int] = None , _snake_case : bool = True , _snake_case : Union[int, float] = 1 / 2_55 , _snake_case : bool = True , _snake_case : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , _snake_case : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **_snake_case : Any , ): """simple docstring""" super().__init__(**_snake_case ) A__ = size if size is not None else {'shortest_edge': 2_24} A__ = get_size_dict(_snake_case , default_to_square=_snake_case ) A__ = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} A__ = get_size_dict(_snake_case , param_name='crop_size' ) A__ = do_resize A__ = size A__ = resample A__ = do_center_crop A__ = crop_size A__ = do_rescale A__ = rescale_factor A__ = do_normalize A__ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN A__ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def _a ( self : str , _snake_case : np.ndarray , _snake_case : Dict[str, int] , _snake_case : PILImageResampling = PILImageResampling.BICUBIC , _snake_case : Optional[Union[str, ChannelDimension]] = None , **_snake_case : List[Any] , ): """simple docstring""" A__ = get_size_dict(_snake_case , default_to_square=_snake_case ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: A__ = int((2_56 / 2_24) * size['shortest_edge'] ) A__ = get_resize_output_image_size(_snake_case , size=_snake_case , default_to_square=_snake_case ) A__ = {'height': output_size[0], 'width': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( F'''Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}''' ) return resize( _snake_case , size=(size_dict['height'], size_dict['width']) , resample=_snake_case , data_format=_snake_case , **_snake_case ) def _a ( self : List[str] , _snake_case : np.ndarray , _snake_case : Dict[str, int] , _snake_case : Optional[Union[str, ChannelDimension]] = None , **_snake_case : Optional[int] , ): """simple docstring""" A__ = get_size_dict(_snake_case ) if "height" not in size or "width" not in size: raise ValueError(F'''Size dict must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return center_crop(_snake_case , size=(size['height'], size['width']) , data_format=_snake_case , **_snake_case ) def _a ( self : List[Any] , _snake_case : np.ndarray , _snake_case : Union[int, float] , _snake_case : Optional[Union[str, ChannelDimension]] = None , **_snake_case : Any , ): """simple docstring""" return rescale(_snake_case , scale=_snake_case , data_format=_snake_case , **_snake_case ) def _a ( self : Optional[Any] , _snake_case : np.ndarray , _snake_case : Union[float, List[float]] , _snake_case : Union[float, List[float]] , _snake_case : Optional[Union[str, ChannelDimension]] = None , **_snake_case : Union[str, Any] , ): """simple docstring""" return normalize(_snake_case , mean=_snake_case , std=_snake_case , data_format=_snake_case , **_snake_case ) def _a ( self : Tuple , _snake_case : ImageInput , _snake_case : Optional[bool] = None , _snake_case : Optional[Dict[str, int]] = None , _snake_case : PILImageResampling = None , _snake_case : Optional[bool] = None , _snake_case : Optional[Dict[str, int]] = None , _snake_case : Optional[bool] = None , _snake_case : Optional[float] = None , _snake_case : Optional[bool] = None , _snake_case : Optional[Union[float, Iterable[float]]] = None , _snake_case : Optional[Union[float, Iterable[float]]] = None , _snake_case : Optional[TensorType] = None , _snake_case : ChannelDimension = ChannelDimension.FIRST , **_snake_case : Any , ): """simple docstring""" A__ = do_resize if do_resize is not None else self.do_resize A__ = resample if resample is not None else self.resample A__ = do_center_crop if do_center_crop is not None else self.do_center_crop A__ = do_rescale if do_rescale is not None else self.do_rescale A__ = rescale_factor if rescale_factor is not None else self.rescale_factor A__ = do_normalize if do_normalize is not None else self.do_normalize A__ = image_mean if image_mean is not None else self.image_mean A__ = image_std if image_std is not None else self.image_std A__ = size if size is not None else self.size A__ = get_size_dict(_snake_case , default_to_square=_snake_case ) A__ = crop_size if crop_size is not None else self.crop_size A__ = get_size_dict(_snake_case , param_name='crop_size' ) A__ = make_list_of_images(_snake_case ) if not valid_images(_snake_case ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. A__ = [to_numpy_array(_snake_case ) for image in images] if do_resize: A__ = [self.resize(_snake_case , _snake_case , _snake_case ) for image in images] if do_center_crop: A__ = [self.center_crop(_snake_case , _snake_case ) for image in images] if do_rescale: A__ = [self.rescale(_snake_case , _snake_case ) for image in images] if do_normalize: A__ = [self.normalize(_snake_case , _snake_case , _snake_case ) for image in images] A__ = [to_channel_dimension_format(_snake_case , _snake_case ) for image in images] A__ = {'pixel_values': images} return BatchFeature(data=_snake_case , tensor_type=_snake_case )
52
import math import random def A ( __UpperCamelCase , __UpperCamelCase = False ) -> float: if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value SCREAMING_SNAKE_CASE__ = 0.02 def A ( __UpperCamelCase , __UpperCamelCase ) -> float: A__ = float(2 * (random.randint(1 , 100 )) - 1 ) for _ in range(__UpperCamelCase ): # Forward propagation A__ = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? A__ = (expected / 100) - layer_a # Error delta A__ = layer_1_error * sigmoid_function(__UpperCamelCase , __UpperCamelCase ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 100 if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE__ = int(input('''Expected value: ''')) SCREAMING_SNAKE_CASE__ = int(input('''Number of propagations: ''')) print(forward_propagation(expected, number_propagations))
52
1
'''simple docstring''' from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def lowerCamelCase (_SCREAMING_SNAKE_CASE : Sequence[float] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): if not arr: return None, None, 0 if low == high: return low, high, arr[low] __a : Optional[Any] = (low + high) // 2 __a , __a , __a : Any = max_subarray(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __a , __a , __a : Any = max_subarray(_SCREAMING_SNAKE_CASE , mid + 1 , _SCREAMING_SNAKE_CASE ) __a , __a , __a : Dict = max_cross_sum(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def lowerCamelCase (_SCREAMING_SNAKE_CASE : Sequence[float] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): __a , __a : Tuple = float('-inf' ), -1 __a , __a : int = float('-inf' ), -1 __a : int | float = 0 for i in range(_SCREAMING_SNAKE_CASE , low - 1 , -1 ): summ += arr[i] if summ > left_sum: __a : Optional[int] = summ __a : List[str] = i __a : int = 0 for i in range(mid + 1 , high + 1 ): summ += arr[i] if summ > right_sum: __a : List[Any] = summ __a : Optional[int] = i return max_left, max_right, (left_sum + right_sum) def lowerCamelCase (_SCREAMING_SNAKE_CASE : int ): __a : Optional[Any] = [randint(1 , _SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE )] __a : List[Any] = time.time() max_subarray(_SCREAMING_SNAKE_CASE , 0 , input_size - 1 ) __a : Tuple = time.time() return end - start def lowerCamelCase (): __a : Any = [10, 100, 1_000, 10_000, 50_000, 100_000, 200_000, 300_000, 400_000, 500_000] __a : Dict = [time_max_subarray(_SCREAMING_SNAKE_CASE ) for input_size in input_sizes] print('No of Inputs\t\tTime Taken' ) for input_size, runtime in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): print(_SCREAMING_SNAKE_CASE , '\t\t' , _SCREAMING_SNAKE_CASE ) plt.plot(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) plt.xlabel('Number of Inputs' ) plt.ylabel('Time taken in seconds' ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
476
'''simple docstring''' import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class __UpperCamelCase ( unittest.TestCase ): A_ = JukeboxTokenizer A_ = { "artist": "Zac Brown Band", "genres": "Country", "lyrics": "I met a traveller from an antique land,\n Who said \"Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ", } @require_torch def __UpperCAmelCase ( self ): '''simple docstring''' import torch __a : Optional[int] = JukeboxTokenizer.from_pretrained('openai/jukebox-1b-lyrics' ) __a : List[str] = tokenizer(**self.metas )['input_ids'] # fmt: off __a : str = [ torch.tensor([[ 0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def __UpperCAmelCase ( self ): '''simple docstring''' import torch __a : Union[str, Any] = JukeboxTokenizer.from_pretrained('openai/jukebox-5b-lyrics' ) __a : Tuple = tokenizer(**self.metas )['input_ids'] # fmt: off __a : Dict = [ torch.tensor([[ 0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
476
1
"""simple docstring""" import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class _lowercase : def __init__( self : List[str] , a : Tuple , a : Tuple=3 , a : List[Any]=7 , a : Optional[Any]=True , a : int=True , a : List[str]=False , a : List[str]=True , a : Tuple=9_9 , a : Dict=3_2 , a : str=5 , a : List[str]=4 , a : Union[str, Any]=3_7 , a : str="gelu" , a : Optional[Any]=0.1 , a : Optional[int]=0.1 , a : List[Any]=5_1_2 , a : List[Any]=1_6 , a : Any=2 , a : Optional[int]=0.0_2 , a : Tuple=3 , a : Dict=4 , a : Any=None , ): """simple docstring""" __snake_case : List[str] =parent __snake_case : Any =batch_size __snake_case : Any =seq_length __snake_case : List[str] =is_training __snake_case : List[Any] =use_input_mask __snake_case : Tuple =use_token_type_ids __snake_case : List[Any] =use_labels __snake_case : int =vocab_size __snake_case : int =hidden_size __snake_case : Tuple =num_hidden_layers __snake_case : Optional[Any] =num_attention_heads __snake_case : List[str] =intermediate_size __snake_case : Tuple =hidden_act __snake_case : str =hidden_dropout_prob __snake_case : List[Any] =attention_probs_dropout_prob __snake_case : Optional[int] =max_position_embeddings __snake_case : Optional[Any] =type_vocab_size __snake_case : List[Any] =type_sequence_label_size __snake_case : Optional[Any] =initializer_range __snake_case : Any =num_labels __snake_case : List[str] =num_choices __snake_case : Any =scope def _UpperCamelCase ( self : Dict ): """simple docstring""" __snake_case : Any =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : str =None if self.use_input_mask: __snake_case : Any =random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : Tuple =None __snake_case : Optional[Any] =None __snake_case : Dict =None __snake_case : Union[str, Any] =None if self.use_labels: __snake_case : int =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case : Optional[int] =ids_tensor([self.batch_size] , self.num_choices ) __snake_case : Optional[int] =self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCamelCase ( self : List[Any] ): """simple docstring""" return FalconConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=a , ) def _UpperCamelCase ( self : List[str] , a : List[str] , a : Dict , a : Optional[Any] , a : Tuple , a : Dict , a : List[str] , a : Optional[int] ): """simple docstring""" __snake_case : Optional[int] =FalconModel(config=a ) model.to(a ) model.eval() __snake_case : List[str] =model(a , attention_mask=a ) __snake_case : int =model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self : Dict , a : int , a : List[str] , a : Tuple , a : Dict , a : Dict , a : List[Any] , a : Optional[Any] , a : Optional[int] , a : List[str] , ): """simple docstring""" __snake_case : str =True __snake_case : Optional[Any] =FalconModel(a ) model.to(a ) model.eval() __snake_case : Optional[int] =model( a , attention_mask=a , encoder_hidden_states=a , encoder_attention_mask=a , ) __snake_case : Union[str, Any] =model( a , attention_mask=a , encoder_hidden_states=a , ) __snake_case : Any =model(a , attention_mask=a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self : Optional[int] , a : int , a : Union[str, Any] , a : Optional[Any] , a : Optional[Any] , a : Dict , a : Optional[Any] , a : int , a : Union[str, Any] , a : Optional[int] , ): """simple docstring""" __snake_case : Any =FalconForCausalLM(config=a ) model.to(a ) model.eval() __snake_case : int =model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCamelCase ( self : Any , a : List[Any] , a : Optional[int] , a : Optional[int] , a : Union[str, Any] , a : Optional[Any] , a : List[Any] , a : Union[str, Any] , a : Any , a : str , ): """simple docstring""" __snake_case : Tuple =True __snake_case : str =True __snake_case : int =FalconForCausalLM(config=a ) model.to(a ) model.eval() # first forward pass __snake_case : Any =model( a , attention_mask=a , encoder_hidden_states=a , encoder_attention_mask=a , use_cache=a , ) __snake_case : Union[str, Any] =outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __snake_case : int =ids_tensor((self.batch_size, 3) , config.vocab_size ) __snake_case : Optional[int] =ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __snake_case : Optional[int] =torch.cat([input_ids, next_tokens] , dim=-1 ) __snake_case : List[str] =torch.cat([input_mask, next_mask] , dim=-1 ) __snake_case : Tuple =model( a , attention_mask=a , encoder_hidden_states=a , encoder_attention_mask=a , output_hidden_states=a , )['''hidden_states'''][0] __snake_case : int =model( a , attention_mask=a , encoder_hidden_states=a , encoder_attention_mask=a , past_key_values=a , output_hidden_states=a , )['''hidden_states'''][0] # select random slice __snake_case : int =ids_tensor((1,) , output_from_past.shape[-1] ).item() __snake_case : Dict =output_from_no_past[:, -3:, random_slice_idx].detach() __snake_case : List[str] =output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(a , a , atol=1e-3 ) ) def _UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" __snake_case : Union[str, Any] =self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : Dict =config_and_inputs __snake_case : str ={'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _lowercase ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): _a : str = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) _a : int = (FalconForCausalLM,) if is_torch_available() else () _a : Any = ( { '''feature-extraction''': FalconModel, '''text-classification''': FalconForSequenceClassification, '''text-generation''': FalconForCausalLM, '''question-answering''': FalconForQuestionAnswering, '''token-classification''': FalconForTokenClassification, '''zero-shot''': FalconForSequenceClassification, } if is_torch_available() else {} ) _a : List[str] = False _a : str = False def _UpperCamelCase ( self : int ): """simple docstring""" __snake_case : int =FalconModelTester(self ) __snake_case : Any =ConfigTester(self , config_class=a , hidden_size=3_7 ) def _UpperCamelCase ( self : str ): """simple docstring""" self.config_tester.run_common_tests() def _UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" __snake_case : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _UpperCamelCase ( self : str ): """simple docstring""" __snake_case , *__snake_case : List[str] =self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: __snake_case : Tuple =alibi self.model_tester.create_and_check_model(a , *a ) def _UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" __snake_case , __snake_case : Tuple =self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Optional[int] =3 __snake_case : Union[str, Any] =input_dict['''input_ids'''] __snake_case : List[str] =input_ids.ne(1 ).to(a ) __snake_case : Any =ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __snake_case : Any =FalconForSequenceClassification(a ) model.to(a ) model.eval() __snake_case : int =model(a , attention_mask=a , labels=a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _UpperCamelCase ( self : int ): """simple docstring""" __snake_case , __snake_case : Tuple =self.model_tester.prepare_config_and_inputs_for_common() __snake_case : str =3 __snake_case : Optional[int] ='''single_label_classification''' __snake_case : Union[str, Any] =input_dict['''input_ids'''] __snake_case : Tuple =input_ids.ne(1 ).to(a ) __snake_case : Union[str, Any] =ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __snake_case : str =FalconForSequenceClassification(a ) model.to(a ) model.eval() __snake_case : Dict =model(a , attention_mask=a , labels=a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _UpperCamelCase ( self : Dict ): """simple docstring""" __snake_case , __snake_case : List[Any] =self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Optional[int] =input_dict['''input_ids'''] __snake_case : Optional[Any] =FalconForCausalLM(a ) model.to(a ) model.eval() __snake_case : List[Any] =model(a , use_cache=a ) __snake_case : int =input_ids.shape[0] __snake_case : Dict =model._convert_to_rw_cache(result.past_key_values ) __snake_case : Union[str, Any] =model._convert_cache_to_standard_format(a , a ) for layer in range(len(a ) ): for tensor_idx in range(2 ): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 ) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 ) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) ) def _UpperCamelCase ( self : Optional[int] ): """simple docstring""" __snake_case , __snake_case : int =self.model_tester.prepare_config_and_inputs_for_common() __snake_case : List[Any] =3 __snake_case : List[Any] ='''multi_label_classification''' __snake_case : int =input_dict['''input_ids'''] __snake_case : str =input_ids.ne(1 ).to(a ) __snake_case : Optional[int] =ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __snake_case : Any =FalconForSequenceClassification(a ) model.to(a ) model.eval() __snake_case : List[str] =model(a , attention_mask=a , labels=a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _UpperCamelCase ( self : Tuple ): """simple docstring""" for model_class in self.all_generative_model_classes: __snake_case , __snake_case : Dict =self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(a , '''use_cache''' ): return __snake_case : Union[str, Any] =model_class(a ).to(a ) if "use_cache" not in inputs: __snake_case : List[str] =True __snake_case : Union[str, Any] =model(**a ) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return __snake_case : Optional[Any] =( getattr(a , '''decoder_layers''' , a ) or getattr(a , '''num_decoder_layers''' , a ) or config.num_hidden_layers ) __snake_case : List[Any] =getattr(a , '''num_kv_heads''' , config.num_attention_heads ) __snake_case : int =getattr(a , '''d_model''' , config.hidden_size ) __snake_case : Any =embed_dim // num_attention_heads __snake_case : List[Any] =outputs['''past_key_values'''] self.assertEqual(len(a ) , a ) __snake_case , __snake_case : Optional[Any] =inputs['''input_ids'''].shape for i in range(a ): if config.new_decoder_architecture: __snake_case : Dict =config.num_attention_heads elif config.multi_query: __snake_case : int =1 self.assertEqual(len(past_kv[0] ) , 2 ) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @require_torch class _lowercase ( unittest.TestCase ): @slow def _UpperCamelCase ( self : Any ): """simple docstring""" __snake_case : Union[str, Any] =AutoTokenizer.from_pretrained('''Rocketknight1/falcon-rw-1b''' ) __snake_case : str =FalconForCausalLM.from_pretrained('''Rocketknight1/falcon-rw-1b''' ) model.eval() model.to(a ) __snake_case : Any =tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(a ) __snake_case : List[str] =( '''My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday.''' ) __snake_case : Dict =model.generate(**a , do_sample=a , max_new_tokens=1_9 ) __snake_case : Any =tokenizer.batch_decode(a )[0] self.assertEqual(a , a ) @slow def _UpperCamelCase ( self : List[str] ): """simple docstring""" for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: __snake_case : Optional[int] =AutoTokenizer.from_pretrained(a ) __snake_case : str =FalconForCausalLM.from_pretrained(a ) model.eval() model.to(a ) __snake_case : int =tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(a ) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**a , do_sample=a , max_new_tokens=4 ) model.generate(**a , do_sample=a , max_new_tokens=4 ) model.generate(**a , num_beams=2 , max_new_tokens=4 ) @slow def _UpperCamelCase ( self : Any ): """simple docstring""" with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: __snake_case : List[str] =AutoTokenizer.from_pretrained(a ) __snake_case : Dict =FalconForCausalLM.from_pretrained(a ) model.eval() model.to(device=a ) __snake_case : int =tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(a ) # Test results are the same with and without cache __snake_case : Dict =model.generate(**a , do_sample=a , max_new_tokens=2_0 , use_cache=a ) __snake_case : List[Any] =model.generate(**a , do_sample=a , max_new_tokens=2_0 , use_cache=a ) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
497
"""simple docstring""" from __future__ import annotations def __lowercase ( a : int , a : int ) -> list[str]: if partitions <= 0: raise ValueError('''partitions must be a positive number!''' ) if partitions > number_of_bytes: raise ValueError('''partitions can not > number_of_bytes!''' ) __snake_case : List[str] =number_of_bytes // partitions __snake_case : str =[] for i in range(a ): __snake_case : Optional[Any] =i * bytes_per_partition + 1 __snake_case : Any =( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'''{start_bytes}-{end_bytes}''' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
497
1
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path __lowerCAmelCase = Path(__file__).resolve().parents[3] / 'src' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(4_2) __lowerCAmelCase = {'base': 'patrickvonplaten/wav2vec2_tiny_random', 'robust': 'patrickvonplaten/wav2vec2_tiny_random_robust'} __lowerCAmelCase = 'zero2' __lowerCAmelCase = 'zero3' __lowerCAmelCase = [ZEROa, ZEROa] def a ( a , a , a ) ->Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = parameterized.to_safe_name('''_'''.join(str(a ) for x in param.args ) ) return F"""{func.__name__}_{param_based_name}""" # Cartesian-product of zero stages with models to test __lowerCAmelCase = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class lowerCamelCase ( __lowerCamelCase ): @parameterized.expand(lowercase , name_func=lowercase ) def snake_case__ ( self :Optional[Any] , lowercase :str , lowercase :Dict ) -> Optional[Any]: """simple docstring""" self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def snake_case__ ( self :Any , lowercase :Tuple , lowercase :int ) -> List[Any]: """simple docstring""" self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @parameterized.expand(lowercase , name_func=lowercase ) def snake_case__ ( self :Dict , lowercase :List[Any] , lowercase :List[Any] ) -> List[Any]: """simple docstring""" self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def snake_case__ ( self :Optional[Any] , lowercase :Tuple , lowercase :List[Any] ) -> Any: """simple docstring""" self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) def snake_case__ ( self :int , lowercase :int ) -> Optional[Any]: """simple docstring""" pass def snake_case__ ( self :Optional[Any] , lowercase :str , lowercase :str , lowercase :int = 1_0 , lowercase :bool = True , lowercase :bool = True , lowercase :bool = True , ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE = models[model] SCREAMING_SNAKE_CASE = self.run_trainer( stage=lowercase , model_name=lowercase , eval_steps=lowercase , num_train_epochs=1 , distributed=lowercase , fpaa=lowercase , ) self.do_checks(lowercase ) return output_dir def snake_case__ ( self :Optional[int] , lowercase :str , lowercase :str , lowercase :int = 1_0 , lowercase :int = 1 , lowercase :bool = True , lowercase :bool = True , ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE = self.get_auto_remove_tmp_dir('''./xxx''' , after=lowercase ) SCREAMING_SNAKE_CASE = f""" --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(lowercase )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none """.split() if fpaa: args.extend(['''--fp16'''] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files SCREAMING_SNAKE_CASE = f"""--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json""".split() SCREAMING_SNAKE_CASE = [f"""{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"""] SCREAMING_SNAKE_CASE = self.get_launcher(lowercase ) SCREAMING_SNAKE_CASE = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(lowercase , env=self.get_env() ) return output_dir def snake_case__ ( self :Tuple , lowercase :List[Any]=False ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE = min(2 , get_gpu_count() ) if distributed else 1 return f"""deepspeed --num_nodes 1 --num_gpus {num_gpus}""".split()
201
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowerCamelCase ( __lowerCamelCase , __lowerCamelCase ): @register_to_config def __init__( self :Tuple , *, lowercase :int = 4 , lowercase :int = 7_6_8 , lowercase :int , lowercase :Any , ) -> Optional[Any]: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE = nn.Parameter(torch.zeros(lowercase ) ) # parameters for additional clip time embeddings SCREAMING_SNAKE_CASE = nn.Linear(lowercase , lowercase ) SCREAMING_SNAKE_CASE = nn.Linear(lowercase , lowercase ) # parameters for encoder hidden states SCREAMING_SNAKE_CASE = clip_extra_context_tokens SCREAMING_SNAKE_CASE = nn.Linear( lowercase , self.clip_extra_context_tokens * cross_attention_dim ) SCREAMING_SNAKE_CASE = nn.Linear(lowercase , lowercase ) SCREAMING_SNAKE_CASE = nn.LayerNorm(lowercase ) def snake_case__ ( self :Union[str, Any] , *, lowercase :Optional[int] , lowercase :Union[str, Any] , lowercase :Union[str, Any] , lowercase :Optional[Any] ) -> Union[str, Any]: """simple docstring""" if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings SCREAMING_SNAKE_CASE = image_embeddings.shape[0] SCREAMING_SNAKE_CASE = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) SCREAMING_SNAKE_CASE = classifier_free_guidance_embeddings.expand( lowercase , -1 ) SCREAMING_SNAKE_CASE = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] SCREAMING_SNAKE_CASE = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... SCREAMING_SNAKE_CASE = self.embedding_proj(lowercase ) SCREAMING_SNAKE_CASE = self.clip_image_embeddings_project_to_time_embeddings(lowercase ) SCREAMING_SNAKE_CASE = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" SCREAMING_SNAKE_CASE = self.clip_extra_context_tokens_proj(lowercase ) SCREAMING_SNAKE_CASE = clip_extra_context_tokens.reshape(lowercase , -1 , self.clip_extra_context_tokens ) SCREAMING_SNAKE_CASE = clip_extra_context_tokens.permute(0 , 2 , 1 ) SCREAMING_SNAKE_CASE = self.encoder_hidden_states_proj(lowercase ) SCREAMING_SNAKE_CASE = self.text_encoder_hidden_states_norm(lowercase ) SCREAMING_SNAKE_CASE = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
201
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) __lowerCamelCase = { '''configuration_trocr''': ['''TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TrOCRConfig'''], '''processing_trocr''': ['''TrOCRProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''TROCR_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TrOCRForCausalLM''', '''TrOCRPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys __lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
701
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class a__ ( unittest.TestCase ): def UpperCAmelCase( self : int ): a_ : Any = 0 def UpperCAmelCase( self : Dict ): a_ : List[str] = AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def UpperCAmelCase( self : int ): with tempfile.TemporaryDirectory() as tmpdirname: a_ : Any = Path(lowerCamelCase_ ) / """preprocessor_config.json""" a_ : Tuple = Path(lowerCamelCase_ ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(lowerCamelCase_ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(lowerCamelCase_ , """w""" ) ) a_ : Union[str, Any] = AutoImageProcessor.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def UpperCAmelCase( self : List[Any] ): # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: a_ : Dict = Path(lowerCamelCase_ ) / """preprocessor_config.json""" a_ : List[str] = Path(lowerCamelCase_ ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(lowerCamelCase_ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(lowerCamelCase_ , """w""" ) ) a_ : int = AutoImageProcessor.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def UpperCAmelCase( self : Optional[Any] ): with tempfile.TemporaryDirectory() as tmpdirname: a_ : int = CLIPConfig() # Create a dummy config file with image_proceesor_type a_ : Tuple = Path(lowerCamelCase_ ) / """preprocessor_config.json""" a_ : Tuple = Path(lowerCamelCase_ ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(lowerCamelCase_ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(lowerCamelCase_ , """w""" ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally a_ : Optional[int] = AutoImageProcessor.from_pretrained(lowerCamelCase_ ).to_dict() config_dict.pop("""image_processor_type""" ) a_ : Tuple = CLIPImageProcessor(**lowerCamelCase_ ) # save in new folder model_config.save_pretrained(lowerCamelCase_ ) config.save_pretrained(lowerCamelCase_ ) a_ : Optional[int] = AutoImageProcessor.from_pretrained(lowerCamelCase_ ) # make sure private variable is not incorrectly saved a_ : str = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def UpperCAmelCase( self : Dict ): with tempfile.TemporaryDirectory() as tmpdirname: a_ : Union[str, Any] = Path(lowerCamelCase_ ) / """preprocessor_config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(lowerCamelCase_ , """w""" ) , ) a_ : Optional[int] = AutoImageProcessor.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def UpperCAmelCase( self : int ): with self.assertRaisesRegex( lowerCamelCase_ , """clip-base is not a local folder and is not a valid model identifier""" ): a_ : Any = AutoImageProcessor.from_pretrained("""clip-base""" ) def UpperCAmelCase( self : Optional[Any] ): with self.assertRaisesRegex( lowerCamelCase_ , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): a_ : Dict = AutoImageProcessor.from_pretrained(lowerCamelCase_ , revision="""aaaaaa""" ) def UpperCAmelCase( self : Dict ): with self.assertRaisesRegex( lowerCamelCase_ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): a_ : Any = AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" ) def UpperCAmelCase( self : str ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(lowerCamelCase_ ): a_ : int = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCamelCase_ ): a_ : Tuple = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=lowerCamelCase_ ) a_ : int = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=lowerCamelCase_ ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(lowerCamelCase_ ) a_ : int = AutoImageProcessor.from_pretrained(lowerCamelCase_ , trust_remote_code=lowerCamelCase_ ) self.assertEqual(reloaded_image_processor.__class__.__name__ , """NewImageProcessor""" ) def UpperCAmelCase( self : List[str] ): try: AutoConfig.register("""custom""" , lowerCamelCase_ ) AutoImageProcessor.register(lowerCamelCase_ , lowerCamelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCamelCase_ ): AutoImageProcessor.register(lowerCamelCase_ , lowerCamelCase_ ) with tempfile.TemporaryDirectory() as tmpdirname: a_ : Dict = Path(lowerCamelCase_ ) / """preprocessor_config.json""" a_ : Union[str, Any] = Path(lowerCamelCase_ ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(lowerCamelCase_ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(lowerCamelCase_ , """w""" ) ) a_ : str = CustomImageProcessor.from_pretrained(lowerCamelCase_ ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(lowerCamelCase_ ) a_ : Any = AutoImageProcessor.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def UpperCAmelCase( self : Union[str, Any] ): class a__ ( lowerCAmelCase_ ): lowerCamelCase__: List[Any] = True try: AutoConfig.register("""custom""" , lowerCamelCase_ ) AutoImageProcessor.register(lowerCamelCase_ , lowerCamelCase_ ) # If remote code is not set, the default is to use local a_ : Dict = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. a_ : Optional[Any] = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=lowerCamelCase_ ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub a_ : Dict = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=lowerCamelCase_ ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(not hasattr(lowerCamelCase_ , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
478
0
"""simple docstring""" import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def lowerCamelCase ( _UpperCamelCase : dict ) -> tuple: '''simple docstring''' return (data["data"], data["target"]) def lowerCamelCase ( _UpperCamelCase : np.ndarray , _UpperCamelCase : np.ndarray , _UpperCamelCase : np.ndarray ) -> np.ndarray: '''simple docstring''' __UpperCAmelCase : List[Any] = XGBRegressor(verbosity=0 , random_state=4_2 ) xgb.fit(_UpperCamelCase , _UpperCamelCase ) # Predict target for test data __UpperCAmelCase : int = xgb.predict(_UpperCamelCase ) __UpperCAmelCase : Optional[Any] = predictions.reshape(len(_UpperCamelCase ) , 1 ) return predictions def lowerCamelCase ( ) -> None: '''simple docstring''' __UpperCAmelCase : str = fetch_california_housing() __UpperCAmelCase ,__UpperCAmelCase : Dict = data_handling(_UpperCamelCase ) __UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : List[str] = train_test_split( _UpperCamelCase , _UpperCamelCase , test_size=0.25 , random_state=1 ) __UpperCAmelCase : str = xgboost(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Error printing print(f'''Mean Absolute Error : {mean_absolute_error(_UpperCamelCase , _UpperCamelCase )}''' ) print(f'''Mean Square Error : {mean_squared_error(_UpperCamelCase , _UpperCamelCase )}''' ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
139
"""simple docstring""" from math import pow def lowerCamelCase ( _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int , ) -> tuple[int, int]: '''simple docstring''' if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count __UpperCAmelCase : List[str] = int(pow(_UpperCamelCase , _UpperCamelCase ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n __UpperCAmelCase ,__UpperCAmelCase : Union[str, Any] = backtrack( _UpperCamelCase , _UpperCamelCase , current_number + 1 , _UpperCamelCase , _UpperCamelCase ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. __UpperCAmelCase ,__UpperCAmelCase : List[Any] = backtrack( _UpperCamelCase , _UpperCamelCase , current_number + 1 , _UpperCamelCase , _UpperCamelCase ) return current_sum, solutions_count def lowerCamelCase ( _UpperCamelCase : int , _UpperCamelCase : int ) -> int: '''simple docstring''' if not (1 <= needed_sum <= 1_0_0_0 and 2 <= power <= 1_0): raise ValueError( """Invalid input\n""" """needed_sum must be between 1 and 1000, power between 2 and 10.""" ) return backtrack(_UpperCamelCase , _UpperCamelCase , 1 , 0 , 0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
139
1
'''simple docstring''' _UpperCamelCase : Optional[int] = { 'a': 'AAAAA', 'b': 'AAAAB', 'c': 'AAABA', 'd': 'AAABB', 'e': 'AABAA', 'f': 'AABAB', 'g': 'AABBA', 'h': 'AABBB', 'i': 'ABAAA', 'j': 'BBBAA', 'k': 'ABAAB', 'l': 'ABABA', 'm': 'ABABB', 'n': 'ABBAA', 'o': 'ABBAB', 'p': 'ABBBA', 'q': 'ABBBB', 'r': 'BAAAA', 's': 'BAAAB', 't': 'BAABA', 'u': 'BAABB', 'v': 'BBBAB', 'w': 'BABAA', 'x': 'BABAB', 'y': 'BABBA', 'z': 'BABBB', ' ': ' ', } _UpperCamelCase : Union[str, Any] = {value: key for key, value in encode_dict.items()} def __UpperCAmelCase ( A : str ) -> str: UpperCAmelCase_ : Optional[int] = '''''' for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception('''encode() accepts only letters of the alphabet and spaces''' ) return encoded def __UpperCAmelCase ( A : str ) -> str: if set(A ) - {"A", "B", " "} != set(): raise Exception('''decode() accepts only \'A\', \'B\' and spaces''' ) UpperCAmelCase_ : str = '''''' for word in coded.split(): while len(A ) != 0: decoded += decode_dict[word[:5]] UpperCAmelCase_ : Tuple = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
711
'''simple docstring''' import argparse import math import traceback import dateutil.parser as date_parser import requests def __UpperCAmelCase ( A : Optional[Any] ) -> List[str]: UpperCAmelCase_ : Dict = {} UpperCAmelCase_ : List[Any] = job['''started_at'''] UpperCAmelCase_ : List[Any] = job['''completed_at'''] UpperCAmelCase_ : Optional[Any] = date_parser.parse(A ) UpperCAmelCase_ : List[Any] = date_parser.parse(A ) UpperCAmelCase_ : Any = round((end_datetime - start_datetime).total_seconds() / 60.0 ) UpperCAmelCase_ : Any = start UpperCAmelCase_ : Dict = end UpperCAmelCase_ : Tuple = duration_in_min return job_info def __UpperCAmelCase ( A : int , A : int=None ) -> List[str]: UpperCAmelCase_ : Tuple = None if token is not None: UpperCAmelCase_ : Any = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': F"Bearer {token}"} UpperCAmelCase_ : Union[str, Any] = F"https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100" UpperCAmelCase_ : Any = requests.get(A , headers=A ).json() UpperCAmelCase_ : Any = {} try: job_time.update({job['''name''']: extract_time_from_single_job(A ) for job in result['''jobs''']} ) UpperCAmelCase_ : Union[str, Any] = math.ceil((result['''total_count'''] - 1_0_0) / 1_0_0 ) for i in range(A ): UpperCAmelCase_ : List[str] = requests.get(url + F"&page={i + 2}" , headers=A ).json() job_time.update({job['''name''']: extract_time_from_single_job(A ) for job in result['''jobs''']} ) return job_time except Exception: print(F"Unknown error, could not fetch links:\n{traceback.format_exc()}" ) return {} if __name__ == "__main__": _UpperCamelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') _UpperCamelCase : str = parser.parse_args() _UpperCamelCase : str = get_job_time(args.workflow_run_id) _UpperCamelCase : Optional[int] = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(f'''{k}: {v["duration"]}''')
216
0
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : Tuple = logging.get_logger() @dataclass class lowerCAmelCase : '''simple docstring''' snake_case = 42 snake_case = field(default_factory=__UpperCamelCase ) snake_case = field(default_factory=__UpperCamelCase ) def lowerCamelCase__ ( self : Tuple , __snake_case : int , __snake_case : Tensor , __snake_case : Tensor ) -> Optional[Any]: '''simple docstring''' lowerCamelCase = len(list(m.modules() ) ) == 1 or isinstance(__snake_case , nn.Convad ) or isinstance(__snake_case , nn.BatchNormad ) if has_not_submodules: self.traced.append(__snake_case ) def __call__( self : Optional[Any] , __snake_case : Tensor ) -> Optional[int]: '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(__snake_case ) [x.remove() for x in self.handles] return self @property def lowerCamelCase__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' return list(filter(lambda __snake_case : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class lowerCAmelCase : '''simple docstring''' snake_case = 42 snake_case = 42 snake_case = 0 snake_case = field(default_factory=__UpperCamelCase ) snake_case = field(default_factory=__UpperCamelCase ) def __call__( self : List[str] , __snake_case : Tensor ) -> List[Any]: '''simple docstring''' lowerCamelCase = Tracker(self.dest )(__snake_case ).parametrized lowerCamelCase = Tracker(self.src )(__snake_case ).parametrized lowerCamelCase = list(filter(lambda __snake_case : type(__snake_case ) not in self.src_skip , __snake_case ) ) lowerCamelCase = list(filter(lambda __snake_case : type(__snake_case ) not in self.dest_skip , __snake_case ) ) if len(__snake_case ) != len(__snake_case ): raise Exception( F'''Numbers of operations are different. Source module has {len(__snake_case )} operations while''' F''' destination module has {len(__snake_case )}.''' ) for dest_m, src_m in zip(__snake_case , __snake_case ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F'''Transfered from={src_m} to={dest_m}''' ) def a_ ( UpperCamelCase_ : str , UpperCamelCase_ : ResNetConfig , UpperCamelCase_ : Path , UpperCamelCase_ : bool = True ) -> Tuple: """simple docstring""" print(f'''Converting {name}...''' ) with torch.no_grad(): lowerCamelCase = timm.create_model(UpperCamelCase_ , pretrained=UpperCamelCase_ ).eval() lowerCamelCase = ResNetForImageClassification(UpperCamelCase_ ).eval() lowerCamelCase = ModuleTransfer(src=UpperCamelCase_ , dest=UpperCamelCase_ ) lowerCamelCase = torch.randn((1, 3, 2_2_4, 2_2_4) ) module_transfer(UpperCamelCase_ ) assert torch.allclose(from_model(UpperCamelCase_ ) , our_model(UpperCamelCase_ ).logits ), "The model logits don't match the original one." lowerCamelCase = f'''resnet{"-".join(name.split("resnet" ) )}''' print(UpperCamelCase_ ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='Add model' , use_temp_dir=UpperCamelCase_ , ) # we can use the convnext one lowerCamelCase = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='Add image processor' , use_temp_dir=UpperCamelCase_ , ) print(f'''Pushed {checkpoint_name}''' ) def a_ ( UpperCamelCase_ : Path , UpperCamelCase_ : str = None , UpperCamelCase_ : bool = True ) -> Optional[int]: """simple docstring""" lowerCamelCase = 'imagenet-1k-id2label.json' lowerCamelCase = 1_0_0_0 lowerCamelCase = (1, num_labels) lowerCamelCase = 'huggingface/label-files' lowerCamelCase = num_labels lowerCamelCase = json.load(open(hf_hub_download(UpperCamelCase_ , UpperCamelCase_ , repo_type='dataset' ) , 'r' ) ) lowerCamelCase = {int(UpperCamelCase_ ): v for k, v in idalabel.items()} lowerCamelCase = idalabel lowerCamelCase = {v: k for k, v in idalabel.items()} lowerCamelCase = partial(UpperCamelCase_ , num_labels=UpperCamelCase_ , idalabel=UpperCamelCase_ , labelaid=UpperCamelCase_ ) lowerCamelCase = { 'resnet18': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type='basic' ), 'resnet26': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type='bottleneck' ), 'resnet34': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type='basic' ), 'resnet50': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type='bottleneck' ), 'resnet101': ImageNetPreTrainedConfig( depths=[3, 4, 2_3, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type='bottleneck' ), 'resnet152': ImageNetPreTrainedConfig( depths=[3, 8, 3_6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type='bottleneck' ), } if model_name: convert_weight_and_push(UpperCamelCase_ , names_to_config[model_name] , UpperCamelCase_ , UpperCamelCase_ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) return config, expected_shape if __name__ == "__main__": _lowerCAmelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported resnet* architecture,' ' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) _lowerCAmelCase : List[str] = parser.parse_args() _lowerCAmelCase : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
246
import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ ( self : int ) -> Dict: '''simple docstring''' super().tearDown() gc.collect() def lowerCamelCase__ ( self : int ) -> str: '''simple docstring''' lowerCamelCase , lowerCamelCase = FlaxStableDiffusionPipeline.from_pretrained( 'stabilityai/stable-diffusion-2' , revision='bf16' , dtype=jnp.bfloataa , ) lowerCamelCase = 'A painting of a squirrel eating a burger' lowerCamelCase = jax.device_count() lowerCamelCase = num_samples * [prompt] lowerCamelCase = sd_pipe.prepare_inputs(__snake_case ) lowerCamelCase = replicate(__snake_case ) lowerCamelCase = shard(__snake_case ) lowerCamelCase = jax.random.PRNGKey(0 ) lowerCamelCase = jax.random.split(__snake_case , jax.device_count() ) lowerCamelCase = sd_pipe(__snake_case , __snake_case , __snake_case , num_inference_steps=25 , jit=__snake_case )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) lowerCamelCase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCamelCase = images[0, 253:256, 253:256, -1] lowerCamelCase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCamelCase = jnp.array([0.4238, 0.4414, 0.4395, 0.4453, 0.4629, 0.4590, 0.4531, 0.4_5508, 0.4512] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def lowerCamelCase__ ( self : str ) -> Optional[int]: '''simple docstring''' lowerCamelCase = 'stabilityai/stable-diffusion-2' lowerCamelCase , lowerCamelCase = FlaxDPMSolverMultistepScheduler.from_pretrained(__snake_case , subfolder='scheduler' ) lowerCamelCase , lowerCamelCase = FlaxStableDiffusionPipeline.from_pretrained( __snake_case , scheduler=__snake_case , revision='bf16' , dtype=jnp.bfloataa , ) lowerCamelCase = scheduler_params lowerCamelCase = 'A painting of a squirrel eating a burger' lowerCamelCase = jax.device_count() lowerCamelCase = num_samples * [prompt] lowerCamelCase = sd_pipe.prepare_inputs(__snake_case ) lowerCamelCase = replicate(__snake_case ) lowerCamelCase = shard(__snake_case ) lowerCamelCase = jax.random.PRNGKey(0 ) lowerCamelCase = jax.random.split(__snake_case , jax.device_count() ) lowerCamelCase = sd_pipe(__snake_case , __snake_case , __snake_case , num_inference_steps=25 , jit=__snake_case )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) lowerCamelCase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCamelCase = images[0, 253:256, 253:256, -1] lowerCamelCase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCamelCase = jnp.array([0.4336, 0.4_2969, 0.4453, 0.4199, 0.4297, 0.4531, 0.4434, 0.4434, 0.4297] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
246
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase :List[str] = logging.get_logger(__name__) __lowerCamelCase :List[str] = {'openai-gpt': 'https://huggingface.co/openai-gpt/resolve/main/config.json'} class A__ ( __lowercase): """simple docstring""" snake_case__ : Dict ='''openai-gpt''' snake_case__ : Any ={ '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self: List[Any] , __a: str=40_478 , __a: str=512 , __a: Any=768 , __a: Any=12 , __a: Any=12 , __a: Optional[Any]="gelu" , __a: Optional[int]=0.1 , __a: List[str]=0.1 , __a: Any=0.1 , __a: Dict=1e-5 , __a: Optional[int]=0.02 , __a: List[Any]="cls_index" , __a: List[str]=True , __a: Dict=None , __a: Optional[Any]=True , __a: Any=0.1 , **__a: Tuple , )-> Dict: lowerCamelCase : Any = vocab_size lowerCamelCase : List[Any] = n_positions lowerCamelCase : List[Any] = n_embd lowerCamelCase : Optional[int] = n_layer lowerCamelCase : Optional[Any] = n_head lowerCamelCase : List[Any] = afn lowerCamelCase : List[Any] = resid_pdrop lowerCamelCase : int = embd_pdrop lowerCamelCase : int = attn_pdrop lowerCamelCase : List[Any] = layer_norm_epsilon lowerCamelCase : Dict = initializer_range lowerCamelCase : Tuple = summary_type lowerCamelCase : Union[str, Any] = summary_use_proj lowerCamelCase : Optional[Any] = summary_activation lowerCamelCase : Dict = summary_first_dropout lowerCamelCase : Any = summary_proj_to_labels super().__init__(**__a )
42
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __lowerCamelCase :Optional[Any] = { 'configuration_encodec': [ 'ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EncodecConfig', ], 'feature_extraction_encodec': ['EncodecFeatureExtractor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase :Union[str, Any] = [ 'ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST', 'EncodecModel', 'EncodecPreTrainedModel', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys __lowerCamelCase :Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
42
1
"""simple docstring""" from collections.abc import Generator from math import sin def a ( __UpperCAmelCase : bytes ) -> bytes: if len(__UpperCAmelCase ) != 3_2: raise ValueError("""Input must be of length 32""" ) __magic_name__: Any = B"""""" for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def a ( __UpperCAmelCase : int ) -> bytes: if i < 0: raise ValueError("""Input must be non-negative""" ) __magic_name__: Any = format(__UpperCAmelCase , """08x""" )[-8:] __magic_name__: List[str] = B"""""" for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("""utf-8""" ) return little_endian_hex def a ( __UpperCAmelCase : bytes ) -> bytes: __magic_name__: List[Any] = B"""""" for char in message: bit_string += format(__UpperCAmelCase , """08b""" ).encode("""utf-8""" ) __magic_name__: int = format(len(__UpperCAmelCase ) , """064b""" ).encode("""utf-8""" ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(__UpperCAmelCase ) % 5_1_2 != 4_4_8: bit_string += b"0" bit_string += to_little_endian(start_len[3_2:] ) + to_little_endian(start_len[:3_2] ) return bit_string def a ( __UpperCAmelCase : bytes ) -> Generator[list[int], None, None]: if len(__UpperCAmelCase ) % 5_1_2 != 0: raise ValueError("""Input must have length that's a multiple of 512""" ) for pos in range(0 , len(__UpperCAmelCase ) , 5_1_2 ): __magic_name__: Union[str, Any] = bit_string[pos : pos + 5_1_2] __magic_name__: Optional[int] = [] for i in range(0 , 5_1_2 , 3_2 ): block_words.append(int(to_little_endian(block[i : i + 3_2] ) , 2 ) ) yield block_words def a ( __UpperCAmelCase : int ) -> int: if i < 0: raise ValueError("""Input must be non-negative""" ) __magic_name__: Dict = format(__UpperCAmelCase , """032b""" ) __magic_name__: List[str] = """""" for c in i_str: new_str += "1" if c == "0" else "0" return int(__UpperCAmelCase , 2 ) def a ( __UpperCAmelCase : int , __UpperCAmelCase : int ) -> int: return (a + b) % 2**3_2 def a ( __UpperCAmelCase : int , __UpperCAmelCase : int ) -> int: if i < 0: raise ValueError("""Input must be non-negative""" ) if shift < 0: raise ValueError("""Shift must be non-negative""" ) return ((i << shift) ^ (i >> (3_2 - shift))) % 2**3_2 def a ( __UpperCAmelCase : bytes ) -> bytes: __magic_name__: str = preprocess(__UpperCAmelCase ) __magic_name__: Union[str, Any] = [int(2**3_2 * abs(sin(i + 1 ) ) ) for i in range(6_4 )] # Starting states __magic_name__: Tuple = 0x6_7_4_5_2_3_0_1 __magic_name__: Dict = 0xE_F_C_D_A_B_8_9 __magic_name__: Any = 0x9_8_B_A_D_C_F_E __magic_name__: List[str] = 0x1_0_3_2_5_4_7_6 __magic_name__: Any = [ 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(__UpperCAmelCase ): __magic_name__: Optional[int] = aa __magic_name__: Any = ba __magic_name__: Optional[int] = ca __magic_name__: List[Any] = da # Hash current chunk for i in range(6_4 ): if i <= 1_5: # f = (b & c) | (not_32(b) & d) # Alternate definition for f __magic_name__: Optional[Any] = d ^ (b & (c ^ d)) __magic_name__: List[str] = i elif i <= 3_1: # f = (d & b) | (not_32(d) & c) # Alternate definition for f __magic_name__: Union[str, Any] = c ^ (d & (b ^ c)) __magic_name__: List[Any] = (5 * i + 1) % 1_6 elif i <= 4_7: __magic_name__: str = b ^ c ^ d __magic_name__: Tuple = (3 * i + 5) % 1_6 else: __magic_name__: Union[str, Any] = c ^ (b | not_aa(__UpperCAmelCase )) __magic_name__: Optional[int] = (7 * i) % 1_6 __magic_name__: Tuple = (f + a + added_consts[i] + block_words[g]) % 2**3_2 __magic_name__: Optional[int] = d __magic_name__: Optional[int] = c __magic_name__: List[Any] = b __magic_name__: Optional[Any] = sum_aa(__UpperCAmelCase , left_rotate_aa(__UpperCAmelCase , shift_amounts[i] ) ) # Add hashed chunk to running total __magic_name__: Optional[Any] = sum_aa(__UpperCAmelCase , __UpperCAmelCase ) __magic_name__: List[str] = sum_aa(__UpperCAmelCase , __UpperCAmelCase ) __magic_name__: Any = sum_aa(__UpperCAmelCase , __UpperCAmelCase ) __magic_name__: int = sum_aa(__UpperCAmelCase , __UpperCAmelCase ) __magic_name__: Any = reformat_hex(__UpperCAmelCase ) + reformat_hex(__UpperCAmelCase ) + reformat_hex(__UpperCAmelCase ) + reformat_hex(__UpperCAmelCase ) return digest if __name__ == "__main__": import doctest doctest.testmod()
96
"""simple docstring""" import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() __lowerCamelCase = [ 'word_embeddings_layernorm.weight', 'word_embeddings_layernorm.bias', 'input_layernorm.weight', 'input_layernorm.bias', 'post_attention_layernorm.weight', 'post_attention_layernorm.bias', 'self_attention.dense.bias', 'mlp.dense_4h_to_h.bias', 'ln_f.weight', 'ln_f.bias', ] __lowerCamelCase = [ 'mlp.dense_4h_to_h.weight', 'self_attention.dense.weight', ] def a ( __UpperCAmelCase : Any , __UpperCAmelCase : Any ) -> Any: __magic_name__: List[str] = { """word_embeddings.weight""": """word_embeddings.weight""", """word_embeddings.norm.weight""": """word_embeddings_layernorm.weight""", """word_embeddings.norm.bias""": """word_embeddings_layernorm.bias""", """weight""": """ln_f.weight""", """bias""": """ln_f.bias""", } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks __magic_name__: Any = int(re.match(R""".*layer_(\d*).*""" , __UpperCAmelCase )[1] ) layer_number -= 3 return f'h.{layer_number}.' + key def a ( __UpperCAmelCase : List[str] ) -> Union[str, Any]: if dtype == torch.bool: return 1 / 8 __magic_name__: Optional[int] = re.search(R"""[^\d](\d+)$""" , str(__UpperCAmelCase ) ) if bit_search is None: raise ValueError(f'`dtype` is not a valid dtype: {dtype}.' ) __magic_name__: Dict = int(bit_search.groups()[0] ) return bit_size // 8 def a ( __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple ) -> List[str]: # Construct model if bloom_config_file == "": __magic_name__: Optional[Any] = BloomConfig() else: __magic_name__: Tuple = BloomConfig.from_json_file(__UpperCAmelCase ) if shard_model: __magic_name__: Union[str, Any] = os.listdir(__UpperCAmelCase ) __magic_name__: Optional[int] = sorted(filter(lambda __UpperCAmelCase : s.startswith("""layer""" ) and "model_00" in s , __UpperCAmelCase ) ) __magic_name__: str = {"""weight_map""": {}, """metadata""": {}} __magic_name__: Optional[Any] = 0 __magic_name__: Dict = None __magic_name__: Optional[int] = BloomConfig() for j, file in enumerate(__UpperCAmelCase ): print("""Processing file: {}""".format(__UpperCAmelCase ) ) __magic_name__: Tuple = None for i in range(__UpperCAmelCase ): # load all TP files __magic_name__: int = file.replace("""model_00""" , f'model_0{i}' ) __magic_name__: Optional[Any] = torch.load(os.path.join(__UpperCAmelCase , __UpperCAmelCase ) , map_location="""cpu""" ) # Rename keys in the transformers names __magic_name__: str = list(temp.keys() ) for key in keys: __magic_name__: Any = temp.pop(__UpperCAmelCase ) if tensors is None: __magic_name__: Union[str, Any] = temp else: for key in tensors.keys(): if any(key.endswith(__UpperCAmelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel __magic_name__: int = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks __magic_name__: int = torch.cat([tensors[key], temp[key]] , dim=__UpperCAmelCase ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(__UpperCAmelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): __magic_name__: Union[str, Any] = tensors[key] / pretraining_tp torch.save( __UpperCAmelCase , os.path.join( __UpperCAmelCase , """pytorch_model_{}-of-{}.bin""".format(str(j + 1 ).zfill(5 ) , str(len(__UpperCAmelCase ) ).zfill(5 ) ) , ) , ) for key in tensors.keys(): __magic_name__: Optional[Any] = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: __magic_name__: Union[str, Any] = """pytorch_model_{}-of-{}.bin""".format( str(j + 1 ).zfill(5 ) , str(len(__UpperCAmelCase ) ).zfill(5 ) ) __magic_name__: Tuple = BloomConfig() __magic_name__: Optional[int] = pytorch_dump_folder_path + """/""" + CONFIG_NAME __magic_name__: Optional[int] = total_size with open(__UpperCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) with open(os.path.join(__UpperCAmelCase , WEIGHTS_NAME + """.index.json""" ) , """w""" , encoding="""utf-8""" ) as f: __magic_name__: str = json.dumps(__UpperCAmelCase , indent=2 , sort_keys=__UpperCAmelCase ) + """\n""" f.write(__UpperCAmelCase ) else: __magic_name__: Optional[int] = BloomModel(__UpperCAmelCase ) __magic_name__: List[str] = os.listdir(__UpperCAmelCase ) __magic_name__: Optional[Any] = sorted(filter(lambda __UpperCAmelCase : s.startswith("""layer""" ) and "model_00" in s , __UpperCAmelCase ) ) __magic_name__: Any = None for i, file in enumerate(__UpperCAmelCase ): __magic_name__: List[Any] = None for i in range(__UpperCAmelCase ): # load all TP files __magic_name__: Any = file.replace("""model_00""" , f'model_0{i}' ) __magic_name__: Dict = torch.load(os.path.join(__UpperCAmelCase , __UpperCAmelCase ) , map_location="""cpu""" ) # Rename keys in the transformers names __magic_name__: Optional[Any] = list(temp.keys() ) for key in keys: __magic_name__: Optional[Any] = temp.pop(__UpperCAmelCase ) if tensors is None: __magic_name__: Tuple = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(__UpperCAmelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel __magic_name__: Tuple = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks __magic_name__: Dict = torch.cat([tensors[key], temp[key]] , dim=__UpperCAmelCase ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(__UpperCAmelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): __magic_name__: Optional[int] = tensors[key] / pretraining_tp __magic_name__: Union[str, Any] = model.load_state_dict(__UpperCAmelCase , strict=__UpperCAmelCase ) assert not other_keys.unexpected_keys, f'The keys {other_keys.unexpected_keys} are unexpected' if missing_keys is None: __magic_name__: Optional[Any] = set(other_keys.missing_keys ) else: __magic_name__: Tuple = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, f'The keys {missing_keys} are missing' # Save pytorch-model os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) __magic_name__: int = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME __magic_name__: List[str] = pytorch_dump_folder_path + """/""" + CONFIG_NAME print(f'Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}' ) if config.torch_dtype is not None: __magic_name__: Optional[Any] = model.to(config.torch_dtype ) torch.save(model.state_dict() , __UpperCAmelCase ) print(f'Save configuration file to {pytorch_config_dump_path}' ) with open(__UpperCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--bloom_checkpoint_path', default=None, type=str, required=True, help='Path to the Megatron-LM checkpoint path.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--bloom_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--shard_model', action='store_true', help='An optional setting to shard the output model \nThis enables sharding the converted checkpoint', ) parser.add_argument( '--pretraining_tp', default=4, type=int, help='Pretraining TP rank that has been used when training the model in Megatron-LM \n', ) __lowerCamelCase = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
96
1
import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" if isinstance(_SCREAMING_SNAKE_CASE , collections.abc.Iterable ): return x return (x, x) @require_flax class __snake_case : def lowerCAmelCase__ ( self , _A , _A): pass def lowerCAmelCase__ ( self): pass def lowerCAmelCase__ ( self): pass def lowerCAmelCase__ ( self , _A , _A , _A): SCREAMING_SNAKE_CASE_ = np.abs((a - b)).max() self.assertLessEqual(_A , _A , f"""Difference between torch and flax is {diff} (>= {tol}).""") def lowerCAmelCase__ ( self , _A , _A , _A , _A , _A=None , **_A): SCREAMING_SNAKE_CASE_ = VisionTextDualEncoderConfig.from_vision_text_configs(_A , _A) SCREAMING_SNAKE_CASE_ = FlaxVisionTextDualEncoderModel(_A) SCREAMING_SNAKE_CASE_ = model(input_ids=_A , pixel_values=_A , attention_mask=_A) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], config.projection_dim)) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], config.projection_dim)) def lowerCAmelCase__ ( self , _A , _A , _A , _A , _A=None , **_A): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.get_vision_text_model(_A , _A) SCREAMING_SNAKE_CASE_ = {'vision_model': vision_model, 'text_model': text_model} SCREAMING_SNAKE_CASE_ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_A) SCREAMING_SNAKE_CASE_ = model(input_ids=_A , pixel_values=_A , attention_mask=_A) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim)) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim)) def lowerCAmelCase__ ( self , _A , _A , _A , _A , _A=None , **_A): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.get_vision_text_model(_A , _A) SCREAMING_SNAKE_CASE_ = {'vision_model': vision_model, 'text_model': text_model} SCREAMING_SNAKE_CASE_ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_A) SCREAMING_SNAKE_CASE_ = model(input_ids=_A , pixel_values=_A , attention_mask=_A) SCREAMING_SNAKE_CASE_ = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_A) SCREAMING_SNAKE_CASE_ = FlaxVisionTextDualEncoderModel.from_pretrained(_A) SCREAMING_SNAKE_CASE_ = model(input_ids=_A , pixel_values=_A , attention_mask=_A) SCREAMING_SNAKE_CASE_ = after_output[0] SCREAMING_SNAKE_CASE_ = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(_A , 1E-3) def lowerCAmelCase__ ( self , _A , _A , _A , _A , _A=None , **_A): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.get_vision_text_model(_A , _A) SCREAMING_SNAKE_CASE_ = {'vision_model': vision_model, 'text_model': text_model} SCREAMING_SNAKE_CASE_ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_A) SCREAMING_SNAKE_CASE_ = model( input_ids=_A , pixel_values=_A , attention_mask=_A , output_attentions=_A) SCREAMING_SNAKE_CASE_ = output.vision_model_output.attentions self.assertEqual(len(_A) , vision_config.num_hidden_layers) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE_ = to_atuple(vision_model.config.image_size) SCREAMING_SNAKE_CASE_ = to_atuple(vision_model.config.patch_size) SCREAMING_SNAKE_CASE_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) SCREAMING_SNAKE_CASE_ = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len)) SCREAMING_SNAKE_CASE_ = output.text_model_output.attentions self.assertEqual(len(_A) , text_config.num_hidden_layers) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def lowerCAmelCase__ ( self , _A , _A , _A): pt_model.to(_A) pt_model.eval() # prepare inputs SCREAMING_SNAKE_CASE_ = inputs_dict SCREAMING_SNAKE_CASE_ = {k: torch.tensor(v.tolist()) for k, v in flax_inputs.items()} with torch.no_grad(): SCREAMING_SNAKE_CASE_ = pt_model(**_A).to_tuple() SCREAMING_SNAKE_CASE_ = fx_model(**_A).to_tuple() self.assertEqual(len(_A) , len(_A) , 'Output lengths differ between Flax and PyTorch') for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4]): self.assert_almost_equals(_A , pt_output.numpy() , 4E-2) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(_A) SCREAMING_SNAKE_CASE_ = FlaxVisionTextDualEncoderModel.from_pretrained(_A , from_pt=_A) SCREAMING_SNAKE_CASE_ = fx_model_loaded(**_A).to_tuple() self.assertEqual(len(_A) , len(_A) , 'Output lengths differ between Flax and PyTorch') for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4]): self.assert_almost_equals(_A , pt_output.numpy() , 4E-2) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(_A) SCREAMING_SNAKE_CASE_ = VisionTextDualEncoderModel.from_pretrained(_A , from_flax=_A) pt_model_loaded.to(_A) pt_model_loaded.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_ = pt_model_loaded(**_A).to_tuple() self.assertEqual(len(_A) , len(_A) , 'Output lengths differ between Flax and PyTorch') for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4]): self.assert_almost_equals(_A , pt_output_loaded.numpy() , 4E-2) def lowerCAmelCase__ ( self , _A , _A , _A): SCREAMING_SNAKE_CASE_ = VisionTextDualEncoderConfig.from_vision_text_configs(_A , _A) SCREAMING_SNAKE_CASE_ = VisionTextDualEncoderModel(_A) SCREAMING_SNAKE_CASE_ = FlaxVisionTextDualEncoderModel(_A) SCREAMING_SNAKE_CASE_ = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , _A) SCREAMING_SNAKE_CASE_ = fx_state self.check_pt_flax_equivalence(_A , _A , _A) def lowerCAmelCase__ ( self , _A , _A , _A): SCREAMING_SNAKE_CASE_ = VisionTextDualEncoderConfig.from_vision_text_configs(_A , _A) SCREAMING_SNAKE_CASE_ = VisionTextDualEncoderModel(_A) SCREAMING_SNAKE_CASE_ = FlaxVisionTextDualEncoderModel(_A) SCREAMING_SNAKE_CASE_ = load_flax_weights_in_pytorch_model(_A , fx_model.params) self.check_pt_flax_equivalence(_A , _A , _A) def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_A) def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_A) def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() self.check_save_load(**_A) def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_A) @is_pt_flax_cross_test def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ = config_inputs_dict.pop('vision_config') SCREAMING_SNAKE_CASE_ = config_inputs_dict.pop('text_config') SCREAMING_SNAKE_CASE_ = config_inputs_dict self.check_equivalence_pt_to_flax(_A , _A , _A) self.check_equivalence_flax_to_pt(_A , _A , _A) @slow def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.get_pretrained_model_and_inputs() SCREAMING_SNAKE_CASE_ = model_a(**_A) SCREAMING_SNAKE_CASE_ = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_A) SCREAMING_SNAKE_CASE_ = FlaxVisionTextDualEncoderModel.from_pretrained(_A) SCREAMING_SNAKE_CASE_ = model_a(**_A) SCREAMING_SNAKE_CASE_ = after_outputs[0] SCREAMING_SNAKE_CASE_ = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(_A , 1E-5) @require_flax class __snake_case ( lowerCAmelCase__ , unittest.TestCase ): def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-vit' , 'hf-internal-testing/tiny-bert' , vision_from_pt=_A , text_from_pt=_A , ) SCREAMING_SNAKE_CASE_ = 13 SCREAMING_SNAKE_CASE_ = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ]) SCREAMING_SNAKE_CASE_ = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size) SCREAMING_SNAKE_CASE_ = random_attention_mask([batch_size, 4]) SCREAMING_SNAKE_CASE_ = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def lowerCAmelCase__ ( self , _A , _A): SCREAMING_SNAKE_CASE_ = FlaxViTModel(_A) SCREAMING_SNAKE_CASE_ = FlaxBertModel(_A) return vision_model, text_model def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = FlaxViTModelTester(self) SCREAMING_SNAKE_CASE_ = FlaxBertModelTester(self) SCREAMING_SNAKE_CASE_ = vit_model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ = bert_model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = vision_config_and_inputs SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class __snake_case ( lowerCAmelCase__ , unittest.TestCase ): def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-clip' , 'hf-internal-testing/tiny-bert' , vision_from_pt=_A , text_from_pt=_A , ) SCREAMING_SNAKE_CASE_ = 13 SCREAMING_SNAKE_CASE_ = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ]) SCREAMING_SNAKE_CASE_ = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size) SCREAMING_SNAKE_CASE_ = random_attention_mask([batch_size, 4]) SCREAMING_SNAKE_CASE_ = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def lowerCAmelCase__ ( self , _A , _A): SCREAMING_SNAKE_CASE_ = FlaxCLIPVisionModel(_A) SCREAMING_SNAKE_CASE_ = FlaxBertModel(_A) return vision_model, text_model def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = FlaxCLIPVisionModelTester(self) SCREAMING_SNAKE_CASE_ = FlaxBertModelTester(self) SCREAMING_SNAKE_CASE_ = clip_model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ = bert_model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = vision_config_and_inputs SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class __snake_case ( unittest.TestCase ): @slow def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = FlaxVisionTextDualEncoderModel.from_pretrained('clip-italian/clip-italian' , logit_scale_init_value=1.0) SCREAMING_SNAKE_CASE_ = VisionTextDualEncoderProcessor.from_pretrained('clip-italian/clip-italian') SCREAMING_SNAKE_CASE_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') SCREAMING_SNAKE_CASE_ = processor( text=['una foto di un gatto', 'una foto di un cane'] , images=_A , padding=_A , return_tensors='np') SCREAMING_SNAKE_CASE_ = model(**_A) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0])) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) SCREAMING_SNAKE_CASE_ = np.array([[1.2_2_8_4_7_2_7, 0.3_1_0_4_1_2_2]]) self.assertTrue(np.allclose(outputs.logits_per_image , _A , atol=1E-3))
700
from typing import List import numpy as np def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ = {key: len(_SCREAMING_SNAKE_CASE ) for key, value in gen_kwargs.items() if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( 'Sharding is ambiguous for this dataset: ' + 'we found several data sources lists of different lengths, and we don\'t know over which list we should parallelize:\n' + '\n'.join(f"""\t- key {key} has length {length}""" for key, length in lists_lengths.items() ) + '\nTo fix this, check the \'gen_kwargs\' and make sure to use lists only for data sources, ' + 'and use tuples otherwise. In the end there should only be one single list, or several lists with the same length.' ) ) SCREAMING_SNAKE_CASE_ = max(lists_lengths.values() , default=0 ) return max(1 , _SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ = [] for group_idx in range(_SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break SCREAMING_SNAKE_CASE_ = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 SCREAMING_SNAKE_CASE_ = range(_SCREAMING_SNAKE_CASE , start + num_shards_to_add ) shards_indices_per_group.append(_SCREAMING_SNAKE_CASE ) return shards_indices_per_group def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : dict , _SCREAMING_SNAKE_CASE : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ = _number_of_shards_in_gen_kwargs(_SCREAMING_SNAKE_CASE ) if num_shards == 1: return [dict(_SCREAMING_SNAKE_CASE )] else: SCREAMING_SNAKE_CASE_ = _distribute_shards(num_shards=_SCREAMING_SNAKE_CASE , max_num_jobs=_SCREAMING_SNAKE_CASE ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(_SCREAMING_SNAKE_CASE ) ) ] def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : List[dict] ): """simple docstring""" return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] , _SCREAMING_SNAKE_CASE ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : np.random.Generator , _SCREAMING_SNAKE_CASE : dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ = {len(_SCREAMING_SNAKE_CASE ) for value in gen_kwargs.values() if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} SCREAMING_SNAKE_CASE_ = {} for size in list_sizes: SCREAMING_SNAKE_CASE_ = list(range(_SCREAMING_SNAKE_CASE ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes SCREAMING_SNAKE_CASE_ = dict(_SCREAMING_SNAKE_CASE ) for key, value in shuffled_kwargs.items(): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ = [value[i] for i in indices_per_size[len(_SCREAMING_SNAKE_CASE )]] return shuffled_kwargs
620
0
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) __magic_name__ = logging.get_logger(__name__) __magic_name__ = OrderedDict( [ ("audio-spectrogram-transformer", "ASTFeatureExtractor"), ("beit", "BeitFeatureExtractor"), ("chinese_clip", "ChineseCLIPFeatureExtractor"), ("clap", "ClapFeatureExtractor"), ("clip", "CLIPFeatureExtractor"), ("clipseg", "ViTFeatureExtractor"), ("conditional_detr", "ConditionalDetrFeatureExtractor"), ("convnext", "ConvNextFeatureExtractor"), ("cvt", "ConvNextFeatureExtractor"), ("data2vec-audio", "Wav2Vec2FeatureExtractor"), ("data2vec-vision", "BeitFeatureExtractor"), ("deformable_detr", "DeformableDetrFeatureExtractor"), ("deit", "DeiTFeatureExtractor"), ("detr", "DetrFeatureExtractor"), ("dinat", "ViTFeatureExtractor"), ("donut-swin", "DonutFeatureExtractor"), ("dpt", "DPTFeatureExtractor"), ("encodec", "EncodecFeatureExtractor"), ("flava", "FlavaFeatureExtractor"), ("glpn", "GLPNFeatureExtractor"), ("groupvit", "CLIPFeatureExtractor"), ("hubert", "Wav2Vec2FeatureExtractor"), ("imagegpt", "ImageGPTFeatureExtractor"), ("layoutlmv2", "LayoutLMv2FeatureExtractor"), ("layoutlmv3", "LayoutLMv3FeatureExtractor"), ("levit", "LevitFeatureExtractor"), ("maskformer", "MaskFormerFeatureExtractor"), ("mctct", "MCTCTFeatureExtractor"), ("mobilenet_v1", "MobileNetV1FeatureExtractor"), ("mobilenet_v2", "MobileNetV2FeatureExtractor"), ("mobilevit", "MobileViTFeatureExtractor"), ("nat", "ViTFeatureExtractor"), ("owlvit", "OwlViTFeatureExtractor"), ("perceiver", "PerceiverFeatureExtractor"), ("poolformer", "PoolFormerFeatureExtractor"), ("regnet", "ConvNextFeatureExtractor"), ("resnet", "ConvNextFeatureExtractor"), ("segformer", "SegformerFeatureExtractor"), ("sew", "Wav2Vec2FeatureExtractor"), ("sew-d", "Wav2Vec2FeatureExtractor"), ("speech_to_text", "Speech2TextFeatureExtractor"), ("speecht5", "SpeechT5FeatureExtractor"), ("swiftformer", "ViTFeatureExtractor"), ("swin", "ViTFeatureExtractor"), ("swinv2", "ViTFeatureExtractor"), ("table-transformer", "DetrFeatureExtractor"), ("timesformer", "VideoMAEFeatureExtractor"), ("tvlt", "TvltFeatureExtractor"), ("unispeech", "Wav2Vec2FeatureExtractor"), ("unispeech-sat", "Wav2Vec2FeatureExtractor"), ("van", "ConvNextFeatureExtractor"), ("videomae", "VideoMAEFeatureExtractor"), ("vilt", "ViltFeatureExtractor"), ("vit", "ViTFeatureExtractor"), ("vit_mae", "ViTFeatureExtractor"), ("vit_msn", "ViTFeatureExtractor"), ("wav2vec2", "Wav2Vec2FeatureExtractor"), ("wav2vec2-conformer", "Wav2Vec2FeatureExtractor"), ("wavlm", "Wav2Vec2FeatureExtractor"), ("whisper", "WhisperFeatureExtractor"), ("xclip", "CLIPFeatureExtractor"), ("yolos", "YolosFeatureExtractor"), ] ) __magic_name__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def _lowerCAmelCase ( A__: str ): '''simple docstring''' for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: UpperCAmelCase = model_type_to_module_name(A__ ) UpperCAmelCase = importlib.import_module(F""".{module_name}""" , '''transformers.models''' ) try: return getattr(A__ , A__ ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(A__ , '''__name__''' , A__ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. UpperCAmelCase = importlib.import_module('''transformers''' ) if hasattr(A__ , A__ ): return getattr(A__ , A__ ) return None def _lowerCAmelCase ( A__: Union[str, os.PathLike] , A__: Optional[Union[str, os.PathLike]] = None , A__: bool = False , A__: bool = False , A__: Optional[Dict[str, str]] = None , A__: Optional[Union[bool, str]] = None , A__: Optional[str] = None , A__: bool = False , **A__: List[str] , ): '''simple docstring''' UpperCAmelCase = get_file_from_repo( A__ , A__ , cache_dir=A__ , force_download=A__ , resume_download=A__ , proxies=A__ , use_auth_token=A__ , revision=A__ , local_files_only=A__ , ) if resolved_config_file is None: logger.info( '''Could not locate the feature extractor configuration file, will try to use the model config instead.''' ) return {} with open(A__ , encoding='''utf-8''' ) as reader: return json.load(A__ ) class lowercase : '''simple docstring''' def __init__( self ) -> Any: """simple docstring""" raise EnvironmentError( '''AutoFeatureExtractor is designed to be instantiated ''' '''using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(_snake_case ) def snake_case_ ( cls , _snake_case , **_snake_case ) -> Optional[int]: """simple docstring""" UpperCAmelCase = kwargs.pop('''config''' , _snake_case ) UpperCAmelCase = kwargs.pop('''trust_remote_code''' , _snake_case ) UpperCAmelCase = True UpperCAmelCase , UpperCAmelCase = FeatureExtractionMixin.get_feature_extractor_dict(_snake_case , **_snake_case ) UpperCAmelCase = config_dict.get('''feature_extractor_type''' , _snake_case ) UpperCAmelCase = None if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): UpperCAmelCase = config_dict['''auto_map''']['''AutoFeatureExtractor'''] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(_snake_case , _snake_case ): UpperCAmelCase = AutoConfig.from_pretrained(_snake_case , **_snake_case ) # It could be in `config.feature_extractor_type`` UpperCAmelCase = getattr(_snake_case , '''feature_extractor_type''' , _snake_case ) if hasattr(_snake_case , '''auto_map''' ) and "AutoFeatureExtractor" in config.auto_map: UpperCAmelCase = config.auto_map['''AutoFeatureExtractor'''] if feature_extractor_class is not None: UpperCAmelCase = feature_extractor_class_from_name(_snake_case ) UpperCAmelCase = feature_extractor_auto_map is not None UpperCAmelCase = feature_extractor_class is not None or type(_snake_case ) in FEATURE_EXTRACTOR_MAPPING UpperCAmelCase = resolve_trust_remote_code( _snake_case , _snake_case , _snake_case , _snake_case ) if has_remote_code and trust_remote_code: UpperCAmelCase = get_class_from_dynamic_module( _snake_case , _snake_case , **_snake_case ) UpperCAmelCase = kwargs.pop('''code_revision''' , _snake_case ) if os.path.isdir(_snake_case ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(_snake_case , **_snake_case ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(_snake_case , **_snake_case ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(_snake_case ) in FEATURE_EXTRACTOR_MAPPING: UpperCAmelCase = FEATURE_EXTRACTOR_MAPPING[type(_snake_case )] return feature_extractor_class.from_dict(_snake_case , **_snake_case ) raise ValueError( f"""Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a """ f"""`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following """ f"""`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def snake_case_ ( _snake_case , _snake_case ) -> Optional[Any]: """simple docstring""" FEATURE_EXTRACTOR_MAPPING.register(_snake_case , _snake_case )
254
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer __magic_name__ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __magic_name__ = { "vocab_file": { "unc-nlp/lxmert-base-uncased": "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt", }, "tokenizer_file": { "unc-nlp/lxmert-base-uncased": ( "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json" ), }, } __magic_name__ = { "unc-nlp/lxmert-base-uncased": 512, } __magic_name__ = { "unc-nlp/lxmert-base-uncased": {"do_lower_case": True}, } class lowercase ( A__ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_INIT_CONFIGURATION __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = LxmertTokenizer def __init__( self , _snake_case=None , _snake_case=None , _snake_case=True , _snake_case="[UNK]" , _snake_case="[SEP]" , _snake_case="[PAD]" , _snake_case="[CLS]" , _snake_case="[MASK]" , _snake_case=True , _snake_case=None , **_snake_case , ) -> Tuple: """simple docstring""" super().__init__( _snake_case , tokenizer_file=_snake_case , do_lower_case=_snake_case , unk_token=_snake_case , sep_token=_snake_case , pad_token=_snake_case , cls_token=_snake_case , mask_token=_snake_case , tokenize_chinese_chars=_snake_case , strip_accents=_snake_case , **_snake_case , ) UpperCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _snake_case ) != do_lower_case or normalizer_state.get('''strip_accents''' , _snake_case ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _snake_case ) != tokenize_chinese_chars ): UpperCAmelCase = getattr(_snake_case , normalizer_state.pop('''type''' ) ) UpperCAmelCase = do_lower_case UpperCAmelCase = strip_accents UpperCAmelCase = tokenize_chinese_chars UpperCAmelCase = normalizer_class(**_snake_case ) UpperCAmelCase = do_lower_case def snake_case_ ( self , _snake_case , _snake_case=None ) -> List[str]: """simple docstring""" UpperCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case_ ( self , _snake_case , _snake_case = None ) -> List[int]: """simple docstring""" UpperCAmelCase = [self.sep_token_id] UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case_ ( self , _snake_case , _snake_case = None ) -> Tuple[str]: """simple docstring""" UpperCAmelCase = self._tokenizer.model.save(_snake_case , name=_snake_case ) return tuple(_snake_case )
254
1
'''simple docstring''' from __future__ import annotations a = 10 def __magic_name__ ( __UpperCAmelCase ) -> list[int]: '''simple docstring''' __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = max(__UpperCAmelCase ) while placement <= max_digit: # declare and initialize empty buckets __SCREAMING_SNAKE_CASE = [[] for _ in range(__UpperCAmelCase )] # split list_of_ints between the buckets for i in list_of_ints: __SCREAMING_SNAKE_CASE = int((i / placement) % RADIX ) buckets[tmp].append(__UpperCAmelCase ) # put each buckets' contents into list_of_ints __SCREAMING_SNAKE_CASE = 0 for b in range(__UpperCAmelCase ): for i in buckets[b]: __SCREAMING_SNAKE_CASE = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
13
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
13
1
from __future__ import annotations import os from typing import Any import requests __magic_name__ = "https://api.github.com" # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user __magic_name__ = BASE_URL + "/user" # https://github.com/settings/tokens __magic_name__ = os.environ.get("USER_TOKEN", "") def _lowerCAmelCase ( A__: str ): '''simple docstring''' UpperCAmelCase = { '''Authorization''': F"""token {auth_token}""", '''Accept''': '''application/vnd.github.v3+json''', } return requests.get(A__ , headers=A__ ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(f'''{key}: {value}''') else: raise ValueError("'USER_TOKEN' field cannot be empty.")
254
from math import factorial, radians def _lowerCAmelCase ( A__: float , A__: int = 18 , A__: int = 10 ): '''simple docstring''' UpperCAmelCase = angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0) # Converting from degrees to radians UpperCAmelCase = radians(A__ ) UpperCAmelCase = angle_in_radians UpperCAmelCase = 3 UpperCAmelCase = -1 for _ in range(A__ ): result += (b * (angle_in_radians**a)) / factorial(A__ ) UpperCAmelCase = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(A__ , A__ ) if __name__ == "__main__": __import__("doctest").testmod()
254
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json''' ), } class _snake_case ( a__ ): snake_case__ = "dpr" def __init__( self : str , UpperCAmelCase : Optional[Any]=30522 , UpperCAmelCase : Any=768 , UpperCAmelCase : Dict=12 , UpperCAmelCase : Optional[Any]=12 , UpperCAmelCase : Any=3072 , UpperCAmelCase : List[str]="gelu" , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : Union[str, Any]=512 , UpperCAmelCase : int=2 , UpperCAmelCase : Any=0.0_2 , UpperCAmelCase : str=1E-12 , UpperCAmelCase : List[Any]=0 , UpperCAmelCase : Union[str, Any]="absolute" , UpperCAmelCase : int = 0 , **UpperCAmelCase : Optional[int] , ): super().__init__(pad_token_id=UpperCAmelCase , **UpperCAmelCase ) __lowerCamelCase : List[Any] = vocab_size __lowerCamelCase : int = hidden_size __lowerCamelCase : Optional[int] = num_hidden_layers __lowerCamelCase : str = num_attention_heads __lowerCamelCase : Union[str, Any] = hidden_act __lowerCamelCase : List[str] = intermediate_size __lowerCamelCase : Optional[Any] = hidden_dropout_prob __lowerCamelCase : int = attention_probs_dropout_prob __lowerCamelCase : Optional[Any] = max_position_embeddings __lowerCamelCase : str = type_vocab_size __lowerCamelCase : Dict = initializer_range __lowerCamelCase : Tuple = layer_norm_eps __lowerCamelCase : Optional[Any] = projection_dim __lowerCamelCase : Dict = position_embedding_type
719
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class _snake_case ( unittest.TestCase ): def __init__( self : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[int]=7 , UpperCAmelCase : Any=3 , UpperCAmelCase : str=18 , UpperCAmelCase : str=30 , UpperCAmelCase : Any=400 , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Dict=None , UpperCAmelCase : List[str]=True , UpperCAmelCase : int=[0.5, 0.5, 0.5] , UpperCAmelCase : Tuple=[0.5, 0.5, 0.5] , ): __lowerCamelCase : Any = size if size is not None else {"shortest_edge": 18} __lowerCamelCase : Dict = crop_size if crop_size is not None else {"height": 18, "width": 18} __lowerCamelCase : List[str] = parent __lowerCamelCase : int = batch_size __lowerCamelCase : Any = num_channels __lowerCamelCase : Tuple = image_size __lowerCamelCase : int = min_resolution __lowerCamelCase : List[Any] = max_resolution __lowerCamelCase : List[str] = do_resize __lowerCamelCase : str = size __lowerCamelCase : Tuple = do_center_crop __lowerCamelCase : Optional[int] = crop_size __lowerCamelCase : Optional[Any] = do_normalize __lowerCamelCase : Optional[Any] = image_mean __lowerCamelCase : List[Any] = image_std def lowerCamelCase__ ( self : int ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class _snake_case ( a__ , unittest.TestCase ): snake_case__ = LevitImageProcessor if is_vision_available() else None def lowerCamelCase__ ( self : Any ): __lowerCamelCase : Optional[int] = LevitImageProcessingTester(self ) @property def lowerCamelCase__ ( self : Union[str, Any] ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase__ ( self : List[str] ): __lowerCamelCase : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase , "image_mean" ) ) self.assertTrue(hasattr(UpperCAmelCase , "image_std" ) ) self.assertTrue(hasattr(UpperCAmelCase , "do_normalize" ) ) self.assertTrue(hasattr(UpperCAmelCase , "do_resize" ) ) self.assertTrue(hasattr(UpperCAmelCase , "do_center_crop" ) ) self.assertTrue(hasattr(UpperCAmelCase , "size" ) ) def lowerCamelCase__ ( self : int ): __lowerCamelCase : str = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) __lowerCamelCase : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def lowerCamelCase__ ( self : Dict ): pass def lowerCamelCase__ ( self : Any ): # Initialize image_processing __lowerCamelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCamelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , Image.Image ) # Test not batched input __lowerCamelCase : Dict = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __lowerCamelCase : int = image_processing(UpperCAmelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def lowerCamelCase__ ( self : Any ): # Initialize image_processing __lowerCamelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCamelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , numpify=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , np.ndarray ) # Test not batched input __lowerCamelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __lowerCamelCase : Dict = image_processing(UpperCAmelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def lowerCamelCase__ ( self : Union[str, Any] ): # Initialize image_processing __lowerCamelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCamelCase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , torchify=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , torch.Tensor ) # Test not batched input __lowerCamelCase : List[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __lowerCamelCase : List[str] = image_processing(UpperCAmelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
366
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowercase : Any = logging.get_logger(__name__) __lowercase : List[str] = {'''vocab_file''': '''sentencepiece.bpe.model'''} __lowercase : List[str] = { '''vocab_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model''' ), }, } __lowercase : List[str] = { '''moussaKam/mbarthez''': 1024, '''moussaKam/barthez''': 1024, '''moussaKam/barthez-orangesum-title''': 1024, } __lowercase : List[str] = '''▁''' class __lowercase ( __UpperCAmelCase ): lowerCamelCase : Any = VOCAB_FILES_NAMES lowerCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Tuple = ['''input_ids''', '''attention_mask'''] def __init__(self , A , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A="<mask>" , A = None , **A , ): # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase_ : int = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else mask_token lowerCamelCase_ : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase__ , ) lowerCamelCase_ : int = vocab_file lowerCamelCase_ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCamelCase__ ) ) lowerCamelCase_ : List[Any] = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} lowerCamelCase_ : Optional[Any] = len(self.sp_model ) - 1 lowerCamelCase_ : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def UpperCAmelCase__ (self , A , A = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCamelCase_ : Tuple = [self.cls_token_id] lowerCamelCase_ : Union[str, Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase__ (self , A , A = None , A = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase__ , token_ids_a=lowerCamelCase__ , already_has_special_tokens=lowerCamelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase__ )) + [1] return [1] + ([0] * len(lowerCamelCase__ )) + [1, 1] + ([0] * len(lowerCamelCase__ )) + [1] def UpperCAmelCase__ (self , A , A = None ): lowerCamelCase_ : Any = [self.sep_token_id] lowerCamelCase_ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCAmelCase__ (self ): return len(self.sp_model ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Union[str, Any] = {self.convert_ids_to_tokens(lowerCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase__ (self , A ): return self.sp_model.encode(lowerCamelCase__ , out_type=lowerCamelCase__ ) def UpperCAmelCase__ (self , A ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCamelCase_ : List[Any] = self.sp_model.PieceToId(lowerCamelCase__ ) return spm_id if spm_id else self.unk_token_id def UpperCAmelCase__ (self , A ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(lowerCamelCase__ ) def UpperCAmelCase__ (self , A ): lowerCamelCase_ : str = [] lowerCamelCase_ : str = """""" lowerCamelCase_ : Any = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCamelCase__ ) + token lowerCamelCase_ : Any = True lowerCamelCase_ : Optional[Any] = [] else: current_sub_tokens.append(lowerCamelCase__ ) lowerCamelCase_ : Any = False out_string += self.sp_model.decode(lowerCamelCase__ ) return out_string.strip() def __getstate__(self ): lowerCamelCase_ : List[str] = self.__dict__.copy() lowerCamelCase_ : str = None return state def __setstate__(self , A ): lowerCamelCase_ : Union[str, Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowerCamelCase_ : List[str] = {} lowerCamelCase_ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase__ (self , A , A = None ): if not os.path.isdir(lowerCamelCase__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCamelCase_ : Any = os.path.join( lowerCamelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase__ , '''wb''' ) as fi: lowerCamelCase_ : List[Any] = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase__ ) return (out_vocab_file,)
422
"""simple docstring""" import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py __snake_case = 'src/transformers' __snake_case = 'docs/source/en' __snake_case = '.' def _lowerCamelCase ( lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Any ): with open(lowerCamelCase__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowercase__ : List[str] = f.readlines() # Find the start prompt. lowercase__ : str = 0 while not lines[start_index].startswith(lowerCamelCase__ ): start_index += 1 start_index += 1 lowercase__ : Optional[Any] = start_index while not lines[end_index].startswith(lowerCamelCase__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | __snake_case = 'Model|Encoder|Decoder|ForConditionalGeneration' # Regexes that match TF/Flax/PT model names. __snake_case = re.compile(R'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') __snake_case = re.compile(R'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. __snake_case = re.compile(R'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # This is to make sure the transformers module imported is the one in the repo. __snake_case = direct_transformers_import(TRANSFORMERS_PATH) def _lowerCamelCase ( lowerCamelCase__ : List[Any] ): lowercase__ : Union[str, Any] = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""" , lowerCamelCase__ ) return [m.group(0 ) for m in matches] def _lowerCamelCase ( lowerCamelCase__ : Optional[int] , lowerCamelCase__ : int ): lowercase__ : Any = 2 if text == """✅""" or text == """❌""" else len(lowerCamelCase__ ) lowercase__ : int = (width - text_length) // 2 lowercase__ : List[str] = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def _lowerCamelCase ( ): lowercase__ : List[str] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES lowercase__ : Optional[int] = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } lowercase__ : str = {name: config.replace("""Config""" , """""" ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. lowercase__ : Tuple = collections.defaultdict(lowerCamelCase__ ) lowercase__ : Optional[Any] = collections.defaultdict(lowerCamelCase__ ) lowercase__ : Optional[int] = collections.defaultdict(lowerCamelCase__ ) lowercase__ : Dict = collections.defaultdict(lowerCamelCase__ ) lowercase__ : Union[str, Any] = collections.defaultdict(lowerCamelCase__ ) # Let's lookup through all transformers object (once). for attr_name in dir(lowerCamelCase__ ): lowercase__ : Optional[Any] = None if attr_name.endswith("""Tokenizer""" ): lowercase__ : List[Any] = slow_tokenizers lowercase__ : List[str] = attr_name[:-9] elif attr_name.endswith("""TokenizerFast""" ): lowercase__ : Tuple = fast_tokenizers lowercase__ : str = attr_name[:-13] elif _re_tf_models.match(lowerCamelCase__ ) is not None: lowercase__ : Tuple = tf_models lowercase__ : List[Any] = _re_tf_models.match(lowerCamelCase__ ).groups()[0] elif _re_flax_models.match(lowerCamelCase__ ) is not None: lowercase__ : List[Any] = flax_models lowercase__ : List[Any] = _re_flax_models.match(lowerCamelCase__ ).groups()[0] elif _re_pt_models.match(lowerCamelCase__ ) is not None: lowercase__ : Union[str, Any] = pt_models lowercase__ : Optional[int] = _re_pt_models.match(lowerCamelCase__ ).groups()[0] if lookup_dict is not None: while len(lowerCamelCase__ ) > 0: if attr_name in model_name_to_prefix.values(): lowercase__ : Tuple = True break # Try again after removing the last word in the name lowercase__ : Union[str, Any] = """""".join(camel_case_split(lowerCamelCase__ )[:-1] ) # Let's build that table! lowercase__ : Union[str, Any] = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) lowercase__ : List[Any] = ["""Model""", """Tokenizer slow""", """Tokenizer fast""", """PyTorch support""", """TensorFlow support""", """Flax Support"""] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). lowercase__ : str = [len(lowerCamelCase__ ) + 2 for c in columns] lowercase__ : Tuple = max([len(lowerCamelCase__ ) for name in model_names] ) + 2 # Build the table per se lowercase__ : List[Any] = """|""" + """|""".join([_center_text(lowerCamelCase__ , lowerCamelCase__ ) for c, w in zip(lowerCamelCase__ , lowerCamelCase__ )] ) + """|\n""" # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([""":""" + """-""" * (w - 2) + """:""" for w in widths] ) + "|\n" lowercase__ : List[Any] = {True: """✅""", False: """❌"""} for name in model_names: lowercase__ : int = model_name_to_prefix[name] lowercase__ : List[str] = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(lowerCamelCase__ , lowerCamelCase__ ) for l, w in zip(lowerCamelCase__ , lowerCamelCase__ )] ) + "|\n" return table def _lowerCamelCase ( lowerCamelCase__ : Union[str, Any]=False ): lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = _find_text_in_file( filename=os.path.join(lowerCamelCase__ , """index.md""" ) , start_prompt="""<!--This table is updated automatically from the auto modules""" , end_prompt="""<!-- End table-->""" , ) lowercase__ : Union[str, Any] = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(lowerCamelCase__ , """index.md""" ) , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( """The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.""" ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') __snake_case = parser.parse_args() check_model_table(args.fix_and_overwrite)
200
0
import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase : """simple docstring""" def __init__( self : Optional[Any] , a_ : Any , a_ : Union[str, Any]=13 , a_ : str=32 , a_ : Any=3 , a_ : Dict=4 , a_ : Union[str, Any]=[10, 20, 30, 40] , a_ : str=[2, 2, 3, 2] , a_ : Dict=True , a_ : List[Any]=True , a_ : Tuple=37 , a_ : Optional[int]="gelu" , a_ : Tuple=10 , a_ : List[str]=0.0_2 , a_ : Optional[int]=["stage2", "stage3", "stage4"] , a_ : str=[2, 3, 4] , a_ : List[Any]=None , ): """simple docstring""" lowerCamelCase__ = parent lowerCamelCase__ = batch_size lowerCamelCase__ = image_size lowerCamelCase__ = num_channels lowerCamelCase__ = num_stages lowerCamelCase__ = hidden_sizes lowerCamelCase__ = depths lowerCamelCase__ = is_training lowerCamelCase__ = use_labels lowerCamelCase__ = intermediate_size lowerCamelCase__ = hidden_act lowerCamelCase__ = num_labels lowerCamelCase__ = initializer_range lowerCamelCase__ = out_features lowerCamelCase__ = out_indices lowerCamelCase__ = scope def _UpperCamelCase ( self : int ): """simple docstring""" lowerCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ = None if self.use_labels: lowerCamelCase__ = ids_tensor([self.batch_size] , self.num_labels ) lowerCamelCase__ = self.get_config() return config, pixel_values, labels def _UpperCamelCase ( self : List[str] ): """simple docstring""" return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=a_ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def _UpperCamelCase ( self : List[str] , a_ : Union[str, Any] , a_ : Tuple , a_ : Optional[Any] ): """simple docstring""" lowerCamelCase__ = ConvNextModel(config=a_ ) model.to(a_ ) model.eval() lowerCamelCase__ = model(a_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _UpperCamelCase ( self : str , a_ : Dict , a_ : int , a_ : List[str] ): """simple docstring""" lowerCamelCase__ = ConvNextForImageClassification(a_ ) model.to(a_ ) model.eval() lowerCamelCase__ = model(a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase ( self : List[Any] , a_ : str , a_ : List[Any] , a_ : Tuple ): """simple docstring""" lowerCamelCase__ = ConvNextBackbone(config=a_ ) model.to(a_ ) model.eval() lowerCamelCase__ = model(a_ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None lowerCamelCase__ = None lowerCamelCase__ = ConvNextBackbone(config=a_ ) model.to(a_ ) model.eval() lowerCamelCase__ = model(a_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _UpperCamelCase ( self : Optional[Any] ): """simple docstring""" lowerCamelCase__ = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = config_and_inputs lowerCamelCase__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowercase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" snake_case_ = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) snake_case_ = ( {'feature-extraction': ConvNextModel, 'image-classification': ConvNextForImageClassification} if is_torch_available() else {} ) snake_case_ = True snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def _UpperCamelCase ( self : Any ): """simple docstring""" lowerCamelCase__ = ConvNextModelTester(self ) lowerCamelCase__ = ConfigTester(self , config_class=a_ , has_text_modality=a_ , hidden_size=37 ) def _UpperCamelCase ( self : List[Any] ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _UpperCamelCase ( self : List[Any] ): """simple docstring""" return @unittest.skip(reason="""ConvNext does not use inputs_embeds""" ) def _UpperCamelCase ( self : str ): """simple docstring""" pass @unittest.skip(reason="""ConvNext does not support input and output embeddings""" ) def _UpperCamelCase ( self : List[str] ): """simple docstring""" pass @unittest.skip(reason="""ConvNext does not use feedforward chunking""" ) def _UpperCamelCase ( self : Tuple ): """simple docstring""" pass def _UpperCamelCase ( self : Optional[int] ): """simple docstring""" lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ = model_class(a_ ) lowerCamelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ = [*signature.parameters.keys()] lowerCamelCase__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , a_ ) def _UpperCamelCase ( self : Optional[int] ): """simple docstring""" lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def _UpperCamelCase ( self : int ): """simple docstring""" lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*a_ ) def _UpperCamelCase ( self : List[Any] ): """simple docstring""" def check_hidden_states_output(a_ : Dict , a_ : Optional[int] , a_ : List[Any] ): lowerCamelCase__ = model_class(a_ ) model.to(a_ ) model.eval() with torch.no_grad(): lowerCamelCase__ = model(**self._prepare_for_class(a_ , a_ ) ) lowerCamelCase__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCamelCase__ = self.model_tester.num_stages self.assertEqual(len(a_ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ = True check_hidden_states_output(a_ , a_ , a_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase__ = True check_hidden_states_output(a_ , a_ , a_ ) def _UpperCamelCase ( self : Tuple ): """simple docstring""" lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a_ ) @slow def _UpperCamelCase ( self : Any ): """simple docstring""" for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ = ConvNextModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def snake_case (): '''simple docstring''' lowerCamelCase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): """simple docstring""" @cached_property def _UpperCamelCase ( self : Dict ): """simple docstring""" return AutoImageProcessor.from_pretrained("""facebook/convnext-tiny-224""" ) if is_vision_available() else None @slow def _UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" lowerCamelCase__ = ConvNextForImageClassification.from_pretrained("""facebook/convnext-tiny-224""" ).to(a_ ) lowerCamelCase__ = self.default_image_processor lowerCamelCase__ = prepare_img() lowerCamelCase__ = image_processor(images=a_ , return_tensors="""pt""" ).to(a_ ) # forward pass with torch.no_grad(): lowerCamelCase__ = model(**a_ ) # verify the logits lowerCamelCase__ = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , a_ ) lowerCamelCase__ = torch.tensor([-0.0_2_6_0, -0.4_7_3_9, 0.1_9_1_1] ).to(a_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a_ , atol=1e-4 ) ) @require_torch class lowercase ( unittest.TestCase , UpperCAmelCase_ ): """simple docstring""" snake_case_ = (ConvNextBackbone,) if is_torch_available() else () snake_case_ = ConvNextConfig snake_case_ = False def _UpperCamelCase ( self : int ): """simple docstring""" lowerCamelCase__ = ConvNextModelTester(self )
235
from ...processing_utils import ProcessorMixin class lowercase ( UpperCAmelCase_ ): """simple docstring""" snake_case_ = 'WhisperFeatureExtractor' snake_case_ = 'WhisperTokenizer' def __init__( self : int , a_ : int , a_ : Union[str, Any] ): """simple docstring""" super().__init__(a_ , a_ ) lowerCamelCase__ = self.feature_extractor lowerCamelCase__ = False def _UpperCamelCase ( self : str , a_ : Dict=None , a_ : Union[str, Any]=None , a_ : Tuple=True ): """simple docstring""" return self.tokenizer.get_decoder_prompt_ids(task=a_ , language=a_ , no_timestamps=a_ ) def __call__( self : Any , *a_ : Optional[int] , **a_ : Any ): """simple docstring""" if self._in_target_context_manager: return self.current_processor(*a_ , **a_ ) lowerCamelCase__ = kwargs.pop("""audio""" , a_ ) lowerCamelCase__ = kwargs.pop("""sampling_rate""" , a_ ) lowerCamelCase__ = kwargs.pop("""text""" , a_ ) if len(a_ ) > 0: lowerCamelCase__ = args[0] lowerCamelCase__ = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if audio is not None: lowerCamelCase__ = self.feature_extractor(a_ , *a_ , sampling_rate=a_ , **a_ ) if text is not None: lowerCamelCase__ = self.tokenizer(a_ , **a_ ) if text is None: return inputs elif audio is None: return encodings else: lowerCamelCase__ = encodings["""input_ids"""] return inputs def _UpperCamelCase ( self : Optional[int] , *a_ : str , **a_ : List[Any] ): """simple docstring""" return self.tokenizer.batch_decode(*a_ , **a_ ) def _UpperCamelCase ( self : Union[str, Any] , *a_ : str , **a_ : List[str] ): """simple docstring""" return self.tokenizer.decode(*a_ , **a_ ) def _UpperCamelCase ( self : int , a_ : str , a_ : Optional[int]="np" ): """simple docstring""" return self.tokenizer.get_prompt_ids(a_ , return_tensors=a_ )
235
1
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer __A = logging.get_logger(__name__) __A = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __A = { "vocab_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json" ), }, } __A = { "yjernite/retribert-base-uncased": 5_1_2, } __A = { "yjernite/retribert-base-uncased": {"do_lower_case": True}, } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Dict = VOCAB_FILES_NAMES _UpperCAmelCase :Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase :Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase :Any = PRETRAINED_INIT_CONFIGURATION _UpperCAmelCase :Optional[int] = RetriBertTokenizer _UpperCAmelCase :Union[str, Any] = ["input_ids", "attention_mask"] def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase="[UNK]" , _UpperCAmelCase="[SEP]" , _UpperCAmelCase="[PAD]" , _UpperCAmelCase="[CLS]" , _UpperCAmelCase="[MASK]" , _UpperCAmelCase=True , _UpperCAmelCase=None , **_UpperCAmelCase , ): super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , do_lower_case=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , tokenize_chinese_chars=_UpperCAmelCase , strip_accents=_UpperCAmelCase , **_UpperCAmelCase , ) lowercase__: Dict = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _UpperCAmelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , _UpperCAmelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _UpperCAmelCase ) != tokenize_chinese_chars ): lowercase__: Optional[Any] = getattr(_UpperCAmelCase , normalizer_state.pop('''type''' ) ) lowercase__: Optional[Any] = do_lower_case lowercase__: Optional[int] = strip_accents lowercase__: Optional[int] = tokenize_chinese_chars lowercase__: Tuple = normalizer_class(**_UpperCAmelCase ) lowercase__: Optional[int] = do_lower_case def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=None ): lowercase__: Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = None ): lowercase__: List[Any] = [self.sep_token_id] lowercase__: Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = None ): lowercase__: str = self._tokenizer.model.save(_UpperCAmelCase , name=_UpperCAmelCase ) return tuple(_UpperCAmelCase )
586
"""simple docstring""" from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class UpperCAmelCase : """simple docstring""" _UpperCAmelCase :int _UpperCAmelCase :Node | None = None _UpperCAmelCase :Node | None = None def SCREAMING_SNAKE_CASE__ ( ) -> Node | None: lowercase__: List[Any] = Node(1 ) lowercase__: Dict = Node(2 ) lowercase__: Optional[int] = Node(3 ) lowercase__: Tuple = Node(4 ) lowercase__: Tuple = Node(5 ) return tree def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> list[int]: return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> list[int]: return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> list[int]: return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> int: return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> Sequence[Node | None]: lowercase__: list[Any] = [] if root is None: return output lowercase__: Tuple = deque([root] ) while process_queue: lowercase__: Union[str, Any] = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Sequence[Node | None]: lowercase__: list[Any] = [] def populate_output(__UpperCAmelCase , __UpperCAmelCase ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(__UpperCAmelCase , __UpperCAmelCase ) return output def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Sequence[Node | None]: lowercase__: list[Any] = [] def populate_output(__UpperCAmelCase , __UpperCAmelCase ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(__UpperCAmelCase , __UpperCAmelCase ) return output def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> Sequence[Node | None] | list[Any]: if root is None: return [] lowercase__: list[Sequence[Node | None]] = [] lowercase__: Dict = 0 lowercase__: Optional[Any] = height(__UpperCAmelCase ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(__UpperCAmelCase , __UpperCAmelCase ) ) lowercase__: Tuple = 1 else: output.append(get_nodes_from_right_to_left(__UpperCAmelCase , __UpperCAmelCase ) ) lowercase__: Any = 0 return output def SCREAMING_SNAKE_CASE__ ( ) -> None: # Main function for testing. lowercase__: Dict = make_tree() print(F"""In-order Traversal: {inorder(__UpperCAmelCase )}""" ) print(F"""Pre-order Traversal: {preorder(__UpperCAmelCase )}""" ) print(F"""Post-order Traversal: {postorder(__UpperCAmelCase )}""" , '''\n''' ) print(F"""Height of Tree: {height(__UpperCAmelCase )}""" , '''\n''' ) print('''Complete Level Order Traversal: ''' ) print(level_order(__UpperCAmelCase ) , '''\n''' ) print('''Level-wise order Traversal: ''' ) for level in range(1 , height(__UpperCAmelCase ) + 1 ): print(F"""Level {level}:""" , get_nodes_from_left_to_right(__UpperCAmelCase , level=__UpperCAmelCase ) ) print('''\nZigZag order Traversal: ''' ) print(zigzag(__UpperCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
586
1
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator from typing import Any class __SCREAMING_SNAKE_CASE : def __init__( self :Any ,__UpperCAmelCase :Any ) -> str: """simple docstring""" lowerCamelCase__ : Any = data lowerCamelCase__ : Node | None = None class __SCREAMING_SNAKE_CASE : def __init__( self :Any ) -> str: """simple docstring""" lowerCamelCase__ : Union[str, Any] = None lowerCamelCase__ : Optional[int] = None def __iter__( self :Dict ) -> Iterator[Any]: """simple docstring""" lowerCamelCase__ : List[Any] = self.head while self.head: yield node.data lowerCamelCase__ : int = node.next if node == self.head: break def __len__( self :Union[str, Any] ) -> int: """simple docstring""" return sum(1 for _ in self ) def __repr__( self :Any ) -> List[Any]: """simple docstring""" return "->".join(str(__UpperCAmelCase ) for item in iter(self ) ) def lowercase_ ( self :List[str] ,__UpperCAmelCase :Any ) -> None: """simple docstring""" self.insert_nth(len(self ) ,__UpperCAmelCase ) def lowercase_ ( self :List[str] ,__UpperCAmelCase :Any ) -> None: """simple docstring""" self.insert_nth(0 ,__UpperCAmelCase ) def lowercase_ ( self :Dict ,__UpperCAmelCase :int ,__UpperCAmelCase :Any ) -> None: """simple docstring""" if index < 0 or index > len(self ): raise IndexError('''list index out of range.''' ) lowerCamelCase__ : Dict = Node(__UpperCAmelCase ) if self.head is None: lowerCamelCase__ : Any = new_node # first node points itself lowerCamelCase__ : Union[str, Any] = new_node elif index == 0: # insert at head lowerCamelCase__ : int = self.head lowerCamelCase__ : Optional[int] = new_node else: lowerCamelCase__ : int = self.head for _ in range(index - 1 ): lowerCamelCase__ : Optional[Any] = temp.next lowerCamelCase__ : Union[str, Any] = temp.next lowerCamelCase__ : int = new_node if index == len(self ) - 1: # insert at tail lowerCamelCase__ : Tuple = new_node def lowercase_ ( self :str ) -> str: """simple docstring""" return self.delete_nth(0 ) def lowercase_ ( self :Optional[int] ) -> Any: """simple docstring""" return self.delete_nth(len(self ) - 1 ) def lowercase_ ( self :Any ,__UpperCAmelCase :int = 0 ) -> Any: """simple docstring""" if not 0 <= index < len(self ): raise IndexError('''list index out of range.''' ) lowerCamelCase__ : Union[str, Any] = self.head if self.head == self.tail: # just one node lowerCamelCase__ : List[str] = None elif index == 0: # delete head node lowerCamelCase__ : Tuple = self.tail.next.next lowerCamelCase__ : Any = self.head.next else: lowerCamelCase__ : List[Any] = self.head for _ in range(index - 1 ): lowerCamelCase__ : Union[str, Any] = temp.next lowerCamelCase__ : List[str] = temp.next lowerCamelCase__ : Any = temp.next.next if index == len(self ) - 1: # delete at tail lowerCamelCase__ : List[Any] = temp return delete_node.data def lowercase_ ( self :Optional[Any] ) -> bool: """simple docstring""" return len(self ) == 0 def __a ( ): """simple docstring""" lowerCamelCase__ : int = CircularLinkedList() assert len(_lowercase ) == 0 assert circular_linked_list.is_empty() is True assert str(_lowercase ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(_lowercase ) == i circular_linked_list.insert_nth(_lowercase , i + 1 ) assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(1 , 6 ) ) circular_linked_list.insert_tail(6 ) assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(1 , 7 ) ) circular_linked_list.insert_head(0 ) assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(0 , 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(1 , 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2 , 3 ) assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(1 , 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
709
"""simple docstring""" import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def __a ( _lowercase ): """simple docstring""" lowerCamelCase__ : Any = os.path.join(args.tf_model_dir , '''parameters.json''' ) lowerCamelCase__ : Optional[Any] = json.loads(open(_lowercase ).read() ) if not params: raise ValueError( f"""It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.""" ) if not args.output.endswith('''.pt''' ): lowerCamelCase__ : Any = args.output + '''.pt''' lowerCamelCase__ : List[str] = OrderedDict() with tf.device('''/CPU:0''' ): lowerCamelCase__ : List[str] = tf.train.load_checkpoint(args.tf_model_dir ) lowerCamelCase__ : Tuple = reader.get_variable_to_shape_map() for key_name in shapes.keys(): lowerCamelCase__ : Any = reader.get_tensor(_lowercase ).astype(np.floataa ) if key_name.endswith('''/adam_m''' ) or key_name.endswith('''/adam_v''' ): continue if key_name.startswith('''pasts/''' ): if key_name.startswith('''pasts/mlp''' ): lowerCamelCase__ : Tuple = int(key_name[9] ) elif key_name.startswith('''pasts/out''' ): lowerCamelCase__ : Union[str, Any] = 8 lowerCamelCase__ : Optional[Any] = '''model.sqout.%d.weight''' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time lowerCamelCase__ : List[str] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCamelCase__ : List[str] = torch.tensor(_lowercase ) elif key_name.startswith('''model/moe''' ): lowerCamelCase__ : Dict = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/switch_gating/kernel''' ): lowerCamelCase__ : Any = '''model.blocks.%d.feed_forward.mlp.router.classifier.weight''' % player lowerCamelCase__ : int = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCamelCase__ : List[Any] = torch.tensor(_lowercase ) elif key_name.endswith('''/softmlp/kernel''' ): lowerCamelCase__ : Optional[Any] = '''model.blocks.%d.feed_forward.soft_bypass_mlp.weight''' % player lowerCamelCase__ : List[Any] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCamelCase__ : Dict = torch.tensor(_lowercase ) elif key_name.endswith('''/wo/kernel''' ) or key_name.endswith('''/wi/kernel''' ): lowerCamelCase__ : Optional[int] = key_name[-9:-7] for i in range(16 ): lowerCamelCase__ : str = '''model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight''' % (player, i, nlayer) lowerCamelCase__ : Union[str, Any] = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided lowerCamelCase__ : Optional[int] = torch.tensor(_lowercase ) elif key_name.startswith('''model/mlp''' ): lowerCamelCase__ : Dict = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/p1/kernel''' ): lowerCamelCase__ : Dict = '''model.blocks.%d.feed_forward.mlp.wi.weight''' % player lowerCamelCase__ : Any = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCamelCase__ : Tuple = torch.tensor(_lowercase ) elif key_name.endswith('''/p1/bias''' ): lowerCamelCase__ : Union[str, Any] = '''model.blocks.%d.feed_forward.mlp.wi.bias''' % player lowerCamelCase__ : Dict = vnp.copy() # same because it is one dimensional lowerCamelCase__ : Union[str, Any] = torch.tensor(_lowercase ) elif key_name.endswith('''/p2/kernel''' ): lowerCamelCase__ : Tuple = '''model.blocks.%d.feed_forward.mlp.wo.weight''' % player lowerCamelCase__ : Union[str, Any] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCamelCase__ : Any = torch.tensor(_lowercase ) elif key_name.endswith('''/p2/bias''' ): lowerCamelCase__ : int = '''model.blocks.%d.feed_forward.mlp.wo.bias''' % player lowerCamelCase__ : Dict = vnp.copy() # same because it is one dimensional lowerCamelCase__ : List[Any] = torch.tensor(_lowercase ) elif key_name.startswith('''model/ln''' ): lowerCamelCase__ : Tuple = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): lowerCamelCase__ : Union[str, Any] = '''model.blocks.%d.feed_forward.norm.bias''' % player lowerCamelCase__ : Tuple = vnp.copy() # same because it is one dimensional lowerCamelCase__ : int = torch.tensor(_lowercase ) elif key_name.endswith('''/g''' ): lowerCamelCase__ : Tuple = '''model.blocks.%d.feed_forward.norm.weight''' % player lowerCamelCase__ : Union[str, Any] = vnp.copy() # same because it is one dimensional lowerCamelCase__ : List[str] = torch.tensor(_lowercase ) elif key_name.startswith('''model/att''' ): lowerCamelCase__ : str = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/qkv/kernel''' ): lowerCamelCase__ : List[Any] = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum lowerCamelCase__ : Optional[Any] = state[:, 0, :, :] lowerCamelCase__ : int = state[:, 1, :, :] lowerCamelCase__ : Optional[int] = state[:, 2, :, :] lowerCamelCase__ : str = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowerCamelCase__ : str = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowerCamelCase__ : Tuple = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowerCamelCase__ : Optional[Any] = '''model.blocks.%d.self_attn.self_attn.q_proj.weight''' % player lowerCamelCase__ : Dict = torch.tensor(_lowercase ) lowerCamelCase__ : str = '''model.blocks.%d.self_attn.self_attn.k_proj.weight''' % player lowerCamelCase__ : Optional[int] = torch.tensor(_lowercase ) lowerCamelCase__ : Union[str, Any] = '''model.blocks.%d.self_attn.self_attn.v_proj.weight''' % player lowerCamelCase__ : int = torch.tensor(_lowercase ) elif key_name.endswith('''/o/kernel''' ): lowerCamelCase__ : List[str] = '''model.blocks.%d.self_attn.self_attn.out_proj.weight''' % player lowerCamelCase__ : Any = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix lowerCamelCase__ : Any = torch.tensor(_lowercase ) elif key_name.startswith('''model/an''' ): lowerCamelCase__ : str = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): lowerCamelCase__ : int = '''model.blocks.%d.self_attn.norm.bias''' % player lowerCamelCase__ : Tuple = vnp.copy() # same because it is one dimensional lowerCamelCase__ : Optional[Any] = torch.tensor(_lowercase ) elif key_name.endswith('''/g''' ): lowerCamelCase__ : int = '''model.blocks.%d.self_attn.norm.weight''' % player lowerCamelCase__ : Union[str, Any] = vnp.copy() # same because it is one dimensional lowerCamelCase__ : Any = torch.tensor(_lowercase ) elif ( key_name.startswith('''model/wte''' ) or key_name.startswith('''model/wpe''' ) or key_name.startswith('''model/ete''' ) ): lowerCamelCase__ : Optional[int] = {'''wte''': '''embed_tokens''', '''wpe''': '''position_embeddings''', '''ete''': '''extra_position_embeddings'''}[ key_name[-3:] ] lowerCamelCase__ : List[Any] = '''model.%s.weight''' % nlayer lowerCamelCase__ : List[Any] = vnp.copy() # same in embedded lowerCamelCase__ : Optional[int] = torch.tensor(_lowercase ) if key_name.startswith('''model/wte''' ): lowerCamelCase__ : str = '''lm_head.weight''' lowerCamelCase__ : Dict = vnp.copy() # same in embedded lowerCamelCase__ : List[str] = torch.tensor(_lowercase ) elif key_name.startswith('''model/wob''' ): lowerCamelCase__ : List[Any] = '''final_logits_bias''' lowerCamelCase__ : List[str] = vnp.copy() # same in embedded lowerCamelCase__ : int = state.reshape((1, -1) ) lowerCamelCase__ : Optional[int] = torch.tensor(_lowercase ) elif key_name == "model/dense/kernel": lowerCamelCase__ : List[Any] = '''model.last_project.weight''' lowerCamelCase__ : List[Any] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCamelCase__ : Dict = torch.tensor(_lowercase ) elif key_name == "model/dense_1/bias": lowerCamelCase__ : Dict = '''model.last_project.bias''' lowerCamelCase__ : Tuple = vnp.copy() # same because it is one dimensional lowerCamelCase__ : Dict = torch.tensor(_lowercase ) torch.save(_lowercase , args.output ) if __name__ == "__main__": UpperCAmelCase : Tuple = argparse.ArgumentParser( description="model converter.", formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument("--tf_model_dir", metavar="PATH", type=str, required=True, help="import model") parser.add_argument("--output", metavar="PATH", type=str, required=True, help="output model") UpperCAmelCase : Any = parser.parse_args() convert_tf_gptsan_to_pt(args)
121
0
'''simple docstring''' import math class lowerCamelCase_ : '''simple docstring''' def __init__( self : List[Any] , A : Optional[int]=0 ): # a graph with Node 0,1,...,N-1 _UpperCAmelCase : str = n _UpperCAmelCase : int = [ [math.inf for j in range(0 , A )] for i in range(0 , A ) ] # adjacency matrix for weight _UpperCAmelCase : Any = [ [math.inf for j in range(0 , A )] for i in range(0 , A ) ] # dp[i][j] stores minimum distance from i to j def _A ( self : Optional[int] , A : Optional[int] , A : Union[str, Any] , A : Dict ): _UpperCAmelCase : Optional[int] = w def _A ( self : Any ): for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): _UpperCAmelCase : List[str] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def _A ( self : List[Any] , A : Any , A : Dict ): return self.dp[u][v] if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Optional[Any] = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
244
'''simple docstring''' def UpperCamelCase_ ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: """simple docstring""" return number | (1 << position) def UpperCamelCase_ ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: """simple docstring""" return number & ~(1 << position) def UpperCamelCase_ ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: """simple docstring""" return number ^ (1 << position) def UpperCamelCase_ ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> bool: """simple docstring""" return ((number >> position) & 1) == 1 def UpperCamelCase_ ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: """simple docstring""" return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
244
1
__lowerCamelCase : dict[str, float] = { "km/h": 1.0, "m/s": 3.6, "mph": 1.609_344, "knot": 1.852, } __lowerCamelCase : dict[str, float] = { "km/h": 1.0, "m/s": 0.277_777_778, "mph": 0.621_371_192, "knot": 0.539_956_803, } def lowerCamelCase_(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> float: if unit_to not in speed_chart or unit_from not in speed_chart_inverse: UpperCAmelCase = ( F'Incorrect \'from_type\' or \'to_type\' value: {unit_from!r}, {unit_to!r}\n' F'Valid values are: {", ".join(lowerCamelCase_ )}' ) raise ValueError(lowerCamelCase_ ) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 ) if __name__ == "__main__": import doctest doctest.testmod()
457
import os import re import shutil import sys import tempfile import unittest import black __lowerCamelCase : str = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. __lowerCamelCase : Optional[Any] = " def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n" class __magic_name__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , "models/bert/" ) ) UpperCAmelCase = self.transformer_dir shutil.copy( os.path.join(UpperCamelCase__ , "src/transformers/models/bert/modeling_bert.py" ) , os.path.join(self.transformer_dir , "models/bert/modeling_bert.py" ) , ) def SCREAMING_SNAKE_CASE_ ( self : int ) -> List[Any]: '''simple docstring''' UpperCAmelCase = "src/transformers" shutil.rmtree(self.transformer_dir ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Union[str, Any]=None ) -> str: '''simple docstring''' UpperCAmelCase = comment + F'\nclass {class_name}(nn.Module):\n' + class_code if overwrite_result is not None: UpperCAmelCase = comment + F'\nclass {class_name}(nn.Module):\n' + overwrite_result UpperCAmelCase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 ) UpperCAmelCase = black.format_str(UpperCamelCase__ , mode=UpperCamelCase__ ) UpperCAmelCase = os.path.join(self.transformer_dir , "new_code.py" ) with open(UpperCamelCase__ , "w" , newline="\n" ) as f: f.write(UpperCamelCase__ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(UpperCamelCase__ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=UpperCamelCase__ ) with open(UpperCamelCase__ , "r" ) as f: self.assertTrue(f.read() , UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase = check_copies.find_code_in_transformers("models.bert.modeling_bert.BertLMPredictionHead" ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Dict: '''simple docstring''' self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead" , "BertLMPredictionHead" , REFERENCE_CODE + "\n" , ) # With no empty line at the end self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead" , "BertLMPredictionHead" , UpperCamelCase__ , ) # Copy consistency with rename self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel" , "TestModelLMPredictionHead" , re.sub("Bert" , "TestModel" , UpperCamelCase__ ) , ) # Copy consistency with a really long name UpperCAmelCase = "TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( F'# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}' , F'{long_class_name}LMPredictionHead' , re.sub("Bert" , UpperCamelCase__ , UpperCamelCase__ ) , ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel" , "TestModelLMPredictionHead" , UpperCamelCase__ , overwrite_result=re.sub("Bert" , "TestModel" , UpperCamelCase__ ) , ) def SCREAMING_SNAKE_CASE_ ( self : int ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase = check_copies.LOCALIZED_READMES["README_zh-hans.md"] UpperCAmelCase = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the" " Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for" " Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong" " Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1." " **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace)," " released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and" " lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same" " method has been applied to compress GPT2 into" " [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into" " [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation)," " Multilingual BERT into" " [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German" " version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**" " (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders" " as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang" " Luong, Quoc V. Le, Christopher D. Manning." ) UpperCAmelCase = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) UpperCAmelCase = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1." " **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文" " [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and" " lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same" " method has been applied to compress GPT2 into" " [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into" " [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation)," " Multilingual BERT into" " [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German" " version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自" " Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather" " than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le," " Christopher D. Manning 发布。\n" ) UpperCAmelCase , UpperCAmelCase = check_copies.convert_to_localized_md( UpperCamelCase__ , UpperCamelCase__ , localized_readme["format_model_list"] ) self.assertFalse(UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase , UpperCAmelCase = check_copies.convert_to_localized_md( UpperCamelCase__ , UpperCamelCase__ , localized_readme["format_model_list"] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(UpperCamelCase__ ) UpperCAmelCase = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the" " Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for" " Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong" " Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut." ) UpperCAmelCase = ( "1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and" " the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) UpperCAmelCase = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) UpperCAmelCase , UpperCAmelCase = check_copies.convert_to_localized_md( UpperCamelCase__ , UpperCamelCase__ , localized_readme["format_model_list"] ) # Check if the model link is synchronized. self.assertEqual(UpperCamelCase__ , UpperCamelCase__ )
457
1
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging _lowerCamelCase = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[Any] ) -> Optional[Any]: UpperCAmelCase_ = set() UpperCAmelCase_ = [] def parse_line(__UpperCamelCase : str ): for line in fp: if isinstance(__UpperCamelCase , __UpperCamelCase ): UpperCAmelCase_ = line.decode('''UTF-8''' ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(''' ''' ): # process a single warning and move it to `selected_warnings`. if len(__UpperCamelCase ) > 0: UpperCAmelCase_ = '''\n'''.join(__UpperCamelCase ) # Only keep the warnings specified in `targets` if any(f': {x}: ' in warning for x in targets ): selected_warnings.add(__UpperCamelCase ) buffer.clear() continue else: UpperCAmelCase_ = line.strip() buffer.append(__UpperCamelCase ) if from_gh: for filename in os.listdir(__UpperCamelCase ): UpperCAmelCase_ = os.path.join(__UpperCamelCase , __UpperCamelCase ) if not os.path.isdir(__UpperCamelCase ): # read the file if filename != "warnings.txt": continue with open(__UpperCamelCase ) as fp: parse_line(__UpperCamelCase ) else: try: with zipfile.ZipFile(__UpperCamelCase ) as z: for filename in z.namelist(): if not os.path.isdir(__UpperCamelCase ): # read the file if filename != "warnings.txt": continue with z.open(__UpperCamelCase ) as fp: parse_line(__UpperCamelCase ) except Exception: logger.warning( f'{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.' ) return selected_warnings def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int] , __UpperCamelCase : str ) -> Any: UpperCAmelCase_ = set() UpperCAmelCase_ = [os.path.join(__UpperCamelCase , __UpperCamelCase ) for p in os.listdir(__UpperCamelCase ) if (p.endswith('''.zip''' ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(__UpperCamelCase , __UpperCamelCase ) ) return selected_warnings if __name__ == "__main__": def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] ) -> List[Any]: return values.split(''',''' ) _lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') parser.add_argument( '--output_dir', type=str, required=True, help='Where to store the downloaded artifacts and other result files.', ) parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.') # optional parameters parser.add_argument( '--targets', default='DeprecationWarning,UserWarning,FutureWarning', type=list_str, help='Comma-separated list of target warning(s) which we want to extract.', ) parser.add_argument( '--from_gh', action='store_true', help='If running from a GitHub action workflow and collecting warnings from its artifacts.', ) _lowerCamelCase = parser.parse_args() _lowerCamelCase = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links _lowerCamelCase = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print('=' * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts _lowerCamelCase = extract_warnings(args.output_dir, args.targets) _lowerCamelCase = sorted(selected_warnings) with open(os.path.join(args.output_dir, 'selected_warnings.json'), 'w', encoding='UTF-8') as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
144
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { '''google/fnet-base''': '''https://huggingface.co/google/fnet-base/resolve/main/config.json''', '''google/fnet-large''': '''https://huggingface.co/google/fnet-large/resolve/main/config.json''' # See all FNet models at https://huggingface.co/models?filter=fnet } class A__ ( __SCREAMING_SNAKE_CASE ): lowerCamelCase__ : Optional[Any] ="fnet" def __init__( self , lowerCamelCase=32000 , lowerCamelCase=768 , lowerCamelCase=12 , lowerCamelCase=3072 , lowerCamelCase="gelu_new" , lowerCamelCase=0.1 , lowerCamelCase=512 , lowerCamelCase=4 , lowerCamelCase=0.0_2 , lowerCamelCase=1e-12 , lowerCamelCase=False , lowerCamelCase=512 , lowerCamelCase=3 , lowerCamelCase=1 , lowerCamelCase=2 , **lowerCamelCase , ) -> int: """simple docstring""" super().__init__(pad_token_id=lowerCamelCase , bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase , **lowerCamelCase ) __magic_name__ : Tuple = vocab_size __magic_name__ : Dict = max_position_embeddings __magic_name__ : Any = hidden_size __magic_name__ : Any = num_hidden_layers __magic_name__ : Union[str, Any] = intermediate_size __magic_name__ : int = hidden_act __magic_name__ : Tuple = hidden_dropout_prob __magic_name__ : Optional[int] = initializer_range __magic_name__ : Optional[int] = type_vocab_size __magic_name__ : List[str] = layer_norm_eps __magic_name__ : List[Any] = use_tpu_fourier_optimizations __magic_name__ : List[str] = tpu_short_seq_length
154
0
'''simple docstring''' from __future__ import annotations import bisect def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 , __UpperCAmelCase = -1 ) -> int: '''simple docstring''' if hi < 0: __SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) while lo < hi: __SCREAMING_SNAKE_CASE = lo + (hi - lo) // 2 if sorted_collection[mid] < item: __SCREAMING_SNAKE_CASE = mid + 1 else: __SCREAMING_SNAKE_CASE = mid return lo def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 , __UpperCAmelCase = -1 ) -> int: '''simple docstring''' if hi < 0: __SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) while lo < hi: __SCREAMING_SNAKE_CASE = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: __SCREAMING_SNAKE_CASE = mid + 1 else: __SCREAMING_SNAKE_CASE = mid return lo def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 , __UpperCAmelCase = -1 ) -> None: '''simple docstring''' sorted_collection.insert(bisect_left(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , __UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 , __UpperCAmelCase = -1 ) -> None: '''simple docstring''' sorted_collection.insert(bisect_right(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , __UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> int | None: '''simple docstring''' __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) - 1 while left <= right: __SCREAMING_SNAKE_CASE = left + (right - left) // 2 __SCREAMING_SNAKE_CASE = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: __SCREAMING_SNAKE_CASE = midpoint - 1 else: __SCREAMING_SNAKE_CASE = midpoint + 1 return None def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> int | None: '''simple docstring''' __SCREAMING_SNAKE_CASE = bisect.bisect_left(__UpperCAmelCase , __UpperCAmelCase ) if index != len(__UpperCAmelCase ) and sorted_collection[index] == item: return index return None def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int | None: '''simple docstring''' if right < left: return None __SCREAMING_SNAKE_CASE = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , midpoint - 1 ) else: return binary_search_by_recursion(__UpperCAmelCase , __UpperCAmelCase , midpoint + 1 , __UpperCAmelCase ) if __name__ == "__main__": a = input("Enter numbers separated by comma:\n").strip() a = sorted(int(item) for item in user_input.split(",")) a = int(input("Enter a single number to be found in the list:\n")) a = binary_search(collection, target) if result is None: print(F'''{target} was not found in {collection}.''') else: print(F'''{target} was found at position {result} in {collection}.''')
13
'''simple docstring''' from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers a = [ "python", "tqdm", "regex", "requests", "packaging", "filelock", "numpy", "tokenizers", "huggingface-hub", "safetensors", "accelerate", "pyyaml", ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase=None ) -> Optional[Any]: '''simple docstring''' require_version(deps[pkg] , __UpperCAmelCase )
13
1
from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def __UpperCamelCase ( ): """simple docstring""" UpperCAmelCase = ArgumentParser("Transformers CLI tool" , usage="transformers-cli <command> [<args>]" ) UpperCAmelCase = parser.add_subparsers(help="transformers-cli command helpers" ) # Register commands ConvertCommand.register_subcommand(_lowerCAmelCase ) DownloadCommand.register_subcommand(_lowerCAmelCase ) EnvironmentCommand.register_subcommand(_lowerCAmelCase ) RunCommand.register_subcommand(_lowerCAmelCase ) ServeCommand.register_subcommand(_lowerCAmelCase ) UserCommands.register_subcommand(_lowerCAmelCase ) AddNewModelCommand.register_subcommand(_lowerCAmelCase ) AddNewModelLikeCommand.register_subcommand(_lowerCAmelCase ) LfsCommands.register_subcommand(_lowerCAmelCase ) PTtoTFCommand.register_subcommand(_lowerCAmelCase ) # Let's go UpperCAmelCase = parser.parse_args() if not hasattr(_lowerCAmelCase , "func" ): parser.print_help() exit(1 ) # Run UpperCAmelCase = args.func(_lowerCAmelCase ) service.run() if __name__ == "__main__": main()
333
from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class __magic_name__ : def __init__( self : str ,__SCREAMING_SNAKE_CASE : Union[str, Any] ,__SCREAMING_SNAKE_CASE : str=1_3 ,__SCREAMING_SNAKE_CASE : Optional[Any]=7 ,__SCREAMING_SNAKE_CASE : Optional[Any]=True ,__SCREAMING_SNAKE_CASE : List[str]=True ,__SCREAMING_SNAKE_CASE : int=True ,__SCREAMING_SNAKE_CASE : int=True ,__SCREAMING_SNAKE_CASE : Tuple=9_9 ,__SCREAMING_SNAKE_CASE : str=3_2 ,__SCREAMING_SNAKE_CASE : Any=2 ,__SCREAMING_SNAKE_CASE : Union[str, Any]=4 ,__SCREAMING_SNAKE_CASE : Tuple=3_7 ,__SCREAMING_SNAKE_CASE : List[str]="gelu" ,__SCREAMING_SNAKE_CASE : List[Any]=0.1 ,__SCREAMING_SNAKE_CASE : Optional[int]=0.1 ,__SCREAMING_SNAKE_CASE : Tuple=5_1_2 ,__SCREAMING_SNAKE_CASE : Dict=1_6 ,__SCREAMING_SNAKE_CASE : Tuple=2 ,__SCREAMING_SNAKE_CASE : List[str]=0.02 ,__SCREAMING_SNAKE_CASE : Optional[Any]=3 ,__SCREAMING_SNAKE_CASE : Dict=4 ,__SCREAMING_SNAKE_CASE : Union[str, Any]=None ,__SCREAMING_SNAKE_CASE : Dict=1_0_0_0 ,): UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = seq_length UpperCAmelCase = is_training UpperCAmelCase = use_input_mask UpperCAmelCase = use_token_type_ids UpperCAmelCase = use_labels UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = type_sequence_label_size UpperCAmelCase = initializer_range UpperCAmelCase = num_labels UpperCAmelCase = num_choices UpperCAmelCase = scope UpperCAmelCase = range_bbox def _UpperCAmelCase ( self : Dict ): UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) # convert bbox to numpy since TF does not support item assignment UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length, 4] ,self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: UpperCAmelCase = bbox[i, j, 3] UpperCAmelCase = bbox[i, j, 1] UpperCAmelCase = t if bbox[i, j, 2] < bbox[i, j, 0]: UpperCAmelCase = bbox[i, j, 2] UpperCAmelCase = bbox[i, j, 0] UpperCAmelCase = t UpperCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE ) UpperCAmelCase = None if self.use_input_mask: UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase = None if self.use_token_type_ids: UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) UpperCAmelCase = ids_tensor([self.batch_size] ,self.num_choices ) UpperCAmelCase = LayoutLMConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCAmelCase ( self : Dict ,__SCREAMING_SNAKE_CASE : List[str] ,__SCREAMING_SNAKE_CASE : Optional[Any] ,__SCREAMING_SNAKE_CASE : Dict ,__SCREAMING_SNAKE_CASE : Union[str, Any] ,__SCREAMING_SNAKE_CASE : int ,__SCREAMING_SNAKE_CASE : int ,__SCREAMING_SNAKE_CASE : Optional[Any] ,__SCREAMING_SNAKE_CASE : str ): UpperCAmelCase = TFLayoutLMModel(config=__SCREAMING_SNAKE_CASE ) UpperCAmelCase = model(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE ,token_type_ids=__SCREAMING_SNAKE_CASE ) UpperCAmelCase = model(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,token_type_ids=__SCREAMING_SNAKE_CASE ) UpperCAmelCase = model(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def _UpperCAmelCase ( self : Dict ,__SCREAMING_SNAKE_CASE : Tuple ,__SCREAMING_SNAKE_CASE : Tuple ,__SCREAMING_SNAKE_CASE : List[str] ,__SCREAMING_SNAKE_CASE : str ,__SCREAMING_SNAKE_CASE : Union[str, Any] ,__SCREAMING_SNAKE_CASE : Any ,__SCREAMING_SNAKE_CASE : List[Any] ,__SCREAMING_SNAKE_CASE : List[Any] ): UpperCAmelCase = TFLayoutLMForMaskedLM(config=__SCREAMING_SNAKE_CASE ) UpperCAmelCase = model(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE ,token_type_ids=__SCREAMING_SNAKE_CASE ,labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self : Union[str, Any] ,__SCREAMING_SNAKE_CASE : str ,__SCREAMING_SNAKE_CASE : List[Any] ,__SCREAMING_SNAKE_CASE : int ,__SCREAMING_SNAKE_CASE : Tuple ,__SCREAMING_SNAKE_CASE : List[str] ,__SCREAMING_SNAKE_CASE : Optional[int] ,__SCREAMING_SNAKE_CASE : Union[str, Any] ,__SCREAMING_SNAKE_CASE : Union[str, Any] ): UpperCAmelCase = self.num_labels UpperCAmelCase = TFLayoutLMForSequenceClassification(config=__SCREAMING_SNAKE_CASE ) UpperCAmelCase = model(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE ,token_type_ids=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _UpperCAmelCase ( self : List[str] ,__SCREAMING_SNAKE_CASE : List[str] ,__SCREAMING_SNAKE_CASE : int ,__SCREAMING_SNAKE_CASE : List[str] ,__SCREAMING_SNAKE_CASE : int ,__SCREAMING_SNAKE_CASE : Dict ,__SCREAMING_SNAKE_CASE : Dict ,__SCREAMING_SNAKE_CASE : str ,__SCREAMING_SNAKE_CASE : Union[str, Any] ): UpperCAmelCase = self.num_labels UpperCAmelCase = TFLayoutLMForTokenClassification(config=__SCREAMING_SNAKE_CASE ) UpperCAmelCase = model(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE ,token_type_ids=__SCREAMING_SNAKE_CASE ,labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _UpperCAmelCase ( self : Optional[int] ,__SCREAMING_SNAKE_CASE : Union[str, Any] ,__SCREAMING_SNAKE_CASE : Optional[int] ,__SCREAMING_SNAKE_CASE : Optional[Any] ,__SCREAMING_SNAKE_CASE : Dict ,__SCREAMING_SNAKE_CASE : int ,__SCREAMING_SNAKE_CASE : Optional[Any] ,__SCREAMING_SNAKE_CASE : List[str] ,__SCREAMING_SNAKE_CASE : str ): UpperCAmelCase = TFLayoutLMForQuestionAnswering(config=__SCREAMING_SNAKE_CASE ) UpperCAmelCase = model(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE ,token_type_ids=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _UpperCAmelCase ( self : List[Any] ): UpperCAmelCase = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) = config_and_inputs UpperCAmelCase = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_tf class __magic_name__ ( _a , _a , unittest.TestCase): _UpperCAmelCase : Optional[int] = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) _UpperCAmelCase : str = ( { 'feature-extraction': TFLayoutLMModel, 'fill-mask': TFLayoutLMForMaskedLM, 'text-classification': TFLayoutLMForSequenceClassification, 'token-classification': TFLayoutLMForTokenClassification, 'zero-shot': TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) _UpperCAmelCase : Tuple = False _UpperCAmelCase : int = True _UpperCAmelCase : Union[str, Any] = 10 def _UpperCAmelCase ( self : Tuple ): UpperCAmelCase = TFLayoutLMModelTester(self ) UpperCAmelCase = ConfigTester(self ,config_class=__SCREAMING_SNAKE_CASE ,hidden_size=3_7 ) def _UpperCAmelCase ( self : List[str] ): self.config_tester.run_common_tests() def _UpperCAmelCase ( self : List[str] ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self : Dict ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self : Dict ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self : Any ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self : List[str] ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__SCREAMING_SNAKE_CASE ) @slow def _UpperCAmelCase ( self : List[str] ): for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = TFLayoutLMModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) @unittest.skip("Onnx compliancy broke with TF 2.10" ) def _UpperCAmelCase ( self : List[str] ): pass def __UpperCamelCase ( ): """simple docstring""" UpperCAmelCase = tf.convert_to_tensor([[1_01,10_19,10_14,10_16,10_37,1_28_49,47_47,10_04,1_42_46,22_78,54_39,45_24,50_02,29_30,21_93,29_30,43_41,32_08,10_05,10_55,21_71,28_48,1_13_00,35_31,1_02],[1_01,40_70,40_34,70_20,10_24,30_58,10_15,10_13,28_61,10_13,60_70,1_92_74,27_72,62_05,2_78_14,1_61_47,1_61_47,43_43,20_47,1_02_83,1_09_69,1_43_89,10_12,23_38,1_02]] ) # noqa: E231 UpperCAmelCase = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 UpperCAmelCase = tf.convert_to_tensor([[[0,0,0,0],[4_23,2_37,4_40,2_51],[4_27,2_72,4_41,2_87],[4_19,1_15,4_37,1_29],[9_61,8_85,9_92,9_12],[2_56,38,3_30,58],[2_56,38,3_30,58],[3_36,42,3_53,57],[3_60,39,4_01,56],[3_60,39,4_01,56],[4_11,39,4_71,59],[4_79,41,5_28,59],[5_33,39,6_30,60],[67,1_13,1_34,1_31],[1_41,1_15,2_09,1_32],[68,1_49,1_33,1_66],[1_41,1_49,1_87,1_64],[1_95,1_48,2_87,1_65],[1_95,1_48,2_87,1_65],[1_95,1_48,2_87,1_65],[2_95,1_48,3_49,1_65],[4_41,1_49,4_92,1_66],[4_97,1_49,5_46,1_64],[64,2_01,1_25,2_18],[10_00,10_00,10_00,10_00]],[[0,0,0,0],[6_62,1_50,7_54,1_66],[6_65,1_99,7_42,2_11],[5_19,2_13,5_54,2_28],[5_19,2_13,5_54,2_28],[1_34,4_33,1_87,4_54],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[3_14,4_69,3_76,4_82],[5_04,6_84,5_82,7_06],[9_41,8_25,9_73,9_00],[9_41,8_25,9_73,9_00],[9_41,8_25,9_73,9_00],[9_41,8_25,9_73,9_00],[6_10,7_49,6_52,7_65],[1_30,6_59,1_68,6_72],[1_76,6_57,2_37,6_72],[2_38,6_57,3_12,6_72],[4_43,6_53,6_28,6_72],[4_43,6_53,6_28,6_72],[7_16,3_01,8_25,3_17],[10_00,10_00,10_00,10_00]]] ) # noqa: E231 UpperCAmelCase = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) UpperCAmelCase = tf.convert_to_tensor([[-1_00,10,10,10,9,1,-1_00,7,7,-1_00,7,7,4,2,5,2,8,8,-1_00,-1_00,5,0,3,2,-1_00],[-1_00,12,12,12,-1_00,12,10,-1_00,-1_00,-1_00,-1_00,10,12,9,-1_00,-1_00,-1_00,10,10,10,9,12,-1_00,10,-1_00]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class __magic_name__ ( unittest.TestCase): @slow def _UpperCAmelCase ( self : Any ): UpperCAmelCase = TFLayoutLMModel.from_pretrained("microsoft/layoutlm-base-uncased" ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = prepare_layoutlm_batch_inputs() # forward pass UpperCAmelCase = model(input_ids=__SCREAMING_SNAKE_CASE ,bbox=__SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE ,token_type_ids=__SCREAMING_SNAKE_CASE ) # test the sequence output on [0, :3, :3] UpperCAmelCase = tf.convert_to_tensor( [[0.1785, -0.1947, -0.0425], [-0.3254, -0.2807, 0.2553], [-0.5391, -0.3322, 0.3364]] ,) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] ,__SCREAMING_SNAKE_CASE ,atol=1e-3 ) ) # test the pooled output on [1, :3] UpperCAmelCase = tf.convert_to_tensor([-0.6580, -0.0214, 0.8552] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] ,__SCREAMING_SNAKE_CASE ,atol=1e-3 ) ) @slow def _UpperCAmelCase ( self : Union[str, Any] ): # initialize model with randomly initialized sequence classification head UpperCAmelCase = TFLayoutLMForSequenceClassification.from_pretrained("microsoft/layoutlm-base-uncased" ,num_labels=2 ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = prepare_layoutlm_batch_inputs() # forward pass UpperCAmelCase = model( input_ids=__SCREAMING_SNAKE_CASE ,bbox=__SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE ,token_type_ids=__SCREAMING_SNAKE_CASE ,labels=tf.convert_to_tensor([1, 1] ) ,) # test whether we get a loss as a scalar UpperCAmelCase = outputs.loss UpperCAmelCase = (2,) self.assertEqual(loss.shape ,__SCREAMING_SNAKE_CASE ) # test the shape of the logits UpperCAmelCase = outputs.logits UpperCAmelCase = (2, 2) self.assertEqual(logits.shape ,__SCREAMING_SNAKE_CASE ) @slow def _UpperCAmelCase ( self : Tuple ): # initialize model with randomly initialized token classification head UpperCAmelCase = TFLayoutLMForTokenClassification.from_pretrained("microsoft/layoutlm-base-uncased" ,num_labels=1_3 ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = prepare_layoutlm_batch_inputs() # forward pass UpperCAmelCase = model( input_ids=__SCREAMING_SNAKE_CASE ,bbox=__SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE ,token_type_ids=__SCREAMING_SNAKE_CASE ,labels=__SCREAMING_SNAKE_CASE ) # test the shape of the logits UpperCAmelCase = outputs.logits UpperCAmelCase = tf.convert_to_tensor((2, 2_5, 1_3) ) self.assertEqual(logits.shape ,__SCREAMING_SNAKE_CASE ) @slow def _UpperCAmelCase ( self : List[Any] ): # initialize model with randomly initialized token classification head UpperCAmelCase = TFLayoutLMForQuestionAnswering.from_pretrained("microsoft/layoutlm-base-uncased" ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = prepare_layoutlm_batch_inputs() # forward pass UpperCAmelCase = model(input_ids=__SCREAMING_SNAKE_CASE ,bbox=__SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE ,token_type_ids=__SCREAMING_SNAKE_CASE ) # test the shape of the logits UpperCAmelCase = tf.convert_to_tensor((2, 2_5) ) self.assertEqual(outputs.start_logits.shape ,__SCREAMING_SNAKE_CASE ) self.assertEqual(outputs.end_logits.shape ,__SCREAMING_SNAKE_CASE )
333
1
"""simple docstring""" import os def snake_case ( _a: Tuple )-> List[str]: '''simple docstring''' lowerCamelCase__ = len(grid[0] ) lowerCamelCase__ = len(_a ) lowerCamelCase__ = 0 lowerCamelCase__ = 0 lowerCamelCase__ = 0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(_a ): for j in range(n_rows - 3 ): lowerCamelCase__ = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] lowerCamelCase__ = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: lowerCamelCase__ = ( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: lowerCamelCase__ = ( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) lowerCamelCase__ = max( _a , _a , _a , _a ) if max_product > largest: lowerCamelCase__ = max_product return largest def snake_case ( )-> Optional[int]: '''simple docstring''' lowerCamelCase__ = [] with open(os.path.dirname(_a ) + '/grid.txt' ) as file: for line in file: grid.append(line.strip('\n' ).split(' ' ) ) lowerCamelCase__ = [[int(_a ) for i in grid[j]] for j in range(len(_a ) )] return largest_product(_a ) if __name__ == "__main__": print(solution())
659
"""simple docstring""" def snake_case ( _a: int , _a: list[int] , _a: int )-> int: '''simple docstring''' def count_of_possible_combinations(_a: int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(_a ) def snake_case ( _a: int , _a: list[int] , _a: int )-> int: '''simple docstring''' def count_of_possible_combinations_with_dp_array( _a: int , _a: list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] lowerCamelCase__ = sum( count_of_possible_combinations_with_dp_array(target - item , _a ) for item in array ) lowerCamelCase__ = answer return answer lowerCamelCase__ = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(_a , _a ) def snake_case ( _a: int , _a: list[int] , _a: int )-> int: '''simple docstring''' lowerCamelCase__ = [0] * (target + 1) lowerCamelCase__ = 1 for i in range(1 , target + 1 ): for j in range(_a ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() _snake_case = 3 _snake_case = 5 _snake_case = [1, 2, 5] print(combination_sum_iv(n, array, target))
659
1
import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : str ): '''simple docstring''' debug_launcher(test_script.main ) def UpperCamelCase_ ( self : str ): '''simple docstring''' debug_launcher(test_ops.main )
411
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class UpperCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self : Union[str, Any] , A : Optional[Any] ): for model_result in results.values(): for batch_size, sequence_length in zip(model_result["bs"] , model_result["ss"] ): _UpperCAmelCase : List[str] = model_result["result"][batch_size][sequence_length] self.assertIsNotNone(A ) def snake_case_ ( self : Optional[Any] ): _UpperCAmelCase : Any = "sshleifer/tiny-gpt2" _UpperCAmelCase : int = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) _UpperCAmelCase : List[Any] = PyTorchBenchmark(A ) _UpperCAmelCase : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case_ ( self : Dict ): _UpperCAmelCase : List[str] = "sgugger/tiny-distilbert-classification" _UpperCAmelCase : Optional[int] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , only_pretrain_model=A , ) _UpperCAmelCase : Dict = PyTorchBenchmark(A ) _UpperCAmelCase : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case_ ( self : int ): _UpperCAmelCase : Any = "sshleifer/tiny-gpt2" _UpperCAmelCase : List[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , torchscript=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) _UpperCAmelCase : Dict = PyTorchBenchmark(A ) _UpperCAmelCase : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == "cpu" , "Cant do half precision" ) def snake_case_ ( self : List[str] ): _UpperCAmelCase : Union[str, Any] = "sshleifer/tiny-gpt2" _UpperCAmelCase : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , fpaa=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) _UpperCAmelCase : List[str] = PyTorchBenchmark(A ) _UpperCAmelCase : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case_ ( self : List[Any] ): _UpperCAmelCase : Optional[Any] = "sshleifer/tiny-gpt2" _UpperCAmelCase : int = AutoConfig.from_pretrained(A ) # set architectures equal to `None` _UpperCAmelCase : Optional[Any] = None _UpperCAmelCase : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) _UpperCAmelCase : List[Any] = PyTorchBenchmark(A , configs=[config] ) _UpperCAmelCase : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case_ ( self : int ): _UpperCAmelCase : Dict = "sshleifer/tiny-gpt2" _UpperCAmelCase : Union[str, Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) _UpperCAmelCase : Tuple = PyTorchBenchmark(A ) _UpperCAmelCase : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == "cpu" , "Can't do half precision" ) def snake_case_ ( self : List[Any] ): _UpperCAmelCase : Optional[int] = "sshleifer/tiny-gpt2" _UpperCAmelCase : str = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , fpaa=A , multi_process=A , ) _UpperCAmelCase : Tuple = PyTorchBenchmark(A ) _UpperCAmelCase : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def snake_case_ ( self : List[Any] ): _UpperCAmelCase : Optional[Any] = "sshleifer/tiny-gpt2" _UpperCAmelCase : Union[str, Any] = AutoConfig.from_pretrained(A ) _UpperCAmelCase : Dict = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) _UpperCAmelCase : List[Any] = PyTorchBenchmark(A , configs=[config] ) _UpperCAmelCase : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case_ ( self : str ): _UpperCAmelCase : List[str] = "sshleifer/tinier_bart" _UpperCAmelCase : Any = AutoConfig.from_pretrained(A ) _UpperCAmelCase : Optional[int] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) _UpperCAmelCase : int = PyTorchBenchmark(A , configs=[config] ) _UpperCAmelCase : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case_ ( self : Any ): _UpperCAmelCase : Tuple = "sshleifer/tiny-gpt2" _UpperCAmelCase : Tuple = AutoConfig.from_pretrained(A ) _UpperCAmelCase : List[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) _UpperCAmelCase : int = PyTorchBenchmark(A , configs=[config] ) _UpperCAmelCase : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def snake_case_ ( self : str ): _UpperCAmelCase : Optional[int] = "sshleifer/tinier_bart" _UpperCAmelCase : int = AutoConfig.from_pretrained(A ) _UpperCAmelCase : List[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) _UpperCAmelCase : str = PyTorchBenchmark(A , configs=[config] ) _UpperCAmelCase : int = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def snake_case_ ( self : Dict ): _UpperCAmelCase : int = "sshleifer/tiny-gpt2" with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase : Union[str, Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , save_to_csv=A , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(A , "inf_time.csv" ) , train_memory_csv_file=os.path.join(A , "train_mem.csv" ) , inference_memory_csv_file=os.path.join(A , "inf_mem.csv" ) , train_time_csv_file=os.path.join(A , "train_time.csv" ) , env_info_csv_file=os.path.join(A , "env.csv" ) , multi_process=A , ) _UpperCAmelCase : int = PyTorchBenchmark(A ) benchmark.run() self.assertTrue(Path(os.path.join(A , "inf_time.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(A , "train_time.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(A , "inf_mem.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(A , "train_mem.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(A , "env.csv" ) ).exists() ) def snake_case_ ( self : List[str] ): _UpperCAmelCase : List[Any] = "sshleifer/tiny-gpt2" def _check_summary_is_not_empty(A : int ): self.assertTrue(hasattr(A , "sequential" ) ) self.assertTrue(hasattr(A , "cumulative" ) ) self.assertTrue(hasattr(A , "current" ) ) self.assertTrue(hasattr(A , "total" ) ) with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase : int = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(A , "log.txt" ) , log_print=A , trace_memory_line_by_line=A , multi_process=A , ) _UpperCAmelCase : int = PyTorchBenchmark(A ) _UpperCAmelCase : Any = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(A , "log.txt" ) ).exists() )
289
0
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def A__ ( __A ): '''simple docstring''' if ( (cp >= 0X4e00 and cp <= 0X9fff) or (cp >= 0X3400 and cp <= 0X4dbf) # or (cp >= 0X20000 and cp <= 0X2a6df) # or (cp >= 0X2a700 and cp <= 0X2b73f) # or (cp >= 0X2b740 and cp <= 0X2b81f) # or (cp >= 0X2b820 and cp <= 0X2ceaf) # or (cp >= 0Xf900 and cp <= 0Xfaff) or (cp >= 0X2f800 and cp <= 0X2fa1f) # ): # return True return False def A__ ( __A ): '''simple docstring''' for char in word: _lowerCamelCase : Tuple = ord(lowerCAmelCase_ ) if not _is_chinese_char(lowerCAmelCase_ ): return 0 return 1 def A__ ( __A ): '''simple docstring''' _lowerCamelCase : Tuple = set() for token in tokens: _lowerCamelCase : Tuple = len(lowerCAmelCase_ ) > 1 and is_chinese(lowerCAmelCase_ ) if chinese_word: word_set.add(lowerCAmelCase_ ) _lowerCamelCase : Any = list(lowerCAmelCase_ ) return word_list def A__ ( __A , __A ): '''simple docstring''' if not chinese_word_set: return bert_tokens _lowerCamelCase : str = max([len(lowerCAmelCase_ ) for w in chinese_word_set] ) _lowerCamelCase : Tuple = bert_tokens _lowerCamelCase : Dict = 0, len(lowerCAmelCase_ ) while start < end: _lowerCamelCase : Any = True if is_chinese(bert_word[start] ): _lowerCamelCase : int = min(end - start , lowerCAmelCase_ ) for i in range(lowerCAmelCase_ , 1 , -1 ): _lowerCamelCase : int = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): _lowerCamelCase : Optional[int] = '''##''' + bert_word[j] _lowerCamelCase : Dict = start + i _lowerCamelCase : Dict = False break if single_word: start += 1 return bert_word def A__ ( __A , __A , __A ): '''simple docstring''' _lowerCamelCase : List[Any] = [] for i in range(0 , len(lowerCAmelCase_ ) , 100 ): _lowerCamelCase : Any = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=["""cws"""] ).cws _lowerCamelCase : List[Any] = [get_chinese_word(lowerCAmelCase_ ) for r in res] ltp_res.extend(lowerCAmelCase_ ) assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ) _lowerCamelCase : Dict = [] for i in range(0 , len(lowerCAmelCase_ ) , 100 ): _lowerCamelCase : Dict = bert_tokenizer(lines[i : i + 100] , add_special_tokens=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=512 ) bert_res.extend(res["""input_ids"""] ) assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ) _lowerCamelCase : Optional[Any] = [] for input_ids, chinese_word in zip(lowerCAmelCase_ , lowerCAmelCase_ ): _lowerCamelCase : Dict = [] for id in input_ids: _lowerCamelCase : Optional[int] = bert_tokenizer._convert_id_to_token(lowerCAmelCase_ ) input_tokens.append(lowerCAmelCase_ ) _lowerCamelCase : Dict = add_sub_symbol(lowerCAmelCase_ , lowerCAmelCase_ ) _lowerCamelCase : Tuple = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(lowerCAmelCase_ ): if token[:2] == "##": _lowerCamelCase : Tuple = token[2:] # save chinese tokens' pos if len(lowerCAmelCase_ ) == 1 and _is_chinese_char(ord(lowerCAmelCase_ ) ): ref_id.append(lowerCAmelCase_ ) ref_ids.append(lowerCAmelCase_ ) assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ) return ref_ids def A__ ( __A ): '''simple docstring''' with open(args.file_name , """r""" , encoding="""utf-8""" ) as f: _lowerCamelCase : int = f.readlines() _lowerCamelCase : int = [line.strip() for line in data if len(lowerCAmelCase_ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _lowerCamelCase : Union[str, Any] = LTP(args.ltp ) # faster in GPU device _lowerCamelCase : Any = BertTokenizer.from_pretrained(args.bert ) _lowerCamelCase : Tuple = prepare_ref(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) with open(args.save_path , """w""" , encoding="""utf-8""" ) as f: _lowerCamelCase : Dict = [json.dumps(lowerCAmelCase_ ) + '''\n''' for ref in ref_ids] f.writelines(lowerCAmelCase_ ) if __name__ == "__main__": lowerCAmelCase : Union[str, Any] =argparse.ArgumentParser(description="prepare_chinese_ref") parser.add_argument( "--file_name", required=False, type=str, default="./resources/chinese-demo.txt", help="file need process, same as training data in lm", ) parser.add_argument( "--ltp", required=False, type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path", ) parser.add_argument( "--bert", required=False, type=str, default="./resources/robert", help="resources for Bert tokenizer", ) parser.add_argument( "--save_path", required=False, type=str, default="./resources/ref.txt", help="path to save res", ) lowerCAmelCase : Union[str, Any] =parser.parse_args() main(args)
702
from __future__ import annotations class __snake_case : '''simple docstring''' def __init__( self : Tuple , _UpperCamelCase : int = 0) ->str: """simple docstring""" _lowerCamelCase : Union[str, Any] = key def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : str , _UpperCamelCase : int) ->list[str]: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Union[str, Any] = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_UpperCamelCase) ^ key) for ch in content] def _SCREAMING_SNAKE_CASE ( self : str , _UpperCamelCase : str , _UpperCamelCase : int) ->list[str]: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Optional[int] = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_UpperCamelCase) ^ key) for ch in content] def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : str , _UpperCamelCase : int = 0) ->str: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : int = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned _lowerCamelCase : Any = """""" for ch in content: ans += chr(ord(_UpperCamelCase) ^ key) return ans def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : str , _UpperCamelCase : int = 0) ->str: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : int = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned _lowerCamelCase : Optional[Any] = """""" for ch in content: ans += chr(ord(_UpperCamelCase) ^ key) return ans def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : str , _UpperCamelCase : int = 0) ->bool: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) try: with open(_UpperCamelCase) as fin, open("""encrypt.out""" , """w+""") as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(_UpperCamelCase , _UpperCamelCase)) except OSError: return False return True def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : str , _UpperCamelCase : int) ->bool: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) try: with open(_UpperCamelCase) as fin, open("""decrypt.out""" , """w+""") as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(_UpperCamelCase , _UpperCamelCase)) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
15
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase = { 'configuration_x_clip': [ 'XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XCLIPConfig', 'XCLIPTextConfig', 'XCLIPVisionConfig', ], 'processing_x_clip': ['XCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ 'XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'XCLIPModel', 'XCLIPPreTrainedModel', 'XCLIPTextModel', 'XCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
269
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _A ( UpperCAmelCase_ ): lowercase_ : Tuple = ['''image_processor''', '''tokenizer'''] lowercase_ : str = '''BlipImageProcessor''' lowercase_ : str = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self : List[str] , lowerCamelCase__ : str , lowerCamelCase__ : Union[str, Any] ): """simple docstring""" __UpperCamelCase : Optional[int] = False super().__init__(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : Tuple = self.image_processor def __call__( self : Optional[Any] , lowerCamelCase__ : ImageInput = None , lowerCamelCase__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowerCamelCase__ : bool = True , lowerCamelCase__ : Union[bool, str, PaddingStrategy] = False , lowerCamelCase__ : Union[bool, str, TruncationStrategy] = None , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : int = 0 , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : bool = False , lowerCamelCase__ : bool = False , lowerCamelCase__ : bool = False , lowerCamelCase__ : bool = False , lowerCamelCase__ : bool = False , lowerCamelCase__ : bool = True , lowerCamelCase__ : Optional[Union[str, TensorType]] = None , **lowerCamelCase__ : int , ): """simple docstring""" if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None: __UpperCamelCase : Optional[int] = self.tokenizer __UpperCamelCase : Dict = self.tokenizer( text=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ , stride=lowerCamelCase__ , pad_to_multiple_of=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , return_overflowing_tokens=lowerCamelCase__ , return_special_tokens_mask=lowerCamelCase__ , return_offsets_mapping=lowerCamelCase__ , return_token_type_ids=lowerCamelCase__ , return_length=lowerCamelCase__ , verbose=lowerCamelCase__ , return_tensors=lowerCamelCase__ , **lowerCamelCase__ , ) return text_encoding # add pixel_values __UpperCamelCase : str = self.image_processor(lowerCamelCase__ , return_tensors=lowerCamelCase__ ) if text is not None: __UpperCamelCase : Optional[int] = self.tokenizer( text=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ , stride=lowerCamelCase__ , pad_to_multiple_of=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , return_overflowing_tokens=lowerCamelCase__ , return_special_tokens_mask=lowerCamelCase__ , return_offsets_mapping=lowerCamelCase__ , return_token_type_ids=lowerCamelCase__ , return_length=lowerCamelCase__ , verbose=lowerCamelCase__ , return_tensors=lowerCamelCase__ , **lowerCamelCase__ , ) else: __UpperCamelCase : Optional[Any] = None if text_encoding is not None: encoding_image_processor.update(lowerCamelCase__ ) return encoding_image_processor def a ( self : List[str] , *lowerCamelCase__ : Any , **lowerCamelCase__ : List[Any] ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCamelCase__ , **lowerCamelCase__ ) def a ( self : List[str] , *lowerCamelCase__ : int , **lowerCamelCase__ : Tuple ): """simple docstring""" return self.tokenizer.decode(*lowerCamelCase__ , **lowerCamelCase__ ) @property def a ( self : Any ): """simple docstring""" __UpperCamelCase : str = self.tokenizer.model_input_names __UpperCamelCase : str = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
269
1
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class _SCREAMING_SNAKE_CASE : a_ : str = 42 a_ : Optional[int] = None a_ : Dict = None def SCREAMING_SNAKE_CASE ( ) -> Dict: __UpperCAmelCase =Node(1 ) __UpperCAmelCase =Node(2 ) __UpperCAmelCase =Node(3 ) __UpperCAmelCase =Node(4 ) __UpperCAmelCase =Node(5 ) return tree def SCREAMING_SNAKE_CASE ( snake_case__ ) -> Optional[int]: return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def SCREAMING_SNAKE_CASE ( snake_case__ ) -> Optional[int]: return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def SCREAMING_SNAKE_CASE ( snake_case__ ) -> Optional[int]: return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def SCREAMING_SNAKE_CASE ( snake_case__ ) -> List[str]: return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def SCREAMING_SNAKE_CASE ( snake_case__ ) -> Tuple: __UpperCAmelCase =[] if root is None: return output __UpperCAmelCase =deque([root] ) while process_queue: __UpperCAmelCase =process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def SCREAMING_SNAKE_CASE ( snake_case__ , snake_case__ ) -> Dict: __UpperCAmelCase =[] def populate_output(snake_case__ , snake_case__ ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(snake_case__ , snake_case__ ) return output def SCREAMING_SNAKE_CASE ( snake_case__ , snake_case__ ) -> str: __UpperCAmelCase =[] def populate_output(snake_case__ , snake_case__ ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(snake_case__ , snake_case__ ) return output def SCREAMING_SNAKE_CASE ( snake_case__ ) -> Any: if root is None: return [] __UpperCAmelCase =[] __UpperCAmelCase =0 __UpperCAmelCase =height(snake_case__ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(snake_case__ , snake_case__ ) ) __UpperCAmelCase =1 else: output.append(get_nodes_from_right_to_left(snake_case__ , snake_case__ ) ) __UpperCAmelCase =0 return output def SCREAMING_SNAKE_CASE ( ) -> List[str]: # Main function for testing. __UpperCAmelCase =make_tree() print(f"""In-order Traversal: {inorder(snake_case__ )}""" ) print(f"""Pre-order Traversal: {preorder(snake_case__ )}""" ) print(f"""Post-order Traversal: {postorder(snake_case__ )}""" , '''\n''' ) print(f"""Height of Tree: {height(snake_case__ )}""" , '''\n''' ) print('''Complete Level Order Traversal: ''' ) print(level_order(snake_case__ ) , '''\n''' ) print('''Level-wise order Traversal: ''' ) for level in range(1 , height(snake_case__ ) + 1 ): print(f"""Level {level}:""" , get_nodes_from_left_to_right(snake_case__ , level=snake_case__ ) ) print('''\nZigZag order Traversal: ''' ) print(zigzag(snake_case__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
702
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def SCREAMING_SNAKE_CASE ( snake_case__ , snake_case__=False ) -> Optional[Any]: __UpperCAmelCase =[] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""module.blocks.{i}.norm1.weight""", f"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""module.blocks.{i}.norm1.bias""", f"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (f"""module.blocks.{i}.attn.proj.weight""", f"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""module.blocks.{i}.attn.proj.bias""", f"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""module.blocks.{i}.norm2.weight""", f"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""module.blocks.{i}.norm2.bias""", f"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""module.blocks.{i}.mlp.fc1.weight""", f"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""module.blocks.{i}.mlp.fc1.bias""", f"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""module.blocks.{i}.mlp.fc2.weight""", f"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""module.blocks.{i}.mlp.fc2.bias""", f"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('''module.cls_token''', '''vit.embeddings.cls_token'''), ('''module.patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''module.patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''module.pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''module.norm.weight''', '''layernorm.weight'''), ('''module.norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" __UpperCAmelCase =[(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def SCREAMING_SNAKE_CASE ( snake_case__ , snake_case__ , snake_case__=False ) -> Any: for i in range(config.num_hidden_layers ): if base_model: __UpperCAmelCase ='''''' else: __UpperCAmelCase ='''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __UpperCAmelCase =state_dict.pop(f"""module.blocks.{i}.attn.qkv.weight""" ) __UpperCAmelCase =state_dict.pop(f"""module.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __UpperCAmelCase =in_proj_weight[ : config.hidden_size, : ] __UpperCAmelCase =in_proj_bias[: config.hidden_size] __UpperCAmelCase =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __UpperCAmelCase =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __UpperCAmelCase =in_proj_weight[ -config.hidden_size :, : ] __UpperCAmelCase =in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE ( snake_case__ ) -> Tuple: __UpperCAmelCase =['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(snake_case__ , snake_case__ ) def SCREAMING_SNAKE_CASE ( snake_case__ ) -> Any: # projection head is used in the self-supervised pre-training in MSN, # for downstream task it's not needed. __UpperCAmelCase =[ '''module.fc.fc1.weight''', '''module.fc.fc1.bias''', '''module.fc.bn1.weight''', '''module.fc.bn1.bias''', '''module.fc.bn1.running_mean''', '''module.fc.bn1.running_var''', '''module.fc.bn1.num_batches_tracked''', '''module.fc.fc2.weight''', '''module.fc.fc2.bias''', '''module.fc.bn2.weight''', '''module.fc.bn2.bias''', '''module.fc.bn2.running_mean''', '''module.fc.bn2.running_var''', '''module.fc.bn2.num_batches_tracked''', '''module.fc.fc3.weight''', '''module.fc.fc3.bias''', ] for k in ignore_keys: state_dict.pop(snake_case__ , snake_case__ ) def SCREAMING_SNAKE_CASE ( snake_case__ , snake_case__ , snake_case__ ) -> List[str]: __UpperCAmelCase =dct.pop(snake_case__ ) __UpperCAmelCase =val def SCREAMING_SNAKE_CASE ( snake_case__ , snake_case__ ) -> Optional[Any]: __UpperCAmelCase =ViTMSNConfig() __UpperCAmelCase =1000 __UpperCAmelCase ='''datasets/huggingface/label-files''' __UpperCAmelCase ='''imagenet-1k-id2label.json''' __UpperCAmelCase =json.load(open(hf_hub_download(snake_case__ , snake_case__ ) , '''r''' ) ) __UpperCAmelCase ={int(snake_case__ ): v for k, v in idalabel.items()} __UpperCAmelCase =idalabel __UpperCAmelCase ={v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: __UpperCAmelCase =384 __UpperCAmelCase =1536 __UpperCAmelCase =6 elif "l16" in checkpoint_url: __UpperCAmelCase =1024 __UpperCAmelCase =4096 __UpperCAmelCase =24 __UpperCAmelCase =16 __UpperCAmelCase =0.1 elif "b4" in checkpoint_url: __UpperCAmelCase =4 elif "l7" in checkpoint_url: __UpperCAmelCase =7 __UpperCAmelCase =1024 __UpperCAmelCase =4096 __UpperCAmelCase =24 __UpperCAmelCase =16 __UpperCAmelCase =0.1 __UpperCAmelCase =ViTMSNModel(snake_case__ ) __UpperCAmelCase =torch.hub.load_state_dict_from_url(snake_case__ , map_location='''cpu''' )['''target_encoder'''] __UpperCAmelCase =ViTImageProcessor(size=config.image_size ) remove_projection_head(snake_case__ ) __UpperCAmelCase =create_rename_keys(snake_case__ , base_model=snake_case__ ) for src, dest in rename_keys: rename_key(snake_case__ , snake_case__ , snake_case__ ) read_in_q_k_v(snake_case__ , snake_case__ , base_model=snake_case__ ) model.load_state_dict(snake_case__ ) model.eval() __UpperCAmelCase ='''http://images.cocodataset.org/val2017/000000039769.jpg''' __UpperCAmelCase =Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) __UpperCAmelCase =ViTImageProcessor( size=config.image_size , image_mean=snake_case__ , image_std=snake_case__ ) __UpperCAmelCase =image_processor(images=snake_case__ , return_tensors='''pt''' ) # forward pass torch.manual_seed(2 ) __UpperCAmelCase =model(**snake_case__ ) __UpperCAmelCase =outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: __UpperCAmelCase =torch.tensor([[-1.0915, -1.4876, -1.1809]] ) elif "b16" in checkpoint_url: __UpperCAmelCase =torch.tensor([[14.2889, -18.9045, 11.7281]] ) elif "l16" in checkpoint_url: __UpperCAmelCase =torch.tensor([[41.5028, -22.8681, 45.6475]] ) elif "b4" in checkpoint_url: __UpperCAmelCase =torch.tensor([[-4.3868, 5.2932, -0.4137]] ) else: __UpperCAmelCase =torch.tensor([[-0.1792, -0.6465, 2.4263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , snake_case__ , atol=1e-4 ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(snake_case__ ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(snake_case__ ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) UpperCamelCase_ = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
142
0
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ = { """configuration_autoformer""": [ """AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AutoformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ """AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """AutoformerForPrediction""", """AutoformerModel""", """AutoformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys A_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
29
import random def snake_case (__lowercase , __lowercase ) -> tuple: '''simple docstring''' _snake_case ,_snake_case ,_snake_case : List[Any] = [], [], [] for element in data: if element < pivot: less.append(__lowercase ) elif element > pivot: greater.append(__lowercase ) else: equal.append(__lowercase ) return less, equal, greater def snake_case (__lowercase , __lowercase ) -> List[Any]: '''simple docstring''' if index >= len(__lowercase ) or index < 0: return None _snake_case : Any = items[random.randint(0 , len(__lowercase ) - 1 )] _snake_case : Tuple = 0 _snake_case ,_snake_case ,_snake_case : Tuple = _partition(__lowercase , __lowercase ) _snake_case : Tuple = len(__lowercase ) _snake_case : List[str] = len(__lowercase ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(__lowercase , __lowercase ) # must be in larger else: return quick_select(__lowercase , index - (m + count) )
670
0
import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging lowercase : Union[str, Any] = logging.get_logger(__name__) class A__ ( lowercase_ ): """simple docstring""" __A : List[Any] = ['''input_features'''] def __init__( self , lowercase=80 , lowercase=1_6000 , lowercase=160 , lowercase=30 , lowercase=400 , lowercase=0.0 , lowercase=False , **lowercase , ) -> int: '''simple docstring''' super().__init__( feature_size=lowercase , sampling_rate=lowercase , padding_value=lowercase , return_attention_mask=lowercase , **lowercase , ) a__ : Optional[int] = n_fft a__ : Dict = hop_length a__ : Any = chunk_length a__ : List[Any] = chunk_length * sampling_rate a__ : Optional[int] = self.n_samples // hop_length a__ : Dict = sampling_rate a__ : Any = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=lowercase , min_frequency=0.0 , max_frequency=8000.0 , sampling_rate=lowercase , norm='slaney' , mel_scale='slaney' , ) def __lowercase ( self , lowercase) -> str: '''simple docstring''' a__ : Tuple = spectrogram( lowercase , window_function(self.n_fft , 'hann') , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel='log10' , ) a__ : str = log_spec[:, :-1] a__ : Optional[int] = np.maximum(lowercase , log_spec.max() - 8.0) a__ : int = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def __lowercase ( lowercase , lowercase , lowercase = 0.0) -> Dict: '''simple docstring''' if attention_mask is not None: a__ : List[Any] = np.array(lowercase , np.intaa) a__ : str = [] for vector, length in zip(lowercase , attention_mask.sum(-1)): a__ : Union[str, Any] = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7) if length < normed_slice.shape[0]: a__ : List[Any] = padding_value normed_input_values.append(lowercase) else: a__ : Tuple = [(x - x.mean()) / np.sqrt(x.var() + 1e-7) for x in input_values] return normed_input_values def __call__( self , lowercase , lowercase = True , lowercase = None , lowercase = None , lowercase = None , lowercase = "max_length" , lowercase = None , lowercase = None , lowercase = None , **lowercase , ) -> Tuple: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a' F' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input' F' was sampled with {self.sampling_rate} and not {sampling_rate}.') else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.') a__ : Optional[Any] = isinstance(lowercase , np.ndarray) and len(raw_speech.shape) > 1 if is_batched_numpy and len(raw_speech.shape) > 2: raise ValueError(F'Only mono-channel audio is supported for input to {self}') a__ : List[Any] = is_batched_numpy or ( isinstance(lowercase , (list, tuple)) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list))) ) if is_batched: a__ : Dict = [np.asarray([speech] , dtype=np.floataa).T for speech in raw_speech] elif not is_batched and not isinstance(lowercase , np.ndarray): a__ : Optional[int] = np.asarray(lowercase , dtype=np.floataa) elif isinstance(lowercase , np.ndarray) and raw_speech.dtype is np.dtype(np.floataa): a__ : List[Any] = raw_speech.astype(np.floataa) # always return batch if not is_batched: a__ : List[str] = [np.asarray([raw_speech]).T] a__ : str = BatchFeature({'input_features': raw_speech}) # convert into correct format for padding a__ : List[str] = self.pad( lowercase , padding=lowercase , max_length=max_length if max_length else self.n_samples , truncation=lowercase , pad_to_multiple_of=lowercase , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: a__ : Optional[Any] = self.zero_mean_unit_var_norm( padded_inputs['input_features'] , attention_mask=padded_inputs['attention_mask'] , padding_value=self.padding_value , ) a__ : Optional[int] = np.stack(padded_inputs['input_features'] , axis=0) # make sure list is in array format a__ : Optional[Any] = padded_inputs.get('input_features').transpose(2 , 0 , 1) a__ : List[Any] = [self._np_extract_fbank_features(lowercase) for waveform in input_features[0]] if isinstance(input_features[0] , lowercase): a__ : Dict = [np.asarray(lowercase , dtype=np.floataa) for feature in input_features] else: a__ : str = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) a__ : Union[str, Any] = padded_inputs['attention_mask'][:, :: self.hop_length] if return_tensors is not None: a__ : List[Any] = padded_inputs.convert_to_tensors(lowercase) return padded_inputs def __lowercase ( self) -> Optional[Any]: '''simple docstring''' a__ : Dict = copy.deepcopy(self.__dict__) a__ : Optional[int] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
720
import math import random from typing import Any from .hill_climbing import SearchProblem def A_ ( A__ , A__ = True , A__ = math.inf , A__ = -math.inf , A__ = math.inf , A__ = -math.inf , A__ = False , A__ = 100 , A__ = 0.01 , A__ = 1 , ) -> Any: a__ : List[str] = False a__ : Optional[int] = search_prob a__ : Any = start_temperate a__ : Any = [] a__ : int = 0 a__ : Any = None while not search_end: a__ : Tuple = current_state.score() if best_state is None or current_score > best_state.score(): a__ : Optional[Any] = current_state scores.append(A__ ) iterations += 1 a__ : Union[str, Any] = None a__ : List[str] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to a__ : Optional[int] = random.randint(0 , len(A__ ) - 1 ) # picking a random neighbor a__ : List[str] = neighbors.pop(A__ ) a__ : List[Any] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: a__ : int = change * -1 # in case we are finding minimum if change > 0: # improves the solution a__ : Optional[Any] = picked_neighbor else: a__ : List[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability a__ : Tuple = picked_neighbor a__ : Union[str, Any] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor a__ : int = True else: a__ : Union[str, Any] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(A__ ) , A__ ) plt.xlabel('Iterations' ) plt.ylabel('Function values' ) plt.show() return best_state if __name__ == "__main__": def A_ ( A__ , A__ ) -> Optional[Any]: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) lowercase : List[Any] = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) lowercase : int = simulated_annealing( prob, find_max=False, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) lowercase : List[str] = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) lowercase : List[Any] = simulated_annealing( prob, find_max=True, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def A_ ( A__ , A__ ) -> Optional[Any]: return (3 * x**2) - (6 * y) lowercase : Tuple = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowercase : Optional[Any] = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" ) lowercase : str = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowercase : List[Any] = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" )
392
0
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case__ : Any = logging.get_logger(__name__) snake_case__ : Any = {"""vocab_file""": """vocab.txt"""} snake_case__ : int = { """vocab_file""": { """openbmb/cpm-ant-10b""": """https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt""", }, } snake_case__ : int = { """openbmb/cpm-ant-10b""": 1_0_2_4, } def _snake_case (__lowercase): UpperCamelCase_ = collections.OrderedDict() with open(__lowercase , 'r' , encoding='utf-8') as reader: UpperCamelCase_ = reader.readlines() for index, token in enumerate(__lowercase): UpperCamelCase_ = token.rstrip('\n') UpperCamelCase_ = index return vocab class _a ( UpperCAmelCase__ ): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase="<unk>" , _UpperCAmelCase=200 ) -> Any: UpperCamelCase_ = vocab UpperCamelCase_ = unk_token UpperCamelCase_ = max_input_chars_per_word def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Tuple: UpperCamelCase_ = list(_UpperCAmelCase ) if len(_UpperCAmelCase ) > self.max_input_chars_per_word: return [self.unk_token] UpperCamelCase_ = 0 UpperCamelCase_ = [] while start < len(_UpperCAmelCase ): UpperCamelCase_ = len(_UpperCAmelCase ) UpperCamelCase_ = None while start < end: UpperCamelCase_ = ''.join(chars[start:end] ) if substr in self.vocab: UpperCamelCase_ = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(_UpperCAmelCase ) UpperCamelCase_ = end return sub_tokens class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = ["""input_ids""", """attention_mask"""] A_ = False def __init__( self , _UpperCAmelCase , _UpperCAmelCase="<d>" , _UpperCAmelCase="</d>" , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="</n>" , _UpperCAmelCase="</_>" , _UpperCAmelCase="left" , **_UpperCAmelCase , ) -> List[Any]: requires_backends(self , ['jieba'] ) super().__init__( bod_token=_UpperCAmelCase , eod_token=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , line_token=_UpperCAmelCase , space_token=_UpperCAmelCase , padding_side=_UpperCAmelCase , **_UpperCAmelCase , ) UpperCamelCase_ = bod_token UpperCamelCase_ = eod_token UpperCamelCase_ = load_vocab(_UpperCAmelCase ) UpperCamelCase_ = self.encoder[space_token] UpperCamelCase_ = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] UpperCamelCase_ = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _UpperCAmelCase : x[1] ) ) UpperCamelCase_ = {v: k for k, v in self.encoder.items()} UpperCamelCase_ = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def _UpperCAmelCase ( self ) -> Optional[Any]: return self.encoder[self.bod_token] @property def _UpperCAmelCase ( self ) -> List[Any]: return self.encoder[self.eod_token] @property def _UpperCAmelCase ( self ) -> Any: return self.encoder["\n"] @property def _UpperCAmelCase ( self ) -> int: return len(self.encoder ) def _UpperCAmelCase ( self ) -> str: return dict(self.encoder , **self.added_tokens_encoder ) def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Optional[int]: UpperCamelCase_ = [] for x in jieba.cut(_UpperCAmelCase , cut_all=_UpperCAmelCase ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(_UpperCAmelCase ) ) return output_tokens def _UpperCAmelCase ( self , _UpperCAmelCase , **_UpperCAmelCase ) -> Optional[int]: UpperCamelCase_ = [i for i in token_ids if i >= 0] UpperCamelCase_ = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(_UpperCAmelCase , **_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase ) -> str: return token in self.encoder def _UpperCAmelCase ( self , _UpperCAmelCase ) -> str: return "".join(_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase ) -> int: return self.encoder.get(_UpperCAmelCase , self.encoder.get(self.unk_token ) ) def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Optional[Any]: return self.decoder.get(_UpperCAmelCase , self.unk_token ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ) -> Tuple[str]: if os.path.isdir(_UpperCAmelCase ): UpperCamelCase_ = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) else: UpperCamelCase_ = (filename_prefix + '-' if filename_prefix else '') + save_directory UpperCamelCase_ = 0 if " " in self.encoder: UpperCamelCase_ = self.encoder[' '] del self.encoder[" "] if "\n" in self.encoder: UpperCamelCase_ = self.encoder['\n'] del self.encoder["\n"] UpperCamelCase_ = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _UpperCAmelCase : x[1] ) ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ' Please check that the vocabulary is not corrupted!' ) UpperCamelCase_ = token_index writer.write(token + '\n' ) index += 1 return (vocab_file,) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ) -> List[int]: if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase ) if token_ids_a is not None: return [1] + ([0] * len(_UpperCAmelCase )) + [1] + ([0] * len(_UpperCAmelCase )) return [1] + ([0] * len(_UpperCAmelCase ))
23
'''simple docstring''' import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class UpperCAmelCase : def __init__(self : Optional[Any] , A__ : Optional[Any] , A__ : Optional[int]=sys.maxsize ) -> Optional[Any]: lowercase = "bilinear" lowercase = max_size lowercase = short_edge_length def __call__(self : Union[str, Any] , A__ : Optional[int] ) -> Tuple: lowercase = [] for img in imgs: lowercase , lowercase = img.shape[:2] # later: provide list and randomly choose index for resize lowercase = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img lowercase = size * 1.0 / min(A__ , A__ ) if h < w: lowercase , lowercase = size, scale * w else: lowercase , lowercase = scale * h, size if max(A__ , A__ ) > self.max_size: lowercase = self.max_size * 1.0 / max(A__ , A__ ) lowercase = newh * scale lowercase = neww * scale lowercase = int(neww + 0.5 ) lowercase = int(newh + 0.5 ) if img.dtype == np.uinta: lowercase = Image.fromarray(A__ ) lowercase = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) lowercase = np.asarray(A__ ) else: lowercase = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw lowercase = nn.functional.interpolate( A__ , (newh, neww) , mode=self.interp_method , align_corners=A__ ).squeeze(0 ) img_augs.append(A__ ) return img_augs class UpperCAmelCase : def __init__(self : Union[str, Any] , A__ : List[Any] ) -> Optional[int]: lowercase = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) lowercase = cfg.INPUT.FORMAT lowercase = cfg.SIZE_DIVISIBILITY lowercase = cfg.PAD_VALUE lowercase = cfg.INPUT.MAX_SIZE_TEST lowercase = cfg.MODEL.DEVICE lowercase = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) lowercase = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) lowercase = lambda A__ : (x - self.pixel_mean) / self.pixel_std def UpperCAmelCase__ (self : List[Any] , A__ : Any ) -> int: lowercase = tuple(max(A__ ) for s in zip(*[img.shape for img in images] ) ) lowercase = [im.shape[-2:] for im in images] lowercase = [ nn.functional.pad( A__ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(A__ , A__ ) ] return torch.stack(A__ ), torch.tensor(A__ ) def __call__(self : Optional[int] , A__ : Union[str, Any] , A__ : Optional[Any]=False ) -> str: with torch.no_grad(): if not isinstance(A__ , A__ ): lowercase = [images] if single_image: assert len(A__ ) == 1 for i in range(len(A__ ) ): if isinstance(images[i] , torch.Tensor ): images.insert(A__ , images.pop(A__ ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( A__ , torch.as_tensor(img_tensorize(images.pop(A__ ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge lowercase = torch.tensor([im.shape[:2] for im in images] ) lowercase = self.aug(A__ ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic lowercase = [self.normalizer(A__ ) for x in images] # now pad them to do the following operations lowercase , lowercase = self.pad(A__ ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad lowercase = torch.true_divide(A__ , A__ ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def UpperCAmelCase_ ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def UpperCAmelCase_ ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" assert torch.isfinite(lowerCAmelCase_ ).all(), "Box tensor contains infinite or NaN!" lowercase , lowercase = box_size tensor[:, 0].clamp_(min=0 , max=lowerCAmelCase_ ) tensor[:, 1].clamp_(min=0 , max=lowerCAmelCase_ ) tensor[:, 2].clamp_(min=0 , max=lowerCAmelCase_ ) tensor[:, 3].clamp_(min=0 , max=lowerCAmelCase_ )
310
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Tuple = { "facebook/s2t-small-librispeech-asr": ( "https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class UpperCamelCase ( __a ): a__ :Optional[Any] = '''speech_to_text''' a__ :List[str] = ['''past_key_values'''] a__ :str = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__(self , __UpperCamelCase=10_000 , __UpperCamelCase=12 , __UpperCamelCase=2_048 , __UpperCamelCase=4 , __UpperCamelCase=6 , __UpperCamelCase=2_048 , __UpperCamelCase=4 , __UpperCamelCase=0.0 , __UpperCamelCase=0.0 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase="relu" , __UpperCamelCase=256 , __UpperCamelCase=0.1 , __UpperCamelCase=0.0 , __UpperCamelCase=0.0 , __UpperCamelCase=0.02 , __UpperCamelCase=2 , __UpperCamelCase=True , __UpperCamelCase=1 , __UpperCamelCase=0 , __UpperCamelCase=2 , __UpperCamelCase=6_000 , __UpperCamelCase=1_024 , __UpperCamelCase=2 , __UpperCamelCase=(5, 5) , __UpperCamelCase=1_024 , __UpperCamelCase=80 , __UpperCamelCase=1 , **__UpperCamelCase , ) -> Union[str, Any]: UpperCamelCase_ : Any = vocab_size UpperCamelCase_ : Dict = d_model UpperCamelCase_ : Any = encoder_ffn_dim UpperCamelCase_ : int = encoder_layers UpperCamelCase_ : Any = encoder_attention_heads UpperCamelCase_ : List[Any] = decoder_ffn_dim UpperCamelCase_ : Union[str, Any] = decoder_layers UpperCamelCase_ : Optional[int] = decoder_attention_heads UpperCamelCase_ : Dict = dropout UpperCamelCase_ : int = attention_dropout UpperCamelCase_ : List[str] = activation_dropout UpperCamelCase_ : int = activation_function UpperCamelCase_ : Tuple = init_std UpperCamelCase_ : Dict = encoder_layerdrop UpperCamelCase_ : List[str] = decoder_layerdrop UpperCamelCase_ : List[Any] = use_cache UpperCamelCase_ : int = encoder_layers UpperCamelCase_ : Union[str, Any] = scale_embedding # scale factor will be sqrt(d_model) if True UpperCamelCase_ : Optional[Any] = max_source_positions UpperCamelCase_ : List[Any] = max_target_positions UpperCamelCase_ : str = num_conv_layers UpperCamelCase_ : List[Any] = list(__UpperCamelCase ) UpperCamelCase_ : List[str] = conv_channels UpperCamelCase_ : Optional[Any] = input_feat_per_channel UpperCamelCase_ : str = input_channels if len(self.conv_kernel_sizes ) != self.num_conv_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` """ f'''but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, ''' f'''`config.num_conv_layers = {self.num_conv_layers}`.''' ) super().__init__( pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , is_encoder_decoder=__UpperCamelCase , decoder_start_token_id=__UpperCamelCase , **__UpperCamelCase , )
705
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class UpperCamelCase ( __a ): def __init__(self , __UpperCamelCase ) -> Tuple: UpperCamelCase_ : str = data def __iter__(self ) -> Tuple: for element in self.data: yield element def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : Union[str, Any]=True ): UpperCamelCase_ : Dict = Accelerator(even_batches=_SCREAMING_SNAKE_CASE ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : Accelerator , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : bool = False ): if iterable: UpperCamelCase_ : Any = DummyIterableDataset(torch.as_tensor(range(_SCREAMING_SNAKE_CASE ) ) ) else: UpperCamelCase_ : Optional[int] = TensorDataset(torch.as_tensor(range(_SCREAMING_SNAKE_CASE ) ) ) UpperCamelCase_ : int = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ : int = accelerator.prepare(_SCREAMING_SNAKE_CASE ) return dl def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : Accelerator , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[int] , _SCREAMING_SNAKE_CASE : List[int] , ): UpperCamelCase_ : int = create_dataloader(accelerator=_SCREAMING_SNAKE_CASE , dataset_size=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ : Any = [len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def lowerCAmelCase_ ( ): UpperCamelCase_ : Tuple = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( _SCREAMING_SNAKE_CASE , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( _SCREAMING_SNAKE_CASE , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def lowerCAmelCase_ ( ): UpperCamelCase_ : Optional[int] = create_accelerator(even_batches=_SCREAMING_SNAKE_CASE ) verify_dataloader_batch_sizes( _SCREAMING_SNAKE_CASE , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( _SCREAMING_SNAKE_CASE , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def lowerCAmelCase_ ( ): UpperCamelCase_ : Tuple = create_accelerator(even_batches=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ : Union[str, Any] = torch.nn.Linear(1 , 1 ) UpperCamelCase_ : Union[str, Any] = accelerator.prepare(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ : Tuple = create_dataloader(_SCREAMING_SNAKE_CASE , dataset_size=3 , batch_size=1 ) UpperCamelCase_ : List[str] = [] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(_SCREAMING_SNAKE_CASE ): UpperCamelCase_ : int = ddp_model(batch[0].float() ) UpperCamelCase_ : Optional[Any] = output.sum() loss.backward() batch_idxs.append(_SCREAMING_SNAKE_CASE ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : str ): with warnings.catch_warnings(record=_SCREAMING_SNAKE_CASE ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category , _SCREAMING_SNAKE_CASE ) assert "only supported for multi-GPU" in str(w[-1].message ) def lowerCAmelCase_ ( ): UpperCamelCase_ : Optional[int] = True UpperCamelCase_ : Dict = False UpperCamelCase_ : Any = create_accelerator(even_batches=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ : Optional[int] = torch.nn.Linear(1 , 1 ) UpperCamelCase_ : Dict = accelerator.prepare(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ : Any = create_dataloader(_SCREAMING_SNAKE_CASE , dataset_size=3 , batch_size=1 ) UpperCamelCase_ : List[str] = create_dataloader(_SCREAMING_SNAKE_CASE , dataset_size=3 , batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] , even_batches=_SCREAMING_SNAKE_CASE ): UpperCamelCase_ : Tuple = train_dl.batch_sampler.even_batches UpperCamelCase_ : int = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def lowerCAmelCase_ ( ): UpperCamelCase_ : List[Any] = True UpperCamelCase_ : Any = False UpperCamelCase_ : Tuple = create_accelerator(even_batches=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ : int = torch.nn.Linear(1 , 1 ) UpperCamelCase_ : List[str] = accelerator.prepare(_SCREAMING_SNAKE_CASE ) create_dataloader(_SCREAMING_SNAKE_CASE , dataset_size=3 , batch_size=1 , iterable=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ : int = create_dataloader(_SCREAMING_SNAKE_CASE , dataset_size=3 , batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings("""ignore""" ) try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=_SCREAMING_SNAKE_CASE ): UpperCamelCase_ : List[str] = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def lowerCAmelCase_ ( ): UpperCamelCase_ : Dict = create_accelerator() UpperCamelCase_ : int = torch.nn.Linear(1 , 1 ) UpperCamelCase_ : List[Any] = accelerator.prepare(_SCREAMING_SNAKE_CASE ) create_dataloader(_SCREAMING_SNAKE_CASE , dataset_size=3 , batch_size=1 , iterable=_SCREAMING_SNAKE_CASE ) with warnings.catch_warnings(record=_SCREAMING_SNAKE_CASE ) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=_SCREAMING_SNAKE_CASE ): pass assert issubclass(w[-1].category , _SCREAMING_SNAKE_CASE ) assert "only supported for map-style datasets" in str(w[-1].message ) def lowerCAmelCase_ ( ): UpperCamelCase_ : Dict = create_accelerator() accelerator.print("""Test that even_batches variable ensures uniform batches across processes""" ) test_default_ensures_even_batch_sizes() accelerator.print("""Run tests with even_batches disabled""" ) test_can_disable_even_batches() accelerator.print("""Test joining uneven inputs""" ) test_can_join_uneven_inputs() accelerator.print("""Test overriding even_batches when joining uneven inputs""" ) test_join_can_override_even_batches() accelerator.print("""Test overriding even_batches for mixed dataloader types""" ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print("""Test overriding even_batches raises a warning for iterable dataloaders""" ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print("""Test join with non DDP distributed raises warning""" ) UpperCamelCase_ : str = accelerator.state.distributed_type UpperCamelCase_ : int = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ : Tuple = original_state if __name__ == "__main__": main()
138
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu A_ : Any =[ """EAGER""", """AOT_EAGER""", """INDUCTOR""", """NVFUSER""", """AOT_NVFUSER""", """AOT_CUDAGRAPHS""", """OFI""", """FX2TRT""", """ONNXRT""", """IPEX""", ] def lowerCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None ): """simple docstring""" a_ = True while ask_again: a_ = input(UpperCAmelCase__ ) try: if default is not None and len(UpperCAmelCase__ ) == 0: return default return convert_value(UpperCAmelCase__ ) if convert_value is not None else result except Exception: if error_message is not None: print(UpperCAmelCase__ ) def lowerCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__=[] , UpperCAmelCase__=None , UpperCAmelCase__=0 ): """simple docstring""" a_ = BulletMenu(UpperCAmelCase__ , UpperCAmelCase__ ) a_ = menu.run(default_choice=UpperCAmelCase__ ) return convert_value(UpperCAmelCase__ ) if convert_value is not None else result def lowerCamelCase_ ( UpperCAmelCase__ ): """simple docstring""" a_ = int(UpperCAmelCase__ ) return ComputeEnvironment(["""LOCAL_MACHINE""", """AMAZON_SAGEMAKER"""][value] ) def lowerCamelCase_ ( UpperCAmelCase__ ): """simple docstring""" a_ = int(UpperCAmelCase__ ) return DistributedType(["""NO""", """MULTI_CPU""", """MULTI_XPU""", """MULTI_GPU""", """MULTI_NPU""", """TPU"""][value] ) def lowerCamelCase_ ( UpperCAmelCase__ ): """simple docstring""" a_ = int(UpperCAmelCase__ ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def lowerCamelCase_ ( UpperCAmelCase__ ): """simple docstring""" a_ = int(UpperCAmelCase__ ) return PrecisionType(["""no""", """fp16""", """bf16""", """fp8"""][value] ) def lowerCamelCase_ ( UpperCAmelCase__ ): """simple docstring""" a_ = int(UpperCAmelCase__ ) return SageMakerDistributedType(["""NO""", """DATA_PARALLEL""", """MODEL_PARALLEL"""][value] ) def lowerCamelCase_ ( UpperCAmelCase__ ): """simple docstring""" return {"yes": True, "no": False}[value.lower()] class lowercase_ ( argparse.RawDescriptionHelpFormatter): """simple docstring""" def lowercase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" a_ = super()._format_usage(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) a_ = usage.replace("""<command> [<args>] """ , """""" ) return usage
483
import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("""Googling.....""") A_ : List[str] ="""https://www.google.com/search?q=""" + """ """.join(sys.argv[1:]) A_ : int =requests.get(url, headers={"""UserAgent""": UserAgent().random}) # res.raise_for_status() with open("""project1a.html""", """wb""") as out_file: # only for knowing the class for data in res.iter_content(10000): out_file.write(data) A_ : Tuple =BeautifulSoup(res.text, """html.parser""") A_ : Optional[Any] =list(soup.select(""".eZt8xd"""))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("""href""")) else: webbrowser.open(F'''https://google.com{link.get('href')}''')
483
1
"""simple docstring""" import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def lowercase__ ( snake_case_ :str , snake_case_ :int , snake_case_ :Any=1_024 , snake_case_ :Dict=1_024 , snake_case_ :int=False , **snake_case_ :int ): __UpperCAmelCase = AutoTokenizer.from_pretrained(lowerCAmelCase_ ) __UpperCAmelCase = SeqaSeqDataset(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , type_path='''train''' , **lowerCAmelCase_ ) __UpperCAmelCase = tok.pad_token_id def get_lens(snake_case_ :Dict ): __UpperCAmelCase = tqdm( DataLoader(lowerCAmelCase_ , batch_size=512 , num_workers=8 , shuffle=lowerCAmelCase_ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) __UpperCAmelCase = [] for batch in dl: __UpperCAmelCase = batch['''input_ids'''].ne(lowerCAmelCase_ ).sum(1 ).tolist() __UpperCAmelCase = batch['''labels'''].ne(lowerCAmelCase_ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(lowerCAmelCase_ , lowerCAmelCase_ ): max_lens.append(max(lowerCAmelCase_ , lowerCAmelCase_ ) ) else: max_lens.extend(lowerCAmelCase_ ) return max_lens __UpperCAmelCase = get_lens(lowerCAmelCase_ ) __UpperCAmelCase = SeqaSeqDataset(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , type_path='''val''' , **lowerCAmelCase_ ) __UpperCAmelCase = get_lens(lowerCAmelCase_ ) pickle_save(lowerCAmelCase_ , train_ds.len_file ) pickle_save(lowerCAmelCase_ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
703
"""simple docstring""" import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def lowercase__ ( ): with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(snake_case_ ): requests.request('''GET''' , '''https://huggingface.co''' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('''GET''' , '''https://huggingface.co''' , timeout=1.0 ) @pytest.mark.integration def lowercase__ ( ): with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('''GET''' , '''https://huggingface.co''' ) def lowercase__ ( ): with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(snake_case_ ): http_head('''https://huggingface.co''' )
397
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCamelCase_ ( unittest.TestCase): """simple docstring""" def __init__( self : Union[str, Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[str]=7 , UpperCAmelCase__ : Optional[int]=3 , UpperCAmelCase__ : Optional[int]=1_8 , UpperCAmelCase__ : Any=3_0 , UpperCAmelCase__ : Any=4_0_0 , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : Dict=True , ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = size if size is not None else {"height": 1_8, "width": 1_8} __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = min_resolution __SCREAMING_SNAKE_CASE = max_resolution __SCREAMING_SNAKE_CASE = do_resize __SCREAMING_SNAKE_CASE = size __SCREAMING_SNAKE_CASE = apply_ocr def UpperCAmelCase_ ( self : List[Any] ) -> List[str]: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class UpperCamelCase_ ( UpperCamelCase , unittest.TestCase): """simple docstring""" snake_case__ : Tuple = LayoutLMvaImageProcessor if is_pytesseract_available() else None def UpperCAmelCase_ ( self : Any ) -> List[str]: __SCREAMING_SNAKE_CASE = LayoutLMvaImageProcessingTester(self ) @property def UpperCAmelCase_ ( self : Optional[int] ) -> int: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase__ , "do_resize" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , "size" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , "apply_ocr" ) ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[int]: __SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 1_8, "width": 1_8} ) __SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 ) self.assertEqual(image_processor.size , {"height": 4_2, "width": 4_2} ) def UpperCAmelCase_ ( self : str ) -> Dict: pass def UpperCAmelCase_ ( self : Dict ) -> Union[str, Any]: # Initialize image_processing __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , Image.Image ) # Test not batched input __SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors="pt" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) self.assertIsInstance(encoding.words , UpperCAmelCase__ ) self.assertIsInstance(encoding.boxes , UpperCAmelCase__ ) # Test batched __SCREAMING_SNAKE_CASE = image_processing(UpperCAmelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def UpperCAmelCase_ ( self : Tuple ) -> List[Any]: # Initialize image_processing __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , numpify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , np.ndarray ) # Test not batched input __SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched __SCREAMING_SNAKE_CASE = image_processing(UpperCAmelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def UpperCAmelCase_ ( self : Optional[int] ) -> List[Any]: # Initialize image_processing __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , torchify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , torch.Tensor ) # Test not batched input __SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched __SCREAMING_SNAKE_CASE = image_processing(UpperCAmelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def UpperCAmelCase_ ( self : Dict ) -> List[str]: # with apply_OCR = True __SCREAMING_SNAKE_CASE = LayoutLMvaImageProcessor() from datasets import load_dataset __SCREAMING_SNAKE_CASE = load_dataset("hf-internal-testing/fixtures_docvqa" , split="test" ) __SCREAMING_SNAKE_CASE = Image.open(ds[0]["file"] ).convert("RGB" ) __SCREAMING_SNAKE_CASE = image_processing(UpperCAmelCase__ , return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_2_4, 2_2_4) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 __SCREAMING_SNAKE_CASE = [["11:14", "to", "11:39", "a.m", "11:39", "to", "11:44", "a.m.", "11:44", "a.m.", "to", "12:25", "p.m.", "12:25", "to", "12:58", "p.m.", "12:58", "to", "4:00", "p.m.", "2:00", "to", "5:00", "p.m.", "Coffee", "Break", "Coffee", "will", "be", "served", "for", "men", "and", "women", "in", "the", "lobby", "adjacent", "to", "exhibit", "area.", "Please", "move", "into", "exhibit", "area.", "(Exhibits", "Open)", "TRRF", "GENERAL", "SESSION", "(PART", "|)", "Presiding:", "Lee", "A.", "Waller", "TRRF", "Vice", "President", "“Introductory", "Remarks”", "Lee", "A.", "Waller,", "TRRF", "Vice", "Presi-", "dent", "Individual", "Interviews", "with", "TRRF", "Public", "Board", "Members", "and", "Sci-", "entific", "Advisory", "Council", "Mem-", "bers", "Conducted", "by", "TRRF", "Treasurer", "Philip", "G.", "Kuehn", "to", "get", "answers", "which", "the", "public", "refrigerated", "warehousing", "industry", "is", "looking", "for.", "Plus", "questions", "from", "the", "floor.", "Dr.", "Emil", "M.", "Mrak,", "University", "of", "Cal-", "ifornia,", "Chairman,", "TRRF", "Board;", "Sam", "R.", "Cecil,", "University", "of", "Georgia", "College", "of", "Agriculture;", "Dr.", "Stanley", "Charm,", "Tufts", "University", "School", "of", "Medicine;", "Dr.", "Robert", "H.", "Cotton,", "ITT", "Continental", "Baking", "Company;", "Dr.", "Owen", "Fennema,", "University", "of", "Wis-", "consin;", "Dr.", "Robert", "E.", "Hardenburg,", "USDA.", "Questions", "and", "Answers", "Exhibits", "Open", "Capt.", "Jack", "Stoney", "Room", "TRRF", "Scientific", "Advisory", "Council", "Meeting", "Ballroom", "Foyer"]] # noqa: E231 __SCREAMING_SNAKE_CASE = [[[1_4_1, 5_7, 2_1_4, 6_9], [2_2_8, 5_8, 2_5_2, 6_9], [1_4_1, 7_5, 2_1_6, 8_8], [2_3_0, 7_9, 2_8_0, 8_8], [1_4_2, 2_6_0, 2_1_8, 2_7_3], [2_3_0, 2_6_1, 2_5_5, 2_7_3], [1_4_3, 2_7_9, 2_1_8, 2_9_0], [2_3_1, 2_8_2, 2_9_0, 2_9_1], [1_4_3, 3_4_2, 2_1_8, 3_5_4], [2_3_1, 3_4_5, 2_8_9, 3_5_5], [2_0_2, 3_6_2, 2_2_7, 3_7_3], [1_4_3, 3_7_9, 2_2_0, 3_9_2], [2_3_1, 3_8_2, 2_9_1, 3_9_4], [1_4_4, 7_1_4, 2_2_0, 7_2_6], [2_3_1, 7_1_5, 2_5_6, 7_2_6], [1_4_4, 7_3_2, 2_2_0, 7_4_5], [2_3_2, 7_3_6, 2_9_1, 7_4_7], [1_4_4, 7_6_9, 2_1_8, 7_8_2], [2_3_1, 7_7_0, 2_5_6, 7_8_2], [1_4_1, 7_8_8, 2_0_2, 8_0_1], [2_1_5, 7_9_1, 2_7_4, 8_0_4], [1_4_3, 8_2_6, 2_0_4, 8_3_8], [2_1_5, 8_2_6, 2_4_0, 8_3_8], [1_4_2, 8_4_4, 2_0_2, 8_5_7], [2_1_5, 8_4_7, 2_7_4, 8_5_9], [3_3_4, 5_7, 4_2_7, 6_9], [4_4_0, 5_7, 5_2_2, 6_9], [3_6_9, 7_5, 4_6_1, 8_8], [4_6_9, 7_5, 5_1_6, 8_8], [5_2_8, 7_6, 5_6_2, 8_8], [5_7_0, 7_6, 6_6_7, 8_8], [6_7_5, 7_5, 7_1_1, 8_7], [7_2_1, 7_9, 7_7_8, 8_8], [7_8_9, 7_5, 8_4_0, 8_8], [3_6_9, 9_7, 4_7_0, 1_0_7], [4_8_4, 9_4, 5_0_7, 1_0_6], [5_1_8, 9_4, 5_6_2, 1_0_7], [5_7_6, 9_4, 6_5_5, 1_1_0], [6_6_8, 9_4, 7_9_2, 1_0_9], [8_0_4, 9_5, 8_2_9, 1_0_7], [3_6_9, 1_1_3, 4_6_5, 1_2_5], [4_7_7, 1_1_6, 5_4_7, 1_2_5], [5_6_2, 1_1_3, 6_5_8, 1_2_5], [6_7_1, 1_1_6, 7_4_8, 1_2_5], [7_6_1, 1_1_3, 8_1_1, 1_2_5], [3_6_9, 1_3_1, 4_6_5, 1_4_3], [4_7_7, 1_3_3, 5_4_8, 1_4_3], [5_6_3, 1_3_0, 6_9_8, 1_4_5], [7_1_0, 1_3_0, 8_0_2, 1_4_6], [3_3_6, 1_7_1, 4_1_2, 1_8_3], [4_2_3, 1_7_1, 5_7_2, 1_8_3], [5_8_2, 1_7_0, 7_1_6, 1_8_4], [7_2_8, 1_7_1, 8_1_7, 1_8_7], [8_2_9, 1_7_1, 8_4_4, 1_8_6], [3_3_8, 1_9_7, 4_8_2, 2_1_2], [5_0_7, 1_9_6, 5_5_7, 2_0_9], [5_6_9, 1_9_6, 5_9_5, 2_0_8], [6_1_0, 1_9_6, 7_0_2, 2_0_9], [5_0_5, 2_1_4, 5_8_3, 2_2_6], [5_9_5, 2_1_4, 6_5_6, 2_2_7], [6_7_0, 2_1_5, 8_0_7, 2_2_7], [3_3_5, 2_5_9, 5_4_3, 2_7_4], [5_5_6, 2_5_9, 7_0_8, 2_7_2], [3_7_2, 2_7_9, 4_2_2, 2_9_1], [4_3_5, 2_7_9, 4_6_0, 2_9_1], [4_7_4, 2_7_9, 5_7_4, 2_9_2], [5_8_7, 2_7_8, 6_6_4, 2_9_1], [6_7_6, 2_7_8, 7_3_8, 2_9_1], [7_5_1, 2_7_9, 8_3_4, 2_9_1], [3_7_2, 2_9_8, 4_3_4, 3_1_0], [3_3_5, 3_4_1, 4_8_3, 3_5_4], [4_9_7, 3_4_1, 6_5_5, 3_5_4], [6_6_7, 3_4_1, 7_2_8, 3_5_4], [7_4_0, 3_4_1, 8_2_5, 3_5_4], [3_3_5, 3_6_0, 4_3_0, 3_7_2], [4_4_2, 3_6_0, 5_3_4, 3_7_2], [5_4_5, 3_5_9, 6_8_7, 3_7_2], [6_9_7, 3_6_0, 7_5_4, 3_7_2], [7_6_5, 3_6_0, 8_2_3, 3_7_3], [3_3_4, 3_7_8, 4_2_8, 3_9_1], [4_4_0, 3_7_8, 5_7_7, 3_9_4], [5_9_0, 3_7_8, 7_0_5, 3_9_1], [7_2_0, 3_7_8, 8_0_1, 3_9_1], [3_3_4, 3_9_7, 4_0_0, 4_0_9], [3_7_0, 4_1_6, 5_2_9, 4_2_9], [5_4_4, 4_1_6, 5_7_6, 4_3_2], [5_8_7, 4_1_6, 6_6_5, 4_2_8], [6_7_7, 4_1_6, 8_1_4, 4_2_9], [3_7_2, 4_3_5, 4_5_2, 4_5_0], [4_6_5, 4_3_4, 4_9_5, 4_4_7], [5_1_1, 4_3_4, 6_0_0, 4_4_7], [6_1_1, 4_3_6, 6_3_7, 4_4_7], [6_4_9, 4_3_6, 6_9_4, 4_5_1], [7_0_5, 4_3_8, 8_2_4, 4_4_7], [3_6_9, 4_5_3, 4_5_2, 4_6_6], [4_6_4, 4_5_4, 5_0_9, 4_6_6], [5_2_2, 4_5_3, 6_1_1, 4_6_9], [6_2_5, 4_5_3, 7_9_2, 4_6_9], [3_7_0, 4_7_2, 5_5_6, 4_8_8], [5_7_0, 4_7_2, 6_8_4, 4_8_7], [6_9_7, 4_7_2, 7_1_8, 4_8_5], [7_3_2, 4_7_2, 8_3_5, 4_8_8], [3_6_9, 4_9_0, 4_1_1, 5_0_3], [4_2_5, 4_9_0, 4_8_4, 5_0_3], [4_9_6, 4_9_0, 6_3_5, 5_0_6], [6_4_5, 4_9_0, 7_0_7, 5_0_3], [7_1_8, 4_9_1, 7_6_1, 5_0_3], [7_7_1, 4_9_0, 8_4_0, 5_0_3], [3_3_6, 5_1_0, 3_7_4, 5_2_1], [3_8_8, 5_1_0, 4_4_7, 5_2_2], [4_6_0, 5_1_0, 4_8_9, 5_2_1], [5_0_3, 5_1_0, 5_8_0, 5_2_2], [5_9_2, 5_0_9, 7_3_6, 5_2_5], [7_4_5, 5_0_9, 7_7_0, 5_2_2], [7_8_1, 5_0_9, 8_4_0, 5_2_2], [3_3_8, 5_2_8, 4_3_4, 5_4_1], [4_4_8, 5_2_8, 5_9_6, 5_4_1], [6_0_9, 5_2_7, 6_8_7, 5_4_0], [7_0_0, 5_2_8, 7_9_2, 5_4_1], [3_3_6, 5_4_6, 3_9_7, 5_5_9], [4_0_7, 5_4_6, 4_3_1, 5_5_9], [4_4_3, 5_4_6, 5_2_5, 5_6_0], [5_3_7, 5_4_6, 6_8_0, 5_6_2], [6_8_8, 5_4_6, 7_1_4, 5_5_9], [7_2_2, 5_4_6, 8_3_7, 5_6_2], [3_3_6, 5_6_5, 4_4_9, 5_8_1], [4_6_1, 5_6_5, 4_8_5, 5_7_7], [4_9_7, 5_6_5, 6_6_5, 5_8_1], [6_8_1, 5_6_5, 7_1_8, 5_7_7], [7_3_2, 5_6_5, 8_3_7, 5_8_0], [3_3_7, 5_8_4, 4_3_8, 5_9_7], [4_5_2, 5_8_3, 5_2_1, 5_9_6], [5_3_5, 5_8_4, 6_7_7, 5_9_9], [6_9_0, 5_8_3, 7_8_7, 5_9_6], [8_0_1, 5_8_3, 8_2_5, 5_9_6], [3_3_8, 6_0_2, 4_7_8, 6_1_5], [4_9_2, 6_0_2, 5_3_0, 6_1_4], [5_4_3, 6_0_2, 6_3_8, 6_1_5], [6_5_0, 6_0_2, 6_7_6, 6_1_4], [6_8_8, 6_0_2, 7_8_8, 6_1_5], [8_0_2, 6_0_2, 8_4_3, 6_1_4], [3_3_7, 6_2_1, 5_0_2, 6_3_3], [5_1_6, 6_2_1, 6_1_5, 6_3_7], [6_2_9, 6_2_1, 7_7_4, 6_3_6], [7_8_9, 6_2_1, 8_2_7, 6_3_3], [3_3_7, 6_3_9, 4_1_8, 6_5_2], [4_3_2, 6_4_0, 5_7_1, 6_5_3], [5_8_7, 6_3_9, 7_3_1, 6_5_5], [7_4_3, 6_3_9, 7_6_9, 6_5_2], [7_8_0, 6_3_9, 8_4_1, 6_5_2], [3_3_8, 6_5_8, 4_4_0, 6_7_3], [4_5_5, 6_5_8, 4_9_1, 6_7_0], [5_0_8, 6_5_8, 6_0_2, 6_7_1], [6_1_6, 6_5_8, 6_3_8, 6_7_0], [6_5_4, 6_5_8, 8_3_5, 6_7_4], [3_3_7, 6_7_7, 4_2_9, 6_8_9], [3_3_7, 7_1_4, 4_8_2, 7_2_6], [4_9_5, 7_1_4, 5_4_8, 7_2_6], [5_6_1, 7_1_4, 6_8_3, 7_2_6], [3_3_8, 7_7_0, 4_6_1, 7_8_2], [4_7_4, 7_6_9, 5_5_4, 7_8_5], [4_8_9, 7_8_8, 5_6_2, 8_0_3], [5_7_6, 7_8_8, 6_4_3, 8_0_1], [6_5_6, 7_8_7, 7_5_1, 8_0_4], [7_6_4, 7_8_8, 8_4_4, 8_0_1], [3_3_4, 8_2_5, 4_2_1, 8_3_8], [4_3_0, 8_2_4, 5_7_4, 8_3_8], [5_8_4, 8_2_4, 7_2_3, 8_4_1], [3_3_5, 8_4_4, 4_5_0, 8_5_7], [4_6_4, 8_4_3, 5_8_3, 8_6_0], [6_2_8, 8_6_2, 7_5_5, 8_7_5], [7_6_9, 8_6_1, 8_4_8, 8_7_8]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , UpperCAmelCase__ ) self.assertListEqual(encoding.boxes , UpperCAmelCase__ ) # with apply_OCR = False __SCREAMING_SNAKE_CASE = LayoutLMvaImageProcessor(apply_ocr=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = image_processing(UpperCAmelCase__ , return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_2_4, 2_2_4) )
682
"""simple docstring""" def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' if edge <= 0 or not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): raise ValueError("Length must be a positive." ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' if edge <= 0 or not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): raise ValueError("Length must be a positive." ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
682
1
import argparse import math import traceback import dateutil.parser as date_parser import requests def __UpperCamelCase ( _lowerCAmelCase ) -> str: """simple docstring""" A : Tuple = {} A : Optional[Any] = job["""started_at"""] A : Union[str, Any] = job["""completed_at"""] A : Tuple = date_parser.parse(SCREAMING_SNAKE_CASE_ ) A : Tuple = date_parser.parse(SCREAMING_SNAKE_CASE_ ) A : List[str] = round((end_datetime - start_datetime).total_seconds() / 60.0 ) A : int = start A : List[Any] = end A : Dict = duration_in_min return job_info def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase=None ) -> str: """simple docstring""" A : Dict = None if token is not None: A : Tuple = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''} A : Tuple = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' A : Tuple = requests.get(SCREAMING_SNAKE_CASE_ , headers=SCREAMING_SNAKE_CASE_ ).json() A : Any = {} try: job_time.update({job["""name"""]: extract_time_from_single_job(SCREAMING_SNAKE_CASE_ ) for job in result["""jobs"""]} ) A : Optional[Any] = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(SCREAMING_SNAKE_CASE_ ): A : Tuple = requests.get(url + f'''&page={i + 2}''' , headers=SCREAMING_SNAKE_CASE_ ).json() job_time.update({job["""name"""]: extract_time_from_single_job(SCREAMING_SNAKE_CASE_ ) for job in result["""jobs"""]} ) return job_time except Exception: print(f'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} if __name__ == "__main__": SCREAMING_SNAKE_CASE_:int = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") SCREAMING_SNAKE_CASE_:int = parser.parse_args() SCREAMING_SNAKE_CASE_:Optional[int] = get_job_time(args.workflow_run_id) SCREAMING_SNAKE_CASE_:Optional[Any] = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(F"""{k}: {v["duration"]}""")
700
def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: """simple docstring""" A : Dict = [0 for i in range(r + 1 )] # nc0 = 1 A : Dict = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. A : Any = min(_lowerCAmelCase , _lowerCAmelCase ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
520
0
def lowerCamelCase__ ( ): __UpperCAmelCase : Optional[Any] = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] __UpperCAmelCase : str = 6 __UpperCAmelCase : List[str] = 1 __UpperCAmelCase : Tuple = 1901 __UpperCAmelCase : Union[str, Any] = 0 while year < 2001: day += 7 if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 __UpperCAmelCase : Optional[int] = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 __UpperCAmelCase : int = day - 29 else: if day > days_per_month[month - 1]: month += 1 __UpperCAmelCase : Optional[int] = day - days_per_month[month - 2] if month > 12: year += 1 __UpperCAmelCase : List[Any] = 1 if year < 2001 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
63
"""simple docstring""" import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging a_ : int = logging.get_logger(__name__) a_ : Union[str, Any] = { '''facebook/encodec_24khz''': '''https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json''', '''facebook/encodec_48khz''': '''https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json''', } class __lowercase( lowercase__ ): '''simple docstring''' __a : Any = 'encodec' def __init__( self , __a=[1.5, 3.0, 6.0, 12.0, 24.0] , __a=24000 , __a=1 , __a=False , __a=None , __a=None , __a=128 , __a=32 , __a=1 , __a=[8, 5, 4, 2] , __a="weight_norm" , __a=7 , __a=7 , __a=3 , __a=2 , __a=True , __a="reflect" , __a=2 , __a=2 , __a=1.0 , __a=1024 , __a=None , __a=True , **__a , ): __lowerCamelCase : Optional[int] = target_bandwidths __lowerCamelCase : Dict = sampling_rate __lowerCamelCase : Tuple = audio_channels __lowerCamelCase : List[Any] = normalize __lowerCamelCase : List[str] = chunk_length_s __lowerCamelCase : Optional[int] = overlap __lowerCamelCase : List[str] = hidden_size __lowerCamelCase : Tuple = num_filters __lowerCamelCase : Optional[Any] = num_residual_layers __lowerCamelCase : List[Any] = upsampling_ratios __lowerCamelCase : int = norm_type __lowerCamelCase : str = kernel_size __lowerCamelCase : Tuple = last_kernel_size __lowerCamelCase : str = residual_kernel_size __lowerCamelCase : Tuple = dilation_growth_rate __lowerCamelCase : Any = use_causal_conv __lowerCamelCase : str = pad_mode __lowerCamelCase : List[str] = compress __lowerCamelCase : int = num_lstm_layers __lowerCamelCase : str = trim_right_ratio __lowerCamelCase : Optional[int] = codebook_size __lowerCamelCase : Any = codebook_dim if codebook_dim is not None else hidden_size __lowerCamelCase : Tuple = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f'''self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}''' ) super().__init__(**__a ) @property def snake_case_ ( self ): if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def snake_case_ ( self ): if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def snake_case_ ( self ): __lowerCamelCase : str = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def snake_case_ ( self ): return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
594
0
'''simple docstring''' # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( "stable diffusion controlnet", "0.22.0", "Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.", standard_warn=False, stacklevel=3, )
10
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: """simple docstring""" __UpperCAmelCase : Dict = (boundary[1] - boundary[0]) / steps __UpperCAmelCase : Tuple = boundary[0] __UpperCAmelCase : List[str] = boundary[1] __UpperCAmelCase : List[Any] = make_points(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __UpperCAmelCase : int = 0.0 y += (h / 2.0) * f(lowerCamelCase__ ) for i in x_i: # print(i) y += h * f(lowerCamelCase__ ) y += (h / 2.0) * f(lowerCamelCase__ ) return y def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]: """simple docstring""" __UpperCAmelCase : Optional[Any] = a + h while x < (b - h): yield x __UpperCAmelCase : List[str] = x + h def _lowercase ( lowerCamelCase__ ) -> Optional[Any]: # enter your function here """simple docstring""" __UpperCAmelCase : str = (x - 0) * (x - 0) return y def _lowercase ( ) -> int: """simple docstring""" __UpperCAmelCase : Tuple = 0.0 # Lower bound of integration __UpperCAmelCase : Union[str, Any] = 1.0 # Upper bound of integration __UpperCAmelCase : Union[str, Any] = 10.0 # define number of steps or resolution __UpperCAmelCase : Dict = [a, b] # define boundary of integration __UpperCAmelCase : Optional[int] = method_a(lowerCamelCase__ , lowerCamelCase__ ) print(f"""y = {y}""" ) if __name__ == "__main__": main()
10
1
'''simple docstring''' import math from datetime import datetime, timedelta def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> datetime: __lowerCamelCase : Union[str, Any] = year % 19 __lowerCamelCase : List[str] = year % 4 __lowerCamelCase : Union[str, Any] = year % 7 __lowerCamelCase : Tuple = math.floor(year / 1_00 ) __lowerCamelCase : str = math.floor((13 + 8 * leap_day_inhibits) / 25 ) __lowerCamelCase : Dict = leap_day_inhibits / 4 __lowerCamelCase : Optional[Any] = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 __lowerCamelCase : int = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 __lowerCamelCase : Dict = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon __lowerCamelCase : Union[str, Any] = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(UpperCAmelCase_ , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(UpperCAmelCase_ , 4 , 18 ) else: return datetime(UpperCAmelCase_ , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1994, 2000, 2010, 2021, 2023): A__ : Optional[int] = """will be""" if year > datetime.now().year else """was""" print(f'''Easter in {year} {tense} {gauss_easter(year)}''')
13
'''simple docstring''' import argparse A__ : Optional[Any] = """docs/source/_static/js/custom.js""" def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] ) -> int: with open(UpperCAmelCase_ , encoding='utf-8' , newline='\n' ) as f: __lowerCamelCase : Dict = f.readlines() __lowerCamelCase : Tuple = 0 # First let's put the right version while not lines[index].startswith('const stableVersion =' ): index += 1 __lowerCamelCase : Dict = F'const stableVersion = "v{version}"\n' # Then update the dictionary while not lines[index].startswith('const versionMapping = {' ): index += 1 # We go until the end while not lines[index].startswith('}' ): index += 1 # We add the new version at the end lines[index - 1] += F' "v{version}": "v{version}",\n' with open(UpperCAmelCase_ , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(UpperCAmelCase_ ) if __name__ == "__main__": A__ : str = argparse.ArgumentParser() parser.add_argument("""--version""", help="""Release version.""") A__ : Any = parser.parse_args() update_custom_js(args.version)
13
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase = { 'configuration_clipseg': [ 'CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CLIPSegConfig', 'CLIPSegTextConfig', 'CLIPSegVisionConfig', ], 'processing_clipseg': ['CLIPSegProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ 'CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST', 'CLIPSegModel', 'CLIPSegPreTrainedModel', 'CLIPSegTextModel', 'CLIPSegVisionModel', 'CLIPSegForImageSegmentation', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
720
import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def A_ ( __a : List[str] , __a : Optional[int] ): """simple docstring""" assert isinstance(__a , __a ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def A_ ( __a : Tuple , __a : Dict , __a : List[str] ): """simple docstring""" a__ = tmp_path / """cache""" a__ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): a__ = JsonDatasetReader(__a , cache_dir=__a , keep_in_memory=__a ).read() _check_json_dataset(__a , __a ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def A_ ( __a : int , __a : Dict , __a : List[Any] ): """simple docstring""" a__ = tmp_path / """cache""" a__ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} a__ = features.copy() if features else default_expected_features a__ = ( Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None ) a__ = JsonDatasetReader(__a , features=__a , cache_dir=__a ).read() _check_json_dataset(__a , __a ) @pytest.mark.parametrize( """features""" , [ None, {"""col_3""": """float64""", """col_1""": """string""", """col_2""": """int64"""}, ] , ) def A_ ( __a : Tuple , __a : Tuple , __a : Tuple ): """simple docstring""" a__ = tmp_path / """cache""" a__ = {"""col_3""": """float64""", """col_1""": """string""", """col_2""": """int64"""} a__ = features.copy() if features else default_expected_features a__ = ( Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None ) a__ = JsonDatasetReader(__a , features=__a , cache_dir=__a ).read() assert isinstance(__a , __a ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def A_ ( __a : int , __a : Optional[Any] ): """simple docstring""" # jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"} a__ = {"""col_2""": """int64""", """col_3""": """float64""", """col_1""": """string"""} a__ = features.copy() a__ = ( Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None ) a__ = tmp_path / """cache""" a__ = JsonDatasetReader(__a , features=__a , cache_dir=__a ).read() assert isinstance(__a , __a ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def A_ ( __a : List[Any] , __a : int , __a : List[str] ): """simple docstring""" a__ = tmp_path / """cache""" a__ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} a__ = JsonDatasetReader(__a , cache_dir=__a , split=__a ).read() _check_json_dataset(__a , __a ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def A_ ( __a : Dict , __a : Tuple , __a : List[str] ): """simple docstring""" if issubclass(__a , __a ): a__ = jsonl_path elif issubclass(__a , __a ): a__ = [jsonl_path] a__ = tmp_path / """cache""" a__ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} a__ = JsonDatasetReader(__a , cache_dir=__a ).read() _check_json_dataset(__a , __a ) def A_ ( __a : str , __a : List[Any] , __a : Dict=("train",) ): """simple docstring""" assert isinstance(__a , __a ) for split in splits: a__ = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def A_ ( __a : int , __a : int , __a : Dict ): """simple docstring""" a__ = tmp_path / """cache""" a__ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): a__ = JsonDatasetReader({"""train""": jsonl_path} , cache_dir=__a , keep_in_memory=__a ).read() _check_json_datasetdict(__a , __a ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def A_ ( __a : Tuple , __a : Dict , __a : Optional[Any] ): """simple docstring""" a__ = tmp_path / """cache""" a__ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} a__ = features.copy() if features else default_expected_features a__ = ( Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None ) a__ = JsonDatasetReader({"""train""": jsonl_path} , features=__a , cache_dir=__a ).read() _check_json_datasetdict(__a , __a ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def A_ ( __a : Dict , __a : Any , __a : Tuple ): """simple docstring""" if split: a__ = {split: jsonl_path} else: a__ = """train""" a__ = {"""train""": jsonl_path, """test""": jsonl_path} a__ = tmp_path / """cache""" a__ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} a__ = JsonDatasetReader(__a , cache_dir=__a ).read() _check_json_datasetdict(__a , __a , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def A_ ( __a : Any ): """simple docstring""" return json.load(__a ) def A_ ( __a : Tuple ): """simple docstring""" return [json.loads(__a ) for line in buffer] class __snake_case : '''simple docstring''' @pytest.mark.parametrize("""lines, load_json_function""" , [(True, load_json_lines), (False, load_json)] ) def _a ( self , a_ , a_ , a_ ): with io.BytesIO() as buffer: JsonDatasetWriter(a_ , a_ , lines=a_ ).write() buffer.seek(0 ) a__ = load_json_function(a_ ) assert isinstance(a_ , a_ ) assert isinstance(exported_content[0] , a_ ) assert len(a_ ) == 10 @pytest.mark.parametrize( """orient, container, keys, len_at""" , [ ("""records""", list, {"""tokens""", """labels""", """answers""", """id"""}, None), ("""split""", dict, {"""columns""", """data"""}, """data"""), ("""index""", dict, set("""0123456789""" ), None), ("""columns""", dict, {"""tokens""", """labels""", """answers""", """id"""}, """tokens"""), ("""values""", list, None, None), ("""table""", dict, {"""schema""", """data"""}, """data"""), ] , ) def _a ( self , a_ , a_ , a_ , a_ , a_ ): with io.BytesIO() as buffer: JsonDatasetWriter(a_ , a_ , lines=a_ , orient=a_ ).write() buffer.seek(0 ) a__ = load_json(a_ ) assert isinstance(a_ , a_ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(a_ , """keys""" ) and not hasattr(exported_content[0] , """keys""" ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(a_ ) == 10 @pytest.mark.parametrize("""lines, load_json_function""" , [(True, load_json_lines), (False, load_json)] ) def _a ( self , a_ , a_ , a_ ): with io.BytesIO() as buffer: JsonDatasetWriter(a_ , a_ , lines=a_ , num_proc=2 ).write() buffer.seek(0 ) a__ = load_json_function(a_ ) assert isinstance(a_ , a_ ) assert isinstance(exported_content[0] , a_ ) assert len(a_ ) == 10 @pytest.mark.parametrize( """orient, container, keys, len_at""" , [ ("""records""", list, {"""tokens""", """labels""", """answers""", """id"""}, None), ("""split""", dict, {"""columns""", """data"""}, """data"""), ("""index""", dict, set("""0123456789""" ), None), ("""columns""", dict, {"""tokens""", """labels""", """answers""", """id"""}, """tokens"""), ("""values""", list, None, None), ("""table""", dict, {"""schema""", """data"""}, """data"""), ] , ) def _a ( self , a_ , a_ , a_ , a_ , a_ ): with io.BytesIO() as buffer: JsonDatasetWriter(a_ , a_ , lines=a_ , orient=a_ , num_proc=2 ).write() buffer.seek(0 ) a__ = load_json(a_ ) assert isinstance(a_ , a_ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(a_ , """keys""" ) and not hasattr(exported_content[0] , """keys""" ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(a_ ) == 10 def _a ( self , a_ ): with pytest.raises(a_ ): with io.BytesIO() as buffer: JsonDatasetWriter(a_ , a_ , num_proc=0 ) @pytest.mark.parametrize("""compression, extension""" , [("""gzip""", """gz"""), ("""bz2""", """bz2"""), ("""xz""", """xz""")] ) def _a ( self , a_ , a_ , a_ , a_ , a_ ): a__ = tmp_path_factory.mktemp("""data""" ) / F'''test.json.{extension}''' a__ = str(shared_datadir / F'''test_file.json.{extension}''' ) JsonDatasetWriter(a_ , a_ , compression=a_ ).write() with fsspec.open(a_ , """rb""" , compression="""infer""" ) as f: a__ = f.read() with fsspec.open(a_ , """rb""" , compression="""infer""" ) as f: a__ = f.read() assert exported_content == original_content
351
0
import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex a_ = logging.getLogger(__name__) class _UpperCamelCase : '''simple docstring''' def __init__( self : List[str] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Any = False def __UpperCamelCase ( self : str , a : Dict , a : Union[str, Any] , a : Any , a : Union[str, Any] ) -> Dict: """simple docstring""" if not self.initialized: SCREAMING_SNAKE_CASE : int = RagRetriever( _SCREAMING_SNAKE_CASE , question_encoder_tokenizer=_SCREAMING_SNAKE_CASE , generator_tokenizer=_SCREAMING_SNAKE_CASE , index=_SCREAMING_SNAKE_CASE , init_retrieval=_SCREAMING_SNAKE_CASE , ) SCREAMING_SNAKE_CASE : Optional[int] = True def __UpperCamelCase ( self : Optional[Any] ) -> int: """simple docstring""" self.retriever.index.init_index() def __UpperCamelCase ( self : Union[str, Any] , a : List[Any] , a : Optional[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.retriever._main_retrieve(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return doc_ids, retrieved_doc_embeds class _UpperCamelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__( self : List[Any] , a : Union[str, Any] , a : int , a : List[str] , a : Optional[Any] , a : List[Any]=None ) -> Optional[int]: """simple docstring""" if index is not None and index.is_initialized() and len(_SCREAMING_SNAKE_CASE ) > 0: raise ValueError( "When using Ray for distributed fine-tuning, " "you'll need to provide the paths instead, " "as the dataset and the index are loaded " "separately. More info in examples/rag/use_own_knowledge_dataset.py " ) super().__init__( _SCREAMING_SNAKE_CASE , question_encoder_tokenizer=_SCREAMING_SNAKE_CASE , generator_tokenizer=_SCREAMING_SNAKE_CASE , index=_SCREAMING_SNAKE_CASE , init_retrieval=_SCREAMING_SNAKE_CASE , ) SCREAMING_SNAKE_CASE : Union[str, Any] = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for worker in self.retrieval_workers ] ) def __UpperCamelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" logger.info("initializing retrieval" ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def __UpperCamelCase ( self : str , a : List[Any] , a : Any ) -> Dict: """simple docstring""" if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. SCREAMING_SNAKE_CASE : Union[str, Any] = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] SCREAMING_SNAKE_CASE : Tuple = ray.get(random_worker.retrieve.remote(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) else: SCREAMING_SNAKE_CASE : Dict = self._main_retrieve(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(_SCREAMING_SNAKE_CASE ) @classmethod def __UpperCamelCase ( cls : Union[str, Any] , a : int , a : Dict=None , **a : Dict ) -> Dict: """simple docstring""" return super(_SCREAMING_SNAKE_CASE , cls ).get_tokenizers(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @classmethod def __UpperCamelCase ( cls : Dict , a : Dict , a : List[Any] , a : Union[str, Any]=None , **a : List[Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = kwargs.pop("config" , _SCREAMING_SNAKE_CASE ) or RagConfig.from_pretrained(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Dict = RagTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE , config=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Union[str, Any] = rag_tokenizer.question_encoder SCREAMING_SNAKE_CASE : Optional[Any] = rag_tokenizer.generator if indexed_dataset is not None: SCREAMING_SNAKE_CASE : Optional[int] = "custom" SCREAMING_SNAKE_CASE : int = CustomHFIndex(config.retrieval_vector_size , _SCREAMING_SNAKE_CASE ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = cls._build_index(_SCREAMING_SNAKE_CASE ) return cls( _SCREAMING_SNAKE_CASE , question_encoder_tokenizer=_SCREAMING_SNAKE_CASE , generator_tokenizer=_SCREAMING_SNAKE_CASE , retrieval_workers=_SCREAMING_SNAKE_CASE , index=_SCREAMING_SNAKE_CASE , )
25
def lowerCAmelCase__ ( _a : float , _a : float , _a : float , _a : float , _a : float , ): snake_case_ : int = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError("All input parameters must be positive" ) if any(p > 1 for p in parameters[1:4] ): raise ValueError("Relative densities cannot be greater than one" ) else: snake_case_ : List[Any] = 1 - (matter_density + radiation_density + dark_energy) snake_case_ : List[Any] = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) snake_case_ : Optional[int] = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation lowercase : Union[str, Any] = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1e-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
568
0
'''simple docstring''' from scipy.stats import pearsonr import datasets lowerCAmelCase__ = '\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n' lowerCAmelCase__ = '\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n' lowerCAmelCase__ = '\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class snake_case ( datasets.Metric ): """simple docstring""" def snake_case__ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } ) , reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"] , ) def snake_case__ ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False ): if return_pvalue: __lowercase = pearsonr(lowerCAmelCase_ , lowerCAmelCase_ ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(lowerCAmelCase_ , lowerCAmelCase_ )[0] )}
720
import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def __lowercase ( _UpperCAmelCase ) -> int: '''simple docstring''' __lowercase = SwinConfig(image_size=192 ) if "base" in model_name: __lowercase = 6 __lowercase = 128 __lowercase = (2, 2, 18, 2) __lowercase = (4, 8, 16, 32) elif "large" in model_name: __lowercase = 12 __lowercase = 192 __lowercase = (2, 2, 18, 2) __lowercase = (6, 12, 24, 48) else: raise ValueError("Model not supported, only supports base and large variants" ) __lowercase = window_size __lowercase = embed_dim __lowercase = depths __lowercase = num_heads return config def __lowercase ( _UpperCAmelCase ) -> List[str]: '''simple docstring''' if "encoder.mask_token" in name: __lowercase = name.replace("encoder.mask_token" , "embeddings.mask_token" ) if "encoder.patch_embed.proj" in name: __lowercase = name.replace("encoder.patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "encoder.patch_embed.norm" in name: __lowercase = name.replace("encoder.patch_embed.norm" , "embeddings.norm" ) if "attn.proj" in name: __lowercase = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: __lowercase = name.replace("attn" , "attention.self" ) if "norm1" in name: __lowercase = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: __lowercase = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: __lowercase = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: __lowercase = name.replace("mlp.fc2" , "output.dense" ) if name == "encoder.norm.weight": __lowercase = "layernorm.weight" if name == "encoder.norm.bias": __lowercase = "layernorm.bias" if "decoder" in name: pass else: __lowercase = "swin." + name return name def __lowercase ( _UpperCAmelCase , _UpperCAmelCase ) -> Any: '''simple docstring''' for key in orig_state_dict.copy().keys(): __lowercase = orig_state_dict.pop(_UpperCAmelCase ) if "attn_mask" in key: pass elif "qkv" in key: __lowercase = key.split("." ) __lowercase = int(key_split[2] ) __lowercase = int(key_split[4] ) __lowercase = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __lowercase = val[:dim, :] __lowercase = val[ dim : dim * 2, : ] __lowercase = val[-dim:, :] else: __lowercase = val[ :dim ] __lowercase = val[ dim : dim * 2 ] __lowercase = val[ -dim: ] else: __lowercase = val return orig_state_dict def __lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> int: '''simple docstring''' __lowercase = torch.load(_UpperCAmelCase , map_location="cpu" )["model"] __lowercase = get_swin_config(_UpperCAmelCase ) __lowercase = SwinForMaskedImageModeling(_UpperCAmelCase ) model.eval() __lowercase = convert_state_dict(_UpperCAmelCase , _UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) __lowercase = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowercase = ViTImageProcessor(size={"height": 192, "width": 192} ) __lowercase = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ) __lowercase = image_processor(images=_UpperCAmelCase , return_tensors="pt" ) with torch.no_grad(): __lowercase = model(**_UpperCAmelCase ).logits print(outputs.keys() ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_UpperCAmelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_UpperCAmelCase ) if push_to_hub: print(f'''Pushing model and image processor for {model_name} to hub''' ) model.push_to_hub(f'''microsoft/{model_name}''' ) image_processor.push_to_hub(f'''microsoft/{model_name}''' ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='swin-base-simmim-window6-192', type=str, choices=['swin-base-simmim-window6-192', 'swin-large-simmim-window12-192'], help='Name of the Swin SimMIM model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth', type=str, help='Path to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) lowerCAmelCase__ = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
576
0
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class _lowerCAmelCase ( __lowerCamelCase ): """simple docstring""" def __lowerCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" with open(UpperCAmelCase_ , encoding='utf-8' ) as input_file: UpperCamelCase = re.compile(r'(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)' ) UpperCamelCase = input_file.read() UpperCamelCase = regexp.search(UpperCAmelCase_ ) return match def __lowerCAmelCase ( self : str , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" with open(UpperCAmelCase_ , encoding='utf-8' ) as input_file: UpperCamelCase = re.compile(r'#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()' , re.DOTALL ) UpperCamelCase = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` UpperCamelCase = regexp.finditer(UpperCAmelCase_ ) UpperCamelCase = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def __lowerCAmelCase ( self : Tuple ): """simple docstring""" UpperCamelCase = Path('./datasets' ) UpperCamelCase = list(dataset_paths.absolute().glob('**/*.py' ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(UpperCAmelCase_ ) ): raise AssertionError(F'open(...) must use utf-8 encoding in {dataset}' ) def __lowerCAmelCase ( self : List[Any] ): """simple docstring""" UpperCamelCase = Path('./datasets' ) UpperCamelCase = list(dataset_paths.absolute().glob('**/*.py' ) ) for dataset in dataset_files: if self._no_print_statements(str(UpperCAmelCase_ ) ): raise AssertionError(F'print statement found in {dataset}. Use datasets.logger/logging instead.' )
282
'''simple docstring''' import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def __UpperCAmelCase ( lowerCamelCase_) -> int: if is_torch_version('<' , '2.0.0') or not hasattr(lowerCamelCase_ , '_dynamo'): return False return isinstance(lowerCamelCase_ , torch._dynamo.eval_frame.OptimizedModule) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ = True) -> List[str]: UpperCamelCase__ : Any = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) UpperCamelCase__ : List[Any] = is_compiled_module(lowerCamelCase_) if is_compiled: UpperCamelCase__ : Union[str, Any] = model UpperCamelCase__ : Optional[Any] = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase__ : str = model.module if not keep_fpaa_wrapper: UpperCamelCase__ : Tuple = getattr(lowerCamelCase_ , 'forward') UpperCamelCase__ : Tuple = model.__dict__.pop('_original_forward' , lowerCamelCase_) if original_forward is not None: while hasattr(lowerCamelCase_ , '__wrapped__'): UpperCamelCase__ : Any = forward.__wrapped__ if forward == original_forward: break UpperCamelCase__ : Dict = forward if getattr(lowerCamelCase_ , '_converted_to_transformer_engine' , lowerCamelCase_): convert_model(lowerCamelCase_ , to_transformer_engine=lowerCamelCase_) if is_compiled: UpperCamelCase__ : List[str] = model UpperCamelCase__ : List[str] = compiled_model return model def __UpperCAmelCase ( ) -> int: PartialState().wait_for_everyone() def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Optional[int]: if PartialState().distributed_type == DistributedType.TPU: xm.save(lowerCamelCase_ , lowerCamelCase_) elif PartialState().local_process_index == 0: torch.save(lowerCamelCase_ , lowerCamelCase_) @contextmanager def __UpperCAmelCase ( **lowerCamelCase_) -> Any: for key, value in kwargs.items(): UpperCamelCase__ : str = str(lowerCamelCase_) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def __UpperCAmelCase ( lowerCamelCase_) -> List[str]: if not hasattr(lowerCamelCase_ , '__qualname__') and not hasattr(lowerCamelCase_ , '__name__'): UpperCamelCase__ : Optional[Any] = getattr(lowerCamelCase_ , '__class__' , lowerCamelCase_) if hasattr(lowerCamelCase_ , '__qualname__'): return obj.__qualname__ if hasattr(lowerCamelCase_ , '__name__'): return obj.__name__ return str(lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> List[str]: for key, value in source.items(): if isinstance(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase__ : List[Any] = destination.setdefault(lowerCamelCase_ , {}) merge_dicts(lowerCamelCase_ , lowerCamelCase_) else: UpperCamelCase__ : Union[str, Any] = value return destination def __UpperCAmelCase ( lowerCamelCase_ = None) -> bool: if port is None: UpperCamelCase__ : List[Any] = 29_500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM) as s: return s.connect_ex(('localhost', port)) == 0
596
0
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf lowerCAmelCase_ = logging.get_logger(__name__) @dataclass class _lowerCAmelCase ( _lowercase ): A__ = [ 'no_inference', 'no_cuda', 'no_tpu', 'no_speed', 'no_memory', 'no_env_print', 'no_multi_process', ] def __init__( self , **__UpperCAmelCase ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: lowerCAmelCase__ : Optional[int] = deprecated_arg[3:] lowerCAmelCase__ : List[Any] = not kwargs.pop(__UpperCAmelCase ) logger.warning( f"""{deprecated_arg} is depreciated. Please use --no-{positive_arg} or""" f""" {positive_arg}={kwargs[positive_arg]}""" ) lowerCAmelCase__ : str = kwargs.pop('''tpu_name''' , self.tpu_name ) lowerCAmelCase__ : Union[str, Any] = kwargs.pop('''device_idx''' , self.device_idx ) lowerCAmelCase__ : Tuple = kwargs.pop('''eager_mode''' , self.eager_mode ) lowerCAmelCase__ : int = kwargs.pop('''use_xla''' , self.use_xla ) super().__init__(**__UpperCAmelCase ) A__ = field( default=_lowercase , metadata={'help': 'Name of TPU'} , ) A__ = field( default=0 , metadata={'help': 'CPU / GPU device index. Defaults to 0.'} , ) A__ = field(default=_lowercase , metadata={'help': 'Benchmark models in eager model.'} ) A__ = field( default=_lowercase , metadata={ 'help': 'Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.' } , ) @cached_property def __magic_name__( self ): requires_backends(self , ['''tf'''] ) lowerCAmelCase__ : Optional[Any] = None if self.tpu: try: if self.tpu_name: lowerCAmelCase__ : Optional[Any] = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: lowerCAmelCase__ : Any = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: lowerCAmelCase__ : Any = None return tpu @cached_property def __magic_name__( self ): requires_backends(self , ['''tf'''] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) lowerCAmelCase__ : List[Any] = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , '''GPU''' ) lowerCAmelCase__ : Optional[Any] = tf.distribute.OneDeviceStrategy(device=f"""/gpu:{self.device_idx}""" ) else: tf.config.set_visible_devices([] , '''GPU''' ) # disable GPU lowerCAmelCase__ : int = tf.distribute.OneDeviceStrategy(device=f"""/cpu:{self.device_idx}""" ) return strategy @property def __magic_name__( self ): requires_backends(self , ['''tf'''] ) return self._setup_tpu is not None @property def __magic_name__( self ): requires_backends(self , ['''tf'''] ) return self._setup_strategy @property def __magic_name__( self ): requires_backends(self , ['''tf'''] ) return tf.config.list_physical_devices('''GPU''' ) @property def __magic_name__( self ): requires_backends(self , ['''tf'''] ) if self.cuda: return len(self.gpu_list ) return 0 @property def __magic_name__( self ): return self.n_gpu > 0
470
import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class _lowerCAmelCase : def __init__( self , __UpperCAmelCase ): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden lowerCAmelCase__ : Union[str, Any] = deepcopy(__UpperCAmelCase ) elif os.path.exists(__UpperCAmelCase ): with io.open(__UpperCAmelCase , '''r''' , encoding='''utf-8''' ) as f: lowerCAmelCase__ : int = json.load(__UpperCAmelCase ) else: try: lowerCAmelCase__ : Union[str, Any] = baseaa.urlsafe_baadecode(__UpperCAmelCase ).decode('''utf-8''' ) lowerCAmelCase__ : Optional[int] = json.loads(__UpperCAmelCase ) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( f"""Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}""" ) lowerCAmelCase__ : Optional[Any] = config self.set_stage_and_offload() def __magic_name__( self ): # zero stage - this is done as early as possible, before model is created, to allow # ``is_deepspeed_zero3_enabled`` query and getting to the early deepspeed config object # during ``zero.Init()`` which needs to know the dtype, and some other hparams. lowerCAmelCase__ : Optional[Any] = self.get_value('''zero_optimization.stage''' , -1 ) # offload lowerCAmelCase__ : Dict = False if self.is_zeroa() or self.is_zeroa(): lowerCAmelCase__ : Dict = set(['''cpu''', '''nvme'''] ) lowerCAmelCase__ : Optional[Any] = set( [ self.get_value('''zero_optimization.offload_optimizer.device''' ), self.get_value('''zero_optimization.offload_param.device''' ), ] ) if len(offload_devices & offload_devices_valid ) > 0: lowerCAmelCase__ : List[Any] = True def __magic_name__( self , __UpperCAmelCase ): lowerCAmelCase__ : int = self.config # find the config node of interest if it exists lowerCAmelCase__ : Tuple = ds_key_long.split('''.''' ) lowerCAmelCase__ : int = nodes.pop() for node in nodes: lowerCAmelCase__ : int = config.get(__UpperCAmelCase ) if config is None: return None, ds_key return config, ds_key def __magic_name__( self , __UpperCAmelCase , __UpperCAmelCase=None ): lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = self.find_config_node(__UpperCAmelCase ) if config is None: return default return config.get(__UpperCAmelCase , __UpperCAmelCase ) def __magic_name__( self , __UpperCAmelCase , __UpperCAmelCase=False ): lowerCAmelCase__ : Dict = self.config # find the config node of interest if it exists lowerCAmelCase__ : str = ds_key_long.split('''.''' ) for node in nodes: lowerCAmelCase__ : Dict = config lowerCAmelCase__ : List[str] = config.get(__UpperCAmelCase ) if config is None: if must_exist: raise ValueError(f"""Can't find {ds_key_long} entry in the config: {self.config}""" ) else: return # if found remove it if parent_config is not None: parent_config.pop(__UpperCAmelCase ) def __magic_name__( self , __UpperCAmelCase ): lowerCAmelCase__ : Union[str, Any] = self.get_value(__UpperCAmelCase ) return False if value is None else bool(__UpperCAmelCase ) def __magic_name__( self , __UpperCAmelCase ): lowerCAmelCase__ : Optional[Any] = self.get_value(__UpperCAmelCase ) return False if value is None else not bool(__UpperCAmelCase ) def __magic_name__( self ): return self._stage == 2 def __magic_name__( self ): return self._stage == 3 def __magic_name__( self ): return self._offload class _lowerCAmelCase : def __init__( self , __UpperCAmelCase ): lowerCAmelCase__ : int = engine def __magic_name__( self , __UpperCAmelCase , **__UpperCAmelCase ): # runs backpropagation and handles mixed precision self.engine.backward(__UpperCAmelCase , **__UpperCAmelCase ) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class _lowerCAmelCase ( _lowercase ): def __init__( self , __UpperCAmelCase ): super().__init__(__UpperCAmelCase , device_placement=__UpperCAmelCase , scaler=__UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = hasattr(self.optimizer , '''overflow''' ) def __magic_name__( self , __UpperCAmelCase=None ): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def __magic_name__( self ): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def __magic_name__( self ): if self.__has_overflow__: return self.optimizer.overflow return False class _lowerCAmelCase ( _lowercase ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase ): super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __magic_name__( self ): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class _lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=0.001 , __UpperCAmelCase=0 , **__UpperCAmelCase ): lowerCAmelCase__ : Any = params lowerCAmelCase__ : str = lr lowerCAmelCase__ : List[str] = weight_decay lowerCAmelCase__ : Dict = kwargs class _lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=0 , **__UpperCAmelCase ): lowerCAmelCase__ : Union[str, Any] = optimizer lowerCAmelCase__ : Optional[Any] = total_num_steps lowerCAmelCase__ : str = warmup_num_steps lowerCAmelCase__ : Dict = kwargs
470
1
import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class _SCREAMING_SNAKE_CASE : def __init__(self , UpperCAmelCase , UpperCAmelCase=3 , UpperCAmelCase=7 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=9_9 , UpperCAmelCase=3_2 , UpperCAmelCase=5 , UpperCAmelCase=4 , UpperCAmelCase=3_7 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=5_1_2 , UpperCAmelCase=1_6 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=3 , UpperCAmelCase=4 , UpperCAmelCase=None , ): '''simple docstring''' __UpperCAmelCase =parent __UpperCAmelCase =batch_size __UpperCAmelCase =seq_length __UpperCAmelCase =is_training __UpperCAmelCase =use_input_mask __UpperCAmelCase =use_token_type_ids __UpperCAmelCase =use_labels __UpperCAmelCase =vocab_size __UpperCAmelCase =hidden_size __UpperCAmelCase =num_hidden_layers __UpperCAmelCase =num_attention_heads __UpperCAmelCase =intermediate_size __UpperCAmelCase =hidden_act __UpperCAmelCase =hidden_dropout_prob __UpperCAmelCase =attention_probs_dropout_prob __UpperCAmelCase =max_position_embeddings __UpperCAmelCase =type_vocab_size __UpperCAmelCase =type_sequence_label_size __UpperCAmelCase =initializer_range __UpperCAmelCase =num_labels __UpperCAmelCase =num_choices __UpperCAmelCase =scope def A__ (self): '''simple docstring''' __UpperCAmelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __UpperCAmelCase =None if self.use_input_mask: __UpperCAmelCase =random_attention_mask([self.batch_size, self.seq_length]) __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None if self.use_labels: __UpperCAmelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size) __UpperCAmelCase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __UpperCAmelCase =ids_tensor([self.batch_size] , self.num_choices) __UpperCAmelCase =self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ (self): '''simple docstring''' return FalconConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=UpperCAmelCase , ) def A__ (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase): '''simple docstring''' __UpperCAmelCase =FalconModel(config=UpperCAmelCase) model.to(UpperCAmelCase) model.eval() __UpperCAmelCase =model(UpperCAmelCase , attention_mask=UpperCAmelCase) __UpperCAmelCase =model(UpperCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def A__ (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ): '''simple docstring''' __UpperCAmelCase =True __UpperCAmelCase =FalconModel(UpperCAmelCase) model.to(UpperCAmelCase) model.eval() __UpperCAmelCase =model( UpperCAmelCase , attention_mask=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , encoder_attention_mask=UpperCAmelCase , ) __UpperCAmelCase =model( UpperCAmelCase , attention_mask=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , ) __UpperCAmelCase =model(UpperCAmelCase , attention_mask=UpperCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def A__ (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ): '''simple docstring''' __UpperCAmelCase =FalconForCausalLM(config=UpperCAmelCase) model.to(UpperCAmelCase) model.eval() __UpperCAmelCase =model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A__ (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ): '''simple docstring''' __UpperCAmelCase =True __UpperCAmelCase =True __UpperCAmelCase =FalconForCausalLM(config=UpperCAmelCase) model.to(UpperCAmelCase) model.eval() # first forward pass __UpperCAmelCase =model( UpperCAmelCase , attention_mask=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , encoder_attention_mask=UpperCAmelCase , use_cache=UpperCAmelCase , ) __UpperCAmelCase =outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __UpperCAmelCase =ids_tensor((self.batch_size, 3) , config.vocab_size) __UpperCAmelCase =ids_tensor((self.batch_size, 3) , vocab_size=2) # append to next input_ids and __UpperCAmelCase =torch.cat([input_ids, next_tokens] , dim=-1) __UpperCAmelCase =torch.cat([input_mask, next_mask] , dim=-1) __UpperCAmelCase =model( UpperCAmelCase , attention_mask=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , encoder_attention_mask=UpperCAmelCase , output_hidden_states=UpperCAmelCase , )['''hidden_states'''][0] __UpperCAmelCase =model( UpperCAmelCase , attention_mask=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , encoder_attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , output_hidden_states=UpperCAmelCase , )['''hidden_states'''][0] # select random slice __UpperCAmelCase =ids_tensor((1,) , output_from_past.shape[-1]).item() __UpperCAmelCase =output_from_no_past[:, -3:, random_slice_idx].detach() __UpperCAmelCase =output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3)) def A__ (self): '''simple docstring''' __UpperCAmelCase =self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) =config_and_inputs __UpperCAmelCase ={'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): a_ : Optional[int] = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) a_ : Optional[int] = (FalconForCausalLM,) if is_torch_available() else () a_ : Dict = ( { '''feature-extraction''': FalconModel, '''text-classification''': FalconForSequenceClassification, '''text-generation''': FalconForCausalLM, '''question-answering''': FalconForQuestionAnswering, '''token-classification''': FalconForTokenClassification, '''zero-shot''': FalconForSequenceClassification, } if is_torch_available() else {} ) a_ : Optional[int] = False a_ : int = False def A__ (self): '''simple docstring''' __UpperCAmelCase =FalconModelTester(self) __UpperCAmelCase =ConfigTester(self , config_class=UpperCAmelCase , hidden_size=3_7) def A__ (self): '''simple docstring''' self.config_tester.run_common_tests() def A__ (self): '''simple docstring''' __UpperCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase) def A__ (self): '''simple docstring''' __UpperCAmelCase , *__UpperCAmelCase =self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: __UpperCAmelCase =alibi self.model_tester.create_and_check_model(UpperCAmelCase , *UpperCAmelCase) def A__ (self): '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase =3 __UpperCAmelCase =input_dict['''input_ids'''] __UpperCAmelCase =input_ids.ne(1).to(UpperCAmelCase) __UpperCAmelCase =ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) __UpperCAmelCase =FalconForSequenceClassification(UpperCAmelCase) model.to(UpperCAmelCase) model.eval() __UpperCAmelCase =model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def A__ (self): '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase =3 __UpperCAmelCase ='''single_label_classification''' __UpperCAmelCase =input_dict['''input_ids'''] __UpperCAmelCase =input_ids.ne(1).to(UpperCAmelCase) __UpperCAmelCase =ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) __UpperCAmelCase =FalconForSequenceClassification(UpperCAmelCase) model.to(UpperCAmelCase) model.eval() __UpperCAmelCase =model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def A__ (self): '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase =input_dict['''input_ids'''] __UpperCAmelCase =FalconForCausalLM(UpperCAmelCase) model.to(UpperCAmelCase) model.eval() __UpperCAmelCase =model(UpperCAmelCase , use_cache=UpperCAmelCase) __UpperCAmelCase =input_ids.shape[0] __UpperCAmelCase =model._convert_to_rw_cache(result.past_key_values) __UpperCAmelCase =model._convert_cache_to_standard_format(UpperCAmelCase , UpperCAmelCase) for layer in range(len(UpperCAmelCase)): for tensor_idx in range(2): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx])) def A__ (self): '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase =3 __UpperCAmelCase ='''multi_label_classification''' __UpperCAmelCase =input_dict['''input_ids'''] __UpperCAmelCase =input_ids.ne(1).to(UpperCAmelCase) __UpperCAmelCase =ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float) __UpperCAmelCase =FalconForSequenceClassification(UpperCAmelCase) model.to(UpperCAmelCase) model.eval() __UpperCAmelCase =model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def A__ (self): '''simple docstring''' for model_class in self.all_generative_model_classes: __UpperCAmelCase , __UpperCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(UpperCAmelCase , '''use_cache'''): return __UpperCAmelCase =model_class(UpperCAmelCase).to(UpperCAmelCase) if "use_cache" not in inputs: __UpperCAmelCase =True __UpperCAmelCase =model(**UpperCAmelCase) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return __UpperCAmelCase =( getattr(UpperCAmelCase , '''decoder_layers''' , UpperCAmelCase) or getattr(UpperCAmelCase , '''num_decoder_layers''' , UpperCAmelCase) or config.num_hidden_layers ) __UpperCAmelCase =getattr(UpperCAmelCase , '''num_kv_heads''' , config.num_attention_heads) __UpperCAmelCase =getattr(UpperCAmelCase , '''d_model''' , config.hidden_size) __UpperCAmelCase =embed_dim // num_attention_heads __UpperCAmelCase =outputs['''past_key_values'''] self.assertEqual(len(UpperCAmelCase) , UpperCAmelCase) __UpperCAmelCase , __UpperCAmelCase =inputs['''input_ids'''].shape for i in range(UpperCAmelCase): if config.new_decoder_architecture: __UpperCAmelCase =config.num_attention_heads elif config.multi_query: __UpperCAmelCase =1 self.assertEqual(len(past_kv[0]) , 2) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim)) self.assertEqual( past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim)) @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def A__ (self): '''simple docstring''' __UpperCAmelCase =AutoTokenizer.from_pretrained('''Rocketknight1/falcon-rw-1b''') __UpperCAmelCase =FalconForCausalLM.from_pretrained('''Rocketknight1/falcon-rw-1b''') model.eval() model.to(UpperCAmelCase) __UpperCAmelCase =tokenizer('''My favorite food is''' , return_tensors='''pt''').to(UpperCAmelCase) __UpperCAmelCase =( '''My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday.''' ) __UpperCAmelCase =model.generate(**UpperCAmelCase , do_sample=UpperCAmelCase , max_new_tokens=1_9) __UpperCAmelCase =tokenizer.batch_decode(UpperCAmelCase)[0] self.assertEqual(UpperCAmelCase , UpperCAmelCase) @slow def A__ (self): '''simple docstring''' for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: __UpperCAmelCase =AutoTokenizer.from_pretrained(UpperCAmelCase) __UpperCAmelCase =FalconForCausalLM.from_pretrained(UpperCAmelCase) model.eval() model.to(UpperCAmelCase) __UpperCAmelCase =tokenizer('''My favorite food is''' , return_tensors='''pt''').to(UpperCAmelCase) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**UpperCAmelCase , do_sample=UpperCAmelCase , max_new_tokens=4) model.generate(**UpperCAmelCase , do_sample=UpperCAmelCase , max_new_tokens=4) model.generate(**UpperCAmelCase , num_beams=2 , max_new_tokens=4) @slow def A__ (self): '''simple docstring''' with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: __UpperCAmelCase =AutoTokenizer.from_pretrained(UpperCAmelCase) __UpperCAmelCase =FalconForCausalLM.from_pretrained(UpperCAmelCase) model.eval() model.to(device=UpperCAmelCase) __UpperCAmelCase =tokenizer('''My favorite food is''' , return_tensors='''pt''').to(UpperCAmelCase) # Test results are the same with and without cache __UpperCAmelCase =model.generate(**UpperCAmelCase , do_sample=UpperCAmelCase , max_new_tokens=2_0 , use_cache=UpperCAmelCase) __UpperCAmelCase =model.generate(**UpperCAmelCase , do_sample=UpperCAmelCase , max_new_tokens=2_0 , use_cache=UpperCAmelCase) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0)
132
import logging from transformers.configuration_utils import PretrainedConfig UpperCamelCase_ = logging.getLogger(__name__) class _SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): a_ : Optional[Any] = '''masked_bert''' def __init__(self , UpperCAmelCase=3_0_5_2_2 , UpperCAmelCase=7_6_8 , UpperCAmelCase=1_2 , UpperCAmelCase=1_2 , UpperCAmelCase=3_0_7_2 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=5_1_2 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-12 , UpperCAmelCase=0 , UpperCAmelCase="topK" , UpperCAmelCase="constant" , UpperCAmelCase=0.0 , **UpperCAmelCase , ): '''simple docstring''' super().__init__(pad_token_id=UpperCAmelCase , **UpperCAmelCase) __UpperCAmelCase =vocab_size __UpperCAmelCase =hidden_size __UpperCAmelCase =num_hidden_layers __UpperCAmelCase =num_attention_heads __UpperCAmelCase =hidden_act __UpperCAmelCase =intermediate_size __UpperCAmelCase =hidden_dropout_prob __UpperCAmelCase =attention_probs_dropout_prob __UpperCAmelCase =max_position_embeddings __UpperCAmelCase =type_vocab_size __UpperCAmelCase =initializer_range __UpperCAmelCase =layer_norm_eps __UpperCAmelCase =pruning_method __UpperCAmelCase =mask_init __UpperCAmelCase =mask_scale
132
1
"""simple docstring""" import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer __UpperCAmelCase =logging.get_logger(__name__) __UpperCAmelCase ={"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} __UpperCAmelCase ={ """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } __UpperCAmelCase ={ """allenai/led-base-16384""": 1_6384, } class lowerCAmelCase__ ( UpperCAmelCase_ ): lowercase__ : Union[str, Any] = VOCAB_FILES_NAMES lowercase__ : str = PRETRAINED_VOCAB_FILES_MAP lowercase__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : List[str] = LEDTokenizer lowercase__ : Optional[Any] = ["""input_ids""", """attention_mask"""] def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__="replace" , UpperCamelCase__="<s>" , UpperCamelCase__="</s>" , UpperCamelCase__="</s>" , UpperCamelCase__="<s>" , UpperCamelCase__="<unk>" , UpperCamelCase__="<pad>" , UpperCamelCase__="<mask>" , UpperCamelCase__=False , UpperCamelCase__=True , **UpperCamelCase__ , ): '''simple docstring''' super().__init__( UpperCamelCase__ , UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , errors=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ , **UpperCamelCase__ , ) A__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , UpperCamelCase__ ) != add_prefix_space: A__ = getattr(UpperCamelCase__ , pre_tok_state.pop("type" ) ) A__ = add_prefix_space A__ = pre_tok_class(**UpperCamelCase__ ) A__ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` A__ = "post_processor" A__ = getattr(self.backend_tokenizer , UpperCamelCase__ , UpperCamelCase__ ) if tokenizer_component_instance: A__ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: A__ = tuple(state["sep"] ) if "cls" in state: A__ = tuple(state["cls"] ) A__ = False if state.get("add_prefix_space" , UpperCamelCase__ ) != add_prefix_space: A__ = add_prefix_space A__ = True if state.get("trim_offsets" , UpperCamelCase__ ) != trim_offsets: A__ = trim_offsets A__ = True if changes_to_apply: A__ = getattr(UpperCamelCase__ , state.pop("type" ) ) A__ = component_class(**UpperCamelCase__ ) setattr(self.backend_tokenizer , UpperCamelCase__ , UpperCamelCase__ ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def lowercase_ ( self ): '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def lowercase_ ( self , UpperCamelCase__ ): '''simple docstring''' A__ = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else value A__ = value def lowercase_ ( self , *UpperCamelCase__ , **UpperCamelCase__ ): '''simple docstring''' A__ = kwargs.get("is_split_into_words" , UpperCamelCase__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCamelCase__ , **UpperCamelCase__ ) def lowercase_ ( self , *UpperCamelCase__ , **UpperCamelCase__ ): '''simple docstring''' A__ = kwargs.get("is_split_into_words" , UpperCamelCase__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCamelCase__ , **UpperCamelCase__ ) def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ = None ): '''simple docstring''' A__ = self._tokenizer.model.save(UpperCamelCase__ , name=UpperCamelCase__ ) return tuple(UpperCamelCase__ ) def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__=None ): '''simple docstring''' A__ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ = None ): '''simple docstring''' A__ = [self.sep_token_id] A__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = PaddingStrategy.DO_NOT_PAD , UpperCamelCase__ = None , UpperCamelCase__ = None , ): '''simple docstring''' A__ = super()._pad( encoded_inputs=UpperCamelCase__ , max_length=UpperCamelCase__ , padding_strategy=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , ) # Load from model defaults if return_attention_mask is None: A__ = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: A__ = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. A__ = len(encoded_inputs["global_attention_mask"] ) != len(UpperCamelCase__ ) if needs_to_be_padded: A__ = len(UpperCamelCase__ ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` A__ = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": A__ = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
261
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase =logging.get_logger(__name__) __UpperCAmelCase ={ """weiweishi/roc-bert-base-zh""": """https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json""", } class lowerCAmelCase__ ( UpperCAmelCase_ ): lowercase__ : List[str] = """roc_bert""" def __init__( self , UpperCamelCase__=3_05_22 , UpperCamelCase__=7_68 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__=30_72 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=5_12 , UpperCamelCase__=2 , UpperCamelCase__=0.02 , UpperCamelCase__=1e-12 , UpperCamelCase__=True , UpperCamelCase__=0 , UpperCamelCase__="absolute" , UpperCamelCase__=None , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=7_68 , UpperCamelCase__=9_10 , UpperCamelCase__=5_12 , UpperCamelCase__=2_48_58 , UpperCamelCase__=True , **UpperCamelCase__ , ): '''simple docstring''' A__ = vocab_size A__ = max_position_embeddings A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = initializer_range A__ = type_vocab_size A__ = layer_norm_eps A__ = use_cache A__ = enable_pronunciation A__ = enable_shape A__ = pronunciation_embed_dim A__ = pronunciation_vocab_size A__ = shape_embed_dim A__ = shape_vocab_size A__ = concat_input A__ = position_embedding_type A__ = classifier_dropout super().__init__(pad_token_id=UpperCamelCase__ , **UpperCamelCase__ )
261
1
'''simple docstring''' import flax.linen as nn import jax import jax.numpy as jnp class __lowerCAmelCase ( nn.Module ): '''simple docstring''' a_ = 42 a_ = jnp.floataa def _a ( self : Dict ): '''simple docstring''' A_ : List[str] = nn.Conv( self.out_channels ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) def __call__( self : Optional[Any] ,_a : str ): '''simple docstring''' A_ , A_ , A_ , A_ : Tuple = hidden_states.shape A_ : Optional[int] = jax.image.resize( _a ,shape=(batch, height * 2, width * 2, channels) ,method="""nearest""" ,) A_ : List[Any] = self.conv(_a ) return hidden_states class __lowerCAmelCase ( nn.Module ): '''simple docstring''' a_ = 42 a_ = jnp.floataa def _a ( self : Union[str, Any] ): '''simple docstring''' A_ : List[str] = nn.Conv( self.out_channels ,kernel_size=(3, 3) ,strides=(2, 2) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) def __call__( self : Dict ,_a : int ): '''simple docstring''' A_ : Optional[Any] = self.conv(_a ) return hidden_states class __lowerCAmelCase ( nn.Module ): '''simple docstring''' a_ = 42 a_ = None a_ = 0.0 a_ = None a_ = jnp.floataa def _a ( self : int ): '''simple docstring''' A_ : Any = self.in_channels if self.out_channels is None else self.out_channels A_ : Dict = nn.GroupNorm(num_groups=32 ,epsilon=1e-5 ) A_ : Union[str, Any] = nn.Conv( _a ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) A_ : List[Any] = nn.Dense(_a ,dtype=self.dtype ) A_ : int = nn.GroupNorm(num_groups=32 ,epsilon=1e-5 ) A_ : int = nn.Dropout(self.dropout_prob ) A_ : str = nn.Conv( _a ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) A_ : Dict = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut A_ : Tuple = None if use_nin_shortcut: A_ : List[Any] = nn.Conv( _a ,kernel_size=(1, 1) ,strides=(1, 1) ,padding="""VALID""" ,dtype=self.dtype ,) def __call__( self : List[Any] ,_a : Optional[int] ,_a : Optional[Any] ,_a : List[str]=True ): '''simple docstring''' A_ : Tuple = hidden_states A_ : str = self.norma(_a ) A_ : Any = nn.swish(_a ) A_ : Optional[Any] = self.conva(_a ) A_ : Optional[int] = self.time_emb_proj(nn.swish(_a ) ) A_ : int = jnp.expand_dims(jnp.expand_dims(_a ,1 ) ,1 ) A_ : Any = hidden_states + temb A_ : Union[str, Any] = self.norma(_a ) A_ : Union[str, Any] = nn.swish(_a ) A_ : Dict = self.dropout(_a ,_a ) A_ : int = self.conva(_a ) if self.conv_shortcut is not None: A_ : List[Any] = self.conv_shortcut(_a ) return hidden_states + residual
665
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __magic_name__ = { 'configuration_deberta': ['DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DebertaConfig', 'DebertaOnnxConfig'], 'tokenization_deberta': ['DebertaTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ['DebertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ 'DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'DebertaForMaskedLM', 'DebertaForQuestionAnswering', 'DebertaForSequenceClassification', 'DebertaForTokenClassification', 'DebertaModel', 'DebertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ 'TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFDebertaForMaskedLM', 'TFDebertaForQuestionAnswering', 'TFDebertaForSequenceClassification', 'TFDebertaForTokenClassification', 'TFDebertaModel', 'TFDebertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
665
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _UpperCAmelCase : List[Any] ={} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Any =["""BartphoTokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys _UpperCAmelCase : Optional[int] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
709
_UpperCAmelCase : int =frozenset( [ """prompt""", """height""", """width""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", """cross_attention_kwargs""", ] ) _UpperCAmelCase : List[Any] =frozenset(["""prompt""", """negative_prompt"""]) _UpperCAmelCase : Dict =frozenset([]) _UpperCAmelCase : int =frozenset(["""image"""]) _UpperCAmelCase : Tuple =frozenset( [ """image""", """height""", """width""", """guidance_scale""", ] ) _UpperCAmelCase : int =frozenset(["""image"""]) _UpperCAmelCase : str =frozenset( [ """prompt""", """image""", """height""", """width""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", ] ) _UpperCAmelCase : int =frozenset(["""prompt""", """image""", """negative_prompt"""]) _UpperCAmelCase : Optional[int] =frozenset( [ # Text guided image variation with an image mask """prompt""", """image""", """mask_image""", """height""", """width""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", ] ) _UpperCAmelCase : Optional[int] =frozenset(["""prompt""", """image""", """mask_image""", """negative_prompt"""]) _UpperCAmelCase : Optional[Any] =frozenset( [ # image variation with an image mask """image""", """mask_image""", """height""", """width""", """guidance_scale""", ] ) _UpperCAmelCase : Optional[Any] =frozenset(["""image""", """mask_image"""]) _UpperCAmelCase : Union[str, Any] =frozenset( [ """example_image""", """image""", """mask_image""", """height""", """width""", """guidance_scale""", ] ) _UpperCAmelCase : Tuple =frozenset(["""example_image""", """image""", """mask_image"""]) _UpperCAmelCase : Any =frozenset(["""class_labels"""]) _UpperCAmelCase : List[Any] =frozenset(["""class_labels"""]) _UpperCAmelCase : int =frozenset(["""batch_size"""]) _UpperCAmelCase : str =frozenset([]) _UpperCAmelCase : str =frozenset(["""batch_size"""]) _UpperCAmelCase : Optional[Any] =frozenset([]) _UpperCAmelCase : Tuple =frozenset( [ """prompt""", """audio_length_in_s""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", """cross_attention_kwargs""", ] ) _UpperCAmelCase : Tuple =frozenset(["""prompt""", """negative_prompt"""]) _UpperCAmelCase : List[str] =frozenset(["""input_tokens"""]) _UpperCAmelCase : Optional[Any] =frozenset(["""input_tokens"""])
619
0
'''simple docstring''' from ....utils import logging A__ : Tuple = logging.get_logger(__name__) class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=20_48 ) -> Tuple: __lowerCamelCase : int = config.__dict__ __lowerCamelCase : Any = modal_hidden_size if num_labels: __lowerCamelCase : Dict = num_labels
13
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase_ : int = 1_00 ) -> int: __lowerCamelCase : Union[str, Any] = n * (n + 1) * (2 * n + 1) / 6 __lowerCamelCase : Union[str, Any] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(f'''{solution() = }''')
13
1
'''simple docstring''' snake_case_ : List[str] = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' def __snake_case ( ): UpperCamelCase = input('''Enter message: ''') UpperCamelCase = input('''Enter key [alphanumeric]: ''') UpperCamelCase = input('''Encrypt/Decrypt [e/d]: ''') if mode.lower().startswith('''e'''): UpperCamelCase = '''encrypt''' UpperCamelCase = encrypt_message(_UpperCAmelCase, _UpperCAmelCase) elif mode.lower().startswith('''d'''): UpperCamelCase = '''decrypt''' UpperCamelCase = decrypt_message(_UpperCAmelCase, _UpperCAmelCase) print(f'\n{mode.title()}ed message:') print(_UpperCAmelCase) def __snake_case ( _UpperCAmelCase : str, _UpperCAmelCase : str): return translate_message(_UpperCAmelCase, _UpperCAmelCase, '''encrypt''') def __snake_case ( _UpperCAmelCase : str, _UpperCAmelCase : str): return translate_message(_UpperCAmelCase, _UpperCAmelCase, '''decrypt''') def __snake_case ( _UpperCAmelCase : str, _UpperCAmelCase : str, _UpperCAmelCase : str): UpperCamelCase = [] UpperCamelCase = 0 UpperCamelCase = key.upper() for symbol in message: UpperCamelCase = LETTERS.find(symbol.upper()) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index]) elif mode == "decrypt": num -= LETTERS.find(key[key_index]) num %= len(_UpperCAmelCase) if symbol.isupper(): translated.append(LETTERS[num]) elif symbol.islower(): translated.append(LETTERS[num].lower()) key_index += 1 if key_index == len(_UpperCAmelCase): UpperCamelCase = 0 else: translated.append(_UpperCAmelCase) return "".join(_UpperCAmelCase) if __name__ == "__main__": main()
350
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case_ : Any = { 'configuration_electra': ['ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ElectraConfig', 'ElectraOnnxConfig'], 'tokenization_electra': ['ElectraTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Union[str, Any] = ['ElectraTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Tuple = [ 'ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'ElectraForCausalLM', 'ElectraForMaskedLM', 'ElectraForMultipleChoice', 'ElectraForPreTraining', 'ElectraForQuestionAnswering', 'ElectraForSequenceClassification', 'ElectraForTokenClassification', 'ElectraModel', 'ElectraPreTrainedModel', 'load_tf_weights_in_electra', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : int = [ 'TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFElectraForMaskedLM', 'TFElectraForMultipleChoice', 'TFElectraForPreTraining', 'TFElectraForQuestionAnswering', 'TFElectraForSequenceClassification', 'TFElectraForTokenClassification', 'TFElectraModel', 'TFElectraPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Optional[int] = [ 'FlaxElectraForCausalLM', 'FlaxElectraForMaskedLM', 'FlaxElectraForMultipleChoice', 'FlaxElectraForPreTraining', 'FlaxElectraForQuestionAnswering', 'FlaxElectraForSequenceClassification', 'FlaxElectraForTokenClassification', 'FlaxElectraModel', 'FlaxElectraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys snake_case_ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
350
1
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING lowercase__ =logging.get_logger(__name__) @add_end_docstrings(__lowercase ) class UpperCamelCase__ ( __lowercase ): def __init__(self : Optional[int] , *snake_case_ : Any , **snake_case_ : Dict ): super().__init__(*snake_case_ , **snake_case_ ) requires_backends(self , '''vision''' ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def lowerCAmelCase (self : Tuple , snake_case_ : Tuple=None ): __a : int = {} if top_k is not None: __a : List[str] = top_k return {}, {}, postprocess_params def __call__(self : Optional[int] , snake_case_ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **snake_case_ : List[str] ): return super().__call__(snake_case_ , **snake_case_ ) def lowerCAmelCase (self : Any , snake_case_ : Dict ): __a : int = load_image(snake_case_ ) __a : Dict = self.image_processor(images=snake_case_ , return_tensors=self.framework ) return model_inputs def lowerCAmelCase (self : str , snake_case_ : List[Any] ): __a : Any = self.model(**snake_case_ ) return model_outputs def lowerCAmelCase (self : Tuple , snake_case_ : Optional[Any] , snake_case_ : Tuple=5 ): if top_k > self.model.config.num_labels: __a : Dict = self.model.config.num_labels if self.framework == "pt": __a : Tuple = model_outputs.logits.softmax(-1 )[0] __a , __a : Optional[int] = probs.topk(snake_case_ ) elif self.framework == "tf": __a : Union[str, Any] = stable_softmax(model_outputs.logits , axis=-1 )[0] __a : Union[str, Any] = tf.math.top_k(snake_case_ , k=snake_case_ ) __a , __a : Dict = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f"Unsupported framework: {self.framework}" ) __a : str = scores.tolist() __a : List[str] = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(snake_case_ , snake_case_ )]
521
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class UpperCamelCase__ ( __lowercase ): _SCREAMING_SNAKE_CASE : jnp.ndarray @flax_register_to_config class UpperCamelCase__ ( nn.Module ,__lowercase ,__lowercase ): _SCREAMING_SNAKE_CASE : int = 32 _SCREAMING_SNAKE_CASE : int = 4 _SCREAMING_SNAKE_CASE : int = 4 _SCREAMING_SNAKE_CASE : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) _SCREAMING_SNAKE_CASE : Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") _SCREAMING_SNAKE_CASE : Union[bool, Tuple[bool]] = False _SCREAMING_SNAKE_CASE : Tuple[int] = (320, 640, 1_280, 1_280) _SCREAMING_SNAKE_CASE : int = 2 _SCREAMING_SNAKE_CASE : Union[int, Tuple[int]] = 8 _SCREAMING_SNAKE_CASE : Optional[Union[int, Tuple[int]]] = None _SCREAMING_SNAKE_CASE : int = 1_280 _SCREAMING_SNAKE_CASE : float = 0.0 _SCREAMING_SNAKE_CASE : bool = False _SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa _SCREAMING_SNAKE_CASE : bool = True _SCREAMING_SNAKE_CASE : int = 0 _SCREAMING_SNAKE_CASE : bool = False def lowerCAmelCase (self : Dict , snake_case_ : jax.random.KeyArray ): # init input tensors __a : Tuple = (1, self.in_channels, self.sample_size, self.sample_size) __a : List[str] = jnp.zeros(snake_case_ , dtype=jnp.floataa ) __a : Optional[Any] = jnp.ones((1,) , dtype=jnp.intaa ) __a : Optional[int] = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) __a , __a : Dict = jax.random.split(snake_case_ ) __a : Optional[Any] = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(snake_case_ , snake_case_ , snake_case_ , snake_case_ )["params"] def lowerCAmelCase (self : Tuple ): __a : Tuple = self.block_out_channels __a : List[str] = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( '''At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.''' ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. __a : Optional[Any] = self.num_attention_heads or self.attention_head_dim # input __a : int = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time __a : Union[str, Any] = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) __a : Any = FlaxTimestepEmbedding(snake_case_ , dtype=self.dtype ) __a : str = self.only_cross_attention if isinstance(snake_case_ , snake_case_ ): __a : Tuple = (only_cross_attention,) * len(self.down_block_types ) if isinstance(snake_case_ , snake_case_ ): __a : Union[str, Any] = (num_attention_heads,) * len(self.down_block_types ) # down __a : Dict = [] __a : Union[str, Any] = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): __a : Any = output_channel __a : Union[str, Any] = block_out_channels[i] __a : List[str] = i == len(snake_case_ ) - 1 if down_block_type == "CrossAttnDownBlock2D": __a : Any = FlaxCrossAttnDownBlockaD( in_channels=snake_case_ , out_channels=snake_case_ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: __a : int = FlaxDownBlockaD( in_channels=snake_case_ , out_channels=snake_case_ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(snake_case_ ) __a : Dict = down_blocks # mid __a : Optional[Any] = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up __a : List[str] = [] __a : str = list(reversed(snake_case_ ) ) __a : Optional[int] = list(reversed(snake_case_ ) ) __a : Optional[int] = list(reversed(snake_case_ ) ) __a : Optional[Any] = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): __a : Optional[int] = output_channel __a : List[Any] = reversed_block_out_channels[i] __a : str = reversed_block_out_channels[min(i + 1 , len(snake_case_ ) - 1 )] __a : List[Any] = i == len(snake_case_ ) - 1 if up_block_type == "CrossAttnUpBlock2D": __a : Optional[Any] = FlaxCrossAttnUpBlockaD( in_channels=snake_case_ , out_channels=snake_case_ , prev_output_channel=snake_case_ , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: __a : Dict = FlaxUpBlockaD( in_channels=snake_case_ , out_channels=snake_case_ , prev_output_channel=snake_case_ , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(snake_case_ ) __a : str = output_channel __a : Any = up_blocks # out __a : List[str] = nn.GroupNorm(num_groups=3_2 , epsilon=1E-5 ) __a : Optional[Any] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__(self : str , snake_case_ : List[Any] , snake_case_ : str , snake_case_ : Tuple , snake_case_ : Any=None , snake_case_ : Any=None , snake_case_ : bool = True , snake_case_ : bool = False , ): # 1. time if not isinstance(snake_case_ , jnp.ndarray ): __a : Dict = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(snake_case_ , jnp.ndarray ) and len(timesteps.shape ) == 0: __a : Optional[int] = timesteps.astype(dtype=jnp.floataa ) __a : List[Any] = jnp.expand_dims(snake_case_ , 0 ) __a : Tuple = self.time_proj(snake_case_ ) __a : Tuple = self.time_embedding(snake_case_ ) # 2. pre-process __a : Union[str, Any] = jnp.transpose(snake_case_ , (0, 2, 3, 1) ) __a : List[Any] = self.conv_in(snake_case_ ) # 3. down __a : List[str] = (sample,) for down_block in self.down_blocks: if isinstance(snake_case_ , snake_case_ ): __a , __a : Dict = down_block(snake_case_ , snake_case_ , snake_case_ , deterministic=not train ) else: __a , __a : Dict = down_block(snake_case_ , snake_case_ , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: __a : Tuple = () for down_block_res_sample, down_block_additional_residual in zip( snake_case_ , snake_case_ ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) __a : List[str] = new_down_block_res_samples # 4. mid __a : Union[str, Any] = self.mid_block(snake_case_ , snake_case_ , snake_case_ , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: __a : int = down_block_res_samples[-(self.layers_per_block + 1) :] __a : Dict = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(snake_case_ , snake_case_ ): __a : int = up_block( snake_case_ , temb=snake_case_ , encoder_hidden_states=snake_case_ , res_hidden_states_tuple=snake_case_ , deterministic=not train , ) else: __a : Optional[Any] = up_block(snake_case_ , temb=snake_case_ , res_hidden_states_tuple=snake_case_ , deterministic=not train ) # 6. post-process __a : str = self.conv_norm_out(snake_case_ ) __a : Union[str, Any] = nn.silu(snake_case_ ) __a : Any = self.conv_out(snake_case_ ) __a : Dict = jnp.transpose(snake_case_ , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=snake_case_ )
521
1
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCAmelCase = logging.get_logger(__name__) # TODO: upload to AWS UpperCAmelCase = { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json" ), } class a ( __magic_name__ ): _snake_case = '''retribert''' def __init__( self : List[str], SCREAMING_SNAKE_CASE_ : Optional[int]=3_05_22, SCREAMING_SNAKE_CASE_ : Union[str, Any]=7_68, SCREAMING_SNAKE_CASE_ : str=8, SCREAMING_SNAKE_CASE_ : Optional[Any]=12, SCREAMING_SNAKE_CASE_ : int=30_72, SCREAMING_SNAKE_CASE_ : Union[str, Any]="gelu", SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.1, SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.1, SCREAMING_SNAKE_CASE_ : Optional[Any]=5_12, SCREAMING_SNAKE_CASE_ : Dict=2, SCREAMING_SNAKE_CASE_ : Optional[Any]=0.02, SCREAMING_SNAKE_CASE_ : Optional[int]=1e-12, SCREAMING_SNAKE_CASE_ : int=True, SCREAMING_SNAKE_CASE_ : Optional[int]=1_28, SCREAMING_SNAKE_CASE_ : Optional[Any]=0, **SCREAMING_SNAKE_CASE_ : Optional[int], ): super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) snake_case : Any = vocab_size snake_case : Any = hidden_size snake_case : List[Any] = num_hidden_layers snake_case : Any = num_attention_heads snake_case : Tuple = hidden_act snake_case : Optional[int] = intermediate_size snake_case : str = hidden_dropout_prob snake_case : List[Any] = attention_probs_dropout_prob snake_case : Optional[int] = max_position_embeddings snake_case : int = type_vocab_size snake_case : Tuple = initializer_range snake_case : Any = layer_norm_eps snake_case : Optional[int] = share_encoders snake_case : List[Any] = projection_dim
555
'''simple docstring''' import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} UpperCAmelCase = { "vocab_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json", }, "merges_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt", }, "tokenizer_file": { "Salesforce/codegen-350M-mono": ( "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json" ), }, } UpperCAmelCase = { "Salesforce/codegen-350M-mono": 2_048, } class a ( __magic_name__ ): _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = ['''input_ids''', '''attention_mask'''] _snake_case = CodeGenTokenizer def __init__( self : Any, SCREAMING_SNAKE_CASE_ : Dict=None, SCREAMING_SNAKE_CASE_ : Optional[Any]=None, SCREAMING_SNAKE_CASE_ : Optional[Any]=None, SCREAMING_SNAKE_CASE_ : Optional[int]="<|endoftext|>", SCREAMING_SNAKE_CASE_ : List[Any]="<|endoftext|>", SCREAMING_SNAKE_CASE_ : List[str]="<|endoftext|>", SCREAMING_SNAKE_CASE_ : int=False, **SCREAMING_SNAKE_CASE_ : Optional[int], ): super().__init__( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, tokenizer_file=SCREAMING_SNAKE_CASE_, unk_token=SCREAMING_SNAKE_CASE_, bos_token=SCREAMING_SNAKE_CASE_, eos_token=SCREAMING_SNAKE_CASE_, add_prefix_space=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, ) if kwargs.pop('''add_bos_token''', SCREAMING_SNAKE_CASE_ ): snake_case : Dict = kwargs.pop('''name_or_path''', '''''' ) raise ValueError( '''Currenty GPT2\'s fast tokenizer does NOT support adding a BOS token.''' '''Instead you should use GPT2\'s slow tokenizer class `CodeGenTokenizer` as follows: \n''' F"""`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n""" F"""`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n""" '''This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005.''' ''' so that the fast tokenizer works correctly.''' ) snake_case : int = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''', SCREAMING_SNAKE_CASE_ ) != add_prefix_space: snake_case : Optional[Any] = getattr(SCREAMING_SNAKE_CASE_, pre_tok_state.pop('''type''' ) ) snake_case : Union[str, Any] = add_prefix_space snake_case : Optional[Any] = pre_tok_class(**SCREAMING_SNAKE_CASE_ ) snake_case : int = add_prefix_space def __snake_case ( self : List[Any], *SCREAMING_SNAKE_CASE_ : Tuple, **SCREAMING_SNAKE_CASE_ : int ): snake_case : Dict = kwargs.get('''is_split_into_words''', SCREAMING_SNAKE_CASE_ ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) def __snake_case ( self : List[str], *SCREAMING_SNAKE_CASE_ : str, **SCREAMING_SNAKE_CASE_ : Optional[int] ): snake_case : Dict = kwargs.get('''is_split_into_words''', SCREAMING_SNAKE_CASE_ ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) def __snake_case ( self : Tuple, SCREAMING_SNAKE_CASE_ : str, SCREAMING_SNAKE_CASE_ : Optional[str] = None ): snake_case : Optional[int] = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_, name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ ) def __snake_case ( self : Dict, SCREAMING_SNAKE_CASE_ : Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"], SCREAMING_SNAKE_CASE_ : bool = False, SCREAMING_SNAKE_CASE_ : bool = None, SCREAMING_SNAKE_CASE_ : Optional[List[str]] = None, **SCREAMING_SNAKE_CASE_ : Union[str, Any], ): snake_case : Dict = super().decode( token_ids=SCREAMING_SNAKE_CASE_, skip_special_tokens=SCREAMING_SNAKE_CASE_, clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, ) if truncate_before_pattern is not None and len(SCREAMING_SNAKE_CASE_ ) > 0: snake_case : Optional[int] = self.truncate(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) return decoded_text def __snake_case ( self : int, SCREAMING_SNAKE_CASE_ : Optional[Any], SCREAMING_SNAKE_CASE_ : Tuple ): def find_re(SCREAMING_SNAKE_CASE_ : Optional[int], SCREAMING_SNAKE_CASE_ : Dict, SCREAMING_SNAKE_CASE_ : Optional[Any] ): snake_case : Optional[Any] = pattern.search(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) return m.start() if m else -1 snake_case : Union[str, Any] = [re.compile(SCREAMING_SNAKE_CASE_, re.MULTILINE ) for pattern in truncate_before_pattern] snake_case : Union[str, Any] = list(re.finditer('''^print''', SCREAMING_SNAKE_CASE_, re.MULTILINE ) ) if len(SCREAMING_SNAKE_CASE_ ) > 1: snake_case : Tuple = completion[: prints[1].start()] snake_case : List[str] = list(re.finditer('''^def''', SCREAMING_SNAKE_CASE_, re.MULTILINE ) ) if len(SCREAMING_SNAKE_CASE_ ) > 1: snake_case : Optional[Any] = completion[: defs[1].start()] snake_case : Tuple = 0 snake_case : List[Any] = [ pos for pos in [find_re(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) for terminal in terminals] if pos != -1 ] if len(SCREAMING_SNAKE_CASE_ ) > 0: return completion[: min(SCREAMING_SNAKE_CASE_ )] else: return completion
555
1
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Dict = get_tests_dir('''fixtures/test_sentencepiece_bpe_char.model''') @require_sentencepiece @require_tokenizers class A_ ( _a , unittest.TestCase ): lowerCAmelCase__ = SpeechTaTokenizer lowerCAmelCase__ = False lowerCAmelCase__ = True def _lowercase ( self: List[Any] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _lowerCamelCase : str = SpeechTaTokenizer(__lowerCAmelCase ) _lowerCamelCase : Tuple = AddedToken("<mask>" ,lstrip=__lowerCAmelCase ,rstrip=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = mask_token tokenizer.add_special_tokens({"mask_token": mask_token} ) tokenizer.add_tokens(["<ctc_blank>"] ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase ( self: List[str] ,__lowerCAmelCase: str ): '''simple docstring''' _lowerCamelCase : Dict = "this is a test" _lowerCamelCase : Optional[Any] = "this is a test" return input_text, output_text def _lowercase ( self: List[str] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Any=False ,__lowerCAmelCase: str=20 ,__lowerCAmelCase: List[Any]=5 ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : List[str] = self.get_input_output_texts(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = tokenizer.encode(__lowerCAmelCase ,add_special_tokens=__lowerCAmelCase ) _lowerCamelCase : Tuple = tokenizer.decode(__lowerCAmelCase ,clean_up_tokenization_spaces=__lowerCAmelCase ) return text, ids def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = "<pad>" _lowerCamelCase : List[str] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCAmelCase ) ,__lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCAmelCase ) ,__lowerCAmelCase ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,"<s>" ) self.assertEqual(vocab_keys[1] ,"<pad>" ) self.assertEqual(vocab_keys[-4] ,"œ" ) self.assertEqual(vocab_keys[-2] ,"<mask>" ) self.assertEqual(vocab_keys[-1] ,"<ctc_blank>" ) self.assertEqual(len(__lowerCAmelCase ) ,81 ) def _lowercase ( self: Dict ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size ,79 ) def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = self.get_tokenizers(do_lower_case=__lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _lowerCamelCase : Tuple = tokenizer.vocab_size _lowerCamelCase : Optional[Any] = len(__lowerCAmelCase ) self.assertNotEqual(__lowerCAmelCase ,0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) _lowerCamelCase : Optional[int] = ["aaaaa bbbbbb", "cccccccccdddddddd"] _lowerCamelCase : Any = tokenizer.add_tokens(__lowerCAmelCase ) _lowerCamelCase : Tuple = tokenizer.vocab_size _lowerCamelCase : Union[str, Any] = len(__lowerCAmelCase ) self.assertNotEqual(__lowerCAmelCase ,0 ) self.assertEqual(__lowerCAmelCase ,__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase ,len(__lowerCAmelCase ) ) self.assertEqual(__lowerCAmelCase ,all_size + len(__lowerCAmelCase ) ) _lowerCamelCase : Any = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l" ,add_special_tokens=__lowerCAmelCase ) self.assertGreaterEqual(len(__lowerCAmelCase ) ,4 ) self.assertGreater(tokens[0] ,tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] ,tokenizer.vocab_size - 1 ) _lowerCamelCase : List[Any] = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"} _lowerCamelCase : str = tokenizer.add_special_tokens(__lowerCAmelCase ) _lowerCamelCase : int = tokenizer.vocab_size _lowerCamelCase : str = len(__lowerCAmelCase ) self.assertNotEqual(__lowerCAmelCase ,0 ) self.assertEqual(__lowerCAmelCase ,__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase ,len(__lowerCAmelCase ) ) self.assertEqual(__lowerCAmelCase ,all_size_a + len(__lowerCAmelCase ) ) _lowerCamelCase : Optional[int] = tokenizer.encode( ">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l" ,add_special_tokens=__lowerCAmelCase ) self.assertGreaterEqual(len(__lowerCAmelCase ) ,6 ) self.assertGreater(tokens[0] ,tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] ,tokens[1] ) self.assertGreater(tokens[-3] ,tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] ,tokens[-4] ) self.assertEqual(tokens[0] ,tokenizer.eos_token_id ) self.assertEqual(tokens[-3] ,tokenizer.pad_token_id ) def _lowercase ( self: Any ): '''simple docstring''' pass def _lowercase ( self: Tuple ): '''simple docstring''' pass def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Tuple = self.get_tokenizer() _lowerCamelCase : Optional[int] = tokenizer.tokenize("This is a test" ) # fmt: off self.assertListEqual(__lowerCAmelCase ,[SPIECE_UNDERLINE, "T", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "a", SPIECE_UNDERLINE, "t", "e", "s", "t"] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) ,[4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] ,) _lowerCamelCase : int = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __lowerCAmelCase ,[SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "92000", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."] ) _lowerCamelCase : List[str] = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) # fmt: off self.assertListEqual(__lowerCAmelCase ,[4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on _lowerCamelCase : Any = tokenizer.convert_ids_to_tokens(__lowerCAmelCase ) self.assertListEqual( __lowerCAmelCase ,[SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "<unk>", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."] ) @slow def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : Optional[int] = [ "Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides " "general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural " "Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained " "models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.", "BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly " "conditioning on both left and right context in all layers.", "The quick brown fox jumps over the lazy dog.", ] # fmt: off _lowerCamelCase : Tuple = { "input_ids": [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], "attention_mask": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowerCAmelCase ,model_name="microsoft/speecht5_asr" ,revision="c5ef64c71905caeccde0e4462ef3f9077224c524" ,sequences=__lowerCAmelCase ,)
46
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : List[str] = logging.get_logger(__name__) A : Tuple = { 'kssteven/ibert-roberta-base': 'https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json', 'kssteven/ibert-roberta-large': 'https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json', 'kssteven/ibert-roberta-large-mnli': ( 'https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json' ), } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''ibert''' def __init__(self : int , _UpperCAmelCase : Union[str, Any]=3_0522 , _UpperCAmelCase : Any=768 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : List[Any]=3072 , _UpperCAmelCase : List[Any]="gelu" , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Optional[int]=512 , _UpperCAmelCase : str=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Dict=1E-1_2 , _UpperCAmelCase : int=1 , _UpperCAmelCase : str=0 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : int="absolute" , _UpperCAmelCase : Any=False , _UpperCAmelCase : List[Any]="none" , **_UpperCAmelCase : List[Any] , ) -> Any: """simple docstring""" super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = position_embedding_type lowercase__ = quant_mode lowercase__ = force_dequant class A ( UpperCAmelCase__ ): '''simple docstring''' @property def lowerCamelCase__ (self : Dict ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": lowercase__ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowercase__ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
15
0
"""simple docstring""" from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase = "x" , _UpperCamelCase = 10**-10 , _UpperCamelCase = 1 , ): __lowerCAmelCase : List[Any] = symbols(_UpperCamelCase ) __lowerCAmelCase : Dict = lambdify(_UpperCamelCase , _UpperCamelCase ) __lowerCAmelCase : List[str] = lambdify(_UpperCamelCase , diff(_UpperCamelCase , _UpperCamelCase ) ) __lowerCAmelCase : List[str] = starting_point while True: if diff_function(_UpperCamelCase ) != 0: __lowerCAmelCase : Optional[int] = prev_guess - multiplicity * func(_UpperCamelCase ) / diff_function( _UpperCamelCase ) else: raise ZeroDivisionError('Could not find root' ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess __lowerCAmelCase : str = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f'The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}') # Find root of polynomial # Find fourth Root of 5 print(f'The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5j)}') # Find value of e print( """The root of log(y) - 1 = 0 is """, f'{newton_raphson("log(y) - 1", 2, variable="y")}', ) # Exponential Roots print( """The root of exp(x) - 1 = 0 is""", f'{newton_raphson("exp(x) - 1", 10, precision=0.0_0_5)}', ) # Find root of cos(x) print(f'The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}')
549
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) def __lowerCAmelCase (_UpperCamelCase ): # initialize config if "resnet-50" in model_name: __lowerCAmelCase : int = ResNetConfig.from_pretrained('microsoft/resnet-50' ) elif "resnet-101" in model_name: __lowerCAmelCase : Union[str, Any] = ResNetConfig.from_pretrained('microsoft/resnet-101' ) else: raise ValueError('Model name should include either resnet50 or resnet101' ) __lowerCAmelCase : Union[str, Any] = DetrConfig(use_timm_backbone=_UpperCamelCase , backbone_config=_UpperCamelCase ) # set label attributes __lowerCAmelCase : Optional[int] = 'panoptic' in model_name if is_panoptic: __lowerCAmelCase : Dict = 250 else: __lowerCAmelCase : List[str] = 91 __lowerCAmelCase : Tuple = 'huggingface/label-files' __lowerCAmelCase : str = 'coco-detection-id2label.json' __lowerCAmelCase : Optional[int] = json.load(open(hf_hub_download(_UpperCamelCase , _UpperCamelCase , repo_type='dataset' ) , 'r' ) ) __lowerCAmelCase : List[Any] = {int(_UpperCamelCase ): v for k, v in idalabel.items()} __lowerCAmelCase : List[Any] = idalabel __lowerCAmelCase : Dict = {v: k for k, v in idalabel.items()} return config, is_panoptic def __lowerCAmelCase (_UpperCamelCase ): # here we list all keys to be renamed (original name on the left, our name on the right) __lowerCAmelCase : Tuple = [] # stem # fmt: off rename_keys.append(('backbone.0.body.conv1.weight', 'backbone.conv_encoder.model.embedder.embedder.convolution.weight') ) rename_keys.append(('backbone.0.body.bn1.weight', 'backbone.conv_encoder.model.embedder.embedder.normalization.weight') ) rename_keys.append(('backbone.0.body.bn1.bias', 'backbone.conv_encoder.model.embedder.embedder.normalization.bias') ) rename_keys.append(('backbone.0.body.bn1.running_mean', 'backbone.conv_encoder.model.embedder.embedder.normalization.running_mean') ) rename_keys.append(('backbone.0.body.bn1.running_var', 'backbone.conv_encoder.model.embedder.embedder.normalization.running_var') ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight", ) ) rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight", ) ) rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias", ) ) rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean", ) ) rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var", ) ) # 3 convs for i in range(3 ): rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight", ) ) rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight", ) ) rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias", ) ) rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean", ) ) rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var", ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( F"transformer.encoder.layers.{i}.self_attn.out_proj.weight", F"encoder.layers.{i}.self_attn.out_proj.weight", ) ) rename_keys.append( (F"transformer.encoder.layers.{i}.self_attn.out_proj.bias", F"encoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear1.weight", F"encoder.layers.{i}.fc1.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear1.bias", F"encoder.layers.{i}.fc1.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear2.weight", F"encoder.layers.{i}.fc2.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear2.bias", F"encoder.layers.{i}.fc2.bias") ) rename_keys.append( (F"transformer.encoder.layers.{i}.norm1.weight", F"encoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append( (F"transformer.encoder.layers.{i}.norm1.bias", F"encoder.layers.{i}.self_attn_layer_norm.bias") ) rename_keys.append( (F"transformer.encoder.layers.{i}.norm2.weight", F"encoder.layers.{i}.final_layer_norm.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.norm2.bias", F"encoder.layers.{i}.final_layer_norm.bias") ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( F"transformer.decoder.layers.{i}.self_attn.out_proj.weight", F"decoder.layers.{i}.self_attn.out_proj.weight", ) ) rename_keys.append( (F"transformer.decoder.layers.{i}.self_attn.out_proj.bias", F"decoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append( ( F"transformer.decoder.layers.{i}.multihead_attn.out_proj.weight", F"decoder.layers.{i}.encoder_attn.out_proj.weight", ) ) rename_keys.append( ( F"transformer.decoder.layers.{i}.multihead_attn.out_proj.bias", F"decoder.layers.{i}.encoder_attn.out_proj.bias", ) ) rename_keys.append((F"transformer.decoder.layers.{i}.linear1.weight", F"decoder.layers.{i}.fc1.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear1.bias", F"decoder.layers.{i}.fc1.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear2.weight", F"decoder.layers.{i}.fc2.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear2.bias", F"decoder.layers.{i}.fc2.bias") ) rename_keys.append( (F"transformer.decoder.layers.{i}.norm1.weight", F"decoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append( (F"transformer.decoder.layers.{i}.norm1.bias", F"decoder.layers.{i}.self_attn_layer_norm.bias") ) rename_keys.append( (F"transformer.decoder.layers.{i}.norm2.weight", F"decoder.layers.{i}.encoder_attn_layer_norm.weight") ) rename_keys.append( (F"transformer.decoder.layers.{i}.norm2.bias", F"decoder.layers.{i}.encoder_attn_layer_norm.bias") ) rename_keys.append( (F"transformer.decoder.layers.{i}.norm3.weight", F"decoder.layers.{i}.final_layer_norm.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm3.bias", F"decoder.layers.{i}.final_layer_norm.bias") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ] ) return rename_keys def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : str = state_dict.pop(_UpperCamelCase ) __lowerCAmelCase : Dict = val def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase=False ): __lowerCAmelCase : Tuple = '' if is_panoptic: __lowerCAmelCase : Union[str, Any] = 'detr.' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) __lowerCAmelCase : Optional[int] = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight" ) __lowerCAmelCase : List[Any] = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase : int = in_proj_weight[:256, :] __lowerCAmelCase : Tuple = in_proj_bias[:256] __lowerCAmelCase : Dict = in_proj_weight[256:512, :] __lowerCAmelCase : Optional[int] = in_proj_bias[256:512] __lowerCAmelCase : int = in_proj_weight[-256:, :] __lowerCAmelCase : int = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention __lowerCAmelCase : int = state_dict.pop(F"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight" ) __lowerCAmelCase : List[str] = state_dict.pop(F"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase : List[str] = in_proj_weight[:256, :] __lowerCAmelCase : int = in_proj_bias[:256] __lowerCAmelCase : Any = in_proj_weight[256:512, :] __lowerCAmelCase : Any = in_proj_bias[256:512] __lowerCAmelCase : Any = in_proj_weight[-256:, :] __lowerCAmelCase : Optional[int] = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention __lowerCAmelCase : Union[str, Any] = state_dict.pop( F"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight" ) __lowerCAmelCase : Optional[Any] = state_dict.pop(F"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias" ) # next, add query, keys and values (in that order) of cross-attention to the state dict __lowerCAmelCase : List[Any] = in_proj_weight_cross_attn[:256, :] __lowerCAmelCase : Union[str, Any] = in_proj_bias_cross_attn[:256] __lowerCAmelCase : Optional[Any] = in_proj_weight_cross_attn[256:512, :] __lowerCAmelCase : Any = in_proj_bias_cross_attn[256:512] __lowerCAmelCase : str = in_proj_weight_cross_attn[-256:, :] __lowerCAmelCase : Optional[int] = in_proj_bias_cross_attn[-256:] def __lowerCAmelCase (): __lowerCAmelCase : List[str] = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowerCAmelCase : Any = Image.open(requests.get(_UpperCamelCase , stream=_UpperCamelCase ).raw ) return im @torch.no_grad() def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase=None , _UpperCamelCase=False ): __lowerCAmelCase , __lowerCAmelCase : int = get_detr_config(_UpperCamelCase ) # load original model from torch hub __lowerCAmelCase : List[str] = { 'detr-resnet-50': 'detr_resnet50', 'detr-resnet-101': 'detr_resnet101', } logger.info(F"Converting model {model_name}..." ) __lowerCAmelCase : List[Any] = torch.hub.load('facebookresearch/detr' , model_name_to_original_name[model_name] , pretrained=_UpperCamelCase ).eval() __lowerCAmelCase : str = detr.state_dict() # rename keys for src, dest in create_rename_keys(_UpperCamelCase ): if is_panoptic: __lowerCAmelCase : List[str] = 'detr.' + src rename_key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # query, key and value matrices need special treatment read_in_q_k_v(_UpperCamelCase , is_panoptic=_UpperCamelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them __lowerCAmelCase : Optional[Any] = 'detr.model.' if is_panoptic else 'model.' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('detr' ) and not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ) ): __lowerCAmelCase : Optional[Any] = state_dict.pop(_UpperCamelCase ) __lowerCAmelCase : Tuple = val elif "class_labels_classifier" in key or "bbox_predictor" in key: __lowerCAmelCase : List[Any] = state_dict.pop(_UpperCamelCase ) __lowerCAmelCase : Union[str, Any] = val elif key.startswith('bbox_attention' ) or key.startswith('mask_head' ): continue else: __lowerCAmelCase : Optional[Any] = state_dict.pop(_UpperCamelCase ) __lowerCAmelCase : Union[str, Any] = val else: if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ): __lowerCAmelCase : Dict = state_dict.pop(_UpperCamelCase ) __lowerCAmelCase : Optional[int] = val # finally, create HuggingFace model and load state dict __lowerCAmelCase : Tuple = DetrForSegmentation(_UpperCamelCase ) if is_panoptic else DetrForObjectDetection(_UpperCamelCase ) model.load_state_dict(_UpperCamelCase ) model.eval() # verify our conversion on an image __lowerCAmelCase : Optional[Any] = 'coco_panoptic' if is_panoptic else 'coco_detection' __lowerCAmelCase : List[str] = DetrImageProcessor(format=_UpperCamelCase ) __lowerCAmelCase : Union[str, Any] = processor(images=prepare_img() , return_tensors='pt' ) __lowerCAmelCase : Optional[int] = encoding['pixel_values'] __lowerCAmelCase : Optional[Any] = detr(_UpperCamelCase ) __lowerCAmelCase : Union[str, Any] = model(_UpperCamelCase ) assert torch.allclose(outputs.logits , original_outputs['pred_logits'] , atol=1e-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs['pred_boxes'] , atol=1e-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['pred_masks'] , atol=1e-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase ) model.save_pretrained(_UpperCamelCase ) processor.save_pretrained(_UpperCamelCase ) if push_to_hub: # Upload model and image processor to the hub logger.info('Uploading PyTorch model and image processor to the hub...' ) model.push_to_hub(F"nielsr/{model_name}" ) processor.push_to_hub(F"nielsr/{model_name}" ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""detr-resnet-50""", type=str, choices=["""detr-resnet-50""", """detr-resnet-101"""], help="""Name of the DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Whether to push the model to the hub or not.""") lowerCamelCase__ = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
549
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowerCAmelCase : Union[str, Any] = {'''configuration_vit_mae''': ['''VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMAEConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = [ '''VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMAEForPreTraining''', '''ViTMAELayer''', '''ViTMAEModel''', '''ViTMAEPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = [ '''TFViTMAEForPreTraining''', '''TFViTMAEModel''', '''TFViTMAEPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys __lowerCAmelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
58
"""simple docstring""" import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging __lowercase : List[str] = logging.get_logger(__name__) def lowerCamelCase_ ( _lowerCamelCase : str , _lowerCamelCase : Optional[int] ): lowerCamelCase_ = nn.functional.normalize(_lowerCamelCase ) lowerCamelCase_ = nn.functional.normalize(_lowerCamelCase ) return torch.mm(_lowerCamelCase , normalized_text_embeds.t() ) class lowerCAmelCase ( a ): """simple docstring""" __lowercase :Union[str, Any] = CLIPConfig __lowercase :int = ["CLIPEncoderLayer"] def __init__( self , UpperCamelCase__ ) -> Any: '''simple docstring''' super().__init__(UpperCamelCase__ ) lowerCamelCase_ = CLIPVisionModel(config.vision_config ) lowerCamelCase_ = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=UpperCamelCase__ ) lowerCamelCase_ = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=UpperCamelCase__ ) lowerCamelCase_ = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=UpperCamelCase__ ) lowerCamelCase_ = nn.Parameter(torch.ones(17 ) , requires_grad=UpperCamelCase__ ) lowerCamelCase_ = nn.Parameter(torch.ones(3 ) , requires_grad=UpperCamelCase__ ) @torch.no_grad() def _lowerCAmelCase ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = self.vision_model(UpperCamelCase__ )[1] # pooled_output lowerCamelCase_ = self.visual_projection(UpperCamelCase__ ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowerCamelCase_ = cosine_distance(UpperCamelCase__ , self.special_care_embeds ).cpu().float().numpy() lowerCamelCase_ = cosine_distance(UpperCamelCase__ , self.concept_embeds ).cpu().float().numpy() lowerCamelCase_ = [] lowerCamelCase_ = image_embeds.shape[0] for i in range(UpperCamelCase__ ): lowerCamelCase_ = {'''special_scores''': {}, '''special_care''': [], '''concept_scores''': {}, '''bad_concepts''': []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images lowerCamelCase_ = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): lowerCamelCase_ = special_cos_dist[i][concept_idx] lowerCamelCase_ = self.special_care_embeds_weights[concept_idx].item() lowerCamelCase_ = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img['''special_scores'''][concept_idx]} ) lowerCamelCase_ = 0.01 for concept_idx in range(len(cos_dist[0] ) ): lowerCamelCase_ = cos_dist[i][concept_idx] lowerCamelCase_ = self.concept_embeds_weights[concept_idx].item() lowerCamelCase_ = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(UpperCamelCase__ ) result.append(UpperCamelCase__ ) lowerCamelCase_ = [len(res['''bad_concepts'''] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def _lowerCAmelCase ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = self.vision_model(UpperCamelCase__ )[1] # pooled_output lowerCamelCase_ = self.visual_projection(UpperCamelCase__ ) lowerCamelCase_ = cosine_distance(UpperCamelCase__ , self.special_care_embeds ) lowerCamelCase_ = cosine_distance(UpperCamelCase__ , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images lowerCamelCase_ = 0.0 lowerCamelCase_ = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) lowerCamelCase_ = torch.any(special_scores > 0 , dim=1 ) lowerCamelCase_ = special_care * 0.01 lowerCamelCase_ = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) lowerCamelCase_ = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) lowerCamelCase_ = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
142
0
__UpperCAmelCase = [ 999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0, ] __UpperCAmelCase = [ 999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0, ] __UpperCAmelCase = [ 999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] __UpperCAmelCase = [ 999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0, ] __UpperCAmelCase = [ 999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0, ] __UpperCAmelCase = [ 999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0, ] __UpperCAmelCase = [ 999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0, ] __UpperCAmelCase = [ 999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0, ]
703
from __future__ import annotations def snake_case_ (__A : list[int] , __A : int ) -> list[int]: __lowerCAmelCase : List[Any] = 0 __lowerCAmelCase : Optional[Any] = len(__A ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: __lowerCAmelCase : int = i + 1 else: __lowerCAmelCase : List[str] = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F'{two_pointer([2, 7, 11, 15], 9) = }')
218
0
'''simple docstring''' import os from collections.abc import Iterator def __a ( A__ = "." ) -> Optional[Any]: for dir_path, dir_names, filenames in os.walk(A__ ): lowerCAmelCase = [d for d in dir_names if d != "scripts" and d[0] not in "._"] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(A__ )[1] in (".py", ".ipynb"): yield os.path.join(A__ , A__ ).lstrip("./" ) def __a ( A__ ) -> str: return f"{i * ' '}*" if i else "\n##" def __a ( A__ , A__ ) -> Optional[int]: lowerCAmelCase = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(A__ ) or old_parts[i] != new_part) and new_part: print(f"{md_prefix(A__ )} {new_part.replace('_' , ' ' ).title()}" ) return new_path def __a ( A__ = "." ) -> Union[str, Any]: lowerCAmelCase = "" for filepath in sorted(good_file_paths(A__ ) ): lowerCAmelCase = os.path.split(A__ ) if filepath != old_path: lowerCAmelCase = print_path(A__ , A__ ) lowerCAmelCase = (filepath.count(os.sep ) + 1) if filepath else 0 lowerCAmelCase = f"{filepath}/{filename}".replace(" " , "%20" ) lowerCAmelCase = os.path.splitext(filename.replace("_" , " " ).title() )[0] print(f"{md_prefix(A__ )} [{filename}]({url})" ) if __name__ == "__main__": print_directory_md('.')
649
# This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class SCREAMING_SNAKE_CASE ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : int = StableDiffusionControlNetImgaImgPipeline UpperCamelCase_ : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} UpperCamelCase_ : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCamelCase_ : Tuple = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({'''control_image'''} ) UpperCamelCase_ : Any = IMAGE_TO_IMAGE_IMAGE_PARAMS def _A ( self : List[str] ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : int = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPTextModel(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) SCREAMING_SNAKE_CASE : str = { "unet": unet, "controlnet": controlnet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def _A ( self : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int=0 ): if str(UpperCAmelCase_ ).startswith("mps" ): SCREAMING_SNAKE_CASE : Any = torch.manual_seed(UpperCAmelCase_ ) else: SCREAMING_SNAKE_CASE : Optional[Any] = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = 2 SCREAMING_SNAKE_CASE : Union[str, Any] = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=UpperCAmelCase_ , device=torch.device(UpperCAmelCase_ ) , ) SCREAMING_SNAKE_CASE : Tuple = floats_tensor(control_image.shape , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE : str = Image.fromarray(np.uinta(UpperCAmelCase_ ) ).convert("RGB" ).resize((64, 64) ) SCREAMING_SNAKE_CASE : List[str] = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", "image": image, "control_image": control_image, } return inputs def _A ( self : int ): return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def _A ( self : str ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def _A ( self : Union[str, Any] ): self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) class SCREAMING_SNAKE_CASE ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : List[str] = StableDiffusionControlNetImgaImgPipeline UpperCamelCase_ : str = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} UpperCamelCase_ : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCamelCase_ : Dict = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def _A ( self : Optional[Any] ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) torch.manual_seed(0 ) def init_weights(UpperCAmelCase_ : List[Any] ): if isinstance(UpperCAmelCase_ , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) SCREAMING_SNAKE_CASE : List[str] = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(UpperCAmelCase_ ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(UpperCAmelCase_ ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Dict = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) SCREAMING_SNAKE_CASE : Any = CLIPTextModel(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) SCREAMING_SNAKE_CASE : Tuple = MultiControlNetModel([controlneta, controlneta] ) SCREAMING_SNAKE_CASE : Optional[int] = { "unet": unet, "controlnet": controlnet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def _A ( self : List[str] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any=0 ): if str(UpperCAmelCase_ ).startswith("mps" ): SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(UpperCAmelCase_ ) else: SCREAMING_SNAKE_CASE : str = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Any = 2 SCREAMING_SNAKE_CASE : Tuple = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=UpperCAmelCase_ , device=torch.device(UpperCAmelCase_ ) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=UpperCAmelCase_ , device=torch.device(UpperCAmelCase_ ) , ), ] SCREAMING_SNAKE_CASE : Optional[int] = floats_tensor(control_image[0].shape , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : int = image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE : Union[str, Any] = Image.fromarray(np.uinta(UpperCAmelCase_ ) ).convert("RGB" ).resize((64, 64) ) SCREAMING_SNAKE_CASE : Optional[Any] = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", "image": image, "control_image": control_image, } return inputs def _A ( self : Tuple ): SCREAMING_SNAKE_CASE : Any = self.get_dummy_components() SCREAMING_SNAKE_CASE : str = self.pipeline_class(**UpperCAmelCase_ ) pipe.to(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : str = 10.0 SCREAMING_SNAKE_CASE : Any = 4 SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_inputs(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = steps SCREAMING_SNAKE_CASE : int = scale SCREAMING_SNAKE_CASE : Optional[int] = pipe(**UpperCAmelCase_ )[0] SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_inputs(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = steps SCREAMING_SNAKE_CASE : Any = scale SCREAMING_SNAKE_CASE : List[str] = pipe(**UpperCAmelCase_ , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_inputs(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = steps SCREAMING_SNAKE_CASE : int = scale SCREAMING_SNAKE_CASE : List[Any] = pipe(**UpperCAmelCase_ , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_inputs(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : str = steps SCREAMING_SNAKE_CASE : Dict = scale SCREAMING_SNAKE_CASE : Dict = pipe(**UpperCAmelCase_ , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 def _A ( self : Union[str, Any] ): return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def _A ( self : str ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def _A ( self : List[Any] ): self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) def _A ( self : Any ): SCREAMING_SNAKE_CASE : Dict = self.get_dummy_components() SCREAMING_SNAKE_CASE : Dict = self.pipeline_class(**UpperCAmelCase_ ) pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(UpperCAmelCase_ ) except NotImplementedError: pass @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _A ( self : Optional[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _A ( self : Optional[Any] ): SCREAMING_SNAKE_CASE : str = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny" ) SCREAMING_SNAKE_CASE : Union[str, Any] = StableDiffusionControlNetImgaImgPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , safety_checker=UpperCAmelCase_ , controlnet=UpperCAmelCase_ ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : str = torch.Generator(device="cpu" ).manual_seed(0 ) SCREAMING_SNAKE_CASE : str = "evil space-punk bird" SCREAMING_SNAKE_CASE : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" ).resize((512, 512) ) SCREAMING_SNAKE_CASE : Optional[int] = load_image( "https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png" ).resize((512, 512) ) SCREAMING_SNAKE_CASE : str = pipe( UpperCAmelCase_ , UpperCAmelCase_ , control_image=UpperCAmelCase_ , generator=UpperCAmelCase_ , output_type="np" , num_inference_steps=50 , strength=0.6 , ) SCREAMING_SNAKE_CASE : int = output.images[0] assert image.shape == (512, 512, 3) SCREAMING_SNAKE_CASE : Dict = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy" ) assert np.abs(expected_image - image ).max() < 9E-2
62
0
'''simple docstring''' __lowerCAmelCase = [ 'Audio', 'Array2D', 'Array3D', 'Array4D', 'Array5D', 'ClassLabel', 'Features', 'Sequence', 'Value', 'Image', 'Translation', 'TranslationVariableLanguages', ] from .audio import Audio from .features import ArrayaD, ArrayaD, ArrayaD, ArrayaD, ClassLabel, Features, Sequence, Value from .image import Image from .translation import Translation, TranslationVariableLanguages
666
'''simple docstring''' import sys __lowerCAmelCase = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def _UpperCAmelCase ( __A : str ): a_ : Tuple = 1 for digit in s: product *= int(__A ) return product def _UpperCAmelCase ( __A : str = N ): a_ : Dict = -sys.maxsize - 1 a_ : Optional[int] = n[:13] a_ : str = 13 while cur_index < len(__A ) - 13: if int(n[cur_index] ) >= int(substr[0] ): a_ : Tuple = substr[1:] + n[cur_index] cur_index += 1 else: a_ : Dict = max(__A , str_eval(__A ) ) a_ : List[str] = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(F"""{solution() = }""")
666
1
"""simple docstring""" import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowerCamelCase ( _UpperCAmelCase ): def a_ ( self ): UpperCamelCase : Dict = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """hidden_sizes""" ) ) self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """neck_hidden_sizes""" ) ) self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """num_attention_heads""" ) ) class lowerCamelCase : def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=640 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_="silu" , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=None , ): UpperCamelCase : List[Any] = parent UpperCamelCase : List[str] = batch_size UpperCamelCase : Any = image_size UpperCamelCase : str = patch_size UpperCamelCase : Dict = num_channels UpperCamelCase : List[str] = last_hidden_size UpperCamelCase : Optional[int] = num_attention_heads UpperCamelCase : List[str] = hidden_act UpperCamelCase : Tuple = conv_kernel_size UpperCamelCase : str = output_stride UpperCamelCase : Tuple = hidden_dropout_prob UpperCamelCase : int = attention_probs_dropout_prob UpperCamelCase : Any = classifier_dropout_prob UpperCamelCase : Tuple = use_labels UpperCamelCase : Dict = is_training UpperCamelCase : Union[str, Any] = num_labels UpperCamelCase : Optional[Any] = initializer_range UpperCamelCase : Optional[Any] = scope def a_ ( self ): UpperCamelCase : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase : Any = None UpperCamelCase : Tuple = None if self.use_labels: UpperCamelCase : str = ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCamelCase : Optional[Any] = self.get_config() return config, pixel_values, labels, pixel_labels def a_ ( self ): return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Optional[int] = MobileViTModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Optional[Any] = self.num_labels UpperCamelCase : Union[str, Any] = MobileViTForImageClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : str = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : List[Any] = self.num_labels UpperCamelCase : List[Any] = MobileViTForSemanticSegmentation(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) UpperCamelCase : int = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def a_ ( self ): UpperCamelCase : Tuple = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : Tuple = config_and_inputs UpperCamelCase : Any = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): lowercase : int = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) lowercase : str = ( { 'feature-extraction': MobileViTModel, 'image-classification': MobileViTForImageClassification, 'image-segmentation': MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) lowercase : Union[str, Any] = False lowercase : Union[str, Any] = False lowercase : str = False lowercase : str = False def a_ ( self ): UpperCamelCase : Optional[Any] = MobileViTModelTester(self ) UpperCamelCase : str = MobileViTConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ ) def a_ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="""MobileViT does not use inputs_embeds""" ) def a_ ( self ): pass @unittest.skip(reason="""MobileViT does not support input and output embeddings""" ) def a_ ( self ): pass @unittest.skip(reason="""MobileViT does not output attentions""" ) def a_ ( self ): pass def a_ ( self ): UpperCamelCase , UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : int = model_class(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase : Union[str, Any] = [*signature.parameters.keys()] UpperCamelCase : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def a_ ( self ): pass def a_ ( self ): UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def a_ ( self ): def check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Dict = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): UpperCamelCase : Optional[int] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase : int = outputs.hidden_states UpperCamelCase : Dict = 5 self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. UpperCamelCase : int = 2 for i in range(len(SCREAMING_SNAKE_CASE_ ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) UpperCamelCase , UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : int = True check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase : Optional[Any] = True check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a_ ( self ): UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) def a_ ( self ): UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*SCREAMING_SNAKE_CASE_ ) @slow def a_ ( self ): for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase : str = MobileViTModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def A_ ( ): '''simple docstring''' UpperCamelCase : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCamelCase ( unittest.TestCase ): @cached_property def a_ ( self ): return MobileViTImageProcessor.from_pretrained("""apple/mobilevit-xx-small""" ) if is_vision_available() else None @slow def a_ ( self ): UpperCamelCase : Any = MobileViTForImageClassification.from_pretrained("""apple/mobilevit-xx-small""" ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = self.default_image_processor UpperCamelCase : Optional[int] = prepare_img() UpperCamelCase : List[str] = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): UpperCamelCase : Tuple = model(**SCREAMING_SNAKE_CASE_ ) # verify the logits UpperCamelCase : Optional[int] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = torch.tensor([-1.9364, -1.2327, -0.4653] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) ) @slow def a_ ( self ): UpperCamelCase : Dict = MobileViTForSemanticSegmentation.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" ) UpperCamelCase : List[Any] = model.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = MobileViTImageProcessor.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" ) UpperCamelCase : List[str] = prepare_img() UpperCamelCase : Tuple = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): UpperCamelCase : str = model(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = outputs.logits # verify the logits UpperCamelCase : Tuple = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = torch.tensor( [ [[6.9713, 6.9786, 7.2422], [7.2893, 7.2825, 7.4446], [7.6580, 7.8797, 7.9420]], [[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9868, -9.7132], [-11.0405, -11.0221, -10.7318]], [[-3.3089, -2.8539, -2.6740], [-3.2706, -2.5621, -2.5108], [-3.2534, -2.6615, -2.6651]], ] , device=SCREAMING_SNAKE_CASE_ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) ) @slow def a_ ( self ): UpperCamelCase : Optional[int] = MobileViTForSemanticSegmentation.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" ) UpperCamelCase : List[Any] = model.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = MobileViTImageProcessor.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" ) UpperCamelCase : int = prepare_img() UpperCamelCase : Dict = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): UpperCamelCase : Tuple = model(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = outputs.logits.detach().cpu() UpperCamelCase : Union[str, Any] = image_processor.post_process_semantic_segmentation(outputs=SCREAMING_SNAKE_CASE_ , target_sizes=[(50, 60)] ) UpperCamelCase : Tuple = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = image_processor.post_process_semantic_segmentation(outputs=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , SCREAMING_SNAKE_CASE_ )
499
"""simple docstring""" import math def A_ ( snake_case_ : list ,snake_case_ : int = 0 ,snake_case_ : int = 0 ): '''simple docstring''' UpperCamelCase : Optional[Any] = end or len(snake_case_ ) for i in range(snake_case_ ,snake_case_ ): UpperCamelCase : List[str] = i UpperCamelCase : List[str] = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: UpperCamelCase : Dict = array[temp_index - 1] temp_index -= 1 UpperCamelCase : Dict = temp_index_value return array def A_ ( snake_case_ : list ,snake_case_ : int ,snake_case_ : int ): # Max Heap '''simple docstring''' UpperCamelCase : Optional[Any] = index UpperCamelCase : Union[str, Any] = 2 * index + 1 # Left Node UpperCamelCase : Tuple = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: UpperCamelCase : Union[str, Any] = left_index if right_index < heap_size and array[largest] < array[right_index]: UpperCamelCase : List[str] = right_index if largest != index: UpperCamelCase , UpperCamelCase : Any = array[largest], array[index] heapify(snake_case_ ,snake_case_ ,snake_case_ ) def A_ ( snake_case_ : list ): '''simple docstring''' UpperCamelCase : Any = len(snake_case_ ) for i in range(n // 2 ,-1 ,-1 ): heapify(snake_case_ ,snake_case_ ,snake_case_ ) for i in range(n - 1 ,0 ,-1 ): UpperCamelCase , UpperCamelCase : str = array[0], array[i] heapify(snake_case_ ,0 ,snake_case_ ) return array def A_ ( snake_case_ : list ,snake_case_ : int ,snake_case_ : int ,snake_case_ : int ): '''simple docstring''' if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def A_ ( snake_case_ : list ,snake_case_ : int ,snake_case_ : int ,snake_case_ : int ): '''simple docstring''' UpperCamelCase : Any = low UpperCamelCase : Optional[Any] = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i UpperCamelCase , UpperCamelCase : Union[str, Any] = array[j], array[i] i += 1 def A_ ( snake_case_ : list ): '''simple docstring''' if len(snake_case_ ) == 0: return array UpperCamelCase : Union[str, Any] = 2 * math.ceil(math.loga(len(snake_case_ ) ) ) UpperCamelCase : int = 1_6 return intro_sort(snake_case_ ,0 ,len(snake_case_ ) ,snake_case_ ,snake_case_ ) def A_ ( snake_case_ : list ,snake_case_ : int ,snake_case_ : int ,snake_case_ : int ,snake_case_ : int ): '''simple docstring''' while end - start > size_threshold: if max_depth == 0: return heap_sort(snake_case_ ) max_depth -= 1 UpperCamelCase : Dict = median_of_a(snake_case_ ,snake_case_ ,start + ((end - start) // 2) + 1 ,end - 1 ) UpperCamelCase : str = partition(snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ) intro_sort(snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ) UpperCamelCase : List[str] = p return insertion_sort(snake_case_ ,snake_case_ ,snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod() __A : Optional[int] = input('''Enter numbers separated by a comma : ''').strip() __A : List[Any] = [float(item) for item in user_input.split(''',''')] print(sort(unsorted))
499
1
from __future__ import annotations from collections.abc import Callable def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 100 , ) -> float: lowercase__ = x_start lowercase__ = fnc(_SCREAMING_SNAKE_CASE ) lowercase__ = 0.0 for _ in range(_SCREAMING_SNAKE_CASE ): # Approximates small segments of curve as linear and solve # for trapezoidal area lowercase__ = (x_end - x_start) / steps + xa lowercase__ = fnc(_SCREAMING_SNAKE_CASE ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step lowercase__ = xa lowercase__ = fxa return area if __name__ == "__main__": def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: return x**3 + x**2 print("""f(x) = x^3 + x^2""") print("""The area between the curve, x = -5, x = 5 and the x axis is:""") lowercase_ = 10 while i <= 100_000: print(f'''with {i} steps: {trapezoidal_area(f, -5, 5, i)}''') i *= 10
45
from __future__ import annotations import math from collections.abc import Callable def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 100 , ) -> float: lowercase__ = x_start lowercase__ = fnc(_SCREAMING_SNAKE_CASE ) lowercase__ = 0.0 for _ in range(_SCREAMING_SNAKE_CASE ): # Approximates curve as a sequence of linear lines and sums their length lowercase__ = (x_end - x_start) / steps + xa lowercase__ = fnc(_SCREAMING_SNAKE_CASE ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step lowercase__ = xa lowercase__ = fxa return length if __name__ == "__main__": def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> str: return math.sin(10 * x ) print("""f(x) = sin(10 * x)""") print("""The length of the curve from x = -10 to x = 10 is:""") lowercase_ = 10 while i <= 100_000: print(f'''With {i} steps: {line_length(f, -10, 10, i)}''') i *= 10
45
1
"""simple docstring""" import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py a__ : Union[str, Any] = """src/diffusers""" # Matches is_xxx_available() a__ : Optional[Any] = re.compile(r"""is\_([a-z_]*)_available\(\)""") # Matches from xxx import bla a__ : Dict = re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") a__ : int = """ {0} = None """ a__ : Optional[Any] = """ class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) """ a__ : Tuple = """ def {0}(*args, **kwargs): requires_backends({0}, {1}) """ def A__ ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = _re_backend.findall(_UpperCamelCase ) if len(_UpperCamelCase ) == 0: return None return "_and_".join(_UpperCamelCase ) def A__ ( ): """simple docstring""" with open(os.path.join(_UpperCamelCase, '__init__.py' ), 'r', encoding='utf-8', newline='\n' ) as f: _lowerCAmelCase = f.readlines() # Get to the point we do the actual imports for type checking _lowerCAmelCase = 0 _lowerCAmelCase = {} # Go through the end of the file while line_index < len(_UpperCamelCase ): # If the line contains is_backend_available, we grab all objects associated with the `else` block _lowerCAmelCase = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith('else:' ): line_index += 1 line_index += 1 _lowerCAmelCase = [] # Until we unindent, add backend objects to the list while line_index < len(_UpperCamelCase ) and len(lines[line_index] ) > 1: _lowerCAmelCase = lines[line_index] _lowerCAmelCase = _re_single_line_import.search(_UpperCamelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(_UpperCamelCase ) > 0: _lowerCAmelCase = objects else: line_index += 1 return backend_specific_objects def A__ ( __lowerCamelCase, __lowerCamelCase ): """simple docstring""" if name.isupper(): return DUMMY_CONSTANT.format(_UpperCamelCase ) elif name.islower(): return DUMMY_FUNCTION.format(_UpperCamelCase, _UpperCamelCase ) else: return DUMMY_CLASS.format(_UpperCamelCase, _UpperCamelCase ) def A__ ( __lowerCamelCase=None ): """simple docstring""" if backend_specific_objects is None: _lowerCAmelCase = read_init() # For special correspondence backend to module name as used in the function requires_modulename _lowerCAmelCase = {} for backend, objects in backend_specific_objects.items(): _lowerCAmelCase = '''[''' + ''', '''.join(F'''"{b}"''' for b in backend.split('_and_' ) ) + ''']''' _lowerCAmelCase = '''# This file is autogenerated by the command `make fix-copies`, do not edit.\n''' dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(_UpperCamelCase, _UpperCamelCase ) for o in objects] ) _lowerCAmelCase = dummy_file return dummy_files def A__ ( __lowerCamelCase=False ): """simple docstring""" _lowerCAmelCase = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py _lowerCAmelCase = {'''torch''': '''pt'''} # Locate actual dummy modules and read their content. _lowerCAmelCase = os.path.join(_UpperCamelCase, 'utils' ) _lowerCAmelCase = { backend: os.path.join(_UpperCamelCase, F'''dummy_{short_names.get(_UpperCamelCase, _UpperCamelCase )}_objects.py''' ) for backend in dummy_files.keys() } _lowerCAmelCase = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(_UpperCamelCase ): with open(_UpperCamelCase, 'r', encoding='utf-8', newline='\n' ) as f: _lowerCAmelCase = f.read() else: _lowerCAmelCase = '''''' for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F'''Updating diffusers.utils.dummy_{short_names.get(_UpperCamelCase, _UpperCamelCase )}_objects.py as the main ''' '__init__ has new objects.' ) with open(dummy_file_paths[backend], 'w', encoding='utf-8', newline='\n' ) as f: f.write(dummy_files[backend] ) else: raise ValueError( 'The main __init__ has objects that are not present in ' F'''diffusers.utils.dummy_{short_names.get(_UpperCamelCase, _UpperCamelCase )}_objects.py. Run `make fix-copies` ''' 'to fix this.' ) if __name__ == "__main__": a__ : Optional[int] = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") a__ : Optional[int] = parser.parse_args() check_dummies(args.fix_and_overwrite)
589
import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class __lowerCAmelCase ( unittest.TestCase ): def __init__(self , __magic_name__ , __magic_name__=7 , __magic_name__=3 , __magic_name__=18 , __magic_name__=30 , __magic_name__=400 , __magic_name__=True , __magic_name__=None , __magic_name__=True , __magic_name__=None , __magic_name__=True , __magic_name__=[0.5, 0.5, 0.5] , __magic_name__=[0.5, 0.5, 0.5] , __magic_name__=False , ) -> int: '''simple docstring''' snake_case_ : int = size if size is not None else {'''height''': 20, '''width''': 20} snake_case_ : int = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} snake_case_ : str = parent snake_case_ : Optional[int] = batch_size snake_case_ : Dict = num_channels snake_case_ : List[Any] = image_size snake_case_ : Union[str, Any] = min_resolution snake_case_ : Tuple = max_resolution snake_case_ : str = do_resize snake_case_ : Tuple = size snake_case_ : int = do_center_crop snake_case_ : Tuple = crop_size snake_case_ : int = do_normalize snake_case_ : Optional[Any] = image_mean snake_case_ : List[str] = image_std snake_case_ : str = do_reduce_labels def lowerCamelCase (self ) -> Dict: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def lowerCamelCase_ ( ) -> List[Any]: """simple docstring""" snake_case_ : Any = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) snake_case_ : Union[str, Any] = Image.open(dataset[0]['''file'''] ) snake_case_ : str = Image.open(dataset[1]['''file'''] ) return image, map def lowerCamelCase_ ( ) -> List[Any]: """simple docstring""" snake_case_ : str = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) snake_case_ : Optional[Any] = Image.open(ds[0]['''file'''] ) snake_case_ : Optional[Any] = Image.open(ds[1]['''file'''] ) snake_case_ : List[str] = Image.open(ds[2]['''file'''] ) snake_case_ : str = Image.open(ds[3]['''file'''] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class __lowerCAmelCase ( _a, unittest.TestCase ): lowerCamelCase_ : List[Any] = BeitImageProcessor if is_vision_available() else None def lowerCamelCase (self ) -> Optional[Any]: '''simple docstring''' snake_case_ : int = BeitImageProcessingTester(self ) @property def lowerCamelCase (self ) -> str: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase (self ) -> int: '''simple docstring''' snake_case_ : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__magic_name__ , '''do_resize''' ) ) self.assertTrue(hasattr(__magic_name__ , '''size''' ) ) self.assertTrue(hasattr(__magic_name__ , '''do_center_crop''' ) ) self.assertTrue(hasattr(__magic_name__ , '''center_crop''' ) ) self.assertTrue(hasattr(__magic_name__ , '''do_normalize''' ) ) self.assertTrue(hasattr(__magic_name__ , '''image_mean''' ) ) self.assertTrue(hasattr(__magic_name__ , '''image_std''' ) ) def lowerCamelCase (self ) -> Any: '''simple docstring''' snake_case_ : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 20, '''width''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) self.assertEqual(image_processor.do_reduce_labels , __magic_name__ ) snake_case_ : Union[str, Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=__magic_name__ ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) self.assertEqual(image_processor.do_reduce_labels , __magic_name__ ) def lowerCamelCase (self ) -> Any: '''simple docstring''' pass def lowerCamelCase (self ) -> str: '''simple docstring''' snake_case_ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , Image.Image ) # Test not batched input snake_case_ : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched snake_case_ : Any = image_processing(__magic_name__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def lowerCamelCase (self ) -> Dict: '''simple docstring''' snake_case_ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case_ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ , numpify=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , np.ndarray ) # Test not batched input snake_case_ : Tuple = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched snake_case_ : Optional[int] = image_processing(__magic_name__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def lowerCamelCase (self ) -> Optional[Any]: '''simple docstring''' snake_case_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case_ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ , torchify=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , torch.Tensor ) # Test not batched input snake_case_ : Tuple = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched snake_case_ : List[str] = image_processing(__magic_name__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def lowerCamelCase (self ) -> Optional[Any]: '''simple docstring''' snake_case_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case_ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ , torchify=__magic_name__ ) snake_case_ : Union[str, Any] = [] for image in image_inputs: self.assertIsInstance(__magic_name__ , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input snake_case_ : List[str] = image_processing(image_inputs[0] , maps[0] , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 ) # Test batched snake_case_ : Any = image_processing(__magic_name__ , __magic_name__ , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 ) # Test not batched input (PIL images) snake_case_ , snake_case_ : Optional[int] = prepare_semantic_single_inputs() snake_case_ : int = image_processing(__magic_name__ , __magic_name__ , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 ) # Test batched input (PIL images) snake_case_ , snake_case_ : Dict = prepare_semantic_batch_inputs() snake_case_ : Optional[int] = image_processing(__magic_name__ , __magic_name__ , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 2, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 ) def lowerCamelCase (self ) -> Dict: '''simple docstring''' snake_case_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 snake_case_ , snake_case_ : Tuple = prepare_semantic_single_inputs() snake_case_ : Optional[int] = image_processing(__magic_name__ , __magic_name__ , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 150 ) snake_case_ : List[Any] = True snake_case_ : int = image_processing(__magic_name__ , __magic_name__ , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 )
60
0
import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class a ( __lowerCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase :List[Any] = CanineTokenizer lowerCamelCase :Tuple = False def UpperCAmelCase ( self ) -> Dict: super().setUp() _A = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCAmelCase ( self ) -> Union[str, Any]: return CanineTokenizer.from_pretrained("""google/canine-s""" ) def UpperCAmelCase ( self , **lowerCAmelCase_ ) -> CanineTokenizer: _A = self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) _A = 10_24 return tokenizer @require_torch def UpperCAmelCase ( self ) -> int: _A = self.canine_tokenizer _A = ["""Life is like a box of chocolates.""", """You never know what you're gonna get."""] # fmt: off _A = [5_73_44, 76, 1_05, 1_02, 1_01, 32, 1_05, 1_15, 32, 1_08, 1_05, 1_07, 1_01, 32, 97, 32, 98, 1_11, 1_20, 32, 1_11, 1_02, 32, 99, 1_04, 1_11, 99, 1_11, 1_08, 97, 1_16, 1_01, 1_15, 46, 5_73_45, 0, 0, 0, 0] # fmt: on _A = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ , return_tensors="""pt""" ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) _A = list(batch.input_ids.numpy()[0] ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def UpperCAmelCase ( self ) -> Optional[int]: _A = self.canine_tokenizer _A = ["""Once there was a man.""", """He wrote a test in HuggingFace Tranformers."""] _A = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ , return_tensors="""pt""" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("""input_ids""" , lowerCAmelCase_ ) self.assertIn("""attention_mask""" , lowerCAmelCase_ ) self.assertIn("""token_type_ids""" , lowerCAmelCase_ ) @require_torch def UpperCAmelCase ( self ) -> Any: _A = self.canine_tokenizer _A = [ """What's the weater?""", """It's about 25 degrees.""", ] _A = tokenizer( text_target=lowerCAmelCase_ , max_length=32 , padding="""max_length""" , truncation=lowerCAmelCase_ , return_tensors="""pt""" ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) def UpperCAmelCase ( self ) -> int: # safety check on max_len default value so we are sure the test works _A = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test _A = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc _A = tempfile.mkdtemp() _A = """ He is very happy, UNwant\u00E9d,running""" _A = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) tokenizer.save_pretrained(lowerCAmelCase_ ) _A = tokenizer.__class__.from_pretrained(lowerCAmelCase_ ) _A = after_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) shutil.rmtree(lowerCAmelCase_ ) _A = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc _A = tempfile.mkdtemp() _A = """ He is very happy, UNwant\u00E9d,running""" _A = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: _A = chr(0xe_007 ) additional_special_tokens.append(lowerCAmelCase_ ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) _A = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) tokenizer.save_pretrained(lowerCAmelCase_ ) _A = tokenizer.__class__.from_pretrained(lowerCAmelCase_ ) _A = after_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertIn(lowerCAmelCase_ , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) _A = tokenizer.__class__.from_pretrained(lowerCAmelCase_ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> List[str]: _A = self.get_tokenizers(do_lower_case=lowerCAmelCase_ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _A , _A = self.get_clean_sequence(lowerCAmelCase_ ) # a special token for Canine can be defined as follows: _A = 0xe_005 _A = chr(lowerCAmelCase_ ) tokenizer.add_special_tokens({"""cls_token""": special_token} ) _A = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertEqual(len(lowerCAmelCase_ ) , 1 ) _A = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=lowerCAmelCase_ ) _A = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _A = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _A = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , input_encoded + special_token_id ) _A = tokenizer.decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) self.assertTrue(special_token not in decoded ) def UpperCAmelCase ( self ) -> int: _A = self.get_tokenizers(do_lower_case=lowerCAmelCase_ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _A = chr(0xe_005 ) _A = chr(0xe_006 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=lowerCAmelCase_ ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"""additional_special_tokens""": [SPECIAL_TOKEN_2]} ) _A = tokenizer.tokenize(lowerCAmelCase_ ) _A = tokenizer.tokenize(lowerCAmelCase_ ) self.assertEqual(len(lowerCAmelCase_ ) , 1 ) self.assertEqual(len(lowerCAmelCase_ ) , 1 ) self.assertEqual(token_a[0] , lowerCAmelCase_ ) self.assertEqual(token_a[0] , lowerCAmelCase_ ) @require_tokenizers def UpperCAmelCase ( self ) -> Any: _A = self.get_tokenizers(do_lower_case=lowerCAmelCase_ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # a special token for Canine can be defined as follows: _A = 0xe_006 _A = chr(lowerCAmelCase_ ) _A = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ ) tokenizer.add_special_tokens({"""additional_special_tokens""": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(lowerCAmelCase_ ) tokenizer.from_pretrained(lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> List[str]: _A = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowerCAmelCase_ ) with open(os.path.join(lowerCAmelCase_ , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file: _A = json.load(lowerCAmelCase_ ) with open(os.path.join(lowerCAmelCase_ , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file: _A = json.load(lowerCAmelCase_ ) # a special token for Canine can be defined as follows: _A = 0xe_006 _A = chr(lowerCAmelCase_ ) _A = [new_token_a] _A = [new_token_a] with open(os.path.join(lowerCAmelCase_ , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) with open(os.path.join(lowerCAmelCase_ , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _A = tokenizer_class.from_pretrained(lowerCAmelCase_ , extra_ids=0 ) self.assertIn(lowerCAmelCase_ , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) _A = 0xe_007 _A = chr(lowerCAmelCase_ ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _A = [AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ )] _A = tokenizer_class.from_pretrained( lowerCAmelCase_ , additional_special_tokens=lowerCAmelCase_ , extra_ids=0 ) self.assertIn(lowerCAmelCase_ , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def UpperCAmelCase ( self ) -> Optional[Any]: _A = self.get_tokenizers(do_lower_case=lowerCAmelCase_ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _A = """hello world""" if self.space_between_special_tokens: _A = """[CLS] hello world [SEP]""" else: _A = input _A = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _A = tokenizer.decode(lowerCAmelCase_ , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(lowerCAmelCase_ , [output, output.lower()] ) def UpperCAmelCase ( self ) -> Union[str, Any]: _A = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _A = [ """bos_token""", """eos_token""", """unk_token""", """sep_token""", """pad_token""", """cls_token""", """mask_token""", ] _A = """a""" _A = ord(lowerCAmelCase_ ) for attr in attributes_list: setattr(lowerCAmelCase_ , attr + """_id""" , lowerCAmelCase_ ) self.assertEqual(getattr(lowerCAmelCase_ , lowerCAmelCase_ ) , lowerCAmelCase_ ) self.assertEqual(getattr(lowerCAmelCase_ , attr + """_id""" ) , lowerCAmelCase_ ) setattr(lowerCAmelCase_ , attr + """_id""" , lowerCAmelCase_ ) self.assertEqual(getattr(lowerCAmelCase_ , lowerCAmelCase_ ) , lowerCAmelCase_ ) self.assertEqual(getattr(lowerCAmelCase_ , attr + """_id""" ) , lowerCAmelCase_ ) setattr(lowerCAmelCase_ , """additional_special_tokens_ids""" , [] ) self.assertListEqual(getattr(lowerCAmelCase_ , """additional_special_tokens""" ) , [] ) self.assertListEqual(getattr(lowerCAmelCase_ , """additional_special_tokens_ids""" ) , [] ) _A = 0xe_006 _A = chr(lowerCAmelCase_ ) setattr(lowerCAmelCase_ , """additional_special_tokens_ids""" , [additional_special_token_id] ) self.assertListEqual(getattr(lowerCAmelCase_ , """additional_special_tokens""" ) , [additional_special_token] ) self.assertListEqual(getattr(lowerCAmelCase_ , """additional_special_tokens_ids""" ) , [additional_special_token_id] ) def UpperCAmelCase ( self ) -> List[str]: pass def UpperCAmelCase ( self ) -> Tuple: pass def UpperCAmelCase ( self ) -> Union[str, Any]: pass def UpperCAmelCase ( self ) -> Optional[Any]: pass def UpperCAmelCase ( self ) -> Any: pass def UpperCAmelCase ( self ) -> Optional[Any]: pass def UpperCAmelCase ( self ) -> List[Any]: pass def UpperCAmelCase ( self ) -> Optional[Any]: pass
83
_SCREAMING_SNAKE_CASE = { 'A': '.-', 'B': '-...', 'C': '-.-.', 'D': '-..', 'E': '.', 'F': '..-.', 'G': '--.', 'H': '....', 'I': '..', 'J': '.---', 'K': '-.-', 'L': '.-..', 'M': '--', 'N': '-.', 'O': '---', 'P': '.--.', 'Q': '--.-', 'R': '.-.', 'S': '...', 'T': '-', 'U': '..-', 'V': '...-', 'W': '.--', 'X': '-..-', 'Y': '-.--', 'Z': '--..', '1': '.----', '2': '..---', '3': '...--', '4': '....-', '5': '.....', '6': '-....', '7': '--...', '8': '---..', '9': '----.', '0': '-----', '&': '.-...', '@': '.--.-.', ':': '---...', ',': '--..--', '.': '.-.-.-', '\'': '.----.', '"': '.-..-.', '?': '..--..', '/': '-..-.', '=': '-...-', '+': '.-.-.', '-': '-....-', '(': '-.--.', ')': '-.--.-', '!': '-.-.--', ' ': '/' } # Exclamation mark is not in ITU-R recommendation # fmt: on _SCREAMING_SNAKE_CASE = {value: key for key, value in MORSE_CODE_DICT.items()} def snake_case ( snake_case__ :str) -> str: return " ".join(MORSE_CODE_DICT[char] for char in message.upper()) def snake_case ( snake_case__ :str) -> str: return "".join(REVERSE_DICT[char] for char in message.split()) def snake_case ( ) -> None: _A = """Morse code here!""" print(snake_case__) _A = encrypt(snake_case__) print(snake_case__) _A = decrypt(snake_case__) print(snake_case__) if __name__ == "__main__": main()
83
1
from math import pi, sqrt def lowercase ( __A : float ) -> float: '''simple docstring''' if num <= 0: raise ValueError("""math domain error""" ) if num > 171.5: raise OverflowError("""math range error""" ) elif num - int(__A ) not in (0, 0.5): raise NotImplementedError("""num must be an integer or a half-integer""" ) elif num == 0.5: return sqrt(__A ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def lowercase ( ) -> None: '''simple docstring''' assert gamma(0.5 ) == sqrt(__A ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() __lowercase : Optional[int] = 1.0 while num: __lowercase : Dict = float(input('''Gamma of: ''')) print(f'''gamma({num}) = {gamma(num)}''') print('''\nEnter 0 to exit...''')
36
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class _A ( pl.LightningModule ): '''simple docstring''' def __init__( self ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' super().__init__() snake_case : Dict = model snake_case : Optional[int] = 2 snake_case : Optional[Any] = nn.Linear(self.model.config.hidden_size ,self.num_labels ) def snake_case_ ( self ): '''simple docstring''' pass def lowercase ( __A : str , __A : str , __A : str ) -> Optional[Any]: '''simple docstring''' snake_case : Optional[Any] = LongformerModel.from_pretrained(__A ) snake_case : Tuple = LightningModel(__A ) snake_case : Optional[int] = torch.load(__A , map_location=torch.device("""cpu""" ) ) lightning_model.load_state_dict(ckpt["""state_dict"""] ) # init longformer question answering model snake_case : Dict = LongformerForQuestionAnswering.from_pretrained(__A ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(__A ) print(f"""Conversion successful. Model saved under {pytorch_dump_folder_path}""" ) if __name__ == "__main__": __lowercase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--longformer_model''', default=None, type=str, required=True, help='''model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.''', ) parser.add_argument( '''--longformer_question_answering_ckpt_path''', default=None, type=str, required=True, help='''Path the official PyTorch Lightning Checkpoint.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __lowercase : List[str] = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
36
1
import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format='%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=os.environ.get('LOGLEVEL', 'INFO').upper(), stream=sys.stdout, ) __lowerCamelCase = logging.getLogger(__name__) __lowerCamelCase = {'facebook/bart-base': BartForConditionalGeneration} __lowerCamelCase = {'facebook/bart-base': BartTokenizer} def UpperCamelCase__ ( ) -> List[Any]: """simple docstring""" _a : Tuple = argparse.ArgumentParser(description='''Export Bart model + Beam Search to ONNX graph.''' ) parser.add_argument( '''--validation_file''' , type=lowerCAmelCase_ , default=lowerCAmelCase_ , help='''A csv or a json file containing the validation data.''' ) parser.add_argument( '''--max_length''' , type=lowerCAmelCase_ , default=5 , help='''The maximum total input sequence length after tokenization.''' , ) parser.add_argument( '''--num_beams''' , type=lowerCAmelCase_ , default=lowerCAmelCase_ , help=( '''Number of beams to use for evaluation. This argument will be ''' '''passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.''' ) , ) parser.add_argument( '''--model_name_or_path''' , type=lowerCAmelCase_ , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=lowerCAmelCase_ , ) parser.add_argument( '''--config_name''' , type=lowerCAmelCase_ , default=lowerCAmelCase_ , help='''Pretrained config name or path if not the same as model_name''' , ) parser.add_argument( '''--device''' , type=lowerCAmelCase_ , default='''cpu''' , help='''Device where the model will be run''' , ) parser.add_argument('''--output_file_path''' , type=lowerCAmelCase_ , default=lowerCAmelCase_ , help='''Where to store the final ONNX file.''' ) _a : List[str] = parser.parse_args() return args def UpperCamelCase__ ( UpperCAmelCase , UpperCAmelCase="cpu" ) -> int: """simple docstring""" _a : Any = model_dict[model_name].from_pretrained(lowerCAmelCase_ ).to(lowerCAmelCase_ ) _a : str = tokenizer_dict[model_name].from_pretrained(lowerCAmelCase_ ) if model_name in ["facebook/bart-base"]: _a : Tuple = 0 _a : List[Any] = None _a : Tuple = 0 return huggingface_model, tokenizer def UpperCamelCase__ ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[str]: """simple docstring""" model.eval() _a : str = None _a : Union[str, Any] = torch.jit.script(BARTBeamSearchGenerator(lowerCAmelCase_ ) ) with torch.no_grad(): _a : int = "My friends are cool but they eat too many carbs." _a : Dict = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1024 , return_tensors='''pt''' ).to(model.device ) _a : Dict = model.generate( inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , num_beams=lowerCAmelCase_ , max_length=lowerCAmelCase_ , early_stopping=lowerCAmelCase_ , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( lowerCAmelCase_ , ( inputs['''input_ids'''], inputs['''attention_mask'''], num_beams, max_length, model.config.decoder_start_token_id, ) , lowerCAmelCase_ , opset_version=14 , input_names=['''input_ids''', '''attention_mask''', '''num_beams''', '''max_length''', '''decoder_start_token_id'''] , output_names=['''output_ids'''] , dynamic_axes={ '''input_ids''': {0: '''batch''', 1: '''seq'''}, '''output_ids''': {0: '''batch''', 1: '''seq_out'''}, } , example_outputs=lowerCAmelCase_ , ) logger.info('''Model exported to {}'''.format(lowerCAmelCase_ ) ) _a : str = remove_dup_initializers(os.path.abspath(lowerCAmelCase_ ) ) logger.info('''Deduplicated and optimized model written to {}'''.format(lowerCAmelCase_ ) ) _a : Tuple = onnxruntime.InferenceSession(lowerCAmelCase_ ) _a : int = ort_sess.run( lowerCAmelCase_ , { '''input_ids''': inputs['''input_ids'''].cpu().numpy(), '''attention_mask''': inputs['''attention_mask'''].cpu().numpy(), '''num_beams''': np.array(lowerCAmelCase_ ), '''max_length''': np.array(lowerCAmelCase_ ), '''decoder_start_token_id''': np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1e-3 , atol=1e-3 ) logger.info('''Model outputs from torch and ONNX Runtime are similar.''' ) logger.info('''Success.''' ) def UpperCamelCase__ ( ) -> Optional[int]: """simple docstring""" _a : Dict = parse_args() _a : Tuple = 5 _a : Union[str, Any] = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() _a : Union[str, Any] = torch.device(args.device ) _a : int = load_model_tokenizer(args.model_name_or_path , lowerCAmelCase_ ) if model.config.decoder_start_token_id is None: raise ValueError('''Make sure that `config.decoder_start_token_id` is correctly defined''' ) model.to(lowerCAmelCase_ ) if args.max_length: _a : int = args.max_length if args.num_beams: _a : Optional[Any] = args.num_beams if args.output_file_path: _a : Any = args.output_file_path else: _a : Optional[int] = "BART.onnx" logger.info('''Exporting model to ONNX''' ) export_and_validate_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": main()
707
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig __lowerCamelCase = logging.get_logger(__name__) # General docstring __lowerCamelCase = 'ResNetConfig' # Base docstring __lowerCamelCase = 'microsoft/resnet-50' __lowerCamelCase = [1, 2_048, 7, 7] # Image classification docstring __lowerCamelCase = 'microsoft/resnet-50' __lowerCamelCase = 'tiger cat' __lowerCamelCase = [ 'microsoft/resnet-50', # See all resnet models at https://huggingface.co/models?filter=resnet ] class UpperCamelCase_ ( nn.Module ): def __init__( self , lowercase , lowercase , lowercase = 3 , lowercase = 1 , lowercase = "relu" ) -> str: super().__init__() _a : str = nn.Convad( lowercase , lowercase , kernel_size=lowercase , stride=lowercase , padding=kernel_size // 2 , bias=lowercase ) _a : Optional[Any] = nn.BatchNormad(lowercase ) _a : int = ACTaFN[activation] if activation is not None else nn.Identity() def snake_case__( self , lowercase ) -> Tensor: _a : Union[str, Any] = self.convolution(lowercase ) _a : List[str] = self.normalization(lowercase ) _a : List[str] = self.activation(lowercase ) return hidden_state class UpperCamelCase_ ( nn.Module ): def __init__( self , lowercase ) -> Optional[int]: super().__init__() _a : int = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) _a : Union[str, Any] = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) _a : Union[str, Any] = config.num_channels def snake_case__( self , lowercase ) -> Tensor: _a : Any = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) _a : Any = self.embedder(lowercase ) _a : Optional[int] = self.pooler(lowercase ) return embedding class UpperCamelCase_ ( nn.Module ): def __init__( self , lowercase , lowercase , lowercase = 2 ) -> Dict: super().__init__() _a : str = nn.Convad(lowercase , lowercase , kernel_size=1 , stride=lowercase , bias=lowercase ) _a : Union[str, Any] = nn.BatchNormad(lowercase ) def snake_case__( self , lowercase ) -> Tensor: _a : Optional[int] = self.convolution(lowercase ) _a : Any = self.normalization(lowercase ) return hidden_state class UpperCamelCase_ ( nn.Module ): def __init__( self , lowercase , lowercase , lowercase = 1 , lowercase = "relu" ) -> List[str]: super().__init__() _a : List[str] = in_channels != out_channels or stride != 1 _a : List[Any] = ( ResNetShortCut(lowercase , lowercase , stride=lowercase ) if should_apply_shortcut else nn.Identity() ) _a : List[str] = nn.Sequential( ResNetConvLayer(lowercase , lowercase , stride=lowercase ) , ResNetConvLayer(lowercase , lowercase , activation=lowercase ) , ) _a : Dict = ACTaFN[activation] def snake_case__( self , lowercase ) -> Optional[int]: _a : List[Any] = hidden_state _a : Optional[Any] = self.layer(lowercase ) _a : int = self.shortcut(lowercase ) hidden_state += residual _a : Dict = self.activation(lowercase ) return hidden_state class UpperCamelCase_ ( nn.Module ): def __init__( self , lowercase , lowercase , lowercase = 1 , lowercase = "relu" , lowercase = 4 ) -> Dict: super().__init__() _a : Union[str, Any] = in_channels != out_channels or stride != 1 _a : Union[str, Any] = out_channels // reduction _a : List[str] = ( ResNetShortCut(lowercase , lowercase , stride=lowercase ) if should_apply_shortcut else nn.Identity() ) _a : Dict = nn.Sequential( ResNetConvLayer(lowercase , lowercase , kernel_size=1 ) , ResNetConvLayer(lowercase , lowercase , stride=lowercase ) , ResNetConvLayer(lowercase , lowercase , kernel_size=1 , activation=lowercase ) , ) _a : List[str] = ACTaFN[activation] def snake_case__( self , lowercase ) -> str: _a : List[str] = hidden_state _a : Optional[int] = self.layer(lowercase ) _a : Any = self.shortcut(lowercase ) hidden_state += residual _a : Union[str, Any] = self.activation(lowercase ) return hidden_state class UpperCamelCase_ ( nn.Module ): def __init__( self , lowercase , lowercase , lowercase , lowercase = 2 , lowercase = 2 , ) -> Optional[int]: super().__init__() _a : List[str] = ResNetBottleNeckLayer if config.layer_type == '''bottleneck''' else ResNetBasicLayer _a : str = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(lowercase , lowercase , stride=lowercase , activation=config.hidden_act ) , *[layer(lowercase , lowercase , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def snake_case__( self , lowercase ) -> Tensor: _a : Optional[int] = input for layer in self.layers: _a : Any = layer(lowercase ) return hidden_state class UpperCamelCase_ ( nn.Module ): def __init__( self , lowercase ) -> Any: super().__init__() _a : Tuple = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( lowercase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) _a : str = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(lowercase , config.depths[1:] ): self.stages.append(ResNetStage(lowercase , lowercase , lowercase , depth=lowercase ) ) def snake_case__( self , lowercase , lowercase = False , lowercase = True ) -> BaseModelOutputWithNoAttention: _a : str = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _a : Dict = hidden_states + (hidden_state,) _a : List[str] = stage_module(lowercase ) if output_hidden_states: _a : Tuple = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=lowercase , hidden_states=lowercase , ) class UpperCamelCase_ ( UpperCamelCase ): lowercase = ResNetConfig lowercase = '''resnet''' lowercase = '''pixel_values''' lowercase = True def snake_case__( self , lowercase ) -> Any: if isinstance(lowercase , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='''fan_out''' , nonlinearity='''relu''' ) elif isinstance(lowercase , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def snake_case__( self , lowercase , lowercase=False ) -> int: if isinstance(lowercase , lowercase ): _a : List[str] = value __lowerCamelCase = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' __lowerCamelCase = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( '''The bare ResNet model outputting raw features without any specific head on top.''' , UpperCamelCase , ) class UpperCamelCase_ ( UpperCamelCase ): def __init__( self , lowercase ) -> int: super().__init__(lowercase ) _a : Any = config _a : Optional[int] = ResNetEmbeddings(lowercase ) _a : Any = ResNetEncoder(lowercase ) _a : Dict = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowercase , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def snake_case__( self , lowercase , lowercase = None , lowercase = None ) -> BaseModelOutputWithPoolingAndNoAttention: _a : List[str] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _a : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict _a : Optional[Any] = self.embedder(lowercase ) _a : Tuple = self.encoder( lowercase , output_hidden_states=lowercase , return_dict=lowercase ) _a : str = encoder_outputs[0] _a : str = self.pooler(lowercase ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowercase , pooler_output=lowercase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( ''' ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , UpperCamelCase , ) class UpperCamelCase_ ( UpperCamelCase ): def __init__( self , lowercase ) -> str: super().__init__(lowercase ) _a : str = config.num_labels _a : List[str] = ResNetModel(lowercase ) # classification head _a : Optional[int] = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowercase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def snake_case__( self , lowercase = None , lowercase = None , lowercase = None , lowercase = None , ) -> ImageClassifierOutputWithNoAttention: _a : Dict = return_dict if return_dict is not None else self.config.use_return_dict _a : str = self.resnet(lowercase , output_hidden_states=lowercase , return_dict=lowercase ) _a : int = outputs.pooler_output if return_dict else outputs[1] _a : str = self.classifier(lowercase ) _a : Dict = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _a : Any = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _a : Optional[Any] = '''single_label_classification''' else: _a : Optional[Any] = '''multi_label_classification''' if self.config.problem_type == "regression": _a : Optional[Any] = MSELoss() if self.num_labels == 1: _a : Union[str, Any] = loss_fct(logits.squeeze() , labels.squeeze() ) else: _a : List[str] = loss_fct(lowercase , lowercase ) elif self.config.problem_type == "single_label_classification": _a : str = CrossEntropyLoss() _a : Any = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _a : List[Any] = BCEWithLogitsLoss() _a : List[Any] = loss_fct(lowercase , lowercase ) if not return_dict: _a : str = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowercase , logits=lowercase , hidden_states=outputs.hidden_states ) @add_start_docstrings( ''' ResNet backbone, to be used with frameworks like DETR and MaskFormer. ''' , UpperCamelCase , ) class UpperCamelCase_ ( UpperCamelCase , UpperCamelCase ): def __init__( self , lowercase ) -> str: super().__init__(lowercase ) super()._init_backbone(lowercase ) _a : Optional[int] = [config.embedding_size] + config.hidden_sizes _a : Any = ResNetEmbeddings(lowercase ) _a : List[str] = ResNetEncoder(lowercase ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @replace_return_docstrings(output_type=lowercase , config_class=_CONFIG_FOR_DOC ) def snake_case__( self , lowercase , lowercase = None , lowercase = None ) -> BackboneOutput: _a : Tuple = return_dict if return_dict is not None else self.config.use_return_dict _a : Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _a : List[Any] = self.embedder(lowercase ) _a : Tuple = self.encoder(lowercase , output_hidden_states=lowercase , return_dict=lowercase ) _a : str = outputs.hidden_states _a : Tuple = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: _a : Dict = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=lowercase , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=lowercase , )
307
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "Salesforce/instruct-blip-flan-t5": "https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json", } class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = "instructblip_vision_model" def __init__( self : str , _A : Dict=1408 , _A : Union[str, Any]=6144 , _A : Union[str, Any]=39 , _A : int=16 , _A : Dict=224 , _A : Dict=14 , _A : Any="gelu" , _A : Dict=1e-6 , _A : List[str]=0.0 , _A : List[str]=1e-10 , _A : List[str]=True , **_A : Dict , ): super().__init__(**_A ) _UpperCamelCase = hidden_size _UpperCamelCase = intermediate_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = patch_size _UpperCamelCase = image_size _UpperCamelCase = initializer_range _UpperCamelCase = attention_dropout _UpperCamelCase = layer_norm_eps _UpperCamelCase = hidden_act _UpperCamelCase = qkv_bias @classmethod def UpperCamelCase_ ( cls : Dict , _A : Union[str, os.PathLike] , **_A : Union[str, Any] ): cls._set_token_in_kwargs(_A ) _UpperCamelCase , _UpperCamelCase = cls.get_config_dict(_A , **_A ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get('''model_type''' ) == "instructblip": _UpperCamelCase = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_A , **_A ) class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = "instructblip_qformer" def __init__( self : List[str] , _A : int=3_0522 , _A : Tuple=768 , _A : List[str]=12 , _A : List[Any]=12 , _A : Any=3072 , _A : int="gelu" , _A : Union[str, Any]=0.1 , _A : Dict=0.1 , _A : str=512 , _A : Any=0.02 , _A : Optional[int]=1e-12 , _A : Tuple=0 , _A : Any="absolute" , _A : Dict=2 , _A : Dict=1408 , **_A : Optional[Any] , ): super().__init__(pad_token_id=_A , **_A ) _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_act _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = initializer_range _UpperCamelCase = layer_norm_eps _UpperCamelCase = position_embedding_type _UpperCamelCase = cross_attention_frequency _UpperCamelCase = encoder_hidden_size @classmethod def UpperCamelCase_ ( cls : List[str] , _A : Union[str, os.PathLike] , **_A : Tuple ): cls._set_token_in_kwargs(_A ) _UpperCamelCase , _UpperCamelCase = cls.get_config_dict(_A , **_A ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get('''model_type''' ) == "instructblip": _UpperCamelCase = config_dict['''qformer_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_A , **_A ) class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = "instructblip" UpperCAmelCase = True def __init__( self : Tuple , _A : List[str]=None , _A : str=None , _A : Optional[int]=None , _A : Any=32 , **_A : Dict ): super().__init__(**_A ) if vision_config is None: _UpperCamelCase = {} logger.info('''vision_config is None. initializing the InstructBlipVisionConfig with default values.''' ) if qformer_config is None: _UpperCamelCase = {} logger.info('''qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.''' ) if text_config is None: _UpperCamelCase = {} logger.info('''text_config is None. Initializing the text config with default values (`OPTConfig`).''' ) _UpperCamelCase = InstructBlipVisionConfig(**_A ) _UpperCamelCase = InstructBlipQFormerConfig(**_A ) _UpperCamelCase = text_config['''model_type'''] if '''model_type''' in text_config else '''opt''' _UpperCamelCase = CONFIG_MAPPING[text_model_type](**_A ) _UpperCamelCase = self.text_config.tie_word_embeddings _UpperCamelCase = self.text_config.is_encoder_decoder _UpperCamelCase = num_query_tokens _UpperCamelCase = self.vision_config.hidden_size _UpperCamelCase = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _UpperCamelCase = 1.0 _UpperCamelCase = 0.02 @classmethod def UpperCamelCase_ ( cls : str , _A : InstructBlipVisionConfig , _A : InstructBlipQFormerConfig , _A : PretrainedConfig , **_A : Tuple , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_A , ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = copy.deepcopy(self.__dict__ ) _UpperCamelCase = self.vision_config.to_dict() _UpperCamelCase = self.qformer_config.to_dict() _UpperCamelCase = self.text_config.to_dict() _UpperCamelCase = self.__class__.model_type return output
10
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = ShapEPipeline UpperCAmelCase = ["prompt"] UpperCAmelCase = ["prompt"] UpperCAmelCase = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] UpperCAmelCase = False @property def UpperCamelCase_ ( self : Union[str, Any] ): return 32 @property def UpperCamelCase_ ( self : int ): return 32 @property def UpperCamelCase_ ( self : List[str] ): return self.time_input_dim * 4 @property def UpperCamelCase_ ( self : Optional[Any] ): return 8 @property def UpperCamelCase_ ( self : int ): _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def UpperCamelCase_ ( self : List[Any] ): torch.manual_seed(0 ) _UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(_A ) @property def UpperCamelCase_ ( self : int ): torch.manual_seed(0 ) _UpperCamelCase = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } _UpperCamelCase = PriorTransformer(**_A ) return model @property def UpperCamelCase_ ( self : Union[str, Any] ): torch.manual_seed(0 ) _UpperCamelCase = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } _UpperCamelCase = ShapERenderer(**_A ) return model def UpperCamelCase_ ( self : str ): _UpperCamelCase = self.dummy_prior _UpperCamelCase = self.dummy_text_encoder _UpperCamelCase = self.dummy_tokenizer _UpperCamelCase = self.dummy_renderer _UpperCamelCase = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=1024 , prediction_type='''sample''' , use_karras_sigmas=_A , clip_sample=_A , clip_sample_range=1.0 , ) _UpperCamelCase = { '''prior''': prior, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''renderer''': renderer, '''scheduler''': scheduler, } return components def UpperCamelCase_ ( self : Tuple , _A : Tuple , _A : Optional[int]=0 ): if str(_A ).startswith('''mps''' ): _UpperCamelCase = torch.manual_seed(_A ) else: _UpperCamelCase = torch.Generator(device=_A ).manual_seed(_A ) _UpperCamelCase = { '''prompt''': '''horse''', '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def UpperCamelCase_ ( self : Any ): _UpperCamelCase = '''cpu''' _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = self.pipeline_class(**_A ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = pipe(**self.get_dummy_inputs(_A ) ) _UpperCamelCase = output.images[0] _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _UpperCamelCase = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase_ ( self : Any ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = torch_device == '''cpu''' _UpperCamelCase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_A , relax_max_difference=_A , ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = self.pipeline_class(**_A ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = 1 _UpperCamelCase = 2 _UpperCamelCase = self.get_dummy_inputs(_A ) for key in inputs.keys(): if key in self.batch_params: _UpperCamelCase = batch_size * [inputs[key]] _UpperCamelCase = pipe(**_A , num_images_per_prompt=_A )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_np_out.npy''' ) _UpperCamelCase = ShapEPipeline.from_pretrained('''openai/shap-e''' ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = torch.Generator(device=_A ).manual_seed(0 ) _UpperCamelCase = pipe( '''a shark''' , generator=_A , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_A , _A )
10
1
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def UpperCAmelCase ( snake_case : Tuple ): _lowerCAmelCase:Tuple = 384 if "tiny" in model_name: _lowerCAmelCase:Any = [3, 3, 9, 3] _lowerCAmelCase:Union[str, Any] = [96, 192, 384, 768] if "small" in model_name: _lowerCAmelCase:List[str] = [3, 3, 27, 3] _lowerCAmelCase:Any = [96, 192, 384, 768] if "base" in model_name: _lowerCAmelCase:int = [3, 3, 27, 3] _lowerCAmelCase:int = [128, 256, 512, 1024] _lowerCAmelCase:Any = 512 if "large" in model_name: _lowerCAmelCase:Optional[int] = [3, 3, 27, 3] _lowerCAmelCase:List[str] = [192, 384, 768, 1536] _lowerCAmelCase:List[Any] = 768 if "xlarge" in model_name: _lowerCAmelCase:str = [3, 3, 27, 3] _lowerCAmelCase:Optional[int] = [256, 512, 1024, 2048] _lowerCAmelCase:Optional[int] = 1024 # set label information _lowerCAmelCase:Tuple = 150 _lowerCAmelCase:int = '''huggingface/label-files''' _lowerCAmelCase:Optional[int] = '''ade20k-id2label.json''' _lowerCAmelCase:List[str] = json.load(open(hf_hub_download(snake_case , snake_case , repo_type='''dataset''' ) , '''r''' ) ) _lowerCAmelCase:Dict = {int(snake_case ): v for k, v in idalabel.items()} _lowerCAmelCase:Tuple = {v: k for k, v in idalabel.items()} _lowerCAmelCase:str = ConvNextConfig( depths=snake_case , hidden_sizes=snake_case , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) _lowerCAmelCase:Union[str, Any] = UperNetConfig( backbone_config=snake_case , auxiliary_in_channels=snake_case , num_labels=snake_case , idalabel=snake_case , labelaid=snake_case , ) return config def UpperCAmelCase ( snake_case : List[Any] ): _lowerCAmelCase:List[str] = [] # fmt: off # stem rename_keys.append(('''backbone.downsample_layers.0.0.weight''', '''backbone.embeddings.patch_embeddings.weight''') ) rename_keys.append(('''backbone.downsample_layers.0.0.bias''', '''backbone.embeddings.patch_embeddings.bias''') ) rename_keys.append(('''backbone.downsample_layers.0.1.weight''', '''backbone.embeddings.layernorm.weight''') ) rename_keys.append(('''backbone.downsample_layers.0.1.bias''', '''backbone.embeddings.layernorm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'backbone.stages.{i}.{j}.gamma', F'backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter') ) rename_keys.append((F'backbone.stages.{i}.{j}.depthwise_conv.weight', F'backbone.encoder.stages.{i}.layers.{j}.dwconv.weight') ) rename_keys.append((F'backbone.stages.{i}.{j}.depthwise_conv.bias', F'backbone.encoder.stages.{i}.layers.{j}.dwconv.bias') ) rename_keys.append((F'backbone.stages.{i}.{j}.norm.weight', F'backbone.encoder.stages.{i}.layers.{j}.layernorm.weight') ) rename_keys.append((F'backbone.stages.{i}.{j}.norm.bias', F'backbone.encoder.stages.{i}.layers.{j}.layernorm.bias') ) rename_keys.append((F'backbone.stages.{i}.{j}.pointwise_conv1.weight', F'backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight') ) rename_keys.append((F'backbone.stages.{i}.{j}.pointwise_conv1.bias', F'backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias') ) rename_keys.append((F'backbone.stages.{i}.{j}.pointwise_conv2.weight', F'backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight') ) rename_keys.append((F'backbone.stages.{i}.{j}.pointwise_conv2.bias', F'backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias') ) if i > 0: rename_keys.append((F'backbone.downsample_layers.{i}.0.weight', F'backbone.encoder.stages.{i}.downsampling_layer.0.weight') ) rename_keys.append((F'backbone.downsample_layers.{i}.0.bias', F'backbone.encoder.stages.{i}.downsampling_layer.0.bias') ) rename_keys.append((F'backbone.downsample_layers.{i}.1.weight', F'backbone.encoder.stages.{i}.downsampling_layer.1.weight') ) rename_keys.append((F'backbone.downsample_layers.{i}.1.bias', F'backbone.encoder.stages.{i}.downsampling_layer.1.bias') ) rename_keys.append((F'backbone.norm{i}.weight', F'backbone.hidden_states_norms.stage{i+1}.weight') ) rename_keys.append((F'backbone.norm{i}.bias', F'backbone.hidden_states_norms.stage{i+1}.bias') ) # decode head rename_keys.extend( [ ('''decode_head.conv_seg.weight''', '''decode_head.classifier.weight'''), ('''decode_head.conv_seg.bias''', '''decode_head.classifier.bias'''), ('''auxiliary_head.conv_seg.weight''', '''auxiliary_head.classifier.weight'''), ('''auxiliary_head.conv_seg.bias''', '''auxiliary_head.classifier.bias'''), ] ) # fmt: on return rename_keys def UpperCAmelCase ( snake_case : int , snake_case : Tuple , snake_case : Optional[int] ): _lowerCAmelCase:int = dct.pop(snake_case ) _lowerCAmelCase:Union[str, Any] = val def UpperCAmelCase ( snake_case : List[str] , snake_case : int , snake_case : Optional[Any] ): _lowerCAmelCase:Dict = { '''upernet-convnext-tiny''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth''', '''upernet-convnext-small''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth''', '''upernet-convnext-base''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth''', '''upernet-convnext-large''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth''', '''upernet-convnext-xlarge''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth''', } _lowerCAmelCase:Optional[Any] = model_name_to_url[model_name] _lowerCAmelCase:Optional[Any] = torch.hub.load_state_dict_from_url(snake_case , map_location='''cpu''' )['''state_dict'''] _lowerCAmelCase:Tuple = get_upernet_config(snake_case ) _lowerCAmelCase:Union[str, Any] = UperNetForSemanticSegmentation(snake_case ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): _lowerCAmelCase:str = state_dict.pop(snake_case ) if "bn" in key: _lowerCAmelCase:str = key.replace('''bn''' , '''batch_norm''' ) _lowerCAmelCase:Optional[Any] = val # rename keys _lowerCAmelCase:int = create_rename_keys(snake_case ) for src, dest in rename_keys: rename_key(snake_case , snake_case , snake_case ) model.load_state_dict(snake_case ) # verify on image _lowerCAmelCase:Optional[int] = '''https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg''' _lowerCAmelCase:Optional[int] = Image.open(requests.get(snake_case , stream=snake_case ).raw ).convert('''RGB''' ) _lowerCAmelCase:int = SegformerImageProcessor() _lowerCAmelCase:Optional[int] = processor(snake_case , return_tensors='''pt''' ).pixel_values with torch.no_grad(): _lowerCAmelCase:str = model(snake_case ) if model_name == "upernet-convnext-tiny": _lowerCAmelCase:Union[str, Any] = torch.tensor( [[-8.81_10, -8.81_10, -8.65_21], [-8.81_10, -8.81_10, -8.65_21], [-8.77_46, -8.77_46, -8.61_30]] ) elif model_name == "upernet-convnext-small": _lowerCAmelCase:List[str] = torch.tensor( [[-8.82_36, -8.82_36, -8.67_71], [-8.82_36, -8.82_36, -8.67_71], [-8.76_38, -8.76_38, -8.62_40]] ) elif model_name == "upernet-convnext-base": _lowerCAmelCase:Dict = torch.tensor( [[-8.85_58, -8.85_58, -8.69_05], [-8.85_58, -8.85_58, -8.69_05], [-8.76_69, -8.76_69, -8.60_21]] ) elif model_name == "upernet-convnext-large": _lowerCAmelCase:Union[str, Any] = torch.tensor( [[-8.66_60, -8.66_60, -8.62_10], [-8.66_60, -8.66_60, -8.62_10], [-8.63_10, -8.63_10, -8.59_64]] ) elif model_name == "upernet-convnext-xlarge": _lowerCAmelCase:List[str] = torch.tensor( [[-8.49_80, -8.49_80, -8.39_77], [-8.49_80, -8.49_80, -8.39_77], [-8.43_79, -8.43_79, -8.34_12]] ) print('''Logits:''' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , snake_case , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(snake_case ) print(F'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(snake_case ) if push_to_hub: print(F'Pushing model and processor for {model_name} to hub' ) model.push_to_hub(F'openmmlab/{model_name}' ) processor.push_to_hub(F'openmmlab/{model_name}' ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''upernet-convnext-tiny''', type=str, choices=[F"upernet-convnext-{size}" for size in ['''tiny''', '''small''', '''base''', '''large''', '''xlarge''']], help='''Name of the ConvNext UperNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) UpperCamelCase__ = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
439
"""simple docstring""" from ...configuration_utils import PretrainedConfig class a__ ( UpperCamelCase_ ): snake_case__ = '''bert-generation''' def __init__( self : Dict ,a__ : str=5_0358 ,a__ : List[str]=1024 ,a__ : int=24 ,a__ : Optional[Any]=16 ,a__ : List[str]=4096 ,a__ : Optional[int]="gelu" ,a__ : str=0.1 ,a__ : Union[str, Any]=0.1 ,a__ : int=512 ,a__ : Dict=0.02 ,a__ : List[Any]=1E-12 ,a__ : List[Any]=0 ,a__ : int=2 ,a__ : str=1 ,a__ : Dict="absolute" ,a__ : int=True ,**a__ : List[str] ,) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=a__ ,bos_token_id=a__ ,eos_token_id=a__ ,**a__) _lowerCAmelCase:Optional[Any] = vocab_size _lowerCAmelCase:Union[str, Any] = hidden_size _lowerCAmelCase:Any = num_hidden_layers _lowerCAmelCase:int = num_attention_heads _lowerCAmelCase:int = hidden_act _lowerCAmelCase:List[Any] = intermediate_size _lowerCAmelCase:Optional[Any] = hidden_dropout_prob _lowerCAmelCase:int = attention_probs_dropout_prob _lowerCAmelCase:Optional[int] = max_position_embeddings _lowerCAmelCase:Dict = initializer_range _lowerCAmelCase:Union[str, Any] = layer_norm_eps _lowerCAmelCase:int = position_embedding_type _lowerCAmelCase:Tuple = use_cache
439
1
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): def __init__( self ,snake_case__ ,snake_case__=7 ,snake_case__=3 ,snake_case__=30 ,snake_case__=400 ,snake_case__=True ,snake_case__=None ,snake_case__=True ,snake_case__=[0.5, 0.5, 0.5] ,snake_case__=[0.5, 0.5, 0.5] ,snake_case__=True ,snake_case__=1 / 255 ,snake_case__=True ,): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p SCREAMING_SNAKE_CASE_ : List[str] = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333} SCREAMING_SNAKE_CASE_ : List[Any] = parent SCREAMING_SNAKE_CASE_ : str = batch_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = num_channels SCREAMING_SNAKE_CASE_ : Tuple = min_resolution SCREAMING_SNAKE_CASE_ : Any = max_resolution SCREAMING_SNAKE_CASE_ : str = do_resize SCREAMING_SNAKE_CASE_ : Union[str, Any] = size SCREAMING_SNAKE_CASE_ : Tuple = do_normalize SCREAMING_SNAKE_CASE_ : Optional[int] = image_mean SCREAMING_SNAKE_CASE_ : Optional[Any] = image_std SCREAMING_SNAKE_CASE_ : Tuple = do_rescale SCREAMING_SNAKE_CASE_ : Any = rescale_factor SCREAMING_SNAKE_CASE_ : Any = do_pad def snake_case ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def snake_case ( self ,snake_case__ ,snake_case__=False ): if not batched: SCREAMING_SNAKE_CASE_ : List[str] = image_inputs[0] if isinstance(snake_case__ ,Image.Image ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = image.size else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = image.shape[1], image.shape[2] if w < h: SCREAMING_SNAKE_CASE_ : Dict = int(self.size['shortest_edge'] * h / w ) SCREAMING_SNAKE_CASE_ : Optional[int] = self.size['shortest_edge'] elif w > h: SCREAMING_SNAKE_CASE_ : str = self.size['shortest_edge'] SCREAMING_SNAKE_CASE_ : Optional[int] = int(self.size['shortest_edge'] * w / h ) else: SCREAMING_SNAKE_CASE_ : int = self.size['shortest_edge'] SCREAMING_SNAKE_CASE_ : List[Any] = self.size['shortest_edge'] else: SCREAMING_SNAKE_CASE_ : Optional[Any] = [] for image in image_inputs: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) SCREAMING_SNAKE_CASE_ : Optional[Any] = max(snake_case__ ,key=lambda snake_case__ : item[0] )[0] SCREAMING_SNAKE_CASE_ : Optional[int] = max(snake_case__ ,key=lambda snake_case__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ): __a : Dict = DetaImageProcessor if is_vision_available() else None def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = DetaImageProcessingTester(self ) @property def snake_case ( self ): return self.image_processor_tester.prepare_image_processor_dict() def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ ,'image_mean' ) ) self.assertTrue(hasattr(snake_case__ ,'image_std' ) ) self.assertTrue(hasattr(snake_case__ ,'do_normalize' ) ) self.assertTrue(hasattr(snake_case__ ,'do_resize' ) ) self.assertTrue(hasattr(snake_case__ ,'do_rescale' ) ) self.assertTrue(hasattr(snake_case__ ,'do_pad' ) ) self.assertTrue(hasattr(snake_case__ ,'size' ) ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'shortest_edge': 18, 'longest_edge': 1333} ) self.assertEqual(image_processor.do_pad ,snake_case__ ) def snake_case ( self ): pass def snake_case ( self ): # Initialize image_processing SCREAMING_SNAKE_CASE_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE_ : List[str] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ ,Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE_ : List[Any] = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = self.image_processor_tester.get_expected_values(snake_case__ ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = self.image_processor_tester.get_expected_values(snake_case__ ,batched=snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = image_processing(snake_case__ ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) def snake_case ( self ): # Initialize image_processing SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE_ : List[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=snake_case__ ,numpify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ ,np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE_ : Optional[int] = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = self.image_processor_tester.get_expected_values(snake_case__ ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched SCREAMING_SNAKE_CASE_ : Optional[int] = image_processing(snake_case__ ,return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = self.image_processor_tester.get_expected_values(snake_case__ ,batched=snake_case__ ) self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) def snake_case ( self ): # Initialize image_processing SCREAMING_SNAKE_CASE_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE_ : int = prepare_image_inputs(self.image_processor_tester ,equal_resolution=snake_case__ ,torchify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ ,torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE_ : List[Any] = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = self.image_processor_tester.get_expected_values(snake_case__ ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched SCREAMING_SNAKE_CASE_ : List[str] = image_processing(snake_case__ ,return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = self.image_processor_tester.get_expected_values(snake_case__ ,batched=snake_case__ ) self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) @slow def snake_case ( self ): # prepare image and target SCREAMING_SNAKE_CASE_ : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' ,'r' ) as f: SCREAMING_SNAKE_CASE_ : Optional[Any] = json.loads(f.read() ) SCREAMING_SNAKE_CASE_ : Any = {'image_id': 39769, 'annotations': target} # encode them SCREAMING_SNAKE_CASE_ : int = DetaImageProcessor() SCREAMING_SNAKE_CASE_ : int = image_processing(images=snake_case__ ,annotations=snake_case__ ,return_tensors='pt' ) # verify pixel values SCREAMING_SNAKE_CASE_ : Tuple = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape ,snake_case__ ) SCREAMING_SNAKE_CASE_ : int = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] ,snake_case__ ,atol=1E-4 ) ) # verify area SCREAMING_SNAKE_CASE_ : Dict = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] ,snake_case__ ) ) # verify boxes SCREAMING_SNAKE_CASE_ : int = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape ,snake_case__ ) SCREAMING_SNAKE_CASE_ : str = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] ,snake_case__ ,atol=1E-3 ) ) # verify image_id SCREAMING_SNAKE_CASE_ : int = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] ,snake_case__ ) ) # verify is_crowd SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] ,snake_case__ ) ) # verify class_labels SCREAMING_SNAKE_CASE_ : Tuple = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] ,snake_case__ ) ) # verify orig_size SCREAMING_SNAKE_CASE_ : int = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] ,snake_case__ ) ) # verify size SCREAMING_SNAKE_CASE_ : Any = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] ,snake_case__ ) ) @slow def snake_case ( self ): # prepare image, target and masks_path SCREAMING_SNAKE_CASE_ : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' ,'r' ) as f: SCREAMING_SNAKE_CASE_ : Union[str, Any] = json.loads(f.read() ) SCREAMING_SNAKE_CASE_ : Optional[Any] = {'file_name': '000000039769.png', 'image_id': 39769, 'segments_info': target} SCREAMING_SNAKE_CASE_ : List[str] = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them SCREAMING_SNAKE_CASE_ : Any = DetaImageProcessor(format='coco_panoptic' ) SCREAMING_SNAKE_CASE_ : List[Any] = image_processing(images=snake_case__ ,annotations=snake_case__ ,masks_path=snake_case__ ,return_tensors='pt' ) # verify pixel values SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] ,snake_case__ ,atol=1E-4 ) ) # verify area SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] ,snake_case__ ) ) # verify boxes SCREAMING_SNAKE_CASE_ : Dict = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] ,snake_case__ ,atol=1E-3 ) ) # verify image_id SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] ,snake_case__ ) ) # verify is_crowd SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] ,snake_case__ ) ) # verify class_labels SCREAMING_SNAKE_CASE_ : Tuple = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] ,snake_case__ ) ) # verify masks SCREAMING_SNAKE_CASE_ : Any = 822873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() ,snake_case__ ) # verify orig_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] ,snake_case__ ) ) # verify size SCREAMING_SNAKE_CASE_ : Tuple = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] ,snake_case__ ) )
105
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def __lowerCamelCase ( __a :int ) -> int: """simple docstring""" A__ = 3_8_4 if "tiny" in model_name: A__ = [3, 3, 9, 3] A__ = [9_6, 1_9_2, 3_8_4, 7_6_8] if "small" in model_name: A__ = [3, 3, 2_7, 3] A__ = [9_6, 1_9_2, 3_8_4, 7_6_8] if "base" in model_name: A__ = [3, 3, 2_7, 3] A__ = [1_2_8, 2_5_6, 5_1_2, 1_0_2_4] A__ = 5_1_2 if "large" in model_name: A__ = [3, 3, 2_7, 3] A__ = [1_9_2, 3_8_4, 7_6_8, 1_5_3_6] A__ = 7_6_8 if "xlarge" in model_name: A__ = [3, 3, 2_7, 3] A__ = [2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] A__ = 1_0_2_4 # set label information A__ = 1_5_0 A__ = """huggingface/label-files""" A__ = """ade20k-id2label.json""" A__ = json.load(open(hf_hub_download(__a , __a , repo_type="""dataset""" ) , """r""" ) ) A__ = {int(__a ): v for k, v in idalabel.items()} A__ = {v: k for k, v in idalabel.items()} A__ = ConvNextConfig( depths=__a , hidden_sizes=__a , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) A__ = UperNetConfig( backbone_config=__a , auxiliary_in_channels=__a , num_labels=__a , idalabel=__a , labelaid=__a , ) return config def __lowerCamelCase ( __a :Union[str, Any] ) -> List[Any]: """simple docstring""" A__ = [] # fmt: off # stem rename_keys.append(("""backbone.downsample_layers.0.0.weight""", """backbone.embeddings.patch_embeddings.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.0.bias""", """backbone.embeddings.patch_embeddings.bias""") ) rename_keys.append(("""backbone.downsample_layers.0.1.weight""", """backbone.embeddings.layernorm.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.1.bias""", """backbone.embeddings.layernorm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'backbone.stages.{i}.{j}.gamma', F'backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter') ) rename_keys.append((F'backbone.stages.{i}.{j}.depthwise_conv.weight', F'backbone.encoder.stages.{i}.layers.{j}.dwconv.weight') ) rename_keys.append((F'backbone.stages.{i}.{j}.depthwise_conv.bias', F'backbone.encoder.stages.{i}.layers.{j}.dwconv.bias') ) rename_keys.append((F'backbone.stages.{i}.{j}.norm.weight', F'backbone.encoder.stages.{i}.layers.{j}.layernorm.weight') ) rename_keys.append((F'backbone.stages.{i}.{j}.norm.bias', F'backbone.encoder.stages.{i}.layers.{j}.layernorm.bias') ) rename_keys.append((F'backbone.stages.{i}.{j}.pointwise_conv1.weight', F'backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight') ) rename_keys.append((F'backbone.stages.{i}.{j}.pointwise_conv1.bias', F'backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias') ) rename_keys.append((F'backbone.stages.{i}.{j}.pointwise_conv2.weight', F'backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight') ) rename_keys.append((F'backbone.stages.{i}.{j}.pointwise_conv2.bias', F'backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias') ) if i > 0: rename_keys.append((F'backbone.downsample_layers.{i}.0.weight', F'backbone.encoder.stages.{i}.downsampling_layer.0.weight') ) rename_keys.append((F'backbone.downsample_layers.{i}.0.bias', F'backbone.encoder.stages.{i}.downsampling_layer.0.bias') ) rename_keys.append((F'backbone.downsample_layers.{i}.1.weight', F'backbone.encoder.stages.{i}.downsampling_layer.1.weight') ) rename_keys.append((F'backbone.downsample_layers.{i}.1.bias', F'backbone.encoder.stages.{i}.downsampling_layer.1.bias') ) rename_keys.append((F'backbone.norm{i}.weight', F'backbone.hidden_states_norms.stage{i+1}.weight') ) rename_keys.append((F'backbone.norm{i}.bias', F'backbone.hidden_states_norms.stage{i+1}.bias') ) # decode head rename_keys.extend( [ ("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""), ("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""), ("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""), ("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""), ] ) # fmt: on return rename_keys def __lowerCamelCase ( __a :Union[str, Any] , __a :List[str] , __a :str ) -> str: """simple docstring""" A__ = dct.pop(__a ) A__ = val def __lowerCamelCase ( __a :Any , __a :int , __a :Any ) -> List[Any]: """simple docstring""" A__ = { """upernet-convnext-tiny""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth""", """upernet-convnext-small""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth""", """upernet-convnext-base""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth""", """upernet-convnext-large""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth""", """upernet-convnext-xlarge""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth""", } A__ = model_name_to_url[model_name] A__ = torch.hub.load_state_dict_from_url(__a , map_location="""cpu""" )["""state_dict"""] A__ = get_upernet_config(__a ) A__ = UperNetForSemanticSegmentation(__a ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): A__ = state_dict.pop(__a ) if "bn" in key: A__ = key.replace("""bn""" , """batch_norm""" ) A__ = val # rename keys A__ = create_rename_keys(__a ) for src, dest in rename_keys: rename_key(__a , __a , __a ) model.load_state_dict(__a ) # verify on image A__ = """https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg""" A__ = Image.open(requests.get(__a , stream=__a ).raw ).convert("""RGB""" ) A__ = SegformerImageProcessor() A__ = processor(__a , return_tensors="""pt""" ).pixel_values with torch.no_grad(): A__ = model(__a ) if model_name == "upernet-convnext-tiny": A__ = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ) elif model_name == "upernet-convnext-small": A__ = torch.tensor( [[-8.8236, -8.8236, -8.6771], [-8.8236, -8.8236, -8.6771], [-8.7638, -8.7638, -8.6240]] ) elif model_name == "upernet-convnext-base": A__ = torch.tensor( [[-8.8558, -8.8558, -8.6905], [-8.8558, -8.8558, -8.6905], [-8.7669, -8.7669, -8.6021]] ) elif model_name == "upernet-convnext-large": A__ = torch.tensor( [[-8.6660, -8.6660, -8.6210], [-8.6660, -8.6660, -8.6210], [-8.6310, -8.6310, -8.5964]] ) elif model_name == "upernet-convnext-xlarge": A__ = torch.tensor( [[-8.4980, -8.4980, -8.3977], [-8.4980, -8.4980, -8.3977], [-8.4379, -8.4379, -8.3412]] ) print("""Logits:""" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , __a , atol=1E-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__a ) print(F'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(__a ) if push_to_hub: print(F'Pushing model and processor for {model_name} to hub' ) model.push_to_hub(F'openmmlab/{model_name}' ) processor.push_to_hub(F'openmmlab/{model_name}' ) if __name__ == "__main__": A : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''upernet-convnext-tiny''', type=str, choices=[F'''upernet-convnext-{size}''' for size in ['''tiny''', '''small''', '''base''', '''large''', '''xlarge''']], help='''Name of the ConvNext UperNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) A : str = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
176
0
"""simple docstring""" import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class UpperCamelCase (unittest.TestCase ): def __init__( self :Tuple , __magic_name__ :Union[str, Any] , __magic_name__ :List[Any]=13 , __magic_name__ :List[str]=30 , __magic_name__ :List[str]=2 , __magic_name__ :Dict=3 , __magic_name__ :Optional[int]=True , __magic_name__ :int=True , __magic_name__ :Optional[int]=32 , __magic_name__ :Dict=5 , __magic_name__ :Optional[int]=4 , __magic_name__ :List[str]=37 , __magic_name__ :Any="gelu" , __magic_name__ :List[str]=0.1 , __magic_name__ :Dict=0.1 , __magic_name__ :int=10 , __magic_name__ :List[Any]=0.02 , ) ->str: lowercase : List[str] = parent lowercase : List[str] = batch_size lowercase : List[str] = image_size lowercase : Optional[int] = patch_size lowercase : str = num_channels lowercase : Optional[Any] = is_training lowercase : Union[str, Any] = use_labels lowercase : Union[str, Any] = hidden_size lowercase : Optional[int] = num_hidden_layers lowercase : str = num_attention_heads lowercase : str = intermediate_size lowercase : int = hidden_act lowercase : Union[str, Any] = hidden_dropout_prob lowercase : List[Any] = attention_probs_dropout_prob lowercase : Union[str, Any] = type_sequence_label_size lowercase : Optional[Any] = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowercase : Union[str, Any] = (image_size // patch_size) ** 2 lowercase : Optional[Any] = num_patches + 1 def __snake_case ( self :List[str] ) ->Dict: lowercase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase : Optional[int] = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__magic_name__ , initializer_range=self.initializer_range , ) return config, pixel_values def __snake_case ( self :List[str] , __magic_name__ :Optional[Any] , __magic_name__ :Tuple ) ->Union[str, Any]: lowercase : Dict = FlaxViTModel(config=__magic_name__ ) lowercase : str = model(__magic_name__ ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) lowercase : List[Any] = (self.image_size, self.image_size) lowercase : str = (self.patch_size, self.patch_size) lowercase : str = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def __snake_case ( self :Optional[Any] , __magic_name__ :Tuple , __magic_name__ :str ) ->Union[str, Any]: lowercase : Optional[int] = self.type_sequence_label_size lowercase : Tuple = FlaxViTForImageClassification(config=__magic_name__ ) lowercase : Union[str, Any] = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase : List[Any] = 1 lowercase : int = FlaxViTForImageClassification(__magic_name__ ) lowercase : Optional[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase : Union[str, Any] = model(__magic_name__ ) def __snake_case ( self :Tuple ) ->int: lowercase : int = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ) : List[Any] = config_and_inputs lowercase : Dict = {"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class UpperCamelCase (__snake_case , unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[str] = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def __snake_case ( self :Optional[int] ) ->None: lowercase : List[Any] = FlaxViTModelTester(self ) lowercase : Any = ConfigTester(self , config_class=__magic_name__ , has_text_modality=__magic_name__ , hidden_size=37 ) def __snake_case ( self :int ) ->int: self.config_tester.run_common_tests() def __snake_case ( self :Optional[int] ) ->List[str]: lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def __snake_case ( self :Optional[Any] ) ->Any: lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__magic_name__ ) def __snake_case ( self :List[str] ) ->Optional[int]: lowercase , lowercase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : Tuple = model_class(__magic_name__ ) lowercase : List[Any] = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase : List[str] = [*signature.parameters.keys()] lowercase : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __magic_name__ ) def __snake_case ( self :str ) ->Optional[Any]: lowercase , lowercase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowercase : Tuple = self._prepare_for_class(__magic_name__ , __magic_name__ ) lowercase : Optional[Any] = model_class(__magic_name__ ) @jax.jit def model_jitted(__magic_name__ :int , **__magic_name__ :int ): return model(pixel_values=__magic_name__ , **__magic_name__ ) with self.subTest("""JIT Enabled""" ): lowercase : Union[str, Any] = model_jitted(**__magic_name__ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): lowercase : Dict = model_jitted(**__magic_name__ ).to_tuple() self.assertEqual(len(__magic_name__ ) , len(__magic_name__ ) ) for jitted_output, output in zip(__magic_name__ , __magic_name__ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def __snake_case ( self :str ) ->Optional[Any]: for model_class_name in self.all_model_classes: lowercase : Union[str, Any] = model_class_name.from_pretrained("""google/vit-base-patch16-224""" ) lowercase : int = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(__magic_name__ )
348
"""simple docstring""" def UpperCamelCase ( _A , _A ) -> str: lowercase : list[list[str]] = [[] for _ in range(_A )] lowercase : Any = key - 1 if key <= 0: raise ValueError("""Height of grid can't be 0 or negative""" ) if key == 1 or len(_A ) <= key: return input_string for position, character in enumerate(_A ): lowercase : Optional[int] = position % (lowest * 2) # puts it in bounds lowercase : Dict = min(_A , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(_A ) lowercase : Optional[Any] = ["""""".join(_A ) for row in temp_grid] lowercase : int = """""".join(_A ) return output_string def UpperCamelCase ( _A , _A ) -> str: lowercase : Optional[Any] = [] lowercase : int = key - 1 if key <= 0: raise ValueError("""Height of grid can't be 0 or negative""" ) if key == 1: return input_string lowercase : list[list[str]] = [[] for _ in range(_A )] # generates template for position in range(len(_A ) ): lowercase : Union[str, Any] = position % (lowest * 2) # puts it in bounds lowercase : Union[str, Any] = min(_A , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append("""*""" ) lowercase : Any = 0 for row in temp_grid: # fills in the characters lowercase : Dict = input_string[counter : counter + len(_A )] grid.append(list(_A ) ) counter += len(_A ) lowercase : Union[str, Any] = """""" # reads as zigzag for position in range(len(_A ) ): lowercase : List[str] = position % (lowest * 2) # puts it in bounds lowercase : str = min(_A , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def UpperCamelCase ( _A ) -> dict[int, str]: lowercase : int = {} for key_guess in range(1 , len(_A ) ): # tries every key lowercase : Dict = decrypt(_A , _A ) return results if __name__ == "__main__": import doctest doctest.testmod()
348
1
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) __A = logging.get_logger(__name__) __A = OrderedDict( [ ('''audio-spectrogram-transformer''', '''ASTFeatureExtractor'''), ('''beit''', '''BeitFeatureExtractor'''), ('''chinese_clip''', '''ChineseCLIPFeatureExtractor'''), ('''clap''', '''ClapFeatureExtractor'''), ('''clip''', '''CLIPFeatureExtractor'''), ('''clipseg''', '''ViTFeatureExtractor'''), ('''conditional_detr''', '''ConditionalDetrFeatureExtractor'''), ('''convnext''', '''ConvNextFeatureExtractor'''), ('''cvt''', '''ConvNextFeatureExtractor'''), ('''data2vec-audio''', '''Wav2Vec2FeatureExtractor'''), ('''data2vec-vision''', '''BeitFeatureExtractor'''), ('''deformable_detr''', '''DeformableDetrFeatureExtractor'''), ('''deit''', '''DeiTFeatureExtractor'''), ('''detr''', '''DetrFeatureExtractor'''), ('''dinat''', '''ViTFeatureExtractor'''), ('''donut-swin''', '''DonutFeatureExtractor'''), ('''dpt''', '''DPTFeatureExtractor'''), ('''encodec''', '''EncodecFeatureExtractor'''), ('''flava''', '''FlavaFeatureExtractor'''), ('''glpn''', '''GLPNFeatureExtractor'''), ('''groupvit''', '''CLIPFeatureExtractor'''), ('''hubert''', '''Wav2Vec2FeatureExtractor'''), ('''imagegpt''', '''ImageGPTFeatureExtractor'''), ('''layoutlmv2''', '''LayoutLMv2FeatureExtractor'''), ('''layoutlmv3''', '''LayoutLMv3FeatureExtractor'''), ('''levit''', '''LevitFeatureExtractor'''), ('''maskformer''', '''MaskFormerFeatureExtractor'''), ('''mctct''', '''MCTCTFeatureExtractor'''), ('''mobilenet_v1''', '''MobileNetV1FeatureExtractor'''), ('''mobilenet_v2''', '''MobileNetV2FeatureExtractor'''), ('''mobilevit''', '''MobileViTFeatureExtractor'''), ('''nat''', '''ViTFeatureExtractor'''), ('''owlvit''', '''OwlViTFeatureExtractor'''), ('''perceiver''', '''PerceiverFeatureExtractor'''), ('''poolformer''', '''PoolFormerFeatureExtractor'''), ('''regnet''', '''ConvNextFeatureExtractor'''), ('''resnet''', '''ConvNextFeatureExtractor'''), ('''segformer''', '''SegformerFeatureExtractor'''), ('''sew''', '''Wav2Vec2FeatureExtractor'''), ('''sew-d''', '''Wav2Vec2FeatureExtractor'''), ('''speech_to_text''', '''Speech2TextFeatureExtractor'''), ('''speecht5''', '''SpeechT5FeatureExtractor'''), ('''swiftformer''', '''ViTFeatureExtractor'''), ('''swin''', '''ViTFeatureExtractor'''), ('''swinv2''', '''ViTFeatureExtractor'''), ('''table-transformer''', '''DetrFeatureExtractor'''), ('''timesformer''', '''VideoMAEFeatureExtractor'''), ('''tvlt''', '''TvltFeatureExtractor'''), ('''unispeech''', '''Wav2Vec2FeatureExtractor'''), ('''unispeech-sat''', '''Wav2Vec2FeatureExtractor'''), ('''van''', '''ConvNextFeatureExtractor'''), ('''videomae''', '''VideoMAEFeatureExtractor'''), ('''vilt''', '''ViltFeatureExtractor'''), ('''vit''', '''ViTFeatureExtractor'''), ('''vit_mae''', '''ViTFeatureExtractor'''), ('''vit_msn''', '''ViTFeatureExtractor'''), ('''wav2vec2''', '''Wav2Vec2FeatureExtractor'''), ('''wav2vec2-conformer''', '''Wav2Vec2FeatureExtractor'''), ('''wavlm''', '''Wav2Vec2FeatureExtractor'''), ('''whisper''', '''WhisperFeatureExtractor'''), ('''xclip''', '''CLIPFeatureExtractor'''), ('''yolos''', '''YolosFeatureExtractor'''), ] ) __A = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def __a ( lowerCAmelCase_ : Union[str, Any] ) -> int: '''simple docstring''' for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: UpperCAmelCase_= model_type_to_module_name(lowerCamelCase_ ) UpperCAmelCase_= importlib.import_module(F""".{module_name}""" ,"""transformers.models""" ) try: return getattr(lowerCamelCase_ ,lowerCamelCase_ ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(lowerCamelCase_ ,"""__name__""" ,lowerCamelCase_ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. UpperCAmelCase_= importlib.import_module("""transformers""" ) if hasattr(lowerCamelCase_ ,lowerCamelCase_ ): return getattr(lowerCamelCase_ ,lowerCamelCase_ ) return None def __a ( lowerCAmelCase_ : int ,lowerCAmelCase_ : Union[str, Any] = None ,lowerCAmelCase_ : Union[str, Any] = False ,lowerCAmelCase_ : Dict = False ,lowerCAmelCase_ : Any = None ,lowerCAmelCase_ : Optional[int] = None ,lowerCAmelCase_ : Dict = None ,lowerCAmelCase_ : Optional[Any] = False ,**lowerCAmelCase_ : str ,) -> str: '''simple docstring''' UpperCAmelCase_= get_file_from_repo( lowerCamelCase_ ,lowerCamelCase_ ,cache_dir=lowerCamelCase_ ,force_download=lowerCamelCase_ ,resume_download=lowerCamelCase_ ,proxies=lowerCamelCase_ ,use_auth_token=lowerCamelCase_ ,revision=lowerCamelCase_ ,local_files_only=lowerCamelCase_ ,) if resolved_config_file is None: logger.info( """Could not locate the feature extractor configuration file, will try to use the model config instead.""" ) return {} with open(lowerCamelCase_ ,encoding="""utf-8""" ) as reader: return json.load(lowerCamelCase_ ) class lowercase : """simple docstring""" def __init__( self : Union[str, Any] ) -> Dict: raise EnvironmentError( """AutoFeatureExtractor is designed to be instantiated """ """using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.""" ) @classmethod @replace_list_option_in_docstrings(__UpperCAmelCase ) def _SCREAMING_SNAKE_CASE ( cls : str , __UpperCAmelCase : str , **__UpperCAmelCase : Dict ) -> Optional[Any]: UpperCAmelCase_= kwargs.pop("""config""" , __UpperCAmelCase ) UpperCAmelCase_= kwargs.pop("""trust_remote_code""" , __UpperCAmelCase ) UpperCAmelCase_= True UpperCAmelCase_, UpperCAmelCase_= FeatureExtractionMixin.get_feature_extractor_dict(__UpperCAmelCase , **__UpperCAmelCase ) UpperCAmelCase_= config_dict.get("""feature_extractor_type""" , __UpperCAmelCase ) UpperCAmelCase_= None if "AutoFeatureExtractor" in config_dict.get("""auto_map""" , {} ): UpperCAmelCase_= config_dict["""auto_map"""]["""AutoFeatureExtractor"""] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): UpperCAmelCase_= AutoConfig.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) # It could be in `config.feature_extractor_type`` UpperCAmelCase_= getattr(__UpperCAmelCase , """feature_extractor_type""" , __UpperCAmelCase ) if hasattr(__UpperCAmelCase , """auto_map""" ) and "AutoFeatureExtractor" in config.auto_map: UpperCAmelCase_= config.auto_map["""AutoFeatureExtractor"""] if feature_extractor_class is not None: UpperCAmelCase_= feature_extractor_class_from_name(__UpperCAmelCase ) UpperCAmelCase_= feature_extractor_auto_map is not None UpperCAmelCase_= feature_extractor_class is not None or type(__UpperCAmelCase ) in FEATURE_EXTRACTOR_MAPPING UpperCAmelCase_= resolve_trust_remote_code( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if has_remote_code and trust_remote_code: UpperCAmelCase_= get_class_from_dynamic_module( __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) UpperCAmelCase_= kwargs.pop("""code_revision""" , __UpperCAmelCase ) if os.path.isdir(__UpperCAmelCase ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(__UpperCAmelCase ) in FEATURE_EXTRACTOR_MAPPING: UpperCAmelCase_= FEATURE_EXTRACTOR_MAPPING[type(__UpperCAmelCase )] return feature_extractor_class.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) raise ValueError( F"""Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a """ F"""`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following """ F"""`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def _SCREAMING_SNAKE_CASE ( __UpperCAmelCase : str , __UpperCAmelCase : str ) -> Dict: FEATURE_EXTRACTOR_MAPPING.register(__UpperCAmelCase , __UpperCAmelCase )
593
import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem A__ : int = importlib.util.find_spec('s3fs') is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 A__ : List[compression.BaseCompressedFileFileSystem] = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(F"A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.") fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def a ( lowerCamelCase_ ): '''simple docstring''' if "://" in dataset_path: lowercase__ = dataset_path.split('''://''' )[1] return dataset_path def a ( lowerCamelCase_ ): '''simple docstring''' if fs is not None and fs.protocol != "file": return True else: return False def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = not is_remote_filesystem(lowerCamelCase_ ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(lowerCamelCase_ ) , fs._strip_protocol(lowerCamelCase_ ) ) else: fs.mv(lowerCamelCase_ , lowerCamelCase_ , recursive=lowerCamelCase_ ) def a ( ): '''simple docstring''' if hasattr(fsspec.asyn , '''reset_lock''' ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: lowercase__ = None lowercase__ = None lowercase__ = threading.Lock()
183
0
import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class snake_case_ ( lowerCAmelCase ): __lowerCamelCase : List[str] = (KDPMaDiscreteScheduler,) __lowerCamelCase : List[str] = 10 def __A ( self , **__lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Optional[int] = { 'num_train_timesteps': 1_100, 'beta_start': 0.00_01, 'beta_end': 0.02, 'beta_schedule': 'linear', } config.update(**__lowerCAmelCase ) return config def __A ( self ): for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=__lowerCAmelCase ) def __A ( self ): for beta_start, beta_end in zip([0.0_00_01, 0.00_01, 0.0_01] , [0.00_02, 0.0_02, 0.02] ): self.check_over_configs(beta_start=__lowerCAmelCase , beta_end=__lowerCAmelCase ) def __A ( self ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__lowerCAmelCase ) def __A ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__lowerCAmelCase ) def __A ( self ): SCREAMING_SNAKE_CASE_ : Any = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ : List[Any] = self.get_scheduler_config(prediction_type='v_prediction' ) SCREAMING_SNAKE_CASE_ : List[str] = scheduler_class(**__lowerCAmelCase ) scheduler.set_timesteps(self.num_inference_steps ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.dummy_model() SCREAMING_SNAKE_CASE_ : Any = self.dummy_sample_deter * scheduler.init_noise_sigma SCREAMING_SNAKE_CASE_ : Dict = sample.to(__lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE_ : Any = scheduler.scale_model_input(__lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Any = model(__lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[str] = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Any = output.prev_sample SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.sum(torch.abs(__lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ : int = torch.mean(torch.abs(__lowerCAmelCase ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6934e-07 ) < 1e-2 assert abs(result_mean.item() - 6.1112e-10 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 4.693428650170972e-07 ) < 1e-2 assert abs(result_mean.item() - 0.00_02 ) < 1e-3 def __A ( self ): if torch_device == "mps": return SCREAMING_SNAKE_CASE_ : int = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ : Optional[Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ : List[str] = scheduler_class(**__lowerCAmelCase ) scheduler.set_timesteps(self.num_inference_steps ) SCREAMING_SNAKE_CASE_ : Dict = self.dummy_model() SCREAMING_SNAKE_CASE_ : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma SCREAMING_SNAKE_CASE_ : List[Any] = sample.to(__lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE_ : List[Any] = scheduler.scale_model_input(__lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : int = model(__lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Tuple = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = output.prev_sample SCREAMING_SNAKE_CASE_ : List[Any] = torch.sum(torch.abs(__lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ : List[Any] = torch.mean(torch.abs(__lowerCAmelCase ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.41_25 ) < 1e-2 assert abs(result_mean.item() - 0.02_66 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.41_25 ) < 1e-2 assert abs(result_mean.item() - 0.02_66 ) < 1e-3 def __A ( self ): if torch_device == "mps": return SCREAMING_SNAKE_CASE_ : Dict = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ : Optional[Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ : str = scheduler_class(**__lowerCAmelCase ) scheduler.set_timesteps(self.num_inference_steps , device=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[str] = self.dummy_model() SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.dummy_sample_deter.to(__lowerCAmelCase ) * scheduler.init_noise_sigma for t in scheduler.timesteps: SCREAMING_SNAKE_CASE_ : Tuple = scheduler.scale_model_input(__lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : int = model(__lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[str] = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Any = output.prev_sample SCREAMING_SNAKE_CASE_ : str = torch.sum(torch.abs(__lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ : List[str] = torch.mean(torch.abs(__lowerCAmelCase ) ) if str(__lowerCAmelCase ).startswith('cpu' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.41_25 ) < 1e-2 assert abs(result_mean.item() - 0.02_66 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.41_25 ) < 1e-2 assert abs(result_mean.item() - 0.02_66 ) < 1e-3
311
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> np.ndarray: # prepare kernel # the kernel size have to be odd if (ksize % 2) == 0: SCREAMING_SNAKE_CASE_ : List[str] = ksize + 1 SCREAMING_SNAKE_CASE_ : str = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(SCREAMING_SNAKE_CASE ): for x in range(SCREAMING_SNAKE_CASE ): # distance from center SCREAMING_SNAKE_CASE_ : Any = x - ksize // 2 SCREAMING_SNAKE_CASE_ : Tuple = y - ksize // 2 # degree to radiant SCREAMING_SNAKE_CASE_ : Optional[Any] = theta / 180 * np.pi SCREAMING_SNAKE_CASE_ : List[str] = np.cos(_theta ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.sin(_theta ) # get kernel x SCREAMING_SNAKE_CASE_ : int = cos_theta * px + sin_theta * py # get kernel y SCREAMING_SNAKE_CASE_ : Tuple = -sin_theta * px + cos_theta * py # fill kernel SCREAMING_SNAKE_CASE_ : List[Any] = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image lowerCAmelCase__: str = imread("../image_data/lena.jpg") # turn image in gray scale value lowerCAmelCase__: List[str] = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges lowerCAmelCase__: Optional[Any] = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: lowerCAmelCase__: Dict = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) lowerCAmelCase__: Any = out / out.max() * 255 lowerCAmelCase__: Tuple = out.astype(np.uinta) imshow("Original", gray) imshow("Gabor filter with 20x20 mask and 6 directions", out) waitKey(0)
311
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer lowerCamelCase : Optional[Any] = logging.get_logger(__name__) lowerCamelCase : Optional[int] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} lowerCamelCase : List[str] = { "vocab_file": { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt" ), "google/realm-orqa-nq-openqa": "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt", "google/realm-orqa-nq-reader": "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt", "google/realm-orqa-wq-openqa": "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt", "google/realm-orqa-wq-reader": "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt", }, "tokenizer_file": { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json" ), "google/realm-orqa-nq-openqa": ( "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json" ), "google/realm-orqa-nq-reader": ( "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json" ), "google/realm-orqa-wq-openqa": ( "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json" ), "google/realm-orqa-wq-reader": ( "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json" ), }, } lowerCamelCase : str = { "google/realm-cc-news-pretrained-embedder": 512, "google/realm-cc-news-pretrained-encoder": 512, "google/realm-cc-news-pretrained-scorer": 512, "google/realm-cc-news-pretrained-openqa": 512, "google/realm-orqa-nq-openqa": 512, "google/realm-orqa-nq-reader": 512, "google/realm-orqa-wq-openqa": 512, "google/realm-orqa-wq-reader": 512, } lowerCamelCase : Dict = { "google/realm-cc-news-pretrained-embedder": {"do_lower_case": True}, "google/realm-cc-news-pretrained-encoder": {"do_lower_case": True}, "google/realm-cc-news-pretrained-scorer": {"do_lower_case": True}, "google/realm-cc-news-pretrained-openqa": {"do_lower_case": True}, "google/realm-orqa-nq-openqa": {"do_lower_case": True}, "google/realm-orqa-nq-reader": {"do_lower_case": True}, "google/realm-orqa-wq-openqa": {"do_lower_case": True}, "google/realm-orqa-wq-reader": {"do_lower_case": True}, } class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_INIT_CONFIGURATION UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = RealmTokenizer def __init__( self : int , A_ : str=None , A_ : Dict=None , A_ : str=True , A_ : Optional[Any]="[UNK]" , A_ : Union[str, Any]="[SEP]" , A_ : str="[PAD]" , A_ : Tuple="[CLS]" , A_ : List[str]="[MASK]" , A_ : Any=True , A_ : str=None , **A_ : Tuple , ) -> int: """simple docstring""" super().__init__( A_ , tokenizer_file=A_ , do_lower_case=A_ , unk_token=A_ , sep_token=A_ , pad_token=A_ , cls_token=A_ , mask_token=A_ , tokenize_chinese_chars=A_ , strip_accents=A_ , **A_ , ) lowerCamelCase_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , A_ ) != do_lower_case or normalizer_state.get('strip_accents' , A_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , A_ ) != tokenize_chinese_chars ): lowerCamelCase_ = getattr(A_ , normalizer_state.pop('type' ) ) lowerCamelCase_ = do_lower_case lowerCamelCase_ = strip_accents lowerCamelCase_ = tokenize_chinese_chars lowerCamelCase_ = normalizer_class(**A_ ) lowerCamelCase_ = do_lower_case def a__ ( self : Tuple , A_ : Any , **A_ : str ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = PaddingStrategy.MAX_LENGTH lowerCamelCase_ = text lowerCamelCase_ = kwargs.pop('text_pair' , A_ ) lowerCamelCase_ = kwargs.pop('return_tensors' , A_ ) lowerCamelCase_ = { 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(A_ ): if batch_text_pair is not None: lowerCamelCase_ = batch_text_pair[idx] else: lowerCamelCase_ = None lowerCamelCase_ = super().__call__(A_ , A_ , return_tensors=A_ , **A_ ) lowerCamelCase_ = encoded_candidates.get('input_ids' ) lowerCamelCase_ = encoded_candidates.get('attention_mask' ) lowerCamelCase_ = encoded_candidates.get('token_type_ids' ) if encoded_input_ids is not None: output_data["input_ids"].append(A_ ) if encoded_attention_mask is not None: output_data["attention_mask"].append(A_ ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(A_ ) lowerCamelCase_ = {key: item for key, item in output_data.items() if len(A_ ) != 0} return BatchEncoding(A_ , tensor_type=A_ ) def a__ ( self : List[str] , A_ : Dict , A_ : List[str]=None ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def a__ ( self : Optional[Any] , A_ : List[int] , A_ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a__ ( self : Optional[Any] , A_ : str , A_ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" lowerCamelCase_ = self._tokenizer.model.save(A_ , name=A_ ) return tuple(A_ )
70
import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version lowerCAmelCase = version.parse(importlib_metadata.version('''nltk''')) if NLTK_VERSION >= version.Version('''3.6.4'''): from nltk import word_tokenize lowerCAmelCase = '''\ @inproceedings{banarjee2005, title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments}, author = {Banerjee, Satanjeev and Lavie, Alon}, booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization}, month = jun, year = {2005}, address = {Ann Arbor, Michigan}, publisher = {Association for Computational Linguistics}, url = {https://www.aclweb.org/anthology/W05-0909}, pages = {65--72}, } ''' lowerCAmelCase = '''\ METEOR, an automatic metric for machine translation evaluation that is based on a generalized concept of unigram matching between the machine-produced translation and human-produced reference translations. Unigrams can be matched based on their surface forms, stemmed forms, and meanings; furthermore, METEOR can be easily extended to include more advanced matching strategies. Once all generalized unigram matches between the two strings have been found, METEOR computes a score for this matching using a combination of unigram-precision, unigram-recall, and a measure of fragmentation that is designed to directly capture how well-ordered the matched words in the machine translation are in relation to the reference. METEOR gets an R correlation value of 0.347 with human evaluation on the Arabic data and 0.331 on the Chinese data. This is shown to be an improvement on using simply unigram-precision, unigram-recall and their harmonic F1 combination. ''' lowerCAmelCase = ''' Computes METEOR score of translated segments against one or more references. Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. alpha: Parameter for controlling relative weights of precision and recall. default: 0.9 beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3 gamma: Relative weight assigned to fragmentation penalty. default: 0.5 Returns: \'meteor\': meteor score. Examples: >>> meteor = datasets.load_metric(\'meteor\') >>> predictions = ["It is a guide to action which ensures that the military always obeys the commands of the party"] >>> references = ["It is a guide to action that ensures that the military will forever heed Party commands"] >>> results = meteor.compute(predictions=predictions, references=references) >>> print(round(results["meteor"], 4)) 0.6944 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): def _A (self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'] , reference_urls=[ 'https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score', 'https://en.wikipedia.org/wiki/METEOR', ] , ) def _A (self , lowerCAmelCase ): import nltk nltk.download('wordnet' ) if NLTK_VERSION >= version.Version('3.6.5' ): nltk.download('punkt' ) if NLTK_VERSION >= version.Version('3.6.6' ): nltk.download('omw-1.4' ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=0.9 , lowerCAmelCase=3 , lowerCAmelCase=0.5 ): if NLTK_VERSION >= version.Version('3.6.5' ): __lowercase= [ meteor_score.single_meteor_score( word_tokenize(lowerCAmelCase ) , word_tokenize(lowerCAmelCase ) , alpha=lowerCAmelCase , beta=lowerCAmelCase , gamma=lowerCAmelCase ) for ref, pred in zip(lowerCAmelCase , lowerCAmelCase ) ] else: __lowercase= [ meteor_score.single_meteor_score(lowerCAmelCase , lowerCAmelCase , alpha=lowerCAmelCase , beta=lowerCAmelCase , gamma=lowerCAmelCase ) for ref, pred in zip(lowerCAmelCase , lowerCAmelCase ) ] return {"meteor": np.mean(lowerCAmelCase )}
230
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class __magic_name__ ( UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE : List[Any] = "naver-clova-ix/donut-base-finetuned-docvqa" _SCREAMING_SNAKE_CASE : Optional[Any] = ( "This is a tool that answers a question about an document (pdf). It takes an input named `document` which " "should be the document containing the information, as well as a `question` that is the question about the " "document. It returns a text that contains the answer to the question." ) _SCREAMING_SNAKE_CASE : Tuple = "document_qa" _SCREAMING_SNAKE_CASE : str = AutoProcessor _SCREAMING_SNAKE_CASE : Union[str, Any] = VisionEncoderDecoderModel _SCREAMING_SNAKE_CASE : int = ["image", "text"] _SCREAMING_SNAKE_CASE : Any = ["text"] def __init__( self : Optional[int] , *snake_case_ : Tuple , **snake_case_ : Tuple ): if not is_vision_available(): raise ValueError("Pillow must be installed to use the DocumentQuestionAnsweringTool." ) super().__init__(*_snake_case , **_snake_case ) def lowerCAmelCase ( self : Union[str, Any] , snake_case_ : "Image" , snake_case_ : str ): __snake_case = "<s_docvqa><s_question>{user_input}</s_question><s_answer>" __snake_case = task_prompt.replace("{user_input}" , _snake_case ) __snake_case = self.pre_processor.tokenizer( _snake_case , add_special_tokens=_snake_case , return_tensors="pt" ).input_ids __snake_case = self.pre_processor(_snake_case , return_tensors="pt" ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def lowerCAmelCase ( self : int , snake_case_ : Optional[Any] ): return self.model.generate( inputs["pixel_values"].to(self.device ) , decoder_input_ids=inputs["decoder_input_ids"].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=_snake_case , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=_snake_case , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=_snake_case , ).sequences def lowerCAmelCase ( self : List[Any] , snake_case_ : List[str] ): __snake_case = self.pre_processor.batch_decode(_snake_case )[0] __snake_case = sequence.replace(self.pre_processor.tokenizer.eos_token , "" ) __snake_case = sequence.replace(self.pre_processor.tokenizer.pad_token , "" ) __snake_case = re.sub(r"<.*?>" , "" , _snake_case , count=1 ).strip() # remove first task start token __snake_case = self.pre_processor.tokenajson(_snake_case ) return sequence["answer"]
708
"""simple docstring""" import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def __UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" __snake_case = TapasConfig.from_json_file(SCREAMING_SNAKE_CASE ) # set absolute/relative position embeddings parameter __snake_case = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": __snake_case = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE ) elif task == "WTQ": # run_task_main.py hparams __snake_case = 4 __snake_case = True # hparam_utils.py hparams __snake_case = 0.664_694 __snake_case = 0.207_951 __snake_case = 0.121_194 __snake_case = True __snake_case = True __snake_case = False __snake_case = 0.0_352_513 __snake_case = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams __snake_case = 4 __snake_case = False # hparam_utils.py hparams __snake_case = 36.4_519 __snake_case = 0.903_421 __snake_case = 222.088 __snake_case = True __snake_case = True __snake_case = True __snake_case = 0.763_141 __snake_case = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE ) elif task == "TABFACT": __snake_case = TapasForSequenceClassification(config=SCREAMING_SNAKE_CASE ) elif task == "MLM": __snake_case = TapasForMaskedLM(config=SCREAMING_SNAKE_CASE ) elif task == "INTERMEDIATE_PRETRAINING": __snake_case = TapasModel(config=SCREAMING_SNAKE_CASE ) else: raise ValueError(F'''Task {task} not supported.''' ) print(F'''Building PyTorch model from configuration: {config}''' ) # Load weights from tf checkpoint load_tf_weights_in_tapas(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Save pytorch-model (weights and configuration) print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE ) # Save tokenizer files print(F'''Save tokenizer files to {pytorch_dump_path}''' ) __snake_case = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + "vocab.txt" , model_max_length=5_12 ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE ) print("Used relative position embeddings:" , model.config.reset_position_index_per_cell ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( """--task""", default="""SQA""", type=str, help="""Model task for which to convert a checkpoint. Defaults to SQA.""" ) parser.add_argument( """--reset_position_index_per_cell""", default=False, action="""store_true""", help="""Whether to use relative position embeddings or not. Defaults to True.""", ) parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--tapas_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained TAPAS model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
614
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class UpperCAmelCase__ : def __init__( self : str,__A : Any,__A : str=1_3,__A : List[Any]=7,__A : Optional[int]=True,__A : Any=True,__A : Optional[Any]=True,__A : int=True,__A : Dict=9_9,__A : List[Any]=3_2,__A : Dict=2,__A : Optional[Any]=4,__A : Tuple=3_7,__A : Optional[Any]="gelu",__A : Tuple=0.1,__A : Union[str, Any]=0.1,__A : Union[str, Any]=5_1_2,__A : Union[str, Any]=1_6,__A : Tuple=2,__A : Any=0.02,__A : Any=False,__A : int=True,__A : Optional[Any]="None",__A : Optional[int]=3,__A : Optional[Any]=4,__A : Any=None,): _lowerCamelCase : List[Any] = parent _lowerCamelCase : Dict = batch_size _lowerCamelCase : Dict = seq_length _lowerCamelCase : Optional[Any] = is_training _lowerCamelCase : Optional[Any] = use_input_mask _lowerCamelCase : Any = use_token_type_ids _lowerCamelCase : str = use_labels _lowerCamelCase : int = vocab_size _lowerCamelCase : Optional[int] = hidden_size _lowerCamelCase : Optional[int] = num_hidden_layers _lowerCamelCase : str = num_attention_heads _lowerCamelCase : List[Any] = intermediate_size _lowerCamelCase : str = hidden_act _lowerCamelCase : Optional[Any] = hidden_dropout_prob _lowerCamelCase : Any = attention_probs_dropout_prob _lowerCamelCase : Union[str, Any] = max_position_embeddings _lowerCamelCase : Tuple = type_vocab_size _lowerCamelCase : Optional[Any] = type_sequence_label_size _lowerCamelCase : List[Any] = initializer_range _lowerCamelCase : Tuple = num_labels _lowerCamelCase : int = num_choices _lowerCamelCase : List[Any] = relative_attention _lowerCamelCase : int = position_biased_input _lowerCamelCase : Any = pos_att_type _lowerCamelCase : Optional[int] = scope def lowerCamelCase_ ( self : Any ): _lowerCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) _lowerCamelCase : List[Any] = None if self.use_input_mask: _lowerCamelCase : Any = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : List[str] = None if self.use_token_type_ids: _lowerCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length],self.type_vocab_size ) _lowerCamelCase : Any = None _lowerCamelCase : Optional[Any] = None _lowerCamelCase : str = None if self.use_labels: _lowerCamelCase : Optional[Any] = ids_tensor([self.batch_size],self.type_sequence_label_size ) _lowerCamelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length],self.num_labels ) _lowerCamelCase : int = DebertaVaConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,relative_attention=self.relative_attention,position_biased_input=self.position_biased_input,initializer_range=self.initializer_range,return_dict=SCREAMING_SNAKE_CASE_,) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase_ ( self : int,__A : List[Any],__A : Optional[Any],__A : Optional[Any],__A : Optional[int],__A : List[Any],__A : Any,__A : Tuple ): _lowerCamelCase : Optional[Any] = TFDebertaVaModel(config=SCREAMING_SNAKE_CASE_ ) _lowerCamelCase : Optional[int] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _lowerCamelCase : Dict = [input_ids, input_mask] _lowerCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_ ) _lowerCamelCase : Optional[Any] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self : List[Any],__A : Union[str, Any],__A : List[Any],__A : Dict,__A : List[Any],__A : Dict,__A : Optional[Any],__A : Dict ): _lowerCamelCase : Any = TFDebertaVaForMaskedLM(config=SCREAMING_SNAKE_CASE_ ) _lowerCamelCase : int = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _lowerCamelCase : Any = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase_ ( self : Optional[int],__A : List[Any],__A : Any,__A : str,__A : Union[str, Any],__A : Optional[Any],__A : Dict,__A : Union[str, Any] ): _lowerCamelCase : Any = self.num_labels _lowerCamelCase : Any = TFDebertaVaForSequenceClassification(config=SCREAMING_SNAKE_CASE_ ) _lowerCamelCase : List[str] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _lowerCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self : Tuple,__A : List[Any],__A : Tuple,__A : Optional[Any],__A : Optional[Any],__A : Union[str, Any],__A : List[Any],__A : List[str] ): _lowerCamelCase : Tuple = self.num_labels _lowerCamelCase : Union[str, Any] = TFDebertaVaForTokenClassification(config=SCREAMING_SNAKE_CASE_ ) _lowerCamelCase : Optional[int] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _lowerCamelCase : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase_ ( self : Optional[int],__A : Any,__A : List[str],__A : int,__A : Optional[Any],__A : int,__A : Tuple,__A : Tuple ): _lowerCamelCase : Dict = TFDebertaVaForQuestionAnswering(config=SCREAMING_SNAKE_CASE_ ) _lowerCamelCase : List[Any] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _lowerCamelCase : Tuple = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.start_logits.shape,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape,(self.batch_size, self.seq_length) ) def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase : Tuple = self.prepare_config_and_inputs() ( _lowerCamelCase ) : Optional[Any] = config_and_inputs _lowerCamelCase : List[Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class UpperCAmelCase__ ( A , A , unittest.TestCase ): lowerCAmelCase_ = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) lowerCAmelCase_ = ( { '''feature-extraction''': TFDebertaVaModel, '''fill-mask''': TFDebertaVaForMaskedLM, '''question-answering''': TFDebertaVaForQuestionAnswering, '''text-classification''': TFDebertaVaForSequenceClassification, '''token-classification''': TFDebertaVaForTokenClassification, '''zero-shot''': TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : Optional[int] = TFDebertaVaModelTester(self ) _lowerCamelCase : Dict = ConfigTester(self,config_class=SCREAMING_SNAKE_CASE_,hidden_size=3_7 ) def lowerCamelCase_ ( self : Optional[Any] ): self.config_tester.run_common_tests() def lowerCamelCase_ ( self : Any ): _lowerCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*SCREAMING_SNAKE_CASE_ ) def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*SCREAMING_SNAKE_CASE_ ) def lowerCamelCase_ ( self : int ): _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*SCREAMING_SNAKE_CASE_ ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*SCREAMING_SNAKE_CASE_ ) @slow def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase : Any = TFDebertaVaModel.from_pretrained("kamalkraj/deberta-v2-xlarge" ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @require_tf class UpperCAmelCase__ ( unittest.TestCase ): @unittest.skip(reason="Model not available yet" ) def lowerCamelCase_ ( self : List[str] ): pass @slow def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : Dict = TFDebertaVaModel.from_pretrained("kamalkraj/deberta-v2-xlarge" ) _lowerCamelCase : Dict = tf.constant([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) _lowerCamelCase : Tuple = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _lowerCamelCase : Optional[Any] = model(SCREAMING_SNAKE_CASE_,attention_mask=SCREAMING_SNAKE_CASE_ )[0] _lowerCamelCase : Optional[Any] = tf.constant( [[[0.2356, 0.1948, 0.0369], [-0.1063, 0.3586, -0.5152], [-0.6399, -0.0259, -0.2525]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4],SCREAMING_SNAKE_CASE_,atol=1e-4 )
44
from __future__ import annotations def lowercase ( __A : list ) -> float: '''simple docstring''' if not nums: raise ValueError("""List is empty""" ) return sum(__A ) / len(__A ) if __name__ == "__main__": import doctest doctest.testmod()
36
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _A : List[Any] = logging.get_logger(__name__) _A : int = { '''google/bit-50''': '''https://huggingface.co/google/bit-50/resolve/main/config.json''', } class a ( _UpperCAmelCase ,_UpperCAmelCase ): UpperCAmelCase__ : Optional[int] = "bit" UpperCAmelCase__ : int = ["preactivation", "bottleneck"] UpperCAmelCase__ : int = ["SAME", "VALID"] def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[str]=3 , SCREAMING_SNAKE_CASE_ : Tuple=64 , SCREAMING_SNAKE_CASE_ : List[str]=[256, 512, 1024, 2048] , SCREAMING_SNAKE_CASE_ : Dict=[3, 4, 6, 3] , SCREAMING_SNAKE_CASE_ : Any="preactivation" , SCREAMING_SNAKE_CASE_ : Optional[Any]="relu" , SCREAMING_SNAKE_CASE_ : Any=None , SCREAMING_SNAKE_CASE_ : List[Any]=32 , SCREAMING_SNAKE_CASE_ : Optional[Any]=0.0 , SCREAMING_SNAKE_CASE_ : Tuple=False , SCREAMING_SNAKE_CASE_ : str=32 , SCREAMING_SNAKE_CASE_ : Any=1 , SCREAMING_SNAKE_CASE_ : int=None , SCREAMING_SNAKE_CASE_ : List[Any]=None , **SCREAMING_SNAKE_CASE_ : Dict , ): super().__init__(**SCREAMING_SNAKE_CASE_ ) if layer_type not in self.layer_types: raise ValueError(F'layer_type={layer_type} is not one of {",".join(self.layer_types )}' ) if global_padding is not None: if global_padding.upper() in self.supported_padding: __lowerCamelCase: Optional[int] = global_padding.upper() else: raise ValueError(F'Padding strategy {global_padding} not supported' ) __lowerCamelCase: str = num_channels __lowerCamelCase: List[Any] = embedding_size __lowerCamelCase: Any = hidden_sizes __lowerCamelCase: Optional[int] = depths __lowerCamelCase: Union[str, Any] = layer_type __lowerCamelCase: int = hidden_act __lowerCamelCase: List[Any] = global_padding __lowerCamelCase: Any = num_groups __lowerCamelCase: Union[str, Any] = drop_path_rate __lowerCamelCase: Union[str, Any] = embedding_dynamic_padding __lowerCamelCase: Optional[Any] = output_stride __lowerCamelCase: str = width_factor __lowerCamelCase: Union[str, Any] = ["""stem"""] + [F'stage{idx}' for idx in range(1 , len(SCREAMING_SNAKE_CASE_ ) + 1 )] __lowerCamelCase , __lowerCamelCase: List[str] = get_aligned_output_features_output_indices( out_features=SCREAMING_SNAKE_CASE_ , out_indices=SCREAMING_SNAKE_CASE_ , stage_names=self.stage_names )
189
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging _A : List[str] = logging.get_logger(__name__) _A : Any = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} # See all LED models at https://huggingface.co/models?filter=LED _A : int = { '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } _A : Dict = { '''allenai/led-base-16384''': 16_384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def __lowerCAmelCase ( ) -> List[Any]: __lowerCamelCase: Optional[Any] = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) __lowerCamelCase: List[str] = bs[:] __lowerCamelCase: Tuple = 0 for b in range(2**8 ): if b not in bs: bs.append(snake_case ) cs.append(2**8 + n ) n += 1 __lowerCamelCase: List[Any] = [chr(snake_case ) for n in cs] return dict(zip(snake_case , snake_case ) ) def __lowerCAmelCase ( snake_case : List[str] ) -> str: __lowerCamelCase: int = set() __lowerCamelCase: str = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowerCamelCase: Any = char return pairs class a ( _UpperCAmelCase ): UpperCAmelCase__ : Optional[Any] = VOCAB_FILES_NAMES UpperCAmelCase__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : List[str] = ["input_ids", "attention_mask"] def __init__( self : List[str] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Dict="replace" , SCREAMING_SNAKE_CASE_ : Dict="<s>" , SCREAMING_SNAKE_CASE_ : Optional[int]="</s>" , SCREAMING_SNAKE_CASE_ : int="</s>" , SCREAMING_SNAKE_CASE_ : Any="<s>" , SCREAMING_SNAKE_CASE_ : Union[str, Any]="<unk>" , SCREAMING_SNAKE_CASE_ : Tuple="<pad>" , SCREAMING_SNAKE_CASE_ : Dict="<mask>" , SCREAMING_SNAKE_CASE_ : int=False , **SCREAMING_SNAKE_CASE_ : List[str] , ): __lowerCamelCase: Tuple = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else bos_token __lowerCamelCase: Union[str, Any] = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else eos_token __lowerCamelCase: List[Any] = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else sep_token __lowerCamelCase: Dict = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else cls_token __lowerCamelCase: Any = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else unk_token __lowerCamelCase: Tuple = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __lowerCamelCase: List[str] = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else mask_token super().__init__( errors=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) with open(SCREAMING_SNAKE_CASE_ , encoding="""utf-8""" ) as vocab_handle: __lowerCamelCase: str = json.load(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase: Optional[Any] = {v: k for k, v in self.encoder.items()} __lowerCamelCase: Any = errors # how to handle errors in decoding __lowerCamelCase: List[Any] = bytes_to_unicode() __lowerCamelCase: Optional[int] = {v: k for k, v in self.byte_encoder.items()} with open(SCREAMING_SNAKE_CASE_ , encoding="""utf-8""" ) as merges_handle: __lowerCamelCase: List[Any] = merges_handle.read().split("""\n""" )[1:-1] __lowerCamelCase: Tuple = [tuple(merge.split() ) for merge in bpe_merges] __lowerCamelCase: str = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) __lowerCamelCase: List[str] = {} __lowerCamelCase: Optional[int] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __lowerCamelCase: str = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def SCREAMING_SNAKE_CASE__ ( self : Any ): return len(self.encoder ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): return dict(self.encoder , **self.added_tokens_encoder ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , SCREAMING_SNAKE_CASE_ : int ): if token in self.cache: return self.cache[token] __lowerCamelCase: List[str] = tuple(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase: List[Any] = get_pairs(SCREAMING_SNAKE_CASE_ ) if not pairs: return token while True: __lowerCamelCase: List[str] = min(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : self.bpe_ranks.get(SCREAMING_SNAKE_CASE_ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break __lowerCamelCase , __lowerCamelCase: List[str] = bigram __lowerCamelCase: Optional[int] = [] __lowerCamelCase: Optional[Any] = 0 while i < len(SCREAMING_SNAKE_CASE_ ): try: __lowerCamelCase: int = word.index(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __lowerCamelCase: Tuple = j if word[i] == first and i < len(SCREAMING_SNAKE_CASE_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowerCamelCase: Optional[int] = tuple(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase: Any = new_word if len(SCREAMING_SNAKE_CASE_ ) == 1: break else: __lowerCamelCase: Tuple = get_pairs(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase: Dict = """ """.join(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase: Any = word return word def SCREAMING_SNAKE_CASE__ ( self : int , SCREAMING_SNAKE_CASE_ : Any ): __lowerCamelCase: Any = [] for token in re.findall(self.pat , SCREAMING_SNAKE_CASE_ ): __lowerCamelCase: int = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(SCREAMING_SNAKE_CASE_ ).split(""" """ ) ) return bpe_tokens def SCREAMING_SNAKE_CASE__ ( self : str , SCREAMING_SNAKE_CASE_ : Tuple ): return self.encoder.get(SCREAMING_SNAKE_CASE_ , self.encoder.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE__ ( self : Any , SCREAMING_SNAKE_CASE_ : str ): return self.decoder.get(SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : str , SCREAMING_SNAKE_CASE_ : Union[str, Any] ): __lowerCamelCase: Any = """""".join(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase: str = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def SCREAMING_SNAKE_CASE__ ( self : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None ): if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __lowerCamelCase: Dict = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) __lowerCamelCase: str = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(SCREAMING_SNAKE_CASE_ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_ ) + """\n""" ) __lowerCamelCase: List[str] = 0 with open(SCREAMING_SNAKE_CASE_ , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda SCREAMING_SNAKE_CASE_ : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' """ Please check that the tokenizer is not corrupted!""" ) __lowerCamelCase: Tuple = token_index writer.write(""" """.join(SCREAMING_SNAKE_CASE_ ) + """\n""" ) index += 1 return vocab_file, merge_file def SCREAMING_SNAKE_CASE__ ( self : Dict , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowerCamelCase: List[str] = [self.cls_token_id] __lowerCamelCase: int = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE__ ( self : int , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE_ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE_ , token_ids_a=SCREAMING_SNAKE_CASE_ , already_has_special_tokens=SCREAMING_SNAKE_CASE_ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] def SCREAMING_SNAKE_CASE__ ( self : Any , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ): __lowerCamelCase: int = [self.sep_token_id] __lowerCamelCase: Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any]=False , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ): __lowerCamelCase: Any = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(SCREAMING_SNAKE_CASE_ ) > 0 and not text[0].isspace()): __lowerCamelCase: Dict = """ """ + text return (text, kwargs) def SCREAMING_SNAKE_CASE__ ( self : Dict , SCREAMING_SNAKE_CASE_ : Union[Dict[str, EncodedInput], BatchEncoding] , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , ): __lowerCamelCase: Optional[Any] = super()._pad( encoded_inputs=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding_strategy=SCREAMING_SNAKE_CASE_ , pad_to_multiple_of=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , ) # Load from model defaults if return_attention_mask is None: __lowerCamelCase: Optional[Any] = """attention_mask""" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: __lowerCamelCase: List[str] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. __lowerCamelCase: str = len(encoded_inputs["""global_attention_mask"""] ) != len(SCREAMING_SNAKE_CASE_ ) if needs_to_be_padded: __lowerCamelCase: Union[str, Any] = len(SCREAMING_SNAKE_CASE_ ) - len(encoded_inputs["""global_attention_mask"""] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` __lowerCamelCase: str = ( encoded_inputs["""global_attention_mask"""] + [-1] * difference ) elif self.padding_side == "left": __lowerCamelCase: Optional[int] = [-1] * difference + encoded_inputs[ """global_attention_mask""" ] else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return encoded_inputs
189
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase = { '''configuration_time_series_transformer''': [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimeSeriesTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimeSeriesTransformerForPrediction''', '''TimeSeriesTransformerModel''', '''TimeSeriesTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
659
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, PNDMScheduler, StableDiffusionLDMaDPipeline, UNetaDConditionModel, ) from diffusers.utils import nightly, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS enable_full_determinism() class __snake_case ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = StableDiffusionLDMaDPipeline UpperCamelCase_ = TEXT_TO_IMAGE_PARAMS UpperCamelCase_ = TEXT_TO_IMAGE_BATCH_PARAMS UpperCamelCase_ = TEXT_TO_IMAGE_IMAGE_PARAMS def UpperCAmelCase_ ( self : Tuple ) -> str: '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase_ : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") ,up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") ,cross_attention_dim=32 ,) lowerCAmelCase_ : Any = DDIMScheduler( beta_start=0.00_085 ,beta_end=0.012 ,beta_schedule="scaled_linear" ,clip_sample=lowerCAmelCase__ ,set_alpha_to_one=lowerCAmelCase__ ,) torch.manual_seed(0 ) lowerCAmelCase_ : str = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=6 ,out_channels=6 ,down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] ,up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] ,latent_channels=4 ,) torch.manual_seed(0 ) lowerCAmelCase_ : Optional[Any] = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=10_00 ,) lowerCAmelCase_ : Optional[int] = CLIPTextModel(lowerCAmelCase__ ) lowerCAmelCase_ : Dict = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) lowerCAmelCase_ : List[Any] = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : List[Any] ,lowerCAmelCase__ : List[str]=0 ) -> Dict: '''simple docstring''' if str(lowerCAmelCase__ ).startswith("mps" ): lowerCAmelCase_ : Optional[int] = torch.manual_seed(lowerCAmelCase__ ) else: lowerCAmelCase_ : Dict = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) lowerCAmelCase_ : str = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def UpperCAmelCase_ ( self : Any ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Dict = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ : List[str] = self.get_dummy_components() lowerCAmelCase_ : Union[str, Any] = StableDiffusionLDMaDPipeline(**lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = ldmad_pipe.to(lowerCAmelCase__ ) ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowerCAmelCase_ : Any = self.get_dummy_inputs(lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = ldmad_pipe(**lowerCAmelCase__ ) lowerCAmelCase_ , lowerCAmelCase_ : Any = output.rgb, output.depth lowerCAmelCase_ : Dict = rgb[0, -3:, -3:, -1] lowerCAmelCase_ : Tuple = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) lowerCAmelCase_ : Optional[Any] = np.array( [0.37_338_176, 0.70_247, 0.74_203_193, 0.51_643_604, 0.58_256_793, 0.60_932_136, 0.4_181_095, 0.48_355_877, 0.46_535_262] ) lowerCAmelCase_ : Tuple = np.array([103.46_727, 85.812_004, 87.849_236] ) assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb ).max() < 1e-2 assert np.abs(image_slice_depth.flatten() - expected_slice_depth ).max() < 1e-2 def UpperCAmelCase_ ( self : int ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Dict = self.get_dummy_components() lowerCAmelCase_ : List[str] = StableDiffusionLDMaDPipeline(**lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = ldmad_pipe.to(lowerCAmelCase__ ) ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = self.get_dummy_inputs(lowerCAmelCase__ ) lowerCAmelCase_ : str = 3 * [inputs["prompt"]] # forward lowerCAmelCase_ : Union[str, Any] = ldmad_pipe(**lowerCAmelCase__ ) lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = output.rgb, output.depth lowerCAmelCase_ : str = rgb_slice_a[0, -3:, -3:, -1] lowerCAmelCase_ : List[str] = depth_slice_a[0, -3:, -1] lowerCAmelCase_ : Union[str, Any] = self.get_dummy_inputs(lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = 3 * [inputs.pop("prompt" )] lowerCAmelCase_ : str = ldmad_pipe.tokenizer( lowerCAmelCase__ ,padding="max_length" ,max_length=ldmad_pipe.tokenizer.model_max_length ,truncation=lowerCAmelCase__ ,return_tensors="pt" ,) lowerCAmelCase_ : Union[str, Any] = text_inputs["input_ids"].to(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = ldmad_pipe.text_encoder(lowerCAmelCase__ )[0] lowerCAmelCase_ : Optional[int] = prompt_embeds # forward lowerCAmelCase_ : str = ldmad_pipe(**lowerCAmelCase__ ) lowerCAmelCase_ , lowerCAmelCase_ : str = output.rgb, output.depth lowerCAmelCase_ : Optional[Any] = rgb_slice_a[0, -3:, -3:, -1] lowerCAmelCase_ : Tuple = depth_slice_a[0, -3:, -1] assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten() ).max() < 1e-4 assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten() ).max() < 1e-4 def UpperCAmelCase_ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Any = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ : Optional[int] = self.get_dummy_components() lowerCAmelCase_ : Dict = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = StableDiffusionLDMaDPipeline(**lowerCAmelCase__ ) lowerCAmelCase_ : Any = ldmad_pipe.to(lowerCAmelCase__ ) ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = self.get_dummy_inputs(lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = "french fries" lowerCAmelCase_ : Optional[int] = ldmad_pipe(**lowerCAmelCase__ ,negative_prompt=lowerCAmelCase__ ) lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = output.rgb, output.depth lowerCAmelCase_ : Any = rgb[0, -3:, -3:, -1] lowerCAmelCase_ : Tuple = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) lowerCAmelCase_ : int = np.array( [0.37_044, 0.71_811_503, 0.7_223_251, 0.48_603_675, 0.5_638_391, 0.6_364_948, 0.42_833_704, 0.4_901_315, 0.47_926_217] ) lowerCAmelCase_ : Union[str, Any] = np.array([107.84_738, 84.62_802, 89.962_135] ) assert np.abs(rgb_slice.flatten() - expected_slice_rgb ).max() < 1e-2 assert np.abs(depth_slice.flatten() - expected_slice_depth ).max() < 1e-2 @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : Tuple ,lowerCAmelCase__ : Dict="cpu" ,lowerCAmelCase__ : Union[str, Any]=torch.floataa ,lowerCAmelCase__ : List[str]=0 ) -> int: '''simple docstring''' lowerCAmelCase_ : Any = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = np.random.RandomState(lowerCAmelCase__ ).standard_normal((1, 4, 64, 64) ) lowerCAmelCase_ : Optional[Any] = torch.from_numpy(lowerCAmelCase__ ).to(device=lowerCAmelCase__ ,dtype=lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = { "prompt": "a photograph of an astronaut riding a horse", "latents": latents, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def UpperCAmelCase_ ( self : List[Any] ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = StableDiffusionLDMaDPipeline.from_pretrained("Intel/ldm3d" ) lowerCAmelCase_ : List[str] = ldmad_pipe.to(lowerCAmelCase__ ) ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowerCAmelCase_ : Dict = self.get_inputs(lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = ldmad_pipe(**lowerCAmelCase__ ) lowerCAmelCase_ , lowerCAmelCase_ : Dict = output.rgb, output.depth lowerCAmelCase_ : List[str] = rgb[0, -3:, -3:, -1].flatten() lowerCAmelCase_ : Optional[int] = rgb[0, -3:, -1].flatten() assert rgb.shape == (1, 5_12, 5_12, 3) assert depth.shape == (1, 5_12, 5_12) lowerCAmelCase_ : int = np.array( [0.53_805_465, 0.56_707_305, 0.5_486_515, 0.57_012_236, 0.5_814_511, 0.56_253_487, 0.54_843_014, 0.55_092_263, 0.6_459_706] ) lowerCAmelCase_ : Optional[Any] = np.array( [0.9_263_781, 0.6_678_672, 0.5_486_515, 0.92_202_145, 0.67_831_135, 0.56_253_487, 0.9_241_694, 0.7_551_478, 0.6_459_706] ) assert np.abs(rgb_slice - expected_slice_rgb ).max() < 3e-3 assert np.abs(depth_slice - expected_slice_depth ).max() < 3e-3 @nightly @require_torch_gpu class __snake_case ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : Tuple ,lowerCAmelCase__ : Dict="cpu" ,lowerCAmelCase__ : List[str]=torch.floataa ,lowerCAmelCase__ : Optional[int]=0 ) -> int: '''simple docstring''' lowerCAmelCase_ : Dict = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = np.random.RandomState(lowerCAmelCase__ ).standard_normal((1, 4, 64, 64) ) lowerCAmelCase_ : Any = torch.from_numpy(lowerCAmelCase__ ).to(device=lowerCAmelCase__ ,dtype=lowerCAmelCase__ ) lowerCAmelCase_ : int = { "prompt": "a photograph of an astronaut riding a horse", "latents": latents, "generator": generator, "num_inference_steps": 50, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def UpperCAmelCase_ ( self : Dict ) -> int: '''simple docstring''' lowerCAmelCase_ : List[Any] = StableDiffusionLDMaDPipeline.from_pretrained("Intel/ldm3d" ).to(lowerCAmelCase__ ) ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = self.get_inputs(lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = ldmad_pipe(**lowerCAmelCase__ ) lowerCAmelCase_ , lowerCAmelCase_ : Any = output.rgb, output.depth lowerCAmelCase_ : Dict = 0.495_586 lowerCAmelCase_ : Optional[Any] = 0.33_795_515 lowerCAmelCase_ : Any = 112.48_518 lowerCAmelCase_ : List[Any] = 98.489_746 assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3 assert np.abs(expected_depth_std - depth.std() ) < 1e-3 def UpperCAmelCase_ ( self : Tuple ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : int = StableDiffusionLDMaDPipeline.from_pretrained("Intel/ldm3d-4c" ).to(lowerCAmelCase__ ) ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowerCAmelCase_ : str = self.get_inputs(lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = ldmad_pipe(**lowerCAmelCase__ ) lowerCAmelCase_ , lowerCAmelCase_ : Tuple = output.rgb, output.depth lowerCAmelCase_ : List[str] = 0.4_194_127 lowerCAmelCase_ : List[str] = 0.35_375_586 lowerCAmelCase_ : str = 0.5_638_502 lowerCAmelCase_ : Optional[Any] = 0.34_686_103 assert rgb.shape == (1, 5_12, 5_12, 3) assert depth.shape == (1, 5_12, 5_12, 1) assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3 assert np.abs(expected_depth_std - depth.std() ) < 1e-3
659
1
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys UpperCAmelCase_ =subprocess.check_output("""git merge-base main HEAD""".split()).decode("""utf-8""") UpperCAmelCase_ =( subprocess.check_output(F'''git diff --diff-filter=d --name-only {fork_point_sha}'''.split()).decode("""utf-8""").split() ) UpperCAmelCase_ ="""|""".join(sys.argv[1:]) UpperCAmelCase_ =re.compile(RF'''^({joined_dirs}).*?\.py$''') UpperCAmelCase_ =[x for x in modified_files if regex.match(x)] print(""" """.join(relevant_modified_files), end="""""")
719
from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class __UpperCamelCase ( yaml.SafeLoader ): '''simple docstring''' def __snake_case ( self , UpperCAmelCase_ ): lowerCAmelCase = [self.constructed_objects[key_node] for key_node, _ in node.value] lowerCAmelCase = [tuple(UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else key for key in keys] lowerCAmelCase = Counter(UpperCAmelCase_ ) lowerCAmelCase = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(F"""Got duplicate yaml keys: {duplicate_keys}""" ) def __snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_=False ): lowerCAmelCase = super().construct_mapping(UpperCAmelCase_ , deep=UpperCAmelCase_ ) self._check_no_duplicates_on_constructed_node(UpperCAmelCase_ ) return mapping def UpperCAmelCase ( _snake_case ): lowerCAmelCase = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: lowerCAmelCase = full_content[1:].index('''---''' ) + 1 lowerCAmelCase = '''\n'''.join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(_snake_case ) class __UpperCamelCase ( __UpperCAmelCase ): '''simple docstring''' __a : Any ={"""train_eval_index"""} # train-eval-index in the YAML metadata @classmethod def __snake_case ( cls , UpperCAmelCase_ ): with open(UpperCAmelCase_ , encoding='''utf-8''' ) as readme_file: lowerCAmelCase , lowerCAmelCase = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(UpperCAmelCase_ ) else: return cls() def __snake_case ( self , UpperCAmelCase_ ): if path.exists(): with open(UpperCAmelCase_ , encoding='''utf-8''' ) as readme_file: lowerCAmelCase = readme_file.read() else: lowerCAmelCase = None lowerCAmelCase = self._to_readme(UpperCAmelCase_ ) with open(UpperCAmelCase_ , '''w''' , encoding='''utf-8''' ) as readme_file: readme_file.write(UpperCAmelCase_ ) def __snake_case ( self , UpperCAmelCase_ = None ): if readme_content is not None: lowerCAmelCase , lowerCAmelCase = _split_yaml_from_readme(UpperCAmelCase_ ) lowerCAmelCase = '''---\n''' + self.to_yaml_string() + '''---\n''' + content else: lowerCAmelCase = '''---\n''' + self.to_yaml_string() + '''---\n''' return full_content @classmethod def __snake_case ( cls , UpperCAmelCase_ ): lowerCAmelCase = yaml.load(UpperCAmelCase_ , Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields lowerCAmelCase = { (key.replace('''-''' , '''_''' ) if key.replace('''-''' , '''_''' ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**UpperCAmelCase_ ) def __snake_case ( self ): return yaml.safe_dump( { (key.replace('''_''' , '''-''' ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=UpperCAmelCase_ , allow_unicode=UpperCAmelCase_ , encoding='''utf-8''' , ).decode('''utf-8''' ) UpperCAmelCase_ ={ """image-classification""": [], """translation""": [], """image-segmentation""": [], """fill-mask""": [], """automatic-speech-recognition""": [], """token-classification""": [], """sentence-similarity""": [], """audio-classification""": [], """question-answering""": [], """summarization""": [], """zero-shot-classification""": [], """table-to-text""": [], """feature-extraction""": [], """other""": [], """multiple-choice""": [], """text-classification""": [], """text-to-image""": [], """text2text-generation""": [], """zero-shot-image-classification""": [], """tabular-classification""": [], """tabular-regression""": [], """image-to-image""": [], """tabular-to-text""": [], """unconditional-image-generation""": [], """text-retrieval""": [], """text-to-speech""": [], """object-detection""": [], """audio-to-audio""": [], """text-generation""": [], """conversational""": [], """table-question-answering""": [], """visual-question-answering""": [], """image-to-text""": [], """reinforcement-learning""": [], """voice-activity-detection""": [], """time-series-forecasting""": [], """document-question-answering""": [], } if __name__ == "__main__": from argparse import ArgumentParser UpperCAmelCase_ =ArgumentParser(usage="""Validate the yaml metadata block of a README.md file.""") ap.add_argument("""readme_filepath""") UpperCAmelCase_ =ap.parse_args() UpperCAmelCase_ =Path(args.readme_filepath) UpperCAmelCase_ =DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
33
0
import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) lowercase__ : Union[str, Any] = logging.getLogger(__name__) def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase) -> List[Any]: a = np.argmax(UpperCAmelCase__ , axis=1) return np.sum(outputs == labels) def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> Any: with open(UpperCAmelCase__ , encoding="utf_8") as f: a = csv.reader(UpperCAmelCase__) a = [] next(UpperCAmelCase__) # skip the first line for line in tqdm(UpperCAmelCase__): output.append((" ".join(line[1:5]), line[5], line[6], int(line[-1]) - 1)) return output def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase) -> int: a = [] for dataset in encoded_datasets: a = len(UpperCAmelCase__) a = np.zeros((n_batch, 2, input_len) , dtype=np.intaa) a = np.zeros((n_batch, 2) , dtype=np.intaa) a = np.full((n_batch, 2, input_len) , fill_value=-1_00 , dtype=np.intaa) a = np.zeros((n_batch,) , dtype=np.intaa) for ( i, (story, conta, conta, mc_label), ) in enumerate(UpperCAmelCase__): a = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] a = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] a = with_conta a = with_conta a = len(UpperCAmelCase__) - 1 a = len(UpperCAmelCase__) - 1 a = with_conta a = with_conta a = mc_label a = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(UpperCAmelCase__) for t in all_inputs)) return tensor_datasets def SCREAMING_SNAKE_CASE ( ) -> Tuple: a = argparse.ArgumentParser() parser.add_argument("--model_name" , type=UpperCAmelCase__ , default="openai-gpt" , help="pretrained model name") parser.add_argument("--do_train" , action="store_true" , help="Whether to run training.") parser.add_argument("--do_eval" , action="store_true" , help="Whether to run eval on the dev set.") parser.add_argument( "--output_dir" , default=UpperCAmelCase__ , type=UpperCAmelCase__ , required=UpperCAmelCase__ , help="The output directory where the model predictions and checkpoints will be written." , ) parser.add_argument("--train_dataset" , type=UpperCAmelCase__ , default="") parser.add_argument("--eval_dataset" , type=UpperCAmelCase__ , default="") parser.add_argument("--seed" , type=UpperCAmelCase__ , default=42) parser.add_argument("--num_train_epochs" , type=UpperCAmelCase__ , default=3) parser.add_argument("--train_batch_size" , type=UpperCAmelCase__ , default=8) parser.add_argument("--eval_batch_size" , type=UpperCAmelCase__ , default=16) parser.add_argument("--adam_epsilon" , default=1e-8 , type=UpperCAmelCase__ , help="Epsilon for Adam optimizer.") parser.add_argument("--max_grad_norm" , type=UpperCAmelCase__ , default=1) parser.add_argument( "--max_steps" , default=-1 , type=UpperCAmelCase__ , help=( "If > 0: set total number of training steps to perform. Override num_train_epochs." ) , ) parser.add_argument( "--gradient_accumulation_steps" , type=UpperCAmelCase__ , default=1 , help="Number of updates steps to accumulate before performing a backward/update pass." , ) parser.add_argument("--learning_rate" , type=UpperCAmelCase__ , default=6.25e-5) parser.add_argument("--warmup_steps" , default=0 , type=UpperCAmelCase__ , help="Linear warmup over warmup_steps.") parser.add_argument("--lr_schedule" , type=UpperCAmelCase__ , default="warmup_linear") parser.add_argument("--weight_decay" , type=UpperCAmelCase__ , default=0.01) parser.add_argument("--lm_coef" , type=UpperCAmelCase__ , default=0.9) parser.add_argument("--n_valid" , type=UpperCAmelCase__ , default=3_74) parser.add_argument("--server_ip" , type=UpperCAmelCase__ , default="" , help="Can be used for distant debugging.") parser.add_argument("--server_port" , type=UpperCAmelCase__ , default="" , help="Can be used for distant debugging.") a = parser.parse_args() print(UpperCAmelCase__) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach") ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=UpperCAmelCase__) ptvsd.wait_for_attach() random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) torch.cuda.manual_seed_all(args.seed) a = torch.device("cuda" if torch.cuda.is_available() else "cpu") a = torch.cuda.device_count() logger.info("device: {}, n_gpu {}".format(UpperCAmelCase__ , UpperCAmelCase__)) if not args.do_train and not args.do_eval: raise ValueError("At least one of `do_train` or `do_eval` must be True.") if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset a = ["_start_", "_delimiter_", "_classify_"] a = OpenAIGPTTokenizer.from_pretrained(args.model_name) tokenizer.add_tokens(UpperCAmelCase__) a = tokenizer.convert_tokens_to_ids(UpperCAmelCase__) a = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name) model.resize_token_embeddings(len(UpperCAmelCase__)) model.to(UpperCAmelCase__) # Load and encode the datasets def tokenize_and_encode(__UpperCamelCase): if isinstance(UpperCAmelCase__ , UpperCAmelCase__): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(UpperCAmelCase__)) elif isinstance(UpperCAmelCase__ , UpperCAmelCase__): return obj return [tokenize_and_encode(UpperCAmelCase__) for o in obj] logger.info("Encoding dataset...") a = load_rocstories_dataset(args.train_dataset) a = load_rocstories_dataset(args.eval_dataset) a = (train_dataset, eval_dataset) a = tokenize_and_encode(UpperCAmelCase__) # Compute the max input length for the Transformer a = model.config.n_positions // 2 - 2 a = max( len(story[:max_length]) + max(len(conta[:max_length]) , len(conta[:max_length])) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset) a = min(UpperCAmelCase__ , model.config.n_positions) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders a = pre_process_datasets(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , *UpperCAmelCase__) a , a = tensor_datasets[0], tensor_datasets[1] a = TensorDataset(*UpperCAmelCase__) a = RandomSampler(UpperCAmelCase__) a = DataLoader(UpperCAmelCase__ , sampler=UpperCAmelCase__ , batch_size=args.train_batch_size) a = TensorDataset(*UpperCAmelCase__) a = SequentialSampler(UpperCAmelCase__) a = DataLoader(UpperCAmelCase__ , sampler=UpperCAmelCase__ , batch_size=args.eval_batch_size) # Prepare optimizer if args.do_train: if args.max_steps > 0: a = args.max_steps a = args.max_steps // (len(UpperCAmelCase__) // args.gradient_accumulation_steps) + 1 else: a = len(UpperCAmelCase__) // args.gradient_accumulation_steps * args.num_train_epochs a = list(model.named_parameters()) a = ["bias", "LayerNorm.bias", "LayerNorm.weight"] a = [ { "params": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], "weight_decay": args.weight_decay, }, {"params": [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], "weight_decay": 0.0}, ] a = AdamW(UpperCAmelCase__ , lr=args.learning_rate , eps=args.adam_epsilon) a = get_linear_schedule_with_warmup( UpperCAmelCase__ , num_warmup_steps=args.warmup_steps , num_training_steps=UpperCAmelCase__) if args.do_train: a , a , a = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs) , desc="Epoch"): a = 0 a = 0 a = tqdm(UpperCAmelCase__ , desc="Training") for step, batch in enumerate(UpperCAmelCase__): a = tuple(t.to(UpperCAmelCase__) for t in batch) a , a , a , a = batch a = model(UpperCAmelCase__ , mc_token_ids=UpperCAmelCase__ , lm_labels=UpperCAmelCase__ , mc_labels=UpperCAmelCase__) a = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() a = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 a = "Training loss: {:.2e} lr: {:.2e}".format(UpperCAmelCase__ , scheduler.get_lr()[0]) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer a = model.module if hasattr(UpperCAmelCase__ , "module") else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` a = os.path.join(args.output_dir , UpperCAmelCase__) a = os.path.join(args.output_dir , UpperCAmelCase__) torch.save(model_to_save.state_dict() , UpperCAmelCase__) model_to_save.config.to_json_file(UpperCAmelCase__) tokenizer.save_vocabulary(args.output_dir) # Load a trained model and vocabulary that you have fine-tuned a = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir) a = OpenAIGPTTokenizer.from_pretrained(args.output_dir) model.to(UpperCAmelCase__) if args.do_eval: model.eval() a , a = 0, 0 a , a = 0, 0 for batch in tqdm(UpperCAmelCase__ , desc="Evaluating"): a = tuple(t.to(UpperCAmelCase__) for t in batch) a , a , a , a = batch with torch.no_grad(): a , a , a , a = model( UpperCAmelCase__ , mc_token_ids=UpperCAmelCase__ , lm_labels=UpperCAmelCase__ , mc_labels=UpperCAmelCase__) a = mc_logits.detach().cpu().numpy() a = mc_labels.to("cpu").numpy() a = accuracy(UpperCAmelCase__ , UpperCAmelCase__) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0) nb_eval_steps += 1 a = eval_loss / nb_eval_steps a = eval_accuracy / nb_eval_examples a = tr_loss / nb_tr_steps if args.do_train else None a = {"eval_loss": eval_loss, "eval_accuracy": eval_accuracy, "train_loss": train_loss} a = os.path.join(args.output_dir , "eval_results.txt") with open(UpperCAmelCase__ , "w") as writer: logger.info("***** Eval results *****") for key in sorted(result.keys()): logger.info(" %s = %s" , UpperCAmelCase__ , str(result[key])) writer.write("%s = %s\n" % (key, str(result[key]))) if __name__ == "__main__": main()
515
'''simple docstring''' import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class A__ ( _snake_case ): def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=7 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__=True , UpperCamelCase__=99 , UpperCamelCase__=32 , UpperCamelCase__=5 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=16 , UpperCamelCase__=2 , UpperCamelCase__=0.02 , UpperCamelCase__=3 , UpperCamelCase__=4 , UpperCamelCase__=None , ) -> Dict: '''simple docstring''' A_ = parent A_ = batch_size A_ = seq_length A_ = is_training A_ = use_input_mask A_ = use_token_type_ids A_ = use_labels A_ = vocab_size A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = max_position_embeddings A_ = type_vocab_size A_ = type_sequence_label_size A_ = initializer_range A_ = num_labels A_ = num_choices A_ = scope def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ = None if self.use_input_mask: A_ = random_attention_mask([self.batch_size, self.seq_length] ) A_ = None A_ = None A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ = ids_tensor([self.batch_size] , self.num_choices ) A_ = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case_ ( self ) -> List[str]: '''simple docstring''' return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' A_ = DistilBertModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A_ = model(UpperCamelCase__ , UpperCamelCase__ ) A_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' A_ = DistilBertForMaskedLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Dict: '''simple docstring''' A_ = DistilBertForQuestionAnswering(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , start_positions=UpperCamelCase__ , end_positions=UpperCamelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' A_ = self.num_labels A_ = DistilBertForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Any: '''simple docstring''' A_ = self.num_labels A_ = DistilBertForTokenClassification(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' A_ = self.num_choices A_ = DistilBertForMultipleChoice(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case_ ( self ) -> Tuple: '''simple docstring''' A_ = self.prepare_config_and_inputs() ((A_) , (A_) , (A_) , (A_) , (A_) , (A_)) = config_and_inputs A_ = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class A__ ( _snake_case , _snake_case , unittest.TestCase ): lowercase = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) lowercase = ( { "feature-extraction": DistilBertModel, "fill-mask": DistilBertForMaskedLM, "question-answering": DistilBertForQuestionAnswering, "text-classification": DistilBertForSequenceClassification, "token-classification": DistilBertForTokenClassification, "zero-shot": DistilBertForSequenceClassification, } if is_torch_available() else {} ) lowercase = True lowercase = True lowercase = True lowercase = True def snake_case_ ( self ) -> Tuple: '''simple docstring''' A_ = DistilBertModelTester(self ) A_ = ConfigTester(self , config_class=UpperCamelCase__ , dim=37 ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() def snake_case_ ( self ) -> Tuple: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*UpperCamelCase__ ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*UpperCamelCase__ ) def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*UpperCamelCase__ ) def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*UpperCamelCase__ ) def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*UpperCamelCase__ ) def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*UpperCamelCase__ ) @slow def snake_case_ ( self ) -> Tuple: '''simple docstring''' for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ = DistilBertModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) @slow @require_torch_gpu def snake_case_ ( self ) -> str: '''simple docstring''' A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return A_ = True A_ = model_class(config=UpperCamelCase__ ) A_ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) A_ = torch.jit.trace( UpperCamelCase__ , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(UpperCamelCase__ , os.path.join(UpperCamelCase__ , """traced_model.pt""" ) ) A_ = torch.jit.load(os.path.join(UpperCamelCase__ , """traced_model.pt""" ) , map_location=UpperCamelCase__ ) loaded(inputs_dict["""input_ids"""].to(UpperCamelCase__ ) , inputs_dict["""attention_mask"""].to(UpperCamelCase__ ) ) @require_torch class A__ ( unittest.TestCase ): @slow def snake_case_ ( self ) -> int: '''simple docstring''' A_ = DistilBertModel.from_pretrained("""distilbert-base-uncased""" ) A_ = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) A_ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): A_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ )[0] A_ = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , UpperCamelCase__ ) A_ = torch.tensor( [[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , UpperCamelCase__ , atol=1e-4 ) )
288
0
"""simple docstring""" from __future__ import annotations def __UpperCamelCase ( SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if not nums: raise ValueError("List is empty" ) return sum(lowerCamelCase__ ) / len(lowerCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
710
"""simple docstring""" from __future__ import annotations from collections.abc import Callable def __UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 1_00 , ) -> float: """simple docstring""" __snake_case = x_start __snake_case = fnc(SCREAMING_SNAKE_CASE ) __snake_case = 0.0 for _ in range(SCREAMING_SNAKE_CASE ): # Approximates small segments of curve as linear and solve # for trapezoidal area __snake_case = (x_end - x_start) / steps + xa __snake_case = fnc(SCREAMING_SNAKE_CASE ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step __snake_case = xa __snake_case = fxa return area if __name__ == "__main__": def __UpperCamelCase ( SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" return x**3 + x**2 print("""f(x) = x^3 + x^2""") print("""The area between the curve, x = -5, x = 5 and the x axis is:""") _SCREAMING_SNAKE_CASE = 10 while i <= 100_000: print(F"""with {i} steps: {trapezoidal_area(f, -5, 5, i)}""") i *= 10
614
0