code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available a : int = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : int = ["""MLukeTokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys a : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
613
"""simple docstring""" from __future__ import annotations from math import pi def _lowerCamelCase( a , a , a ): if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if inductance < 0: raise ValueError("Inductance cannot be negative" ) if frequency < 0: raise ValueError("Frequency cannot be negative" ) if reactance < 0: raise ValueError("Inductive reactance cannot be negative" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
528
0
"""simple docstring""" import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers SCREAMING_SNAKE_CASE : Optional[Any] = 'python tqdm regex requests packaging filelock numpy tokenizers'.split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("""dataclasses""") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("""importlib_metadata""") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F'can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py') def lowercase ( _snake_case : Optional[int] , _snake_case : str=None ) ->int: """simple docstring""" require_version(deps[pkg] , _SCREAMING_SNAKE_CASE )
702
"""simple docstring""" import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def lowercase ( _snake_case : Optional[Any] ) ->Any: """simple docstring""" return x + 2 class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[str] = '''x = 3''' __snake_case : List[Any] = {} __snake_case : Tuple = evaluate(a_ , {} , state=a_ ) assert result == 3 self.assertDictEqual(a_ , {'''x''': 3} ) __snake_case : Tuple = '''x = y''' __snake_case : List[Any] = {'''y''': 5} __snake_case : Union[str, Any] = evaluate(a_ , {} , state=a_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(a_ , {'''x''': 5, '''y''': 5} ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = '''y = add_two(x)''' __snake_case : Any = {'''x''': 3} __snake_case : Dict = evaluate(a_ , {'''add_two''': add_two} , state=a_ ) assert result == 5 self.assertDictEqual(a_ , {'''x''': 3, '''y''': 5} ) # Won't work without the tool with CaptureStdout() as out: __snake_case : Union[str, Any] = evaluate(a_ , {} , state=a_ ) assert result is None assert "tried to execute add_two" in out.out def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = '''x = 3''' __snake_case : Union[str, Any] = {} __snake_case : int = evaluate(a_ , {} , state=a_ ) assert result == 3 self.assertDictEqual(a_ , {'''x''': 3} ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[str] = '''test_dict = {\'x\': x, \'y\': add_two(x)}''' __snake_case : int = {'''x''': 3} __snake_case : Optional[Any] = evaluate(a_ , {'''add_two''': add_two} , state=a_ ) self.assertDictEqual(a_ , {'''x''': 3, '''y''': 5} ) self.assertDictEqual(a_ , {'''x''': 3, '''test_dict''': {'''x''': 3, '''y''': 5}} ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = '''x = 3\ny = 5''' __snake_case : Any = {} __snake_case : Any = evaluate(a_ , {} , state=a_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(a_ , {'''x''': 3, '''y''': 5} ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = '''text = f\'This is x: {x}.\'''' __snake_case : int = {'''x''': 3} __snake_case : List[str] = evaluate(a_ , {} , state=a_ ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(a_ , {'''x''': 3, '''text''': '''This is x: 3.'''} ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = '''if x <= 3:\n y = 2\nelse:\n y = 5''' __snake_case : int = {'''x''': 3} __snake_case : Union[str, Any] = evaluate(a_ , {} , state=a_ ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(a_ , {'''x''': 3, '''y''': 2} ) __snake_case : Tuple = {'''x''': 8} __snake_case : Optional[Any] = evaluate(a_ , {} , state=a_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(a_ , {'''x''': 8, '''y''': 5} ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Tuple = '''test_list = [x, add_two(x)]''' __snake_case : Any = {'''x''': 3} __snake_case : str = evaluate(a_ , {'''add_two''': add_two} , state=a_ ) self.assertListEqual(a_ , [3, 5] ) self.assertDictEqual(a_ , {'''x''': 3, '''test_list''': [3, 5]} ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = '''y = x''' __snake_case : List[Any] = {'''x''': 3} __snake_case : List[str] = evaluate(a_ , {} , state=a_ ) assert result == 3 self.assertDictEqual(a_ , {'''x''': 3, '''y''': 3} ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[str] = '''test_list = [x, add_two(x)]\ntest_list[1]''' __snake_case : Tuple = {'''x''': 3} __snake_case : Dict = evaluate(a_ , {'''add_two''': add_two} , state=a_ ) assert result == 5 self.assertDictEqual(a_ , {'''x''': 3, '''test_list''': [3, 5]} ) __snake_case : int = '''test_dict = {\'x\': x, \'y\': add_two(x)}\ntest_dict[\'y\']''' __snake_case : str = {'''x''': 3} __snake_case : Union[str, Any] = evaluate(a_ , {'''add_two''': add_two} , state=a_ ) assert result == 5 self.assertDictEqual(a_ , {'''x''': 3, '''test_dict''': {'''x''': 3, '''y''': 5}} ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[str] = '''x = 0\nfor i in range(3):\n x = i''' __snake_case : List[Any] = {} __snake_case : Optional[int] = evaluate(a_ , {'''range''': range} , state=a_ ) assert result == 2 self.assertDictEqual(a_ , {'''x''': 2, '''i''': 2} )
229
0
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING lowercase : List[Any] = logging.get_logger(__name__) @add_end_docstrings(__lowercase) class lowerCamelCase__ ( __lowercase): '''simple docstring''' def __init__( self :Any , *a :List[str] , **a :Optional[Any] ) -> List[str]: super().__init__(*a , **a ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def _lowerCamelCase ( self :Union[str, Any] , a :Union[str, Any]=None ) -> Dict: __UpperCamelCase : Any = {} if top_k is not None: __UpperCamelCase : Dict = top_k return {}, {}, postprocess_params def __call__( self :str , a :Union[str, List[str], "Image.Image", List["Image.Image"]] , **a :Any ) -> Any: return super().__call__(a , **a ) def _lowerCamelCase ( self :Tuple , a :str ) -> List[str]: __UpperCamelCase : List[str] = load_image(a ) __UpperCamelCase : Optional[Any] = self.image_processor(images=a , return_tensors=self.framework ) return model_inputs def _lowerCamelCase ( self :Union[str, Any] , a :Optional[Any] ) -> Union[str, Any]: __UpperCamelCase : int = self.model(**a ) return model_outputs def _lowerCamelCase ( self :Any , a :List[str] , a :Tuple=5 ) -> Optional[Any]: if top_k > self.model.config.num_labels: __UpperCamelCase : str = self.model.config.num_labels if self.framework == "pt": __UpperCamelCase : Optional[Any] = model_outputs.logits.softmax(-1 )[0] __UpperCamelCase , __UpperCamelCase : int = probs.topk(a ) elif self.framework == "tf": __UpperCamelCase : Optional[Any] = stable_softmax(model_outputs.logits , axis=-1 )[0] __UpperCamelCase : List[Any] = tf.math.top_k(a , k=a ) __UpperCamelCase , __UpperCamelCase : List[Any] = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f'Unsupported framework: {self.framework}' ) __UpperCamelCase : Any = scores.tolist() __UpperCamelCase : Optional[int] = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(a , a )]
557
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase : int = { 'configuration_conditional_detr': [ 'CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConditionalDetrConfig', 'ConditionalDetrOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : List[str] = ['ConditionalDetrFeatureExtractor'] lowercase : int = ['ConditionalDetrImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[int] = [ 'CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConditionalDetrForObjectDetection', 'ConditionalDetrForSegmentation', 'ConditionalDetrModel', 'ConditionalDetrPreTrainedModel', ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys lowercase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
557
1
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __UpperCamelCase ( lowercase_ , unittest.TestCase ): '''simple docstring''' __a : Any =CLIPTokenizer __a : str =CLIPTokenizerFast __a : int =True __a : Tuple ={} __a : Any =False def __snake_case ( self ): super().setUp() # fmt: off lowerCAmelCase = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on lowerCAmelCase = dict(zip(lowerCamelCase_ , range(len(lowerCamelCase_ ) ) ) ) lowerCAmelCase = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>"""] lowerCAmelCase = {"""unk_token""": """<unk>"""} lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowerCamelCase_ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowerCamelCase_ ) ) def __snake_case ( self , **UpperCAmelCase_ ): kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase_ ) def __snake_case ( self , **UpperCAmelCase_ ): kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **lowerCamelCase_ ) def __snake_case ( self , UpperCAmelCase_ ): lowerCAmelCase = """lower newer""" lowerCAmelCase = """lower newer""" return input_text, output_text def __snake_case ( self ): lowerCAmelCase = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowerCAmelCase = """lower newer""" lowerCAmelCase = ["""lo""", """w""", """er</w>""", """n""", """e""", """w""", """er</w>"""] lowerCAmelCase = tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase = tokens + [tokenizer.unk_token] lowerCAmelCase = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , lowerCamelCase_ ) @require_ftfy def __snake_case ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCAmelCase = self.tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) lowerCAmelCase = """A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d.""" lowerCAmelCase = tokenizer_s.tokenize(lowerCamelCase_ ) lowerCAmelCase = tokenizer_r.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways lowerCAmelCase = """xa\u0303y""" + """ """ + """x\xe3y""" lowerCAmelCase = tokenizer_s.tokenize(lowerCamelCase_ ) lowerCAmelCase = tokenizer_r.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) # Test that the tokenization is identical on unicode of space type lowerCAmelCase = [ """\u0009""", # (horizontal tab, '\t') """\u000B""", # (vertical tab) """\u000C""", # (form feed) """\u0020""", # (space, ' ') """\u200E""", # (left-to-right mark):w """\u200F""", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: lowerCAmelCase = tokenizer_s.tokenize(lowerCamelCase_ ) lowerCAmelCase = tokenizer_r.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) # Test that the tokenization is identical on unicode of line break type lowerCAmelCase = [ """\u000A""", # (line feed, '\n') """\r\n""", # (carriage return and line feed, '\r\n') """\u000D""", # (carriage return, '\r') """\r""", # (carriage return, '\r') """\u000D""", # (carriage return, '\r') """\u2028""", # (line separator) """\u2029""", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: lowerCAmelCase = tokenizer_s.tokenize(lowerCamelCase_ ) lowerCAmelCase = tokenizer_r.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) def __snake_case ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCAmelCase = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` lowerCAmelCase = F"""{text_of_1_token} {text_of_1_token}""" lowerCAmelCase = self.rust_tokenizer_class.from_pretrained( lowerCamelCase_ , use_fast=lowerCamelCase_ , ) lowerCAmelCase = tokenizer_r(lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCamelCase_ ) + 1, len(lowerCamelCase_ ) + 1 + len(lowerCamelCase_ )) , ) lowerCAmelCase = F""" {text}""" lowerCAmelCase = self.rust_tokenizer_class.from_pretrained( lowerCamelCase_ , use_fast=lowerCamelCase_ , ) lowerCAmelCase = tokenizer_r(lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowerCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCamelCase_ ) + 1, 1 + len(lowerCamelCase_ ) + 1 + len(lowerCamelCase_ )) , ) def __snake_case ( self ): with self.assertRaises(lowerCamelCase_ ) as context: self.rust_tokenizer_class.from_pretrained('''robot-test/old-clip-tokenizer''' ) self.assertTrue( context.exception.args[0].startswith( '''The `backend_tokenizer` provided does not match the expected format.''' ) ) @require_ftfy def __snake_case ( self ): super().test_tokenization_python_rust_equals() def __snake_case ( self ): pass
712
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCAmelCase_ =logging.get_logger(__name__) class __UpperCamelCase ( __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __a : Optional[Any] ="""maskformer-swin""" __a : Optional[int] ={ """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self , UpperCAmelCase_=2_24 , UpperCAmelCase_=4 , UpperCAmelCase_=3 , UpperCAmelCase_=96 , UpperCAmelCase_=[2, 2, 6, 2] , UpperCAmelCase_=[3, 6, 12, 24] , UpperCAmelCase_=7 , UpperCAmelCase_=4.0 , UpperCAmelCase_=True , UpperCAmelCase_=0.0 , UpperCAmelCase_=0.0 , UpperCAmelCase_=0.1 , UpperCAmelCase_="gelu" , UpperCAmelCase_=False , UpperCAmelCase_=0.02 , UpperCAmelCase_=1E-5 , UpperCAmelCase_=None , UpperCAmelCase_=None , **UpperCAmelCase_ , ): super().__init__(**UpperCAmelCase_ ) lowerCAmelCase = image_size lowerCAmelCase = patch_size lowerCAmelCase = num_channels lowerCAmelCase = embed_dim lowerCAmelCase = depths lowerCAmelCase = len(UpperCAmelCase_ ) lowerCAmelCase = num_heads lowerCAmelCase = window_size lowerCAmelCase = mlp_ratio lowerCAmelCase = qkv_bias lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = drop_path_rate lowerCAmelCase = hidden_act lowerCAmelCase = use_absolute_embeddings lowerCAmelCase = layer_norm_eps lowerCAmelCase = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase = int(embed_dim * 2 ** (len(UpperCAmelCase_ ) - 1) ) lowerCAmelCase = ['''stem'''] + [F"""stage{idx}""" for idx in range(1 , len(UpperCAmelCase_ ) + 1 )] lowerCAmelCase , lowerCAmelCase = get_aligned_output_features_output_indices( out_features=UpperCAmelCase_ , out_indices=UpperCAmelCase_ , stage_names=self.stage_names )
33
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase : Dict = {"""configuration_focalnet""": ["""FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FocalNetConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[Any] = [ """FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """FocalNetForImageClassification""", """FocalNetForMaskedImageModeling""", """FocalNetBackbone""", """FocalNetModel""", """FocalNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys lowercase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
302
"""simple docstring""" def __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" return 10 - x * x def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" if equation(UpperCamelCase__ ) * equation(UpperCamelCase__ ) >= 0: raise ValueError("Wrong space!" ) _UpperCAmelCase = a while (b - a) >= 0.01: # Find middle point _UpperCAmelCase = (a + b) / 2 # Check if middle point is root if equation(UpperCamelCase__ ) == 0.0: break # Decide the side to repeat the steps if equation(UpperCamelCase__ ) * equation(UpperCamelCase__ ) < 0: _UpperCAmelCase = c else: _UpperCAmelCase = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
657
0
import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger SCREAMING_SNAKE_CASE__ = get_logger(__name__) SCREAMING_SNAKE_CASE__ = Path(__file__).parent / """model_card_template.md""" SCREAMING_SNAKE_CASE__ = uuida().hex SCREAMING_SNAKE_CASE__ = os.getenv("""HF_HUB_OFFLINE""", """""").upper() in ENV_VARS_TRUE_VALUES SCREAMING_SNAKE_CASE__ = os.getenv("""DISABLE_TELEMETRY""", """""").upper() in ENV_VARS_TRUE_VALUES SCREAMING_SNAKE_CASE__ = HUGGINGFACE_CO_RESOLVE_ENDPOINT + """/api/telemetry/""" def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Union[Dict, str, None] = None ): '''simple docstring''' lowercase_ = F'diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}' if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += F'; torch/{_torch_version}' if is_flax_available(): ua += F'; jax/{_jax_version}' ua += F'; flax/{_flax_version}' if is_onnx_available(): ua += F'; onnxruntime/{_onnxruntime_version}' # CI will set this value to True if os.environ.get("DIFFUSERS_IS_CI" , "" ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(__lowerCamelCase , __lowerCamelCase ): ua += "; " + "; ".join(F'{k}/{v}' for k, v in user_agent.items() ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): ua += "; " + user_agent return ua def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: str , __lowerCamelCase: Optional[str] = None , __lowerCamelCase: Optional[str] = None ): '''simple docstring''' if token is None: lowercase_ = HfFolder.get_token() if organization is None: lowercase_ = whoami(__lowerCamelCase )["name"] return F'{username}/{model_id}' else: return F'{organization}/{model_id}' def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] , __lowerCamelCase: Any ): '''simple docstring''' if not is_jinja_available(): raise ValueError( "Modelcard rendering is based on Jinja templates." " Please make sure to have `jinja` installed before using `create_model_card`." " To install it, please run `pip install Jinja2`." ) if hasattr(__lowerCamelCase , "local_rank" ) and args.local_rank not in [-1, 0]: return lowercase_ = args.hub_token if hasattr(__lowerCamelCase , "hub_token" ) else None lowercase_ = get_full_repo_name(__lowerCamelCase , token=__lowerCamelCase ) lowercase_ = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language="en" , license="apache-2.0" , library_name="diffusers" , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=__lowerCamelCase , model_name=__lowerCamelCase , repo_name=__lowerCamelCase , dataset_name=args.dataset_name if hasattr(__lowerCamelCase , "dataset_name" ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(__lowerCamelCase , "gradient_accumulation_steps" ) else None ) , adam_betaa=args.adam_betaa if hasattr(__lowerCamelCase , "adam_beta1" ) else None , adam_betaa=args.adam_betaa if hasattr(__lowerCamelCase , "adam_beta2" ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(__lowerCamelCase , "adam_weight_decay" ) else None , adam_epsilon=args.adam_epsilon if hasattr(__lowerCamelCase , "adam_epsilon" ) else None , lr_scheduler=args.lr_scheduler if hasattr(__lowerCamelCase , "lr_scheduler" ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(__lowerCamelCase , "lr_warmup_steps" ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(__lowerCamelCase , "ema_inv_gamma" ) else None , ema_power=args.ema_power if hasattr(__lowerCamelCase , "ema_power" ) else None , ema_max_decay=args.ema_max_decay if hasattr(__lowerCamelCase , "ema_max_decay" ) else None , mixed_precision=args.mixed_precision , ) lowercase_ = os.path.join(args.output_dir , "README.md" ) model_card.save(__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[str] , __lowerCamelCase: Optional[str] = None ): '''simple docstring''' if resolved_file is None or commit_hash is not None: return commit_hash lowercase_ = str(Path(__lowerCamelCase ).as_posix() ) lowercase_ = re.search(r"snapshots/([^/]+)/" , __lowerCamelCase ) if search is None: return None lowercase_ = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(__lowerCamelCase ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. SCREAMING_SNAKE_CASE__ = os.path.expanduser( os.getenv("""HF_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """huggingface""")) ) SCREAMING_SNAKE_CASE__ = os.path.join(hf_cache_home, """diffusers""") def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[str] = None , __lowerCamelCase: Optional[str] = None ): '''simple docstring''' if new_cache_dir is None: lowercase_ = DIFFUSERS_CACHE if old_cache_dir is None: lowercase_ = old_diffusers_cache lowercase_ = Path(__lowerCamelCase ).expanduser() lowercase_ = Path(__lowerCamelCase ).expanduser() for old_blob_path in old_cache_dir.glob("**/blobs/*" ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): lowercase_ = new_cache_dir / old_blob_path.relative_to(__lowerCamelCase ) new_blob_path.parent.mkdir(parents=__lowerCamelCase , exist_ok=__lowerCamelCase ) os.replace(__lowerCamelCase , __lowerCamelCase ) try: os.symlink(__lowerCamelCase , __lowerCamelCase ) except OSError: logger.warning( "Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded." ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). SCREAMING_SNAKE_CASE__ = os.path.join(DIFFUSERS_CACHE, """version_diffusers_cache.txt""") if not os.path.isfile(cache_version_file): SCREAMING_SNAKE_CASE__ = 0 else: with open(cache_version_file) as f: try: SCREAMING_SNAKE_CASE__ = int(f.read()) except ValueError: SCREAMING_SNAKE_CASE__ = 0 if cache_version < 1: SCREAMING_SNAKE_CASE__ = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( """The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your """ """existing cached models. This is a one-time operation, you can interrupt it or run it """ """later by calling `diffusers.utils.hub_utils.move_cache()`.""" ) try: move_cache() except Exception as e: SCREAMING_SNAKE_CASE__ = """\n""".join(traceback.format_tb(e.__traceback__)) logger.error( f"""There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease """ """file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole """ """message and we will do our best to help.""" ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, """w""") as f: f.write("""1""") except Exception: logger.warning( f"""There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure """ """the directory exists and can be written to.""" ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: str , __lowerCamelCase: Optional[str] = None ): '''simple docstring''' if variant is not None: lowercase_ = weights_name.split("." ) lowercase_ = splits[:-1] + [variant] + splits[-1:] lowercase_ = ".".join(__lowerCamelCase ) return weights_name def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Union[str, Any] , *, __lowerCamelCase: Dict , __lowerCamelCase: Dict , __lowerCamelCase: List[Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: List[Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Any , __lowerCamelCase: Any , __lowerCamelCase: List[str] , __lowerCamelCase: int , __lowerCamelCase: List[Any]=None , ): '''simple docstring''' lowercase_ = str(__lowerCamelCase ) if os.path.isfile(__lowerCamelCase ): return pretrained_model_name_or_path elif os.path.isdir(__lowerCamelCase ): if os.path.isfile(os.path.join(__lowerCamelCase , __lowerCamelCase ) ): # Load from a PyTorch checkpoint lowercase_ = os.path.join(__lowerCamelCase , __lowerCamelCase ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) ): lowercase_ = os.path.join(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return model_file else: raise EnvironmentError( F'Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.' ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(__lowerCamelCase ).base_version ) >= version.parse("0.20.0" ) ): try: lowercase_ = hf_hub_download( __lowerCamelCase , filename=_add_variant(__lowerCamelCase , __lowerCamelCase ) , cache_dir=__lowerCamelCase , force_download=__lowerCamelCase , proxies=__lowerCamelCase , resume_download=__lowerCamelCase , local_files_only=__lowerCamelCase , use_auth_token=__lowerCamelCase , user_agent=__lowerCamelCase , subfolder=__lowerCamelCase , revision=revision or commit_hash , ) warnings.warn( F'Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.' , __lowerCamelCase , ) return model_file except: # noqa: E722 warnings.warn( F'You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(__lowerCamelCase , __lowerCamelCase )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(__lowerCamelCase , __lowerCamelCase )}\' so that the correct variant file can be added.' , __lowerCamelCase , ) try: # 2. Load model file as usual lowercase_ = hf_hub_download( __lowerCamelCase , filename=__lowerCamelCase , cache_dir=__lowerCamelCase , force_download=__lowerCamelCase , proxies=__lowerCamelCase , resume_download=__lowerCamelCase , local_files_only=__lowerCamelCase , use_auth_token=__lowerCamelCase , user_agent=__lowerCamelCase , subfolder=__lowerCamelCase , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( F'{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier ' "listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a " "token having permission to this repo with `use_auth_token` or log in with `huggingface-cli " "login`." ) except RevisionNotFoundError: raise EnvironmentError( F'{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for ' "this model name. Check the model page at " F'\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.' ) except EntryNotFoundError: raise EnvironmentError( F'{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.' ) except HTTPError as err: raise EnvironmentError( F'There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}' ) except ValueError: raise EnvironmentError( F'We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it' F' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a' F' directory containing a file named {weights_name} or' " \nCheckout your internet connection or see how to run the library in" " offline mode at 'https://huggingface.co/docs/diffusers/installation#offline-mode'." ) except EnvironmentError: raise EnvironmentError( F'Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from ' "'https://huggingface.co/models', make sure you don't have a local directory with the same name. " F'Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory ' F'containing a file named {weights_name}' )
601
from math import sqrt def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int ): '''simple docstring''' lowercase_ = 0 for i in range(1 , int(sqrt(__lowerCamelCase ) + 1 ) ): if n % i == 0 and i != sqrt(__lowerCamelCase ): total += i + n // i elif i == sqrt(__lowerCamelCase ): total += i return total - n def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int = 1_0000 ): '''simple docstring''' lowercase_ = sum( i for i in range(1 , __lowerCamelCase ) if sum_of_divisors(sum_of_divisors(__lowerCamelCase ) ) == i and sum_of_divisors(__lowerCamelCase ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
601
1
'''simple docstring''' import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class UpperCAmelCase ( unittest.TestCase ): UpperCAmelCase = MODEL_FOR_MASKED_LM_MAPPING UpperCAmelCase = TF_MODEL_FOR_MASKED_LM_MAPPING def __SCREAMING_SNAKE_CASE ( self : Tuple ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def __SCREAMING_SNAKE_CASE ( self : Any ): UpperCAmelCase__ :Optional[Any] = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , top_k=2 , framework='''tf''' ) UpperCAmelCase__ :Optional[Any] = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=6 ) , [ {'''sequence''': '''My name is grouped''', '''score''': 2.1e-05, '''token''': 3_8_0_1_5, '''token_str''': ''' grouped'''}, {'''sequence''': '''My name is accuser''', '''score''': 2.1e-05, '''token''': 2_5_5_0_6, '''token_str''': ''' accuser'''}, ] , ) UpperCAmelCase__ :Optional[Any] = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=6 ) , [ { '''sequence''': '''The largest city in France is grouped''', '''score''': 2.1e-05, '''token''': 3_8_0_1_5, '''token_str''': ''' grouped''', }, { '''sequence''': '''The largest city in France is accuser''', '''score''': 2.1e-05, '''token''': 2_5_5_0_6, '''token_str''': ''' accuser''', }, ] , ) UpperCAmelCase__ :Tuple = unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=6 ) , [ {'''sequence''': '''My name is Clara''', '''score''': 2e-05, '''token''': 1_3_6_0_6, '''token_str''': ''' Clara'''}, {'''sequence''': '''My name is Patrick''', '''score''': 2e-05, '''token''': 3_4_9_9, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Te''', '''score''': 1.9e-05, '''token''': 2_9_4_1, '''token_str''': ''' Te'''}, ] , ) @require_torch def __SCREAMING_SNAKE_CASE ( self : Dict ): UpperCAmelCase__ :Dict = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , top_k=2 , framework='''pt''' ) UpperCAmelCase__ :str = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=6 ) , [ {'''sequence''': '''My name is Maul''', '''score''': 2.2e-05, '''token''': 3_5_6_7_6, '''token_str''': ''' Maul'''}, {'''sequence''': '''My name isELS''', '''score''': 2.2e-05, '''token''': 1_6_4_1_6, '''token_str''': '''ELS'''}, ] , ) UpperCAmelCase__ :Tuple = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=6 ) , [ { '''sequence''': '''The largest city in France is Maul''', '''score''': 2.2e-05, '''token''': 3_5_6_7_6, '''token_str''': ''' Maul''', }, {'''sequence''': '''The largest city in France isELS''', '''score''': 2.2e-05, '''token''': 1_6_4_1_6, '''token_str''': '''ELS'''}, ] , ) UpperCAmelCase__ :Dict = unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=6 ) , [ {'''sequence''': '''My name is Patrick''', '''score''': 2.1e-05, '''token''': 3_4_9_9, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Te''', '''score''': 2e-05, '''token''': 2_9_4_1, '''token_str''': ''' Te'''}, {'''sequence''': '''My name is Clara''', '''score''': 2e-05, '''token''': 1_3_6_0_6, '''token_str''': ''' Clara'''}, ] , ) UpperCAmelCase__ :Tuple = unmasker('''My name is <mask> <mask>''' , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=6 ) , [ [ { '''score''': 2.2e-05, '''token''': 3_5_6_7_6, '''token_str''': ''' Maul''', '''sequence''': '''<s>My name is Maul<mask></s>''', }, {'''score''': 2.2e-05, '''token''': 1_6_4_1_6, '''token_str''': '''ELS''', '''sequence''': '''<s>My name isELS<mask></s>'''}, ], [ { '''score''': 2.2e-05, '''token''': 3_5_6_7_6, '''token_str''': ''' Maul''', '''sequence''': '''<s>My name is<mask> Maul</s>''', }, {'''score''': 2.2e-05, '''token''': 1_6_4_1_6, '''token_str''': '''ELS''', '''sequence''': '''<s>My name is<mask>ELS</s>'''}, ], ] , ) @require_torch_gpu def __SCREAMING_SNAKE_CASE ( self : List[Any] ): UpperCAmelCase__ :Any = pipeline('''fill-mask''' , model='''hf-internal-testing/tiny-random-distilbert''' , device=0 , framework='''pt''' ) # convert model to fp16 pipe.model.half() UpperCAmelCase__ :List[Any] = pipe('''Paris is the [MASK] of France.''' ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) @slow @require_torch def __SCREAMING_SNAKE_CASE ( self : Tuple ): UpperCAmelCase__ :Tuple = pipeline(task='''fill-mask''' , model='''distilroberta-base''' , top_k=2 , framework='''pt''' ) self.run_large_test(__lowerCamelCase ) @slow @require_tf def __SCREAMING_SNAKE_CASE ( self : Dict ): UpperCAmelCase__ :Tuple = pipeline(task='''fill-mask''' , model='''distilroberta-base''' , top_k=2 , framework='''tf''' ) self.run_large_test(__lowerCamelCase ) def __SCREAMING_SNAKE_CASE ( self : str , __lowerCamelCase : Optional[Any] ): UpperCAmelCase__ :List[str] = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [ {'''sequence''': '''My name is John''', '''score''': 0.0_08, '''token''': 6_1_0, '''token_str''': ''' John'''}, {'''sequence''': '''My name is Chris''', '''score''': 0.0_07, '''token''': 1_5_7_3, '''token_str''': ''' Chris'''}, ] , ) UpperCAmelCase__ :Dict = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [ { '''sequence''': '''The largest city in France is Paris''', '''score''': 0.2_51, '''token''': 2_2_0_1, '''token_str''': ''' Paris''', }, { '''sequence''': '''The largest city in France is Lyon''', '''score''': 0.2_14, '''token''': 1_2_7_9_0, '''token_str''': ''' Lyon''', }, ] , ) UpperCAmelCase__ :Union[str, Any] = unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [ {'''sequence''': '''My name is Patrick''', '''score''': 0.0_05, '''token''': 3_4_9_9, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Clara''', '''score''': 0.0_00, '''token''': 1_3_6_0_6, '''token_str''': ''' Clara'''}, {'''sequence''': '''My name is Te''', '''score''': 0.0_00, '''token''': 2_9_4_1, '''token_str''': ''' Te'''}, ] , ) @require_torch def __SCREAMING_SNAKE_CASE ( self : int ): UpperCAmelCase__ :Tuple = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , framework='''pt''' ) UpperCAmelCase__ :Optional[Any] = None UpperCAmelCase__ :Dict = None self.run_pipeline_test(__lowerCamelCase , [] ) @require_tf def __SCREAMING_SNAKE_CASE ( self : Any ): UpperCAmelCase__ :Tuple = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , framework='''tf''' ) UpperCAmelCase__ :Optional[int] = None UpperCAmelCase__ :Optional[int] = None self.run_pipeline_test(__lowerCamelCase , [] ) def __SCREAMING_SNAKE_CASE ( self : Dict , __lowerCamelCase : Optional[int] , __lowerCamelCase : Dict , __lowerCamelCase : int ): if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest('''The provided tokenizer has no mask token, (probably reformer or wav2vec2)''' ) UpperCAmelCase__ :int = FillMaskPipeline(model=__lowerCamelCase , tokenizer=__lowerCamelCase ) UpperCAmelCase__ :Any = [ f'''This is another {tokenizer.mask_token} test''', ] return fill_masker, examples def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __lowerCamelCase : int , __lowerCamelCase : Tuple ): UpperCAmelCase__ :List[str] = fill_masker.tokenizer UpperCAmelCase__ :str = fill_masker.model UpperCAmelCase__ :List[str] = fill_masker( f'''This is a {tokenizer.mask_token}''' , ) self.assertEqual( __lowerCamelCase , [ {'''sequence''': ANY(__lowerCamelCase ), '''score''': ANY(__lowerCamelCase ), '''token''': ANY(__lowerCamelCase ), '''token_str''': ANY(__lowerCamelCase )}, {'''sequence''': ANY(__lowerCamelCase ), '''score''': ANY(__lowerCamelCase ), '''token''': ANY(__lowerCamelCase ), '''token_str''': ANY(__lowerCamelCase )}, {'''sequence''': ANY(__lowerCamelCase ), '''score''': ANY(__lowerCamelCase ), '''token''': ANY(__lowerCamelCase ), '''token_str''': ANY(__lowerCamelCase )}, {'''sequence''': ANY(__lowerCamelCase ), '''score''': ANY(__lowerCamelCase ), '''token''': ANY(__lowerCamelCase ), '''token_str''': ANY(__lowerCamelCase )}, {'''sequence''': ANY(__lowerCamelCase ), '''score''': ANY(__lowerCamelCase ), '''token''': ANY(__lowerCamelCase ), '''token_str''': ANY(__lowerCamelCase )}, ] , ) UpperCAmelCase__ :List[Any] = fill_masker([f'''This is a {tokenizer.mask_token}'''] ) self.assertEqual( __lowerCamelCase , [ {'''sequence''': ANY(__lowerCamelCase ), '''score''': ANY(__lowerCamelCase ), '''token''': ANY(__lowerCamelCase ), '''token_str''': ANY(__lowerCamelCase )}, {'''sequence''': ANY(__lowerCamelCase ), '''score''': ANY(__lowerCamelCase ), '''token''': ANY(__lowerCamelCase ), '''token_str''': ANY(__lowerCamelCase )}, {'''sequence''': ANY(__lowerCamelCase ), '''score''': ANY(__lowerCamelCase ), '''token''': ANY(__lowerCamelCase ), '''token_str''': ANY(__lowerCamelCase )}, {'''sequence''': ANY(__lowerCamelCase ), '''score''': ANY(__lowerCamelCase ), '''token''': ANY(__lowerCamelCase ), '''token_str''': ANY(__lowerCamelCase )}, {'''sequence''': ANY(__lowerCamelCase ), '''score''': ANY(__lowerCamelCase ), '''token''': ANY(__lowerCamelCase ), '''token_str''': ANY(__lowerCamelCase )}, ] , ) UpperCAmelCase__ :List[Any] = fill_masker([f'''This is a {tokenizer.mask_token}''', f'''Another {tokenizer.mask_token} great test.'''] ) self.assertEqual( __lowerCamelCase , [ [ {'''sequence''': ANY(__lowerCamelCase ), '''score''': ANY(__lowerCamelCase ), '''token''': ANY(__lowerCamelCase ), '''token_str''': ANY(__lowerCamelCase )}, {'''sequence''': ANY(__lowerCamelCase ), '''score''': ANY(__lowerCamelCase ), '''token''': ANY(__lowerCamelCase ), '''token_str''': ANY(__lowerCamelCase )}, {'''sequence''': ANY(__lowerCamelCase ), '''score''': ANY(__lowerCamelCase ), '''token''': ANY(__lowerCamelCase ), '''token_str''': ANY(__lowerCamelCase )}, {'''sequence''': ANY(__lowerCamelCase ), '''score''': ANY(__lowerCamelCase ), '''token''': ANY(__lowerCamelCase ), '''token_str''': ANY(__lowerCamelCase )}, {'''sequence''': ANY(__lowerCamelCase ), '''score''': ANY(__lowerCamelCase ), '''token''': ANY(__lowerCamelCase ), '''token_str''': ANY(__lowerCamelCase )}, ], [ {'''sequence''': ANY(__lowerCamelCase ), '''score''': ANY(__lowerCamelCase ), '''token''': ANY(__lowerCamelCase ), '''token_str''': ANY(__lowerCamelCase )}, {'''sequence''': ANY(__lowerCamelCase ), '''score''': ANY(__lowerCamelCase ), '''token''': ANY(__lowerCamelCase ), '''token_str''': ANY(__lowerCamelCase )}, {'''sequence''': ANY(__lowerCamelCase ), '''score''': ANY(__lowerCamelCase ), '''token''': ANY(__lowerCamelCase ), '''token_str''': ANY(__lowerCamelCase )}, {'''sequence''': ANY(__lowerCamelCase ), '''score''': ANY(__lowerCamelCase ), '''token''': ANY(__lowerCamelCase ), '''token_str''': ANY(__lowerCamelCase )}, {'''sequence''': ANY(__lowerCamelCase ), '''score''': ANY(__lowerCamelCase ), '''token''': ANY(__lowerCamelCase ), '''token_str''': ANY(__lowerCamelCase )}, ], ] , ) with self.assertRaises(__lowerCamelCase ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(__lowerCamelCase ): fill_masker('''This is''' ) self.run_test_top_k(__lowerCamelCase , __lowerCamelCase ) self.run_test_targets(__lowerCamelCase , __lowerCamelCase ) self.run_test_top_k_targets(__lowerCamelCase , __lowerCamelCase ) self.fill_mask_with_duplicate_targets_and_top_k(__lowerCamelCase , __lowerCamelCase ) self.fill_mask_with_multiple_masks(__lowerCamelCase , __lowerCamelCase ) def __SCREAMING_SNAKE_CASE ( self : int , __lowerCamelCase : List[str] , __lowerCamelCase : Tuple ): UpperCAmelCase__ :List[Any] = tokenizer.get_vocab() UpperCAmelCase__ :Optional[int] = sorted(vocab.keys() )[:2] # Pipeline argument UpperCAmelCase__ :Optional[Any] = FillMaskPipeline(model=__lowerCamelCase , tokenizer=__lowerCamelCase , targets=__lowerCamelCase ) UpperCAmelCase__ :Any = fill_masker(f'''This is a {tokenizer.mask_token}''' ) self.assertEqual( __lowerCamelCase , [ {'''sequence''': ANY(__lowerCamelCase ), '''score''': ANY(__lowerCamelCase ), '''token''': ANY(__lowerCamelCase ), '''token_str''': ANY(__lowerCamelCase )}, {'''sequence''': ANY(__lowerCamelCase ), '''score''': ANY(__lowerCamelCase ), '''token''': ANY(__lowerCamelCase ), '''token_str''': ANY(__lowerCamelCase )}, ] , ) UpperCAmelCase__ :List[str] = {vocab[el] for el in targets} self.assertEqual({el['''token'''] for el in outputs} , __lowerCamelCase ) UpperCAmelCase__ :Tuple = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['''token_str'''] for el in outputs} , set(__lowerCamelCase ) ) # Call argument UpperCAmelCase__ :Any = FillMaskPipeline(model=__lowerCamelCase , tokenizer=__lowerCamelCase ) UpperCAmelCase__ :Optional[int] = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=__lowerCamelCase ) self.assertEqual( __lowerCamelCase , [ {'''sequence''': ANY(__lowerCamelCase ), '''score''': ANY(__lowerCamelCase ), '''token''': ANY(__lowerCamelCase ), '''token_str''': ANY(__lowerCamelCase )}, {'''sequence''': ANY(__lowerCamelCase ), '''score''': ANY(__lowerCamelCase ), '''token''': ANY(__lowerCamelCase ), '''token_str''': ANY(__lowerCamelCase )}, ] , ) UpperCAmelCase__ :Union[str, Any] = {vocab[el] for el in targets} self.assertEqual({el['''token'''] for el in outputs} , __lowerCamelCase ) UpperCAmelCase__ :List[Any] = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['''token_str'''] for el in outputs} , set(__lowerCamelCase ) ) # Score equivalence UpperCAmelCase__ :str = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=__lowerCamelCase ) UpperCAmelCase__ :str = [top_mask['''token_str'''] for top_mask in outputs] UpperCAmelCase__ :List[str] = [top_mask['''score'''] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(__lowerCamelCase ) == set(__lowerCamelCase ): UpperCAmelCase__ :Union[str, Any] = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=__lowerCamelCase ) UpperCAmelCase__ :int = [top_mask['''score'''] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(__lowerCamelCase ) , nested_simplify(__lowerCamelCase ) ) # Raises with invalid with self.assertRaises(__lowerCamelCase ): UpperCAmelCase__ :Optional[int] = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(__lowerCamelCase ): UpperCAmelCase__ :Any = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=[''''''] ) with self.assertRaises(__lowerCamelCase ): UpperCAmelCase__ :Union[str, Any] = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets='''''' ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any] ): UpperCAmelCase__ :str = FillMaskPipeline(model=__lowerCamelCase , tokenizer=__lowerCamelCase , top_k=2 ) UpperCAmelCase__ :Optional[Any] = fill_masker(f'''This is a {tokenizer.mask_token}''' ) self.assertEqual( __lowerCamelCase , [ {'''sequence''': ANY(__lowerCamelCase ), '''score''': ANY(__lowerCamelCase ), '''token''': ANY(__lowerCamelCase ), '''token_str''': ANY(__lowerCamelCase )}, {'''sequence''': ANY(__lowerCamelCase ), '''score''': ANY(__lowerCamelCase ), '''token''': ANY(__lowerCamelCase ), '''token_str''': ANY(__lowerCamelCase )}, ] , ) UpperCAmelCase__ :int = FillMaskPipeline(model=__lowerCamelCase , tokenizer=__lowerCamelCase ) UpperCAmelCase__ :Tuple = fill_masker(f'''This is a {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( __lowerCamelCase , [ {'''sequence''': ANY(__lowerCamelCase ), '''score''': ANY(__lowerCamelCase ), '''token''': ANY(__lowerCamelCase ), '''token_str''': ANY(__lowerCamelCase )}, {'''sequence''': ANY(__lowerCamelCase ), '''score''': ANY(__lowerCamelCase ), '''token''': ANY(__lowerCamelCase ), '''token_str''': ANY(__lowerCamelCase )}, ] , ) self.assertEqual(nested_simplify(__lowerCamelCase ) , nested_simplify(__lowerCamelCase ) ) def __SCREAMING_SNAKE_CASE ( self : List[str] , __lowerCamelCase : List[Any] , __lowerCamelCase : str ): UpperCAmelCase__ :Optional[int] = tokenizer.get_vocab() UpperCAmelCase__ :int = FillMaskPipeline(model=__lowerCamelCase , tokenizer=__lowerCamelCase ) # top_k=2, ntargets=3 UpperCAmelCase__ :List[Any] = sorted(vocab.keys() )[:3] UpperCAmelCase__ :List[str] = fill_masker(f'''This is a {tokenizer.mask_token}''' , top_k=2 , targets=__lowerCamelCase ) # If we use the most probably targets, and filter differently, we should still # have the same results UpperCAmelCase__ :Dict = [el['''token_str'''] for el in sorted(__lowerCamelCase , key=lambda __lowerCamelCase : x["score"] , reverse=__lowerCamelCase )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(__lowerCamelCase ).issubset(__lowerCamelCase ): UpperCAmelCase__ :int = fill_masker(f'''This is a {tokenizer.mask_token}''' , top_k=3 , targets=__lowerCamelCase ) # They should yield exactly the same result self.assertEqual(nested_simplify(__lowerCamelCase ) , nested_simplify(__lowerCamelCase ) ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] ): UpperCAmelCase__ :List[str] = FillMaskPipeline(model=__lowerCamelCase , tokenizer=__lowerCamelCase ) UpperCAmelCase__ :str = tokenizer.get_vocab() # String duplicates + id duplicates UpperCAmelCase__ :List[Any] = sorted(vocab.keys() )[:3] UpperCAmelCase__ :int = [targets[0], targets[1], targets[0], targets[2], targets[1]] UpperCAmelCase__ :int = fill_masker(f'''My name is {tokenizer.mask_token}''' , targets=__lowerCamelCase , top_k=1_0 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(__lowerCamelCase ) , 3 ) def __SCREAMING_SNAKE_CASE ( self : str , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] ): UpperCAmelCase__ :str = FillMaskPipeline(model=__lowerCamelCase , tokenizer=__lowerCamelCase ) UpperCAmelCase__ :str = fill_masker( f'''This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( __lowerCamelCase , [ [ {'''sequence''': ANY(__lowerCamelCase ), '''score''': ANY(__lowerCamelCase ), '''token''': ANY(__lowerCamelCase ), '''token_str''': ANY(__lowerCamelCase )}, {'''sequence''': ANY(__lowerCamelCase ), '''score''': ANY(__lowerCamelCase ), '''token''': ANY(__lowerCamelCase ), '''token_str''': ANY(__lowerCamelCase )}, ], [ {'''sequence''': ANY(__lowerCamelCase ), '''score''': ANY(__lowerCamelCase ), '''token''': ANY(__lowerCamelCase ), '''token_str''': ANY(__lowerCamelCase )}, {'''sequence''': ANY(__lowerCamelCase ), '''score''': ANY(__lowerCamelCase ), '''token''': ANY(__lowerCamelCase ), '''token_str''': ANY(__lowerCamelCase )}, ], [ {'''sequence''': ANY(__lowerCamelCase ), '''score''': ANY(__lowerCamelCase ), '''token''': ANY(__lowerCamelCase ), '''token_str''': ANY(__lowerCamelCase )}, {'''sequence''': ANY(__lowerCamelCase ), '''score''': ANY(__lowerCamelCase ), '''token''': ANY(__lowerCamelCase ), '''token_str''': ANY(__lowerCamelCase )}, ], ] , )
467
'''simple docstring''' import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { '''nvidia/segformer-b0-finetuned-ade-512-512''': ( '''https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json''' ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class UpperCAmelCase ( _snake_case ): UpperCAmelCase = "segformer" def __init__( self : Dict , __lowerCamelCase : Dict=3 , __lowerCamelCase : List[str]=4 , __lowerCamelCase : List[Any]=[2, 2, 2, 2] , __lowerCamelCase : List[str]=[8, 4, 2, 1] , __lowerCamelCase : Optional[Any]=[3_2, 6_4, 1_6_0, 2_5_6] , __lowerCamelCase : Tuple=[7, 3, 3, 3] , __lowerCamelCase : Tuple=[4, 2, 2, 2] , __lowerCamelCase : Any=[1, 2, 5, 8] , __lowerCamelCase : Optional[Any]=[4, 4, 4, 4] , __lowerCamelCase : Union[str, Any]="gelu" , __lowerCamelCase : Dict=0.0 , __lowerCamelCase : Union[str, Any]=0.0 , __lowerCamelCase : Tuple=0.1 , __lowerCamelCase : Optional[Any]=0.02 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : str=1e-6 , __lowerCamelCase : List[Any]=2_5_6 , __lowerCamelCase : int=2_5_5 , **__lowerCamelCase : str , ): super().__init__(**__lowerCamelCase ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( '''Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be''' ''' removed, as the behaviour will default to that of reshape_last_stage = True.''' , __lowerCamelCase , ) UpperCAmelCase__ :Dict = num_channels UpperCAmelCase__ :List[Any] = num_encoder_blocks UpperCAmelCase__ :List[str] = depths UpperCAmelCase__ :str = sr_ratios UpperCAmelCase__ :Optional[Any] = hidden_sizes UpperCAmelCase__ :List[str] = patch_sizes UpperCAmelCase__ :List[str] = strides UpperCAmelCase__ :List[str] = mlp_ratios UpperCAmelCase__ :Dict = num_attention_heads UpperCAmelCase__ :Tuple = hidden_act UpperCAmelCase__ :List[str] = hidden_dropout_prob UpperCAmelCase__ :List[Any] = attention_probs_dropout_prob UpperCAmelCase__ :int = classifier_dropout_prob UpperCAmelCase__ :str = initializer_range UpperCAmelCase__ :List[str] = drop_path_rate UpperCAmelCase__ :Dict = layer_norm_eps UpperCAmelCase__ :List[str] = decoder_hidden_size UpperCAmelCase__ :Optional[int] = kwargs.get('''reshape_last_stage''' , __lowerCamelCase ) UpperCAmelCase__ :str = semantic_loss_ignore_index class UpperCAmelCase ( _snake_case ): UpperCAmelCase = version.parse("1.11" ) @property def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): return 1e-4 @property def __SCREAMING_SNAKE_CASE ( self : List[str] ): return 1_2
467
1
'''simple docstring''' import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class _SCREAMING_SNAKE_CASE ( __a ): __SCREAMING_SNAKE_CASE :Any = (DDIMParallelScheduler,) __SCREAMING_SNAKE_CASE :Any = (("""eta""", 0.0), ("""num_inference_steps""", 50)) def snake_case__ ( self : int , **a__ : List[str] ): __magic_name__ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''clip_sample''': True, } config.update(**a__ ) return config def snake_case__ ( self : Dict , **a__ : Tuple ): __magic_name__ = self.scheduler_classes[0] __magic_name__ = self.get_scheduler_config(**a__ ) __magic_name__ = scheduler_class(**a__ ) __magic_name__ , __magic_name__ = 10, 0.0 __magic_name__ = self.dummy_model() __magic_name__ = self.dummy_sample_deter scheduler.set_timesteps(a__ ) for t in scheduler.timesteps: __magic_name__ = model(a__ , a__ ) __magic_name__ = scheduler.step(a__ , a__ , a__ , a__ ).prev_sample return sample def snake_case__ ( self : List[Any] ): for timesteps in [100, 500, 1000]: self.check_over_configs(num_train_timesteps=a__ ) def snake_case__ ( self : str ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=a__ ) __magic_name__ = self.scheduler_classes[0] __magic_name__ = self.get_scheduler_config(steps_offset=1 ) __magic_name__ = scheduler_class(**a__ ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) ) def snake_case__ ( self : int ): for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=a__ , beta_end=a__ ) def snake_case__ ( self : Tuple ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=a__ ) def snake_case__ ( self : Optional[Any] ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=a__ ) def snake_case__ ( self : Union[str, Any] ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=a__ ) def snake_case__ ( self : Dict ): for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=a__ ) def snake_case__ ( self : List[Any] ): for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=a__ ) def snake_case__ ( self : Optional[Any] ): self.check_over_configs(thresholding=a__ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=a__ , prediction_type=a__ , sample_max_value=a__ , ) def snake_case__ ( self : List[str] ): for t in [1, 10, 49]: self.check_over_forward(time_step=a__ ) def snake_case__ ( self : List[Any] ): for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ): self.check_over_forward(time_step=a__ , num_inference_steps=a__ ) def snake_case__ ( self : Optional[Any] ): for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=a__ , eta=a__ ) def snake_case__ ( self : Tuple ): __magic_name__ = self.scheduler_classes[0] __magic_name__ = self.get_scheduler_config() __magic_name__ = scheduler_class(**a__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.14_771 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.32_460 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.00_979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.02 ) ) < 1E-5 def snake_case__ ( self : str ): __magic_name__ = self.scheduler_classes[0] __magic_name__ = self.get_scheduler_config() __magic_name__ = scheduler_class(**a__ ) __magic_name__ , __magic_name__ = 10, 0.0 scheduler.set_timesteps(a__ ) __magic_name__ = self.dummy_model() __magic_name__ = self.dummy_sample_deter __magic_name__ = self.dummy_sample_deter + 0.1 __magic_name__ = self.dummy_sample_deter - 0.1 __magic_name__ = samplea.shape[0] __magic_name__ = torch.stack([samplea, samplea, samplea] , dim=0 ) __magic_name__ = torch.arange(a__ )[0:3, None].repeat(1 , a__ ) __magic_name__ = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) __magic_name__ = scheduler.batch_step_no_noise(a__ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , a__ ) __magic_name__ = torch.sum(torch.abs(a__ ) ) __magic_name__ = torch.mean(torch.abs(a__ ) ) assert abs(result_sum.item() - 1_147.7_904 ) < 1E-2 assert abs(result_mean.item() - 0.4_982 ) < 1E-3 def snake_case__ ( self : Optional[Any] ): __magic_name__ = self.full_loop() __magic_name__ = torch.sum(torch.abs(a__ ) ) __magic_name__ = torch.mean(torch.abs(a__ ) ) assert abs(result_sum.item() - 172.0_067 ) < 1E-2 assert abs(result_mean.item() - 0.223_967 ) < 1E-3 def snake_case__ ( self : str ): __magic_name__ = self.full_loop(prediction_type='''v_prediction''' ) __magic_name__ = torch.sum(torch.abs(a__ ) ) __magic_name__ = torch.mean(torch.abs(a__ ) ) assert abs(result_sum.item() - 52.5_302 ) < 1E-2 assert abs(result_mean.item() - 0.0_684 ) < 1E-3 def snake_case__ ( self : int ): # We specify different beta, so that the first alpha is 0.99 __magic_name__ = self.full_loop(set_alpha_to_one=a__ , beta_start=0.01 ) __magic_name__ = torch.sum(torch.abs(a__ ) ) __magic_name__ = torch.mean(torch.abs(a__ ) ) assert abs(result_sum.item() - 149.8_295 ) < 1E-2 assert abs(result_mean.item() - 0.1_951 ) < 1E-3 def snake_case__ ( self : Optional[Any] ): # We specify different beta, so that the first alpha is 0.99 __magic_name__ = self.full_loop(set_alpha_to_one=a__ , beta_start=0.01 ) __magic_name__ = torch.sum(torch.abs(a__ ) ) __magic_name__ = torch.mean(torch.abs(a__ ) ) assert abs(result_sum.item() - 149.0_784 ) < 1E-2 assert abs(result_mean.item() - 0.1_941 ) < 1E-3
245
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "microsoft/biogpt": "https://huggingface.co/microsoft/biogpt/resolve/main/config.json", # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class _SCREAMING_SNAKE_CASE ( __a ): __SCREAMING_SNAKE_CASE :List[str] = """biogpt""" def __init__( self : Union[str, Any] , a__ : Dict=4_2384 , a__ : Union[str, Any]=1024 , a__ : List[Any]=24 , a__ : Any=16 , a__ : List[Any]=4096 , a__ : Any="gelu" , a__ : Optional[int]=0.1 , a__ : List[Any]=0.1 , a__ : Optional[Any]=1024 , a__ : Union[str, Any]=0.02 , a__ : int=1E-12 , a__ : List[Any]=True , a__ : Tuple=True , a__ : str=0.0 , a__ : Any=0.0 , a__ : Optional[int]=1 , a__ : Tuple=0 , a__ : Dict=2 , **a__ : Tuple , ): __magic_name__ = vocab_size __magic_name__ = max_position_embeddings __magic_name__ = hidden_size __magic_name__ = num_hidden_layers __magic_name__ = num_attention_heads __magic_name__ = intermediate_size __magic_name__ = hidden_act __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = initializer_range __magic_name__ = layer_norm_eps __magic_name__ = scale_embedding __magic_name__ = use_cache __magic_name__ = layerdrop __magic_name__ = activation_dropout super().__init__(pad_token_id=a__ , bos_token_id=a__ , eos_token_id=a__ , **a__ )
245
1
"""simple docstring""" from typing import TYPE_CHECKING from ..utils import _LazyModule __lowerCamelCase = { 'config': [ 'EXTERNAL_DATA_FORMAT_SIZE_LIMIT', 'OnnxConfig', 'OnnxConfigWithPast', 'OnnxSeq2SeqConfigWithPast', 'PatchingSpec', ], 'convert': ['export', 'validate_model_outputs'], 'features': ['FeaturesManager'], 'utils': ['ParameterFormat', 'compute_serialized_parameters_size'], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys __lowerCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
96
"""simple docstring""" from __future__ import annotations def lowercase ( UpperCamelCase : list[float] ): """simple docstring""" if len(UpperCamelCase ) < 2: raise ValueError("Monogons and Digons are not polygons in the Euclidean space" ) if any(i <= 0 for i in nums ): raise ValueError("All values must be greater than 0" ) A__ : Union[str, Any] =nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
656
0
'''simple docstring''' import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: a__ : Tuple = None a__ : Tuple = logging.get_logger(__name__) a__ : Optional[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} a__ : Any = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', }, 'tokenizer_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/tokenizer.json', 't5-base': 'https://huggingface.co/t5-base/resolve/main/tokenizer.json', 't5-large': 'https://huggingface.co/t5-large/resolve/main/tokenizer.json', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/tokenizer.json', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/tokenizer.json', }, } # TODO(PVP) - this should be removed in Transformers v5 a__ : Union[str, Any] = { 't5-small': 512, 't5-base': 512, 't5-large': 512, 't5-3b': 512, 't5-11b': 512, } class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase =VOCAB_FILES_NAMES _lowerCamelCase =PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase =["input_ids", "attention_mask"] _lowerCamelCase =TaTokenizer _lowerCamelCase =[] def __init__( self : Tuple , a__ : str=None , a__ : Tuple=None , a__ : int="</s>" , a__ : List[str]="<unk>" , a__ : Tuple="<pad>" , a__ : Tuple=100 , a__ : List[Any]=None , **a__ : Optional[Any] , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: UpperCAmelCase = [f"<extra_id_{i}>" for i in range(a__ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens UpperCAmelCase = len(set(filter(lambda a__ : bool('''extra_id_''' in str(a__ ) ) , a__ ) ) ) if extra_tokens != extra_ids: raise ValueError( f"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are" ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) super().__init__( a__ , tokenizer_file=a__ , eos_token=a__ , unk_token=a__ , pad_token=a__ , extra_ids=a__ , additional_special_tokens=a__ , **a__ , ) UpperCAmelCase = vocab_file UpperCAmelCase = False if not self.vocab_file else True UpperCAmelCase = extra_ids @staticmethod def __snake_case ( a__ : int , a__ : Optional[int] , a__ : Any ): if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: UpperCAmelCase = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' f" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this" ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' f" {pretrained_model_name_or_path} automatically truncating your input to" f" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences" f" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with" ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , a__ , ) return max_model_length def __snake_case ( self : str , a__ : str , a__ : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(a__ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return UpperCAmelCase = os.path.join( a__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a__ ): copyfile(self.vocab_file , a__ ) logger.info(f"Copy vocab file to {out_vocab_file}" ) return (out_vocab_file,) def __snake_case ( self : Any , a__ : List[int] , a__ : Optional[List[int]] = None ): UpperCAmelCase = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: UpperCAmelCase = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def __snake_case ( self : Dict , a__ : List[int] , a__ : Optional[List[int]] = None ): UpperCAmelCase = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def __snake_case ( self : List[Any] ): return list( set(filter(lambda a__ : bool(re.search(R'''<extra_id_\d+>''' , a__ ) ) is not None , self.additional_special_tokens ) ) ) def __snake_case ( self : Union[str, Any] ): return [self.convert_tokens_to_ids(a__ ) for token in self.get_sentinel_tokens()]
570
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig a__ : Tuple = [ 'openmmlab/upernet-convnext-tiny', # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring a__ : List[str] = 'UperNetConfig' class lowerCAmelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , a__ : int , a__ : int , a__ : Union[int, Tuple[int, int]] , a__ : Union[int, Tuple[int, int], str] = 0 , a__ : bool = False , a__ : Union[int, Tuple[int, int]] = 1 , ): super().__init__() UpperCAmelCase = nn.Convad( in_channels=a__ , out_channels=a__ , kernel_size=a__ , padding=a__ , bias=a__ , dilation=a__ , ) UpperCAmelCase = nn.BatchNormad(a__ ) UpperCAmelCase = nn.ReLU() def __snake_case ( self : Optional[int] , a__ : torch.Tensor ): UpperCAmelCase = self.conv(a__ ) UpperCAmelCase = self.batch_norm(a__ ) UpperCAmelCase = self.activation(a__ ) return output class lowerCAmelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : Dict , a__ : int , a__ : int , a__ : int ): super().__init__() UpperCAmelCase = [ nn.AdaptiveAvgPoolad(a__ ), UperNetConvModule(a__ , a__ , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(a__ ) , a__ ) def __snake_case ( self : Dict , a__ : torch.Tensor ): UpperCAmelCase = input for layer in self.layers: UpperCAmelCase = layer(a__ ) return hidden_state class lowerCAmelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , a__ : Tuple[int, ...] , a__ : int , a__ : int , a__ : bool ): super().__init__() UpperCAmelCase = pool_scales UpperCAmelCase = align_corners UpperCAmelCase = in_channels UpperCAmelCase = channels UpperCAmelCase = [] for i, pool_scale in enumerate(a__ ): UpperCAmelCase = UperNetPyramidPoolingBlock(pool_scale=a__ , in_channels=a__ , channels=a__ ) self.blocks.append(a__ ) self.add_module(str(a__ ) , a__ ) def __snake_case ( self : str , a__ : torch.Tensor ): UpperCAmelCase = [] for ppm in self.blocks: UpperCAmelCase = ppm(a__ ) UpperCAmelCase = nn.functional.interpolate( a__ , size=x.size()[2:] , mode='''bilinear''' , align_corners=self.align_corners ) ppm_outs.append(a__ ) return ppm_outs class lowerCAmelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : Any , a__ : Dict , a__ : int ): super().__init__() UpperCAmelCase = config UpperCAmelCase = config.pool_scales # e.g. (1, 2, 3, 6) UpperCAmelCase = in_channels UpperCAmelCase = config.hidden_size UpperCAmelCase = False UpperCAmelCase = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module UpperCAmelCase = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) UpperCAmelCase = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module UpperCAmelCase = nn.ModuleList() UpperCAmelCase = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer UpperCAmelCase = UperNetConvModule(a__ , self.channels , kernel_size=1 ) UpperCAmelCase = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(a__ ) self.fpn_convs.append(a__ ) UpperCAmelCase = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def __snake_case ( self : List[str] ): self.apply(self._init_weights ) def __snake_case ( self : Tuple , a__ : Dict ): if isinstance(a__ , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def __snake_case ( self : List[str] , a__ : Optional[Any] ): UpperCAmelCase = inputs[-1] UpperCAmelCase = [x] psp_outs.extend(self.psp_modules(a__ ) ) UpperCAmelCase = torch.cat(a__ , dim=1 ) UpperCAmelCase = self.bottleneck(a__ ) return output def __snake_case ( self : Tuple , a__ : torch.Tensor ): # build laterals UpperCAmelCase = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(a__ ) ) # build top-down path UpperCAmelCase = len(a__ ) for i in range(used_backbone_levels - 1 , 0 , -1 ): UpperCAmelCase = laterals[i - 1].shape[2:] UpperCAmelCase = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=a__ , mode='''bilinear''' , align_corners=self.align_corners ) # build outputs UpperCAmelCase = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): UpperCAmelCase = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode='''bilinear''' , align_corners=self.align_corners ) UpperCAmelCase = torch.cat(a__ , dim=1 ) UpperCAmelCase = self.fpn_bottleneck(a__ ) UpperCAmelCase = self.classifier(a__ ) return output class lowerCAmelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] , a__ : Any , a__ : int = 2 , a__ : int = 3 , a__ : Union[int, Tuple[int, int]] = 1 ): super().__init__() UpperCAmelCase = config UpperCAmelCase = config.auxiliary_in_channels UpperCAmelCase = config.auxiliary_channels UpperCAmelCase = config.auxiliary_num_convs UpperCAmelCase = config.auxiliary_concat_input UpperCAmelCase = in_index UpperCAmelCase = (kernel_size // 2) * dilation UpperCAmelCase = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=a__ , padding=a__ , dilation=a__ ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=a__ , padding=a__ , dilation=a__ ) ) if self.num_convs == 0: UpperCAmelCase = nn.Identity() else: UpperCAmelCase = nn.Sequential(*a__ ) if self.concat_input: UpperCAmelCase = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=a__ , padding=kernel_size // 2 ) UpperCAmelCase = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def __snake_case ( self : List[str] ): self.apply(self._init_weights ) def __snake_case ( self : Union[str, Any] , a__ : Optional[Any] ): if isinstance(a__ , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def __snake_case ( self : Any , a__ : torch.Tensor ): # just take the relevant feature maps UpperCAmelCase = encoder_hidden_states[self.in_index] UpperCAmelCase = self.convs(a__ ) if self.concat_input: UpperCAmelCase = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) UpperCAmelCase = self.classifier(a__ ) return output class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase =UperNetConfig _lowerCamelCase ="pixel_values" _lowerCamelCase =True def __snake_case ( self : Dict , a__ : List[str] ): if isinstance(a__ , a__ ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def __snake_case ( self : Any ): self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def __snake_case ( self : Union[str, Any] , a__ : Tuple , a__ : Optional[Any]=False ): if isinstance(a__ , a__ ): UpperCAmelCase = value a__ : Union[str, Any] = R'\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' a__ : Union[str, Any] = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes." , UpperCAmelCase_ , ) class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : Optional[int] , a__ : int ): super().__init__(a__ ) UpperCAmelCase = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) UpperCAmelCase = UperNetHead(a__ , in_channels=self.backbone.channels ) UpperCAmelCase = UperNetFCNHead(a__ ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('''batch_size, sequence_length''' ) ) @replace_return_docstrings(output_type=a__ , config_class=_CONFIG_FOR_DOC ) def __snake_case ( self : Tuple , a__ : Optional[torch.Tensor] = None , a__ : Optional[bool] = None , a__ : Optional[bool] = None , a__ : Optional[torch.Tensor] = None , a__ : Optional[bool] = None , ): UpperCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict UpperCAmelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCAmelCase = output_attentions if output_attentions is not None else self.config.output_attentions UpperCAmelCase = self.backbone.forward_with_filtered_kwargs( a__ , output_hidden_states=a__ , output_attentions=a__ ) UpperCAmelCase = outputs.feature_maps UpperCAmelCase = self.decode_head(a__ ) UpperCAmelCase = nn.functional.interpolate(a__ , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=a__ ) UpperCAmelCase = None if self.auxiliary_head is not None: UpperCAmelCase = self.auxiliary_head(a__ ) UpperCAmelCase = nn.functional.interpolate( a__ , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=a__ ) UpperCAmelCase = None if labels is not None: if self.config.num_labels == 1: raise ValueError('''The number of labels should be greater than one''' ) else: # compute weighted loss UpperCAmelCase = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) UpperCAmelCase = loss_fct(a__ , a__ ) UpperCAmelCase = loss_fct(a__ , a__ ) UpperCAmelCase = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: UpperCAmelCase = (logits,) + outputs[1:] else: UpperCAmelCase = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=a__ , logits=a__ , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
570
1
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class __magic_name__ ( _a , _a): _UpperCAmelCase : int = 1 @register_to_config def __init__( self : str ,__SCREAMING_SNAKE_CASE : int=2_0_0_0 ,__SCREAMING_SNAKE_CASE : Union[str, Any]=0.1 ,__SCREAMING_SNAKE_CASE : Dict=2_0 ,__SCREAMING_SNAKE_CASE : Optional[int]=1e-3 ): UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None def _UpperCAmelCase ( self : Optional[Any] ,__SCREAMING_SNAKE_CASE : Tuple ,__SCREAMING_SNAKE_CASE : Union[str, torch.device] = None ): UpperCAmelCase = torch.linspace(1 ,self.config.sampling_eps ,__SCREAMING_SNAKE_CASE ,device=__SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self : int ,__SCREAMING_SNAKE_CASE : int ,__SCREAMING_SNAKE_CASE : List[str] ,__SCREAMING_SNAKE_CASE : str ,__SCREAMING_SNAKE_CASE : List[Any]=None ): if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score UpperCAmelCase = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) UpperCAmelCase = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) UpperCAmelCase = std.flatten() while len(std.shape ) < len(score.shape ): UpperCAmelCase = std.unsqueeze(-1 ) UpperCAmelCase = -score / std # compute UpperCAmelCase = -1.0 / len(self.timesteps ) UpperCAmelCase = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) UpperCAmelCase = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): UpperCAmelCase = beta_t.unsqueeze(-1 ) UpperCAmelCase = -0.5 * beta_t * x UpperCAmelCase = torch.sqrt(__SCREAMING_SNAKE_CASE ) UpperCAmelCase = drift - diffusion**2 * score UpperCAmelCase = x + drift * dt # add noise UpperCAmelCase = randn_tensor(x.shape ,layout=x.layout ,generator=__SCREAMING_SNAKE_CASE ,device=x.device ,dtype=x.dtype ) UpperCAmelCase = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self : Optional[Any] ): return self.config.num_train_timesteps
333
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel __lowerCAmelCase ={ "text_branch": "text_model", "audio_branch": "audio_model.audio_encoder", "attn": "attention.self", "self.proj": "output.dense", "attention.self_mask": "attn_mask", "mlp.fc1": "intermediate.dense", "mlp.fc2": "output.dense", "norm1": "layernorm_before", "norm2": "layernorm_after", "bn0": "batch_norm", } __lowerCAmelCase =AutoFeatureExtractor.from_pretrained("laion/clap-htsat-unfused", truncation="rand_trunc") def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase=False ): """simple docstring""" UpperCAmelCase , UpperCAmelCase = create_model( "HTSAT-tiny" , "roberta" , _lowerCAmelCase , precision="fp32" , device="cuda:0" if torch.cuda.is_available() else "cpu" , enable_fusion=_lowerCAmelCase , fusion_type="aff_2d" if enable_fusion else None , ) return model, model_cfg def __UpperCamelCase ( _lowerCAmelCase ): """simple docstring""" UpperCAmelCase = {} UpperCAmelCase = R".*sequential.(\d+).*" UpperCAmelCase = R".*_projection.(\d+).*" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: UpperCAmelCase = key.replace(_lowerCAmelCase , _lowerCAmelCase ) if re.match(_lowerCAmelCase , _lowerCAmelCase ): # replace sequential layers with list UpperCAmelCase = re.match(_lowerCAmelCase , _lowerCAmelCase ).group(1 ) UpperCAmelCase = key.replace(F'''sequential.{sequential_layer}.''' , F'''layers.{int(_lowerCAmelCase )//3}.linear.''' ) elif re.match(_lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase = int(re.match(_lowerCAmelCase , _lowerCAmelCase ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... UpperCAmelCase = 1 if projecton_layer == 0 else 2 UpperCAmelCase = key.replace(F'''_projection.{projecton_layer}.''' , F'''_projection.linear{transformers_projection_layer}.''' ) if "audio" and "qkv" in key: # split qkv into query key and value UpperCAmelCase = value UpperCAmelCase = mixed_qkv.size(0 ) // 3 UpperCAmelCase = mixed_qkv[:qkv_dim] UpperCAmelCase = mixed_qkv[qkv_dim : qkv_dim * 2] UpperCAmelCase = mixed_qkv[qkv_dim * 2 :] UpperCAmelCase = query_layer UpperCAmelCase = key_layer UpperCAmelCase = value_layer else: UpperCAmelCase = value return model_state_dict def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ): """simple docstring""" UpperCAmelCase , UpperCAmelCase = init_clap(_lowerCAmelCase , enable_fusion=_lowerCAmelCase ) clap_model.eval() UpperCAmelCase = clap_model.state_dict() UpperCAmelCase = rename_state_dict(_lowerCAmelCase ) UpperCAmelCase = ClapConfig() UpperCAmelCase = enable_fusion UpperCAmelCase = ClapModel(_lowerCAmelCase ) # ignore the spectrogram embedding layer model.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) transformers_config.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": __lowerCAmelCase =argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument("--enable_fusion", action="store_true", help="Whether to enable fusion or not") __lowerCAmelCase =parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
333
1
'''simple docstring''' import sys __snake_case: List[Any] = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def _snake_case ( A_ : Optional[int] = N ): """simple docstring""" a_ : List[str] = -sys.maxsize - 1 for i in range(len(A_ ) - 12 ): a_ : Dict = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: a_ : Dict = product return largest_product if __name__ == "__main__": print(F"""{solution() = }""")
701
'''simple docstring''' from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class _UpperCAmelCase ( lowerCAmelCase__ ): """simple docstring""" a_ = 42 a_ = 42 if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
460
0
'''simple docstring''' import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase :List[str] = logging.get_logger(__name__) lowerCamelCase :Optional[Any] = '''▁''' lowerCamelCase :str = {'''vocab_file''': '''vocab.txt''', '''sentencepiece_model_ckpt''': '''sentencepiece.bpe.model'''} lowerCamelCase :Optional[int] = { '''sentencepiece_model_file''': '''sentencepiece.bpe.model''', '''vocab_file''': '''vocab.txt''', } lowerCamelCase :Optional[Any] = { '''vocab_file''': { '''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''', '''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''', }, '''sentencepiece_model_file''': { '''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''', '''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''', }, } lowerCamelCase :Union[str, Any] = { '''ernie-m-base''': 5_1_4, '''ernie-m-large''': 5_1_4, } lowerCamelCase :Tuple = { '''ernie-m-base''': {'''do_lower_case''': False}, '''ernie-m-large''': {'''do_lower_case''': False}, } class _lowerCAmelCase ( __UpperCAmelCase ): __SCREAMING_SNAKE_CASE : List[str] = ["input_ids"] __SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Dict = PRETRAINED_INIT_CONFIGURATION __SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : str = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Union[str, Any] = RESOURCE_FILES_NAMES def __init__(self , lowercase , lowercase=None , lowercase=False , lowercase="utf8" , lowercase="[UNK]" , lowercase="[SEP]" , lowercase="[PAD]" , lowercase="[CLS]" , lowercase="[MASK]" , lowercase = None , **lowercase , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. A_ : Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowercase , unk_token=lowercase , sep_token=lowercase , pad_token=lowercase , cls_token=lowercase , mask_token=lowercase , vocab_file=lowercase , encoding=lowercase , sp_model_kwargs=self.sp_model_kwargs , **lowercase , ) A_ : Union[str, Any] = do_lower_case A_ : List[str] = sentencepiece_model_ckpt A_ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowercase ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: A_ : List[Any] = self.load_vocab(filepath=lowercase ) else: A_ : List[str] = {self.sp_model.id_to_piece(lowercase ): id for id in range(self.sp_model.get_piece_size() )} A_ : Union[str, Any] = {v: k for k, v in self.vocab.items()} def _a (self , lowercase ): if text is None: return None A_ : str = self.tokenize(lowercase ) A_, A_ : List[Any] = """""", [] for i, ch in enumerate(lowercase ): if ch in self.SP_CHAR_MAPPING: A_ : Optional[Any] = self.SP_CHAR_MAPPING.get(lowercase ) else: A_ : Dict = unicodedata.normalize("""NFKC""" , lowercase ) if self.is_whitespace(lowercase ): continue normalized_text += ch char_mapping.extend([i] * len(lowercase ) ) A_, A_, A_ : str = normalized_text, [], 0 if self.do_lower_case: A_ : Optional[int] = text.lower() for token in split_tokens: if token[:1] == "▁": A_ : Optional[int] = token[1:] A_ : List[Any] = text[offset:].index(lowercase ) + offset A_ : Any = start + len(lowercase ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) A_ : Optional[int] = end return token_mapping @property def _a (self ): return len(self.vocab ) def _a (self ): return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__(self ): A_ : int = self.__dict__.copy() A_ : Optional[int] = None return state def __setstate__(self , lowercase ): A_ : Optional[int] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): A_ : Union[str, Any] = {} A_ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def _a (self , lowercase ): return "".join((self.SP_CHAR_MAPPING.get(lowercase , lowercase ) for c in text) ) def _a (self , lowercase , lowercase=False , lowercase=64 , lowercase=0.1 ): if self.sp_model_kwargs.get("""enable_sampling""" ) is True: A_ : Dict = True if self.sp_model_kwargs.get("""alpha""" ) is not None: A_ : List[str] = self.sp_model_kwargs.get("""alpha""" ) if self.sp_model_kwargs.get("""nbest_size""" ) is not None: A_ : Optional[Any] = self.sp_model_kwargs.get("""nbest_size""" ) if not enable_sampling: A_ : Any = self.sp_model.EncodeAsPieces(lowercase ) else: A_ : Optional[Any] = self.sp_model.SampleEncodeAsPieces(lowercase , lowercase , lowercase ) A_ : Optional[int] = [] for pi, piece in enumerate(lowercase ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(lowercase ) and pi != 0: new_pieces.append(lowercase ) continue else: continue A_ : List[Any] = 0 for i, chunk in enumerate(lowercase ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(lowercase ) or self.is_punct(lowercase ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(lowercase ) A_ : Optional[Any] = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) A_ : Union[str, Any] = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) A_ : Optional[int] = i if len(lowercase ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def _a (self , lowercase ): A_ : Tuple = """""".join(lowercase ).replace(lowercase , """ """ ).strip() return out_string def _a (self , lowercase ): A_ : Tuple = self.convert_ids_to_tokens(lowercase ) A_ : Optional[int] = """""".join(lowercase ).replace(lowercase , """ """ ).strip() return out_string def _a (self , lowercase ): return self.vocab.get(lowercase , self.vocab.get(self.unk_token ) ) def _a (self , lowercase ): return self.reverse_vocab.get(lowercase , self.unk_token ) def _a (self , lowercase , lowercase=None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A_ : Dict = [self.cls_token_id] A_ : Any = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def _a (self , lowercase , lowercase=None ): if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def _a (self , lowercase , lowercase=None , lowercase=False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(lowercase )) + [1, 1] + ([0] * len(lowercase )) + [1] return [1] + ([0] * len(lowercase )) + [1] def _a (self , lowercase , lowercase = None ): # called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method if token_ids_a is None: # [CLS] X [SEP] return (len(lowercase ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(lowercase ) + 1) + [1] * (len(lowercase ) + 3) def _a (self , lowercase ): if "\u4e00" <= char <= "\u9fff": return True return False def _a (self , lowercase ): if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def _a (self , lowercase ): if char in ",;:.?!~,;:。?!《》【】": return True return False def _a (self , lowercase ): if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(lowercase ) == 1: A_ : Union[str, Any] = unicodedata.category(lowercase ) if cat == "Zs": return True return False def _a (self , lowercase ): A_ : str = {} with io.open(lowercase , """r""" , encoding="""utf-8""" ) as f: for index, line in enumerate(lowercase ): A_ : Optional[int] = line.rstrip("""\n""" ) A_ : str = int(lowercase ) return token_to_idx def _a (self , lowercase , lowercase = None ): A_ : Dict = 0 if os.path.isdir(lowercase ): A_ : List[Any] = os.path.join( lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) else: A_ : List[Any] = (filename_prefix + """-""" if filename_prefix else """""") + save_directory with open(lowercase , """w""" , encoding="""utf-8""" ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda lowercase : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' """ Please check that the vocabulary is not corrupted!""" ) A_ : Tuple = token_index writer.write(token + """\n""" ) index += 1 A_ : str = os.path.join(lowercase , """sentencepiece.bpe.model""" ) with open(lowercase , """wb""" ) as fi: A_ : Dict = self.sp_model.serialized_model_proto() fi.write(lowercase ) return (vocab_file,)
667
'''simple docstring''' import math lowerCamelCase :int = 1_0 lowerCamelCase :List[Any] = 7 lowerCamelCase :Union[str, Any] = BALLS_PER_COLOUR * NUM_COLOURS def a ( lowerCamelCase__ = 20 ): '''simple docstring''' A_ : Dict = math.comb(lowerCamelCase__ , lowerCamelCase__ ) A_ : Optional[Any] = math.comb(NUM_BALLS - BALLS_PER_COLOUR , lowerCamelCase__ ) A_ : List[str] = NUM_COLOURS * (1 - missing_colour / total) return f'{result:.9f}' if __name__ == "__main__": print(solution(2_0))
667
1
'''simple docstring''' import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC __lowerCamelCase : Any = parse(importlib.metadata.version('''torch''')) def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> int: """simple docstring""" if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(F'''`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}''' ) snake_case_ : int = STR_OPERATION_TO_FUNC[operation] if isinstance(lowercase__ ,lowercase__ ): snake_case_ : Any = parse(importlib.metadata.version(lowercase__ ) ) return operation(lowercase__ ,parse(lowercase__ ) ) def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> List[str]: """simple docstring""" return compare_versions(lowercase__ ,lowercase__ ,lowercase__ )
702
'''simple docstring''' import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser __lowerCamelCase : List[str] = re.compile(R'''\s+''') def __UpperCAmelCase ( __magic_name__ )-> Union[str, Any]: """simple docstring""" return {"hash": hashlib.mda(re.sub(__magic_name__ ,"" ,example["content"] ).encode("utf-8" ) ).hexdigest()} def __UpperCAmelCase ( __magic_name__ )-> str: """simple docstring""" snake_case_ : Optional[Any] = [len(__magic_name__ ) for line in example["content"].splitlines()] return {"line_mean": np.mean(__magic_name__ ), "line_max": max(__magic_name__ )} def __UpperCAmelCase ( __magic_name__ )-> int: """simple docstring""" snake_case_ : Optional[int] = np.mean([c.isalnum() for c in example["content"]] ) return {"alpha_frac": alpha_frac} def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> Tuple: """simple docstring""" if example["hash"] in uniques: uniques.remove(example["hash"] ) return True else: return False def __UpperCAmelCase ( __magic_name__ ,__magic_name__=5 )-> Tuple: """simple docstring""" snake_case_ : List[str] = ["auto-generated", "autogenerated", "automatically generated"] snake_case_ : Optional[Any] = example["content"].splitlines() for _, line in zip(range(__magic_name__ ) ,__magic_name__ ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def __UpperCAmelCase ( __magic_name__ ,__magic_name__=5 ,__magic_name__=0.05 )-> Optional[Any]: """simple docstring""" snake_case_ : str = ["unit tests", "test file", "configuration file"] snake_case_ : int = example["content"].splitlines() snake_case_ : Optional[Any] = 0 snake_case_ : Any = 0 # first test for _, line in zip(range(__magic_name__ ) ,__magic_name__ ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test snake_case_ : Tuple = example["content"].count("\n" ) snake_case_ : int = int(coeff * nlines ) for line in lines: count_config += line.lower().count("config" ) count_test += line.lower().count("test" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def __UpperCAmelCase ( __magic_name__ )-> str: """simple docstring""" snake_case_ : List[Any] = ["def ", "class ", "for ", "while "] snake_case_ : Optional[Any] = example["content"].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def __UpperCAmelCase ( __magic_name__ ,__magic_name__=4 )-> Optional[int]: """simple docstring""" snake_case_ : Tuple = example["content"].splitlines() snake_case_ : Tuple = 0 for line in lines: counter += line.lower().count("=" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def __UpperCAmelCase ( __magic_name__ )-> List[Any]: """simple docstring""" snake_case_ : Tuple = tokenizer(example["content"] ,truncation=__magic_name__ )["input_ids"] snake_case_ : int = len(example["content"] ) / len(__magic_name__ ) return {"ratio": ratio} def __UpperCAmelCase ( __magic_name__ )-> Optional[Any]: """simple docstring""" snake_case_ : Union[str, Any] = {} results.update(get_hash(__magic_name__ ) ) results.update(line_stats(__magic_name__ ) ) results.update(alpha_stats(__magic_name__ ) ) results.update(char_token_ratio(__magic_name__ ) ) results.update(is_autogenerated(__magic_name__ ) ) results.update(is_config_or_test(__magic_name__ ) ) results.update(has_no_keywords(__magic_name__ ) ) results.update(has_few_assignments(__magic_name__ ) ) return results def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> Tuple: """simple docstring""" if not check_uniques(__magic_name__ ,__magic_name__ ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def __UpperCAmelCase ( __magic_name__ )-> Dict: """simple docstring""" with open(__magic_name__ ,"rb" ) as f_in: with gzip.open(str(__magic_name__ ) + ".gz" ,"wb" ,compresslevel=6 ) as f_out: shutil.copyfileobj(__magic_name__ ,__magic_name__ ) os.unlink(__magic_name__ ) # Settings __lowerCamelCase : List[Any] = HfArgumentParser(PreprocessingArguments) __lowerCamelCase : str = parser.parse_args() if args.num_workers is None: __lowerCamelCase : List[Any] = multiprocessing.cpu_count() __lowerCamelCase : Optional[int] = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset __lowerCamelCase : Any = time.time() __lowerCamelCase : str = load_dataset(args.dataset_name, split='''train''') print(f'''Time to load dataset: {time.time()-t_start:.2f}''') # Run preprocessing __lowerCamelCase : List[str] = time.time() __lowerCamelCase : Any = ds.map(preprocess, num_proc=args.num_workers) print(f'''Time to preprocess dataset: {time.time()-t_start:.2f}''') # Deduplicate hashes __lowerCamelCase : Any = set(ds.unique('''hash''')) __lowerCamelCase : Optional[int] = len(uniques) / len(ds) print(f'''Fraction of duplicates: {1-frac:.2%}''') # Deduplicate data and apply heuristics __lowerCamelCase : List[str] = time.time() __lowerCamelCase : Tuple = ds.filter(filter, fn_kwargs={'''uniques''': uniques, '''args''': args}) print(f'''Time to filter dataset: {time.time()-t_start:.2f}''') print(f'''Size of filtered dataset: {len(ds_filter)}''') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: __lowerCamelCase : List[str] = time.time() __lowerCamelCase , __lowerCamelCase : Tuple = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f'''Time to deduplicate dataset: {time.time()-t_start:.2f}''') print(f'''Size of deduplicate dataset: {len(ds_filter)}''') # Save data in batches of samples_per_file __lowerCamelCase : List[Any] = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / '''duplicate_clusters.json''', '''w''') as f: json.dump(duplicate_clusters, f) __lowerCamelCase : List[str] = output_dir / '''data''' data_dir.mkdir(exist_ok=True) __lowerCamelCase : int = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): __lowerCamelCase : Union[str, Any] = str(data_dir / f'''file-{file_number+1:012}.json''') __lowerCamelCase : List[Any] = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f'''Time to save dataset: {time.time()-t_start:.2f}''')
656
0
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class __a ( __a ): '''simple docstring''' _lowerCamelCase : Tuple = (DDPMScheduler,) def SCREAMING_SNAKE_CASE ( self , **_lowerCamelCase ) -> int: '''simple docstring''' __lowercase = { "num_train_timesteps": 1_000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**_lowerCamelCase ) return config def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_lowerCamelCase , beta_end=_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' self.check_over_configs(thresholding=_lowerCamelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_lowerCamelCase , prediction_type=_lowerCamelCase , sample_max_value=_lowerCamelCase , ) def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' for t in [0, 500, 999]: self.check_over_forward(time_step=_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**_lowerCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1e-5 def SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**_lowerCamelCase ) __lowercase = len(_lowerCamelCase ) __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter __lowercase = torch.manual_seed(0 ) for t in reversed(range(_lowerCamelCase ) ): # 1. predict noise residual __lowercase = model(_lowerCamelCase , _lowerCamelCase ) # 2. predict previous mean of sample x_t-1 __lowercase = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __lowercase = pred_prev_sample __lowercase = torch.sum(torch.abs(_lowerCamelCase ) ) __lowercase = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 258.9_606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(prediction_type="v_prediction" ) __lowercase = scheduler_class(**_lowerCamelCase ) __lowercase = len(_lowerCamelCase ) __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter __lowercase = torch.manual_seed(0 ) for t in reversed(range(_lowerCamelCase ) ): # 1. predict noise residual __lowercase = model(_lowerCamelCase , _lowerCamelCase ) # 2. predict previous mean of sample x_t-1 __lowercase = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __lowercase = pred_prev_sample __lowercase = torch.sum(torch.abs(_lowerCamelCase ) ) __lowercase = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 202.0_296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**_lowerCamelCase ) __lowercase = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_lowerCamelCase ) __lowercase = scheduler.timesteps for i, timestep in enumerate(_lowerCamelCase ): if i == len(_lowerCamelCase ) - 1: __lowercase = -1 else: __lowercase = timesteps[i + 1] __lowercase = scheduler.previous_timestep(_lowerCamelCase ) __lowercase = prev_t.item() self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**_lowerCamelCase ) __lowercase = [100, 87, 50, 51, 0] with self.assertRaises(_lowerCamelCase , msg="`custom_timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**_lowerCamelCase ) __lowercase = [100, 87, 50, 1, 0] __lowercase = len(_lowerCamelCase ) with self.assertRaises(_lowerCamelCase , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`." ): scheduler.set_timesteps(num_inference_steps=_lowerCamelCase , timesteps=_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**_lowerCamelCase ) __lowercase = [scheduler.config.num_train_timesteps] with self.assertRaises( _lowerCamelCase , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=_lowerCamelCase )
118
'''simple docstring''' import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification A_ : Optional[Any] =DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co A_ : Tuple ='''main''' # Default branch name A_ : Dict ='''f2c752cfc5c0ab6f4bdec59acea69eefbee381c2''' # One particular commit (not the top of `main`) A_ : int ='''aaaaaaa''' # This commit does not exist, so we should 404. A_ : List[str] ='''d9e9f15bc825e4b2c9249e9578f884bbcb5e3684''' # Sha-1 of config.json on the top of `main`, for checking purposes A_ : List[str] ='''4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3''' @contextlib.contextmanager def snake_case_ ( ) -> Tuple: print('''Welcome!''') yield print('''Bye!''') @contextlib.contextmanager def snake_case_ ( ) -> str: print('''Bonjour!''') yield print('''Au revoir!''') class __UpperCAmelCase ( unittest.TestCase ): def UpperCAmelCase_ ( self ): # If the spec is missing, importlib would not be able to import the module dynamically. assert transformers.__spec__ is not None assert importlib.util.find_spec('''transformers''' ) is not None class __UpperCAmelCase ( unittest.TestCase ): @unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO ) def UpperCAmelCase_ ( self , _lowerCamelCase ): with ContextManagers([] ): print('''Transformers are awesome!''' ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , '''Transformers are awesome!\n''' ) @unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO ) def UpperCAmelCase_ ( self , _lowerCamelCase ): with ContextManagers([context_en()] ): print('''Transformers are awesome!''' ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , '''Welcome!\nTransformers are awesome!\nBye!\n''' ) @unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO ) def UpperCAmelCase_ ( self , _lowerCamelCase ): with ContextManagers([context_fr(), context_en()] ): print('''Transformers are awesome!''' ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , '''Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n''' ) @require_torch def UpperCAmelCase_ ( self ): self.assertEqual(find_labels(_lowerCamelCase ) , ['''labels'''] ) self.assertEqual(find_labels(_lowerCamelCase ) , ['''labels''', '''next_sentence_label'''] ) self.assertEqual(find_labels(_lowerCamelCase ) , ['''start_positions''', '''end_positions'''] ) class __UpperCAmelCase ( __a ): pass self.assertEqual(find_labels(_lowerCamelCase ) , ['''labels'''] ) @require_tf def UpperCAmelCase_ ( self ): self.assertEqual(find_labels(_lowerCamelCase ) , ['''labels'''] ) self.assertEqual(find_labels(_lowerCamelCase ) , ['''labels''', '''next_sentence_label'''] ) self.assertEqual(find_labels(_lowerCamelCase ) , ['''start_positions''', '''end_positions'''] ) class __UpperCAmelCase ( __a ): pass self.assertEqual(find_labels(_lowerCamelCase ) , ['''labels'''] ) @require_flax def UpperCAmelCase_ ( self ): # Flax models don't have labels self.assertEqual(find_labels(_lowerCamelCase ) , [] ) self.assertEqual(find_labels(_lowerCamelCase ) , [] ) self.assertEqual(find_labels(_lowerCamelCase ) , [] ) class __UpperCAmelCase ( __a ): pass self.assertEqual(find_labels(_lowerCamelCase ) , [] )
274
0
def __lowerCAmelCase ( __magic_name__ ): _lowercase: list[list[float]] = [] for data in source_data: for i, el in enumerate(__magic_name__ ): if len(__magic_name__ ) < i + 1: data_lists.append([] ) data_lists[i].append(float(__magic_name__ ) ) return data_lists def __lowerCAmelCase ( __magic_name__ , __magic_name__ ): _lowercase: list[list[float]] = [] for dlist, weight in zip(__magic_name__ , __magic_name__ ): _lowercase: Tuple = min(__magic_name__ ) _lowercase: str = max(__magic_name__ ) _lowercase: list[float] = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: _lowercase: Dict = f"Invalid weight of {weight:f} provided" raise ValueError(__magic_name__ ) score_lists.append(__magic_name__ ) return score_lists def __lowerCAmelCase ( __magic_name__ ): _lowercase: list[float] = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(__magic_name__ ): _lowercase: Any = final_scores[j] + ele return final_scores def __lowerCAmelCase ( __magic_name__ , __magic_name__ ): _lowercase: Optional[int] = get_data(__magic_name__ ) _lowercase: List[Any] = calculate_each_score(__magic_name__ , __magic_name__ ) _lowercase: str = generate_final_scores(__magic_name__ ) # append scores to source data for i, ele in enumerate(__magic_name__ ): source_data[i].append(__magic_name__ ) return source_data
206
from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING _SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase_ ) class A ( lowerCamelCase_ ): '''simple docstring''' def __init__( self : str , *_UpperCamelCase : Tuple , **_UpperCamelCase : int): super().__init__(*_UpperCamelCase , **_UpperCamelCase) requires_backends(self , "vision") self.check_model_type(_UpperCamelCase) def __call__( self : Any , _UpperCamelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_UpperCamelCase : Any): return super().__call__(_UpperCamelCase , **_UpperCamelCase) def UpperCAmelCase__ ( self : Optional[int] , **_UpperCamelCase : Union[str, Any]): return {}, {}, {} def UpperCAmelCase__ ( self : Any , _UpperCamelCase : Union[str, Any]): _lowercase: Dict = load_image(_UpperCamelCase) _lowercase: List[str] = image.size _lowercase: List[str] = self.image_processor(images=_UpperCamelCase , return_tensors=self.framework) return model_inputs def UpperCAmelCase__ ( self : List[str] , _UpperCamelCase : Optional[int]): _lowercase: str = self.model(**_UpperCamelCase) return model_outputs def UpperCAmelCase__ ( self : Union[str, Any] , _UpperCamelCase : List[Any]): _lowercase: Optional[int] = model_outputs.predicted_depth _lowercase: int = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1) , size=self.image_size[::-1] , mode="bicubic" , align_corners=_UpperCamelCase) _lowercase: str = prediction.squeeze().cpu().numpy() _lowercase: Dict = (output * 255 / np.max(_UpperCamelCase)).astype("uint8") _lowercase: List[str] = Image.fromarray(_UpperCamelCase) _lowercase: Union[str, Any] = {} _lowercase: List[Any] = predicted_depth _lowercase: Tuple = depth return output_dict
206
1
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging _snake_case = logging.get_logger(__name__) _snake_case = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all LED models at https://huggingface.co/models?filter=LED _snake_case = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } _snake_case = { "allenai/led-base-16384": 16384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowerCAmelCase_ ( ): _A : Optional[int] = ( list(range(ord("""!""" ),ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ),ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ),ord("""ÿ""" ) + 1 ) ) ) _A : int = bs[:] _A : List[str] = 0 for b in range(2**8 ): if b not in bs: bs.append(snake_case_ ) cs.append(2**8 + n ) n += 1 _A : Dict = [chr(snake_case_ ) for n in cs] return dict(zip(snake_case_,snake_case_ ) ) def lowerCAmelCase_ ( snake_case_ ): _A : Union[str, Any] = set() _A : Dict = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _A : List[Any] = char return pairs class lowercase ( UpperCamelCase__ ): _a = VOCAB_FILES_NAMES _a = PRETRAINED_VOCAB_FILES_MAP _a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = ["input_ids", "attention_mask"] def __init__( self , _a , _a , _a="replace" , _a="<s>" , _a="</s>" , _a="</s>" , _a="<s>" , _a="<unk>" , _a="<pad>" , _a="<mask>" , _a=False , **_a , ) -> Union[str, Any]: _A : List[Any] = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else bos_token _A : List[str] = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else eos_token _A : int = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else sep_token _A : Union[str, Any] = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else cls_token _A : Optional[Any] = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else unk_token _A : int = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _A : Dict = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token super().__init__( errors=_a , bos_token=_a , eos_token=_a , unk_token=_a , sep_token=_a , cls_token=_a , pad_token=_a , mask_token=_a , add_prefix_space=_a , **_a , ) with open(_a , encoding="""utf-8""" ) as vocab_handle: _A : int = json.load(_a ) _A : Any = {v: k for k, v in self.encoder.items()} _A : Tuple = errors # how to handle errors in decoding _A : Union[str, Any] = bytes_to_unicode() _A : List[str] = {v: k for k, v in self.byte_encoder.items()} with open(_a , encoding="""utf-8""" ) as merges_handle: _A : int = merges_handle.read().split("""\n""" )[1:-1] _A : Any = [tuple(merge.split() ) for merge in bpe_merges] _A : Optional[Any] = dict(zip(_a , range(len(_a ) ) ) ) _A : int = {} _A : Dict = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _A : Optional[int] = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def a__ ( self ) -> Union[str, Any]: return len(self.encoder ) def a__ ( self ) -> Optional[int]: return dict(self.encoder , **self.added_tokens_encoder ) def a__ ( self , _a ) -> List[str]: if token in self.cache: return self.cache[token] _A : List[str] = tuple(_a ) _A : Optional[int] = get_pairs(_a ) if not pairs: return token while True: _A : List[Any] = min(_a , key=lambda _a : self.bpe_ranks.get(_a , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break _A , _A : Tuple = bigram _A : Optional[Any] = [] _A : List[str] = 0 while i < len(_a ): try: _A : List[Any] = word.index(_a , _a ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _A : str = j if word[i] == first and i < len(_a ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _A : Optional[Any] = tuple(_a ) _A : Tuple = new_word if len(_a ) == 1: break else: _A : Any = get_pairs(_a ) _A : Tuple = """ """.join(_a ) _A : Optional[Any] = word return word def a__ ( self , _a ) -> List[Any]: _A : Tuple = [] for token in re.findall(self.pat , _a ): _A : Optional[int] = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_a ).split(""" """ ) ) return bpe_tokens def a__ ( self , _a ) -> List[Any]: return self.encoder.get(_a , self.encoder.get(self.unk_token ) ) def a__ ( self , _a ) -> Optional[int]: return self.decoder.get(_a ) def a__ ( self , _a ) -> Optional[int]: _A : List[str] = """""".join(_a ) _A : Union[str, Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def a__ ( self , _a , _a = None ) -> Tuple[str]: if not os.path.isdir(_a ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _A : Optional[int] = os.path.join( _a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) _A : Any = os.path.join( _a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(_a , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_a , ensure_ascii=_a ) + """\n""" ) _A : Dict = 0 with open(_a , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _a : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' """ Please check that the tokenizer is not corrupted!""" ) _A : Any = token_index writer.write(""" """.join(_a ) + """\n""" ) index += 1 return vocab_file, merge_file def a__ ( self , _a , _a = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _A : Union[str, Any] = [self.cls_token_id] _A : Union[str, Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def a__ ( self , _a , _a = None , _a = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a ) if token_ids_a is None: return [1] + ([0] * len(_a )) + [1] return [1] + ([0] * len(_a )) + [1, 1] + ([0] * len(_a )) + [1] def a__ ( self , _a , _a = None ) -> List[int]: _A : int = [self.sep_token_id] _A : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def a__ ( self , _a , _a=False , **_a ) -> Any: _A : Optional[int] = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_a ) > 0 and not text[0].isspace()): _A : int = """ """ + text return (text, kwargs) def a__ ( self , _a , _a = None , _a = PaddingStrategy.DO_NOT_PAD , _a = None , _a = None , ) -> dict: _A : Optional[Any] = super()._pad( encoded_inputs=_a , max_length=_a , padding_strategy=_a , pad_to_multiple_of=_a , return_attention_mask=_a , ) # Load from model defaults if return_attention_mask is None: _A : List[Any] = """attention_mask""" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: _A : Dict = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. _A : str = len(encoded_inputs["""global_attention_mask"""] ) != len(_a ) if needs_to_be_padded: _A : Any = len(_a ) - len(encoded_inputs["""global_attention_mask"""] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` _A : Union[str, Any] = ( encoded_inputs["""global_attention_mask"""] + [-1] * difference ) elif self.padding_side == "left": _A : List[Any] = [-1] * difference + encoded_inputs[ """global_attention_mask""" ] else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return encoded_inputs
307
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "huggingface/informer-tourism-monthly": ( "https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json" ), # See all Informer models at https://huggingface.co/models?filter=informer } class lowercase ( UpperCamelCase__ ): _a = "informer" _a = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self , _a = None , _a = None , _a = "student_t" , _a = "nll" , _a = 1 , _a = None , _a = "mean" , _a = 0 , _a = 0 , _a = 0 , _a = 0 , _a = None , _a = None , _a = 64 , _a = 32 , _a = 32 , _a = 2 , _a = 2 , _a = 2 , _a = 2 , _a = True , _a = "gelu" , _a = 0.05 , _a = 0.1 , _a = 0.1 , _a = 0.1 , _a = 0.1 , _a = 100 , _a = 0.02 , _a=True , _a = "prob" , _a = 5 , _a = True , **_a , ) -> Tuple: # time series specific configuration _A : Optional[int] = prediction_length _A : int = context_length or prediction_length _A : List[str] = distribution_output _A : Dict = loss _A : Optional[Any] = input_size _A : Dict = num_time_features _A : Optional[int] = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] _A : Dict = scaling _A : List[Any] = num_dynamic_real_features _A : Union[str, Any] = num_static_real_features _A : Tuple = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(_a ) != num_static_categorical_features: raise ValueError( """The cardinality should be a list of the same length as `num_static_categorical_features`""" ) _A : Any = cardinality else: _A : Union[str, Any] = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(_a ) != num_static_categorical_features: raise ValueError( """The embedding dimension should be a list of the same length as `num_static_categorical_features`""" ) _A : Tuple = embedding_dimension else: _A : Dict = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] _A : List[str] = num_parallel_samples # Transformer architecture configuration _A : Optional[Any] = input_size * len(self.lags_sequence ) + self._number_of_features _A : int = d_model _A : int = encoder_attention_heads _A : List[str] = decoder_attention_heads _A : Any = encoder_ffn_dim _A : Union[str, Any] = decoder_ffn_dim _A : Dict = encoder_layers _A : Dict = decoder_layers _A : Tuple = dropout _A : Any = attention_dropout _A : int = activation_dropout _A : Optional[int] = encoder_layerdrop _A : List[str] = decoder_layerdrop _A : Optional[int] = activation_function _A : Optional[Any] = init_std _A : Any = use_cache # Informer _A : str = attention_type _A : Any = sampling_factor _A : Union[str, Any] = distil super().__init__(is_encoder_decoder=_a , **_a ) @property def a__ ( self ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
307
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def __lowerCamelCase ( ): """simple docstring""" lowercase__ : str = ArgumentParser("Accelerate CLI tool" , usage="accelerate <command> [<args>]" , allow_abbrev=lowerCamelCase__ ) lowercase__ : Any = parser.add_subparsers(help="accelerate command helpers" ) # Register commands get_config_parser(subparsers=lowerCamelCase__ ) env_command_parser(subparsers=lowerCamelCase__ ) launch_command_parser(subparsers=lowerCamelCase__ ) tpu_command_parser(subparsers=lowerCamelCase__ ) test_command_parser(subparsers=lowerCamelCase__ ) # Let's go lowercase__ : Union[str, Any] = parser.parse_args() if not hasattr(lowerCamelCase__ , "func" ): parser.print_help() exit(1 ) # Run args.func(lowerCamelCase__ ) if __name__ == "__main__": main()
709
from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class snake_case__(_UpperCamelCase ): """simple docstring""" lowercase_ = 42 class snake_case__(nn.Module ): """simple docstring""" def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE : Dict=3 , SCREAMING_SNAKE_CASE : Optional[int]=3 , SCREAMING_SNAKE_CASE : List[Any]=("DownEncoderBlock2D",) , SCREAMING_SNAKE_CASE : Dict=(64,) , SCREAMING_SNAKE_CASE : Optional[Any]=2 , SCREAMING_SNAKE_CASE : Optional[int]=32 , SCREAMING_SNAKE_CASE : List[str]="silu" , SCREAMING_SNAKE_CASE : str=True , ): super().__init__() lowercase__ : str = layers_per_block lowercase__ : int = torch.nn.Convad( SCREAMING_SNAKE_CASE , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) lowercase__ : Union[str, Any] = None lowercase__ : Optional[int] = nn.ModuleList([] ) # down lowercase__ : Dict = block_out_channels[0] for i, down_block_type in enumerate(SCREAMING_SNAKE_CASE ): lowercase__ : List[str] = output_channel lowercase__ : Dict = block_out_channels[i] lowercase__ : List[str] = i == len(SCREAMING_SNAKE_CASE ) - 1 lowercase__ : Union[str, Any] = get_down_block( SCREAMING_SNAKE_CASE , num_layers=self.layers_per_block , in_channels=SCREAMING_SNAKE_CASE , out_channels=SCREAMING_SNAKE_CASE , add_downsample=not is_final_block , resnet_eps=1E-6 , downsample_padding=0 , resnet_act_fn=SCREAMING_SNAKE_CASE , resnet_groups=SCREAMING_SNAKE_CASE , attention_head_dim=SCREAMING_SNAKE_CASE , temb_channels=SCREAMING_SNAKE_CASE , ) self.down_blocks.append(SCREAMING_SNAKE_CASE ) # mid lowercase__ : Optional[int] = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=SCREAMING_SNAKE_CASE , output_scale_factor=1 , resnet_time_scale_shift="default" , attention_head_dim=block_out_channels[-1] , resnet_groups=SCREAMING_SNAKE_CASE , temb_channels=SCREAMING_SNAKE_CASE , ) # out lowercase__ : int = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=SCREAMING_SNAKE_CASE , eps=1E-6 ) lowercase__ : Union[str, Any] = nn.SiLU() lowercase__ : Tuple = 2 * out_channels if double_z else out_channels lowercase__ : Tuple = nn.Convad(block_out_channels[-1] , SCREAMING_SNAKE_CASE , 3 , padding=1 ) lowercase__ : Tuple = False def snake_case ( self : int , SCREAMING_SNAKE_CASE : Tuple ): lowercase__ : List[str] = x lowercase__ : Tuple = self.conv_in(SCREAMING_SNAKE_CASE ) if self.training and self.gradient_checkpointing: def create_custom_forward(SCREAMING_SNAKE_CASE : Union[str, Any] ): def custom_forward(*SCREAMING_SNAKE_CASE : Dict ): return module(*SCREAMING_SNAKE_CASE ) return custom_forward # down if is_torch_version(">=" , "1.11.0" ): for down_block in self.down_blocks: lowercase__ : Union[str, Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE , use_reentrant=SCREAMING_SNAKE_CASE ) # middle lowercase__ : int = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , SCREAMING_SNAKE_CASE , use_reentrant=SCREAMING_SNAKE_CASE ) else: for down_block in self.down_blocks: lowercase__ : Any = torch.utils.checkpoint.checkpoint(create_custom_forward(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) # middle lowercase__ : Any = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , SCREAMING_SNAKE_CASE ) else: # down for down_block in self.down_blocks: lowercase__ : Any = down_block(SCREAMING_SNAKE_CASE ) # middle lowercase__ : List[str] = self.mid_block(SCREAMING_SNAKE_CASE ) # post-process lowercase__ : Union[str, Any] = self.conv_norm_out(SCREAMING_SNAKE_CASE ) lowercase__ : List[Any] = self.conv_act(SCREAMING_SNAKE_CASE ) lowercase__ : Any = self.conv_out(SCREAMING_SNAKE_CASE ) return sample class snake_case__(nn.Module ): """simple docstring""" def __init__( self : Dict , SCREAMING_SNAKE_CASE : Tuple=3 , SCREAMING_SNAKE_CASE : int=3 , SCREAMING_SNAKE_CASE : Optional[int]=("UpDecoderBlock2D",) , SCREAMING_SNAKE_CASE : int=(64,) , SCREAMING_SNAKE_CASE : Any=2 , SCREAMING_SNAKE_CASE : int=32 , SCREAMING_SNAKE_CASE : str="silu" , SCREAMING_SNAKE_CASE : Any="group" , ): super().__init__() lowercase__ : List[str] = layers_per_block lowercase__ : int = nn.Convad( SCREAMING_SNAKE_CASE , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) lowercase__ : Optional[Any] = None lowercase__ : Dict = nn.ModuleList([] ) lowercase__ : List[str] = in_channels if norm_type == "spatial" else None # mid lowercase__ : str = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=SCREAMING_SNAKE_CASE , output_scale_factor=1 , resnet_time_scale_shift="default" if norm_type == "group" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=SCREAMING_SNAKE_CASE , temb_channels=SCREAMING_SNAKE_CASE , ) # up lowercase__ : Tuple = list(reversed(SCREAMING_SNAKE_CASE ) ) lowercase__ : Dict = reversed_block_out_channels[0] for i, up_block_type in enumerate(SCREAMING_SNAKE_CASE ): lowercase__ : Tuple = output_channel lowercase__ : List[Any] = reversed_block_out_channels[i] lowercase__ : List[Any] = i == len(SCREAMING_SNAKE_CASE ) - 1 lowercase__ : Dict = get_up_block( SCREAMING_SNAKE_CASE , num_layers=self.layers_per_block + 1 , in_channels=SCREAMING_SNAKE_CASE , out_channels=SCREAMING_SNAKE_CASE , prev_output_channel=SCREAMING_SNAKE_CASE , add_upsample=not is_final_block , resnet_eps=1E-6 , resnet_act_fn=SCREAMING_SNAKE_CASE , resnet_groups=SCREAMING_SNAKE_CASE , attention_head_dim=SCREAMING_SNAKE_CASE , temb_channels=SCREAMING_SNAKE_CASE , resnet_time_scale_shift=SCREAMING_SNAKE_CASE , ) self.up_blocks.append(SCREAMING_SNAKE_CASE ) lowercase__ : Optional[Any] = output_channel # out if norm_type == "spatial": lowercase__ : Any = SpatialNorm(block_out_channels[0] , SCREAMING_SNAKE_CASE ) else: lowercase__ : Tuple = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=SCREAMING_SNAKE_CASE , eps=1E-6 ) lowercase__ : Union[str, Any] = nn.SiLU() lowercase__ : Any = nn.Convad(block_out_channels[0] , SCREAMING_SNAKE_CASE , 3 , padding=1 ) lowercase__ : List[Any] = False def snake_case ( self : Any , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : str=None ): lowercase__ : Tuple = z lowercase__ : List[str] = self.conv_in(SCREAMING_SNAKE_CASE ) lowercase__ : List[Any] = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(SCREAMING_SNAKE_CASE : List[str] ): def custom_forward(*SCREAMING_SNAKE_CASE : Optional[int] ): return module(*SCREAMING_SNAKE_CASE ) return custom_forward if is_torch_version(">=" , "1.11.0" ): # middle lowercase__ : List[str] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , use_reentrant=SCREAMING_SNAKE_CASE ) lowercase__ : str = sample.to(SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: lowercase__ : List[Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , use_reentrant=SCREAMING_SNAKE_CASE ) else: # middle lowercase__ : str = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ : Tuple = sample.to(SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: lowercase__ : Optional[int] = torch.utils.checkpoint.checkpoint(create_custom_forward(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: # middle lowercase__ : Optional[int] = self.mid_block(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ : Optional[Any] = sample.to(SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: lowercase__ : Optional[Any] = up_block(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # post-process if latent_embeds is None: lowercase__ : Union[str, Any] = self.conv_norm_out(SCREAMING_SNAKE_CASE ) else: lowercase__ : Dict = self.conv_norm_out(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ : Union[str, Any] = self.conv_act(SCREAMING_SNAKE_CASE ) lowercase__ : Tuple = self.conv_out(SCREAMING_SNAKE_CASE ) return sample class snake_case__(nn.Module ): """simple docstring""" def __init__( self : Any , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any]=None , SCREAMING_SNAKE_CASE : List[Any]="random" , SCREAMING_SNAKE_CASE : Union[str, Any]=False , SCREAMING_SNAKE_CASE : int=True ): super().__init__() lowercase__ : List[Any] = n_e lowercase__ : List[str] = vq_embed_dim lowercase__ : Optional[Any] = beta lowercase__ : List[str] = legacy lowercase__ : Tuple = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) lowercase__ : Union[str, Any] = remap if self.remap is not None: self.register_buffer("used" , torch.tensor(np.load(self.remap ) ) ) lowercase__ : Tuple = self.used.shape[0] lowercase__ : Any = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": lowercase__ : Any = self.re_embed lowercase__ : Tuple = self.re_embed + 1 print( f"""Remapping {self.n_e} indices to {self.re_embed} indices. """ f"""Using {self.unknown_index} for unknown indices.""" ) else: lowercase__ : str = n_e lowercase__ : Union[str, Any] = sane_index_shape def snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : Dict ): lowercase__ : Any = inds.shape assert len(SCREAMING_SNAKE_CASE ) > 1 lowercase__ : List[str] = inds.reshape(ishape[0] , -1 ) lowercase__ : str = self.used.to(SCREAMING_SNAKE_CASE ) lowercase__ : Optional[int] = (inds[:, :, None] == used[None, None, ...]).long() lowercase__ : Dict = match.argmax(-1 ) lowercase__ : Dict = match.sum(2 ) < 1 if self.unknown_index == "random": lowercase__ : Optional[Any] = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: lowercase__ : List[Any] = self.unknown_index return new.reshape(SCREAMING_SNAKE_CASE ) def snake_case ( self : int , SCREAMING_SNAKE_CASE : int ): lowercase__ : List[Any] = inds.shape assert len(SCREAMING_SNAKE_CASE ) > 1 lowercase__ : Optional[int] = inds.reshape(ishape[0] , -1 ) lowercase__ : str = self.used.to(SCREAMING_SNAKE_CASE ) if self.re_embed > self.used.shape[0]: # extra token lowercase__ : int = 0 # simply set to zero lowercase__ : Optional[Any] = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , SCREAMING_SNAKE_CASE ) return back.reshape(SCREAMING_SNAKE_CASE ) def snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE : List[Any] ): # reshape z -> (batch, height, width, channel) and flatten lowercase__ : Union[str, Any] = z.permute(0 , 2 , 3 , 1 ).contiguous() lowercase__ : Optional[Any] = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z lowercase__ : Optional[Any] = torch.argmin(torch.cdist(SCREAMING_SNAKE_CASE , self.embedding.weight ) , dim=1 ) lowercase__ : List[str] = self.embedding(SCREAMING_SNAKE_CASE ).view(z.shape ) lowercase__ : Dict = None lowercase__ : int = None # compute loss for embedding if not self.legacy: lowercase__ : Optional[Any] = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: lowercase__ : List[str] = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients lowercase__ : Union[str, Any] = z + (z_q - z).detach() # reshape back to match original input shape lowercase__ : Optional[int] = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: lowercase__ : Dict = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis lowercase__ : int = self.remap_to_used(SCREAMING_SNAKE_CASE ) lowercase__ : List[str] = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: lowercase__ : List[str] = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def snake_case ( self : List[str] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Union[str, Any] ): # shape specifying (batch, height, width, channel) if self.remap is not None: lowercase__ : Union[str, Any] = indices.reshape(shape[0] , -1 ) # add batch axis lowercase__ : Union[str, Any] = self.unmap_to_all(SCREAMING_SNAKE_CASE ) lowercase__ : Optional[int] = indices.reshape(-1 ) # flatten again # get quantized latent vectors lowercase__ : List[Any] = self.embedding(SCREAMING_SNAKE_CASE ) if shape is not None: lowercase__ : Any = z_q.view(SCREAMING_SNAKE_CASE ) # reshape back to match original input shape lowercase__ : int = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class snake_case__(_UpperCamelCase ): """simple docstring""" def __init__( self : int , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : str=False ): lowercase__ : Dict = parameters lowercase__ , lowercase__ : Optional[int] = torch.chunk(SCREAMING_SNAKE_CASE , 2 , dim=1 ) lowercase__ : Optional[Any] = torch.clamp(self.logvar , -30.0 , 20.0 ) lowercase__ : Optional[int] = deterministic lowercase__ : Tuple = torch.exp(0.5 * self.logvar ) lowercase__ : Optional[int] = torch.exp(self.logvar ) if self.deterministic: lowercase__ : Any = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[torch.Generator] = None ): # make sure sample is on the same device as the parameters and has same dtype lowercase__ : Tuple = randn_tensor( self.mean.shape , generator=SCREAMING_SNAKE_CASE , device=self.parameters.device , dtype=self.parameters.dtype ) lowercase__ : str = self.mean + self.std * sample return x def snake_case ( self : str , SCREAMING_SNAKE_CASE : List[str]=None ): if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict=[1, 2, 3] ): if self.deterministic: return torch.Tensor([0.0] ) lowercase__ : Any = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=SCREAMING_SNAKE_CASE ) def snake_case ( self : Tuple ): return self.mean
81
0
import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy __A = logging.getLogger(__name__) def lowerCAmelCase_ ( __a , __a , __a = None , __a = None , __a = None , __a = None , __a = None , __a = False , ) -> str: """simple docstring""" lowerCamelCase__: int =bnb_quantization_config.load_in_abit lowerCamelCase__: Any =bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( "You have a version of `bitsandbytes` that is not compatible with 8bit quantization," " make sure you have the latest version of `bitsandbytes` installed." ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( "You have a version of `bitsandbytes` that is not compatible with 4bit quantization," "make sure you have the latest version of `bitsandbytes` installed." ) lowerCamelCase__: List[Any] =[] # custom device map if isinstance(__a , __a ) and len(device_map.keys() ) > 1: lowerCamelCase__: Optional[int] =[key for key, value in device_map.items() if value in ["disk", "cpu"]] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: lowerCamelCase__: Any =get_keys_to_not_convert(__a ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(__a ) lowerCamelCase__: List[str] =bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: lowerCamelCase__: List[Any] =[] lowerCamelCase__: int =bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(__a ) # compatibility with peft lowerCamelCase__: List[str] =load_in_abit lowerCamelCase__: int =load_in_abit lowerCamelCase__: Tuple =get_parameter_device(__a ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( "It is not recommended to quantize a loaded model. " "The model should be instantiated under the `init_empty_weights` context manager." ) lowerCamelCase__: Tuple =replace_with_bnb_layers(__a , __a , modules_to_not_convert=__a ) # convert param to the right dtype lowerCamelCase__: Dict =bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: lowerCamelCase__: str =name.replace(".weight" , "" ).replace(".bias" , "" ) lowerCamelCase__: Optional[Any] =getattr(__a , __a , __a ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(__a ): param.to(__a ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError("No GPU found. A GPU is needed for quantization." ) logger.info( F"""The model device type is {model_device.type}. However, cuda is needed for quantization.""" "We move the model to cuda." ) return model elif weights_location is None: raise RuntimeError( F"""`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} """ ) else: with init_empty_weights(): lowerCamelCase__: str =replace_with_bnb_layers( __a , __a , modules_to_not_convert=__a ) lowerCamelCase__: Optional[Any] =get_quantized_model_device_map( __a , __a , __a , max_memory=__a , no_split_module_classes=__a , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): lowerCamelCase__: Any =True lowerCamelCase__: List[str] =any(x in list(device_map.values() ) for x in ["cpu", "disk"] ) load_checkpoint_in_model( __a , __a , __a , dtype=bnb_quantization_config.torch_dtype , offload_folder=__a , offload_state_dict=__a , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(__a , device_map=__a , offload_dir=__a ) def lowerCAmelCase_ ( __a , __a , __a=None , __a=None , __a=None ) -> str: """simple docstring""" if device_map is None: if torch.cuda.is_available(): lowerCamelCase__: str ={"": torch.cuda.current_device()} else: raise RuntimeError("No GPU found. A GPU is needed for quantization." ) logger.info("The device_map was not initialized." "Setting device_map to `{'':torch.cuda.current_device()}`." ) if isinstance(__a , __a ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( "If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or " "'sequential'." ) lowerCamelCase__: Optional[int] ={} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) lowerCamelCase__: Optional[Any] ={} lowerCamelCase__: str =special_dtypes lowerCamelCase__: List[str] =no_split_module_classes lowerCamelCase__: Dict =bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": lowerCamelCase__: Optional[Any] =get_balanced_memory( __a , low_zero=(device_map == "balanced_low_0") , max_memory=__a , **__a , ) lowerCamelCase__: Union[str, Any] =max_memory lowerCamelCase__: Dict =infer_auto_device_map(__a , **__a ) if isinstance(__a , __a ): # check if don't have any quantized module on the cpu lowerCamelCase__: Union[str, Any] =bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules lowerCamelCase__: List[Any] ={ key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( "\n Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit\n the quantized model. If you want to dispatch the model on the CPU or the disk while keeping\n these modules in `torch_dtype`, you need to pass a custom `device_map` to\n `load_and_quantize_model`. Check\n https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk\n for more details.\n " ) else: logger.info( "Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit" ) del device_map_without_some_modules return device_map def lowerCAmelCase_ ( __a , __a , __a=None , __a=None ) -> Optional[Any]: """simple docstring""" if modules_to_not_convert is None: lowerCamelCase__: List[Any] =[] lowerCamelCase__ , lowerCamelCase__: Any =_replace_with_bnb_layers( __a , __a , __a , __a ) if not has_been_replaced: logger.warning( "You are loading your model in 8bit or 4bit but no linear modules were found in your model." " this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers." " Please double check your model architecture, or submit an issue on github if you think this is" " a bug." ) return model def lowerCAmelCase_ ( __a , __a , __a=None , __a=None , ) -> List[Any]: """simple docstring""" lowerCamelCase__: Optional[int] =False for name, module in model.named_children(): if current_key_name is None: lowerCamelCase__: Optional[Any] =[] current_key_name.append(__a ) if isinstance(__a , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` lowerCamelCase__: List[str] =".".join(__a ) lowerCamelCase__: Optional[Any] =True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: lowerCamelCase__: int =False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: lowerCamelCase__: Optional[int] =bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=__a , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: lowerCamelCase__: Dict =bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError("load_in_8bit and load_in_4bit can't be both False" ) lowerCamelCase__: Dict =module.weight.data if module.bias is not None: lowerCamelCase__: List[Any] =module.bias.data bnb_module.requires_grad_(__a ) setattr(__a , __a , __a ) lowerCamelCase__: int =True if len(list(module.children() ) ) > 0: lowerCamelCase__ , lowerCamelCase__: List[str] =_replace_with_bnb_layers( __a , __a , __a , __a ) lowerCamelCase__: Union[str, Any] =has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def lowerCAmelCase_ ( __a ) -> List[Any]: """simple docstring""" with init_empty_weights(): lowerCamelCase__: Any =deepcopy(__a ) # this has 0 cost since it is done inside `init_empty_weights` context manager` lowerCamelCase__: str =find_tied_parameters(__a ) # For compatibility with Accelerate < 0.18 if isinstance(__a , __a ): lowerCamelCase__: int =sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: lowerCamelCase__: str =sum(__a , [] ) lowerCamelCase__: str =len(__a ) > 0 # Check if it is a base model lowerCamelCase__: Optional[Any] =False if hasattr(__a , "base_model_prefix" ): lowerCamelCase__: Union[str, Any] =not hasattr(__a , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head lowerCamelCase__: Optional[int] =list(model.named_children() ) lowerCamelCase__: Optional[int] =[list_modules[-1][0]] # add last module together with tied weights lowerCamelCase__: Union[str, Any] =set(__a ) - set(__a ) lowerCamelCase__: List[str] =list(set(__a ) ) + list(__a ) # remove ".weight" from the keys lowerCamelCase__: List[Any] =[".weight", ".bias"] lowerCamelCase__: Tuple =[] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: lowerCamelCase__: Optional[Any] =name.replace(__a , "" ) filtered_module_names.append(__a ) return filtered_module_names def lowerCAmelCase_ ( __a ) -> Tuple: """simple docstring""" for m in model.modules(): if isinstance(__a , bnb.nn.Linearabit ): return True return False def lowerCAmelCase_ ( __a ) -> List[str]: """simple docstring""" return next(parameter.parameters() ).device def lowerCAmelCase_ ( __a , __a , __a , __a , __a , __a , __a ) -> Any: """simple docstring""" if fpaa_statistics is None: set_module_tensor_to_device(__a , __a , 0 , dtype=__a , value=__a ) lowerCamelCase__: Dict =param_name lowerCamelCase__: Tuple =model if "." in tensor_name: lowerCamelCase__: Any =tensor_name.split("." ) for split in splits[:-1]: lowerCamelCase__: Any =getattr(__a , __a ) if new_module is None: raise ValueError(F"""{module} has no attribute {split}.""" ) lowerCamelCase__: str =new_module lowerCamelCase__: int =splits[-1] # offload weights lowerCamelCase__: str =False offload_weight(module._parameters[tensor_name] , __a , __a , index=__a ) if hasattr(module._parameters[tensor_name] , "SCB" ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace("weight" , "SCB" ) , __a , index=__a , ) else: offload_weight(__a , __a , __a , index=__a ) offload_weight(__a , param_name.replace("weight" , "SCB" ) , __a , index=__a ) set_module_tensor_to_device(__a , __a , "meta" , dtype=__a , value=torch.empty(*param.size() ) )
59
'''simple docstring''' import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class UpperCAmelCase ( lowercase_): """simple docstring""" def UpperCamelCase__ ( self : str , UpperCamelCase__ : str ) -> Tuple: with open(UpperCamelCase__ , encoding='''utf-8''' ) as input_file: _UpperCamelCase =re.compile(R'''(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)''' ) _UpperCamelCase =input_file.read() _UpperCamelCase =regexp.search(UpperCamelCase__ ) return match def UpperCamelCase__ ( self : Optional[Any] , UpperCamelCase__ : str ) -> str: with open(UpperCamelCase__ , encoding='''utf-8''' ) as input_file: _UpperCamelCase =re.compile(R'''#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()''' , re.DOTALL ) _UpperCamelCase =input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` _UpperCamelCase =regexp.finditer(UpperCamelCase__ ) _UpperCamelCase =[match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def UpperCamelCase__ ( self : int ) -> Optional[Any]: _UpperCamelCase =Path('''./datasets''' ) _UpperCamelCase =list(dataset_paths.absolute().glob('''**/*.py''' ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(UpperCamelCase__ ) ): raise AssertionError(F'''open(...) must use utf-8 encoding in {dataset}''' ) def UpperCamelCase__ ( self : Any ) -> Optional[int]: _UpperCamelCase =Path('''./datasets''' ) _UpperCamelCase =list(dataset_paths.absolute().glob('''**/*.py''' ) ) for dataset in dataset_files: if self._no_print_statements(str(UpperCamelCase__ ) ): raise AssertionError(F'''print statement found in {dataset}. Use datasets.logger/logging instead.''' )
404
0
from typing import TYPE_CHECKING from ...utils import _LazyModule lowercase : Optional[Any] = {'''tokenization_byt5''': ['''ByT5Tokenizer''']} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys lowercase : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
700
def lowerCAmelCase__ ( _a : int ): if num < 0: return False snake_case_ : int = num snake_case_ : int = 0 while num > 0: snake_case_ : Union[str, Any] = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
114
0
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def _UpperCamelCase ( UpperCamelCase=None ) -> int: """simple docstring""" if subparsers is not None: __UpperCAmelCase : List[str] = subparsers.add_parser("test" ) else: __UpperCAmelCase : Dict = argparse.ArgumentParser("Accelerate test command" ) parser.add_argument( "--config_file" , default=UpperCamelCase , help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) , ) if subparsers is not None: parser.set_defaults(func=UpperCamelCase ) return parser def _UpperCamelCase ( UpperCamelCase ) -> str: """simple docstring""" __UpperCAmelCase : Dict = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["test_utils", "scripts", "test_script.py"] ) if args.config_file is None: __UpperCAmelCase : List[str] = script_name else: __UpperCAmelCase : int = f"--config_file={args.config_file} {script_name}" __UpperCAmelCase : Dict = ["accelerate-launch"] + test_args.split() __UpperCAmelCase : Tuple = execute_subprocess_async(UpperCamelCase , env=os.environ.copy() ) if result.returncode == 0: print("Test is a success! You are ready for your distributed training!" ) def _UpperCamelCase ( ) -> List[Any]: """simple docstring""" __UpperCAmelCase : List[Any] = test_command_parser() __UpperCAmelCase : Any = parser.parse_args() test_command(UpperCamelCase ) if __name__ == "__main__": main()
77
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class a__ ( unittest.TestCase ): def __init__( self : Optional[Any] , UpperCamelCase_ : int , UpperCamelCase_ : Any=13 , UpperCamelCase_ : Optional[int]=3 , UpperCamelCase_ : int=224 , UpperCamelCase_ : int=30 , UpperCamelCase_ : str=400 , UpperCamelCase_ : List[Any]=True , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : Optional[int]=True , UpperCamelCase_ : Optional[int]=[0.5, 0.5, 0.5] , UpperCamelCase_ : Optional[Any]=[0.5, 0.5, 0.5] , ): """simple docstring""" __UpperCAmelCase : Tuple = size if size is not None else {"height": 18, "width": 18} __UpperCAmelCase : List[Any] = parent __UpperCAmelCase : Tuple = batch_size __UpperCAmelCase : Tuple = num_channels __UpperCAmelCase : List[Any] = image_size __UpperCAmelCase : str = min_resolution __UpperCAmelCase : Tuple = max_resolution __UpperCAmelCase : Optional[Any] = do_resize __UpperCAmelCase : Any = size __UpperCAmelCase : Any = do_normalize __UpperCAmelCase : Any = image_mean __UpperCAmelCase : Optional[Any] = image_std def a_ ( self : str): """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class a__ ( __magic_name__ , unittest.TestCase ): lowercase_ = ViTImageProcessor if is_vision_available() else None def a_ ( self : Any): """simple docstring""" __UpperCAmelCase : Optional[Any] = EfficientFormerImageProcessorTester(self) @property def a_ ( self : Union[str, Any]): """simple docstring""" return self.image_proc_tester.prepare_image_processor_dict() def a_ ( self : Tuple): """simple docstring""" __UpperCAmelCase : Tuple = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(UpperCamelCase_ , "image_mean")) self.assertTrue(hasattr(UpperCamelCase_ , "image_std")) self.assertTrue(hasattr(UpperCamelCase_ , "do_normalize")) self.assertTrue(hasattr(UpperCamelCase_ , "do_resize")) self.assertTrue(hasattr(UpperCamelCase_ , "size")) def a_ ( self : Dict): """simple docstring""" pass def a_ ( self : Tuple): """simple docstring""" __UpperCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict) # create random PIL images __UpperCAmelCase : str = prepare_image_inputs(self.image_proc_tester , equal_resolution=UpperCamelCase_) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , Image.Image) # Test not batched input __UpperCAmelCase : Optional[int] = image_processor(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) # Test batched __UpperCAmelCase : Optional[int] = image_processor(UpperCamelCase_ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) def a_ ( self : Tuple): """simple docstring""" __UpperCAmelCase : int = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors __UpperCAmelCase : Union[str, Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=UpperCamelCase_ , numpify=UpperCamelCase_) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , np.ndarray) # Test not batched input __UpperCAmelCase : Tuple = image_processor(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) # Test batched __UpperCAmelCase : Any = image_processor(UpperCamelCase_ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) def a_ ( self : Any): """simple docstring""" __UpperCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors __UpperCAmelCase : Any = prepare_image_inputs(self.image_proc_tester , equal_resolution=UpperCamelCase_ , torchify=UpperCamelCase_) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , torch.Tensor) # Test not batched input __UpperCAmelCase : Optional[Any] = image_processor(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) # Test batched __UpperCAmelCase : Optional[int] = image_processor(UpperCamelCase_ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , )
77
1
def UpperCAmelCase ( _lowerCamelCase = 400_0000 ): A : Dict = [0, 1] A : str = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 A : Optional[int] = 0 for j in range(len(_lowerCamelCase ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(F"""{solution() = }""")
704
import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed __SCREAMING_SNAKE_CASE = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(F"""{bindir}/../../examples/pytorch/translation"""): from run_translation import main # noqa set_seed(42) __SCREAMING_SNAKE_CASE = """sshleifer/student_marian_en_ro_6_1""" __SCREAMING_SNAKE_CASE = """sshleifer/tiny-mbart""" @require_torch class lowerCamelCase_ ( _A ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , __lowerCamelCase : Optional[Any]=False , __lowerCamelCase : str=None , __lowerCamelCase : List[str]=True , __lowerCamelCase : str=True , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Optional[int]=True , ) -> Dict: A : str = self.run_trainer( eval_steps=1 , max_len=12 , model_name=__lowerCamelCase , num_train_epochs=1 , distributed=__lowerCamelCase , extra_args_str=__lowerCamelCase , predict_with_generate=__lowerCamelCase , do_train=__lowerCamelCase , do_eval=__lowerCamelCase , do_predict=__lowerCamelCase , ) A : Dict = TrainerState.load_from_json(os.path.join(__lowerCamelCase , "trainer_state.json" ) ).log_history if not do_eval: return A : List[Any] = [log for log in logs if "eval_loss" in log.keys()] A : Any = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats A : List[str] = eval_metrics[-1] assert isinstance(last_step_stats["eval_bleu"] , __lowerCamelCase ) assert not math.isnan(float(last_step_stats["eval_loss"] ) ), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> List[Any]: self.run_seqaseq_quick() @require_torch_multi_gpu def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> int: self.run_seqaseq_quick(distributed=__lowerCamelCase ) @require_torch_multi_gpu def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> str: self.run_seqaseq_quick(distributed=__lowerCamelCase ) @unittest.skip("Requires an update of the env running those tests" ) @require_torch_multi_gpu @require_fairscale def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> List[Any]: self.run_seqaseq_quick(distributed=__lowerCamelCase , extra_args_str="--sharded_ddp simple" ) @unittest.skip("Requires an update of the env running those tests" ) @require_torch_multi_gpu @require_fairscale def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> str: self.run_seqaseq_quick(distributed=__lowerCamelCase , extra_args_str="--sharded_ddp simple --fp16" ) @unittest.skip("Requires an update of the env running those tests" ) @require_torch_multi_gpu @require_fairscale def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> int: self.run_seqaseq_quick(distributed=__lowerCamelCase , extra_args_str="--sharded_ddp zero_dp_2" , predict_with_generate=__lowerCamelCase ) @unittest.skip("Requires an update of the env running those tests" ) @require_torch_multi_gpu @require_fairscale def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> List[str]: self.run_seqaseq_quick( distributed=__lowerCamelCase , extra_args_str="--sharded_ddp zero_dp_2 --fp16" , predict_with_generate=__lowerCamelCase ) @require_apex @require_torch_gpu def SCREAMING_SNAKE_CASE__ ( self : int ) -> Dict: # XXX: apex breaks the trainer if it's run twice e.g. run_seq2seq.main() from the same # program and it breaks other tests that run from the same pytest worker, therefore until this is # sorted out it must be run only in an external program, that is distributed=True in this # test and only under one or more gpus - if we want cpu will need to make a special test # # specifically to the problem traced it to self.optimizer.step() - if it's run 2nd time via # 2nd main() call it botches the future eval. # self.run_seqaseq_quick(distributed=__lowerCamelCase , extra_args_str="--fp16 --fp16_backend=apex" ) # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=__lowerCamelCase , extra_args_str="--fp16 --fp16_backend=apex" ) @parameterized.expand(["base", "low", "high", "mixed"] ) @require_torch_multi_gpu def SCREAMING_SNAKE_CASE__ ( self : str , __lowerCamelCase : List[str] ) -> Tuple: # as each sub-test is slow-ish split into multiple sub-tests to avoid CI timeout A : Dict = { # test with the default log_level - should be info and thus log info once "base": {"extra_args_str": "", "n_matches": 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes "low": {"extra_args_str": "--log_level debug --log_level_replica debug", "n_matches": 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica "high": {"extra_args_str": "--log_level error --log_level_replica debug", "n_matches": 1}, # test with high log_level and log_level_replica - should be quiet on all processes "mixed": {"extra_args_str": "--log_level error --log_level_replica error", "n_matches": 0}, } A : List[str] = experiments[experiment_id] A : Union[str, Any] = {"distributed": True, "predict_with_generate": False, "do_eval": False, "do_predict": False} A : Union[str, Any] = "Running training" with CaptureStderr() as cl: self.run_seqaseq_quick(**__lowerCamelCase , extra_args_str=data["extra_args_str"] ) A : Dict = len(re.findall(__lowerCamelCase , cl.err ) ) self.assertEqual(__lowerCamelCase , data["n_matches"] ) @slow def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Optional[int]: A : int = self.run_trainer( eval_steps=2 , max_len=1_28 , model_name=__lowerCamelCase , learning_rate=3e-4 , num_train_epochs=10 , distributed=__lowerCamelCase , ) # Check metrics A : str = TrainerState.load_from_json(os.path.join(__lowerCamelCase , "trainer_state.json" ) ).log_history A : Dict = [log for log in logs if "eval_loss" in log.keys()] A : Dict = eval_metrics[0] A : int = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats["eval_bleu"] , __lowerCamelCase ) # test if do_predict saves generations and metrics A : Optional[Any] = os.listdir(__lowerCamelCase ) A : Any = {os.path.basename(__lowerCamelCase ) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> List[str]: from transformers.training_args import OptimizerNames def train_and_return_metrics(__lowerCamelCase : str ) -> Tuple[int, float]: A : Optional[int] = "--skip_memory_metrics 0" A : str = self.run_trainer( max_len=1_28 , model_name=__lowerCamelCase , learning_rate=3e-4 , num_train_epochs=1 , optim=__lowerCamelCase , distributed=__lowerCamelCase , extra_args_str=__lowerCamelCase , do_eval=__lowerCamelCase , do_predict=__lowerCamelCase , n_gpus_to_use=1 , ) # Check metrics A : Union[str, Any] = TrainerState.load_from_json(Path(__lowerCamelCase , "trainer_state.json" ) ).log_history A : str = int(logs[0]["train_mem_gpu_peaked_delta"] / 2**20 ) A : List[Any] = int(logs[0]["train_mem_gpu_alloc_delta"] / 2**20 ) A : int = logs[0]["train_loss"] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss A , A , A : int = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value ) A , A , A : Optional[int] = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value ) A : Tuple = gpu_alloc_mem_orig - gpu_alloc_mem_bnb A : Dict = gpu_peak_mem_orig + gpu_alloc_mem_orig A : Dict = gpu_peak_mem_bnb + gpu_alloc_mem_bnb A : int = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings A : Tuple = 1_20 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( __lowerCamelCase , __lowerCamelCase , "should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got" F""" a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and""" F""" gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB""" , ) self.assertGreater( __lowerCamelCase , __lowerCamelCase , "should use ~150MB less total gpu memory with BNB, compared to without it for this model but got" F""" a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and""" F""" gpu_total_mem_bnb={gpu_total_mem_bnb}MB""" , ) self.assertEqual( __lowerCamelCase , __lowerCamelCase , F"""loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}""" ) def SCREAMING_SNAKE_CASE__ ( self : str , __lowerCamelCase : int , __lowerCamelCase : str , __lowerCamelCase : int , __lowerCamelCase : float = 3e-3 , __lowerCamelCase : str = "adafactor" , __lowerCamelCase : bool = False , __lowerCamelCase : str = None , __lowerCamelCase : int = 0 , __lowerCamelCase : bool = True , __lowerCamelCase : bool = True , __lowerCamelCase : bool = True , __lowerCamelCase : bool = True , __lowerCamelCase : int = None , ) -> List[str]: A : Optional[int] = self.test_file_dir / "../fixtures/tests_samples/wmt_en_ro" A : Optional[int] = self.get_auto_remove_tmp_dir() A : int = F""" --model_name_or_path {model_name} --train_file {data_dir}/train.json --validation_file {data_dir}/val.json --test_file {data_dir}/test.json --output_dir {output_dir} --overwrite_output_dir --max_train_samples 8 --max_source_length {max_len} --max_target_length {max_len} --do_train --num_train_epochs {str(__lowerCamelCase )} --per_device_train_batch_size 4 --learning_rate {learning_rate} --warmup_steps 8 --logging_steps 0 --logging_strategy no --save_steps {str(__lowerCamelCase )} --group_by_length --label_smoothing_factor 0.1 --target_lang ro_RO --source_lang en_XX """.split() A : Optional[Any] = F""" --do_eval --per_device_eval_batch_size 4 --max_eval_samples 8 --val_max_target_length {max_len} --evaluation_strategy steps --eval_steps {str(__lowerCamelCase )} """.split() A : Optional[Any] = "\n --do_predict\n ".split() A : Optional[int] = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += F"""--optim {optim}""".split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: A : Dict = get_gpu_count() A : Any = get_torch_dist_unique_port() A : Optional[Any] = F""" -m torch.distributed.run --nproc_per_node={n_gpus_to_use} --master_port={master_port} {self.examples_dir_str}/pytorch/translation/run_translation.py """.split() A : Any = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(__lowerCamelCase , env=self.get_env() ) else: A : List[Any] = ["run_translation.py"] + args with patch.object(__lowerCamelCase , "argv" , __lowerCamelCase ): main() return output_dir
17
0
from __future__ import annotations from random import choice def __A ( __lowerCamelCase ) -> List[Any]: return choice(__lowerCamelCase ) def __A ( __lowerCamelCase , __lowerCamelCase ) -> int: a = random_pivot(__lowerCamelCase ) # partition based on pivot # linear time a = [e for e in lst if e < pivot] a = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(__lowerCamelCase ) == k - 1: return pivot # pivot is in elements bigger than k elif len(__lowerCamelCase ) < k - 1: return kth_number(__lowerCamelCase , k - len(__lowerCamelCase ) - 1 ) # pivot is in elements smaller than k else: return kth_number(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
468
import operator as op __UpperCamelCase : Optional[Any] = "scaler.pt" __UpperCamelCase : Optional[Any] = "pytorch_model" __UpperCamelCase : str = "random_states" __UpperCamelCase : Optional[int] = "optimizer" __UpperCamelCase : Optional[int] = "scheduler" __UpperCamelCase : str = "pytorch_model.bin" __UpperCamelCase : List[str] = "pytorch_model.bin.index.json" __UpperCamelCase : List[str] = "model.safetensors" __UpperCamelCase : Optional[int] = "model.safetensors.index.json" __UpperCamelCase : List[str] = "1.10.2" __UpperCamelCase : Dict = "py38" __UpperCamelCase : List[str] = "4.17.0" __UpperCamelCase : Any = ["ml.p3.16xlarge", "ml.p3dn.24xlarge", "ml.p4dn.24xlarge"] __UpperCamelCase : Any = ["FULL_SHARD", "SHARD_GRAD_OP", "NO_SHARD", "HYBRID_SHARD", "HYBRID_SHARD_ZERO2"] __UpperCamelCase : int = ["TRANSFORMER_BASED_WRAP", "SIZE_BASED_WRAP", "NO_WRAP"] __UpperCamelCase : Dict = ["BACKWARD_PRE", "BACKWARD_POST", "NO_PREFETCH"] __UpperCamelCase : str = ["FULL_STATE_DICT", "LOCAL_STATE_DICT", "SHARDED_STATE_DICT"] __UpperCamelCase : List[Any] = "2.0.1" __UpperCamelCase : int = ["pdsh", "standard", "openmpi", "mvapich"] __UpperCamelCase : List[str] = ["default", "reduce-overhead", "max-autotune"] __UpperCamelCase : List[Any] = {">": op.gt, ">=": op.ge, "==": op.eq, "!=": op.ne, "<=": op.le, "<": op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 __UpperCamelCase : List[Any] = [ "nnodes", "nproc_per_node", "rdzv_backend", "rdzv_endpoint", "rdzv_id", "rdzv_conf", "standalone", "max_restarts", "monitor_interval", "start_method", "role", "module", "m", "no_python", "run_path", "log_dir", "r", "redirects", "t", "tee", "node_rank", "master_addr", "master_port", ] __UpperCamelCase : List[str] = ["DEEPSPEED", "MULTI_GPU", "FSDP", "MEGATRON_LM"] __UpperCamelCase : int = ["DEEPSPEED", "MULTI_XPU", "FSDP"]
468
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available SCREAMING_SNAKE_CASE : Tuple = { "configuration_poolformer": [ "POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "PoolFormerConfig", "PoolFormerOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Dict = ["PoolFormerFeatureExtractor"] SCREAMING_SNAKE_CASE : List[Any] = ["PoolFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Union[str, Any] = [ "POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "PoolFormerForImageClassification", "PoolFormerModel", "PoolFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure)
714
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class _lowerCamelCase( _a ): lowercase_ : List[Any] = (DPMSolverSinglestepScheduler,) lowercase_ : List[str] = (("""num_inference_steps""", 25),) def UpperCamelCase ( self, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" _lowercase : Optional[Any] = { 'num_train_timesteps': 10_00, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', 'solver_order': 2, 'prediction_type': 'epsilon', 'thresholding': False, 'sample_max_value': 1.0, 'algorithm_type': 'dpmsolver++', 'solver_type': 'midpoint', 'lambda_min_clipped': -float('inf'), 'variance_type': None, } config.update(**lowerCamelCase) return config def UpperCamelCase ( self, lowerCamelCase=0, **lowerCamelCase) -> Any: """simple docstring""" _lowercase : Dict = dict(self.forward_default_kwargs) _lowercase : Union[str, Any] = kwargs.pop('num_inference_steps', lowerCamelCase) _lowercase : Optional[int] = self.dummy_sample _lowercase : Optional[int] = 0.1 * sample _lowercase : Optional[int] = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: _lowercase : Any = self.get_scheduler_config(**lowerCamelCase) _lowercase : List[Any] = scheduler_class(**lowerCamelCase) scheduler.set_timesteps(lowerCamelCase) # copy over dummy past residuals _lowercase : List[str] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase) _lowercase : Optional[Any] = scheduler_class.from_pretrained(lowerCamelCase) new_scheduler.set_timesteps(lowerCamelCase) # copy over dummy past residuals _lowercase : List[Any] = dummy_past_residuals[: new_scheduler.config.solver_order] _lowercase , _lowercase : List[Any] = sample, sample for t in range(lowerCamelCase, time_step + scheduler.config.solver_order + 1): _lowercase : Dict = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase).prev_sample _lowercase : int = new_scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" pass def UpperCamelCase ( self, lowerCamelCase=0, **lowerCamelCase) -> str: """simple docstring""" _lowercase : Optional[int] = dict(self.forward_default_kwargs) _lowercase : List[str] = kwargs.pop('num_inference_steps', lowerCamelCase) _lowercase : List[str] = self.dummy_sample _lowercase : str = 0.1 * sample _lowercase : Optional[Any] = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: _lowercase : Any = self.get_scheduler_config() _lowercase : List[str] = scheduler_class(**lowerCamelCase) scheduler.set_timesteps(lowerCamelCase) # copy over dummy past residuals (must be after setting timesteps) _lowercase : List[str] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase) _lowercase : List[Any] = scheduler_class.from_pretrained(lowerCamelCase) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCamelCase) # copy over dummy past residual (must be after setting timesteps) _lowercase : List[str] = dummy_past_residuals[: new_scheduler.config.solver_order] _lowercase : Optional[int] = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase).prev_sample _lowercase : List[Any] = new_scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase ( self, lowerCamelCase=None, **lowerCamelCase) -> Optional[Any]: """simple docstring""" if scheduler is None: _lowercase : str = self.scheduler_classes[0] _lowercase : int = self.get_scheduler_config(**lowerCamelCase) _lowercase : Optional[Any] = scheduler_class(**lowerCamelCase) _lowercase : List[Any] = self.scheduler_classes[0] _lowercase : Optional[int] = self.get_scheduler_config(**lowerCamelCase) _lowercase : Optional[Any] = scheduler_class(**lowerCamelCase) _lowercase : List[Any] = 10 _lowercase : List[str] = self.dummy_model() _lowercase : Dict = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase) for i, t in enumerate(scheduler.timesteps): _lowercase : Optional[int] = model(lowerCamelCase, lowerCamelCase) _lowercase : Optional[int] = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase).prev_sample return sample def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Dict = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) _lowercase : Optional[int] = 50 _lowercase : Union[str, Any] = self.dummy_model() _lowercase : Tuple = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:]): _lowercase : Optional[Any] = model(lowerCamelCase, lowerCamelCase) _lowercase : int = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase).prev_sample _lowercase : Optional[int] = torch.mean(torch.abs(lowerCamelCase)) assert abs(result_mean.item() - 0.2_5_7_4) < 1E-3 def UpperCamelCase ( self) -> Tuple: """simple docstring""" for timesteps in [25, 50, 1_00, 9_99, 10_00]: self.check_over_configs(num_train_timesteps=lowerCamelCase) def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : List[str] = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) _lowercase : List[str] = self.full_loop(scheduler=lowerCamelCase) _lowercase : str = torch.mean(torch.abs(lowerCamelCase)) assert abs(result_mean.item() - 0.2_7_9_1) < 1E-3 _lowercase : str = DEISMultistepScheduler.from_config(scheduler.config) _lowercase : List[str] = DPMSolverMultistepScheduler.from_config(scheduler.config) _lowercase : Tuple = UniPCMultistepScheduler.from_config(scheduler.config) _lowercase : Any = DPMSolverSinglestepScheduler.from_config(scheduler.config) _lowercase : Any = self.full_loop(scheduler=lowerCamelCase) _lowercase : Optional[int] = torch.mean(torch.abs(lowerCamelCase)) assert abs(result_mean.item() - 0.2_7_9_1) < 1E-3 def UpperCamelCase ( self) -> List[str]: """simple docstring""" self.check_over_configs(thresholding=lowerCamelCase) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=lowerCamelCase, prediction_type=lowerCamelCase, sample_max_value=lowerCamelCase, algorithm_type='dpmsolver++', solver_order=lowerCamelCase, solver_type=lowerCamelCase, ) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase) def UpperCamelCase ( self) -> List[Any]: """simple docstring""" for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=lowerCamelCase, solver_type=lowerCamelCase, prediction_type=lowerCamelCase, algorithm_type=lowerCamelCase, ) _lowercase : Optional[Any] = self.full_loop( solver_order=lowerCamelCase, solver_type=lowerCamelCase, prediction_type=lowerCamelCase, algorithm_type=lowerCamelCase, ) assert not torch.isnan(lowerCamelCase).any(), "Samples have nan numbers" def UpperCamelCase ( self) -> str: """simple docstring""" self.check_over_configs(lower_order_final=lowerCamelCase) self.check_over_configs(lower_order_final=lowerCamelCase) def UpperCamelCase ( self) -> List[str]: """simple docstring""" self.check_over_configs(lambda_min_clipped=-float('inf')) self.check_over_configs(lambda_min_clipped=-5.1) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" self.check_over_configs(variance_type=lowerCamelCase) self.check_over_configs(variance_type='learned_range') def UpperCamelCase ( self) -> Dict: """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 10, 50, 1_00, 9_99, 10_00]: self.check_over_forward(num_inference_steps=lowerCamelCase, time_step=0) def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : int = self.full_loop() _lowercase : Union[str, Any] = torch.mean(torch.abs(lowerCamelCase)) assert abs(result_mean.item() - 0.2_7_9_1) < 1E-3 def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : Tuple = self.full_loop(use_karras_sigmas=lowerCamelCase) _lowercase : List[str] = torch.mean(torch.abs(lowerCamelCase)) assert abs(result_mean.item() - 0.2_2_4_8) < 1E-3 def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Tuple = self.full_loop(prediction_type='v_prediction') _lowercase : str = torch.mean(torch.abs(lowerCamelCase)) assert abs(result_mean.item() - 0.1_4_5_3) < 1E-3 def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Tuple = self.full_loop(prediction_type='v_prediction', use_karras_sigmas=lowerCamelCase) _lowercase : str = torch.mean(torch.abs(lowerCamelCase)) assert abs(result_mean.item() - 0.0_6_4_9) < 1E-3 def UpperCamelCase ( self) -> Dict: """simple docstring""" _lowercase : List[Any] = self.scheduler_classes[0] _lowercase : Optional[int] = self.get_scheduler_config(thresholding=lowerCamelCase, dynamic_thresholding_ratio=0) _lowercase : Any = scheduler_class(**lowerCamelCase) _lowercase : str = 10 _lowercase : List[str] = self.dummy_model() _lowercase : Tuple = self.dummy_sample_deter.half() scheduler.set_timesteps(lowerCamelCase) for i, t in enumerate(scheduler.timesteps): _lowercase : Tuple = model(lowerCamelCase, lowerCamelCase) _lowercase : Dict = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase).prev_sample assert sample.dtype == torch.floataa
354
0
import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = ComputeEnvironment.AMAZON_SAGEMAKER _snake_case = True _snake_case = """ml.p3.2xlarge""" _snake_case = """accelerate_sagemaker_execution_role""" _snake_case = """hf-sm""" _snake_case = """us-east-1""" _snake_case = 1 _snake_case = """accelerate-sagemaker-1""" _snake_case = """1.6""" _snake_case = """4.4""" _snake_case = """train.py""" _snake_case = [ """--model_name_or_path""", """bert""", """--do_train""", """False""", """--epochs""", """3""", """--learning_rate""", """5e-5""", """--max_steps""", """50.5""", ] _snake_case = [ """--model_name_or_path""", """bert""", """--do_train""", """--do_test""", """False""", """--do_predict""", """--epochs""", """3""", """--learning_rate""", """5e-5""", """--max_steps""", """50.5""", ] class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> List[Any]: # If no defaults are changed, `to_kwargs` returns an empty dict. snake_case : List[str] = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args ) assert isinstance(converted_args["""model_name_or_path"""] , A ) assert isinstance(converted_args["""do_train"""] , A ) assert isinstance(converted_args["""epochs"""] , A ) assert isinstance(converted_args["""learning_rate"""] , A ) assert isinstance(converted_args["""max_steps"""] , A ) with pytest.raises(A ): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
587
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase : List[Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} lowerCamelCase : Any = { 'vocab_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/vocab.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/vocab.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/vocab.json', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json', 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json' ), }, 'merges_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/merges.txt', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/merges.txt', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/merges.txt', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt', 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt' ), }, 'tokenizer_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/tokenizer.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/tokenizer.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json', 'roberta-base-openai-detector': ( 'https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json' ), 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json' ), }, } lowerCamelCase : Optional[Any] = { 'roberta-base': 5_1_2, 'roberta-large': 5_1_2, 'roberta-large-mnli': 5_1_2, 'distilroberta-base': 5_1_2, 'roberta-base-openai-detector': 5_1_2, 'roberta-large-openai-detector': 5_1_2, } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = ["""input_ids""", """attention_mask"""] _snake_case = RobertaTokenizer def __init__( self , A=None , A=None , A=None , A="replace" , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A="<mask>" , A=False , A=True , **A , ) -> Optional[int]: super().__init__( A , A , tokenizer_file=A , errors=A , bos_token=A , eos_token=A , sep_token=A , cls_token=A , unk_token=A , pad_token=A , mask_token=A , add_prefix_space=A , trim_offsets=A , **A , ) snake_case : Union[str, Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , A ) != add_prefix_space: snake_case : Dict = getattr(A , pre_tok_state.pop("""type""" ) ) snake_case : List[str] = add_prefix_space snake_case : Tuple = pre_tok_class(**A ) snake_case : Tuple = add_prefix_space snake_case : int = """post_processor""" snake_case : int = getattr(self.backend_tokenizer , A , A ) if tokenizer_component_instance: snake_case : Union[str, Any] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: snake_case : Dict = tuple(state["""sep"""] ) if "cls" in state: snake_case : Optional[int] = tuple(state["""cls"""] ) snake_case : List[str] = False if state.get("""add_prefix_space""" , A ) != add_prefix_space: snake_case : Tuple = add_prefix_space snake_case : List[str] = True if state.get("""trim_offsets""" , A ) != trim_offsets: snake_case : Any = trim_offsets snake_case : int = True if changes_to_apply: snake_case : str = getattr(A , state.pop("""type""" ) ) snake_case : Any = component_class(**A ) setattr(self.backend_tokenizer , A , A ) @property def UpperCAmelCase ( self ) -> str: if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def UpperCAmelCase ( self , A ) -> Any: snake_case : Dict = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else value snake_case : int = value def UpperCAmelCase ( self , *A , **A ) -> BatchEncoding: snake_case : List[Any] = kwargs.get("""is_split_into_words""" , A ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*A , **A ) def UpperCAmelCase ( self , *A , **A ) -> BatchEncoding: snake_case : str = kwargs.get("""is_split_into_words""" , A ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*A , **A ) def UpperCAmelCase ( self , A , A = None ) -> Tuple[str]: snake_case : List[Any] = self._tokenizer.model.save(A , name=A ) return tuple(A ) def UpperCAmelCase ( self , A , A=None ) -> Any: snake_case : int = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def UpperCAmelCase ( self , A , A = None ) -> List[int]: snake_case : Dict = [self.sep_token_id] snake_case : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
587
1
"""simple docstring""" from __future__ import annotations from random import random class __magic_name__ : '''simple docstring''' def __init__( self , _a = None ): """simple docstring""" lowerCamelCase = value lowerCamelCase = random() lowerCamelCase = None lowerCamelCase = None def __repr__( self ): """simple docstring""" from pprint import pformat if self.left is None and self.right is None: return f'\'{self.value}: {self.prior:.5}\'' else: return pformat( {f'{self.value}: {self.prior:.5}': (self.left, self.right)} , indent=1 ) def __str__( self ): """simple docstring""" lowerCamelCase = str(self.value ) + """ """ lowerCamelCase = str(self.left or """""" ) lowerCamelCase = str(self.right or """""" ) return value + left + right def a__ ( snake_case__ , snake_case__ ) -> List[Any]: if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: lowerCamelCase , lowerCamelCase = split(root.left , _lowerCAmelCase ) return left, root else: lowerCamelCase , lowerCamelCase = split(root.right , _lowerCAmelCase ) return root, right def a__ ( snake_case__ , snake_case__ ) -> int: if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: lowerCamelCase = merge(left.right , _lowerCAmelCase ) return left else: lowerCamelCase = merge(_lowerCAmelCase , right.left ) return right def a__ ( snake_case__ , snake_case__ ) -> str: lowerCamelCase = Node(_lowerCAmelCase ) lowerCamelCase , lowerCamelCase = split(_lowerCAmelCase , _lowerCAmelCase ) return merge(merge(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) def a__ ( snake_case__ , snake_case__ ) -> Dict: lowerCamelCase , lowerCamelCase = split(_lowerCAmelCase , value - 1 ) lowerCamelCase , lowerCamelCase = split(_lowerCAmelCase , _lowerCAmelCase ) return merge(_lowerCAmelCase , _lowerCAmelCase ) def a__ ( snake_case__ ) -> List[str]: if not root: # None return else: inorder(root.left ) print(root.value , end=""",""" ) inorder(root.right ) def a__ ( snake_case__ , snake_case__ ) -> int: for arg in args.split(): if arg[0] == "+": lowerCamelCase = insert(_lowerCAmelCase , int(arg[1:] ) ) elif arg[0] == "-": lowerCamelCase = erase(_lowerCAmelCase , int(arg[1:] ) ) else: print("""Unknown command""" ) return root def a__ ( ) -> Optional[Any]: lowerCamelCase = None print( """enter numbers to create a tree, + value to add value into treap, """ """- value to erase all nodes with value. \'q\' to quit. """ ) lowerCamelCase = input() while args != "q": lowerCamelCase = interact_treap(_lowerCAmelCase , _lowerCAmelCase ) print(_lowerCAmelCase ) lowerCamelCase = input() print("""good by!""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
701
"""simple docstring""" from __future__ import annotations lowerCAmelCase : str = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] lowerCAmelCase : Dict = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def a__ ( snake_case__ ) -> list[float]: lowerCamelCase = [] lowerCamelCase = len(snake_case__ ) for i in range(snake_case__ ): lowerCamelCase = -1 for j in range(i + 1 , snake_case__ ): if arr[i] < arr[j]: lowerCamelCase = arr[j] break result.append(snake_case__ ) return result def a__ ( snake_case__ ) -> list[float]: lowerCamelCase = [] for i, outer in enumerate(snake_case__ ): lowerCamelCase = -1 for inner in arr[i + 1 :]: if outer < inner: lowerCamelCase = inner break result.append(snake_case__ ) return result def a__ ( snake_case__ ) -> list[float]: lowerCamelCase = len(snake_case__ ) lowerCamelCase = [] lowerCamelCase = [-1] * arr_size for index in reversed(range(snake_case__ ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: lowerCamelCase = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) lowerCAmelCase : Dict = ( """from __main__ import arr, next_greatest_element_slow, """ """next_greatest_element_fast, next_greatest_element""" ) print( """next_greatest_element_slow():""", timeit("""next_greatest_element_slow(arr)""", setup=setup), ) print( """next_greatest_element_fast():""", timeit("""next_greatest_element_fast(arr)""", setup=setup), ) print( """ next_greatest_element():""", timeit("""next_greatest_element(arr)""", setup=setup), )
533
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__=False ) -> Tuple: a_ : Tuple = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" a_ : Tuple = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__=False ) -> int: for i in range(config.num_hidden_layers ): if base_model: a_ : int = '''''' else: a_ : Optional[Any] = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) a_ : List[Any] = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) a_ : int = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict a_ : str = in_proj_weight[ : config.hidden_size, : ] a_ : List[Any] = in_proj_bias[: config.hidden_size] a_ : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] a_ : Dict = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] a_ : Optional[int] = in_proj_weight[ -config.hidden_size :, : ] a_ : Dict = in_proj_bias[-config.hidden_size :] def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__ ) -> str: a_ : Optional[Any] = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: a_ : Optional[Any] = dct.pop(SCREAMING_SNAKE_CASE__ ) a_ : Any = val def lowerCAmelCase_ ( ) -> Tuple: a_ : str = '''http://images.cocodataset.org/val2017/000000039769.jpg''' a_ : Any = Image.open(requests.get(SCREAMING_SNAKE_CASE__, stream=SCREAMING_SNAKE_CASE__ ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) -> List[Any]: a_ : Any = ViTConfig() a_ : List[str] = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": a_ : Tuple = True a_ : Any = int(vit_name[-12:-10] ) a_ : int = int(vit_name[-9:-6] ) else: a_ : Optional[int] = 1_000 a_ : Any = '''huggingface/label-files''' a_ : List[Any] = '''imagenet-1k-id2label.json''' a_ : Any = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, repo_type="dataset" ), "r" ) ) a_ : Union[str, Any] = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} a_ : str = idalabel a_ : int = {v: k for k, v in idalabel.items()} a_ : List[str] = int(vit_name[-6:-4] ) a_ : int = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith("tiny" ): a_ : Union[str, Any] = 192 a_ : Optional[int] = 768 a_ : Optional[Any] = 12 a_ : str = 3 elif vit_name[9:].startswith("small" ): a_ : str = 384 a_ : int = 1_536 a_ : List[str] = 12 a_ : int = 6 else: pass else: if vit_name[4:].startswith("small" ): a_ : int = 768 a_ : Any = 2_304 a_ : Optional[int] = 8 a_ : Union[str, Any] = 8 elif vit_name[4:].startswith("base" ): pass elif vit_name[4:].startswith("large" ): a_ : Optional[int] = 1_024 a_ : str = 4_096 a_ : Dict = 24 a_ : int = 16 elif vit_name[4:].startswith("huge" ): a_ : str = 1_280 a_ : int = 5_120 a_ : Optional[int] = 32 a_ : Dict = 16 # load original model from timm a_ : Optional[int] = timm.create_model(SCREAMING_SNAKE_CASE__, pretrained=SCREAMING_SNAKE_CASE__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys a_ : List[str] = timm_model.state_dict() if base_model: remove_classification_head_(SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = create_rename_keys(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) read_in_q_k_v(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) # load HuggingFace model if vit_name[-5:] == "in21k": a_ : Optional[int] = ViTModel(SCREAMING_SNAKE_CASE__ ).eval() else: a_ : Union[str, Any] = ViTForImageClassification(SCREAMING_SNAKE_CASE__ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE__ ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: a_ : int = DeiTImageProcessor(size=config.image_size ) else: a_ : str = ViTImageProcessor(size=config.image_size ) a_ : str = image_processor(images=prepare_img(), return_tensors="pt" ) a_ : int = encoding['''pixel_values'''] a_ : Dict = model(SCREAMING_SNAKE_CASE__ ) if base_model: a_ : List[str] = timm_model.forward_features(SCREAMING_SNAKE_CASE__ ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(SCREAMING_SNAKE_CASE__, outputs.pooler_output, atol=1e-3 ) else: a_ : Tuple = timm_model(SCREAMING_SNAKE_CASE__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(SCREAMING_SNAKE_CASE__, outputs.logits, atol=1e-3 ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) print(F"""Saving model {vit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_patch16_224""", type=str, help="""Name of the ViT timm model you\'d like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
237
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class _A ( _lowerCamelCase ): _UpperCamelCase : torch.FloatTensor class _A ( _lowerCamelCase , _lowerCamelCase ): @register_to_config def __init__( self : str , _A : int = 65_536 , _A : Optional[int] = None , _A : int = 2 , _A : int = 2 , _A : int = 0 , _A : str = "fourier" , _A : bool = True , _A : bool = False , _A : float = 0.0 , _A : Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , _A : Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , _A : Tuple[str] = "UNetMidBlock1D" , _A : str = None , _A : Tuple[int] = (32, 32, 64) , _A : str = None , _A : int = 8 , _A : int = 1 , _A : bool = False , ) -> Any: """simple docstring""" super().__init__() lowercase : int = sample_size # time if time_embedding_type == "fourier": lowercase : Optional[Any] = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=_A , log=_A , flip_sin_to_cos=_A ) lowercase : List[Any] = 2 * block_out_channels[0] elif time_embedding_type == "positional": lowercase : int = Timesteps( block_out_channels[0] , flip_sin_to_cos=_A , downscale_freq_shift=_A ) lowercase : int = block_out_channels[0] if use_timestep_embedding: lowercase : Tuple = block_out_channels[0] * 4 lowercase : List[str] = TimestepEmbedding( in_channels=_A , time_embed_dim=_A , act_fn=_A , out_dim=block_out_channels[0] , ) lowercase : Optional[int] = nn.ModuleList([] ) lowercase : Tuple = None lowercase : int = nn.ModuleList([] ) lowercase : Union[str, Any] = None # down lowercase : Union[str, Any] = in_channels for i, down_block_type in enumerate(_A ): lowercase : Any = output_channel lowercase : Any = block_out_channels[i] if i == 0: input_channel += extra_in_channels lowercase : Dict = i == len(_A ) - 1 lowercase : int = get_down_block( _A , num_layers=_A , in_channels=_A , out_channels=_A , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(_A ) # mid lowercase : int = get_mid_block( _A , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=_A , add_downsample=_A , ) # up lowercase : Optional[int] = list(reversed(_A ) ) lowercase : Dict = reversed_block_out_channels[0] if out_block_type is None: lowercase : int = out_channels else: lowercase : Optional[int] = block_out_channels[0] for i, up_block_type in enumerate(_A ): lowercase : List[str] = output_channel lowercase : Union[str, Any] = ( reversed_block_out_channels[i + 1] if i < len(_A ) - 1 else final_upsample_channels ) lowercase : Union[str, Any] = i == len(_A ) - 1 lowercase : Tuple = get_up_block( _A , num_layers=_A , in_channels=_A , out_channels=_A , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(_A ) lowercase : Tuple = output_channel # out lowercase : List[str] = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) lowercase : str = get_out_block( out_block_type=_A , num_groups_out=_A , embed_dim=block_out_channels[0] , out_channels=_A , act_fn=_A , fc_dim=block_out_channels[-1] // 4 , ) def __a ( self : Any , _A : torch.FloatTensor , _A : Union[torch.Tensor, float, int] , _A : bool = True , ) -> Union[UNetaDOutput, Tuple]: """simple docstring""" lowercase : int = timestep if not torch.is_tensor(_A ): lowercase : str = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(_A ) and len(timesteps.shape ) == 0: lowercase : Dict = timesteps[None].to(sample.device ) lowercase : str = self.time_proj(_A ) if self.config.use_timestep_embedding: lowercase : int = self.time_mlp(_A ) else: lowercase : List[Any] = timestep_embed[..., None] lowercase : int = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) lowercase : Optional[int] = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down lowercase : int = () for downsample_block in self.down_blocks: lowercase , lowercase : Dict = downsample_block(hidden_states=_A , temb=_A ) down_block_res_samples += res_samples # 3. mid if self.mid_block: lowercase : Optional[int] = self.mid_block(_A , _A ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): lowercase : Optional[Any] = down_block_res_samples[-1:] lowercase : Union[str, Any] = down_block_res_samples[:-1] lowercase : Optional[int] = upsample_block(_A , res_hidden_states_tuple=_A , temb=_A ) # 5. post-process if self.out_block: lowercase : List[Any] = self.out_block(_A , _A ) if not return_dict: return (sample,) return UNetaDOutput(sample=_A )
217
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class __SCREAMING_SNAKE_CASE : def __init__( self , __UpperCamelCase , __UpperCamelCase=13 , __UpperCamelCase=7 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=99 , __UpperCamelCase=32 , __UpperCamelCase=2 , __UpperCamelCase=4 , __UpperCamelCase=37 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=512 , __UpperCamelCase=16 , __UpperCamelCase=2 , __UpperCamelCase=0.02 , __UpperCamelCase=False , __UpperCamelCase=True , __UpperCamelCase="None" , __UpperCamelCase=3 , __UpperCamelCase=4 , __UpperCamelCase=None , ) -> Optional[Any]: _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_input_mask _a = use_token_type_ids _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = type_sequence_label_size _a = initializer_range _a = num_labels _a = num_choices _a = relative_attention _a = position_biased_input _a = pos_att_type _a = scope def a_ ( self ) -> int: _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = None if self.use_input_mask: _a = random_attention_mask([self.batch_size, self.seq_length] ) _a = None if self.use_token_type_ids: _a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a = None _a = None _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=__UpperCamelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Tuple: _a = TFDebertaVaModel(config=__UpperCamelCase ) _a = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _a = [input_ids, input_mask] _a = model(__UpperCamelCase ) _a = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Union[str, Any]: _a = TFDebertaVaForMaskedLM(config=__UpperCamelCase ) _a = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _a = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int: _a = self.num_labels _a = TFDebertaVaForSequenceClassification(config=__UpperCamelCase ) _a = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _a = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> str: _a = self.num_labels _a = TFDebertaVaForTokenClassification(config=__UpperCamelCase ) _a = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _a = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int: _a = TFDebertaVaForQuestionAnswering(config=__UpperCamelCase ) _a = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _a = model(__UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a_ ( self ) -> int: _a = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = config_and_inputs _a = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class __SCREAMING_SNAKE_CASE ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): UpperCAmelCase = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) UpperCAmelCase = ( { '''feature-extraction''': TFDebertaVaModel, '''fill-mask''': TFDebertaVaForMaskedLM, '''question-answering''': TFDebertaVaForQuestionAnswering, '''text-classification''': TFDebertaVaForSequenceClassification, '''token-classification''': TFDebertaVaForTokenClassification, '''zero-shot''': TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) UpperCAmelCase = False UpperCAmelCase = False def a_ ( self ) -> Union[str, Any]: _a = TFDebertaVaModelTester(self ) _a = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=37 ) def a_ ( self ) -> Optional[int]: self.config_tester.run_common_tests() def a_ ( self ) -> Tuple: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def a_ ( self ) -> int: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCamelCase ) def a_ ( self ) -> List[str]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCamelCase ) def a_ ( self ) -> str: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCamelCase ) def a_ ( self ) -> int: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCamelCase ) @slow def a_ ( self ) -> Any: _a = TFDebertaVaModel.from_pretrained("kamalkraj/deberta-v2-xlarge" ) self.assertIsNotNone(__UpperCamelCase ) @require_tf class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @unittest.skip(reason="Model not available yet" ) def a_ ( self ) -> List[Any]: pass @slow def a_ ( self ) -> str: _a = TFDebertaVaModel.from_pretrained("kamalkraj/deberta-v2-xlarge" ) _a = tf.constant([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) _a = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _a = model(__UpperCamelCase , attention_mask=__UpperCamelCase )[0] _a = tf.constant( [[[0.23_56, 0.19_48, 0.03_69], [-0.10_63, 0.35_86, -0.51_52], [-0.63_99, -0.02_59, -0.25_25]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , __UpperCamelCase , atol=1e-4 )
712
'''simple docstring''' import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels lowercase__ = object() # For specifying empty leaf dict `{}` lowercase__ = object() def __UpperCamelCase ( __lowerCamelCase : Tuple , __lowerCamelCase : Tuple ) -> Union[str, Any]: '''simple docstring''' _a = tuple((re.compile(x + "$" ) for x in qs) ) for i in range(len(__lowerCamelCase ) - len(__lowerCamelCase ) + 1 ): _a = [x.match(__lowerCamelCase ) for x, y in zip(__lowerCamelCase , ks[i:] )] if matches and all(__lowerCamelCase ): return True return False def __UpperCamelCase ( __lowerCamelCase : int ) -> Union[str, Any]: '''simple docstring''' def replace(__lowerCamelCase : Tuple , __lowerCamelCase : Any ): for rule, replacement in rules: if _match(__lowerCamelCase , __lowerCamelCase ): return replacement return val return replace def __UpperCamelCase ( ) -> Tuple: '''simple docstring''' return [ # embeddings (("transformer", "wpe", "embedding"), P("mp" , __lowerCamelCase )), (("transformer", "wte", "embedding"), P("mp" , __lowerCamelCase )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(__lowerCamelCase , "mp" )), (("attention", "out_proj", "kernel"), P("mp" , __lowerCamelCase )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(__lowerCamelCase , "mp" )), (("mlp", "c_fc", "bias"), P("mp" )), (("mlp", "c_proj", "kernel"), P("mp" , __lowerCamelCase )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def __UpperCamelCase ( __lowerCamelCase : Dict ) -> Tuple: '''simple docstring''' _a = _get_partition_rules() _a = _replacement_rules(__lowerCamelCase ) _a = {k: _unmatched for k in flatten_dict(__lowerCamelCase )} _a = {k: replace(__lowerCamelCase , __lowerCamelCase ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(__lowerCamelCase ) )
276
0
'''simple docstring''' import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' lowercase : Any =inspect.getfile(accelerate.test_utils ) lowercase : List[str] =os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py'''] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 lowercase : List[str] =test_metrics @require_cpu def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' debug_launcher(self.test_metrics.main ) @require_single_gpu def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' self.test_metrics.main() @require_multi_gpu def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' print(F'''Found {torch.cuda.device_count()} devices.''' ) lowercase : List[str] =['''torchrun''', F'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(UpperCAmelCase__ , env=os.environ.copy() )
92
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { 'tanreinama/GPTSAN-2.8B-spout_is_uniform': ( 'https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json' ), } class a ( __lowerCAmelCase ): """simple docstring""" __lowerCAmelCase = """gptsan-japanese""" __lowerCAmelCase = [ """past_key_values""", ] __lowerCAmelCase = { """hidden_size""": """d_model""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self , snake_case_=3_6000 , snake_case_=1280 , snake_case_=1024 , snake_case_=8192 , snake_case_=4096 , snake_case_=128 , snake_case_=10 , snake_case_=0 , snake_case_=16 , snake_case_=16 , snake_case_=128 , snake_case_=0.0 , snake_case_=1e-5 , snake_case_=False , snake_case_=0.0 , snake_case_="float32" , snake_case_=False , snake_case_=False , snake_case_=False , snake_case_=0.0_0_2 , snake_case_=False , snake_case_=True , snake_case_=3_5998 , snake_case_=3_5995 , snake_case_=3_5999 , **snake_case_ , ): '''simple docstring''' __UpperCAmelCase: Optional[Any] = vocab_size __UpperCAmelCase: List[str] = max_position_embeddings __UpperCAmelCase: List[Any] = d_model __UpperCAmelCase: List[str] = d_ff __UpperCAmelCase: Union[str, Any] = d_ext __UpperCAmelCase: List[Any] = d_spout __UpperCAmelCase: Dict = num_switch_layers __UpperCAmelCase: List[str] = num_ext_layers __UpperCAmelCase: Tuple = num_switch_layers + num_ext_layers __UpperCAmelCase: Any = num_heads __UpperCAmelCase: Optional[Any] = num_experts __UpperCAmelCase: Tuple = expert_capacity __UpperCAmelCase: Tuple = dropout_rate __UpperCAmelCase: Optional[int] = layer_norm_epsilon __UpperCAmelCase: Union[str, Any] = router_bias __UpperCAmelCase: Optional[Any] = router_jitter_noise __UpperCAmelCase: str = router_dtype __UpperCAmelCase: Union[str, Any] = router_ignore_padding_tokens __UpperCAmelCase: Optional[int] = output_hidden_states __UpperCAmelCase: Optional[Any] = output_attentions __UpperCAmelCase: Any = initializer_factor __UpperCAmelCase: Tuple = output_router_logits __UpperCAmelCase: Tuple = use_cache super().__init__( separator_token_id=snake_case_ , pad_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ , )
523
0
import math class UpperCAmelCase__ : """simple docstring""" def lowercase_ ( self : int , __lowerCamelCase : list[list[float]] , __lowerCamelCase : list[int] ) -> int: SCREAMING_SNAKE_CASE__ = 0.0 SCREAMING_SNAKE_CASE__ = 0.0 for i in range(len(__lowerCamelCase ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def lowercase_ ( self : Optional[int] , __lowerCamelCase : list[list[int | float]] , __lowerCamelCase : list[int] , __lowerCamelCase : int , __lowerCamelCase : float ) -> list[list[int | float]]: for i in range(len(__lowerCamelCase ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def UpperCAmelCase_ ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) SCREAMING_SNAKE_CASE__ = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training SCREAMING_SNAKE_CASE__ = SelfOrganizingMap() SCREAMING_SNAKE_CASE__ = 3 SCREAMING_SNAKE_CASE__ = 0.5 for _ in range(_A ): for j in range(len(_A ) ): # training sample SCREAMING_SNAKE_CASE__ = training_samples[j] # Compute the winning vector SCREAMING_SNAKE_CASE__ = self_organizing_map.get_winner(_A , _A ) # Update the winning vector SCREAMING_SNAKE_CASE__ = self_organizing_map.update(_A , _A , _A , _A ) # classify test sample SCREAMING_SNAKE_CASE__ = [0, 0, 0, 1] SCREAMING_SNAKE_CASE__ = self_organizing_map.get_winner(_A , _A ) # results print(F'''Clusters that the test sample belongs to : {winner}''' ) print(F'''Weights that have been trained : {weights}''' ) # running the main() function if __name__ == "__main__": main()
472
def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [] for data in source_data: for i, el in enumerate(_A ): if len(_A ) < i + 1: data_lists.append([] ) data_lists[i].append(float(_A ) ) return data_lists def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [] for dlist, weight in zip(_A , _A ): SCREAMING_SNAKE_CASE__ = min(_A ) SCREAMING_SNAKE_CASE__ = max(_A ) SCREAMING_SNAKE_CASE__ = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: SCREAMING_SNAKE_CASE__ = F'''Invalid weight of {weight:f} provided''' raise ValueError(_A ) score_lists.append(_A ) return score_lists def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(_A ): SCREAMING_SNAKE_CASE__ = final_scores[j] + ele return final_scores def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = get_data(_A ) SCREAMING_SNAKE_CASE__ = calculate_each_score(_A , _A ) SCREAMING_SNAKE_CASE__ = generate_final_scores(_A ) # append scores to source data for i, ele in enumerate(_A ): source_data[i].append(_A ) return source_data
472
1
import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging _snake_case = logging.get_logger(__name__) class _lowerCAmelCase ( __magic_name__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple =["input_values", "attention_mask"] def __init__( self : Any , SCREAMING_SNAKE_CASE__ : int = 1 , SCREAMING_SNAKE_CASE__ : int = 1_60_00 , SCREAMING_SNAKE_CASE__ : float = 0.0 , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : int = 80 , SCREAMING_SNAKE_CASE__ : int = 16 , SCREAMING_SNAKE_CASE__ : int = 64 , SCREAMING_SNAKE_CASE__ : str = "hann_window" , SCREAMING_SNAKE_CASE__ : float = 1.0 , SCREAMING_SNAKE_CASE__ : float = 80 , SCREAMING_SNAKE_CASE__ : float = 76_00 , SCREAMING_SNAKE_CASE__ : float = 1e-10 , SCREAMING_SNAKE_CASE__ : int = 2 , SCREAMING_SNAKE_CASE__ : bool = True , **SCREAMING_SNAKE_CASE__ : List[str] , ): """simple docstring""" super().__init__(feature_size=SCREAMING_SNAKE_CASE__ , sampling_rate=SCREAMING_SNAKE_CASE__ , padding_value=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) UpperCamelCase = do_normalize UpperCamelCase = return_attention_mask UpperCamelCase = num_mel_bins UpperCamelCase = hop_length UpperCamelCase = win_length UpperCamelCase = win_function UpperCamelCase = frame_signal_scale UpperCamelCase = fmin UpperCamelCase = fmax UpperCamelCase = mel_floor UpperCamelCase = reduction_factor UpperCamelCase = win_length * sampling_rate // 10_00 UpperCamelCase = hop_length * sampling_rate // 10_00 UpperCamelCase = optimal_fft_length(self.sample_size ) UpperCamelCase = (self.n_fft // 2) + 1 UpperCamelCase = window_function(window_length=self.sample_size , name=self.win_function , periodic=SCREAMING_SNAKE_CASE__ ) UpperCamelCase = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm='slaney' , mel_scale='slaney' , ) if frame_signal_scale != 1.0: warnings.warn( 'The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers' , SCREAMING_SNAKE_CASE__ , ) if reduction_factor != 2.0: warnings.warn( 'The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers' , SCREAMING_SNAKE_CASE__ , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def __lowerCAmelCase ( SCREAMING_SNAKE_CASE__ : List[np.ndarray] , SCREAMING_SNAKE_CASE__ : List[np.ndarray] , SCREAMING_SNAKE_CASE__ : float = 0.0 ): """simple docstring""" if attention_mask is not None: UpperCamelCase = np.array(SCREAMING_SNAKE_CASE__ , np.intaa ) UpperCamelCase = [] for vector, length in zip(SCREAMING_SNAKE_CASE__ , attention_mask.sum(-1 ) ): UpperCamelCase = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: UpperCamelCase = padding_value normed_input_values.append(SCREAMING_SNAKE_CASE__ ) else: UpperCamelCase = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def __lowerCAmelCase ( self : Tuple , SCREAMING_SNAKE_CASE__ : np.ndarray , ): """simple docstring""" UpperCamelCase = spectrogram( SCREAMING_SNAKE_CASE__ , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel='log10' , ) return log_mel_spec.T def __call__( self : int , SCREAMING_SNAKE_CASE__ : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , SCREAMING_SNAKE_CASE__ : Union[bool, str, PaddingStrategy] = False , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[str, TensorType]] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = None , **SCREAMING_SNAKE_CASE__ : Dict , ): """simple docstring""" if audio is None and audio_target is None: raise ValueError('You must provide either `audio` or `audio_target` values.' ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' F' {self.sampling_rate}. Please make sure that the provided audio input was sampled with' F' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( 'It is strongly recommended to pass the ``sampling_rate`` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) if audio is not None: UpperCamelCase = self._process_audio( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) else: UpperCamelCase = None if audio_target is not None: UpperCamelCase = self._process_audio( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) if inputs is None: return inputs_target else: UpperCamelCase = inputs_target['input_values'] UpperCamelCase = inputs_target.get('attention_mask' ) if decoder_attention_mask is not None: UpperCamelCase = decoder_attention_mask return inputs def __lowerCAmelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : Union[bool, str, PaddingStrategy] = False , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[str, TensorType]] = None , **SCREAMING_SNAKE_CASE__ : List[Any] , ): """simple docstring""" UpperCamelCase = isinstance(SCREAMING_SNAKE_CASE__ , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(F'Only mono-channel audio is supported for input to {self}' ) UpperCamelCase = is_batched_numpy or ( isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: UpperCamelCase = [np.asarray(SCREAMING_SNAKE_CASE__ , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(SCREAMING_SNAKE_CASE__ , np.ndarray ): UpperCamelCase = np.asarray(SCREAMING_SNAKE_CASE__ , dtype=np.floataa ) elif isinstance(SCREAMING_SNAKE_CASE__ , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): UpperCamelCase = speech.astype(np.floataa ) # always return batch if not is_batched: UpperCamelCase = [speech] # needed to make pad() work on spectrogram inputs UpperCamelCase = self.feature_size # convert into correct format for padding if is_target: UpperCamelCase = [self._extract_mel_features(SCREAMING_SNAKE_CASE__ ) for waveform in speech] UpperCamelCase = BatchFeature({'input_values': features} ) UpperCamelCase = self.num_mel_bins else: UpperCamelCase = BatchFeature({'input_values': speech} ) UpperCamelCase = self.pad( SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , pad_to_multiple_of=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) UpperCamelCase = feature_size_hack # convert input values to correct format UpperCamelCase = padded_inputs['input_values'] if not isinstance(input_values[0] , np.ndarray ): UpperCamelCase = [np.asarray(SCREAMING_SNAKE_CASE__ , dtype=np.floataa ) for array in input_values] elif ( not isinstance(SCREAMING_SNAKE_CASE__ , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): UpperCamelCase = [array.astype(np.floataa ) for array in input_values] elif isinstance(SCREAMING_SNAKE_CASE__ , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): UpperCamelCase = input_values.astype(np.floataa ) # convert attention_mask to correct format UpperCamelCase = padded_inputs.get('attention_mask' ) if attention_mask is not None: UpperCamelCase = [np.asarray(SCREAMING_SNAKE_CASE__ , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: UpperCamelCase = ( attention_mask if self._get_padding_strategies(SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ ) is not PaddingStrategy.DO_NOT_PAD else None ) UpperCamelCase = self.zero_mean_unit_var_norm( padded_inputs['input_values'] , attention_mask=SCREAMING_SNAKE_CASE__ , padding_value=self.padding_value ) if return_tensors is not None: UpperCamelCase = padded_inputs.convert_to_tensors(SCREAMING_SNAKE_CASE__ ) return padded_inputs def __lowerCAmelCase ( self : int ): """simple docstring""" UpperCamelCase = super().to_dict() # Don't serialize these as they are derived from the other properties. UpperCamelCase = ['window', 'mel_filters', 'sample_size', 'sample_stride', 'n_fft', 'n_freqs'] for name in names: if name in output: del output[name] return output
282
from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class _lowerCAmelCase : """simple docstring""" # setable values SCREAMING_SNAKE_CASE_ : Optional[int] =None SCREAMING_SNAKE_CASE_ : Optional[jnp.ndarray] =None SCREAMING_SNAKE_CASE_ : Optional[jnp.ndarray] =None # sigma(t_i) @classmethod def __lowerCAmelCase ( cls : Optional[Any] ): """simple docstring""" return cls() @dataclass class _lowerCAmelCase ( __magic_name__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : jnp.ndarray SCREAMING_SNAKE_CASE_ : jnp.ndarray SCREAMING_SNAKE_CASE_ : KarrasVeSchedulerState class _lowerCAmelCase ( __magic_name__ , __magic_name__ ): """simple docstring""" @property def __lowerCAmelCase ( self : Any ): """simple docstring""" return True @register_to_config def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : float = 0.02 , SCREAMING_SNAKE_CASE__ : float = 1_00 , SCREAMING_SNAKE_CASE__ : float = 1.007 , SCREAMING_SNAKE_CASE__ : float = 80 , SCREAMING_SNAKE_CASE__ : float = 0.05 , SCREAMING_SNAKE_CASE__ : float = 50 , ): """simple docstring""" pass def __lowerCAmelCase ( self : int ): """simple docstring""" return KarrasVeSchedulerState.create() def __lowerCAmelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : KarrasVeSchedulerState , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple = () ): """simple docstring""" UpperCamelCase = jnp.arange(0 , SCREAMING_SNAKE_CASE__ )[::-1].copy() UpperCamelCase = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=SCREAMING_SNAKE_CASE__ , schedule=jnp.array(SCREAMING_SNAKE_CASE__ , dtype=jnp.floataa ) , timesteps=SCREAMING_SNAKE_CASE__ , ) def __lowerCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : KarrasVeSchedulerState , SCREAMING_SNAKE_CASE__ : jnp.ndarray , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : random.KeyArray , ): """simple docstring""" if self.config.s_min <= sigma <= self.config.s_max: UpperCamelCase = min(self.config.s_churn / state.num_inference_steps , 2**0.5 - 1 ) else: UpperCamelCase = 0 # sample eps ~ N(0, S_noise^2 * I) UpperCamelCase = random.split(SCREAMING_SNAKE_CASE__ , num=1 ) UpperCamelCase = self.config.s_noise * random.normal(key=SCREAMING_SNAKE_CASE__ , shape=sample.shape ) UpperCamelCase = sigma + gamma * sigma UpperCamelCase = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def __lowerCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : KarrasVeSchedulerState , SCREAMING_SNAKE_CASE__ : jnp.ndarray , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : jnp.ndarray , SCREAMING_SNAKE_CASE__ : bool = True , ): """simple docstring""" UpperCamelCase = sample_hat + sigma_hat * model_output UpperCamelCase = (sample_hat - pred_original_sample) / sigma_hat UpperCamelCase = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=SCREAMING_SNAKE_CASE__ , derivative=SCREAMING_SNAKE_CASE__ , state=SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Tuple , SCREAMING_SNAKE_CASE__ : KarrasVeSchedulerState , SCREAMING_SNAKE_CASE__ : jnp.ndarray , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : jnp.ndarray , SCREAMING_SNAKE_CASE__ : jnp.ndarray , SCREAMING_SNAKE_CASE__ : jnp.ndarray , SCREAMING_SNAKE_CASE__ : bool = True , ): """simple docstring""" UpperCamelCase = sample_prev + sigma_prev * model_output UpperCamelCase = (sample_prev - pred_original_sample) / sigma_prev UpperCamelCase = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=SCREAMING_SNAKE_CASE__ , derivative=SCREAMING_SNAKE_CASE__ , state=SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Any , SCREAMING_SNAKE_CASE__ : KarrasVeSchedulerState , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" raise NotImplementedError()
282
1
'''simple docstring''' from __future__ import annotations def __A ( a_ : list[int] ,a_ : int ): lowerCAmelCase : Any = [] lowerCAmelCase : List[Any] = [] lowerCAmelCase : int = 0 lowerCAmelCase : str = sum(a_ ) create_state_space_tree(a_ ,a_ ,a_ ,a_ ,a_ ,a_ ) return result def __A ( a_ : list[int] ,a_ : int ,a_ : int ,a_ : list[int] ,a_ : list[list[int]] ,a_ : int ,): if sum(a_ ) > max_sum or (remaining_nums_sum + sum(a_ )) < max_sum: return if sum(a_ ) == max_sum: result.append(a_ ) return for index in range(a_ ,len(a_ ) ): create_state_space_tree( a_ ,a_ ,index + 1 ,[*path, nums[index]] ,a_ ,remaining_nums_sum - nums[index] ,) lowerCAmelCase = [3, 34, 4, 12, 5, 2] lowerCAmelCase = 9 lowerCAmelCase = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
702
'''simple docstring''' import numpy as np def __A ( a_ : np.array ): return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
551
0
import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("--user", type=str, default="ubuntu") parser.add_argument("--host", type=str, default="localhost") parser.add_argument("--key_path", type=str, default=None) parser.add_argument("--instance", type=str, default="V100:1") parser.add_argument("--provider", type=str, default="cheapest") parser.add_argument("--use_spot", type=bool, default=False) parser.add_argument("--example", type=str, default="pytorch/text-generation/run_generation.py") _lowerCAmelCase, _lowerCAmelCase = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError("Cannot specify both BYO and on-demand cluster args") _lowerCAmelCase = rh.cluster( name="rh-cluster", ips=[args.host], ssh_creds={"ssh_user": args.user, "ssh_private_key": args.key_path} ) else: _lowerCAmelCase = rh.cluster( name="rh-cluster", instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) _lowerCAmelCase = args.example.rsplit("/", 1)[0] # Set up remote environment cluster.install_packages(["pip:./"]) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([f'pip install -r transformers/examples/{example_dir}/requirements.txt']) cluster.run(["pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117"]) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([f'python transformers/examples/{args.example} {" ".join(shlex.quote(arg) for arg in unknown)}']) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
10
"""simple docstring""" import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch lowerCAmelCase: List[Any] =logging.get_logger(__name__) class lowerCamelCase__ : def __init__( self , snake_case = None , snake_case = None , snake_case=None , snake_case=None ) -> Any: """simple docstring""" if not conversation_id: lowercase : int = uuid.uuida() if past_user_inputs is None: lowercase : Any = [] if generated_responses is None: lowercase : Dict = [] lowercase : uuid.UUID = conversation_id lowercase : List[str] = past_user_inputs lowercase : List[str] = generated_responses lowercase : Optional[str] = text def __eq__( self , snake_case ) -> Any: """simple docstring""" if not isinstance(snake_case , snake_case ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def _UpperCAmelCase ( self , snake_case , snake_case = False ) -> List[Any]: """simple docstring""" if self.new_user_input: if overwrite: logger.warning( f'''User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten ''' f'''with: "{text}".''' ) lowercase : Any = text else: logger.warning( f'''User input added while unprocessed input was existing: "{self.new_user_input}" new input ''' f'''ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input''' ) else: lowercase : Union[str, Any] = text def _UpperCAmelCase ( self ) -> Optional[int]: """simple docstring""" if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) lowercase : Optional[Any] = None def _UpperCAmelCase ( self , snake_case ) -> Tuple: """simple docstring""" self.generated_responses.append(snake_case ) def _UpperCAmelCase ( self ) -> Optional[int]: """simple docstring""" for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self ) -> Union[str, Any]: """simple docstring""" lowercase : Optional[int] = f'''Conversation id: {self.uuid} \n''' for is_user, text in self.iter_texts(): lowercase : Any = """user""" if is_user else """bot""" output += f'''{name} >> {text} \n''' return output @add_end_docstrings( __UpperCamelCase , r""" min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. """ , ) class lowerCamelCase__ ( __UpperCamelCase ): def __init__( self , *snake_case , **snake_case ) -> Optional[Any]: """simple docstring""" super().__init__(*snake_case , **snake_case ) if self.tokenizer.pad_token_id is None: lowercase : Union[str, Any] = self.tokenizer.eos_token def _UpperCAmelCase ( self , snake_case=None , snake_case=None , snake_case=None , **snake_case ) -> Tuple: """simple docstring""" lowercase : int = {} lowercase : Union[str, Any] = {} lowercase : Union[str, Any] = {} if min_length_for_response is not None: lowercase : List[Any] = min_length_for_response if minimum_tokens is not None: lowercase : Dict = minimum_tokens if "max_length" in generate_kwargs: lowercase : List[Any] = generate_kwargs["""max_length"""] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: lowercase : List[str] = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(snake_case ) return preprocess_params, forward_params, postprocess_params def __call__( self , snake_case , snake_case=0 , **snake_case ) -> Optional[int]: """simple docstring""" lowercase : Optional[Any] = super().__call__(snake_case , num_workers=snake_case , **snake_case ) if isinstance(snake_case , snake_case ) and len(snake_case ) == 1: return outputs[0] return outputs def _UpperCAmelCase ( self , snake_case , snake_case=3_2 ) -> Dict[str, Any]: """simple docstring""" if not isinstance(snake_case , snake_case ): raise ValueError("""ConversationalPipeline, expects Conversation as inputs""" ) if conversation.new_user_input is None: raise ValueError( f'''Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. ''' """Add user inputs with the conversation's `add_user_input` method""" ) if hasattr(self.tokenizer , """_build_conversation_input_ids""" ): lowercase : Any = self.tokenizer._build_conversation_input_ids(snake_case ) else: # If the tokenizer cannot handle conversations, we default to only the old version lowercase : Any = self._legacy_parse_and_tokenize(snake_case ) if self.framework == "pt": lowercase : List[str] = torch.LongTensor([input_ids] ) elif self.framework == "tf": lowercase : str = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def _UpperCAmelCase ( self , snake_case , snake_case=1_0 , **snake_case ) -> int: """simple docstring""" lowercase : Any = generate_kwargs.get("""max_length""" , self.model.config.max_length ) lowercase : Tuple = model_inputs["""input_ids"""].shape[1] if max_length - minimum_tokens < n: logger.warning(f'''Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})''' ) lowercase : List[Any] = max_length - minimum_tokens lowercase : Union[str, Any] = model_inputs["""input_ids"""][:, -trim:] if "attention_mask" in model_inputs: lowercase : int = model_inputs["""attention_mask"""][:, -trim:] lowercase : int = model_inputs.pop("""conversation""" ) lowercase : Optional[int] = max_length lowercase : Optional[int] = self.model.generate(**snake_case , **snake_case ) if self.model.config.is_encoder_decoder: lowercase : Union[str, Any] = 1 else: lowercase : List[str] = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def _UpperCAmelCase ( self , snake_case , snake_case=True ) -> List[str]: """simple docstring""" lowercase : int = model_outputs["""output_ids"""] lowercase : str = self.tokenizer.decode( output_ids[0] , skip_special_tokens=snake_case , clean_up_tokenization_spaces=snake_case , ) lowercase : str = model_outputs["""conversation"""] conversation.mark_processed() conversation.append_response(snake_case ) return conversation def _UpperCAmelCase ( self , snake_case ) -> Dict: """simple docstring""" lowercase : Tuple = self.tokenizer.eos_token_id lowercase : int = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(snake_case , add_special_tokens=snake_case ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(snake_case , add_special_tokens=snake_case ) ) if len(snake_case ) > self.tokenizer.model_max_length: lowercase : Union[str, Any] = input_ids[-self.tokenizer.model_max_length :] return input_ids
607
0
'''simple docstring''' from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata snake_case_ : List[str] = '' if version.parse(importlib_metadata.version('jiwer')) < version.parse('2.3.0'): class lowercase__ ( tr.AbstractTransform ): '''simple docstring''' def __init__( self , lowerCamelCase__ = " " ): '''simple docstring''' UpperCamelCase = sentence_delimiter def UpperCAmelCase ( self , lowerCamelCase__ ): '''simple docstring''' return list(lowerCamelCase__ ) def UpperCAmelCase ( self , lowerCamelCase__ ): '''simple docstring''' UpperCamelCase = [] for sent_idx, sentence in enumerate(lowerCamelCase__ ): chars.extend(self.process_string(lowerCamelCase__ ) ) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(lowerCamelCase__ ) - 1: chars.append(self.sentence_delimiter ) return chars snake_case_ : Optional[Any] = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: snake_case_ : Union[str, Any] = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) snake_case_ : List[str] = '\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n' snake_case_ : Tuple = '\\nCharacter error rate (CER) is a common metric of the performance of an automatic speech recognition system.\n\nCER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information.\n\nCharacter error rate can be computed as:\n\nCER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct characters,\nN is the number of characters in the reference (N=S+D+C).\n\nCER\'s output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the\nperformance of the ASR system with a CER of 0 being a perfect score.\n' snake_case_ : Optional[int] = '\nComputes CER score of transcribed segments against references.\nArgs:\n references: list of references for each speech input.\n predictions: list of transcribtions to score.\n concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result.\nReturns:\n (float): the character error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> cer = datasets.load_metric("cer")\n >>> cer_score = cer.compute(predictions=predictions, references=references)\n >>> print(cer_score)\n 0.34146341463414637\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class lowercase__ ( datasets.Metric ): '''simple docstring''' def UpperCAmelCase ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', '''https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates''', ] , ) def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=False ): '''simple docstring''' if concatenate_texts: return jiwer.compute_measures( lowerCamelCase__ , lowerCamelCase__ , truth_transform=lowerCamelCase__ , hypothesis_transform=lowerCamelCase__ , )["wer"] UpperCamelCase = 0 UpperCamelCase = 0 for prediction, reference in zip(lowerCamelCase__ , lowerCamelCase__ ): UpperCamelCase = jiwer.compute_measures( lowerCamelCase__ , lowerCamelCase__ , truth_transform=lowerCamelCase__ , hypothesis_transform=lowerCamelCase__ , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
350
'''simple docstring''' import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets snake_case_ : int = '\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' snake_case_ : Optional[int] = '\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n' snake_case_ : Optional[Any] = '\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=["About 95 species are currently accepted ."]\n >>> predictions=["About 95 you now get in ."]\n >>> references=[["About 95 species are currently known ."]]\n >>> wiki_split = datasets.load_metric("wiki_split")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0}\n' def __snake_case ( _UpperCAmelCase : Optional[Any]): def remove_articles(_UpperCAmelCase : str): UpperCamelCase = re.compile(R'''\b(a|an|the)\b''', re.UNICODE) return re.sub(_UpperCAmelCase, ''' ''', _UpperCAmelCase) def white_space_fix(_UpperCAmelCase : Union[str, Any]): return " ".join(text.split()) def remove_punc(_UpperCAmelCase : Dict): UpperCamelCase = set(string.punctuation) return "".join(ch for ch in text if ch not in exclude) def lower(_UpperCAmelCase : List[str]): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_UpperCAmelCase)))) def __snake_case ( _UpperCAmelCase : Union[str, Any], _UpperCAmelCase : List[str]): return int(normalize_answer(_UpperCAmelCase) == normalize_answer(_UpperCAmelCase)) def __snake_case ( _UpperCAmelCase : int, _UpperCAmelCase : Optional[int]): UpperCamelCase = [any(compute_exact(_UpperCAmelCase, _UpperCAmelCase) for ref in refs) for pred, refs in zip(_UpperCAmelCase, _UpperCAmelCase)] return (sum(_UpperCAmelCase) / len(_UpperCAmelCase)) * 100 def __snake_case ( _UpperCAmelCase : Any, _UpperCAmelCase : Optional[int], _UpperCAmelCase : int, _UpperCAmelCase : List[str]): UpperCamelCase = [rgram for rgrams in rgramslist for rgram in rgrams] UpperCamelCase = Counter(_UpperCAmelCase) UpperCamelCase = Counter(_UpperCAmelCase) UpperCamelCase = Counter() for sgram, scount in sgramcounter.items(): UpperCamelCase = scount * numref UpperCamelCase = Counter(_UpperCAmelCase) UpperCamelCase = Counter() for cgram, ccount in cgramcounter.items(): UpperCamelCase = ccount * numref # KEEP UpperCamelCase = sgramcounter_rep & cgramcounter_rep UpperCamelCase = keepgramcounter_rep & rgramcounter UpperCamelCase = sgramcounter_rep & rgramcounter UpperCamelCase = 0 UpperCamelCase = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. UpperCamelCase = 1 UpperCamelCase = 1 if len(_UpperCAmelCase) > 0: UpperCamelCase = keeptmpscorea / len(_UpperCAmelCase) if len(_UpperCAmelCase) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) UpperCamelCase = keeptmpscorea / sum(keepgramcounterall_rep.values()) UpperCamelCase = 0 if keepscore_precision > 0 or keepscore_recall > 0: UpperCamelCase = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION UpperCamelCase = sgramcounter_rep - cgramcounter_rep UpperCamelCase = delgramcounter_rep - rgramcounter UpperCamelCase = sgramcounter_rep - rgramcounter UpperCamelCase = 0 UpperCamelCase = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. UpperCamelCase = 1 if len(_UpperCAmelCase) > 0: UpperCamelCase = deltmpscorea / len(_UpperCAmelCase) # ADDITION UpperCamelCase = set(_UpperCAmelCase) - set(_UpperCAmelCase) UpperCamelCase = set(_UpperCAmelCase) & set(_UpperCAmelCase) UpperCamelCase = set(_UpperCAmelCase) - set(_UpperCAmelCase) UpperCamelCase = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. UpperCamelCase = 1 UpperCamelCase = 1 if len(_UpperCAmelCase) > 0: UpperCamelCase = addtmpscore / len(_UpperCAmelCase) if len(_UpperCAmelCase) > 0: UpperCamelCase = addtmpscore / len(_UpperCAmelCase) UpperCamelCase = 0 if addscore_precision > 0 or addscore_recall > 0: UpperCamelCase = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def __snake_case ( _UpperCAmelCase : str, _UpperCAmelCase : Tuple, _UpperCAmelCase : str): UpperCamelCase = len(_UpperCAmelCase) UpperCamelCase = ssent.split(''' ''') UpperCamelCase = csent.split(''' ''') UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = [] for rsent in rsents: UpperCamelCase = rsent.split(''' ''') UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = [] ragramslist.append(_UpperCAmelCase) for i in range(0, len(_UpperCAmelCase) - 1): if i < len(_UpperCAmelCase) - 1: UpperCamelCase = ragrams[i] + ''' ''' + ragrams[i + 1] ragrams.append(_UpperCAmelCase) if i < len(_UpperCAmelCase) - 2: UpperCamelCase = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] ragrams.append(_UpperCAmelCase) if i < len(_UpperCAmelCase) - 3: UpperCamelCase = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3] ragrams.append(_UpperCAmelCase) ragramslist.append(_UpperCAmelCase) ragramslist.append(_UpperCAmelCase) ragramslist.append(_UpperCAmelCase) for i in range(0, len(_UpperCAmelCase) - 1): if i < len(_UpperCAmelCase) - 1: UpperCamelCase = sagrams[i] + ''' ''' + sagrams[i + 1] sagrams.append(_UpperCAmelCase) if i < len(_UpperCAmelCase) - 2: UpperCamelCase = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] sagrams.append(_UpperCAmelCase) if i < len(_UpperCAmelCase) - 3: UpperCamelCase = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3] sagrams.append(_UpperCAmelCase) for i in range(0, len(_UpperCAmelCase) - 1): if i < len(_UpperCAmelCase) - 1: UpperCamelCase = cagrams[i] + ''' ''' + cagrams[i + 1] cagrams.append(_UpperCAmelCase) if i < len(_UpperCAmelCase) - 2: UpperCamelCase = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] cagrams.append(_UpperCAmelCase) if i < len(_UpperCAmelCase) - 3: UpperCamelCase = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3] cagrams.append(_UpperCAmelCase) ((UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase)) = SARIngram(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase) ((UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase)) = SARIngram(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase) ((UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase)) = SARIngram(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase) ((UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase)) = SARIngram(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase) UpperCamelCase = sum([keepascore, keepascore, keepascore, keepascore]) / 4 UpperCamelCase = sum([delascore, delascore, delascore, delascore]) / 4 UpperCamelCase = sum([addascore, addascore, addascore, addascore]) / 4 UpperCamelCase = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def __snake_case ( _UpperCAmelCase : List[str], _UpperCAmelCase : bool = True, _UpperCAmelCase : str = "13a", _UpperCAmelCase : bool = True): # Normalization is requried for the ASSET dataset (one of the primary # datasets in sentence simplification) to allow using space # to split the sentence. Even though Wiki-Auto and TURK datasets, # do not require normalization, we do it for consistency. # Code adapted from the EASSE library [1] written by the authors of the ASSET dataset. # [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7 if lowercase: UpperCamelCase = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__).major >= 2: UpperCamelCase = sacrebleu.metrics.bleu._get_tokenizer(_UpperCAmelCase)()(_UpperCAmelCase) else: UpperCamelCase = sacrebleu.TOKENIZERS[tokenizer]()(_UpperCAmelCase) elif tokenizer == "moses": UpperCamelCase = sacremoses.MosesTokenizer().tokenize(_UpperCAmelCase, return_str=_UpperCAmelCase, escape=_UpperCAmelCase) elif tokenizer == "penn": UpperCamelCase = sacremoses.MosesTokenizer().penn_tokenize(_UpperCAmelCase, return_str=_UpperCAmelCase) else: UpperCamelCase = sentence if not return_str: UpperCamelCase = normalized_sent.split() return normalized_sent def __snake_case ( _UpperCAmelCase : Union[str, Any], _UpperCAmelCase : List[Any], _UpperCAmelCase : Optional[Any]): if not (len(_UpperCAmelCase) == len(_UpperCAmelCase) == len(_UpperCAmelCase)): raise ValueError('''Sources length must match predictions and references lengths.''') UpperCamelCase = 0 for src, pred, refs in zip(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase): sari_score += SARIsent(normalize(_UpperCAmelCase), normalize(_UpperCAmelCase), [normalize(_UpperCAmelCase) for sent in refs]) UpperCamelCase = sari_score / len(_UpperCAmelCase) return 100 * sari_score def __snake_case ( _UpperCAmelCase : str, _UpperCAmelCase : Dict, _UpperCAmelCase : Any="exp", _UpperCAmelCase : str=None, _UpperCAmelCase : Optional[Any]=False, _UpperCAmelCase : Union[str, Any]=False, _UpperCAmelCase : List[Any]=False, ): UpperCamelCase = len(references[0]) if any(len(_UpperCAmelCase) != references_per_prediction for refs in references): raise ValueError('''Sacrebleu requires the same number of references for each prediction''') UpperCamelCase = [[refs[i] for refs in references] for i in range(_UpperCAmelCase)] UpperCamelCase = sacrebleu.corpus_bleu( _UpperCAmelCase, _UpperCAmelCase, smooth_method=_UpperCAmelCase, smooth_value=_UpperCAmelCase, force=_UpperCAmelCase, lowercase=_UpperCAmelCase, use_effective_order=_UpperCAmelCase, ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class lowercase__ ( datasets.Metric ): '''simple docstring''' def UpperCAmelCase ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=[ '''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''', '''https://github.com/cocoxu/simplification/blob/master/SARI.py''', '''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''', '''https://github.com/mjpost/sacreBLEU''', ] , reference_urls=[ '''https://www.aclweb.org/anthology/Q16-1029.pdf''', '''https://github.com/mjpost/sacreBLEU''', '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' UpperCamelCase = {} result.update({'''sari''': compute_sari(sources=lowerCamelCase__ , predictions=lowerCamelCase__ , references=lowerCamelCase__ )} ) result.update({'''sacrebleu''': compute_sacrebleu(predictions=lowerCamelCase__ , references=lowerCamelCase__ )} ) result.update({'''exact''': compute_em(predictions=lowerCamelCase__ , references=lowerCamelCase__ )} ) return result
350
1
from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class snake_case_ : def __A ( self , __lowerCAmelCase ): raise NotImplementedError() def __A ( self ): raise NotImplementedError() class snake_case_ ( lowerCAmelCase ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase = False , **__lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer SCREAMING_SNAKE_CASE_ : Optional[int] = skip_prompt SCREAMING_SNAKE_CASE_ : Optional[int] = decode_kwargs # variables used in the streaming process SCREAMING_SNAKE_CASE_ : Any = [] SCREAMING_SNAKE_CASE_ : List[Any] = 0 SCREAMING_SNAKE_CASE_ : Union[str, Any] = True def __A ( self , __lowerCAmelCase ): if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError('TextStreamer only supports batch size 1' ) elif len(value.shape ) > 1: SCREAMING_SNAKE_CASE_ : int = value[0] if self.skip_prompt and self.next_tokens_are_prompt: SCREAMING_SNAKE_CASE_ : Optional[Any] = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) SCREAMING_SNAKE_CASE_ : List[Any] = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith('\n' ): SCREAMING_SNAKE_CASE_ : Optional[Any] = text[self.print_len :] SCREAMING_SNAKE_CASE_ : Optional[int] = [] SCREAMING_SNAKE_CASE_ : str = 0 # If the last token is a CJK character, we print the characters. elif len(__lowerCAmelCase ) > 0 and self._is_chinese_char(ord(text[-1] ) ): SCREAMING_SNAKE_CASE_ : str = text[self.print_len :] self.print_len += len(__lowerCAmelCase ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: SCREAMING_SNAKE_CASE_ : List[Any] = text[self.print_len : text.rfind(' ' ) + 1] self.print_len += len(__lowerCAmelCase ) self.on_finalized_text(__lowerCAmelCase ) def __A ( self ): # Flush the cache, if it exists if len(self.token_cache ) > 0: SCREAMING_SNAKE_CASE_ : Any = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) SCREAMING_SNAKE_CASE_ : List[str] = text[self.print_len :] SCREAMING_SNAKE_CASE_ : Dict = [] SCREAMING_SNAKE_CASE_ : int = 0 else: SCREAMING_SNAKE_CASE_ : Optional[Any] = '' SCREAMING_SNAKE_CASE_ : List[str] = True self.on_finalized_text(__lowerCAmelCase , stream_end=__lowerCAmelCase ) def __A ( self , __lowerCAmelCase , __lowerCAmelCase = False ): print(__lowerCAmelCase , flush=__lowerCAmelCase , end='' if not stream_end else None ) def __A ( self , __lowerCAmelCase ): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4e00 and cp <= 0X9fff) or (cp >= 0X3400 and cp <= 0X4dbf) # or (cp >= 0X2_0000 and cp <= 0X2_a6df) # or (cp >= 0X2_a700 and cp <= 0X2_b73f) # or (cp >= 0X2_b740 and cp <= 0X2_b81f) # or (cp >= 0X2_b820 and cp <= 0X2_ceaf) # or (cp >= 0Xf900 and cp <= 0Xfaff) or (cp >= 0X2_f800 and cp <= 0X2_fa1f) # ): # return True return False class snake_case_ ( lowerCAmelCase ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase = False , __lowerCAmelCase = None , **__lowerCAmelCase ): super().__init__(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[str] = Queue() SCREAMING_SNAKE_CASE_ : List[Any] = None SCREAMING_SNAKE_CASE_ : List[Any] = timeout def __A ( self , __lowerCAmelCase , __lowerCAmelCase = False ): self.text_queue.put(__lowerCAmelCase , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self ): return self def __A ( self ): SCREAMING_SNAKE_CASE_ : str = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
345
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__: Optional[int] = logging.get_logger(__name__) lowerCAmelCase__: List[Any] = { "uclanlp/visualbert-vqa": "https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json", "uclanlp/visualbert-vqa-pre": "https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json", "uclanlp/visualbert-vqa-coco-pre": ( "https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json" ), "uclanlp/visualbert-vcr": "https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json", "uclanlp/visualbert-vcr-pre": "https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json", "uclanlp/visualbert-vcr-coco-pre": ( "https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json" ), "uclanlp/visualbert-nlvr2": "https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json", "uclanlp/visualbert-nlvr2-pre": "https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json", "uclanlp/visualbert-nlvr2-coco-pre": ( "https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json" ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class snake_case_ ( lowerCAmelCase ): __lowerCamelCase : List[str] = 'visual_bert' def __init__( self , __lowerCAmelCase=30_522 , __lowerCAmelCase=768 , __lowerCAmelCase=512 , __lowerCAmelCase=12 , __lowerCAmelCase=12 , __lowerCAmelCase=3_072 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=512 , __lowerCAmelCase=2 , __lowerCAmelCase=0.02 , __lowerCAmelCase=1e-12 , __lowerCAmelCase=False , __lowerCAmelCase=True , __lowerCAmelCase=1 , __lowerCAmelCase=0 , __lowerCAmelCase=2 , **__lowerCAmelCase , ): super().__init__(pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = vocab_size SCREAMING_SNAKE_CASE_ : List[Any] = max_position_embeddings SCREAMING_SNAKE_CASE_ : Tuple = hidden_size SCREAMING_SNAKE_CASE_ : Any = visual_embedding_dim SCREAMING_SNAKE_CASE_ : str = num_hidden_layers SCREAMING_SNAKE_CASE_ : Tuple = num_attention_heads SCREAMING_SNAKE_CASE_ : Optional[int] = intermediate_size SCREAMING_SNAKE_CASE_ : List[str] = hidden_act SCREAMING_SNAKE_CASE_ : Union[str, Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Any = initializer_range SCREAMING_SNAKE_CASE_ : List[Any] = type_vocab_size SCREAMING_SNAKE_CASE_ : str = layer_norm_eps SCREAMING_SNAKE_CASE_ : List[Any] = bypass_transformer SCREAMING_SNAKE_CASE_ : Optional[Any] = special_visual_initialize
345
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase = { 'configuration_llama': ['LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LlamaConfig'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = ['LlamaTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = ['LlamaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ 'LlamaForCausalLM', 'LlamaModel', 'LlamaPreTrainedModel', 'LlamaForSequenceClassification', ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
429
import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Tuple = DownBlockaD # noqa F405 _lowercase : str = '''down''' def lowerCamelCase_ ( self: str ) -> Any: """simple docstring""" lowercase__ = [-0.0232, -0.9869, 0.8054, -0.0637, -0.1688, -1.4264, 0.4470, -1.3394, 0.0904] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Any = ResnetDownsampleBlockaD # noqa F405 _lowercase : Any = '''down''' def lowerCamelCase_ ( self: List[Any] ) -> List[Any]: """simple docstring""" lowercase__ = [0.0710, 0.2410, -0.7320, -1.0757, -1.1343, 0.3540, -0.0133, -0.2576, 0.0948] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Tuple = AttnDownBlockaD # noqa F405 _lowercase : Any = '''down''' def lowerCamelCase_ ( self: List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ = [0.0636, 0.8964, -0.6234, -1.0131, 0.0844, 0.4935, 0.3437, 0.0911, -0.2957] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[str] = CrossAttnDownBlockaD # noqa F405 _lowercase : Optional[int] = '''down''' def lowerCamelCase_ ( self: int ) -> Optional[Any]: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: Tuple ) -> List[Any]: """simple docstring""" lowercase__ = [0.2238, -0.7396, -0.2255, -0.3829, 0.1925, 1.1665, 0.0603, -0.7295, 0.1983] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[Any] = SimpleCrossAttnDownBlockaD # noqa F405 _lowercase : Tuple = '''down''' @property def lowerCamelCase_ ( self: List[Any] ) -> List[str]: """simple docstring""" return super().get_dummy_input(include_encoder_hidden_states=UpperCamelCase_ ) def lowerCamelCase_ ( self: int ) -> Tuple: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def lowerCamelCase_ ( self: str ) -> Tuple: """simple docstring""" lowercase__ = [0.7921, -0.0992, -0.1962, -0.7695, -0.4242, 0.7804, 0.4737, 0.2765, 0.3338] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Dict = SkipDownBlockaD # noqa F405 _lowercase : Tuple = '''down''' @property def lowerCamelCase_ ( self: Optional[Any] ) -> Optional[int]: """simple docstring""" return super().get_dummy_input(include_skip_sample=UpperCamelCase_ ) def lowerCamelCase_ ( self: Tuple ) -> List[Any]: """simple docstring""" lowercase__ = [-0.0845, -0.2087, -0.2465, 0.0971, 0.1900, -0.0484, 0.2664, 0.4179, 0.5069] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Union[str, Any] = AttnSkipDownBlockaD # noqa F405 _lowercase : Dict = '''down''' @property def lowerCamelCase_ ( self: int ) -> List[str]: """simple docstring""" return super().get_dummy_input(include_skip_sample=UpperCamelCase_ ) def lowerCamelCase_ ( self: List[Any] ) -> Tuple: """simple docstring""" lowercase__ = [0.5539, 0.1609, 0.4924, 0.0537, -0.1995, 0.4050, 0.0979, -0.2721, -0.0642] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : int = DownEncoderBlockaD # noqa F405 _lowercase : Optional[int] = '''down''' @property def lowerCamelCase_ ( self: Optional[Any] ) -> Any: """simple docstring""" return super().get_dummy_input(include_temb=UpperCamelCase_ ) def lowerCamelCase_ ( self: List[str] ) -> int: """simple docstring""" lowercase__ = { '''in_channels''': 32, '''out_channels''': 32, } lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: int ) -> Optional[Any]: """simple docstring""" lowercase__ = [1.1102, 0.5302, 0.4872, -0.0023, -0.8042, 0.0483, -0.3489, -0.5632, 0.7626] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[Any] = AttnDownEncoderBlockaD # noqa F405 _lowercase : Union[str, Any] = '''down''' @property def lowerCamelCase_ ( self: Any ) -> int: """simple docstring""" return super().get_dummy_input(include_temb=UpperCamelCase_ ) def lowerCamelCase_ ( self: int ) -> str: """simple docstring""" lowercase__ = { '''in_channels''': 32, '''out_channels''': 32, } lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: Any ) -> Dict: """simple docstring""" lowercase__ = [0.8966, -0.1486, 0.8568, 0.8141, -0.9046, -0.1342, -0.0972, -0.7417, 0.1538] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[Any] = UNetMidBlockaD # noqa F405 _lowercase : Union[str, Any] = '''mid''' def lowerCamelCase_ ( self: Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = { '''in_channels''': 32, '''temb_channels''': 128, } lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = [-0.1062, 1.7248, 0.3494, 1.4569, -0.0910, -1.2421, -0.9984, 0.6736, 1.0028] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Tuple = UNetMidBlockaDCrossAttn # noqa F405 _lowercase : Dict = '''mid''' def lowerCamelCase_ ( self: Any ) -> List[Any]: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: List[str] ) -> Optional[int]: """simple docstring""" lowercase__ = [0.0187, 2.4220, 0.4484, 1.1203, -0.6121, -1.5122, -0.8270, 0.7851, 1.8335] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Union[str, Any] = UNetMidBlockaDSimpleCrossAttn # noqa F405 _lowercase : int = '''mid''' @property def lowerCamelCase_ ( self: Optional[Any] ) -> Dict: """simple docstring""" return super().get_dummy_input(include_encoder_hidden_states=UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[Any] ) -> Dict: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: str ) -> List[str]: """simple docstring""" lowercase__ = [0.7143, 1.9974, 0.5448, 1.3977, 0.1282, -1.1237, -1.4238, 0.5530, 0.8880] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Any = UpBlockaD # noqa F405 _lowercase : Optional[Any] = '''up''' @property def lowerCamelCase_ ( self: List[str] ) -> Tuple: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: int ) -> str: """simple docstring""" lowercase__ = [-0.2041, -0.4165, -0.3022, 0.0041, -0.6628, -0.7053, 0.1928, -0.0325, 0.0523] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Tuple = ResnetUpsampleBlockaD # noqa F405 _lowercase : List[str] = '''up''' @property def lowerCamelCase_ ( self: Optional[int] ) -> Optional[int]: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = [0.2287, 0.3549, -0.1346, 0.4797, -0.1715, -0.9649, 0.7305, -0.5864, -0.6244] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[str] = CrossAttnUpBlockaD # noqa F405 _lowercase : Any = '''up''' @property def lowerCamelCase_ ( self: int ) -> List[Any]: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: List[Any] ) -> List[Any]: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: Dict ) -> int: """simple docstring""" lowercase__ = [-0.1403, -0.3515, -0.0420, -0.1425, 0.3167, 0.5094, -0.2181, 0.5931, 0.5582] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Tuple = SimpleCrossAttnUpBlockaD # noqa F405 _lowercase : Any = '''up''' @property def lowerCamelCase_ ( self: Optional[int] ) -> Tuple: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ , include_encoder_hidden_states=UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[int] ) -> Tuple: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: str ) -> Optional[Any]: """simple docstring""" lowercase__ = [0.2645, 0.1480, 0.0909, 0.8044, -0.9758, -0.9083, 0.0994, -1.1453, -0.7402] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Dict = AttnUpBlockaD # noqa F405 _lowercase : Any = '''up''' @property def lowerCamelCase_ ( self: Union[str, Any] ) -> List[str]: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def lowerCamelCase_ ( self: Optional[int] ) -> List[Any]: """simple docstring""" lowercase__ = [0.0979, 0.1326, 0.0021, 0.0659, 0.2249, 0.0059, 0.1132, 0.5952, 0.1033] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[Any] = SkipUpBlockaD # noqa F405 _lowercase : int = '''up''' @property def lowerCamelCase_ ( self: Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: Dict ) -> Dict: """simple docstring""" lowercase__ = [-0.0893, -0.1234, -0.1506, -0.0332, 0.0123, -0.0211, 0.0566, 0.0143, 0.0362] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[Any] = AttnSkipUpBlockaD # noqa F405 _lowercase : List[str] = '''up''' @property def lowerCamelCase_ ( self: int ) -> Any: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: Any ) -> Dict: """simple docstring""" lowercase__ = [0.0361, 0.0617, 0.2787, -0.0350, 0.0342, 0.3421, -0.0843, 0.0913, 0.3015] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[str] = UpDecoderBlockaD # noqa F405 _lowercase : Tuple = '''up''' @property def lowerCamelCase_ ( self: Optional[Any] ) -> Dict: """simple docstring""" return super().get_dummy_input(include_temb=UpperCamelCase_ ) def lowerCamelCase_ ( self: List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = {'''in_channels''': 32, '''out_channels''': 32} lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: Any ) -> int: """simple docstring""" lowercase__ = [0.4404, 0.1998, -0.9886, -0.3320, -0.3128, -0.7034, -0.6955, -0.2338, -0.3137] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[str] = AttnUpDecoderBlockaD # noqa F405 _lowercase : Optional[Any] = '''up''' @property def lowerCamelCase_ ( self: List[Any] ) -> str: """simple docstring""" return super().get_dummy_input(include_temb=UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = {'''in_channels''': 32, '''out_channels''': 32} lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: Optional[int] ) -> Optional[int]: """simple docstring""" lowercase__ = [0.6738, 0.4491, 0.1055, 1.0710, 0.7316, 0.3339, 0.3352, 0.1023, 0.3568] super().test_output(UpperCamelCase_ )
429
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a_ : List[str] = {"""configuration_unispeech""": ["""UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP""", """UniSpeechConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : str = [ """UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST""", """UniSpeechForCTC""", """UniSpeechForPreTraining""", """UniSpeechForSequenceClassification""", """UniSpeechModel""", """UniSpeechPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys a_ : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
675
'''simple docstring''' import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case ( lowercase , unittest.TestCase ): """simple docstring""" _lowerCamelCase = OpenAIGPTTokenizer _lowerCamelCase = OpenAIGPTTokenizerFast _lowerCamelCase = True _lowerCamelCase = False def snake_case ( self ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCamelCase_ = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] lowerCamelCase_ = dict(zip(UpperCamelCase , range(len(UpperCamelCase ) ) ) ) lowerCamelCase_ = ["#version: 0.2", "l o", "lo w", "e r</w>", ""] lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" ) as fp: fp.write(json.dumps(UpperCamelCase ) ) with open(self.merges_file , "w" ) as fp: fp.write("\n".join(UpperCamelCase ) ) def snake_case ( self , UpperCamelCase ): """simple docstring""" return "lower newer", "lower newer" def snake_case ( self ): """simple docstring""" lowerCamelCase_ = OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) lowerCamelCase_ = "lower" lowerCamelCase_ = ["low", "er</w>"] lowerCamelCase_ = tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowerCamelCase_ = tokens + ["<unk>"] lowerCamelCase_ = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase ) , UpperCamelCase ) def snake_case ( self , UpperCamelCase=15 ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(UpperCamelCase , **UpperCamelCase ) # Simple input lowerCamelCase_ = "This is a simple input" lowerCamelCase_ = ["This is a simple input 1", "This is a simple input 2"] lowerCamelCase_ = ("This is a simple input", "This is a pair") lowerCamelCase_ = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(UpperCamelCase , tokenizer_r.encode , UpperCamelCase , max_length=UpperCamelCase , padding="max_length" ) # Simple input self.assertRaises(UpperCamelCase , tokenizer_r.encode_plus , UpperCamelCase , max_length=UpperCamelCase , padding="max_length" ) # Simple input self.assertRaises( UpperCamelCase , tokenizer_r.batch_encode_plus , UpperCamelCase , max_length=UpperCamelCase , padding="max_length" , ) # Pair input self.assertRaises(UpperCamelCase , tokenizer_r.encode , UpperCamelCase , max_length=UpperCamelCase , padding="max_length" ) # Pair input self.assertRaises(UpperCamelCase , tokenizer_r.encode_plus , UpperCamelCase , max_length=UpperCamelCase , padding="max_length" ) # Pair input self.assertRaises( UpperCamelCase , tokenizer_r.batch_encode_plus , UpperCamelCase , max_length=UpperCamelCase , padding="max_length" , ) def snake_case ( self ): """simple docstring""" pass @require_ftfy @require_spacy @require_tokenizers class snake_case ( lowercase ): """simple docstring""" pass
675
1
"""simple docstring""" from __future__ import annotations import math import random from typing import Any class _lowerCAmelCase : """simple docstring""" def __init__( self ) -> None: '''simple docstring''' snake_case_ : list[Any] = [] snake_case_ : int = 0 snake_case_ : int = 0 def UpperCAmelCase__ ( self ) -> bool: '''simple docstring''' return self.head == self.tail def UpperCAmelCase__ ( self , _lowercase ) -> None: '''simple docstring''' self.data.append(_lowercase ) snake_case_ : Union[str, Any] = self.tail + 1 def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : List[str] = self.data[self.head] snake_case_ : Any = self.head + 1 return ret def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' return self.tail - self.head def UpperCAmelCase__ ( self ) -> None: '''simple docstring''' print(self.data ) print("""**************""" ) print(self.data[self.head : self.tail] ) class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowercase ) -> None: '''simple docstring''' snake_case_ : Optional[int] = data snake_case_ : MyNode | None = None snake_case_ : MyNode | None = None snake_case_ : int = 1 def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' return self.data def UpperCAmelCase__ ( self ) -> MyNode | None: '''simple docstring''' return self.left def UpperCAmelCase__ ( self ) -> MyNode | None: '''simple docstring''' return self.right def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' return self.height def UpperCAmelCase__ ( self , _lowercase ) -> None: '''simple docstring''' snake_case_ : List[str] = data def UpperCAmelCase__ ( self , _lowercase ) -> None: '''simple docstring''' snake_case_ : int = node def UpperCAmelCase__ ( self , _lowercase ) -> None: '''simple docstring''' snake_case_ : int = node def UpperCAmelCase__ ( self , _lowercase ) -> None: '''simple docstring''' snake_case_ : Union[str, Any] = height def __lowerCAmelCase ( __UpperCamelCase : MyNode | None ): '''simple docstring''' if node is None: return 0 return node.get_height() def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int ): '''simple docstring''' if a > b: return a return b def __lowerCAmelCase ( __UpperCamelCase : MyNode ): '''simple docstring''' print("""left rotation node:""" , node.get_data() ) snake_case_ : List[str] = node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(__UpperCamelCase ) snake_case_ : List[str] = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(__UpperCamelCase ) snake_case_ : Tuple = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(__UpperCamelCase ) return ret def __lowerCAmelCase ( __UpperCamelCase : MyNode ): '''simple docstring''' print("""right rotation node:""" , node.get_data() ) snake_case_ : Tuple = node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(__UpperCamelCase ) snake_case_ : List[Any] = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(__UpperCamelCase ) snake_case_ : List[Any] = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(__UpperCamelCase ) return ret def __lowerCAmelCase ( __UpperCamelCase : MyNode ): '''simple docstring''' snake_case_ : List[str] = node.get_left() assert left_child is not None node.set_left(left_rotation(__UpperCamelCase ) ) return right_rotation(__UpperCamelCase ) def __lowerCAmelCase ( __UpperCamelCase : MyNode ): '''simple docstring''' snake_case_ : Optional[int] = node.get_right() assert right_child is not None node.set_right(right_rotation(__UpperCamelCase ) ) return left_rotation(__UpperCamelCase ) def __lowerCAmelCase ( __UpperCamelCase : MyNode | None , __UpperCamelCase : Any ): '''simple docstring''' if node is None: return MyNode(__UpperCamelCase ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , __UpperCamelCase ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected snake_case_ : int = node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child snake_case_ : Optional[Any] = right_rotation(__UpperCamelCase ) else: snake_case_ : List[str] = lr_rotation(__UpperCamelCase ) else: node.set_right(insert_node(node.get_right() , __UpperCamelCase ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: snake_case_ : Optional[Any] = node.get_right() assert right_child is not None if data < right_child.get_data(): snake_case_ : Optional[Any] = rl_rotation(__UpperCamelCase ) else: snake_case_ : int = left_rotation(__UpperCamelCase ) snake_case_ : Optional[Any] = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(__UpperCamelCase ) return node def __lowerCAmelCase ( __UpperCamelCase : MyNode ): '''simple docstring''' while True: snake_case_ : Union[str, Any] = root.get_right() if right_child is None: break snake_case_ : List[Any] = right_child return root.get_data() def __lowerCAmelCase ( __UpperCamelCase : MyNode ): '''simple docstring''' while True: snake_case_ : List[str] = root.get_left() if left_child is None: break snake_case_ : str = left_child return root.get_data() def __lowerCAmelCase ( __UpperCamelCase : MyNode , __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : List[str] = root.get_left() snake_case_ : List[Any] = root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: snake_case_ : Tuple = get_left_most(__UpperCamelCase ) root.set_data(__UpperCamelCase ) root.set_right(del_node(__UpperCamelCase , __UpperCamelCase ) ) elif left_child is not None: snake_case_ : str = left_child elif right_child is not None: snake_case_ : Optional[Any] = right_child else: return None elif root.get_data() > data: if left_child is None: print("""No such data""" ) return root else: root.set_left(del_node(__UpperCamelCase , __UpperCamelCase ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(__UpperCamelCase , __UpperCamelCase ) ) if get_height(__UpperCamelCase ) - get_height(__UpperCamelCase ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): snake_case_ : List[Any] = left_rotation(__UpperCamelCase ) else: snake_case_ : Optional[int] = rl_rotation(__UpperCamelCase ) elif get_height(__UpperCamelCase ) - get_height(__UpperCamelCase ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): snake_case_ : Union[str, Any] = right_rotation(__UpperCamelCase ) else: snake_case_ : Union[str, Any] = lr_rotation(__UpperCamelCase ) snake_case_ : List[str] = my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(__UpperCamelCase ) return root class _lowerCAmelCase : """simple docstring""" def __init__( self ) -> None: '''simple docstring''' snake_case_ : MyNode | None = None def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' return get_height(self.root ) def UpperCAmelCase__ ( self , _lowercase ) -> None: '''simple docstring''' print("""insert:""" + str(_lowercase ) ) snake_case_ : List[str] = insert_node(self.root , _lowercase ) def UpperCAmelCase__ ( self , _lowercase ) -> None: '''simple docstring''' print("""delete:""" + str(_lowercase ) ) if self.root is None: print("""Tree is empty!""" ) return snake_case_ : str = del_node(self.root , _lowercase ) def __str__( self , ) -> str: # a level traversale, gives a more intuitive look on the tree '''simple docstring''' snake_case_ : Dict = """""" snake_case_ : List[Any] = MyQueue() q.push(self.root ) snake_case_ : Optional[Any] = self.get_height() if layer == 0: return output snake_case_ : Union[str, Any] = 0 while not q.is_empty(): snake_case_ : str = q.pop() snake_case_ : Dict = """ """ * int(math.pow(2 , layer - 1 ) ) output += space if node is None: output += "*" q.push(_lowercase ) q.push(_lowercase ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space snake_case_ : Tuple = cnt + 1 for i in range(1_0_0 ): if cnt == math.pow(2 , _lowercase ) - 1: snake_case_ : List[Any] = layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def __lowerCAmelCase ( ): '''simple docstring''' import doctest doctest.testmod() if __name__ == "__main__": _test() __lowerCAmelCase : Dict = AVLtree() __lowerCAmelCase : List[str] = list(range(10)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
21
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : int = [0] * len(__UpperCamelCase ) snake_case_ : List[str] = [] snake_case_ : Any = [1] * len(__UpperCamelCase ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__UpperCamelCase ) ): if indegree[i] == 0: queue.append(__UpperCamelCase ) while queue: snake_case_ : Optional[int] = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: snake_case_ : Union[str, Any] = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__UpperCamelCase ) print(max(__UpperCamelCase ) ) # Adjacency list of Graph __lowerCAmelCase : str = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
21
1
def lowerCAmelCase__(__snake_case ) -> List[str]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ = [], [] while len(__snake_case ) > 1: lowerCamelCase__ , lowerCamelCase__ = min(__snake_case ), max(__snake_case ) start.append(__snake_case ) end.append(__snake_case ) collection.remove(__snake_case ) collection.remove(__snake_case ) end.reverse() return start + collection + end if __name__ == "__main__": _a = input("Enter numbers separated by a comma:\n").strip() _a = [int(item) for item in user_input.split(",")] print(*merge_sort(unsorted), sep=",")
481
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _a = logging.get_logger(__name__) _a = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "ctc_proj", "mask_emb": "masked_spec_embed", } _a = [ "ctc_proj", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) -> List[str]: '''simple docstring''' for attribute in key.split('''.''' ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models lowerCamelCase__ = '''lm_head''' lowerCamelCase__ = getattr(__snake_case ,__snake_case ) if weight_type is not None: lowerCamelCase__ = getattr(__snake_case ,__snake_case ).shape else: lowerCamelCase__ = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": lowerCamelCase__ = value elif weight_type == "weight_g": lowerCamelCase__ = value elif weight_type == "weight_v": lowerCamelCase__ = value elif weight_type == "bias": lowerCamelCase__ = value else: lowerCamelCase__ = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ) -> Tuple: '''simple docstring''' lowerCamelCase__ = [] lowerCamelCase__ = fairseq_model.state_dict() lowerCamelCase__ = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): lowerCamelCase__ = False if "conv_layers" in name: load_conv_layer( __snake_case ,__snake_case ,__snake_case ,__snake_case ,hf_model.config.feat_extract_norm == '''group''' ,) lowerCamelCase__ = True else: for key, mapped_key in MAPPING.items(): lowerCamelCase__ = '''unispeech.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: lowerCamelCase__ = True if "*" in mapped_key: lowerCamelCase__ = name.split(__snake_case )[0].split('''.''' )[-2] lowerCamelCase__ = mapped_key.replace('''*''' ,__snake_case ) if "weight_g" in name: lowerCamelCase__ = '''weight_g''' elif "weight_v" in name: lowerCamelCase__ = '''weight_v''' elif "bias" in name: lowerCamelCase__ = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj lowerCamelCase__ = '''weight''' else: lowerCamelCase__ = None set_recursively(__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) continue if not is_used: unused_weights.append(__snake_case ) logger.warning(F'Unused weights: {unused_weights}' ) def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) -> Tuple: '''simple docstring''' lowerCamelCase__ = full_name.split('''conv_layers.''' )[-1] lowerCamelCase__ = name.split('''.''' ) lowerCamelCase__ = int(items[0] ) lowerCamelCase__ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) lowerCamelCase__ = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) lowerCamelCase__ = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) lowerCamelCase__ = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) lowerCamelCase__ = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__snake_case ) @torch.no_grad() def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case=None ,__snake_case=None ,__snake_case=True ) -> int: '''simple docstring''' if config_path is not None: lowerCamelCase__ = UniSpeechConfig.from_pretrained(__snake_case ) else: lowerCamelCase__ = UniSpeechConfig() if is_finetuned: if dict_path: lowerCamelCase__ = Dictionary.load_from_json(__snake_case ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowerCamelCase__ = target_dict.pad_index lowerCamelCase__ = target_dict.bos_index lowerCamelCase__ = target_dict.eos_index lowerCamelCase__ = len(target_dict.symbols ) lowerCamelCase__ = os.path.join(__snake_case ,'''vocab.json''' ) if not os.path.isdir(__snake_case ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(__snake_case ) ) return os.makedirs(__snake_case ,exist_ok=__snake_case ) lowerCamelCase__ = target_dict.indices # fairseq has the <pad> and <s> switched lowerCamelCase__ = 42 lowerCamelCase__ = 43 with open(__snake_case ,'''w''' ,encoding='''utf-8''' ) as vocab_handle: json.dump(__snake_case ,__snake_case ) lowerCamelCase__ = WavaVecaPhonemeCTCTokenizer( __snake_case ,unk_token=target_dict.unk_word ,pad_token=target_dict.pad_word ,bos_token=target_dict.bos_word ,eos_token=target_dict.eos_word ,word_delimiter_token='''|''' ,do_lower_case=__snake_case ,) lowerCamelCase__ = True if config.feat_extract_norm == '''layer''' else False lowerCamelCase__ = WavaVecaFeatureExtractor( feature_size=1 ,sampling_rate=16000 ,padding_value=0 ,do_normalize=__snake_case ,return_attention_mask=__snake_case ,) lowerCamelCase__ = WavaVecaProcessor(feature_extractor=__snake_case ,tokenizer=__snake_case ) processor.save_pretrained(__snake_case ) lowerCamelCase__ = UniSpeechForCTC(__snake_case ) else: lowerCamelCase__ = UniSpeechForPreTraining(__snake_case ) if is_finetuned: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path} ) else: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) lowerCamelCase__ = model[0].eval() recursively_load_weights(__snake_case ,__snake_case ,__snake_case ) hf_unispeech.save_pretrained(__snake_case ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _a = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
481
1
"""simple docstring""" from collections.abc import Callable def UpperCAmelCase ( a_, a_, a_ ): '''simple docstring''' lowerCamelCase : float = a lowerCamelCase : float = b if function(a_ ) == 0: # one of the a or b is a root for the function return a elif function(a_ ) == 0: return b elif ( function(a_ ) * function(a_ ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('could not find root in given interval.' ) else: lowerCamelCase : float = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(a_ ) == 0: return mid elif function(a_ ) * function(a_ ) < 0: lowerCamelCase : str = mid else: lowerCamelCase : Dict = mid lowerCamelCase : Union[str, Any] = start + (end - start) / 2.0 return mid def UpperCAmelCase ( a_ ): '''simple docstring''' return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1_0_0_0)) import doctest doctest.testmod()
718
"""simple docstring""" def UpperCAmelCase ( a_ ): '''simple docstring''' try: lowerCamelCase : List[str] = float(a_ ) except ValueError: raise ValueError('Please enter a valid number' ) lowerCamelCase : Dict = decimal - int(a_ ) if fractional_part == 0: return int(a_ ), 1 else: lowerCamelCase : Tuple = len(str(a_ ).split('.' )[1] ) lowerCamelCase : int = int(decimal * (10**number_of_frac_digits) ) lowerCamelCase : List[str] = 10**number_of_frac_digits lowerCamelCase , lowerCamelCase : int = denominator, numerator while True: lowerCamelCase : Tuple = dividend % divisor if remainder == 0: break lowerCamelCase , lowerCamelCase : Union[str, Any] = divisor, remainder lowerCamelCase , lowerCamelCase : Any = numerator / divisor, denominator / divisor return int(a_ ), int(a_ ) if __name__ == "__main__": print(F"""{decimal_to_fraction(2) = }""") print(F"""{decimal_to_fraction(89.0) = }""") print(F"""{decimal_to_fraction('67') = }""") print(F"""{decimal_to_fraction('45.0') = }""") print(F"""{decimal_to_fraction(1.5) = }""") print(F"""{decimal_to_fraction('6.25') = }""") print(F"""{decimal_to_fraction('78td') = }""")
133
0
from math import sqrt def lowerCamelCase__ ( lowercase ): """simple docstring""" assert isinstance(lowercase , lowercase ) and ( number >= 0 ), "'number' must been an int and positive" SCREAMING_SNAKE_CASE : Any = True # 0 and 1 are none primes. if number <= 1: SCREAMING_SNAKE_CASE : Optional[Any] = False for divisor in range(2 , int(round(sqrt(lowercase ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: SCREAMING_SNAKE_CASE : Union[str, Any] = False break # precondition assert isinstance(lowercase , lowercase ), "'status' must been from type bool" return status def lowerCamelCase__ ( lowercase ): """simple docstring""" assert isinstance(lowercase , lowercase ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N SCREAMING_SNAKE_CASE : Union[str, Any] = list(range(2 , n + 1 ) ) SCREAMING_SNAKE_CASE : List[str] = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(lowercase ) ): for j in range(i + 1 , len(lowercase ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): SCREAMING_SNAKE_CASE : Dict = 0 # filters actual prime numbers. SCREAMING_SNAKE_CASE : Optional[int] = [x for x in begin_list if x != 0] # precondition assert isinstance(lowercase , lowercase ), "'ans' must been from type list" return ans def lowerCamelCase__ ( lowercase ): """simple docstring""" assert isinstance(lowercase , lowercase ) and (n > 2), "'N' must been an int and > 2" SCREAMING_SNAKE_CASE : int = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(lowercase ): ans.append(lowercase ) # precondition assert isinstance(lowercase , lowercase ), "'ans' must been from type list" return ans def lowerCamelCase__ ( lowercase ): """simple docstring""" assert isinstance(lowercase , lowercase ) and number >= 0, "'number' must been an int and >= 0" SCREAMING_SNAKE_CASE : List[Any] = [] # this list will be returns of the function. # potential prime number factors. SCREAMING_SNAKE_CASE : Dict = 2 SCREAMING_SNAKE_CASE : int = number if number == 0 or number == 1: ans.append(lowercase ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(lowercase ): while quotient != 1: if is_prime(lowercase ) and (quotient % factor == 0): ans.append(lowercase ) quotient /= factor else: factor += 1 else: ans.append(lowercase ) # precondition assert isinstance(lowercase , lowercase ), "'ans' must been from type list" return ans def lowerCamelCase__ ( lowercase ): """simple docstring""" assert isinstance(lowercase , lowercase ) and ( number >= 0 ), "'number' bust been an int and >= 0" SCREAMING_SNAKE_CASE : List[str] = 0 # prime factorization of 'number' SCREAMING_SNAKE_CASE : Any = prime_factorization(lowercase ) SCREAMING_SNAKE_CASE : List[str] = max(lowercase ) # precondition assert isinstance(lowercase , lowercase ), "'ans' must been from type int" return ans def lowerCamelCase__ ( lowercase ): """simple docstring""" assert isinstance(lowercase , lowercase ) and ( number >= 0 ), "'number' bust been an int and >= 0" SCREAMING_SNAKE_CASE : List[str] = 0 # prime factorization of 'number' SCREAMING_SNAKE_CASE : Optional[int] = prime_factorization(lowercase ) SCREAMING_SNAKE_CASE : List[Any] = min(lowercase ) # precondition assert isinstance(lowercase , lowercase ), "'ans' must been from type int" return ans def lowerCamelCase__ ( lowercase ): """simple docstring""" assert isinstance(lowercase , lowercase ), "'number' must been an int" assert isinstance(number % 2 == 0 , lowercase ), "compare bust been from type bool" return number % 2 == 0 def lowerCamelCase__ ( lowercase ): """simple docstring""" assert isinstance(lowercase , lowercase ), "'number' must been an int" assert isinstance(number % 2 != 0 , lowercase ), "compare bust been from type bool" return number % 2 != 0 def lowerCamelCase__ ( lowercase ): """simple docstring""" assert ( isinstance(lowercase , lowercase ) and (number > 2) and is_even(lowercase ) ), "'number' must been an int, even and > 2" SCREAMING_SNAKE_CASE : List[str] = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' SCREAMING_SNAKE_CASE : Tuple = get_prime_numbers(lowercase ) SCREAMING_SNAKE_CASE : Tuple = len(lowercase ) # run variable for while-loops. SCREAMING_SNAKE_CASE : List[str] = 0 SCREAMING_SNAKE_CASE : Dict = None # exit variable. for break up the loops SCREAMING_SNAKE_CASE : Any = True while i < len_pn and loop: SCREAMING_SNAKE_CASE : Any = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: SCREAMING_SNAKE_CASE : str = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(lowercase , lowercase ) and (len(lowercase ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" assert ( isinstance(lowercase , lowercase ) and isinstance(lowercase , lowercase ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." SCREAMING_SNAKE_CASE : List[str] = 0 while numbera != 0: SCREAMING_SNAKE_CASE : List[str] = numbera % numbera SCREAMING_SNAKE_CASE : Dict = numbera SCREAMING_SNAKE_CASE : Optional[Any] = rest # precondition assert isinstance(lowercase , lowercase ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" assert ( isinstance(lowercase , lowercase ) and isinstance(lowercase , lowercase ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." SCREAMING_SNAKE_CASE : Union[str, Any] = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' SCREAMING_SNAKE_CASE : Optional[int] = prime_factorization(lowercase ) SCREAMING_SNAKE_CASE : Union[str, Any] = prime_factorization(lowercase ) elif numbera == 1 or numbera == 1: SCREAMING_SNAKE_CASE : Union[str, Any] = [] SCREAMING_SNAKE_CASE : Tuple = [] SCREAMING_SNAKE_CASE : Optional[int] = max(lowercase , lowercase ) SCREAMING_SNAKE_CASE : List[str] = 0 SCREAMING_SNAKE_CASE : List[Any] = 0 SCREAMING_SNAKE_CASE : Any = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: SCREAMING_SNAKE_CASE : Optional[int] = prime_fac_a.count(lowercase ) SCREAMING_SNAKE_CASE : Tuple = prime_fac_a.count(lowercase ) for _ in range(max(lowercase , lowercase ) ): ans *= n else: SCREAMING_SNAKE_CASE : List[Any] = prime_fac_a.count(lowercase ) for _ in range(lowercase ): ans *= n done.append(lowercase ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: SCREAMING_SNAKE_CASE : int = prime_fac_a.count(lowercase ) for _ in range(lowercase ): ans *= n done.append(lowercase ) # precondition assert isinstance(lowercase , lowercase ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def lowerCamelCase__ ( lowercase ): """simple docstring""" assert isinstance(lowercase , lowercase ) and (n >= 0), "'number' must been a positive int" SCREAMING_SNAKE_CASE : List[str] = 0 SCREAMING_SNAKE_CASE : Optional[int] = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(lowercase ): ans += 1 # precondition assert isinstance(lowercase , lowercase ) and is_prime( lowercase ), "'ans' must been a prime number and from type int" return ans def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" assert ( is_prime(lowercase ) and is_prime(lowercase ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" SCREAMING_SNAKE_CASE : str = p_number_a + 1 # jump to the next number SCREAMING_SNAKE_CASE : Optional[Any] = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(lowercase ): number += 1 while number < p_number_a: ans.append(lowercase ) number += 1 # fetch the next prime number. while not is_prime(lowercase ): number += 1 # precondition assert ( isinstance(lowercase , lowercase ) and ans[0] != p_number_a and ans[len(lowercase ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def lowerCamelCase__ ( lowercase ): """simple docstring""" assert isinstance(lowercase , lowercase ) and (n >= 1), "'n' must been int and >= 1" SCREAMING_SNAKE_CASE : Any = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(lowercase ) # precondition assert ans[0] == 1 and ans[len(lowercase ) - 1] == n, "Error in function getDivisiors(...)" return ans def lowerCamelCase__ ( lowercase ): """simple docstring""" assert isinstance(lowercase , lowercase ) and ( number > 1 ), "'number' must been an int and >= 1" SCREAMING_SNAKE_CASE : Optional[int] = get_divisors(lowercase ) # precondition assert ( isinstance(lowercase , lowercase ) and (divisors[0] == 1) and (divisors[len(lowercase ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" assert ( isinstance(lowercase , lowercase ) and isinstance(lowercase , lowercase ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. SCREAMING_SNAKE_CASE : List[str] = gcd(abs(lowercase ) , abs(lowercase ) ) # precondition assert ( isinstance(lowercase , lowercase ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def lowerCamelCase__ ( lowercase ): """simple docstring""" assert isinstance(lowercase , lowercase ) and (n >= 0), "'n' must been a int and >= 0" SCREAMING_SNAKE_CASE : Union[str, Any] = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def lowerCamelCase__ ( lowercase ): """simple docstring""" assert isinstance(lowercase , lowercase ) and (n >= 0), "'n' must been an int and >= 0" SCREAMING_SNAKE_CASE : Tuple = 0 SCREAMING_SNAKE_CASE : str = 1 SCREAMING_SNAKE_CASE : int = 1 # this will be return for _ in range(n - 1 ): SCREAMING_SNAKE_CASE : str = ans ans += fiba SCREAMING_SNAKE_CASE : Tuple = tmp return ans
62
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case = { """configuration_jukebox""": [ """JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP""", """JukeboxConfig""", """JukeboxPriorConfig""", """JukeboxVQVAEConfig""", ], """tokenization_jukebox""": ["""JukeboxTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ """JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST""", """JukeboxModel""", """JukeboxPreTrainedModel""", """JukeboxVQVAE""", """JukeboxPrior""", ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
62
1
def lowerCAmelCase ( _lowerCAmelCase : str , _lowerCAmelCase : str ): """simple docstring""" UpperCAmelCase__ = len(_lowerCAmelCase ) + 1 UpperCAmelCase__ = len(_lowerCAmelCase ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. UpperCAmelCase__ = [[0 for i in range(_lowerCAmelCase )] for j in range(_lowerCAmelCase )] # since string of zero length match pattern of zero length UpperCAmelCase__ = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , _lowerCAmelCase ): UpperCAmelCase__ = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , _lowerCAmelCase ): UpperCAmelCase__ = dp[0][j - 2] if pattern[j - 1] == "*" else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , _lowerCAmelCase ): for j in range(1 , _lowerCAmelCase ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": UpperCAmelCase__ = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: UpperCAmelCase__ = 1 elif pattern[j - 2] in (input_string[i - 1], "."): UpperCAmelCase__ = dp[i - 1][j] else: UpperCAmelCase__ = 0 else: UpperCAmelCase__ = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") _lowerCAmelCase : Union[str, Any] = "aab" _lowerCAmelCase : Union[str, Any] = "c*a*b" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(F'''{input_string} matches the given pattern {pattern}''') else: print(F'''{input_string} does not match with the given pattern {pattern}''')
364
import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class _UpperCamelCase ( lowerCAmelCase ): UpperCAmelCase_ = (IPNDMScheduler,) UpperCAmelCase_ = (("""num_inference_steps""", 50),) def UpperCAmelCase_ ( self :List[str] , **lowerCamelCase :List[Any] ) -> List[str]: UpperCAmelCase__ = {"num_train_timesteps": 1000} config.update(**lowerCamelCase ) return config def UpperCAmelCase_ ( self :str , lowerCamelCase :Union[str, Any]=0 , **lowerCamelCase :str ) -> str: UpperCAmelCase__ = dict(self.forward_default_kwargs ) UpperCAmelCase__ = kwargs.pop("num_inference_steps" , lowerCamelCase ) UpperCAmelCase__ = self.dummy_sample UpperCAmelCase__ = 0.1 * sample UpperCAmelCase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase__ = self.get_scheduler_config(**lowerCamelCase ) UpperCAmelCase__ = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(lowerCamelCase ) # copy over dummy past residuals UpperCAmelCase__ = dummy_past_residuals[:] if time_step is None: UpperCAmelCase__ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase ) UpperCAmelCase__ = scheduler_class.from_pretrained(lowerCamelCase ) new_scheduler.set_timesteps(lowerCamelCase ) # copy over dummy past residuals UpperCAmelCase__ = dummy_past_residuals[:] UpperCAmelCase__ = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample UpperCAmelCase__ = new_scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" UpperCAmelCase__ = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample UpperCAmelCase__ = new_scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCAmelCase_ ( self :Tuple ) -> Tuple: pass def UpperCAmelCase_ ( self :List[str] , lowerCamelCase :List[str]=0 , **lowerCamelCase :List[str] ) -> Optional[int]: UpperCAmelCase__ = dict(self.forward_default_kwargs ) UpperCAmelCase__ = kwargs.pop("num_inference_steps" , lowerCamelCase ) UpperCAmelCase__ = self.dummy_sample UpperCAmelCase__ = 0.1 * sample UpperCAmelCase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase__ = self.get_scheduler_config() UpperCAmelCase__ = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(lowerCamelCase ) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase__ = dummy_past_residuals[:] if time_step is None: UpperCAmelCase__ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase ) UpperCAmelCase__ = scheduler_class.from_pretrained(lowerCamelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCamelCase ) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase__ = dummy_past_residuals[:] UpperCAmelCase__ = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample UpperCAmelCase__ = new_scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" UpperCAmelCase__ = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample UpperCAmelCase__ = new_scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCAmelCase_ ( self :int , **lowerCamelCase :Any ) -> int: UpperCAmelCase__ = self.scheduler_classes[0] UpperCAmelCase__ = self.get_scheduler_config(**lowerCamelCase ) UpperCAmelCase__ = scheduler_class(**lowerCamelCase ) UpperCAmelCase__ = 10 UpperCAmelCase__ = self.dummy_model() UpperCAmelCase__ = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase__ = model(lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase ).prev_sample for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase__ = model(lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase ).prev_sample return sample def UpperCAmelCase_ ( self :Dict ) -> Optional[Any]: UpperCAmelCase__ = dict(self.forward_default_kwargs ) UpperCAmelCase__ = kwargs.pop("num_inference_steps" , lowerCamelCase ) for scheduler_class in self.scheduler_classes: UpperCAmelCase__ = self.get_scheduler_config() UpperCAmelCase__ = scheduler_class(**lowerCamelCase ) UpperCAmelCase__ = self.dummy_sample UpperCAmelCase__ = 0.1 * sample if num_inference_steps is not None and hasattr(lowerCamelCase , "set_timesteps" ): scheduler.set_timesteps(lowerCamelCase ) elif num_inference_steps is not None and not hasattr(lowerCamelCase , "set_timesteps" ): UpperCAmelCase__ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCAmelCase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] UpperCAmelCase__ = dummy_past_residuals[:] UpperCAmelCase__ = scheduler.timesteps[5] UpperCAmelCase__ = scheduler.timesteps[6] UpperCAmelCase__ = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample UpperCAmelCase__ = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) UpperCAmelCase__ = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample UpperCAmelCase__ = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCAmelCase_ ( self :List[str] ) -> Tuple: for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=lowerCamelCase , time_step=lowerCamelCase ) def UpperCAmelCase_ ( self :Tuple ) -> Optional[int]: for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=lowerCamelCase , time_step=lowerCamelCase ) def UpperCAmelCase_ ( self :Any ) -> Dict: UpperCAmelCase__ = self.full_loop() UpperCAmelCase__ = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_mean.item() - 254_0529 ) < 10
364
1
"""simple docstring""" from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = "x" ,lowerCAmelCase__ = 10**-10 ,lowerCAmelCase__ = 1 ,): lowerCamelCase_ = symbols(lowerCAmelCase__ ) lowerCamelCase_ = lambdify(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCamelCase_ = lambdify(lowerCAmelCase__ ,diff(lowerCAmelCase__ ,lowerCAmelCase__ ) ) lowerCamelCase_ = starting_point while True: if diff_function(lowerCAmelCase__ ) != 0: lowerCamelCase_ = prev_guess - multiplicity * func(lowerCAmelCase__ ) / diff_function( lowerCAmelCase__ ) else: raise ZeroDivisionError('''Could not find root''' ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess lowerCamelCase_ = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}") # Find root of polynomial # Find fourth Root of 5 print(f"The root of x**4 - 5 = 0 is {newton_raphson('x**4 -5', 0.4 +5J)}") # Find value of e print( """The root of log(y) - 1 = 0 is """, f"{newton_raphson('log(y) - 1', 2, variable='y')}", ) # Exponential Roots print( """The root of exp(x) - 1 = 0 is""", f"{newton_raphson('exp(x) - 1', 10, precision=0.005)}", ) # Find root of cos(x) print(f"The root of cos(x) = 0 is {newton_raphson('cos(x)', 0)}")
29
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class __lowerCamelCase ( lowerCAmelCase ): a__: Any = (DDPMScheduler,) def UpperCAmelCase__ ( self , **UpperCAmelCase ): lowerCamelCase_ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**UpperCAmelCase ) return config def UpperCAmelCase__ ( self ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=UpperCAmelCase ) def UpperCAmelCase__ ( self ): for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=UpperCAmelCase , beta_end=UpperCAmelCase ) def UpperCAmelCase__ ( self ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCAmelCase ) def UpperCAmelCase__ ( self ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=UpperCAmelCase ) def UpperCAmelCase__ ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCAmelCase ) def UpperCAmelCase__ ( self ): self.check_over_configs(thresholding=UpperCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=UpperCAmelCase , prediction_type=UpperCAmelCase , sample_max_value=UpperCAmelCase , ) def UpperCAmelCase__ ( self ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase ) def UpperCAmelCase__ ( self ): for t in [0, 500, 999]: self.check_over_forward(time_step=UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1e-5 def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = len(UpperCAmelCase ) lowerCamelCase_ = self.dummy_model() lowerCamelCase_ = self.dummy_sample_deter lowerCamelCase_ = torch.manual_seed(0 ) for t in reversed(range(UpperCAmelCase ) ): # 1. predict noise residual lowerCamelCase_ = model(UpperCAmelCase , UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 lowerCamelCase_ = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , generator=UpperCAmelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCamelCase_ = pred_prev_sample lowerCamelCase_ = torch.sum(torch.abs(UpperCAmelCase ) ) lowerCamelCase_ = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3 def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config(prediction_type='''v_prediction''' ) lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = len(UpperCAmelCase ) lowerCamelCase_ = self.dummy_model() lowerCamelCase_ = self.dummy_sample_deter lowerCamelCase_ = torch.manual_seed(0 ) for t in reversed(range(UpperCAmelCase ) ): # 1. predict noise residual lowerCamelCase_ = model(UpperCAmelCase , UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 lowerCamelCase_ = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , generator=UpperCAmelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCamelCase_ = pred_prev_sample lowerCamelCase_ = torch.sum(torch.abs(UpperCAmelCase ) ) lowerCamelCase_ = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3 def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=UpperCAmelCase ) lowerCamelCase_ = scheduler.timesteps for i, timestep in enumerate(UpperCAmelCase ): if i == len(UpperCAmelCase ) - 1: lowerCamelCase_ = -1 else: lowerCamelCase_ = timesteps[i + 1] lowerCamelCase_ = scheduler.previous_timestep(UpperCAmelCase ) lowerCamelCase_ = prev_t.item() self.assertEqual(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = [100, 87, 50, 51, 0] with self.assertRaises(UpperCAmelCase , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = [100, 87, 50, 1, 0] lowerCamelCase_ = len(UpperCAmelCase ) with self.assertRaises(UpperCAmelCase , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=UpperCAmelCase , timesteps=UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = [scheduler.config.num_train_timesteps] with self.assertRaises( UpperCAmelCase , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=UpperCAmelCase )
29
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu A__ : Optional[int] = [ 'EAGER', 'AOT_EAGER', 'INDUCTOR', 'NVFUSER', 'AOT_NVFUSER', 'AOT_CUDAGRAPHS', 'OFI', 'FX2TRT', 'ONNXRT', 'IPEX', ] def a ( lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=None ): '''simple docstring''' lowercase__ = True while ask_again: lowercase__ = input(lowerCamelCase_ ) try: if default is not None and len(lowerCamelCase_ ) == 0: return default return convert_value(lowerCamelCase_ ) if convert_value is not None else result except Exception: if error_message is not None: print(lowerCamelCase_ ) def a ( lowerCamelCase_ , lowerCamelCase_=[] , lowerCamelCase_=None , lowerCamelCase_=0 ): '''simple docstring''' lowercase__ = BulletMenu(lowerCamelCase_ , lowerCamelCase_ ) lowercase__ = menu.run(default_choice=lowerCamelCase_ ) return convert_value(lowerCamelCase_ ) if convert_value is not None else result def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = int(lowerCamelCase_ ) return ComputeEnvironment(['''LOCAL_MACHINE''', '''AMAZON_SAGEMAKER'''][value] ) def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = int(lowerCamelCase_ ) return DistributedType(['''NO''', '''MULTI_CPU''', '''MULTI_XPU''', '''MULTI_GPU''', '''MULTI_NPU''', '''TPU'''][value] ) def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = int(lowerCamelCase_ ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = int(lowerCamelCase_ ) return PrecisionType(['''no''', '''fp16''', '''bf16''', '''fp8'''][value] ) def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = int(lowerCamelCase_ ) return SageMakerDistributedType(['''NO''', '''DATA_PARALLEL''', '''MODEL_PARALLEL'''][value] ) def a ( lowerCamelCase_ ): '''simple docstring''' return {"yes": True, "no": False}[value.lower()] class _UpperCAmelCase ( argparse.RawDescriptionHelpFormatter ): """simple docstring""" def lowercase__ ( self : str, lowerCamelCase : Union[str, Any], lowerCamelCase : Any, lowerCamelCase : Dict, lowerCamelCase : int ): '''simple docstring''' lowercase__ = super()._format_usage(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ) lowercase__ = usage.replace('''<command> [<args>] ''', '''''' ) return usage
671
from itertools import count def a ( lowerCamelCase_ = 50 ): '''simple docstring''' lowercase__ = [1] * min_block_length for n in count(lowerCamelCase_ ): fill_count_functions.append(1 ) for block_length in range(lowerCamelCase_ , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 100_0000: break return n if __name__ == "__main__": print(F"{solution() = }")
671
1
"""simple docstring""" from timeit import timeit A : Dict = { 'MALAYALAM': True, 'String': False, 'rotor': True, 'level': True, 'A': True, 'BB': True, 'ABC': False, 'amanaplanacanalpanama': True, # "a man a plan a canal panama" } # Ensure our test data is valid assert all((key == key[::-1]) is value for key, value in test_data.items()) def snake_case__ ( _snake_case : str ): """simple docstring""" UpperCamelCase__ = 0 UpperCamelCase__ = len(_snake_case ) - 1 while start_i < end_i: if s[start_i] == s[end_i]: start_i += 1 end_i -= 1 else: return False return True def snake_case__ ( _snake_case : str ): """simple docstring""" UpperCamelCase__ = len(_snake_case ) // 2 UpperCamelCase__ = len(_snake_case ) # We need to traverse till half of the length of string # as we can get access of the i'th last element from # i'th index. # eg: [0,1,2,3,4,5] => 4th index can be accessed # with the help of 1st index (i==n-i-1) # where n is length of string return all(s[i] == s[n - i - 1] for i in range(_snake_case ) ) def snake_case__ ( _snake_case : str ): """simple docstring""" if len(_snake_case ) <= 2: return True if s[0] == s[len(_snake_case ) - 1]: return is_palindrome_recursive(s[1:-1] ) else: return False def snake_case__ ( _snake_case : str ): """simple docstring""" return s == s[::-1] def snake_case__ ( _snake_case : str ): """simple docstring""" UpperCamelCase__ = F'all({name}(key) is value for key, value in test_data.items())' UpperCamelCase__ = F'from __main__ import test_data, {name}' UpperCamelCase__ = 50_00_00 UpperCamelCase__ = timeit(stmt=_snake_case , setup=_snake_case , number=_snake_case ) print(F'{name:<35} finished {number:,} runs in {result:.5f} seconds' ) if __name__ == "__main__": for key, value in test_data.items(): assert is_palindrome(key) is is_palindrome_recursive(key) assert is_palindrome(key) is is_palindrome_slice(key) print(F"{key:21} {value}") print('a man a plan a canal panama') # finished 500,000 runs in 0.46793 seconds benchmark_function('is_palindrome_slice') # finished 500,000 runs in 0.85234 seconds benchmark_function('is_palindrome') # finished 500,000 runs in 1.32028 seconds benchmark_function('is_palindrome_recursive') # finished 500,000 runs in 2.08679 seconds benchmark_function('is_palindrome_traversal')
516
"""simple docstring""" from __future__ import annotations import time A : List[str] = list[tuple[int, int]] A : Tuple = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] A : Union[str, Any] = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class lowerCAmelCase : '''simple docstring''' def __init__( self :Any , lowerCamelCase_ :int , lowerCamelCase_ :int , lowerCamelCase_ :int , lowerCamelCase_ :int , lowerCamelCase_ :Node | None ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ = pos_x UpperCamelCase__ = pos_y UpperCamelCase__ = (pos_y, pos_x) UpperCamelCase__ = goal_x UpperCamelCase__ = goal_y UpperCamelCase__ = parent class lowerCAmelCase : '''simple docstring''' def __init__( self :int , lowerCamelCase_ :tuple[int, int] , lowerCamelCase_ :tuple[int, int] ) -> List[Any]: """simple docstring""" UpperCamelCase__ = Node(start[1] , start[0] , goal[1] , goal[0] , lowerCamelCase_ ) UpperCamelCase__ = Node(goal[1] , goal[0] , goal[1] , goal[0] , lowerCamelCase_ ) UpperCamelCase__ = [self.start] UpperCamelCase__ = False def lowerCamelCase__ ( self :Any ) -> Path | None: """simple docstring""" while self.node_queue: UpperCamelCase__ = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: UpperCamelCase__ = True return self.retrace_path(lowerCamelCase_ ) UpperCamelCase__ = self.get_successors(lowerCamelCase_ ) for node in successors: self.node_queue.append(lowerCamelCase_ ) if not self.reached: return [self.start.pos] return None def lowerCamelCase__ ( self :str , lowerCamelCase_ :Node ) -> list[Node]: """simple docstring""" UpperCamelCase__ = [] for action in delta: UpperCamelCase__ = parent.pos_x + action[1] UpperCamelCase__ = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowerCamelCase_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(lowerCamelCase_ , lowerCamelCase_ , self.target.pos_y , self.target.pos_x , lowerCamelCase_ ) ) return successors def lowerCamelCase__ ( self :Any , lowerCamelCase_ :Node | None ) -> Path: """simple docstring""" UpperCamelCase__ = node UpperCamelCase__ = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) UpperCamelCase__ = current_node.parent path.reverse() return path class lowerCAmelCase : '''simple docstring''' def __init__( self :Optional[int] , lowerCamelCase_ :str , lowerCamelCase_ :Union[str, Any] ) -> int: """simple docstring""" UpperCamelCase__ = BreadthFirstSearch(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase__ = BreadthFirstSearch(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase__ = False def lowerCamelCase__ ( self :int ) -> Path | None: """simple docstring""" while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: UpperCamelCase__ = self.fwd_bfs.node_queue.pop(0 ) UpperCamelCase__ = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: UpperCamelCase__ = True return self.retrace_bidirectional_path( lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase__ = current_bwd_node UpperCamelCase__ = current_fwd_node UpperCamelCase__ = { self.fwd_bfs: self.fwd_bfs.get_successors(lowerCamelCase_ ), self.bwd_bfs: self.bwd_bfs.get_successors(lowerCamelCase_ ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(lowerCamelCase_ ) if not self.reached: return [self.fwd_bfs.start.pos] return None def lowerCamelCase__ ( self :List[str] , lowerCamelCase_ :Node , lowerCamelCase_ :Node ) -> Path: """simple docstring""" UpperCamelCase__ = self.fwd_bfs.retrace_path(lowerCamelCase_ ) UpperCamelCase__ = self.bwd_bfs.retrace_path(lowerCamelCase_ ) bwd_path.pop() bwd_path.reverse() UpperCamelCase__ = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() A : str = (0, 0) A : Any = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) A : Any = time.time() A : Optional[int] = BreadthFirstSearch(init, goal) A : List[str] = bfs.search() A : Dict = time.time() - start_bfs_time print('Unidirectional BFS computation time : ', bfs_time) A : Optional[int] = time.time() A : Any = BidirectionalBreadthFirstSearch(init, goal) A : List[Any] = bd_bfs.search() A : Dict = time.time() - start_bd_bfs_time print('Bidirectional BFS computation time : ', bd_bfs_time)
516
1
'''simple docstring''' import unittest import numpy as np def SCREAMING_SNAKE_CASE_ ( __A : Dict , __A : List[str] , __A : List[Any] , __A : Tuple = None , ) -> Optional[int]: """simple docstring""" a_ : Any = np.shape(__SCREAMING_SNAKE_CASE ) a_ : int = np.shape(__SCREAMING_SNAKE_CASE ) a_ : str = np.shape(__SCREAMING_SNAKE_CASE ) if shape_a[0] != shape_b[0]: a_ : Union[str, Any] = ( "Expected the same number of rows for A and B. " F"""Instead found A of size {shape_a} and B of size {shape_b}""" ) raise ValueError(__SCREAMING_SNAKE_CASE ) if shape_b[1] != shape_c[1]: a_ : str = ( "Expected the same number of columns for B and C. " F"""Instead found B of size {shape_b} and C of size {shape_c}""" ) raise ValueError(__SCREAMING_SNAKE_CASE ) a_ : Any = pseudo_inv if a_inv is None: try: a_ : Optional[Any] = np.linalg.inv(__SCREAMING_SNAKE_CASE ) except np.linalg.LinAlgError: raise ValueError( 'Input matrix A is not invertible. Cannot compute Schur complement.' ) return mat_c - mat_b.T @ a_inv @ mat_b class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: a_ : int = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) a_ : Dict = np.array([[0, 3], [3, 0], [2, 3]] ) a_ : List[Any] = np.array([[2, 1], [6, 3]] ) a_ : str = schur_complement(lowercase_ , lowercase_ , lowercase_ ) a_ : int = np.block([[a, b], [b.T, c]] ) a_ : int = np.linalg.det(lowercase_ ) a_ : int = np.linalg.det(lowercase_ ) a_ : str = np.linalg.det(lowercase_ ) self.assertAlmostEqual(lowercase_ , det_a * det_s ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: a_ : Optional[int] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) a_ : Dict = np.array([[0, 3], [3, 0], [2, 3]] ) a_ : List[Any] = np.array([[2, 1], [6, 3]] ) with self.assertRaises(lowercase_ ): schur_complement(lowercase_ , lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[str]: a_ : Tuple = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) a_ : Any = np.array([[0, 3], [3, 0], [2, 3]] ) a_ : List[Any] = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(lowercase_ ): schur_complement(lowercase_ , lowercase_ , lowercase_ ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
704
import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class SCREAMING_SNAKE_CASE__ ( lowercase__ , unittest.TestCase ): snake_case__ : List[str] = MvpTokenizer snake_case__ : Dict = MvpTokenizerFast snake_case__ : Any = True snake_case__ : Optional[int] = filter_roberta_detectors def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: super().setUp() a_ : Any = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] a_ : int = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) ) a_ : int = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] a_ : str = {'unk_token': '<unk>'} a_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) a_ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE__ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(SCREAMING_SNAKE_CASE__ ) ) def SCREAMING_SNAKE_CASE ( self : List[Any] , **SCREAMING_SNAKE_CASE__ : str ) -> List[Any]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Any , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> List[str]: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Any ) -> Union[str, Any]: return "lower newer", "lower newer" @cached_property def SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: return MvpTokenizer.from_pretrained('RUCAIBox/mvp' ) @cached_property def SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]: return MvpTokenizerFast.from_pretrained('RUCAIBox/mvp' ) @require_torch def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: a_ : Union[str, Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] a_ : List[Any] = [0, 2_5_0, 2_5_1, 1_7_8_1_8, 1_3, 3_9_1_8_6, 1_9_3_8, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: a_ : List[str] = tokenizer(SCREAMING_SNAKE_CASE__ , max_length=len(SCREAMING_SNAKE_CASE__ ) , padding=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) a_ : Optional[Any] = batch.input_ids.tolist()[0] self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Test that special tokens are reset @require_torch def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: a_ : Any = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: a_ : Optional[Any] = tokenizer(SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ) # check if input_ids are returned and no labels self.assertIn('input_ids' , SCREAMING_SNAKE_CASE__ ) self.assertIn('attention_mask' , SCREAMING_SNAKE_CASE__ ) self.assertNotIn('labels' , SCREAMING_SNAKE_CASE__ ) self.assertNotIn('decoder_attention_mask' , SCREAMING_SNAKE_CASE__ ) @require_torch def SCREAMING_SNAKE_CASE ( self : Dict ) -> int: a_ : Union[str, Any] = [ 'Summary of the text.', 'Another summary.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: a_ : List[str] = tokenizer(text_target=SCREAMING_SNAKE_CASE__ , max_length=3_2 , padding='max_length' , return_tensors='pt' ) self.assertEqual(3_2 , targets['input_ids'].shape[1] ) @require_torch def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: a_ : Dict = tokenizer( ['I am a small frog' * 1_0_2_4, 'I am a small frog'] , padding=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertEqual(batch.input_ids.shape , (2, 1_0_2_4) ) @require_torch def SCREAMING_SNAKE_CASE ( self : Dict ) -> Tuple: a_ : Dict = ['A long paragraph for summarization.'] a_ : Dict = [ 'Summary of the text.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: a_ : Union[str, Any] = tokenizer(SCREAMING_SNAKE_CASE__ , text_target=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ) a_ : Dict = inputs['input_ids'] a_ : str = inputs['labels'] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: pass def SCREAMING_SNAKE_CASE ( self : Any ) -> int: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): a_ : List[str] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) a_ : Tuple = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) a_ : int = 'A, <mask> AllenNLP sentence.' a_ : Optional[Any] = tokenizer_r.encode_plus(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_token_type_ids=SCREAMING_SNAKE_CASE__ ) a_ : int = tokenizer_p.encode_plus(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_token_type_ids=SCREAMING_SNAKE_CASE__ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) a_ : str = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) a_ : Any = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual( SCREAMING_SNAKE_CASE__ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( SCREAMING_SNAKE_CASE__ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
443
0
'''simple docstring''' from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
539
"""simple docstring""" import os # Precomputes a list of the 100 first triangular numbers _lowercase = [int(0.5 * n * (n + 1)) for n in range(1, 1_01)] def _snake_case ( ): A = os.path.dirname(os.path.realpath(snake_case__ ) ) A = os.path.join(snake_case__ , 'words.txt' ) A = '' with open(snake_case__ ) as f: A = f.readline() A = [word.strip('"' ) for word in words.strip('\r\n' ).split(',' )] A = [ word for word in [sum(ord(snake_case__ ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(snake_case__ ) if __name__ == "__main__": print(solution())
91
0
"""simple docstring""" from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def UpperCAmelCase ( A : float , A : float , A : bool = False ): '''simple docstring''' if radian_mode: return [magnitude * cos(A ), magnitude * sin(A )] return [magnitude * cos(radians(A ) ), magnitude * sin(radians(A ) )] def UpperCAmelCase ( A : NDArray[floataa] , A : NDArray[floataa] , A : float = 10**-1 ): '''simple docstring''' _UpperCAmelCase = cross(A , A ) _UpperCAmelCase = sum(A ) return abs(A ) < eps if __name__ == "__main__": # Test to check if it works lowercase = array( [ polar_force(718.4, 1_80 - 30), polar_force(879.54, 45), polar_force(1_00, -90), ] ) lowercase = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg lowercase = array( [ polar_force(30 * 9.81, 15), polar_force(2_15, 1_80 - 45), polar_force(2_64, 90 - 30), ] ) lowercase = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg lowercase = array([[0, -20_00], [0, -12_00], [0, 1_56_00], [0, -1_24_00]]) lowercase = array([[0, 0], [6, 0], [10, 0], [12, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
24
"""simple docstring""" import os def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase = os.path.join(os.path.dirname(A ) , 'num.txt' ) with open(A ) as file_hand: return str(sum(int(A ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
24
1
'''simple docstring''' from __future__ import annotations def _a ( _lowerCamelCase ) -> bool: """simple docstring""" __snake_case : Union[str, Any] = len(_lowerCamelCase ) # We need to create solution object to save path. __snake_case : Optional[Any] = [[0 for _ in range(_lowerCamelCase )] for _ in range(_lowerCamelCase )] __snake_case : int = run_maze(_lowerCamelCase , 0 , 0 , _lowerCamelCase ) if solved: print("""\n""".join(str(_lowerCamelCase ) for row in solutions ) ) else: print("""No solution exists!""" ) return solved def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> bool: """simple docstring""" __snake_case : str = len(_lowerCamelCase ) # Final check point. if i == j == (size - 1): __snake_case : Tuple = 1 return True __snake_case : Union[str, Any] = (not i < 0) and (not j < 0) # Check lower bounds __snake_case : int = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. __snake_case : Union[str, Any] = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited __snake_case : Union[str, Any] = 1 # check for directions if ( run_maze(_lowerCamelCase , i + 1 , _lowerCamelCase , _lowerCamelCase ) or run_maze(_lowerCamelCase , _lowerCamelCase , j + 1 , _lowerCamelCase ) or run_maze(_lowerCamelCase , i - 1 , _lowerCamelCase , _lowerCamelCase ) or run_maze(_lowerCamelCase , _lowerCamelCase , j - 1 , _lowerCamelCase ) ): return True __snake_case : Dict = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
26
class lowerCamelCase_ : def __init__( self : Dict , __A : Tuple , __A : Optional[int] , __A : int ): __A : List[str] = name __A : Optional[int] = value __A : Optional[Any] = weight def __repr__( self : Any ): return F"""{self.__class__.__name__}({self.name}, {self.value}, {self.weight})""" def lowerCAmelCase_ ( self : Union[str, Any] ): return self.value def lowerCAmelCase_ ( self : str ): return self.name def lowerCAmelCase_ ( self : str ): return self.weight def lowerCAmelCase_ ( self : Dict ): return self.value / self.weight def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : Optional[int] ,a__ : Union[str, Any] ) -> int: __A : Tuple = [] for i in range(len(a__ ) ): menu.append(Things(name[i] ,value[i] ,weight[i] ) ) return menu def __SCREAMING_SNAKE_CASE ( a__ : Tuple ,a__ : Any ,a__ : Optional[int] ) -> Tuple: __A : Optional[int] = sorted(a__ ,key=a__ ,reverse=a__ ) __A : Optional[Any] = [] __A , __A : Tuple = 0.0, 0.0 for i in range(len(a__ ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def __SCREAMING_SNAKE_CASE ( ) -> List[Any]: pass if __name__ == "__main__": import doctest doctest.testmod()
17
0
from collections import deque from .hash_table import HashTable class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : Optional[int] , *lowerCAmelCase : str , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" super().__init__(*__a , **__a) def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : Any , lowerCAmelCase : Optional[int]) -> str: """simple docstring""" _snake_case : Optional[int] = deque([]) if self.values[key] is None else self.values[key] self.values[key].appendleft(__a) _snake_case : Tuple = self.values[key] def UpperCamelCase_ ( self : Any) -> Tuple: """simple docstring""" return ( sum(self.charge_factor - len(__a) for slot in self.values) / self.size_table * self.charge_factor ) def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : Tuple , lowerCAmelCase : str=None) -> List[str]: """simple docstring""" if not ( len(self.values[key]) == self.charge_factor and self.values.count(__a) == 0 ): return key return super()._collision_resolution(__a , __a)
712
import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy a__ = logging.getLogger(__name__) def lowercase ( SCREAMING_SNAKE_CASE__ : torch.nn.Module , SCREAMING_SNAKE_CASE__ : BnbQuantizationConfig , SCREAMING_SNAKE_CASE__ : Union[str, os.PathLike] = None , SCREAMING_SNAKE_CASE__ : Optional[Dict[str, Union[int, str, torch.device]]] = None , SCREAMING_SNAKE_CASE__ : Optional[List[str]] = None , SCREAMING_SNAKE_CASE__ : Optional[Dict[Union[int, str], Union[int, str]]] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[str, os.PathLike]] = None , SCREAMING_SNAKE_CASE__ : bool = False , ) -> int: _snake_case : int = bnb_quantization_config.load_in_abit _snake_case : Tuple = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( """You have a version of `bitsandbytes` that is not compatible with 8bit quantization,""" """ make sure you have the latest version of `bitsandbytes` installed.""" ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( """You have a version of `bitsandbytes` that is not compatible with 4bit quantization,""" """make sure you have the latest version of `bitsandbytes` installed.""" ) _snake_case : List[Any] = [] # custom device map if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and len(device_map.keys() ) > 1: _snake_case : Tuple = [key for key, value in device_map.items() if value in ["""disk""", """cpu"""]] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: _snake_case : Union[str, Any] = get_keys_to_not_convert(SCREAMING_SNAKE_CASE__ ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(SCREAMING_SNAKE_CASE__ ) _snake_case : Union[str, Any] = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: _snake_case : Optional[Any] = [] _snake_case : Dict = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(SCREAMING_SNAKE_CASE__ ) # compatibility with peft _snake_case : Union[str, Any] = load_in_abit _snake_case : Any = load_in_abit _snake_case : Optional[int] = get_parameter_device(SCREAMING_SNAKE_CASE__ ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( """It is not recommended to quantize a loaded model. """ """The model should be instantiated under the `init_empty_weights` context manager.""" ) _snake_case : int = replace_with_bnb_layers(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , modules_to_not_convert=SCREAMING_SNAKE_CASE__ ) # convert param to the right dtype _snake_case : Any = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: _snake_case : Union[str, Any] = name.replace(""".weight""" , """""" ).replace(""".bias""" , """""" ) _snake_case : Any = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(SCREAMING_SNAKE_CASE__ ): param.to(SCREAMING_SNAKE_CASE__ ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" ) logger.info( F'''The model device type is {model_device.type}. However, cuda is needed for quantization.''' """We move the model to cuda.""" ) return model elif weights_location is None: raise RuntimeError( F'''`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ''' ) else: with init_empty_weights(): _snake_case : Optional[int] = replace_with_bnb_layers( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , modules_to_not_convert=SCREAMING_SNAKE_CASE__ ) _snake_case : List[Any] = get_quantized_model_device_map( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , max_memory=SCREAMING_SNAKE_CASE__ , no_split_module_classes=SCREAMING_SNAKE_CASE__ , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): _snake_case : Union[str, Any] = True _snake_case : Any = any(x in list(device_map.values() ) for x in ["""cpu""", """disk"""] ) load_checkpoint_in_model( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , dtype=bnb_quantization_config.torch_dtype , offload_folder=SCREAMING_SNAKE_CASE__ , offload_state_dict=SCREAMING_SNAKE_CASE__ , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(SCREAMING_SNAKE_CASE__ , device_map=SCREAMING_SNAKE_CASE__ , offload_dir=SCREAMING_SNAKE_CASE__ ) def lowercase ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : Any=None ) -> List[Any]: if device_map is None: if torch.cuda.is_available(): _snake_case : Dict = {"""""": torch.cuda.current_device()} else: raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" ) logger.info("""The device_map was not initialized.""" """Setting device_map to `{'':torch.cuda.current_device()}`.""" ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( """If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or """ """'sequential'.""" ) _snake_case : int = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) _snake_case : Tuple = {} _snake_case : List[str] = special_dtypes _snake_case : int = no_split_module_classes _snake_case : List[Any] = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": _snake_case : Optional[int] = get_balanced_memory( SCREAMING_SNAKE_CASE__ , low_zero=(device_map == """balanced_low_0""") , max_memory=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) _snake_case : str = max_memory _snake_case : Optional[int] = infer_auto_device_map(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # check if don't have any quantized module on the cpu _snake_case : List[str] = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules _snake_case : Dict = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( """ Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules in `torch_dtype`, you need to pass a custom `device_map` to `load_and_quantize_model`. Check https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk for more details. """ ) else: logger.info( """Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit""" ) del device_map_without_some_modules return device_map def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : Any=None ) -> List[Any]: if modules_to_not_convert is None: _snake_case : Tuple = [] _snake_case , _snake_case : str = _replace_with_bnb_layers( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if not has_been_replaced: logger.warning( """You are loading your model in 8bit or 4bit but no linear modules were found in your model.""" """ this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.""" """ Please double check your model architecture, or submit an issue on github if you think this is""" """ a bug.""" ) return model def lowercase ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str=None , SCREAMING_SNAKE_CASE__ : Tuple=None , ) -> Optional[Any]: _snake_case : List[str] = False for name, module in model.named_children(): if current_key_name is None: _snake_case : List[str] = [] current_key_name.append(SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` _snake_case : int = """.""".join(SCREAMING_SNAKE_CASE__ ) _snake_case : List[str] = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: _snake_case : Optional[int] = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: _snake_case : List[Any] = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=SCREAMING_SNAKE_CASE__ , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: _snake_case : Any = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError("""load_in_8bit and load_in_4bit can't be both False""" ) _snake_case : List[str] = module.weight.data if module.bias is not None: _snake_case : List[Any] = module.bias.data bnb_module.requires_grad_(SCREAMING_SNAKE_CASE__ ) setattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : List[str] = True if len(list(module.children() ) ) > 0: _snake_case , _snake_case : Optional[int] = _replace_with_bnb_layers( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : List[str] = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> int: # Create a copy of the model with init_empty_weights(): _snake_case : Optional[Any] = deepcopy(SCREAMING_SNAKE_CASE__ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` _snake_case : Tuple = find_tied_parameters(SCREAMING_SNAKE_CASE__ ) # For compatibility with Accelerate < 0.18 if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): _snake_case : List[Any] = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: _snake_case : Optional[Any] = sum(SCREAMING_SNAKE_CASE__ , [] ) _snake_case : Optional[Any] = len(SCREAMING_SNAKE_CASE__ ) > 0 # Check if it is a base model _snake_case : str = False if hasattr(SCREAMING_SNAKE_CASE__ , """base_model_prefix""" ): _snake_case : List[Any] = not hasattr(SCREAMING_SNAKE_CASE__ , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head _snake_case : str = list(model.named_children() ) _snake_case : Dict = [list_modules[-1][0]] # add last module together with tied weights _snake_case : Optional[int] = set(SCREAMING_SNAKE_CASE__ ) - set(SCREAMING_SNAKE_CASE__ ) _snake_case : Dict = list(set(SCREAMING_SNAKE_CASE__ ) ) + list(SCREAMING_SNAKE_CASE__ ) # remove ".weight" from the keys _snake_case : Union[str, Any] = [""".weight""", """.bias"""] _snake_case : List[str] = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: _snake_case : Optional[Any] = name.replace(SCREAMING_SNAKE_CASE__ , """""" ) filtered_module_names.append(SCREAMING_SNAKE_CASE__ ) return filtered_module_names def lowercase ( SCREAMING_SNAKE_CASE__ : Dict ) -> Tuple: for m in model.modules(): if isinstance(SCREAMING_SNAKE_CASE__ , bnb.nn.Linearabit ): return True return False def lowercase ( SCREAMING_SNAKE_CASE__ : nn.Module ) -> Union[str, Any]: return next(parameter.parameters() ).device def lowercase ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict ) -> Any: # if it is not quantized, we quantize and offload the quantized weights and the SCB stats if fpaa_statistics is None: set_module_tensor_to_device(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 0 , dtype=SCREAMING_SNAKE_CASE__ , value=SCREAMING_SNAKE_CASE__ ) _snake_case : Optional[Any] = param_name _snake_case : List[Any] = model if "." in tensor_name: _snake_case : str = tensor_name.split(""".""" ) for split in splits[:-1]: _snake_case : Tuple = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if new_module is None: raise ValueError(F'''{module} has no attribute {split}.''' ) _snake_case : Tuple = new_module _snake_case : Dict = splits[-1] # offload weights _snake_case : List[str] = False offload_weight(module._parameters[tensor_name] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , index=SCREAMING_SNAKE_CASE__ ) if hasattr(module._parameters[tensor_name] , """SCB""" ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace("""weight""" , """SCB""" ) , SCREAMING_SNAKE_CASE__ , index=SCREAMING_SNAKE_CASE__ , ) else: offload_weight(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , index=SCREAMING_SNAKE_CASE__ ) offload_weight(SCREAMING_SNAKE_CASE__ , param_name.replace("""weight""" , """SCB""" ) , SCREAMING_SNAKE_CASE__ , index=SCREAMING_SNAKE_CASE__ ) set_module_tensor_to_device(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , """meta""" , dtype=SCREAMING_SNAKE_CASE__ , value=torch.empty(*param.size() ) )
198
0
import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings snake_case = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class A_ ( UpperCAmelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : bool = field(default=UpperCAmelCase , metadata={'''help''': '''Whether to use SortishSampler or not.'''} ) SCREAMING_SNAKE_CASE_ : bool = field( default=UpperCAmelCase , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) SCREAMING_SNAKE_CASE_ : Optional[int] = field( default=UpperCAmelCase , metadata={ '''help''': ( '''The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `max_length` value of the model configuration.''' ) } , ) SCREAMING_SNAKE_CASE_ : Optional[int] = field( default=UpperCAmelCase , metadata={ '''help''': ( '''The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `num_beams` value of the model configuration.''' ) } , ) SCREAMING_SNAKE_CASE_ : Optional[Union[str, Path, GenerationConfig]] = field( default=UpperCAmelCase , metadata={ '''help''': '''Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.''' } , ) def __UpperCAmelCase ( self : List[Any] ) -> Any: _lowercase = super().to_dict() for k, v in d.items(): if isinstance(__A ,__A ): _lowercase = v.to_dict() return d
67
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __a : @staticmethod def UpperCamelCase ( *snake_case_ : Any , **snake_case_ : str)-> int: pass @is_pipeline_test @require_vision class __a ( unittest.TestCase ): @require_torch def UpperCamelCase ( self : Dict)-> List[str]: __lowerCAmelCase =pipeline( model="""hf-internal-testing/tiny-random-clip-zero-shot-image-classification""" , ) __lowerCAmelCase =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""") __lowerCAmelCase =image_classifier(snake_case_ , candidate_labels=["""a""", """b""", """c"""]) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(snake_case_) , [ [{"""score""": 0.3_3_3, """label""": """a"""}, {"""score""": 0.3_3_3, """label""": """b"""}, {"""score""": 0.3_3_3, """label""": """c"""}], [{"""score""": 0.3_3_3, """label""": """a"""}, {"""score""": 0.3_3_3, """label""": """c"""}, {"""score""": 0.3_3_3, """label""": """b"""}], ] , ) __lowerCAmelCase =image_classifier([image] * 5 , candidate_labels=["""A""", """B""", """C"""] , batch_size=2) self.assertEqual( nested_simplify(snake_case_) , [ [ {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, ], [ {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, ], [ {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, ], [ {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, ], [ {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, ], ] , ) @require_tf def UpperCamelCase ( self : Dict)-> Optional[Any]: __lowerCAmelCase =pipeline( model="""hf-internal-testing/tiny-random-clip-zero-shot-image-classification""" , framework="""tf""") __lowerCAmelCase =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""") __lowerCAmelCase =image_classifier(snake_case_ , candidate_labels=["""a""", """b""", """c"""]) self.assertEqual( nested_simplify(snake_case_) , [{"""score""": 0.3_3_3, """label""": """a"""}, {"""score""": 0.3_3_3, """label""": """b"""}, {"""score""": 0.3_3_3, """label""": """c"""}] , ) __lowerCAmelCase =image_classifier([image] * 5 , candidate_labels=["""A""", """B""", """C"""] , batch_size=2) self.assertEqual( nested_simplify(snake_case_) , [ [ {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, ], [ {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, ], [ {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, ], [ {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, ], [ {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, {"""score""": 0.3_3_3, """label""": ANY(snake_case_)}, ], ] , ) @slow @require_torch def UpperCamelCase ( self : Any)-> Dict: __lowerCAmelCase =pipeline( task="""zero-shot-image-classification""" , model="""openai/clip-vit-base-patch32""" , ) # This is an image of 2 cats with remotes and no planes __lowerCAmelCase =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""") __lowerCAmelCase =image_classifier(snake_case_ , candidate_labels=["""cat""", """plane""", """remote"""]) self.assertEqual( nested_simplify(snake_case_) , [ {"""score""": 0.5_1_1, """label""": """remote"""}, {"""score""": 0.4_8_5, """label""": """cat"""}, {"""score""": 0.0_0_4, """label""": """plane"""}, ] , ) __lowerCAmelCase =image_classifier([image] * 5 , candidate_labels=["""cat""", """plane""", """remote"""] , batch_size=2) self.assertEqual( nested_simplify(snake_case_) , [ [ {"""score""": 0.5_1_1, """label""": """remote"""}, {"""score""": 0.4_8_5, """label""": """cat"""}, {"""score""": 0.0_0_4, """label""": """plane"""}, ], ] * 5 , ) @slow @require_tf def UpperCamelCase ( self : Optional[int])-> int: __lowerCAmelCase =pipeline( task="""zero-shot-image-classification""" , model="""openai/clip-vit-base-patch32""" , framework="""tf""") # This is an image of 2 cats with remotes and no planes __lowerCAmelCase =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""") __lowerCAmelCase =image_classifier(snake_case_ , candidate_labels=["""cat""", """plane""", """remote"""]) self.assertEqual( nested_simplify(snake_case_) , [ {"""score""": 0.5_1_1, """label""": """remote"""}, {"""score""": 0.4_8_5, """label""": """cat"""}, {"""score""": 0.0_0_4, """label""": """plane"""}, ] , ) __lowerCAmelCase =image_classifier([image] * 5 , candidate_labels=["""cat""", """plane""", """remote"""] , batch_size=2) self.assertEqual( nested_simplify(snake_case_) , [ [ {"""score""": 0.5_1_1, """label""": """remote"""}, {"""score""": 0.4_8_5, """label""": """cat"""}, {"""score""": 0.0_0_4, """label""": """plane"""}, ], ] * 5 , )
354
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer _A = logging.get_logger(__name__) _A = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _A = [ 'small', 'small-base', 'medium', 'medium-base', 'intermediate', 'intermediate-base', 'large', 'large-base', 'xlarge', 'xlarge-base', ] _A = { 'vocab_file': { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt', 'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt', 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt', 'funnel-transformer/medium-base': ( 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt' ), 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt', 'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt', 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt', 'funnel-transformer/xlarge-base': ( 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json', 'funnel-transformer/small-base': ( 'https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json' ), 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json', 'funnel-transformer/medium-base': ( 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json' ), 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json', 'funnel-transformer/large-base': ( 'https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json' ), 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json', 'funnel-transformer/xlarge-base': ( 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json' ), }, } _A = {F"""funnel-transformer/{name}""": 512 for name in _model_names} _A = {F"""funnel-transformer/{name}""": {'do_lower_case': True} for name in _model_names} class _lowercase ( __UpperCAmelCase ): lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_INIT_CONFIGURATION lowercase_ = FunnelTokenizer lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = 2 def __init__( self , UpperCAmelCase_=None , UpperCAmelCase_=None , UpperCAmelCase_=True , UpperCAmelCase_="<unk>" , UpperCAmelCase_="<sep>" , UpperCAmelCase_="<pad>" , UpperCAmelCase_="<cls>" , UpperCAmelCase_="<mask>" , UpperCAmelCase_="<s>" , UpperCAmelCase_="</s>" , UpperCAmelCase_=True , UpperCAmelCase_=True , UpperCAmelCase_=None , UpperCAmelCase_="##" , **UpperCAmelCase_ , ) -> List[Any]: super().__init__( UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , clean_text=UpperCAmelCase_ , tokenize_chinese_chars=UpperCAmelCase_ , strip_accents=UpperCAmelCase_ , wordpieces_prefix=UpperCAmelCase_ , **UpperCAmelCase_ , ) lowerCamelCase : List[str] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCAmelCase_ ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCAmelCase_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCAmelCase_ ) != tokenize_chinese_chars ): lowerCamelCase : List[str] = getattr(UpperCAmelCase_ , normalizer_state.pop('type' ) ) lowerCamelCase : Union[str, Any] = do_lower_case lowerCamelCase : Optional[int] = strip_accents lowerCamelCase : Union[str, Any] = tokenize_chinese_chars lowerCamelCase : List[str] = normalizer_class(**UpperCAmelCase_ ) lowerCamelCase : int = do_lower_case def _UpperCamelCase ( self , UpperCAmelCase_ , UpperCAmelCase_=None ) -> Union[str, Any]: lowerCamelCase : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _UpperCamelCase ( self , UpperCAmelCase_ , UpperCAmelCase_ = None ) -> List[int]: lowerCamelCase : Any = [self.sep_token_id] lowerCamelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _UpperCamelCase ( self , UpperCAmelCase_ , UpperCAmelCase_ = None ) -> Tuple[str]: lowerCamelCase : List[str] = self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_ ) return tuple(UpperCAmelCase_ )
706
"""simple docstring""" from __future__ import annotations import math def UpperCAmelCase ( a_ ): '''simple docstring''' if num <= 0: lowerCamelCase : Tuple = F"""{num}: Invalid input, please enter a positive integer.""" raise ValueError(a_ ) lowerCamelCase : Optional[Any] = [True] * (num + 1) lowerCamelCase : int = [] lowerCamelCase : Dict = 2 lowerCamelCase : List[str] = int(math.sqrt(a_ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(a_ ) # Set multiples of start be False for i in range(start * start, num + 1, a_ ): if sieve[i] is True: lowerCamelCase : Optional[int] = False start += 1 for j in range(end + 1, num + 1 ): if sieve[j] is True: prime.append(a_ ) return prime if __name__ == "__main__": print(prime_sieve(int(input('Enter a positive integer: ').strip())))
133
0
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE__ : Tuple ={'configuration_focalnet': ['FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FocalNetConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : List[Any] =[ 'FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FocalNetForImageClassification', 'FocalNetForMaskedImageModeling', 'FocalNetBackbone', 'FocalNetModel', 'FocalNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ : str =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
434
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE__ : Dict =logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Optional[int] ='▁' SCREAMING_SNAKE_CASE__ : Optional[Any] ={'vocab_file': 'sentencepiece.bpe.model', 'monolingual_vocab_file': 'dict.txt'} SCREAMING_SNAKE_CASE__ : Any ={ 'vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model', }, 'monolingual_vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt', }, } SCREAMING_SNAKE_CASE__ : Optional[int] ={'vinai/bartpho-syllable': 1024} class _UpperCAmelCase ( a_ ): """simple docstring""" __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case = ["""input_ids""", """attention_mask"""] def __init__( self , _lowercase , _lowercase , _lowercase="<s>" , _lowercase="</s>" , _lowercase="</s>" , _lowercase="<s>" , _lowercase="<unk>" , _lowercase="<pad>" , _lowercase="<mask>" , _lowercase = None , **_lowercase , ) -> None: # Mask token behave like a normal word, i.e. include the space before it _lowerCamelCase : List[str] = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else mask_token _lowerCamelCase : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , cls_token=_lowercase , pad_token=_lowercase , mask_token=_lowercase , sp_model_kwargs=self.sp_model_kwargs , **_lowercase , ) _lowerCamelCase : Optional[int] = vocab_file _lowerCamelCase : Union[str, Any] = monolingual_vocab_file _lowerCamelCase : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_lowercase ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility _lowerCamelCase : Optional[Any] = {} _lowerCamelCase : Any = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(_lowercase ) not in self.fairseq_tokens_to_ids: _lowerCamelCase : int = cnt cnt += 1 with open(_lowercase , '''r''' , encoding='''utf-8''' ) as f: for line in f.readlines(): _lowerCamelCase : List[Any] = line.strip().split()[0] _lowerCamelCase : Dict = len(self.fairseq_tokens_to_ids ) if str(_lowercase ) not in self.fairseq_tokens_to_ids: _lowerCamelCase : Dict = len(self.fairseq_tokens_to_ids ) _lowerCamelCase : Any = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> List[str]: _lowerCamelCase : int = self.__dict__.copy() _lowerCamelCase : Optional[Any] = None _lowerCamelCase : int = self.sp_model.serialized_model_proto() return state def __setstate__( self , _lowercase ) -> Optional[int]: _lowerCamelCase : Any = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _lowerCamelCase : Optional[Any] = {} _lowerCamelCase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def a__ ( self , _lowercase , _lowercase = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowerCamelCase : Optional[Any] = [self.cls_token_id] _lowerCamelCase : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def a__ ( self , _lowercase , _lowercase = None , _lowercase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowercase , token_ids_a=_lowercase , already_has_special_tokens=_lowercase ) if token_ids_a is None: return [1] + ([0] * len(_lowercase )) + [1] return [1] + ([0] * len(_lowercase )) + [1, 1] + ([0] * len(_lowercase )) + [1] def a__ ( self , _lowercase , _lowercase = None ) -> List[int]: _lowerCamelCase : Optional[Any] = [self.sep_token_id] _lowerCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def a__ ( self ) -> Optional[int]: return len(self.fairseq_ids_to_tokens ) def a__ ( self ) -> List[str]: _lowerCamelCase : Union[str, Any] = {self.convert_ids_to_tokens(_lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def a__ ( self , _lowercase ) -> List[str]: return self.sp_model.encode(_lowercase , out_type=_lowercase ) def a__ ( self , _lowercase ) -> Dict: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def a__ ( self , _lowercase ) -> List[Any]: return self.fairseq_ids_to_tokens[index] def a__ ( self , _lowercase ) -> Tuple: _lowerCamelCase : List[Any] = ''''''.join(_lowercase ).replace(_lowercase , ''' ''' ).strip() return out_string def a__ ( self , _lowercase , _lowercase = None ) -> Tuple[str]: if not os.path.isdir(_lowercase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowerCamelCase : Tuple = os.path.join( _lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _lowerCamelCase : Dict = os.path.join( _lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''monolingual_vocab_file'''] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowercase ) elif not os.path.isfile(self.vocab_file ): with open(_lowercase , '''wb''' ) as fi: _lowerCamelCase : Tuple = self.sp_model.serialized_model_proto() fi.write(_lowercase ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( _lowercase ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , _lowercase ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(_lowercase , '''w''' , encoding='''utf-8''' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(F'''{str(_lowercase )} \n''' ) return out_vocab_file, out_monolingual_vocab_file
434
1
'''simple docstring''' import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin lowerCamelCase__ = logging.get_logger(__name__) enable_full_determinism() class _lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ =UNetaDModel lowerCAmelCase__ ="sample" @property def UpperCAmelCase ( self ) -> Any: """simple docstring""" snake_case__ : str =4 snake_case__ : Union[str, Any] =3 snake_case__ : int =(32, 32) snake_case__ : Any =floats_tensor((batch_size, num_channels) + sizes ).to(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[int] =torch.tensor([10] ).to(__SCREAMING_SNAKE_CASE ) return {"sample": noise, "timestep": time_step} @property def UpperCAmelCase ( self ) -> Optional[int]: """simple docstring""" return (3, 32, 32) @property def UpperCAmelCase ( self ) -> str: """simple docstring""" return (3, 32, 32) def UpperCAmelCase ( self ) -> List[Any]: """simple docstring""" snake_case__ : Dict ={ '''block_out_channels''': (32, 64), '''down_block_types''': ('''DownBlock2D''', '''AttnDownBlock2D'''), '''up_block_types''': ('''AttnUpBlock2D''', '''UpBlock2D'''), '''attention_head_dim''': 3, '''out_channels''': 3, '''in_channels''': 3, '''layers_per_block''': 2, '''sample_size''': 32, } snake_case__ : Optional[Any] =self.dummy_input return init_dict, inputs_dict class _lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ =UNetaDModel lowerCAmelCase__ ="sample" @property def UpperCAmelCase ( self ) -> Optional[Any]: """simple docstring""" snake_case__ : Union[str, Any] =4 snake_case__ : Optional[int] =4 snake_case__ : Any =(32, 32) snake_case__ : int =floats_tensor((batch_size, num_channels) + sizes ).to(__SCREAMING_SNAKE_CASE ) snake_case__ : Dict =torch.tensor([10] ).to(__SCREAMING_SNAKE_CASE ) return {"sample": noise, "timestep": time_step} @property def UpperCAmelCase ( self ) -> List[Any]: """simple docstring""" return (4, 32, 32) @property def UpperCAmelCase ( self ) -> List[str]: """simple docstring""" return (4, 32, 32) def UpperCAmelCase ( self ) -> Optional[int]: """simple docstring""" snake_case__ : str ={ '''sample_size''': 32, '''in_channels''': 4, '''out_channels''': 4, '''layers_per_block''': 2, '''block_out_channels''': (32, 64), '''attention_head_dim''': 32, '''down_block_types''': ('''DownBlock2D''', '''DownBlock2D'''), '''up_block_types''': ('''UpBlock2D''', '''UpBlock2D'''), } snake_case__ : Optional[Any] =self.dummy_input return init_dict, inputs_dict def UpperCAmelCase ( self ) -> Optional[int]: """simple docstring""" snake_case__, snake_case__ : List[str] =UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(__SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] =model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def UpperCAmelCase ( self ) -> List[str]: """simple docstring""" snake_case__, snake_case__ : Union[str, Any] =UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) snake_case__ : int =model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def UpperCAmelCase ( self ) -> int: """simple docstring""" snake_case__, snake_case__ : List[str] =UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=__SCREAMING_SNAKE_CASE ) model_accelerate.to(__SCREAMING_SNAKE_CASE ) model_accelerate.eval() snake_case__ : List[Any] =torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) snake_case__ : Any =noise.to(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[int] =torch.tensor([10] * noise.shape[0] ).to(__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] =model_accelerate(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )['''sample'''] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() snake_case__, snake_case__ : List[Any] =UNetaDModel.from_pretrained( '''fusing/unet-ldm-dummy-update''' , output_loading_info=__SCREAMING_SNAKE_CASE , low_cpu_mem_usage=__SCREAMING_SNAKE_CASE ) model_normal_load.to(__SCREAMING_SNAKE_CASE ) model_normal_load.eval() snake_case__ : Dict =model_normal_load(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )['''sample'''] assert torch_all_close(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , rtol=1e-3 ) def UpperCAmelCase ( self ) -> Any: """simple docstring""" snake_case__ : int =UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ) model.eval() model.to(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] =torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) snake_case__ : Dict =noise.to(__SCREAMING_SNAKE_CASE ) snake_case__ : str =torch.tensor([10] * noise.shape[0] ).to(__SCREAMING_SNAKE_CASE ) with torch.no_grad(): snake_case__ : Union[str, Any] =model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).sample snake_case__ : Union[str, Any] =output[0, -1, -3:, -3:].flatten().cpu() # fmt: off snake_case__ : Optional[int] =torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800] ) # fmt: on self.assertTrue(torch_all_close(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , rtol=1e-3 ) ) class _lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ =UNetaDModel lowerCAmelCase__ ="sample" @property def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE=(32, 32) ) -> Optional[Any]: """simple docstring""" snake_case__ : Optional[int] =4 snake_case__ : Optional[Any] =3 snake_case__ : str =floats_tensor((batch_size, num_channels) + sizes ).to(__SCREAMING_SNAKE_CASE ) snake_case__ : Any =torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=__SCREAMING_SNAKE_CASE ) return {"sample": noise, "timestep": time_step} @property def UpperCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" return (3, 32, 32) @property def UpperCAmelCase ( self ) -> Optional[int]: """simple docstring""" return (3, 32, 32) def UpperCAmelCase ( self ) -> List[Any]: """simple docstring""" snake_case__ : List[str] ={ '''block_out_channels''': [32, 64, 64, 64], '''in_channels''': 3, '''layers_per_block''': 1, '''out_channels''': 3, '''time_embedding_type''': '''fourier''', '''norm_eps''': 1e-6, '''mid_block_scale_factor''': math.sqrt(2.0 ), '''norm_num_groups''': None, '''down_block_types''': [ '''SkipDownBlock2D''', '''AttnSkipDownBlock2D''', '''SkipDownBlock2D''', '''SkipDownBlock2D''', ], '''up_block_types''': [ '''SkipUpBlock2D''', '''SkipUpBlock2D''', '''AttnSkipUpBlock2D''', '''SkipUpBlock2D''', ], } snake_case__ : Any =self.dummy_input return init_dict, inputs_dict @slow def UpperCAmelCase ( self ) -> str: """simple docstring""" snake_case__, snake_case__ : Union[str, Any] =UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' , output_loading_info=__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(__SCREAMING_SNAKE_CASE ) snake_case__ : int =self.dummy_input snake_case__ : Optional[Any] =floats_tensor((4, 3) + (256, 256) ).to(__SCREAMING_SNAKE_CASE ) snake_case__ : int =noise snake_case__ : Optional[Any] =model(**__SCREAMING_SNAKE_CASE ) assert image is not None, "Make sure output is not None" @slow def UpperCAmelCase ( self ) -> int: """simple docstring""" snake_case__ : Tuple =UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' ) model.to(__SCREAMING_SNAKE_CASE ) snake_case__ : Dict =4 snake_case__ : Optional[int] =3 snake_case__ : List[str] =(256, 256) snake_case__ : List[Any] =torch.ones((batch_size, num_channels) + sizes ).to(__SCREAMING_SNAKE_CASE ) snake_case__ : str =torch.tensor(batch_size * [1e-4] ).to(__SCREAMING_SNAKE_CASE ) with torch.no_grad(): snake_case__ : Optional[Any] =model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).sample snake_case__ : Tuple =output[0, -3:, -3:, -1].flatten().cpu() # fmt: off snake_case__ : str =torch.tensor([-4842.8691, -6499.6631, -3800.1953, -7978.2686, -1_0980.7129, -2_0028.8535, 8148.2822, 2342.2905, 567.7608] ) # fmt: on self.assertTrue(torch_all_close(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , rtol=1e-2 ) ) def UpperCAmelCase ( self ) -> List[Any]: """simple docstring""" snake_case__ : Optional[Any] =UNetaDModel.from_pretrained('''fusing/ncsnpp-ffhq-ve-dummy-update''' ) model.to(__SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] =4 snake_case__ : Dict =3 snake_case__ : List[Any] =(32, 32) snake_case__ : Union[str, Any] =torch.ones((batch_size, num_channels) + sizes ).to(__SCREAMING_SNAKE_CASE ) snake_case__ : Tuple =torch.tensor(batch_size * [1e-4] ).to(__SCREAMING_SNAKE_CASE ) with torch.no_grad(): snake_case__ : int =model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).sample snake_case__ : int =output[0, -3:, -3:, -1].flatten().cpu() # fmt: off snake_case__ : Union[str, Any] =torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256] ) # fmt: on self.assertTrue(torch_all_close(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , rtol=1e-2 ) ) def UpperCAmelCase ( self ) -> Optional[int]: """simple docstring""" pass
706
from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging lowerCamelCase__ = logging.get_logger(__name__) class _lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" lowerCAmelCase__ =['''input_features''', '''attention_mask'''] def __init__( self , __SCREAMING_SNAKE_CASE=80 , __SCREAMING_SNAKE_CASE=1_6000 , __SCREAMING_SNAKE_CASE=80 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , **__SCREAMING_SNAKE_CASE , ) -> List[str]: """simple docstring""" super().__init__(feature_size=__SCREAMING_SNAKE_CASE , sampling_rate=__SCREAMING_SNAKE_CASE , padding_value=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] =num_mel_bins snake_case__ : int =do_ceptral_normalize snake_case__ : Dict =normalize_means snake_case__ : str =normalize_vars snake_case__ : Optional[Any] =True def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , ) -> np.ndarray: """simple docstring""" snake_case__ : List[str] =waveform * (2**15) # Kaldi compliance: 16-bit signed integers snake_case__ : int =torch.from_numpy(__SCREAMING_SNAKE_CASE ).unsqueeze(0 ) snake_case__ : Optional[int] =ta_kaldi.fbank(__SCREAMING_SNAKE_CASE , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = 0.0 , ) -> np.ndarray: """simple docstring""" if normalize_means: snake_case__ : Any =x[:input_length].mean(axis=0 ) snake_case__ : Optional[Any] =np.subtract(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if normalize_vars: snake_case__ : int =x[:input_length].std(axis=0 ) snake_case__ : Optional[Any] =np.divide(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if input_length < x.shape[0]: snake_case__ : Tuple =padding_value # make sure array is in float32 snake_case__ : Tuple =x.astype(np.floataa ) return x def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ) -> List[np.ndarray]: """simple docstring""" snake_case__ : Union[str, Any] =attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ] def __call__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ) -> BatchFeature: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' f''' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with''' f''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) snake_case__ : List[Any] =isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) snake_case__ : Optional[int] =is_batched_numpy or ( isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: snake_case__ : str =[np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ): snake_case__ : Any =np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) elif isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): snake_case__ : Optional[Any] =raw_speech.astype(np.floataa ) # always return batch if not is_batched: snake_case__ : Optional[Any] =[raw_speech] # extract fbank features snake_case__ : List[Any] =[self._extract_fbank_features(__SCREAMING_SNAKE_CASE ) for waveform in raw_speech] # convert into correct format for padding snake_case__ : Optional[int] =BatchFeature({'''input_features''': features} ) snake_case__ : List[Any] =self.pad( __SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , pad_to_multiple_of=__SCREAMING_SNAKE_CASE , return_attention_mask=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) # make sure list is in array format snake_case__ : int =padded_inputs.get('''input_features''' ) if isinstance(input_features[0] , __SCREAMING_SNAKE_CASE ): snake_case__ : Dict =[np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) for feature in input_features] snake_case__ : Tuple =padded_inputs.get('''attention_mask''' ) if attention_mask is not None: snake_case__ : Dict =[np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: snake_case__ : List[str] =( np.array(__SCREAMING_SNAKE_CASE , dtype=np.intaa ) if self._get_padding_strategies(__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE ) is not PaddingStrategy.DO_NOT_PAD else None ) snake_case__ : Union[str, Any] =self.normalize( padded_inputs['''input_features'''] , attention_mask=__SCREAMING_SNAKE_CASE ) if return_tensors is not None: snake_case__ : Optional[int] =padded_inputs.convert_to_tensors(__SCREAMING_SNAKE_CASE ) return padded_inputs
408
0
'''simple docstring''' import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class _lowercase : def __init__( self : int , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Dict=13 , SCREAMING_SNAKE_CASE_ : Any=10 , SCREAMING_SNAKE_CASE_ : List[str]=3 , SCREAMING_SNAKE_CASE_ : int=2 , SCREAMING_SNAKE_CASE_ : Dict=2 , SCREAMING_SNAKE_CASE_ : Dict=2 , SCREAMING_SNAKE_CASE_ : List[str]=True , SCREAMING_SNAKE_CASE_ : str=True , SCREAMING_SNAKE_CASE_ : Optional[Any]=32 , SCREAMING_SNAKE_CASE_ : Any=5 , SCREAMING_SNAKE_CASE_ : Optional[Any]=4 , SCREAMING_SNAKE_CASE_ : Tuple=37 , SCREAMING_SNAKE_CASE_ : Optional[Any]="gelu" , SCREAMING_SNAKE_CASE_ : Any=0.1 , SCREAMING_SNAKE_CASE_ : str=0.1 , SCREAMING_SNAKE_CASE_ : Optional[int]=10 , SCREAMING_SNAKE_CASE_ : Tuple=0.0_2 , SCREAMING_SNAKE_CASE_ : List[Any]=0.9 , SCREAMING_SNAKE_CASE_ : List[Any]=None , ) -> Union[str, Any]: __snake_case = parent __snake_case = batch_size __snake_case = image_size __snake_case = num_channels __snake_case = patch_size __snake_case = tubelet_size __snake_case = num_frames __snake_case = is_training __snake_case = use_labels __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = type_sequence_label_size __snake_case = initializer_range __snake_case = mask_ratio __snake_case = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame __snake_case = (image_size // patch_size) ** 2 __snake_case = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos __snake_case = int(mask_ratio * self.seq_length ) def a ( self : List[str] ) -> Optional[Any]: __snake_case = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case = self.get_config() return config, pixel_values, labels def a ( self : Union[str, Any] ) -> Optional[Any]: return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , ) def a ( self : Tuple , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[Any] ) -> Any: __snake_case = VideoMAEModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __snake_case = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a ( self : str , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Any ) -> List[str]: __snake_case = VideoMAEForPreTraining(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch __snake_case = torch.ones((self.num_masks,) ) __snake_case = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) __snake_case = mask.expand(self.batch_size , -1 ).bool() __snake_case = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # model only returns predictions for masked patches __snake_case = mask.sum().item() __snake_case = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def a ( self : List[str] ) -> Any: __snake_case = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case = config_and_inputs __snake_case = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _lowercase ( __lowercase , __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[Any] = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE : int = ( {"feature-extraction": VideoMAEModel, "video-classification": VideoMAEForVideoClassification} if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE : str = False _SCREAMING_SNAKE_CASE : Optional[Any] = False _SCREAMING_SNAKE_CASE : List[Any] = False _SCREAMING_SNAKE_CASE : Tuple = False def a ( self : List[str] ) -> Union[str, Any]: __snake_case = VideoMAEModelTester(self ) __snake_case = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ , hidden_size=37 ) def a ( self : Dict , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[int]=False ) -> Any: __snake_case = copy.deepcopy(SCREAMING_SNAKE_CASE_ ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch __snake_case = torch.ones((self.model_tester.num_masks,) ) __snake_case = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) __snake_case = mask.expand(self.model_tester.batch_size , -1 ).bool() __snake_case = bool_masked_pos.to(SCREAMING_SNAKE_CASE_ ) if return_labels: if model_class in [ *get_values(SCREAMING_SNAKE_CASE_ ), ]: __snake_case = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ ) return inputs_dict def a ( self : List[Any] ) -> List[Any]: self.config_tester.run_common_tests() @unittest.skip(reason='VideoMAE does not use inputs_embeds' ) def a ( self : Tuple ) -> str: pass def a ( self : Optional[Any] ) -> Optional[int]: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __snake_case = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE_ , nn.Linear ) ) def a ( self : List[Any] ) -> Tuple: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(SCREAMING_SNAKE_CASE_ ) __snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case = [*signature.parameters.keys()] __snake_case = ['pixel_values'] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) def a ( self : Dict ) -> Union[str, Any]: __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def a ( self : Tuple ) -> Optional[int]: __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*SCREAMING_SNAKE_CASE_ ) @slow def a ( self : Dict ) -> Any: for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = VideoMAEModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] ) -> Optional[Any]: if not self.has_attentions: pass else: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = True for model_class in self.all_model_classes: __snake_case = self.model_tester.seq_length - self.model_tester.num_masks __snake_case = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) __snake_case = True __snake_case = False __snake_case = True __snake_case = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): __snake_case = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) __snake_case = outputs.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __snake_case = True __snake_case = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): __snake_case = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) __snake_case = outputs.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) __snake_case = len(SCREAMING_SNAKE_CASE_ ) # Check attention is always last and order is fine __snake_case = True __snake_case = True __snake_case = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): __snake_case = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) self.assertEqual(out_len + 1 , len(SCREAMING_SNAKE_CASE_ ) ) __snake_case = outputs.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def a ( self : List[str] ) -> str: def check_hidden_states_output(SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] ): __snake_case = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): __snake_case = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) __snake_case = outputs.hidden_states __snake_case = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) __snake_case = self.model_tester.seq_length - self.model_tester.num_masks __snake_case = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = True check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case = True check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def a ( self : Dict ) -> Optional[int]: pass def _a () -> Tuple: """simple docstring""" __snake_case = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset' ) __snake_case = np.load(lowercase__ ) return list(lowercase__ ) @require_torch @require_vision class _lowercase ( unittest.TestCase ): @cached_property def a ( self : Any ) -> int: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def a ( self : Any ) -> Dict: __snake_case = VideoMAEForVideoClassification.from_pretrained('MCG-NJU/videomae-base-finetuned-kinetics' ).to( SCREAMING_SNAKE_CASE_ ) __snake_case = self.default_image_processor __snake_case = prepare_video() __snake_case = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): __snake_case = model(**SCREAMING_SNAKE_CASE_ ) # verify the logits __snake_case = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE_ ) __snake_case = torch.tensor([0.3_6_6_9, -0.0_6_8_8, -0.2_4_2_1] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) ) @slow def a ( self : Dict ) -> Optional[int]: __snake_case = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' ).to(SCREAMING_SNAKE_CASE_ ) __snake_case = self.default_image_processor __snake_case = prepare_video() __snake_case = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ ) # add boolean mask, indicating which patches to mask __snake_case = hf_hub_download(repo_id='hf-internal-testing/bool-masked-pos' , filename='bool_masked_pos.pt' ) __snake_case = torch.load(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): __snake_case = model(**SCREAMING_SNAKE_CASE_ ) # verify the logits __snake_case = torch.Size([1, 1408, 1536] ) __snake_case = torch.tensor( [[0.7_9_9_4, 0.9_6_1_2, 0.8_5_0_8], [0.7_4_0_1, 0.8_9_5_8, 0.8_3_0_2], [0.5_8_6_2, 0.7_4_6_8, 0.7_3_2_5]] , device=SCREAMING_SNAKE_CASE_ ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) __snake_case = torch.tensor([0.5_1_4_2] , device=SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.loss , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) __snake_case = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' , norm_pix_loss=SCREAMING_SNAKE_CASE_ ).to( SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model(**SCREAMING_SNAKE_CASE_ ) __snake_case = torch.tensor(torch.tensor([0.6_4_6_9] ) , device=SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.loss , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) )
56
'''simple docstring''' import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class _SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = BioGptTokenizer SCREAMING_SNAKE_CASE_ = False def _lowerCamelCase ( self ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowerCamelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] __lowerCamelCase = dict(zip(_snake_case , range(len(_snake_case ) ) ) ) __lowerCamelCase = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(_snake_case ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(_snake_case ) ) def _lowerCamelCase ( self , _snake_case ): """simple docstring""" __lowerCamelCase = '''lower newer''' __lowerCamelCase = '''lower newer''' return input_text, output_text def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = BioGptTokenizer(self.vocab_file , self.merges_file ) __lowerCamelCase = '''lower''' __lowerCamelCase = ['''low''', '''er</w>'''] __lowerCamelCase = tokenizer.tokenize(_snake_case ) self.assertListEqual(_snake_case , _snake_case ) __lowerCamelCase = tokens + ['''<unk>'''] __lowerCamelCase = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case ) , _snake_case ) @slow def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) __lowerCamelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=_snake_case ) __lowerCamelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_snake_case ) __lowerCamelCase = tokenizer.build_inputs_with_special_tokens(_snake_case ) __lowerCamelCase = tokenizer.build_inputs_with_special_tokens(_snake_case , _snake_case ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
316
0
"""simple docstring""" import inspect import unittest from transformers import RegNetConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import RegNetForImageClassification, RegNetModel from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _snake_case : def __init__( self : Any , UpperCAmelCase : str , UpperCAmelCase : Optional[int]=3 , UpperCAmelCase : Optional[int]=32 , UpperCAmelCase : Optional[int]=3 , UpperCAmelCase : Any=10 , UpperCAmelCase : Tuple=[10, 20, 30, 40] , UpperCAmelCase : Optional[int]=[1, 1, 2, 1] , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : Any=True , UpperCAmelCase : str="relu" , UpperCAmelCase : Dict=3 , UpperCAmelCase : List[Any]=None , ): __lowerCamelCase : List[str] = parent __lowerCamelCase : List[Any] = batch_size __lowerCamelCase : Dict = image_size __lowerCamelCase : Union[str, Any] = num_channels __lowerCamelCase : Dict = embeddings_size __lowerCamelCase : Optional[Any] = hidden_sizes __lowerCamelCase : int = depths __lowerCamelCase : str = is_training __lowerCamelCase : List[str] = use_labels __lowerCamelCase : List[Any] = hidden_act __lowerCamelCase : List[str] = num_labels __lowerCamelCase : Dict = scope __lowerCamelCase : Dict = len(__a ) def lowerCamelCase__ ( self : List[Any] ): __lowerCamelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase : Union[str, Any] = None if self.use_labels: __lowerCamelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) __lowerCamelCase : int = self.get_config() return config, pixel_values, labels def lowerCamelCase__ ( self : int ): return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def lowerCamelCase__ ( self : int , UpperCAmelCase : Dict , UpperCAmelCase : Tuple , UpperCAmelCase : int ): __lowerCamelCase : Tuple = RegNetModel(config=__a ) model.to(__a ) model.eval() __lowerCamelCase : Optional[int] = model(__a ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any] ): __lowerCamelCase : str = self.num_labels __lowerCamelCase : List[Any] = RegNetForImageClassification(__a ) model.to(__a ) model.eval() __lowerCamelCase : int = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ ( self : Optional[int] ): __lowerCamelCase : Union[str, Any] = self.prepare_config_and_inputs() __lowerCamelCase : List[Any] = config_and_inputs __lowerCamelCase : str = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _snake_case ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): snake_case__ = (RegNetModel, RegNetForImageClassification) if is_torch_available() else () snake_case__ = ( {"feature-extraction": RegNetModel, "image-classification": RegNetForImageClassification} if is_torch_available() else {} ) snake_case__ = False snake_case__ = False snake_case__ = False snake_case__ = False def lowerCamelCase__ ( self : str ): __lowerCamelCase : Optional[Any] = RegNetModelTester(self ) __lowerCamelCase : Optional[Any] = ConfigTester(self , config_class=__a , has_text_modality=__a ) def lowerCamelCase__ ( self : Optional[Any] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase__ ( self : Optional[int] ): return @unittest.skip(reason="RegNet does not use inputs_embeds" ) def lowerCamelCase__ ( self : List[str] ): pass @unittest.skip(reason="RegNet does not support input and output embeddings" ) def lowerCamelCase__ ( self : Any ): pass def lowerCamelCase__ ( self : List[str] ): __lowerCamelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : List[Any] = model_class(__a ) __lowerCamelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase : Any = [*signature.parameters.keys()] __lowerCamelCase : Any = ['pixel_values'] self.assertListEqual(arg_names[:1] , __a ) def lowerCamelCase__ ( self : Dict ): __lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCamelCase__ ( self : Tuple ): __lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : Tuple = model_class(config=__a ) for name, module in model.named_modules(): if isinstance(__a , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) def lowerCamelCase__ ( self : List[str] ): def check_hidden_states_output(UpperCAmelCase : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] ): __lowerCamelCase : Optional[int] = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowerCamelCase : Optional[Any] = model(**self._prepare_for_class(__a , __a ) ) __lowerCamelCase : Any = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowerCamelCase : List[str] = self.model_tester.num_stages self.assertEqual(len(__a ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) __lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : str = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: __lowerCamelCase : List[Any] = layer_type __lowerCamelCase : Tuple = True check_hidden_states_output(__a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase : Optional[int] = True check_hidden_states_output(__a , __a , __a ) def lowerCamelCase__ ( self : Union[str, Any] ): __lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) @slow def lowerCamelCase__ ( self : Optional[int] ): for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase : Tuple = RegNetModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def lowercase_ ( ) -> str: '''simple docstring''' __lowerCamelCase : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _snake_case ( unittest.TestCase ): @cached_property def lowerCamelCase__ ( self : Union[str, Any] ): return ( AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowerCamelCase__ ( self : Tuple ): __lowerCamelCase : Dict = RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(__a ) __lowerCamelCase : List[str] = self.default_image_processor __lowerCamelCase : List[str] = prepare_img() __lowerCamelCase : int = image_processor(images=__a , return_tensors="pt" ).to(__a ) # forward pass with torch.no_grad(): __lowerCamelCase : List[str] = model(**__a ) # verify the logits __lowerCamelCase : str = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __a ) __lowerCamelCase : Optional[Any] = torch.tensor([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1E-4 ) )
717
"""simple docstring""" import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters __A = (720, 1280) # Height, Width __A = (0.4, 0.6) # if height or width lower than this scale, drop it. __A = 1 / 100 __A = '''''' __A = '''''' __A = '''''' __A = 250 def lowercase_ ( ) -> None: '''simple docstring''' __lowerCamelCase , __lowerCamelCase : List[Any] = get_dataset(_lowerCamelCase , _lowerCamelCase ) for index in range(_lowerCamelCase ): __lowerCamelCase : Optional[Any] = random.sample(range(len(_lowerCamelCase ) ) , 4 ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[Any] = update_image_and_anno( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , filter_scale=_lowerCamelCase , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' __lowerCamelCase : Tuple = random_chars(32 ) __lowerCamelCase : Dict = path.split(os.sep )[-1].rsplit("." , 1 )[0] __lowerCamelCase : List[str] = F"""{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}""" cva.imwrite(F"""{file_root}.jpg""" , _lowerCamelCase , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F"""Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}""" ) __lowerCamelCase : List[Any] = [] for anno in new_annos: __lowerCamelCase : Any = anno[3] - anno[1] __lowerCamelCase : Optional[int] = anno[4] - anno[2] __lowerCamelCase : Optional[int] = anno[1] + width / 2 __lowerCamelCase : Union[str, Any] = anno[2] + height / 2 __lowerCamelCase : int = F"""{anno[0]} {x_center} {y_center} {width} {height}""" annos_list.append(_lowerCamelCase ) with open(F"""{file_root}.txt""" , "w" ) as outfile: outfile.write("\n".join(line for line in annos_list ) ) def lowercase_ ( _lowerCamelCase: str , _lowerCamelCase: str ) -> tuple[list, list]: '''simple docstring''' __lowerCamelCase : Optional[int] = [] __lowerCamelCase : Any = [] for label_file in glob.glob(os.path.join(_lowerCamelCase , "*.txt" ) ): __lowerCamelCase : List[Any] = label_file.split(os.sep )[-1].rsplit("." , 1 )[0] with open(_lowerCamelCase ) as in_file: __lowerCamelCase : Tuple = in_file.readlines() __lowerCamelCase : List[str] = os.path.join(_lowerCamelCase , F"""{label_name}.jpg""" ) __lowerCamelCase : Union[str, Any] = [] for obj_list in obj_lists: __lowerCamelCase : str = obj_list.rstrip("\n" ).split(" " ) __lowerCamelCase : Union[str, Any] = float(obj[1] ) - float(obj[3] ) / 2 __lowerCamelCase : Tuple = float(obj[2] ) - float(obj[4] ) / 2 __lowerCamelCase : Union[str, Any] = float(obj[1] ) + float(obj[3] ) / 2 __lowerCamelCase : Any = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(_lowerCamelCase ) labels.append(_lowerCamelCase ) return img_paths, labels def lowercase_ ( _lowerCamelCase: list , _lowerCamelCase: list , _lowerCamelCase: list[int] , _lowerCamelCase: tuple[int, int] , _lowerCamelCase: tuple[float, float] , _lowerCamelCase: float = 0.0 , ) -> tuple[list, list, str]: '''simple docstring''' __lowerCamelCase : Union[str, Any] = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) __lowerCamelCase : Optional[Any] = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) __lowerCamelCase : List[str] = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) __lowerCamelCase : int = int(scale_x * output_size[1] ) __lowerCamelCase : Optional[Any] = int(scale_y * output_size[0] ) __lowerCamelCase : List[Any] = [] __lowerCamelCase : Optional[Any] = [] for i, index in enumerate(_lowerCamelCase ): __lowerCamelCase : List[str] = all_img_list[index] path_list.append(_lowerCamelCase ) __lowerCamelCase : Optional[Any] = all_annos[index] __lowerCamelCase : List[str] = cva.imread(_lowerCamelCase ) if i == 0: # top-left __lowerCamelCase : List[str] = cva.resize(_lowerCamelCase , (divid_point_x, divid_point_y) ) __lowerCamelCase : Any = img for bbox in img_annos: __lowerCamelCase : str = bbox[1] * scale_x __lowerCamelCase : Union[str, Any] = bbox[2] * scale_y __lowerCamelCase : Optional[int] = bbox[3] * scale_x __lowerCamelCase : Union[str, Any] = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right __lowerCamelCase : str = cva.resize(_lowerCamelCase , (output_size[1] - divid_point_x, divid_point_y) ) __lowerCamelCase : Any = img for bbox in img_annos: __lowerCamelCase : List[Any] = scale_x + bbox[1] * (1 - scale_x) __lowerCamelCase : List[Any] = bbox[2] * scale_y __lowerCamelCase : Tuple = scale_x + bbox[3] * (1 - scale_x) __lowerCamelCase : Union[str, Any] = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left __lowerCamelCase : Any = cva.resize(_lowerCamelCase , (divid_point_x, output_size[0] - divid_point_y) ) __lowerCamelCase : List[str] = img for bbox in img_annos: __lowerCamelCase : Any = bbox[1] * scale_x __lowerCamelCase : Optional[int] = scale_y + bbox[2] * (1 - scale_y) __lowerCamelCase : Dict = bbox[3] * scale_x __lowerCamelCase : Tuple = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right __lowerCamelCase : int = cva.resize( _lowerCamelCase , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) __lowerCamelCase : Optional[Any] = img for bbox in img_annos: __lowerCamelCase : Union[str, Any] = scale_x + bbox[1] * (1 - scale_x) __lowerCamelCase : Union[str, Any] = scale_y + bbox[2] * (1 - scale_y) __lowerCamelCase : int = scale_x + bbox[3] * (1 - scale_x) __lowerCamelCase : int = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: __lowerCamelCase : str = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def lowercase_ ( _lowerCamelCase: int ) -> str: '''simple docstring''' assert number_char > 1, "The number of character should greater than 1" __lowerCamelCase : Tuple = ascii_lowercase + digits return "".join(random.choice(_lowerCamelCase ) for _ in range(_lowerCamelCase ) ) if __name__ == "__main__": main() print('''DONE ✅''')
366
0
import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params A : Optional[int] = getLogger(__name__) A : Union[str, Any] = '''cuda''' if torch.cuda.is_available() else '''cpu''' def UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int = 8 , SCREAMING_SNAKE_CASE_ : str = DEFAULT_DEVICE , SCREAMING_SNAKE_CASE_ : Any=False , SCREAMING_SNAKE_CASE_ : Tuple="summarization" , SCREAMING_SNAKE_CASE_ : List[Any]=None , **SCREAMING_SNAKE_CASE_ : Optional[Any] , ) -> Dict: _lowercase = Path(SCREAMING_SNAKE_CASE_ ).open("""w""" , encoding="""utf-8""" ) _lowercase = str(SCREAMING_SNAKE_CASE_ ) _lowercase = AutoModelForSeqaSeqLM.from_pretrained(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) if fpaa: _lowercase = model.half() _lowercase = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) logger.info(f"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. _lowercase = time.time() # update config with task specific params use_task_specific_params(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if prefix is None: _lowercase = prefix or getattr(model.config , """prefix""" , """""" ) or """""" for examples_chunk in tqdm(list(chunks(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) ): _lowercase = [prefix + text for text in examples_chunk] _lowercase = tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" , truncation=SCREAMING_SNAKE_CASE_ , padding="""longest""" ).to(SCREAMING_SNAKE_CASE_ ) _lowercase = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **SCREAMING_SNAKE_CASE_ , ) _lowercase = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) for hypothesis in dec: fout.write(hypothesis + """\n""" ) fout.flush() fout.close() _lowercase = int(time.time() - start_time ) # seconds _lowercase = len(SCREAMING_SNAKE_CASE_ ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def UpperCamelCase__ ( ) -> Any: return datetime.datetime.now().strftime("""%Y-%m-%d %H:%M:%S""" ) def UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ : int=True ) -> List[str]: _lowercase = argparse.ArgumentParser() parser.add_argument("""model_name""" , type=SCREAMING_SNAKE_CASE_ , help="""like facebook/bart-large-cnn,t5-base, etc.""" ) parser.add_argument("""input_path""" , type=SCREAMING_SNAKE_CASE_ , help="""like cnn_dm/test.source""" ) parser.add_argument("""save_path""" , type=SCREAMING_SNAKE_CASE_ , help="""where to save summaries""" ) parser.add_argument("""--reference_path""" , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help="""like cnn_dm/test.target""" ) parser.add_argument("""--score_path""" , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , default="""metrics.json""" , help="""where to save metrics""" ) parser.add_argument("""--device""" , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , help="""cuda, cuda:1, cpu etc.""" ) parser.add_argument( """--prefix""" , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , help="""will be added to the begininng of src examples""" ) parser.add_argument("""--task""" , type=SCREAMING_SNAKE_CASE_ , default="""summarization""" , help="""used for task_specific_params + metrics""" ) parser.add_argument("""--bs""" , type=SCREAMING_SNAKE_CASE_ , default=8 , required=SCREAMING_SNAKE_CASE_ , help="""batch size""" ) parser.add_argument( """--n_obs""" , type=SCREAMING_SNAKE_CASE_ , default=-1 , required=SCREAMING_SNAKE_CASE_ , help="""How many observations. Defaults to all.""" ) parser.add_argument("""--fp16""" , action="""store_true""" ) parser.add_argument("""--dump-args""" , action="""store_true""" , help="""print the custom hparams with the results""" ) parser.add_argument( """--info""" , nargs="""?""" , type=SCREAMING_SNAKE_CASE_ , const=datetime_now() , help=( """use in conjunction w/ --dump-args to print with the results whatever other info you'd like, e.g.""" """ lang=en-ru. If no value is passed, the current datetime string will be used.""" ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate _lowercase , _lowercase = parser.parse_known_args() _lowercase = parse_numeric_n_bool_cl_kwargs(SCREAMING_SNAKE_CASE_ ) if parsed_args and verbose: print(f"""parsed the following generate kwargs: {parsed_args}""" ) _lowercase = [""" """ + x.rstrip() if """t5""" in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: _lowercase = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(f"""score_path {args.score_path} will be overwritten unless you type ctrl-c.""" ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError("""Can't mix --fp16 and --device cpu""" ) _lowercase = generate_summaries_or_translations( SCREAMING_SNAKE_CASE_ , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **SCREAMING_SNAKE_CASE_ , ) if args.reference_path is None: return {} # Compute scores _lowercase = calculate_bleu if """translation""" in args.task else calculate_rouge _lowercase = [x.rstrip() for x in open(args.save_path ).readlines()] _lowercase = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(SCREAMING_SNAKE_CASE_ )] _lowercase = score_fn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) scores.update(SCREAMING_SNAKE_CASE_ ) if args.dump_args: scores.update(SCREAMING_SNAKE_CASE_ ) if args.info: _lowercase = args.info if verbose: print(SCREAMING_SNAKE_CASE_ ) if args.score_path is not None: json.dump(SCREAMING_SNAKE_CASE_ , open(args.score_path , """w""" ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
287
def UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ : int ) -> list: # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError("""The given input must be positive""" ) # get the generated string sequence _lowercase = gray_code_sequence_string(SCREAMING_SNAKE_CASE_ ) # # convert them to integers for i in range(len(SCREAMING_SNAKE_CASE_ ) ): _lowercase = int(sequence[i] , 2 ) return sequence def UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ : int ) -> list: # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] _lowercase = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits _lowercase = gray_code_sequence_string(bit_count - 1 ) _lowercase = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): _lowercase = """0""" + smaller_sequence[i] sequence.append(SCREAMING_SNAKE_CASE_ ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): _lowercase = """1""" + smaller_sequence[i] sequence.append(SCREAMING_SNAKE_CASE_ ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
287
1
'''simple docstring''' def UpperCAmelCase_ ( __lowercase : int ) -> int: '''simple docstring''' _UpperCAmelCase = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def UpperCAmelCase_ ( __lowercase : int = 100 ) -> int: '''simple docstring''' _UpperCAmelCase = 1 _UpperCAmelCase = 2 for i in range(2 , max_n + 1 ): _UpperCAmelCase = pre_numerator _UpperCAmelCase = 2 * i // 3 if i % 3 == 0 else 1 _UpperCAmelCase = cur_numerator _UpperCAmelCase = e_cont * pre_numerator + temp return sum_digits(__lowercase ) if __name__ == "__main__": print(F"{solution() = }")
719
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def UpperCAmelCase_ ( __lowercase : List[str] ) -> int: '''simple docstring''' _UpperCAmelCase = SwinvaConfig() _UpperCAmelCase = swinva_name.split("_" ) _UpperCAmelCase = name_split[1] if "to" in name_split[3]: _UpperCAmelCase = int(name_split[3][-3:] ) else: _UpperCAmelCase = int(name_split[3] ) if "to" in name_split[2]: _UpperCAmelCase = int(name_split[2][-2:] ) else: _UpperCAmelCase = int(name_split[2][6:] ) if model_size == "tiny": _UpperCAmelCase = 96 _UpperCAmelCase = (2, 2, 6, 2) _UpperCAmelCase = (3, 6, 12, 24) elif model_size == "small": _UpperCAmelCase = 96 _UpperCAmelCase = (2, 2, 18, 2) _UpperCAmelCase = (3, 6, 12, 24) elif model_size == "base": _UpperCAmelCase = 128 _UpperCAmelCase = (2, 2, 18, 2) _UpperCAmelCase = (4, 8, 16, 32) else: _UpperCAmelCase = 192 _UpperCAmelCase = (2, 2, 18, 2) _UpperCAmelCase = (6, 12, 24, 48) if "to" in swinva_name: _UpperCAmelCase = (12, 12, 12, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): _UpperCAmelCase = 2_1841 _UpperCAmelCase = "huggingface/label-files" _UpperCAmelCase = "imagenet-22k-id2label.json" _UpperCAmelCase = json.load(open(hf_hub_download(__lowercase , __lowercase , repo_type="dataset" ) , "r" ) ) _UpperCAmelCase = {int(__lowercase ): v for k, v in idalabel.items()} _UpperCAmelCase = idalabel _UpperCAmelCase = {v: k for k, v in idalabel.items()} else: _UpperCAmelCase = 1000 _UpperCAmelCase = "huggingface/label-files" _UpperCAmelCase = "imagenet-1k-id2label.json" _UpperCAmelCase = json.load(open(hf_hub_download(__lowercase , __lowercase , repo_type="dataset" ) , "r" ) ) _UpperCAmelCase = {int(__lowercase ): v for k, v in idalabel.items()} _UpperCAmelCase = idalabel _UpperCAmelCase = {v: k for k, v in idalabel.items()} _UpperCAmelCase = img_size _UpperCAmelCase = num_classes _UpperCAmelCase = embed_dim _UpperCAmelCase = depths _UpperCAmelCase = num_heads _UpperCAmelCase = window_size return config def UpperCAmelCase_ ( __lowercase : str ) -> Tuple: '''simple docstring''' if "patch_embed.proj" in name: _UpperCAmelCase = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: _UpperCAmelCase = name.replace("patch_embed.norm" , "embeddings.norm" ) if "layers" in name: _UpperCAmelCase = "encoder." + name if "attn.proj" in name: _UpperCAmelCase = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: _UpperCAmelCase = name.replace("attn" , "attention.self" ) if "norm1" in name: _UpperCAmelCase = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: _UpperCAmelCase = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: _UpperCAmelCase = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: _UpperCAmelCase = name.replace("mlp.fc2" , "output.dense" ) if "q_bias" in name: _UpperCAmelCase = name.replace("q_bias" , "query.bias" ) if "k_bias" in name: _UpperCAmelCase = name.replace("k_bias" , "key.bias" ) if "v_bias" in name: _UpperCAmelCase = name.replace("v_bias" , "value.bias" ) if "cpb_mlp" in name: _UpperCAmelCase = name.replace("cpb_mlp" , "continuous_position_bias_mlp" ) if name == "norm.weight": _UpperCAmelCase = "layernorm.weight" if name == "norm.bias": _UpperCAmelCase = "layernorm.bias" if "head" in name: _UpperCAmelCase = name.replace("head" , "classifier" ) else: _UpperCAmelCase = "swinv2." + name return name def UpperCAmelCase_ ( __lowercase : str , __lowercase : str ) -> Union[str, Any]: '''simple docstring''' for key in orig_state_dict.copy().keys(): _UpperCAmelCase = orig_state_dict.pop(__lowercase ) if "mask" in key: continue elif "qkv" in key: _UpperCAmelCase = key.split("." ) _UpperCAmelCase = int(key_split[1] ) _UpperCAmelCase = int(key_split[3] ) _UpperCAmelCase = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _UpperCAmelCase = val[:dim, :] _UpperCAmelCase = val[dim : dim * 2, :] _UpperCAmelCase = val[-dim:, :] else: _UpperCAmelCase = val[:dim] _UpperCAmelCase = val[ dim : dim * 2 ] _UpperCAmelCase = val[-dim:] else: _UpperCAmelCase = val return orig_state_dict def UpperCAmelCase_ ( __lowercase : Optional[int] , __lowercase : Optional[int] ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = timm.create_model(__lowercase , pretrained=__lowercase ) timm_model.eval() _UpperCAmelCase = get_swinva_config(__lowercase ) _UpperCAmelCase = SwinvaForImageClassification(__lowercase ) model.eval() _UpperCAmelCase = convert_state_dict(timm_model.state_dict() , __lowercase ) model.load_state_dict(__lowercase ) _UpperCAmelCase = "http://images.cocodataset.org/val2017/000000039769.jpg" _UpperCAmelCase = AutoImageProcessor.from_pretrained("microsoft/{}".format(swinva_name.replace("_" , "-" ) ) ) _UpperCAmelCase = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ) _UpperCAmelCase = image_processor(images=__lowercase , return_tensors="pt" ) _UpperCAmelCase = timm_model(inputs["pixel_values"] ) _UpperCAmelCase = model(**__lowercase ).logits assert torch.allclose(__lowercase , __lowercase , atol=1E-3 ) print(f'Saving model {swinva_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__lowercase ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__lowercase ) model.push_to_hub( repo_path_or_name=Path(__lowercase , __lowercase ) , organization="nandwalritik" , commit_message="Add model" , ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE :Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swinv2_name''', default='''swinv2_tiny_patch4_window8_256''', type=str, help='''Name of the Swinv2 timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __SCREAMING_SNAKE_CASE :Union[str, Any] = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
119
0
from __future__ import annotations import os from collections.abc import Mapping SCREAMING_SNAKE_CASE : Dict = tuple[int, int] class UpperCamelCase : def __init__(self , __UpperCamelCase , __UpperCamelCase ) -> List[Any]: UpperCamelCase_ : List[Any] = vertices UpperCamelCase_ : int = { (min(__lowerCAmelCase ), max(__lowerCAmelCase )): weight for edge, weight in edges.items() } def A_ (self , __UpperCamelCase , __UpperCamelCase ) -> Dict: self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) UpperCamelCase_ : Dict = weight def A_ (self ) -> Dict: UpperCamelCase_ : Union[str, Any] = Graph({min(self.vertices )} , {} ) UpperCamelCase_ : Dict = 42 UpperCamelCase_ : Optional[int] = 42 UpperCamelCase_ : Any = 42 UpperCamelCase_ : Union[str, Any] = 42 while len(subgraph.vertices ) < len(self.vertices ): UpperCamelCase_ : int = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: UpperCamelCase_ : Tuple = edge UpperCamelCase_ : Any = weight subgraph.add_edge(__lowerCAmelCase , __lowerCAmelCase ) return subgraph def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : str = "p107_network.txt" ): UpperCamelCase_ : int = os.path.abspath(os.path.dirname(lowerCAmelCase__ ) ) UpperCamelCase_ : str = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCamelCase_ : Optional[int] = {} UpperCamelCase_ : str = 42 UpperCamelCase_ : int = 42 UpperCamelCase_ : int = 42 with open(lowerCAmelCase__ ) as f: UpperCamelCase_ : Any = f.read().strip().split("""\n""" ) UpperCamelCase_ : Tuple = [line.split(""",""" ) for line in data] for edgea in range(1 , len(lowerCAmelCase__ ) ): for edgea in range(lowerCAmelCase__ ): if adjaceny_matrix[edgea][edgea] != "-": UpperCamelCase_ : Tuple = int(adjaceny_matrix[edgea][edgea] ) UpperCamelCase_ : List[str] = Graph(set(range(len(lowerCAmelCase__ ) ) ) , lowerCAmelCase__ ) UpperCamelCase_ : Optional[Any] = graph.prims_algorithm() UpperCamelCase_ : Optional[Any] = sum(graph.edges.values() ) UpperCamelCase_ : str = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(F'''{solution() = }''')
635
"""simple docstring""" import torch from diffusers import StableDiffusionPipeline __lowerCAmelCase : str ="""path-to-your-trained-model""" __lowerCAmelCase : int =StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to("""cuda""") __lowerCAmelCase : Optional[int] ="""A photo of sks dog in a bucket""" __lowerCAmelCase : int =pipe(prompt, num_inference_steps=5_0, guidance_scale=7.5).images[0] image.save("""dog-bucket.png""")
359
0
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf UpperCamelCase__ = logging.get_logger(__name__) @dataclass class __SCREAMING_SNAKE_CASE ( _a ): snake_case : Optional[Any] = [ """no_inference""", """no_cuda""", """no_tpu""", """no_speed""", """no_memory""", """no_env_print""", """no_multi_process""", ] def __init__( self , **__lowerCAmelCase ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: UpperCamelCase__ = deprecated_arg[3:] UpperCamelCase__ = not kwargs.pop(__lowerCAmelCase ) logger.warning( f"""{deprecated_arg} is depreciated. Please use --no-{positive_arg} or""" f""" {positive_arg}={kwargs[positive_arg]}""" ) UpperCamelCase__ = kwargs.pop("""tpu_name""" , self.tpu_name ) UpperCamelCase__ = kwargs.pop("""device_idx""" , self.device_idx ) UpperCamelCase__ = kwargs.pop("""eager_mode""" , self.eager_mode ) UpperCamelCase__ = kwargs.pop("""use_xla""" , self.use_xla ) super().__init__(**__lowerCAmelCase ) snake_case : str = field( default=_a , metadata={"""help""": """Name of TPU"""} , ) snake_case : int = field( default=0 , metadata={"""help""": """CPU / GPU device index. Defaults to 0."""} , ) snake_case : bool = field(default=_a , metadata={"""help""": """Benchmark models in eager model."""} ) snake_case : bool = field( default=_a , metadata={ """help""": """Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.""" } , ) @cached_property def _lowerCamelCase ( self ): requires_backends(self , ["""tf"""] ) UpperCamelCase__ = None if self.tpu: try: if self.tpu_name: UpperCamelCase__ = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: UpperCamelCase__ = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: UpperCamelCase__ = None return tpu @cached_property def _lowerCamelCase ( self ): requires_backends(self , ["""tf"""] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) UpperCamelCase__ = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , """GPU""" ) UpperCamelCase__ = tf.distribute.OneDeviceStrategy(device=f"""/gpu:{self.device_idx}""" ) else: tf.config.set_visible_devices([] , """GPU""" ) # disable GPU UpperCamelCase__ = tf.distribute.OneDeviceStrategy(device=f"""/cpu:{self.device_idx}""" ) return strategy @property def _lowerCamelCase ( self ): requires_backends(self , ["""tf"""] ) return self._setup_tpu is not None @property def _lowerCamelCase ( self ): requires_backends(self , ["""tf"""] ) return self._setup_strategy @property def _lowerCamelCase ( self ): requires_backends(self , ["""tf"""] ) return tf.config.list_physical_devices("""GPU""" ) @property def _lowerCamelCase ( self ): requires_backends(self , ["""tf"""] ) if self.cuda: return len(self.gpu_list ) return 0 @property def _lowerCamelCase ( self ): return self.n_gpu > 0
548
import math from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { "facebook/data2vec-base-960h": "https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class __SCREAMING_SNAKE_CASE ( _a ): snake_case : Optional[Any] = """data2vec-audio""" def __init__( self , __lowerCAmelCase=32 , __lowerCAmelCase=768 , __lowerCAmelCase=12 , __lowerCAmelCase=12 , __lowerCAmelCase=3072 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.02 , __lowerCAmelCase=1E-5 , __lowerCAmelCase="gelu" , __lowerCAmelCase=(512, 512, 512, 512, 512, 512, 512) , __lowerCAmelCase=(5, 2, 2, 2, 2, 2, 2) , __lowerCAmelCase=(10, 3, 3, 3, 3, 2, 2) , __lowerCAmelCase=False , __lowerCAmelCase=16 , __lowerCAmelCase=19 , __lowerCAmelCase=5 , __lowerCAmelCase=0.05 , __lowerCAmelCase=10 , __lowerCAmelCase=2 , __lowerCAmelCase=0.0 , __lowerCAmelCase=10 , __lowerCAmelCase=0 , __lowerCAmelCase="sum" , __lowerCAmelCase=False , __lowerCAmelCase=False , __lowerCAmelCase=256 , __lowerCAmelCase=(512, 512, 512, 512, 1500) , __lowerCAmelCase=(5, 3, 3, 1, 1) , __lowerCAmelCase=(1, 2, 3, 1, 1) , __lowerCAmelCase=512 , __lowerCAmelCase=0 , __lowerCAmelCase=1 , __lowerCAmelCase=2 , __lowerCAmelCase=False , __lowerCAmelCase=3 , __lowerCAmelCase=2 , __lowerCAmelCase=3 , __lowerCAmelCase=None , **__lowerCAmelCase , ): super().__init__(**__lowerCAmelCase , pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase ) UpperCamelCase__ = hidden_size UpperCamelCase__ = feat_extract_activation UpperCamelCase__ = list(__lowerCAmelCase ) UpperCamelCase__ = list(__lowerCAmelCase ) UpperCamelCase__ = list(__lowerCAmelCase ) UpperCamelCase__ = conv_bias UpperCamelCase__ = num_conv_pos_embeddings UpperCamelCase__ = num_conv_pos_embedding_groups UpperCamelCase__ = conv_pos_kernel_size UpperCamelCase__ = len(self.conv_dim ) UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = num_attention_heads UpperCamelCase__ = hidden_dropout UpperCamelCase__ = attention_dropout UpperCamelCase__ = activation_dropout UpperCamelCase__ = feat_proj_dropout UpperCamelCase__ = final_dropout UpperCamelCase__ = layerdrop UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = initializer_range UpperCamelCase__ = vocab_size UpperCamelCase__ = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCamelCase__ = mask_time_prob UpperCamelCase__ = mask_time_length UpperCamelCase__ = mask_time_min_masks UpperCamelCase__ = mask_feature_prob UpperCamelCase__ = mask_feature_length UpperCamelCase__ = mask_feature_min_masks # ctc loss UpperCamelCase__ = ctc_loss_reduction UpperCamelCase__ = ctc_zero_infinity # adapter UpperCamelCase__ = add_adapter UpperCamelCase__ = adapter_kernel_size UpperCamelCase__ = adapter_stride UpperCamelCase__ = num_adapter_layers UpperCamelCase__ = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCamelCase__ = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCamelCase__ = list(__lowerCAmelCase ) UpperCamelCase__ = list(__lowerCAmelCase ) UpperCamelCase__ = list(__lowerCAmelCase ) UpperCamelCase__ = xvector_output_dim @property def _lowerCamelCase ( self ): return math.prod(self.conv_stride )
548
1
'''simple docstring''' from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run A__ : List[Any] = True except (ImportError, AttributeError): A__ : Any = object def a_ ( *_UpperCAmelCase : Union[str, Any] ,**_UpperCAmelCase : List[str] ) -> List[str]: pass A__ : Dict = False A__ : Tuple = logging.get_logger('''transformers-cli/serving''') def a_ ( _UpperCAmelCase : Namespace ) -> Dict: __snake_case : List[Any] = pipeline( task=args.task ,model=args.model if args.model else None ,config=args.config ,tokenizer=args.tokenizer ,device=args.device ,) return ServeCommand(_UpperCAmelCase ,args.host ,args.port ,args.workers ) class snake_case__ ( SCREAMING_SNAKE_CASE_ ): A__ = 42 class snake_case__ ( SCREAMING_SNAKE_CASE_ ): A__ = 42 A__ = 42 class snake_case__ ( SCREAMING_SNAKE_CASE_ ): A__ = 42 class snake_case__ ( SCREAMING_SNAKE_CASE_ ): A__ = 42 class snake_case__ ( SCREAMING_SNAKE_CASE_ ): @staticmethod def A_ ( __a : ArgumentParser ) -> Any: '''simple docstring''' __snake_case : Any = parser.add_parser( 'serve' , help='CLI tool to run inference requests through REST and GraphQL endpoints.' ) serve_parser.add_argument( '--task' , type=__a , choices=get_supported_tasks() , help='The task to run the pipeline on' , ) serve_parser.add_argument('--host' , type=__a , default='localhost' , help='Interface the server will listen on.' ) serve_parser.add_argument('--port' , type=__a , default=8888 , help='Port the serving will listen to.' ) serve_parser.add_argument('--workers' , type=__a , default=1 , help='Number of http workers' ) serve_parser.add_argument('--model' , type=__a , help='Model\'s name or path to stored model.' ) serve_parser.add_argument('--config' , type=__a , help='Model\'s config name or path to stored model.' ) serve_parser.add_argument('--tokenizer' , type=__a , help='Tokenizer name to use.' ) serve_parser.add_argument( '--device' , type=__a , default=-1 , help='Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)' , ) serve_parser.set_defaults(func=__a ) def __init__( self : str , __a : Pipeline , __a : str , __a : int , __a : int ) -> int: '''simple docstring''' __snake_case : str = pipeline __snake_case : Union[str, Any] = host __snake_case : Dict = port __snake_case : Dict = workers if not _serve_dependencies_installed: raise RuntimeError( 'Using serve command requires FastAPI and uvicorn. ' 'Please install transformers with [serving]: pip install "transformers[serving]".' 'Or install FastAPI and uvicorn separately.' ) else: logger.info(f'''Serving model over {host}:{port}''' ) __snake_case : Any = FastAPI( routes=[ APIRoute( '/' , self.model_info , response_model=__a , response_class=__a , methods=['GET'] , ), APIRoute( '/tokenize' , self.tokenize , response_model=__a , response_class=__a , methods=['POST'] , ), APIRoute( '/detokenize' , self.detokenize , response_model=__a , response_class=__a , methods=['POST'] , ), APIRoute( '/forward' , self.forward , response_model=__a , response_class=__a , methods=['POST'] , ), ] , timeout=600 , ) def A_ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' run(self._app , host=self.host , port=self.port , workers=self.workers ) def A_ ( self : List[Any] ) -> int: '''simple docstring''' return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) ) def A_ ( self : List[str] , __a : str = Body(__a , embed=__a ) , __a : bool = Body(__a , embed=__a ) ) -> Optional[Any]: '''simple docstring''' try: __snake_case : Dict = self._pipeline.tokenizer.tokenize(__a ) if return_ids: __snake_case : Tuple = self._pipeline.tokenizer.convert_tokens_to_ids(__a ) return ServeTokenizeResult(tokens=__a , tokens_ids=__a ) else: return ServeTokenizeResult(tokens=__a ) except Exception as e: raise HTTPException(status_code=500 , detail={'model': '', 'error': str(__a )} ) def A_ ( self : Any , __a : List[int] = Body(__a , embed=__a ) , __a : bool = Body(__a , embed=__a ) , __a : bool = Body(__a , embed=__a ) , ) -> Tuple: '''simple docstring''' try: __snake_case : Any = self._pipeline.tokenizer.decode(__a , __a , __a ) return ServeDeTokenizeResult(model='' , text=__a ) except Exception as e: raise HTTPException(status_code=500 , detail={'model': '', 'error': str(__a )} ) async def A_ ( self : List[Any] , __a : Optional[Any]=Body(__a , embed=__a ) ) -> Dict: '''simple docstring''' # Check we don't have empty string if len(__a ) == 0: return ServeForwardResult(output=[] , attention=[] ) try: # Forward through the model __snake_case : List[Any] = self._pipeline(__a ) return ServeForwardResult(output=__a ) except Exception as e: raise HTTPException(500 , {'error': str(__a )} )
286
'''simple docstring''' import qiskit def a_ ( _UpperCAmelCase : int = 2 ) -> qiskit.result.counts.Counts: __snake_case : Union[str, Any] = qubits # Using Aer's simulator __snake_case : List[Any] = qiskit.Aer.get_backend('aer_simulator' ) # Creating a Quantum Circuit acting on the q register __snake_case : Dict = qiskit.QuantumCircuit(_UpperCAmelCase ,_UpperCAmelCase ) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0 ) for i in range(1 ,_UpperCAmelCase ): # Adding CX (CNOT) gate circuit.cx(i - 1 ,_UpperCAmelCase ) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(_UpperCAmelCase ) ) ,list(range(_UpperCAmelCase ) ) ) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator __snake_case : Optional[Any] = qiskit.execute(_UpperCAmelCase ,_UpperCAmelCase ,shots=10_00 ) return job.result().get_counts(_UpperCAmelCase ) if __name__ == "__main__": print(F"""Total count for various states are: {quantum_entanglement(3)}""")
286
1
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer _lowercase : int = logging.get_logger(__name__) _lowercase : List[Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} _lowercase : Union[str, Any] = { "vocab_file": { "junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt", "junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt", "junnyu/roformer_chinese_char_small": ( "https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt" ), "junnyu/roformer_chinese_char_base": ( "https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt" ), "junnyu/roformer_small_discriminator": ( "https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt" ), "junnyu/roformer_small_generator": ( "https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt" ), } } _lowercase : List[Any] = { "junnyu/roformer_chinese_small": 1_5_3_6, "junnyu/roformer_chinese_base": 1_5_3_6, "junnyu/roformer_chinese_char_small": 5_1_2, "junnyu/roformer_chinese_char_base": 5_1_2, "junnyu/roformer_small_discriminator": 1_2_8, "junnyu/roformer_small_generator": 1_2_8, } _lowercase : List[Any] = { "junnyu/roformer_chinese_small": {"do_lower_case": True}, "junnyu/roformer_chinese_base": {"do_lower_case": True}, "junnyu/roformer_chinese_char_small": {"do_lower_case": True}, "junnyu/roformer_chinese_char_base": {"do_lower_case": True}, "junnyu/roformer_small_discriminator": {"do_lower_case": True}, "junnyu/roformer_small_generator": {"do_lower_case": True}, } class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' _a = VOCAB_FILES_NAMES _a = PRETRAINED_VOCAB_FILES_MAP _a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = PRETRAINED_INIT_CONFIGURATION _a = RoFormerTokenizer def __init__( self : Any, lowerCamelCase : Union[str, Any]=None, lowerCamelCase : Dict=None, lowerCamelCase : Dict=True, lowerCamelCase : Union[str, Any]="[UNK]", lowerCamelCase : List[Any]="[SEP]", lowerCamelCase : List[str]="[PAD]", lowerCamelCase : List[str]="[CLS]", lowerCamelCase : List[str]="[MASK]", lowerCamelCase : int=True, lowerCamelCase : List[Any]=None, **lowerCamelCase : int, )-> int: super().__init__( __A, tokenizer_file=__A, do_lower_case=__A, unk_token=__A, sep_token=__A, pad_token=__A, cls_token=__A, mask_token=__A, tokenize_chinese_chars=__A, strip_accents=__A, **__A, ) lowerCamelCase__ : Any =json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get('''lowercase''', __A ) != do_lower_case or pre_tok_state.get('''strip_accents''', __A ) != strip_accents ): lowerCamelCase__ : List[str] =getattr(__A, pre_tok_state.pop('''type''' ) ) lowerCamelCase__ : Optional[Any] =do_lower_case lowerCamelCase__ : Dict =strip_accents lowerCamelCase__ : List[str] =pre_tok_class(**__A ) lowerCamelCase__ : int =do_lower_case def __getstate__( self : Union[str, Any] )-> str: lowerCamelCase__ : int =self.__dict__.copy() lowerCamelCase__ : List[Any] =BertPreTokenizer() return state def __setstate__( self : Union[str, Any], lowerCamelCase : Union[str, Any] )-> Optional[int]: lowerCamelCase__ : Any =d lowerCamelCase__ : Optional[Any] =self.__dict__['''_tokenizer'''].get_vocab() lowerCamelCase__ : List[str] =PreTokenizer.custom(JiebaPreTokenizer(__A ) ) def snake_case ( self : str, lowerCamelCase : str, lowerCamelCase : str=None )-> int: lowerCamelCase__ : Optional[int] =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case ( self : Tuple, lowerCamelCase : List[int], lowerCamelCase : Optional[List[int]] = None )-> List[int]: lowerCamelCase__ : Optional[int] =[self.sep_token_id] lowerCamelCase__ : Dict =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case ( self : List[Any], lowerCamelCase : str, lowerCamelCase : Optional[str] = None )-> Tuple[str]: lowerCamelCase__ : int =self._tokenizer.model.save(__A, name=__A ) return tuple(__A ) def snake_case ( self : List[str], lowerCamelCase : int, lowerCamelCase : List[Any]=None, lowerCamelCase : Union[str, Any]=None, lowerCamelCase : List[str]=False, **lowerCamelCase : Optional[Any], )-> Dict: lowerCamelCase__ : Dict =BertPreTokenizer() return super().save_pretrained(__A, __A, __A, __A, **__A )
718
"""simple docstring""" def snake_case__ ( __lowerCamelCase : list[list[int]] , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : list[int] ): """simple docstring""" # 1. Validate that path exists between current and next vertices if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path ) def snake_case__ ( __lowerCamelCase : list[list[int]] , __lowerCamelCase : list[int] , __lowerCamelCase : int ): """simple docstring""" # Base Case if curr_ind == len(__lowerCamelCase ): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 , len(__lowerCamelCase ) ): if valid_connection(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): # Insert current vertex into path as next transition lowerCamelCase__ : Tuple =next_ver # Validate created path if util_hamilton_cycle(__lowerCamelCase , __lowerCamelCase , curr_ind + 1 ): return True # Backtrack lowerCamelCase__ : int =-1 return False def snake_case__ ( __lowerCamelCase : list[list[int]] , __lowerCamelCase : int = 0 ): """simple docstring""" lowerCamelCase__ : Tuple =[-1] * (len(__lowerCamelCase ) + 1) # initialize start and end of path with starting index lowerCamelCase__ : Union[str, Any] =start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(__lowerCamelCase , __lowerCamelCase , 1 ) else []
625
0
def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : int = 1_0_0_0 ) -> int: SCREAMING_SNAKE_CASE_ : Dict =1 SCREAMING_SNAKE_CASE_ : Tuple =0 for divide_by_number in range(UpperCAmelCase_ , digit + 1 ): SCREAMING_SNAKE_CASE_ : list[int] =[] SCREAMING_SNAKE_CASE_ : List[str] =numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(UpperCAmelCase_ ): SCREAMING_SNAKE_CASE_ : List[str] =len(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE_ : Dict =divide_by_number else: has_been_divided.append(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE_ : int =now_divide * 1_0 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
443
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class lowercase_ ( A ): __lowerCamelCase = (DDIMParallelScheduler,) __lowerCamelCase = (("eta", 0.0), ("num_inference_steps", 5_0)) def _snake_case ( self , **__A ) -> List[str]: SCREAMING_SNAKE_CASE_ : Optional[Any] ={ '''num_train_timesteps''': 1_000, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''clip_sample''': True, } config.update(**__A ) return config def _snake_case ( self , **__A ) -> List[Any]: SCREAMING_SNAKE_CASE_ : int =self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ : str =self.get_scheduler_config(**__A ) SCREAMING_SNAKE_CASE_ : List[Any] =scheduler_class(**__A ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] =10, 0.0 SCREAMING_SNAKE_CASE_ : List[str] =self.dummy_model() SCREAMING_SNAKE_CASE_ : Union[str, Any] =self.dummy_sample_deter scheduler.set_timesteps(__A ) for t in scheduler.timesteps: SCREAMING_SNAKE_CASE_ : Optional[int] =model(__A , __A ) SCREAMING_SNAKE_CASE_ : List[Any] =scheduler.step(__A , __A , __A , __A ).prev_sample return sample def _snake_case ( self ) -> Optional[Any]: for timesteps in [100, 500, 1_000]: self.check_over_configs(num_train_timesteps=__A ) def _snake_case ( self ) -> Optional[int]: for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__A ) SCREAMING_SNAKE_CASE_ : Dict =self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ : Optional[Any] =self.get_scheduler_config(steps_offset=1 ) SCREAMING_SNAKE_CASE_ : Dict =scheduler_class(**__A ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) ) def _snake_case ( self ) -> Dict: for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__A , beta_end=__A ) def _snake_case ( self ) -> str: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__A ) def _snake_case ( self ) -> List[str]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__A ) def _snake_case ( self ) -> List[Any]: for clip_sample in [True, False]: self.check_over_configs(clip_sample=__A ) def _snake_case ( self ) -> int: for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=__A ) def _snake_case ( self ) -> Tuple: for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=__A ) def _snake_case ( self ) -> List[Any]: self.check_over_configs(thresholding=__A ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=__A , prediction_type=__A , sample_max_value=__A , ) def _snake_case ( self ) -> Dict: for t in [1, 10, 49]: self.check_over_forward(time_step=__A ) def _snake_case ( self ) -> Dict: for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ): self.check_over_forward(time_step=__A , num_inference_steps=__A ) def _snake_case ( self ) -> int: for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=__A , eta=__A ) def _snake_case ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ : List[Any] =self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ : List[str] =self.get_scheduler_config() SCREAMING_SNAKE_CASE_ : List[str] =scheduler_class(**__A ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.14_771 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.32_460 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.00_979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.02 ) ) < 1e-5 def _snake_case ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ : List[str] =self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ : List[str] =self.get_scheduler_config() SCREAMING_SNAKE_CASE_ : str =scheduler_class(**__A ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] =10, 0.0 scheduler.set_timesteps(__A ) SCREAMING_SNAKE_CASE_ : List[str] =self.dummy_model() SCREAMING_SNAKE_CASE_ : str =self.dummy_sample_deter SCREAMING_SNAKE_CASE_ : int =self.dummy_sample_deter + 0.1 SCREAMING_SNAKE_CASE_ : Tuple =self.dummy_sample_deter - 0.1 SCREAMING_SNAKE_CASE_ : Union[str, Any] =samplea.shape[0] SCREAMING_SNAKE_CASE_ : List[str] =torch.stack([samplea, samplea, samplea] , dim=0 ) SCREAMING_SNAKE_CASE_ : Any =torch.arange(__A )[0:3, None].repeat(1 , __A ) SCREAMING_SNAKE_CASE_ : Dict =model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) SCREAMING_SNAKE_CASE_ : Optional[int] =scheduler.batch_step_no_noise(__A , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , __A ) SCREAMING_SNAKE_CASE_ : str =torch.sum(torch.abs(__A ) ) SCREAMING_SNAKE_CASE_ : int =torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 1_147.7_904 ) < 1e-2 assert abs(result_mean.item() - 0.4_982 ) < 1e-3 def _snake_case ( self ) -> Any: SCREAMING_SNAKE_CASE_ : List[str] =self.full_loop() SCREAMING_SNAKE_CASE_ : List[Any] =torch.sum(torch.abs(__A ) ) SCREAMING_SNAKE_CASE_ : Optional[Any] =torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 172.0_067 ) < 1e-2 assert abs(result_mean.item() - 0.223_967 ) < 1e-3 def _snake_case ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ : str =self.full_loop(prediction_type='''v_prediction''' ) SCREAMING_SNAKE_CASE_ : List[Any] =torch.sum(torch.abs(__A ) ) SCREAMING_SNAKE_CASE_ : str =torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 52.5_302 ) < 1e-2 assert abs(result_mean.item() - 0.0_684 ) < 1e-3 def _snake_case ( self ) -> Dict: # We specify different beta, so that the first alpha is 0.99 SCREAMING_SNAKE_CASE_ : Tuple =self.full_loop(set_alpha_to_one=__A , beta_start=0.01 ) SCREAMING_SNAKE_CASE_ : Tuple =torch.sum(torch.abs(__A ) ) SCREAMING_SNAKE_CASE_ : int =torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 149.8_295 ) < 1e-2 assert abs(result_mean.item() - 0.1_951 ) < 1e-3 def _snake_case ( self ) -> Optional[Any]: # We specify different beta, so that the first alpha is 0.99 SCREAMING_SNAKE_CASE_ : List[str] =self.full_loop(set_alpha_to_one=__A , beta_start=0.01 ) SCREAMING_SNAKE_CASE_ : Optional[int] =torch.sum(torch.abs(__A ) ) SCREAMING_SNAKE_CASE_ : Tuple =torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 149.0_784 ) < 1e-2 assert abs(result_mean.item() - 0.1_941 ) < 1e-3
443
1
import math def _snake_case ( A_ : int ): """simple docstring""" assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False a_ : Optional[Any] = range(3 , int(math.sqrt(UpperCAmelCase__ ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def _snake_case ( A_ : Dict , A_ : Optional[Any]=1 , **A_ : Optional[Any] ): """simple docstring""" a_ : Optional[Any] = factor * value a_ : Dict = value while not is_prime(UpperCAmelCase__ ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **UpperCAmelCase__ ) return value
708
'''simple docstring''' import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase : """simple docstring""" def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=13 , lowerCAmelCase_=32 , lowerCAmelCase_=2 , lowerCAmelCase_=3 , lowerCAmelCase_=16 , lowerCAmelCase_=[32, 64, 1_28] , lowerCAmelCase_=[1, 2, 1] , lowerCAmelCase_=[2, 2, 4] , lowerCAmelCase_=2 , lowerCAmelCase_=2.0 , lowerCAmelCase_=True , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.1 , lowerCAmelCase_="gelu" , lowerCAmelCase_=False , lowerCAmelCase_=True , lowerCAmelCase_=0.02 , lowerCAmelCase_=1E-5 , lowerCAmelCase_=True , lowerCAmelCase_=None , lowerCAmelCase_=True , lowerCAmelCase_=10 , lowerCAmelCase_=8 , lowerCAmelCase_=["stage1", "stage2"] , lowerCAmelCase_=[1, 2] , ): '''simple docstring''' a_ : Optional[Any] = parent a_ : Union[str, Any] = batch_size a_ : Optional[Any] = image_size a_ : Dict = patch_size a_ : Optional[Any] = num_channels a_ : Union[str, Any] = embed_dim a_ : int = hidden_sizes a_ : int = depths a_ : Optional[int] = num_heads a_ : Optional[Any] = window_size a_ : Tuple = mlp_ratio a_ : List[str] = qkv_bias a_ : Union[str, Any] = hidden_dropout_prob a_ : Optional[int] = attention_probs_dropout_prob a_ : Dict = drop_path_rate a_ : Optional[int] = hidden_act a_ : int = use_absolute_embeddings a_ : List[Any] = patch_norm a_ : int = layer_norm_eps a_ : Dict = initializer_range a_ : List[Any] = is_training a_ : Any = scope a_ : int = use_labels a_ : Union[str, Any] = type_sequence_label_size a_ : Any = encoder_stride a_ : Optional[Any] = out_features a_ : str = out_indices def _lowerCAmelCase ( self ): '''simple docstring''' a_ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a_ : List[Any] = None if self.use_labels: a_ : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a_ : Any = self.get_config() return config, pixel_values, labels def _lowerCAmelCase ( self ): '''simple docstring''' return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def _lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' a_ : Union[str, Any] = FocalNetModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() a_ : Optional[Any] = model(lowerCAmelCase_ ) a_ : Union[str, Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) a_ : Any = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def _lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' a_ : Union[str, Any] = FocalNetBackbone(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() a_ : Tuple = model(lowerCAmelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None a_ : Optional[Any] = None a_ : List[Any] = FocalNetBackbone(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() a_ : List[str] = model(lowerCAmelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' a_ : Union[str, Any] = FocalNetForMaskedImageModeling(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() a_ : str = model(lowerCAmelCase_ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images a_ : List[str] = 1 a_ : Optional[Any] = FocalNetForMaskedImageModeling(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() a_ : Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) a_ : int = model(lowerCAmelCase_ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def _lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' a_ : Any = self.type_sequence_label_size a_ : str = FocalNetForImageClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() a_ : List[Any] = model(lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images a_ : Optional[Any] = 1 a_ : Dict = FocalNetForImageClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() a_ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) a_ : List[Any] = model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : int = self.prepare_config_and_inputs() a_ , a_ , a_ : List[str] = config_and_inputs a_ : Optional[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( lowerCAmelCase__ ,lowerCAmelCase__ ,unittest.TestCase ): """simple docstring""" a_ = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) a_ = ( {"feature-extraction": FocalNetModel, "image-classification": FocalNetForImageClassification} if is_torch_available() else {} ) a_ = False a_ = False a_ = False a_ = False a_ = False def _lowerCAmelCase ( self ): '''simple docstring''' a_ : List[str] = FocalNetModelTester(self ) a_ : Union[str, Any] = ConfigTester(self , config_class=lowerCAmelCase_ , embed_dim=37 , has_text_modality=lowerCAmelCase_ ) def _lowerCAmelCase ( self ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowerCAmelCase ( self ): '''simple docstring''' return def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCAmelCase_ ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase_ ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) @unittest.skip(reason="""FocalNet does not use inputs_embeds""" ) def _lowerCAmelCase ( self ): '''simple docstring''' pass @unittest.skip(reason="""FocalNet does not use feedforward chunking""" ) def _lowerCAmelCase ( self ): '''simple docstring''' pass def _lowerCAmelCase ( self ): '''simple docstring''' a_ , a_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: a_ : int = model_class(lowerCAmelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) a_ : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase_ , nn.Linear ) ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ , a_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: a_ : Dict = model_class(lowerCAmelCase_ ) a_ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a_ : Dict = [*signature.parameters.keys()] a_ : Optional[int] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def _lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' a_ : str = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): a_ : str = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) a_ : Optional[Any] = outputs.hidden_states a_ : int = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) # FocalNet has a different seq_length a_ : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) a_ : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) a_ : str = outputs.reshaped_hidden_states self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) a_ , a_ , a_ , a_ : Optional[Any] = reshaped_hidden_states[0].shape a_ : Dict = ( reshaped_hidden_states[0].view(lowerCAmelCase_ , lowerCAmelCase_ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ , a_ : int = self.model_tester.prepare_config_and_inputs_for_common() a_ : Optional[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: a_ : Any = True self.check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a_ : Optional[int] = True self.check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ , a_ : Any = self.model_tester.prepare_config_and_inputs_for_common() a_ : Optional[Any] = 3 a_ : Union[str, Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) a_ : Optional[int] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) a_ : Union[str, Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) a_ : Union[str, Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: a_ : List[str] = True self.check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a_ : int = True self.check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , (padded_height, padded_width) ) @slow def _lowerCAmelCase ( self ): '''simple docstring''' for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ : List[Any] = FocalNetModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ , a_ : int = self.model_tester.prepare_config_and_inputs_for_common() a_ : Union[str, Any] = _config_zero_init(lowerCAmelCase_ ) for model_class in self.all_model_classes: a_ : Dict = model_class(config=lowerCAmelCase_ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @require_vision @require_torch class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def _lowerCAmelCase ( self ): '''simple docstring''' return AutoImageProcessor.from_pretrained("""microsoft/focalnet-tiny""" ) if is_vision_available() else None @slow def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Optional[Any] = FocalNetForImageClassification.from_pretrained("""microsoft/focalnet-tiny""" ).to(lowerCAmelCase_ ) a_ : Dict = self.default_image_processor a_ : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) a_ : List[Any] = image_processor(images=lowerCAmelCase_ , return_tensors="""pt""" ).to(lowerCAmelCase_ ) # forward pass with torch.no_grad(): a_ : int = model(**lowerCAmelCase_ ) # verify the logits a_ : Optional[Any] = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) a_ : Dict = torch.tensor([0.2166, -0.4368, 0.2191] ).to(lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1E-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 2_81 ) @require_torch class _UpperCAmelCase ( lowerCAmelCase__ ,unittest.TestCase ): """simple docstring""" a_ = (FocalNetBackbone,) if is_torch_available() else () a_ = FocalNetConfig a_ = False def _lowerCAmelCase ( self ): '''simple docstring''' a_ : int = FocalNetModelTester(self )
460
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : Union[str, Any] = { "shi-labs/nat-mini-in1k-224": "https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json", # See all Nat models at https://huggingface.co/models?filter=nat } class __A ( UpperCamelCase__ , UpperCamelCase__ ): UpperCamelCase = """nat""" UpperCamelCase = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self :List[Any] , __snake_case :Tuple=4 , __snake_case :int=3 , __snake_case :Union[str, Any]=64 , __snake_case :Optional[Any]=[3, 4, 6, 5] , __snake_case :Tuple=[2, 4, 8, 16] , __snake_case :Optional[int]=7 , __snake_case :Optional[int]=3.0 , __snake_case :int=True , __snake_case :Dict=0.0 , __snake_case :Tuple=0.0 , __snake_case :List[Any]=0.1 , __snake_case :Optional[int]="gelu" , __snake_case :Optional[Any]=0.02 , __snake_case :Optional[int]=1E-5 , __snake_case :List[str]=0.0 , __snake_case :List[str]=None , __snake_case :Optional[int]=None , **__snake_case :List[Any] , ): '''simple docstring''' super().__init__(**__snake_case ) __magic_name__ : Any =patch_size __magic_name__ : Optional[int] =num_channels __magic_name__ : Tuple =embed_dim __magic_name__ : List[Any] =depths __magic_name__ : Union[str, Any] =len(__snake_case ) __magic_name__ : List[Any] =num_heads __magic_name__ : int =kernel_size __magic_name__ : Tuple =mlp_ratio __magic_name__ : Tuple =qkv_bias __magic_name__ : Dict =hidden_dropout_prob __magic_name__ : Dict =attention_probs_dropout_prob __magic_name__ : Union[str, Any] =drop_path_rate __magic_name__ : Union[str, Any] =hidden_act __magic_name__ : Optional[int] =layer_norm_eps __magic_name__ : Union[str, Any] =initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __magic_name__ : List[str] =int(embed_dim * 2 ** (len(__snake_case ) - 1) ) __magic_name__ : List[str] =layer_scale_init_value __magic_name__ : List[Any] =["""stem"""] + [f"stage{idx}" for idx in range(1 , len(__snake_case ) + 1 )] __magic_name__ , __magic_name__ : Dict =get_aligned_output_features_output_indices( out_features=__snake_case , out_indices=__snake_case , stage_names=self.stage_names )
21
from sklearn.metrics import matthews_corrcoef import datasets UpperCAmelCase_ : Dict = "\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n" UpperCAmelCase_ : Any = "\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results['matthews_correlation'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results['matthews_correlation'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results['matthews_correlation'], 2))\n -0.25\n" UpperCAmelCase_ : Dict = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): def A__ ( self :List[str] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html""" ] , ) def A__ ( self :Tuple , __snake_case :str , __snake_case :Tuple , __snake_case :List[str]=None ): '''simple docstring''' return { "matthews_correlation": float(matthews_corrcoef(__snake_case , __snake_case , sample_weight=__snake_case ) ), }
21
1
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch __a = logging.get_logger(__name__) class lowercase__( UpperCAmelCase ): """simple docstring""" a :List[Any] = ['pixel_values'] def __init__( self : List[Any] , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : Optional[Dict[str, int]] = None , SCREAMING_SNAKE_CASE_ : PILImageResampling = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : Dict[str, int] = None , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : Union[int, float] = 1 / 2_5_5 , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE_ : Optional[Union[float, List[float]]] = None , **SCREAMING_SNAKE_CASE_ : Any , ) -> None: super().__init__(**SCREAMING_SNAKE_CASE_ ) lowercase_ = size if size is not None else {'''shortest_edge''': 2_5_6} lowercase_ = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) lowercase_ = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} lowercase_ = get_size_dict(SCREAMING_SNAKE_CASE_ , param_name='''crop_size''' ) lowercase_ = do_resize lowercase_ = size lowercase_ = resample lowercase_ = do_center_crop lowercase_ = crop_size lowercase_ = do_rescale lowercase_ = rescale_factor lowercase_ = do_normalize lowercase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowercase ( self : List[str] , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : Dict[str, int] , SCREAMING_SNAKE_CASE_ : PILImageResampling = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE_ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE_ : List[Any] , ) -> np.ndarray: lowercase_ = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) lowercase_ = get_resize_output_image_size(SCREAMING_SNAKE_CASE_ , size=size['''shortest_edge'''] , default_to_square=SCREAMING_SNAKE_CASE_ ) return resize(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : Dict[str, int] , SCREAMING_SNAKE_CASE_ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE_ : List[Any] , ) -> np.ndarray: lowercase_ = get_size_dict(SCREAMING_SNAKE_CASE_ ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}''' ) return center_crop(SCREAMING_SNAKE_CASE_ , size=(size['''height'''], size['''width''']) , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE_ : List[str] ) -> np.ndarray: return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Dict , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : Union[float, List[float]] , SCREAMING_SNAKE_CASE_ : Union[float, List[float]] , SCREAMING_SNAKE_CASE_ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE_ : Optional[Any] , ) -> np.ndarray: return normalize(SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : ImageInput , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : Dict[str, int] = None , SCREAMING_SNAKE_CASE_ : PILImageResampling = None , SCREAMING_SNAKE_CASE_ : bool = None , SCREAMING_SNAKE_CASE_ : Dict[str, int] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : Optional[float] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE_ : Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE_ : Optional[Union[str, TensorType]] = None , SCREAMING_SNAKE_CASE_ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ : str , ) -> List[str]: lowercase_ = do_resize if do_resize is not None else self.do_resize lowercase_ = size if size is not None else self.size lowercase_ = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) lowercase_ = resample if resample is not None else self.resample lowercase_ = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase_ = crop_size if crop_size is not None else self.crop_size lowercase_ = get_size_dict(SCREAMING_SNAKE_CASE_ , param_name='''crop_size''' ) lowercase_ = do_rescale if do_rescale is not None else self.do_rescale lowercase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase_ = do_normalize if do_normalize is not None else self.do_normalize lowercase_ = image_mean if image_mean is not None else self.image_mean lowercase_ = image_std if image_std is not None else self.image_std lowercase_ = make_list_of_images(SCREAMING_SNAKE_CASE_ ) if not valid_images(SCREAMING_SNAKE_CASE_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. lowercase_ = [to_numpy_array(SCREAMING_SNAKE_CASE_ ) for image in images] if do_resize: lowercase_ = [self.resize(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ ) for image in images] if do_center_crop: lowercase_ = [self.center_crop(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ ) for image in images] if do_rescale: lowercase_ = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ ) for image in images] if do_normalize: lowercase_ = [self.normalize(image=SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ ) for image in images] lowercase_ = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for image in images] lowercase_ = {'''pixel_values''': images} return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Tuple , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[Tuple] = None ) -> List[str]: lowercase_ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(SCREAMING_SNAKE_CASE_ ): lowercase_ = target_sizes.numpy() lowercase_ = [] for idx in range(len(SCREAMING_SNAKE_CASE_ ) ): lowercase_ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=SCREAMING_SNAKE_CASE_ ) lowercase_ = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(SCREAMING_SNAKE_CASE_ ) else: lowercase_ = logits.argmax(dim=1 ) lowercase_ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
409
import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class lowercase__( UpperCAmelCase , unittest.TestCase ): """simple docstring""" a :List[Any] = RoFormerTokenizer a :Any = RoFormerTokenizerFast a :List[str] = True a :List[Any] = True def _lowercase ( self : str ) -> Any: super().setUp() def _lowercase ( self : Union[str, Any] , **SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> List[str]: return self.tokenizer_class.from_pretrained('''junnyu/roformer_chinese_base''' , **SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Tuple , **SCREAMING_SNAKE_CASE_ : Tuple ) -> Union[str, Any]: return self.rust_tokenizer_class.from_pretrained('''junnyu/roformer_chinese_base''' , **SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Union[str, Any] ) -> List[str]: lowercase_ = '''永和服装饰品有限公司,今天天气非常好''' lowercase_ = '''永和 服装 饰品 有限公司 , 今 天 天 气 非常 好''' return input_text, output_text def _lowercase ( self : Any ) -> Any: lowercase_ = self.get_tokenizer() lowercase_ , lowercase_ = self.get_chinese_input_output_texts() lowercase_ = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , output_text.split() ) lowercase_ = tokens + [tokenizer.unk_token] lowercase_ = [2_2_9_4_3, 2_1_3_3_2, 3_4_4_3_1, 4_5_9_0_4, 1_1_7, 3_0_6, 1_2_3_1, 1_2_3_1, 2_6_5_3, 3_3_9_9_4, 1_2_6_6, 1_0_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : int ) -> Dict: lowercase_ = self.get_rust_tokenizer() lowercase_ , lowercase_ = self.get_chinese_input_output_texts() lowercase_ = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , output_text.split() ) lowercase_ = tokens + [tokenizer.unk_token] lowercase_ = [2_2_9_4_3, 2_1_3_3_2, 3_4_4_3_1, 4_5_9_0_4, 1_1_7, 3_0_6, 1_2_3_1, 1_2_3_1, 2_6_5_3, 3_3_9_9_4, 1_2_6_6, 1_0_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Tuple ) -> Union[str, Any]: pass def _lowercase ( self : Dict ) -> Optional[int]: pass def _lowercase ( self : Tuple ) -> str: pass
409
1
"""simple docstring""" from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCamelCase : def __init__( self ,__UpperCamelCase ,__UpperCamelCase=13 ,__UpperCamelCase=30 ,__UpperCamelCase=2 ,__UpperCamelCase=3 ,__UpperCamelCase=True ,__UpperCamelCase=True ,__UpperCamelCase=32 ,__UpperCamelCase=2 ,__UpperCamelCase=4 ,__UpperCamelCase=37 ,__UpperCamelCase="gelu" ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.1 ,__UpperCamelCase=10 ,__UpperCamelCase=0.02 ,__UpperCamelCase=3 ,__UpperCamelCase=0.6 ,__UpperCamelCase=None ,) -> Union[str, Any]: '''simple docstring''' lowercase_ : List[str] = parent lowercase_ : List[str] = batch_size lowercase_ : Optional[int] = image_size lowercase_ : List[Any] = patch_size lowercase_ : Union[str, Any] = num_channels lowercase_ : Any = is_training lowercase_ : List[str] = use_labels lowercase_ : Optional[Any] = hidden_size lowercase_ : int = num_hidden_layers lowercase_ : List[str] = num_attention_heads lowercase_ : Tuple = intermediate_size lowercase_ : Tuple = hidden_act lowercase_ : Dict = hidden_dropout_prob lowercase_ : str = attention_probs_dropout_prob lowercase_ : Any = type_sequence_label_size lowercase_ : str = initializer_range lowercase_ : int = mask_ratio lowercase_ : int = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) lowercase_ : Optional[int] = (image_size // patch_size) ** 2 lowercase_ : Union[str, Any] = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ : List[Any] = None if self.use_labels: lowercase_ : Optional[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowercase_ : Tuple = self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' return ViTMAEConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,decoder_hidden_size=self.hidden_size ,decoder_num_hidden_layers=self.num_hidden_layers ,decoder_num_attention_heads=self.num_attention_heads ,decoder_intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=__UpperCamelCase ,initializer_range=self.initializer_range ,mask_ratio=self.mask_ratio ,) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> List[Any]: '''simple docstring''' lowercase_ : List[Any] = TFViTMAEModel(config=__UpperCamelCase ) lowercase_ : Optional[Any] = model(__UpperCamelCase ,training=__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ : Tuple = TFViTMAEForPreTraining(__UpperCamelCase ) lowercase_ : Tuple = model(__UpperCamelCase ,training=__UpperCamelCase ) # expected sequence length = num_patches lowercase_ : Union[str, Any] = (self.image_size // self.patch_size) ** 2 lowercase_ : Union[str, Any] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) # test greyscale images lowercase_ : Optional[int] = 1 lowercase_ : Optional[int] = TFViTMAEForPreTraining(__UpperCamelCase ) lowercase_ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ : List[Any] = model(__UpperCamelCase ,training=__UpperCamelCase ) lowercase_ : Dict = self.patch_size**2 self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : List[str] = self.prepare_config_and_inputs() (lowercase_) : Optional[Any] = config_and_inputs lowercase_ : Optional[int] = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): lowercase = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () lowercase = {"feature-extraction": TFViTMAEModel} if is_tf_available() else {} lowercase = False lowercase = False lowercase = False lowercase = False def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : Any = TFViTMAEModelTester(self ) lowercase_ : List[str] = ConfigTester(self ,config_class=__UpperCamelCase ,has_text_modality=__UpperCamelCase ,hidden_size=37 ) def _UpperCAmelCase ( self ) -> str: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='ViTMAE does not use inputs_embeds' ) def _UpperCAmelCase ( self ) -> int: '''simple docstring''' pass def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : int = model_class(__UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() ,(tf.keras.layers.Layer) ) lowercase_ : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCamelCase ,tf.keras.layers.Layer ) ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : List[str] = model_class(__UpperCamelCase ) lowercase_ : str = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ : Tuple = [*signature.parameters.keys()] lowercase_ : Optional[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' np.random.seed(2 ) lowercase_ : int = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ : List[Any] = int((config.image_size // config.patch_size) ** 2 ) lowercase_ : str = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowercase_ : Any = model_class(__UpperCamelCase ) lowercase_ : List[str] = self._prepare_for_class(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : int = model(__UpperCamelCase ,noise=__UpperCamelCase ) lowercase_ : List[Any] = copy.deepcopy(self._prepare_for_class(__UpperCamelCase ,__UpperCamelCase ) ) lowercase_ : List[str] = model(**__UpperCamelCase ,noise=__UpperCamelCase ) lowercase_ : str = outputs_dict[0].numpy() lowercase_ : Tuple = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) ,1e-6 ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' np.random.seed(2 ) lowercase_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ : Tuple = int((config.image_size // config.patch_size) ** 2 ) lowercase_ : List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(__UpperCamelCase ): lowercase_ : Any = {} for k, v in inputs_dict.items(): if tf.is_tensor(__UpperCamelCase ): lowercase_ : Any = v.numpy() else: lowercase_ : Optional[int] = np.array(__UpperCamelCase ) return inputs_np_dict for model_class in self.all_model_classes: lowercase_ : Optional[int] = model_class(__UpperCamelCase ) lowercase_ : List[str] = self._prepare_for_class(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : Any = prepare_numpy_arrays(__UpperCamelCase ) lowercase_ : Tuple = model(__UpperCamelCase ,noise=__UpperCamelCase ) lowercase_ : Tuple = model(**__UpperCamelCase ,noise=__UpperCamelCase ) self.assert_outputs_same(__UpperCamelCase ,__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Optional[Any]: '''simple docstring''' np.random.seed(2 ) lowercase_ : Optional[int] = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) lowercase_ : Tuple = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowercase_ : Tuple = tf.constant(__UpperCamelCase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument lowercase_ : Optional[int] = tf_noise super().check_pt_tf_models(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' np.random.seed(2 ) lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ : int = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(__UpperCamelCase ) if module_member_name.endswith('MainLayer' ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len('MainLayer' )] == model_class.__name__[: -len('Model' )] for module_member in (getattr(__UpperCamelCase ,__UpperCamelCase ),) if isinstance(__UpperCamelCase ,__UpperCamelCase ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(__UpperCamelCase ,'_keras_serializable' ,__UpperCamelCase ) } lowercase_ : List[str] = int((config.image_size // config.patch_size) ** 2 ) lowercase_ : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowercase_ : List[str] = tf.convert_to_tensor(__UpperCamelCase ) inputs_dict.update({'noise': noise} ) for main_layer_class in tf_main_layer_classes: lowercase_ : Optional[int] = main_layer_class(__UpperCamelCase ) lowercase_ : str = { name: tf.keras.Input(tensor.shape[1:] ,dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } lowercase_ : Optional[int] = tf.keras.Model(__UpperCamelCase ,outputs=main_layer(__UpperCamelCase ) ) lowercase_ : List[str] = model(__UpperCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase_ : List[Any] = os.path.join(__UpperCamelCase ,'keras_model.h5' ) model.save(__UpperCamelCase ) lowercase_ : Optional[int] = tf.keras.models.load_model( __UpperCamelCase ,custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(__UpperCamelCase ,tf.keras.Model ) lowercase_ : Any = model(__UpperCamelCase ) self.assert_outputs_same(__UpperCamelCase ,__UpperCamelCase ) @slow def _UpperCAmelCase ( self ) -> int: '''simple docstring''' np.random.seed(2 ) lowercase_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ : Dict = int((config.image_size // config.patch_size) ** 2 ) lowercase_ : Dict = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowercase_ : Any = model_class(__UpperCamelCase ) lowercase_ : Dict = self._prepare_for_class(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : str = model(__UpperCamelCase ,noise=__UpperCamelCase ) if model_class.__name__ == "TFViTMAEModel": lowercase_ : Tuple = outputs.last_hidden_state.numpy() lowercase_ : Dict = 0 else: lowercase_ : List[Any] = outputs.logits.numpy() lowercase_ : Tuple = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__UpperCamelCase ,saved_model=__UpperCamelCase ) lowercase_ : Union[str, Any] = model_class.from_pretrained(__UpperCamelCase ) lowercase_ : Dict = model(__UpperCamelCase ,noise=__UpperCamelCase ) if model_class.__name__ == "TFViTMAEModel": lowercase_ : Tuple = after_outputs["last_hidden_state"].numpy() lowercase_ : List[Any] = 0 else: lowercase_ : int = after_outputs["logits"].numpy() lowercase_ : str = 0 lowercase_ : List[str] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__UpperCamelCase ,1e-5 ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' np.random.seed(2 ) lowercase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ : Union[str, Any] = int((config.image_size // config.patch_size) ** 2 ) lowercase_ : str = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowercase_ : Tuple = model_class(__UpperCamelCase ) lowercase_ : List[Any] = self._prepare_for_class(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : Any = model(__UpperCamelCase ,noise=__UpperCamelCase ) lowercase_ : Union[str, Any] = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(__UpperCamelCase ) lowercase_ : Any = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config lowercase_ : Optional[int] = model_class.from_config(model.config ) lowercase_ : Any = new_model(__UpperCamelCase ) # Build model new_model.set_weights(model.get_weights() ) lowercase_ : str = new_model(__UpperCamelCase ,noise=__UpperCamelCase ) self.assert_outputs_same(__UpperCamelCase ,__UpperCamelCase ) @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load' ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' pass @slow def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : str = TFViTMAEModel.from_pretrained('google/vit-base-patch16-224' ) self.assertIsNotNone(__UpperCamelCase ) def lowercase__( ): lowercase_ : Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class UpperCamelCase ( unittest.TestCase ): @cached_property def _UpperCAmelCase ( self ) -> str: '''simple docstring''' return ViTImageProcessor.from_pretrained('facebook/vit-mae-base' ) if is_vision_available() else None @slow def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' np.random.seed(2 ) lowercase_ : Any = TFViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base' ) lowercase_ : Tuple = self.default_image_processor lowercase_ : List[str] = prepare_img() lowercase_ : Optional[Any] = image_processor(images=__UpperCamelCase ,return_tensors='tf' ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) lowercase_ : List[Any] = ViTMAEConfig() lowercase_ : str = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) lowercase_ : Tuple = np.random.uniform(size=(1, num_patches) ) # forward pass lowercase_ : str = model(**__UpperCamelCase ,noise=__UpperCamelCase ) # verify the logits lowercase_ : Union[str, Any] = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape ,__UpperCamelCase ) lowercase_ : List[str] = tf.convert_to_tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] ,__UpperCamelCase ,atol=1e-4 )
425
_snake_case : Optional[int] = {"a": ["c", "b"], "b": ["d", "e"], "c": [], "d": [], "e": []} _snake_case : Dict = ["a", "b", "c", "d", "e"] def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __snake_case : List[str] = start # add current to visited visited.append(__lowerCamelCase ) __snake_case : List[Any] = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: __snake_case : Tuple = topological_sort(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # if all neighbors visited add current to sort sort.append(__lowerCamelCase ) # if all vertices haven't been visited select a new one to visit if len(__lowerCamelCase ) != len(__lowerCamelCase ): for vertice in vertices: if vertice not in visited: __snake_case : int = topological_sort(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # return sort return sort if __name__ == "__main__": _snake_case : List[Any] = topological_sort("a", [], []) print(sort)
81
0
"""simple docstring""" from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": UpperCAmelCase = input("""Enter image url: """).strip() print(F'''Downloading image from {url} ...''') UpperCAmelCase = BeautifulSoup(requests.get(url).content, """html.parser""") # The image URL is in the content field of the first meta tag with property og:image UpperCAmelCase = soup.find("""meta""", {"""property""": """og:image"""})["""content"""] UpperCAmelCase = requests.get(image_url).content UpperCAmelCase = F'''{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg''' with open(file_name, """wb""") as fp: fp.write(image_data) print(F'''Done. Image saved to disk as {file_name}.''')
713
"""simple docstring""" import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets UpperCAmelCase = """\ @inproceedings{lin-2004-rouge, title = \"{ROUGE}: A Package for Automatic Evaluation of Summaries\", author = \"Lin, Chin-Yew\", booktitle = \"Text Summarization Branches Out\", month = jul, year = \"2004\", address = \"Barcelona, Spain\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/W04-1013\", pages = \"74--81\", } """ UpperCAmelCase = """\ ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for evaluating automatic summarization and machine translation software in natural language processing. The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation. Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters. This metrics is a wrapper around Google Research reimplementation of ROUGE: https://github.com/google-research/google-research/tree/master/rouge """ UpperCAmelCase = """ Calculates average rouge scores for a list of hypotheses and references Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. rouge_types: A list of rouge types to calculate. Valid names: `\"rouge{n}\"` (e.g. `\"rouge1\"`, `\"rouge2\"`) where: {n} is the n-gram based scoring, `\"rougeL\"`: Longest common subsequence based scoring. `\"rougeLSum\"`: rougeLsum splits text using `\"\n\"`. See details in https://github.com/huggingface/datasets/issues/617 use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes. use_aggregator: Return aggregates if this is set to True Returns: rouge1: rouge_1 (precision, recall, f1), rouge2: rouge_2 (precision, recall, f1), rougeL: rouge_l (precision, recall, f1), rougeLsum: rouge_lsum (precision, recall, f1) Examples: >>> rouge = datasets.load_metric('rouge') >>> predictions = [\"hello there\", \"general kenobi\"] >>> references = [\"hello there\", \"general kenobi\"] >>> results = rouge.compute(predictions=predictions, references=references) >>> print(list(results.keys())) ['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] >>> print(results[\"rouge1\"]) AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0)) >>> print(results[\"rouge1\"].mid.fmeasure) 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class UpperCAmelCase_ ( datasets.Metric): def _UpperCamelCase ( self : List[Any] ) -> List[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/google-research/google-research/tree/master/rouge'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/ROUGE_(metric)''', '''https://github.com/google-research/google-research/tree/master/rouge''', ] , ) def _UpperCamelCase ( self : Optional[int] , __UpperCamelCase : Dict , __UpperCamelCase : Any , __UpperCamelCase : str=None , __UpperCamelCase : List[Any]=True , __UpperCamelCase : Dict=False ) -> str: if rouge_types is None: _UpperCamelCase = ['''rouge1''', '''rouge2''', '''rougeL''', '''rougeLsum'''] _UpperCamelCase = rouge_scorer.RougeScorer(rouge_types=__UpperCamelCase , use_stemmer=__UpperCamelCase ) if use_aggregator: _UpperCamelCase = scoring.BootstrapAggregator() else: _UpperCamelCase = [] for ref, pred in zip(__UpperCamelCase , __UpperCamelCase ): _UpperCamelCase = scorer.score(__UpperCamelCase , __UpperCamelCase ) if use_aggregator: aggregator.add_scores(__UpperCamelCase ) else: scores.append(__UpperCamelCase ) if use_aggregator: _UpperCamelCase = aggregator.aggregate() else: _UpperCamelCase = {} for key in scores[0]: _UpperCamelCase = [score[key] for score in scores] return result
342
0
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer A_ = logging.get_logger(__name__) A_ = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } A_ = { "vocab_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json" }, "merges_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt" }, "tokenizer_config_file": { "facebook/blenderbot_small-90M": ( "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json" ) }, } A_ = { "facebook/blenderbot_small-90M": 5_12, } class _snake_case ( _a ): _A : Union[str, Any] = VOCAB_FILES_NAMES _A : Any = PRETRAINED_VOCAB_FILES_MAP _A : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : Tuple = BlenderbotSmallTokenizer def __init__( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : List[Any]=None ,SCREAMING_SNAKE_CASE__ : List[Any]=None ,SCREAMING_SNAKE_CASE__ : int="<|endoftext|>" ,SCREAMING_SNAKE_CASE__ : Tuple="<|endoftext|>" ,SCREAMING_SNAKE_CASE__ : int="<|endoftext|>" ,SCREAMING_SNAKE_CASE__ : Any=False ,SCREAMING_SNAKE_CASE__ : Optional[Any]=True ,**SCREAMING_SNAKE_CASE__ : Optional[Any] ,): super().__init__( ByteLevelBPETokenizer( vocab=SCREAMING_SNAKE_CASE__ ,merges=SCREAMING_SNAKE_CASE__ ,add_prefix_space=SCREAMING_SNAKE_CASE__ ,trim_offsets=SCREAMING_SNAKE_CASE__ ,) ,bos_token=SCREAMING_SNAKE_CASE__ ,eos_token=SCREAMING_SNAKE_CASE__ ,unk_token=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ,) SCREAMING_SNAKE_CASE:Optional[Any] = add_prefix_space def __UpperCamelCase ( self : int ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : Dict=None ): SCREAMING_SNAKE_CASE:Optional[int] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __UpperCamelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : List[int] ,SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE:Dict = [self.sep_token_id] SCREAMING_SNAKE_CASE:List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
143
'''simple docstring''' def A_ ( snake_case = 1000 ): SCREAMING_SNAKE_CASE:Tuple = 2**power SCREAMING_SNAKE_CASE:Optional[int] = str(snake_case ) SCREAMING_SNAKE_CASE:int = list(snake_case ) SCREAMING_SNAKE_CASE:Optional[Any] = 0 for i in list_num: sum_of_num += int(snake_case ) return sum_of_num if __name__ == "__main__": A_ = int(input("Enter the power of 2: ").strip()) print("2 ^ ", power, " = ", 2**power) A_ = solution(power) print("Sum of the digits is: ", result)
143
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available UpperCAmelCase__ : Any = { 'configuration_longt5': ['LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LongT5Config', 'LongT5OnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : List[str] = [ 'LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST', 'LongT5EncoderModel', 'LongT5ForConditionalGeneration', 'LongT5Model', 'LongT5PreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Tuple = [ 'FlaxLongT5ForConditionalGeneration', 'FlaxLongT5Model', 'FlaxLongT5PreTrainedModel', ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys UpperCAmelCase__ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
416
import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase__ : Optional[int] = get_tests_dir('fixtures/spiece.model') @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( lowercase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : int = AlbertTokenizer SCREAMING_SNAKE_CASE_ : Dict = AlbertTokenizerFast SCREAMING_SNAKE_CASE_ : Optional[Any] = True SCREAMING_SNAKE_CASE_ : Tuple = True SCREAMING_SNAKE_CASE_ : int = True def a_ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _UpperCAmelCase : int = AlbertTokenizer(UpperCAmelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def a_ ( self : Union[str, Any] , UpperCAmelCase_ : List[str] ) -> Any: '''simple docstring''' _UpperCAmelCase : List[Any] = '''this is a test''' _UpperCAmelCase : Union[str, Any] = '''this is a test''' return input_text, output_text def a_ ( self : Tuple ) -> Dict: '''simple docstring''' _UpperCAmelCase : Any = '''<pad>''' _UpperCAmelCase : int = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase_ ) , UpperCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase_ ) , UpperCAmelCase_ ) def a_ ( self : int ) -> Dict: '''simple docstring''' _UpperCAmelCase : Tuple = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''▁eloquent''' ) self.assertEqual(len(UpperCAmelCase_ ) , 30000 ) def a_ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 30000 ) def a_ ( self : Any ) -> List[Any]: '''simple docstring''' if not self.test_rust_tokenizer: return _UpperCAmelCase : List[Any] = self.get_tokenizer() _UpperCAmelCase : int = self.get_rust_tokenizer() _UpperCAmelCase : Dict = '''I was born in 92000, and this is falsé.''' _UpperCAmelCase : Tuple = tokenizer.tokenize(UpperCAmelCase_ ) _UpperCAmelCase : Tuple = rust_tokenizer.tokenize(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCAmelCase : Dict = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) _UpperCAmelCase : str = rust_tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = self.get_rust_tokenizer() _UpperCAmelCase : Any = tokenizer.encode(UpperCAmelCase_ ) _UpperCAmelCase : List[str] = rust_tokenizer.encode(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def a_ ( self : str ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Dict = AlbertTokenizer(UpperCAmelCase_ , keep_accents=UpperCAmelCase_ ) _UpperCAmelCase : Tuple = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(UpperCAmelCase_ , ['''▁this''', '''▁is''', '''▁a''', '''▁test'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , [48, 25, 21, 1289] ) _UpperCAmelCase : Union[str, Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( UpperCAmelCase_ , ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.'''] ) _UpperCAmelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , [31, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] ) _UpperCAmelCase : Tuple = tokenizer.convert_ids_to_tokens(UpperCAmelCase_ ) self.assertListEqual( UpperCAmelCase_ , ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.'''] , ) def a_ ( self : Any ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = AlbertTokenizer(UpperCAmelCase_ ) _UpperCAmelCase : Optional[int] = tokenizer.encode('''sequence builders''' ) _UpperCAmelCase : Optional[Any] = tokenizer.encode('''multi-sequence build''' ) _UpperCAmelCase : int = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ ) _UpperCAmelCase : Dict = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ , UpperCAmelCase_ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def a_ ( self : List[str] ) -> str: '''simple docstring''' _UpperCAmelCase : Optional[int] = {'''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''input_ids''': [[2, 21970, 13, 5, 6092, 167, 28, 7103, 2153, 673, 8, 7028, 12051, 18, 17, 7103, 2153, 673, 8, 3515, 18684, 8, 4461, 6, 1927, 297, 8, 12060, 2607, 18, 13, 5, 4461, 15, 10538, 38, 8, 135, 15, 822, 58, 15, 993, 10363, 15, 1460, 8005, 4461, 15, 993, 255, 2328, 9, 9, 9, 6, 26, 1112, 816, 3260, 13, 5, 103, 2377, 6, 17, 1112, 816, 2782, 13, 5, 103, 10641, 6, 29, 84, 2512, 2430, 782, 18684, 2761, 19, 808, 2430, 2556, 17, 855, 1480, 9477, 4091, 128, 11712, 15, 7103, 2153, 673, 17, 24883, 9990, 9, 3], [2, 11502, 25, 1006, 20, 782, 8, 11809, 855, 1732, 19393, 18667, 37, 367, 21018, 69, 1854, 34, 11860, 19124, 27, 156, 225, 17, 193, 4141, 19, 65, 9124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2231, 886, 2385, 17659, 84, 14, 16792, 1952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase_ , model_name='''albert-base-v2''' , revision='''6b6560eaf5ff2e250b00c50f380c5389a9c2d82e''' , )
416
1
from collections import deque from math import floor from random import random from time import time class UpperCAmelCase_ : """simple docstring""" def __init__( self ) -> Any: UpperCamelCase :Tuple = {} def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=1 ) -> str: if self.graph.get(SCREAMING_SNAKE_CASE_ ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: UpperCamelCase :Tuple = [[w, v]] if not self.graph.get(SCREAMING_SNAKE_CASE_ ): UpperCamelCase :Optional[int] = [] def UpperCAmelCase ( self ) -> Any: return list(self.graph ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: if self.graph.get(SCREAMING_SNAKE_CASE_ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_=-2 , SCREAMING_SNAKE_CASE_=-1 ) -> Optional[int]: if s == d: return [] UpperCamelCase :Union[str, Any] = [] UpperCamelCase :Optional[Any] = [] if s == -2: UpperCamelCase :Optional[int] = list(self.graph )[0] stack.append(SCREAMING_SNAKE_CASE_ ) visited.append(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Optional[Any] = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCamelCase :Dict = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(SCREAMING_SNAKE_CASE_ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) UpperCamelCase :Optional[int] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(SCREAMING_SNAKE_CASE_ ) != 0: UpperCamelCase :Tuple = stack[len(SCREAMING_SNAKE_CASE_ ) - 1] else: UpperCamelCase :Union[str, Any] = ss # check if se have reached the starting point if len(SCREAMING_SNAKE_CASE_ ) == 0: return visited def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_=-1 ) -> Any: if c == -1: UpperCamelCase :Optional[Any] = floor(random() * 1_0000 ) + 10 for i in range(SCREAMING_SNAKE_CASE_ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): UpperCamelCase :Any = floor(random() * c ) + 1 if n != i: self.add_pair(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 1 ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_=-2 ) -> List[Any]: UpperCamelCase :Tuple = deque() UpperCamelCase :List[str] = [] if s == -2: UpperCamelCase :Tuple = list(self.graph )[0] d.append(SCREAMING_SNAKE_CASE_ ) visited.append(SCREAMING_SNAKE_CASE_ ) while d: UpperCamelCase :Optional[Any] = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ ) -> Dict: UpperCamelCase :List[str] = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ ) -> str: return len(self.graph[u] ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_=-2 ) -> Dict: UpperCamelCase :Optional[Any] = [] UpperCamelCase :Dict = [] if s == -2: UpperCamelCase :int = list(self.graph )[0] stack.append(SCREAMING_SNAKE_CASE_ ) visited.append(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Optional[Any] = s UpperCamelCase :List[str] = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCamelCase :List[str] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) UpperCamelCase :List[Any] = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(SCREAMING_SNAKE_CASE_ ) != 0: UpperCamelCase :Union[str, Any] = stack[len(SCREAMING_SNAKE_CASE_ ) - 1] else: UpperCamelCase :Dict = ss # check if se have reached the starting point if len(SCREAMING_SNAKE_CASE_ ) == 0: return sorted_nodes def UpperCAmelCase ( self ) -> List[str]: UpperCamelCase :Optional[Any] = [] UpperCamelCase :Dict = [] UpperCamelCase :Dict = list(self.graph )[0] stack.append(SCREAMING_SNAKE_CASE_ ) visited.append(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Dict = -2 UpperCamelCase :List[Any] = [] UpperCamelCase :int = s UpperCamelCase :Dict = False UpperCamelCase :Union[str, Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCamelCase :str = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): UpperCamelCase :Optional[Any] = len(SCREAMING_SNAKE_CASE_ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) UpperCamelCase :int = node[1] break # check if all the children are visited if s == ss: stack.pop() UpperCamelCase :Optional[int] = True if len(SCREAMING_SNAKE_CASE_ ) != 0: UpperCamelCase :Optional[Any] = stack[len(SCREAMING_SNAKE_CASE_ ) - 1] else: UpperCamelCase :Union[str, Any] = False indirect_parents.append(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :str = s UpperCamelCase :int = ss # check if se have reached the starting point if len(SCREAMING_SNAKE_CASE_ ) == 0: return list(SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase :List[str] = [] UpperCamelCase :List[Any] = [] UpperCamelCase :Tuple = list(self.graph )[0] stack.append(SCREAMING_SNAKE_CASE_ ) visited.append(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Optional[Any] = -2 UpperCamelCase :Tuple = [] UpperCamelCase :int = s UpperCamelCase :str = False UpperCamelCase :List[Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCamelCase :str = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): UpperCamelCase :Union[str, Any] = len(SCREAMING_SNAKE_CASE_ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) UpperCamelCase :Union[str, Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() UpperCamelCase :Dict = True if len(SCREAMING_SNAKE_CASE_ ) != 0: UpperCamelCase :List[Any] = stack[len(SCREAMING_SNAKE_CASE_ ) - 1] else: UpperCamelCase :Optional[int] = False indirect_parents.append(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :int = s UpperCamelCase :Union[str, Any] = ss # check if se have reached the starting point if len(SCREAMING_SNAKE_CASE_ ) == 0: return False def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_=-2 , SCREAMING_SNAKE_CASE_=-1 ) -> Union[str, Any]: UpperCamelCase :Tuple = time() self.dfs(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Tuple = time() return end - begin def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_=-2 ) -> List[str]: UpperCamelCase :str = time() self.bfs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :str = time() return end - begin class UpperCAmelCase_ : """simple docstring""" def __init__( self ) -> int: UpperCamelCase :Optional[Any] = {} def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=1 ) -> str: if self.graph.get(SCREAMING_SNAKE_CASE_ ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist UpperCamelCase :Any = [[w, v]] # add the other way if self.graph.get(SCREAMING_SNAKE_CASE_ ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist UpperCamelCase :Optional[int] = [[w, u]] def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Dict: if self.graph.get(SCREAMING_SNAKE_CASE_ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(SCREAMING_SNAKE_CASE_ ) # the other way round if self.graph.get(SCREAMING_SNAKE_CASE_ ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_=-2 , SCREAMING_SNAKE_CASE_=-1 ) -> str: if s == d: return [] UpperCamelCase :List[str] = [] UpperCamelCase :int = [] if s == -2: UpperCamelCase :Tuple = list(self.graph )[0] stack.append(SCREAMING_SNAKE_CASE_ ) visited.append(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Any = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCamelCase :str = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(SCREAMING_SNAKE_CASE_ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) UpperCamelCase :Optional[int] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(SCREAMING_SNAKE_CASE_ ) != 0: UpperCamelCase :List[Any] = stack[len(SCREAMING_SNAKE_CASE_ ) - 1] else: UpperCamelCase :Dict = ss # check if se have reached the starting point if len(SCREAMING_SNAKE_CASE_ ) == 0: return visited def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_=-1 ) -> Any: if c == -1: UpperCamelCase :Dict = floor(random() * 1_0000 ) + 10 for i in range(SCREAMING_SNAKE_CASE_ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): UpperCamelCase :List[str] = floor(random() * c ) + 1 if n != i: self.add_pair(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 1 ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_=-2 ) -> List[Any]: UpperCamelCase :str = deque() UpperCamelCase :Dict = [] if s == -2: UpperCamelCase :Optional[int] = list(self.graph )[0] d.append(SCREAMING_SNAKE_CASE_ ) visited.append(SCREAMING_SNAKE_CASE_ ) while d: UpperCamelCase :str = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ ) -> str: return len(self.graph[u] ) def UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase :str = [] UpperCamelCase :Union[str, Any] = [] UpperCamelCase :List[str] = list(self.graph )[0] stack.append(SCREAMING_SNAKE_CASE_ ) visited.append(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :List[str] = -2 UpperCamelCase :Optional[Any] = [] UpperCamelCase :List[str] = s UpperCamelCase :int = False UpperCamelCase :List[Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCamelCase :Dict = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): UpperCamelCase :List[str] = len(SCREAMING_SNAKE_CASE_ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) UpperCamelCase :Dict = node[1] break # check if all the children are visited if s == ss: stack.pop() UpperCamelCase :str = True if len(SCREAMING_SNAKE_CASE_ ) != 0: UpperCamelCase :Optional[int] = stack[len(SCREAMING_SNAKE_CASE_ ) - 1] else: UpperCamelCase :Dict = False indirect_parents.append(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :str = s UpperCamelCase :str = ss # check if se have reached the starting point if len(SCREAMING_SNAKE_CASE_ ) == 0: return list(SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> int: UpperCamelCase :Union[str, Any] = [] UpperCamelCase :int = [] UpperCamelCase :Tuple = list(self.graph )[0] stack.append(SCREAMING_SNAKE_CASE_ ) visited.append(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Union[str, Any] = -2 UpperCamelCase :List[str] = [] UpperCamelCase :str = s UpperCamelCase :Optional[int] = False UpperCamelCase :Union[str, Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCamelCase :List[str] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): UpperCamelCase :int = len(SCREAMING_SNAKE_CASE_ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) UpperCamelCase :str = node[1] break # check if all the children are visited if s == ss: stack.pop() UpperCamelCase :List[str] = True if len(SCREAMING_SNAKE_CASE_ ) != 0: UpperCamelCase :str = stack[len(SCREAMING_SNAKE_CASE_ ) - 1] else: UpperCamelCase :Dict = False indirect_parents.append(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Tuple = s UpperCamelCase :int = ss # check if se have reached the starting point if len(SCREAMING_SNAKE_CASE_ ) == 0: return False def UpperCAmelCase ( self ) -> Dict: return list(self.graph ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_=-2 , SCREAMING_SNAKE_CASE_=-1 ) -> Optional[Any]: UpperCamelCase :int = time() self.dfs(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase :List[str] = time() return end - begin def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_=-2 ) -> int: UpperCamelCase :Union[str, Any] = time() self.bfs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Union[str, Any] = time() return end - begin
658
import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging SCREAMING_SNAKE_CASE__ : Optional[int] = logging.get_logger(__name__) class __lowerCAmelCase ( _UpperCamelCase ): _UpperCamelCase : Tuple = ["""input_values""", """attention_mask"""] def __init__( self , snake_case = 1 , snake_case = 16_000 , snake_case = 0.0 , snake_case = False , snake_case = 80 , snake_case = 16 , snake_case = 64 , snake_case = "hann_window" , snake_case = 1.0 , snake_case = 80 , snake_case = 7_600 , snake_case = 1E-10 , snake_case = 2 , snake_case = True , **snake_case , ) -> Dict: """simple docstring""" super().__init__(feature_size=snake_case , sampling_rate=snake_case , padding_value=snake_case , **snake_case ) a__ : Any = do_normalize a__ : List[str] = return_attention_mask a__ : List[Any] = num_mel_bins a__ : List[str] = hop_length a__ : int = win_length a__ : List[Any] = win_function a__ : List[str] = frame_signal_scale a__ : List[Any] = fmin a__ : Optional[Any] = fmax a__ : Union[str, Any] = mel_floor a__ : Union[str, Any] = reduction_factor a__ : List[str] = win_length * sampling_rate // 1_000 a__ : List[Any] = hop_length * sampling_rate // 1_000 a__ : List[Any] = optimal_fft_length(self.sample_size ) a__ : Dict = (self.n_fft // 2) + 1 a__ : str = window_function(window_length=self.sample_size , name=self.win_function , periodic=snake_case ) a__ : Tuple = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm="slaney" , mel_scale="slaney" , ) if frame_signal_scale != 1.0: warnings.warn( "The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers" , snake_case , ) if reduction_factor != 2.0: warnings.warn( "The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers" , snake_case , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def _snake_case ( snake_case , snake_case , snake_case = 0.0 ) -> List[np.ndarray]: """simple docstring""" if attention_mask is not None: a__ : Tuple = np.array(snake_case , np.intaa ) a__ : List[str] = [] for vector, length in zip(snake_case , attention_mask.sum(-1 ) ): a__ : List[Any] = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: a__ : List[str] = padding_value normed_input_values.append(snake_case ) else: a__ : Any = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def _snake_case ( self , snake_case , ) -> np.ndarray: """simple docstring""" a__ : str = spectrogram( snake_case , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel="log10" , ) return log_mel_spec.T def __call__( self , snake_case = None , snake_case = None , snake_case = False , snake_case = None , snake_case = False , snake_case = None , snake_case = None , snake_case = None , snake_case = None , **snake_case , ) -> BatchFeature: """simple docstring""" if audio is None and audio_target is None: raise ValueError("You must provide either `audio` or `audio_target` values." ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" F""" {self.sampling_rate}. Please make sure that the provided audio input was sampled with""" F""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( "It is strongly recommended to pass the ``sampling_rate`` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) if audio is not None: a__ : Dict = self._process_audio( snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , **snake_case , ) else: a__ : Optional[int] = None if audio_target is not None: a__ : List[Any] = self._process_audio( snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , **snake_case , ) if inputs is None: return inputs_target else: a__ : Tuple = inputs_target["input_values"] a__ : Tuple = inputs_target.get("attention_mask" ) if decoder_attention_mask is not None: a__ : Tuple = decoder_attention_mask return inputs def _snake_case ( self , snake_case , snake_case = False , snake_case = False , snake_case = None , snake_case = False , snake_case = None , snake_case = None , snake_case = None , **snake_case , ) -> BatchFeature: """simple docstring""" a__ : Optional[int] = isinstance(snake_case , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) a__ : List[Any] = is_batched_numpy or ( isinstance(snake_case , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: a__ : int = [np.asarray(snake_case , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(snake_case , np.ndarray ): a__ : Any = np.asarray(snake_case , dtype=np.floataa ) elif isinstance(snake_case , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): a__ : List[Any] = speech.astype(np.floataa ) # always return batch if not is_batched: a__ : Union[str, Any] = [speech] # needed to make pad() work on spectrogram inputs a__ : Optional[Any] = self.feature_size # convert into correct format for padding if is_target: a__ : List[str] = [self._extract_mel_features(snake_case ) for waveform in speech] a__ : Optional[Any] = BatchFeature({"input_values": features} ) a__ : str = self.num_mel_bins else: a__ : int = BatchFeature({"input_values": speech} ) a__ : int = self.pad( snake_case , padding=snake_case , max_length=snake_case , truncation=snake_case , pad_to_multiple_of=snake_case , return_attention_mask=snake_case , **snake_case , ) a__ : Any = feature_size_hack # convert input values to correct format a__ : Tuple = padded_inputs["input_values"] if not isinstance(input_values[0] , np.ndarray ): a__ : int = [np.asarray(snake_case , dtype=np.floataa ) for array in input_values] elif ( not isinstance(snake_case , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): a__ : Union[str, Any] = [array.astype(np.floataa ) for array in input_values] elif isinstance(snake_case , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): a__ : Optional[int] = input_values.astype(np.floataa ) # convert attention_mask to correct format a__ : Optional[int] = padded_inputs.get("attention_mask" ) if attention_mask is not None: a__ : Tuple = [np.asarray(snake_case , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: a__ : Any = ( attention_mask if self._get_padding_strategies(snake_case , max_length=snake_case ) is not PaddingStrategy.DO_NOT_PAD else None ) a__ : Optional[Any] = self.zero_mean_unit_var_norm( padded_inputs["input_values"] , attention_mask=snake_case , padding_value=self.padding_value ) if return_tensors is not None: a__ : int = padded_inputs.convert_to_tensors(snake_case ) return padded_inputs def _snake_case ( self ) -> Dict[str, Any]: """simple docstring""" a__ : int = super().to_dict() # Don't serialize these as they are derived from the other properties. a__ : str = ["window", "mel_filters", "sample_size", "sample_stride", "n_fft", "n_freqs"] for name in names: if name in output: del output[name] return output
112
0
def snake_case ( snake_case__ :list , snake_case__ :list , snake_case__ :int , snake_case__ :int , snake_case__ :int) -> int: if index == number_of_items: return 0 _A = 0 _A = 0 _A = knapsack(snake_case__ , snake_case__ , snake_case__ , snake_case__ , index + 1) if weights[index] <= max_weight: _A = values[index] + knapsack( snake_case__ , snake_case__ , snake_case__ , max_weight - weights[index] , index + 1) return max(snake_case__ , snake_case__) if __name__ == "__main__": import doctest doctest.testmod()
83
import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class a : """simple docstring""" def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=sys.maxsize ) -> str: _A = """bilinear""" _A = max_size _A = short_edge_length def __call__( self , lowerCAmelCase_ ) -> Optional[Any]: _A = [] for img in imgs: _A , _A = img.shape[:2] # later: provide list and randomly choose index for resize _A = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img _A = size * 1.0 / min(lowerCAmelCase_ , lowerCAmelCase_ ) if h < w: _A , _A = size, scale * w else: _A , _A = scale * h, size if max(lowerCAmelCase_ , lowerCAmelCase_ ) > self.max_size: _A = self.max_size * 1.0 / max(lowerCAmelCase_ , lowerCAmelCase_ ) _A = newh * scale _A = neww * scale _A = int(neww + 0.5 ) _A = int(newh + 0.5 ) if img.dtype == np.uinta: _A = Image.fromarray(lowerCAmelCase_ ) _A = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) _A = np.asarray(lowerCAmelCase_ ) else: _A = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw _A = nn.functional.interpolate( lowerCAmelCase_ , (newh, neww) , mode=self.interp_method , align_corners=lowerCAmelCase_ ).squeeze(0 ) img_augs.append(lowerCAmelCase_ ) return img_augs class a : """simple docstring""" def __init__( self , lowerCAmelCase_ ) -> List[Any]: _A = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) _A = cfg.INPUT.FORMAT _A = cfg.SIZE_DIVISIBILITY _A = cfg.PAD_VALUE _A = cfg.INPUT.MAX_SIZE_TEST _A = cfg.MODEL.DEVICE _A = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) _A = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) _A = lambda lowerCAmelCase_ : (x - self.pixel_mean) / self.pixel_std def UpperCAmelCase ( self , lowerCAmelCase_ ) -> Tuple: _A = tuple(max(lowerCAmelCase_ ) for s in zip(*[img.shape for img in images] ) ) _A = [im.shape[-2:] for im in images] _A = [ nn.functional.pad( lowerCAmelCase_ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(lowerCAmelCase_ , lowerCAmelCase_ ) ] return torch.stack(lowerCAmelCase_ ), torch.tensor(lowerCAmelCase_ ) def __call__( self , lowerCAmelCase_ , lowerCAmelCase_=False ) -> int: with torch.no_grad(): if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _A = [images] if single_image: assert len(lowerCAmelCase_ ) == 1 for i in range(len(lowerCAmelCase_ ) ): if isinstance(images[i] , torch.Tensor ): images.insert(lowerCAmelCase_ , images.pop(lowerCAmelCase_ ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( lowerCAmelCase_ , torch.as_tensor(img_tensorize(images.pop(lowerCAmelCase_ ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge _A = torch.tensor([im.shape[:2] for im in images] ) _A = self.aug(lowerCAmelCase_ ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic _A = [self.normalizer(lowerCAmelCase_ ) for x in images] # now pad them to do the following operations _A , _A = self.pad(lowerCAmelCase_ ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad _A = torch.true_divide(lowerCAmelCase_ , lowerCAmelCase_ ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def snake_case ( snake_case__ :Optional[int] , snake_case__ :Optional[Any]) -> Tuple: boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def snake_case ( snake_case__ :Optional[int] , snake_case__ :Tuple[int, int]) -> Optional[Any]: assert torch.isfinite(snake_case__).all(), "Box tensor contains infinite or NaN!" _A , _A = box_size tensor[:, 0].clamp_(min=0 , max=snake_case__) tensor[:, 1].clamp_(min=0 , max=snake_case__) tensor[:, 2].clamp_(min=0 , max=snake_case__) tensor[:, 3].clamp_(min=0 , max=snake_case__)
83
1
'''simple docstring''' from __future__ import annotations def lowercase__( _UpperCamelCase : int | float | str , _UpperCamelCase : int | float | str )-> list[str]: """simple docstring""" if nth_term == "": return [""] _UpperCamelCase = int(_UpperCamelCase ) _UpperCamelCase = int(_UpperCamelCase ) _UpperCamelCase = [] for temp in range(int(_UpperCamelCase ) ): series.append(f"1 / {pow(temp + 1 , int(_UpperCamelCase ) )}" if series else "1" ) return series if __name__ == "__main__": import doctest doctest.testmod() snake_case_ : int = int(input('''Enter the last number (nth term) of the P-Series''')) snake_case_ : Union[str, Any] = int(input('''Enter the power for P-Series''')) print('''Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p''') print(p_series(nth_term, power))
138
'''simple docstring''' import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput snake_case_ : Optional[int] = '''scheduler_config.json''' class A_ ( lowerCAmelCase_ ): '''simple docstring''' _lowerCAmelCase = 1 _lowerCAmelCase = 2 _lowerCAmelCase = 3 _lowerCAmelCase = 4 _lowerCAmelCase = 5 @dataclass class A_ ( lowerCAmelCase_ ): '''simple docstring''' _lowerCAmelCase = 42 class A_ : '''simple docstring''' _lowerCAmelCase = SCHEDULER_CONFIG_NAME _lowerCAmelCase = ["""dtype"""] _lowerCAmelCase = [] _lowerCAmelCase = True @classmethod def a ( cls , A_ = None , A_ = None , A_=False , **A_ , ): _UpperCamelCase , _UpperCamelCase = cls.load_config( pretrained_model_name_or_path=A_ , subfolder=A_ , return_unused_kwargs=A_ , **A_ , ) _UpperCamelCase , _UpperCamelCase = cls.from_config(A_ , return_unused_kwargs=A_ , **A_ ) if hasattr(A_ , "create_state" ) and getattr(A_ , "has_state" , A_ ): _UpperCamelCase = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def a ( self , A_ , A_ = False , **A_ ): self.save_config(save_directory=A_ , push_to_hub=A_ , **A_ ) @property def a ( self ): return self._get_compatibles() @classmethod def a ( cls ): _UpperCamelCase = list(set([cls.__name__] + cls._compatibles ) ) _UpperCamelCase = importlib.import_module(__name__.split("." )[0] ) _UpperCamelCase = [ getattr(A_ , A_ ) for c in compatible_classes_str if hasattr(A_ , A_ ) ] return compatible_classes def lowercase__( _UpperCamelCase : jnp.ndarray , _UpperCamelCase : Tuple[int] )-> jnp.ndarray: """simple docstring""" assert len(_UpperCamelCase ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(_UpperCamelCase ) - x.ndim) ) , _UpperCamelCase ) def lowercase__( _UpperCamelCase : int , _UpperCamelCase : Tuple=0.999 , _UpperCamelCase : Any=jnp.floataa )-> jnp.ndarray: """simple docstring""" def alpha_bar(_UpperCamelCase : Any ): return math.cos((time_step + 0.008) / 1.008 * math.pi / 2 ) ** 2 _UpperCamelCase = [] for i in range(_UpperCamelCase ): _UpperCamelCase = i / num_diffusion_timesteps _UpperCamelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(_UpperCamelCase ) / alpha_bar(_UpperCamelCase ) , _UpperCamelCase ) ) return jnp.array(_UpperCamelCase , dtype=_UpperCamelCase ) @flax.struct.dataclass class A_ : '''simple docstring''' _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 @classmethod def a ( cls , A_ ): _UpperCamelCase = scheduler.config if config.trained_betas is not None: _UpperCamelCase = jnp.asarray(config.trained_betas , dtype=scheduler.dtype ) elif config.beta_schedule == "linear": _UpperCamelCase = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _UpperCamelCase = ( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _UpperCamelCase = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype ) else: raise NotImplementedError( F"beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}" ) _UpperCamelCase = 1.0 - betas _UpperCamelCase = jnp.cumprod(A_ , axis=0 ) return cls( alphas=A_ , betas=A_ , alphas_cumprod=A_ , ) def lowercase__( _UpperCamelCase : CommonSchedulerState , _UpperCamelCase : jnp.ndarray , _UpperCamelCase : jnp.ndarray , _UpperCamelCase : jnp.ndarray )-> List[Any]: """simple docstring""" _UpperCamelCase = state.alphas_cumprod _UpperCamelCase = alphas_cumprod[timesteps] ** 0.5 _UpperCamelCase = sqrt_alpha_prod.flatten() _UpperCamelCase = broadcast_to_shape_from_left(_UpperCamelCase , original_samples.shape ) _UpperCamelCase = (1 - alphas_cumprod[timesteps]) ** 0.5 _UpperCamelCase = sqrt_one_minus_alpha_prod.flatten() _UpperCamelCase = broadcast_to_shape_from_left(_UpperCamelCase , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def lowercase__( _UpperCamelCase : CommonSchedulerState , _UpperCamelCase : jnp.ndarray , _UpperCamelCase : jnp.ndarray , _UpperCamelCase : jnp.ndarray )-> str: """simple docstring""" _UpperCamelCase , _UpperCamelCase = get_sqrt_alpha_prod(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) _UpperCamelCase = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def lowercase__( _UpperCamelCase : CommonSchedulerState , _UpperCamelCase : jnp.ndarray , _UpperCamelCase : jnp.ndarray , _UpperCamelCase : jnp.ndarray )-> Any: """simple docstring""" _UpperCamelCase , _UpperCamelCase = get_sqrt_alpha_prod(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) _UpperCamelCase = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
138
1
import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def lowercase ( ) -> None: print("""Making key files...""" ) make_key_files("""rsa""" , 1_024 ) print("""Key files generation successful.""" ) def lowercase ( SCREAMING_SNAKE_CASE__ : int ) -> tuple[tuple[int, int], tuple[int, int]]: print("""Generating prime p...""" ) _snake_case : Optional[int] = rabinMiller.generate_large_prime(SCREAMING_SNAKE_CASE__ ) print("""Generating prime q...""" ) _snake_case : List[str] = rabinMiller.generate_large_prime(SCREAMING_SNAKE_CASE__ ) _snake_case : Optional[Any] = p * q print("""Generating e that is relatively prime to (p - 1) * (q - 1)...""" ) while True: _snake_case : str = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(SCREAMING_SNAKE_CASE__ , (p - 1) * (q - 1) ) == 1: break print("""Calculating d that is mod inverse of e...""" ) _snake_case : Any = cryptoMath.find_mod_inverse(SCREAMING_SNAKE_CASE__ , (p - 1) * (q - 1) ) _snake_case : Tuple = (n, e) _snake_case : Optional[Any] = (n, d) return (public_key, private_key) def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int ) -> None: if os.path.exists(F'''{name}_pubkey.txt''' ) or os.path.exists(F'''{name}_privkey.txt''' ): print("""\nWARNING:""" ) print( F'''"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n''' """Use a different name or delete these files and re-run this program.""" ) sys.exit() _snake_case , _snake_case : int = generate_key(SCREAMING_SNAKE_CASE__ ) print(F'''\nWriting public key to file {name}_pubkey.txt...''' ) with open(F'''{name}_pubkey.txt''' , """w""" ) as out_file: out_file.write(F'''{key_size},{public_key[0]},{public_key[1]}''' ) print(F'''Writing private key to file {name}_privkey.txt...''' ) with open(F'''{name}_privkey.txt''' , """w""" ) as out_file: out_file.write(F'''{key_size},{private_key[0]},{private_key[1]}''' ) if __name__ == "__main__": main()
198
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[str] = ["""image_processor""", """tokenizer"""] snake_case_ : str = """ChineseCLIPImageProcessor""" snake_case_ : Tuple = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self : Any , lowerCAmelCase : Dict=None , lowerCAmelCase : List[Any]=None , **lowerCAmelCase : str) -> Optional[Any]: """simple docstring""" _snake_case : List[str] = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , lowerCAmelCase , ) _snake_case : Tuple = kwargs.pop("""feature_extractor""") _snake_case : Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""") if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""") super().__init__(lowerCAmelCase , lowerCAmelCase) _snake_case : Optional[int] = self.image_processor def __call__( self : List[Any] , lowerCAmelCase : str=None , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : List[Any]=None , **lowerCAmelCase : Optional[int]) -> Optional[Any]: """simple docstring""" if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""") if text is not None: _snake_case : Dict = self.tokenizer(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase) if images is not None: _snake_case : Any = self.image_processor(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase) if text is not None and images is not None: _snake_case : Optional[Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase) , tensor_type=lowerCAmelCase) def UpperCamelCase_ ( self : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : Any) -> Optional[Any]: """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase , **lowerCAmelCase) def UpperCamelCase_ ( self : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : int) -> str: """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase , **lowerCAmelCase) @property def UpperCamelCase_ ( self : Union[str, Any]) -> List[str]: """simple docstring""" _snake_case : Dict = self.tokenizer.model_input_names _snake_case : int = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) @property def UpperCamelCase_ ( self : str) -> Tuple: """simple docstring""" warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , lowerCAmelCase , ) return self.image_processor_class
198
1
'''simple docstring''' class lowerCAmelCase : def __init__( self ) -> Any: '''simple docstring''' __snake_case = {} def lowerCAmelCase ( self ) -> None: '''simple docstring''' print(self.vertex ) for i in self.vertex: print(__SCREAMING_SNAKE_CASE , ''' -> ''' , ''' -> '''.join([str(__SCREAMING_SNAKE_CASE ) for j in self.vertex[i]] ) ) def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> None: '''simple docstring''' if from_vertex in self.vertex: self.vertex[from_vertex].append(__SCREAMING_SNAKE_CASE ) else: # else make a new vertex __snake_case = [to_vertex] def lowerCAmelCase ( self ) -> None: '''simple docstring''' __snake_case = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> None: '''simple docstring''' __snake_case = True print(__SCREAMING_SNAKE_CASE , end=''' ''' ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCAmelCase_ : List[Any] = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print('''DFS:''') g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
24
'''simple docstring''' from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def _UpperCamelCase (_lowerCamelCase : Union[str, Any] , _lowerCamelCase : List[Any] )-> Optional[Any]: '''simple docstring''' __snake_case = [] for part_id in partition_order: __snake_case = df.where(f'''SPARK_PARTITION_ID() = {part_id}''' ).collect() for row_idx, row in enumerate(_lowerCamelCase ): expected_row_ids_and_row_dicts.append((f'''{part_id}_{row_idx}''', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def _UpperCamelCase ()-> Any: '''simple docstring''' __snake_case = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() __snake_case = spark.range(1_00 ).repartition(1 ) __snake_case = Spark(_lowerCamelCase ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def _UpperCamelCase ()-> Tuple: '''simple docstring''' __snake_case = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() __snake_case = spark.range(10 ).repartition(2 ) __snake_case = [1, 0] __snake_case = _generate_iterable_examples(_lowerCamelCase , _lowerCamelCase ) # Reverse the partitions. __snake_case = _get_expected_row_ids_and_row_dicts_for_partition_order(_lowerCamelCase , _lowerCamelCase ) for i, (row_id, row_dict) in enumerate(generate_fn() ): __snake_case , __snake_case = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _UpperCamelCase ()-> int: '''simple docstring''' __snake_case = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() __snake_case = spark.range(10 ).repartition(1 ) __snake_case = SparkExamplesIterable(_lowerCamelCase ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(_lowerCamelCase ): assert row_id == f'''0_{i}''' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def _UpperCamelCase ()-> Union[str, Any]: '''simple docstring''' __snake_case = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() __snake_case = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch('''numpy.random.Generator''' ) as generator_mock: __snake_case = lambda _lowerCamelCase : x.reverse() __snake_case = _get_expected_row_ids_and_row_dicts_for_partition_order(_lowerCamelCase , [2, 1, 0] ) __snake_case = SparkExamplesIterable(_lowerCamelCase ).shuffle_data_sources(_lowerCamelCase ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(_lowerCamelCase ): __snake_case , __snake_case = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _UpperCamelCase ()-> Tuple: '''simple docstring''' __snake_case = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() __snake_case = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 __snake_case = SparkExamplesIterable(_lowerCamelCase ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 __snake_case = _get_expected_row_ids_and_row_dicts_for_partition_order(_lowerCamelCase , [0, 2] ) for i, (row_id, row_dict) in enumerate(_lowerCamelCase ): __snake_case , __snake_case = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 __snake_case = SparkExamplesIterable(_lowerCamelCase ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 __snake_case = _get_expected_row_ids_and_row_dicts_for_partition_order(_lowerCamelCase , [1, 3] ) for i, (row_id, row_dict) in enumerate(_lowerCamelCase ): __snake_case , __snake_case = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _UpperCamelCase ()-> Optional[int]: '''simple docstring''' __snake_case = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() __snake_case = spark.range(1_00 ).repartition(1 ) __snake_case = Spark(_lowerCamelCase ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 1_00
24
1
import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class _lowercase ( unittest.TestCase ): '''simple docstring''' @slow def __magic_name__( self :Tuple ) -> Any: __SCREAMING_SNAKE_CASE : int = AutoImageProcessor.from_pretrained('''microsoft/dit-base-finetuned-rvlcdip''' ) __SCREAMING_SNAKE_CASE : Optional[int] = AutoModelForImageClassification.from_pretrained('''microsoft/dit-base-finetuned-rvlcdip''' ) model.to(lowerCAmelCase__ ) from datasets import load_dataset __SCREAMING_SNAKE_CASE : int = load_dataset('''nielsr/rvlcdip-demo''' ) __SCREAMING_SNAKE_CASE : List[Any] = dataset['''train'''][0]['''image'''].convert('''RGB''' ) __SCREAMING_SNAKE_CASE : Optional[int] = image_processor(lowerCAmelCase__ , return_tensors='''pt''' ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): __SCREAMING_SNAKE_CASE : Tuple = model(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = outputs.logits __SCREAMING_SNAKE_CASE : List[str] = torch.Size((1, 16) ) self.assertEqual(logits.shape , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = torch.tensor( [-0.4158, -0.4092, -0.4347] , device=lowerCAmelCase__ , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , lowerCAmelCase__ , atol=1E-4 ) )
701
def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): if index == r: for j in range(lowercase__ ): print(data[j] , end=''' ''' ) print(''' ''' ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location __SCREAMING_SNAKE_CASE : int = arr[i] combination_util(lowercase__ , lowercase__ , lowercase__ , index + 1 , lowercase__ , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ ): # A temporary array to store all combination one by one __SCREAMING_SNAKE_CASE : Dict = [0] * r # Print all combination using temporary array 'data[]' combination_util(lowercase__ , lowercase__ , lowercase__ , 0 , lowercase__ , 0 ) if __name__ == "__main__": # Driver code to check the function above __lowerCAmelCase : Tuple =[1_0, 2_0, 3_0, 4_0, 5_0] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
260
0
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def SCREAMING_SNAKE_CASE_ ( _snake_case :Optional[Any] , _snake_case :Optional[int]=False ) -> Optional[int]: _A = OmegaConf.load(a__ ) if display: print(yaml.dump(OmegaConf.to_container(a__ ) ) ) return config def SCREAMING_SNAKE_CASE_ ( _snake_case :List[str] , _snake_case :str=None , _snake_case :str=None ) -> Union[str, Any]: if conf_path is None: _A = './model_checkpoints/vqgan_only.yaml' _A = load_config(a__ , display=a__ ) _A = VQModel(**config.model.params ) if ckpt_path is None: _A = './model_checkpoints/vqgan_only.pt' _A = torch.load(a__ , map_location=a__ ) if ".ckpt" in ckpt_path: _A = sd['state_dict'] model.load_state_dict(a__ , strict=a__ ) model.to(a__ ) del sd return model def SCREAMING_SNAKE_CASE_ ( _snake_case :Any , _snake_case :Any ) -> int: _A = model.encode(a__ ) print(F'''VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}''' ) _A = model.decode(a__ ) return xrec def SCREAMING_SNAKE_CASE_ ( _snake_case :Union[str, Any] , _snake_case :Union[str, Any]=False ) -> int: _A = string.rsplit('''.''' , 1 ) if reload: _A = importlib.import_module(a__ ) importlib.reload(a__ ) return getattr(importlib.import_module(a__ , package=a__ ) , cls ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Optional[int] ) -> Dict: if "target" not in config: raise KeyError('''Expected key `target` to instantiate.''' ) return get_obj_from_str(config['''target'''] )(**config.get('''params''' , {} ) ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Union[str, Any] , _snake_case :List[str] , _snake_case :List[Any]=True , _snake_case :List[str]=True ) -> Any: _A = instantiate_from_config(a__ ) if sd is not None: model.load_state_dict(a__ ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def SCREAMING_SNAKE_CASE_ ( _snake_case :Optional[int] , _snake_case :Dict , _snake_case :Optional[int] , _snake_case :Optional[Any] ) -> Tuple: if ckpt: _A = torch.load(a__ , map_location='''cpu''' ) _A = pl_sd['global_step'] print(F'''loaded model from global step {global_step}.''' ) else: _A = {'state_dict': None} _A = None _A = load_model_from_config(config.model , pl_sd['''state_dict'''] , gpu=a__ , eval_mode=a__ )['model'] return model, global_step
2
'''simple docstring''' # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers SCREAMING_SNAKE_CASE_ = "3" print("Python version:", sys.version) print("transformers version:", transformers.__version__) try: import torch print("Torch version:", torch.__version__) print("Cuda available:", torch.cuda.is_available()) print("Cuda version:", torch.version.cuda) print("CuDNN version:", torch.backends.cudnn.version()) print("Number of GPUs available:", torch.cuda.device_count()) print("NCCL version:", torch.cuda.nccl.version()) except ImportError: print("Torch version:", None) try: import deepspeed print("DeepSpeed version:", deepspeed.__version__) except ImportError: print("DeepSpeed version:", None) try: import tensorflow as tf print("TensorFlow version:", tf.__version__) print("TF GPUs available:", bool(tf.config.list_physical_devices("GPU"))) print("Number of TF GPUs available:", len(tf.config.list_physical_devices("GPU"))) except ImportError: print("TensorFlow version:", None)
517
0
from __future__ import annotations from statistics import mean def __UpperCamelCase ( snake_case , snake_case , snake_case ) -> list[int]: '''simple docstring''' __A = [0] * no_of_processes __A = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(snake_case ): __A = burst_time[i] __A = [] __A = 0 __A = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: __A = [] __A = -1 for i in range(snake_case ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(snake_case ) if len(snake_case ) > 0: __A = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: __A = i total_time += burst_time[target_process] completed += 1 __A = 0 __A = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def __UpperCamelCase ( snake_case , snake_case , snake_case ) -> list[int]: '''simple docstring''' __A = [0] * no_of_processes for i in range(snake_case ): __A = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("""[TEST CASE 01]""") _UpperCamelCase : Tuple = 4 _UpperCamelCase : str = [2, 5, 3, 7] _UpperCamelCase : int = [0, 0, 0, 0] _UpperCamelCase : Optional[int] = calculate_waitingtime(arrival_time, burst_time, no_of_processes) _UpperCamelCase : Optional[int] = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("""PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time""") for i, process_id in enumerate(list(range(1, 5))): print( F"""{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t""" F"""{waiting_time[i]}\t\t\t\t{turn_around_time[i]}""" ) print(F"""\nAverage waiting time = {mean(waiting_time):.5f}""") print(F"""Average turnaround time = {mean(turn_around_time):.5f}""")
341
_UpperCamelCase : Optional[int] = 8.31_44_62 # Unit - J mol-1 K-1 def __UpperCamelCase ( snake_case , snake_case , snake_case ) -> float: '''simple docstring''' if moles < 0 or kelvin < 0 or volume < 0: raise ValueError('''Invalid inputs. Enter positive value.''' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def __UpperCamelCase ( snake_case , snake_case , snake_case ) -> float: '''simple docstring''' if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError('''Invalid inputs. Enter positive value.''' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
341
1
def _A ( lowerCAmelCase_ : int , lowerCAmelCase_ : int ): """simple docstring""" return "\n".join( F'{number} * {i} = {number * i}' for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
61
from __future__ import annotations def _A ( lowerCAmelCase_ : list , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int ): """simple docstring""" lowerCAmelCase__ = [] lowerCAmelCase__ , lowerCAmelCase__ = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) lowerCAmelCase__ = result + left + right return input_list def _A ( lowerCAmelCase_ : list ): """simple docstring""" if len(lowerCAmelCase_ ) <= 1: return input_list lowerCAmelCase__ = list(lowerCAmelCase_ ) # iteration for two-way merging lowerCAmelCase__ = 2 while p <= len(lowerCAmelCase_ ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(lowerCAmelCase_ ) , lowerCAmelCase_ ): lowerCAmelCase__ = i lowerCAmelCase__ = i + p - 1 lowerCAmelCase__ = (low + high + 1) // 2 lowerCAmelCase__ = merge(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # final merge of last two parts if p * 2 >= len(lowerCAmelCase_ ): lowerCAmelCase__ = i lowerCAmelCase__ = merge(lowerCAmelCase_ , 0 , lowerCAmelCase_ , len(lowerCAmelCase_ ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": UpperCamelCase = input('Enter numbers separated by a comma:\n').strip() if user_input == "": UpperCamelCase = [] else: UpperCamelCase = [int(item.strip()) for item in user_input.split(',')] print(iter_merge_sort(unsorted))
61
1
import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class lowerCamelCase ( unittest.TestCase ): """simple docstring""" lowerCAmelCase_ = JukeboxTokenizer lowerCAmelCase_ = { """artist""": """Zac Brown Band""", """genres""": """Country""", """lyrics""": """I met a traveller from an antique land, Who said \"Two vast and trunkless legs of stone Stand in the desert. . . . Near them, on the sand, Half sunk a shattered visage lies, whose frown, And wrinkled lip, and sneer of cold command, Tell that its sculptor well those passions read Which yet survive, stamped on these lifeless things, The hand that mocked them, and the heart that fed; And on the pedestal, these words appear: My name is Ozymandias, King of Kings; Look on my Works, ye Mighty, and despair! Nothing beside remains. Round the decay Of that colossal Wreck, boundless and bare The lone and level sands stretch far away """, } @require_torch def lowercase_ ( self ): import torch A_ = JukeboxTokenizer.from_pretrained("openai/jukebox-1b-lyrics" ) A_ = tokenizer(**self.metas )["input_ids"] # fmt: off A_ = [ torch.tensor([[ 0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def lowercase_ ( self ): import torch A_ = JukeboxTokenizer.from_pretrained("openai/jukebox-5b-lyrics" ) A_ = tokenizer(**self.metas )["input_ids"] # fmt: off A_ = [ torch.tensor([[ 0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
703
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def lowerCAmelCase ( snake_case__ : int = 3 )-> qiskit.result.counts.Counts: if isinstance(snake_case__ , snake_case__ ): raise TypeError("number of qubits must be a integer." ) if number_of_qubits <= 0: raise ValueError("number of qubits must be > 0." ) if math.floor(snake_case__ ) != number_of_qubits: raise ValueError("number of qubits must be exact integer." ) if number_of_qubits > 10: raise ValueError("number of qubits too large to simulate(>10)." ) A_ = QuantumRegister(snake_case__ , "qr" ) A_ = ClassicalRegister(snake_case__ , "cr" ) A_ = QuantumCircuit(snake_case__ , snake_case__ ) A_ = number_of_qubits for i in range(snake_case__ ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(snake_case__ ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , snake_case__ , snake_case__ ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(snake_case__ , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(snake_case__ , snake_case__ ) # simulate with 10000 shots A_ = Aer.get_backend("qasm_simulator" ) A_ = execute(snake_case__ , snake_case__ , shots=10000 ) return job.result().get_counts(snake_case__ ) if __name__ == "__main__": print( f"""Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}""" )
608
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging A_ = logging.get_logger(__name__) A_ = "▁" A_ = {"vocab_file": "sentencepiece.bpe.model"} A_ = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model" ), } } A_ = { "facebook/nllb-200-distilled-600M": 1024, } # fmt: off A_ = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class __lowerCAmelCase ( UpperCAmelCase ): '''simple docstring''' __lowerCamelCase : Tuple = VOCAB_FILES_NAMES __lowerCamelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Union[str, Any] = ["input_ids", "attention_mask"] __lowerCamelCase : List[int] = [] __lowerCamelCase : List[int] = [] def __init__( self: int , UpperCamelCase_: Dict , UpperCamelCase_: Any="<s>" , UpperCamelCase_: Dict="</s>" , UpperCamelCase_: Tuple="</s>" , UpperCamelCase_: int="<s>" , UpperCamelCase_: Union[str, Any]="<unk>" , UpperCamelCase_: Union[str, Any]="<pad>" , UpperCamelCase_: int="<mask>" , UpperCamelCase_: str=None , UpperCamelCase_: Any=None , UpperCamelCase_: int=None , UpperCamelCase_: Optional[Dict[str, Any]] = None , UpperCamelCase_: str=None , UpperCamelCase_: Optional[Any]=False , **UpperCamelCase_: Optional[Any] , ): # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase_ =AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token UpperCamelCase_ ={} if sp_model_kwargs is None else sp_model_kwargs UpperCamelCase_ =legacy_behaviour super().__init__( bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , src_lang=UpperCamelCase_ , tgt_lang=UpperCamelCase_ , additional_special_tokens=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=UpperCamelCase_ , **UpperCamelCase_ , ) UpperCamelCase_ =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCamelCase_ ) ) UpperCamelCase_ =vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token UpperCamelCase_ ={"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCamelCase_ =1 UpperCamelCase_ =len(self.sp_model ) UpperCamelCase_ ={ code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(UpperCamelCase_ ) } UpperCamelCase_ ={v: k for k, v in self.lang_code_to_id.items()} UpperCamelCase_ =len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) UpperCamelCase_ ={v: k for k, v in self.fairseq_tokens_to_ids.items()} UpperCamelCase_ =list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) UpperCamelCase_ =src_lang if src_lang is not None else "eng_Latn" UpperCamelCase_ =self.lang_code_to_id[self._src_lang] UpperCamelCase_ =tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self: List[Any] ): UpperCamelCase_ =self.__dict__.copy() UpperCamelCase_ =None UpperCamelCase_ =self.sp_model.serialized_model_proto() return state def __setstate__( self: int , UpperCamelCase_: List[str] ): UpperCamelCase_ =d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCamelCase_ ={} UpperCamelCase_ =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def UpperCamelCase__ ( self: List[Any] ): return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def UpperCamelCase__ ( self: Any ): return self._src_lang @src_lang.setter def UpperCamelCase__ ( self: Optional[Any] , UpperCamelCase_: str ): UpperCamelCase_ =new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCamelCase__ ( self: Optional[Any] , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None , UpperCamelCase_: bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) UpperCamelCase_ =[1] * len(self.prefix_tokens ) UpperCamelCase_ =[1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(UpperCamelCase_ )) + suffix_ones return prefix_ones + ([0] * len(UpperCamelCase_ )) + ([0] * len(UpperCamelCase_ )) + suffix_ones def UpperCamelCase__ ( self: Optional[int] , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCamelCase__ ( self: Union[str, Any] , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ): UpperCamelCase_ =[self.sep_token_id] UpperCamelCase_ =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase__ ( self: Optional[int] , UpperCamelCase_: Tuple , UpperCamelCase_: str , UpperCamelCase_: Optional[str] , UpperCamelCase_: Optional[str] , **UpperCamelCase_: int ): if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) UpperCamelCase_ =src_lang UpperCamelCase_ =self(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ ) UpperCamelCase_ =self.convert_tokens_to_ids(UpperCamelCase_ ) UpperCamelCase_ =tgt_lang_id return inputs def UpperCamelCase__ ( self: Optional[Any] ): UpperCamelCase_ ={self.convert_ids_to_tokens(UpperCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase__ ( self: Dict , UpperCamelCase_: str ): return self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_ ) def UpperCamelCase__ ( self: Optional[Any] , UpperCamelCase_: Dict ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCamelCase_ =self.sp_model.PieceToId(UpperCamelCase_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCamelCase__ ( self: List[str] , UpperCamelCase_: str ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCamelCase__ ( self: List[Any] , UpperCamelCase_: str ): UpperCamelCase_ ="".join(UpperCamelCase_ ).replace(UpperCamelCase_ , " " ).strip() return out_string def UpperCamelCase__ ( self: Optional[int] , UpperCamelCase_: str , UpperCamelCase_: Optional[str] = None ): if not os.path.isdir(UpperCamelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCamelCase_ =os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase_ , "wb" ) as fi: UpperCamelCase_ =self.sp_model.serialized_model_proto() fi.write(UpperCamelCase_ ) return (out_vocab_file,) def UpperCamelCase__ ( self: Union[str, Any] , UpperCamelCase_: List[str] , UpperCamelCase_: str = "eng_Latn" , UpperCamelCase_: Optional[List[str]] = None , UpperCamelCase_: str = "fra_Latn" , **UpperCamelCase_: Dict , ): UpperCamelCase_ =src_lang UpperCamelCase_ =tgt_lang return super().prepare_seqaseq_batch(UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) def UpperCamelCase__ ( self: int ): return self.set_src_lang_special_tokens(self.src_lang ) def UpperCamelCase__ ( self: List[Any] ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCamelCase__ ( self: List[Any] , UpperCamelCase_: Dict ): UpperCamelCase_ =self.lang_code_to_id[src_lang] if self.legacy_behaviour: UpperCamelCase_ =[] UpperCamelCase_ =[self.eos_token_id, self.cur_lang_code] else: UpperCamelCase_ =[self.cur_lang_code] UpperCamelCase_ =[self.eos_token_id] def UpperCamelCase__ ( self: Dict , UpperCamelCase_: str ): UpperCamelCase_ =self.lang_code_to_id[lang] if self.legacy_behaviour: UpperCamelCase_ =[] UpperCamelCase_ =[self.eos_token_id, self.cur_lang_code] else: UpperCamelCase_ =[self.cur_lang_code] UpperCamelCase_ =[self.eos_token_id]
391
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging A_ = logging.get_logger(__name__) A_ = "▁" A_ = {"vocab_file": "sentencepiece.bpe.model"} A_ = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model" ), } } A_ = { "facebook/nllb-200-distilled-600M": 1024, } # fmt: off A_ = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class __lowerCAmelCase ( UpperCAmelCase ): '''simple docstring''' __lowerCamelCase : Tuple = VOCAB_FILES_NAMES __lowerCamelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Union[str, Any] = ["input_ids", "attention_mask"] __lowerCamelCase : List[int] = [] __lowerCamelCase : List[int] = [] def __init__( self: int , UpperCamelCase_: Dict , UpperCamelCase_: Any="<s>" , UpperCamelCase_: Dict="</s>" , UpperCamelCase_: Tuple="</s>" , UpperCamelCase_: int="<s>" , UpperCamelCase_: Union[str, Any]="<unk>" , UpperCamelCase_: Union[str, Any]="<pad>" , UpperCamelCase_: int="<mask>" , UpperCamelCase_: str=None , UpperCamelCase_: Any=None , UpperCamelCase_: int=None , UpperCamelCase_: Optional[Dict[str, Any]] = None , UpperCamelCase_: str=None , UpperCamelCase_: Optional[Any]=False , **UpperCamelCase_: Optional[Any] , ): # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase_ =AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token UpperCamelCase_ ={} if sp_model_kwargs is None else sp_model_kwargs UpperCamelCase_ =legacy_behaviour super().__init__( bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , src_lang=UpperCamelCase_ , tgt_lang=UpperCamelCase_ , additional_special_tokens=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=UpperCamelCase_ , **UpperCamelCase_ , ) UpperCamelCase_ =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCamelCase_ ) ) UpperCamelCase_ =vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token UpperCamelCase_ ={"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCamelCase_ =1 UpperCamelCase_ =len(self.sp_model ) UpperCamelCase_ ={ code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(UpperCamelCase_ ) } UpperCamelCase_ ={v: k for k, v in self.lang_code_to_id.items()} UpperCamelCase_ =len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) UpperCamelCase_ ={v: k for k, v in self.fairseq_tokens_to_ids.items()} UpperCamelCase_ =list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) UpperCamelCase_ =src_lang if src_lang is not None else "eng_Latn" UpperCamelCase_ =self.lang_code_to_id[self._src_lang] UpperCamelCase_ =tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self: List[Any] ): UpperCamelCase_ =self.__dict__.copy() UpperCamelCase_ =None UpperCamelCase_ =self.sp_model.serialized_model_proto() return state def __setstate__( self: int , UpperCamelCase_: List[str] ): UpperCamelCase_ =d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCamelCase_ ={} UpperCamelCase_ =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def UpperCamelCase__ ( self: List[Any] ): return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def UpperCamelCase__ ( self: Any ): return self._src_lang @src_lang.setter def UpperCamelCase__ ( self: Optional[Any] , UpperCamelCase_: str ): UpperCamelCase_ =new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCamelCase__ ( self: Optional[Any] , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None , UpperCamelCase_: bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) UpperCamelCase_ =[1] * len(self.prefix_tokens ) UpperCamelCase_ =[1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(UpperCamelCase_ )) + suffix_ones return prefix_ones + ([0] * len(UpperCamelCase_ )) + ([0] * len(UpperCamelCase_ )) + suffix_ones def UpperCamelCase__ ( self: Optional[int] , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCamelCase__ ( self: Union[str, Any] , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ): UpperCamelCase_ =[self.sep_token_id] UpperCamelCase_ =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase__ ( self: Optional[int] , UpperCamelCase_: Tuple , UpperCamelCase_: str , UpperCamelCase_: Optional[str] , UpperCamelCase_: Optional[str] , **UpperCamelCase_: int ): if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) UpperCamelCase_ =src_lang UpperCamelCase_ =self(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ ) UpperCamelCase_ =self.convert_tokens_to_ids(UpperCamelCase_ ) UpperCamelCase_ =tgt_lang_id return inputs def UpperCamelCase__ ( self: Optional[Any] ): UpperCamelCase_ ={self.convert_ids_to_tokens(UpperCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase__ ( self: Dict , UpperCamelCase_: str ): return self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_ ) def UpperCamelCase__ ( self: Optional[Any] , UpperCamelCase_: Dict ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCamelCase_ =self.sp_model.PieceToId(UpperCamelCase_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCamelCase__ ( self: List[str] , UpperCamelCase_: str ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCamelCase__ ( self: List[Any] , UpperCamelCase_: str ): UpperCamelCase_ ="".join(UpperCamelCase_ ).replace(UpperCamelCase_ , " " ).strip() return out_string def UpperCamelCase__ ( self: Optional[int] , UpperCamelCase_: str , UpperCamelCase_: Optional[str] = None ): if not os.path.isdir(UpperCamelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCamelCase_ =os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase_ , "wb" ) as fi: UpperCamelCase_ =self.sp_model.serialized_model_proto() fi.write(UpperCamelCase_ ) return (out_vocab_file,) def UpperCamelCase__ ( self: Union[str, Any] , UpperCamelCase_: List[str] , UpperCamelCase_: str = "eng_Latn" , UpperCamelCase_: Optional[List[str]] = None , UpperCamelCase_: str = "fra_Latn" , **UpperCamelCase_: Dict , ): UpperCamelCase_ =src_lang UpperCamelCase_ =tgt_lang return super().prepare_seqaseq_batch(UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) def UpperCamelCase__ ( self: int ): return self.set_src_lang_special_tokens(self.src_lang ) def UpperCamelCase__ ( self: List[Any] ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCamelCase__ ( self: List[Any] , UpperCamelCase_: Dict ): UpperCamelCase_ =self.lang_code_to_id[src_lang] if self.legacy_behaviour: UpperCamelCase_ =[] UpperCamelCase_ =[self.eos_token_id, self.cur_lang_code] else: UpperCamelCase_ =[self.cur_lang_code] UpperCamelCase_ =[self.eos_token_id] def UpperCamelCase__ ( self: Dict , UpperCamelCase_: str ): UpperCamelCase_ =self.lang_code_to_id[lang] if self.legacy_behaviour: UpperCamelCase_ =[] UpperCamelCase_ =[self.eos_token_id, self.cur_lang_code] else: UpperCamelCase_ =[self.cur_lang_code] UpperCamelCase_ =[self.eos_token_id]
391
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {'ctrl': 'https://huggingface.co/ctrl/resolve/main/config.json'} class SCREAMING_SNAKE_CASE_ ( a__ ): """simple docstring""" __snake_case : Dict = "ctrl" __snake_case : str = ["past_key_values"] __snake_case : Optional[int] = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self :int , __lowercase :List[Any]=24_6534 , __lowercase :List[Any]=256 , __lowercase :int=1280 , __lowercase :Union[str, Any]=8192 , __lowercase :Optional[Any]=48 , __lowercase :Union[str, Any]=16 , __lowercase :int=0.1 , __lowercase :List[str]=0.1 , __lowercase :Optional[Any]=1e-6 , __lowercase :Tuple=0.02 , __lowercase :Optional[int]=True , **__lowercase :str , ): __lowerCamelCase : Tuple =vocab_size __lowerCamelCase : Any =n_positions __lowerCamelCase : Optional[int] =n_embd __lowerCamelCase : Optional[Any] =n_layer __lowerCamelCase : str =n_head __lowerCamelCase : Any =dff __lowerCamelCase : Union[str, Any] =resid_pdrop __lowerCamelCase : Union[str, Any] =embd_pdrop __lowerCamelCase : Tuple =layer_norm_epsilon __lowerCamelCase : str =initializer_range __lowerCamelCase : int =use_cache super().__init__(**lowerCamelCase_ )
710
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE_ ( snake_case__ , unittest.TestCase ): """simple docstring""" __snake_case : Union[str, Any] = LDMTextToImagePipeline __snake_case : Optional[Any] = TEXT_TO_IMAGE_PARAMS - { """negative_prompt""", """negative_prompt_embeds""", """cross_attention_kwargs""", """prompt_embeds""", } __snake_case : str = PipelineTesterMixin.required_optional_params - { """num_images_per_prompt""", """callback""", """callback_steps""", } __snake_case : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS __snake_case : Optional[Any] = False def __lowercase ( self :List[str] ): torch.manual_seed(0 ) __lowerCamelCase : str =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) __lowerCamelCase : str =DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=__lowercase , set_alpha_to_one=__lowercase , ) torch.manual_seed(0 ) __lowerCamelCase : Optional[int] =AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=('''DownEncoderBlock2D''', '''DownEncoderBlock2D''') , up_block_types=('''UpDecoderBlock2D''', '''UpDecoderBlock2D''') , latent_channels=4 , ) torch.manual_seed(0 ) __lowerCamelCase : Any =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) __lowerCamelCase : Optional[int] =CLIPTextModel(__lowercase ) __lowerCamelCase : Dict =CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __lowerCamelCase : Optional[int] ={ '''unet''': unet, '''scheduler''': scheduler, '''vqvae''': vae, '''bert''': text_encoder, '''tokenizer''': tokenizer, } return components def __lowercase ( self :int , __lowercase :Optional[int] , __lowercase :Optional[Any]=0 ): if str(__lowercase ).startswith('''mps''' ): __lowerCamelCase : Any =torch.manual_seed(__lowercase ) else: __lowerCamelCase : str =torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __lowerCamelCase : Any ={ '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def __lowercase ( self :List[str] ): __lowerCamelCase : List[str] ='''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCamelCase : str =self.get_dummy_components() __lowerCamelCase : Optional[int] =LDMTextToImagePipeline(**__lowercase ) pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCamelCase : str =self.get_dummy_inputs(__lowercase ) __lowerCamelCase : List[Any] =pipe(**__lowercase ).images __lowerCamelCase : Optional[int] =image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) __lowerCamelCase : Optional[Any] =np.array([0.6101, 0.6156, 0.5622, 0.4895, 0.6661, 0.3804, 0.5748, 0.6136, 0.5014] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self :Any ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowercase ( self :int , __lowercase :Any , __lowercase :Optional[int]=torch.floataa , __lowercase :Dict=0 ): __lowerCamelCase : List[str] =torch.manual_seed(__lowercase ) __lowerCamelCase : List[str] =np.random.RandomState(__lowercase ).standard_normal((1, 4, 32, 32) ) __lowerCamelCase : List[str] =torch.from_numpy(__lowercase ).to(device=__lowercase , dtype=__lowercase ) __lowerCamelCase : Any ={ '''prompt''': '''A painting of a squirrel eating a burger''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def __lowercase ( self :Tuple ): __lowerCamelCase : int =LDMTextToImagePipeline.from_pretrained('''CompVis/ldm-text2im-large-256''' ).to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCamelCase : Tuple =self.get_inputs(__lowercase ) __lowerCamelCase : Optional[Any] =pipe(**__lowercase ).images __lowerCamelCase : Union[str, Any] =image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) __lowerCamelCase : Union[str, Any] =np.array([0.51825, 0.52850, 0.52543, 0.54258, 0.52304, 0.52569, 0.54363, 0.55276, 0.56878] ) __lowerCamelCase : Dict =np.abs(expected_slice - image_slice ).max() assert max_diff < 1e-3 @nightly @require_torch_gpu class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self :Any ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowercase ( self :Dict , __lowercase :Optional[Any] , __lowercase :int=torch.floataa , __lowercase :Dict=0 ): __lowerCamelCase : Any =torch.manual_seed(__lowercase ) __lowerCamelCase : Dict =np.random.RandomState(__lowercase ).standard_normal((1, 4, 32, 32) ) __lowerCamelCase : str =torch.from_numpy(__lowercase ).to(device=__lowercase , dtype=__lowercase ) __lowerCamelCase : Dict ={ '''prompt''': '''A painting of a squirrel eating a burger''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 50, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def __lowercase ( self :Tuple ): __lowerCamelCase : Optional[int] =LDMTextToImagePipeline.from_pretrained('''CompVis/ldm-text2im-large-256''' ).to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCamelCase : List[Any] =self.get_inputs(__lowercase ) __lowerCamelCase : Optional[int] =pipe(**__lowercase ).images[0] __lowerCamelCase : Optional[int] =load_numpy( '''https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy''' ) __lowerCamelCase : Dict =np.abs(expected_image - image ).max() assert max_diff < 1e-3
363
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase__ ( self ): _A = AutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' , return_dict=snake_case_ ).to(snake_case_ ) _A = AutoTokenizer.from_pretrained('google/mt5-small' ) _A = tokenizer('Hello there' , return_tensors='pt' ).input_ids _A = tokenizer('Hi I am' , return_tensors='pt' ).input_ids _A = model(input_ids.to(snake_case_ ) , labels=labels.to(snake_case_ ) ).loss _A = -(labels.shape[-1] * loss.item()) _A = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
27
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _A = filter(lambda _SCREAMING_SNAKE_CASE : p.requires_grad , model.parameters() ) _A = sum([np.prod(p.size() ) for p in model_parameters] ) return params __A : Union[str, Any] = logging.getLogger(__name__) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" if metric == "rouge2": _A = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": _A = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": _A = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": _A = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( F"seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this" ' function.' ) _A = ModelCheckpoint( dirpath=_SCREAMING_SNAKE_CASE , filename=_SCREAMING_SNAKE_CASE , monitor=F"val_{metric}" , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" return EarlyStopping( monitor=F"val_{metric}" , mode='min' if 'loss' in metric else 'max' , patience=_SCREAMING_SNAKE_CASE , verbose=_SCREAMING_SNAKE_CASE , ) class lowerCamelCase( pl.Callback ): '''simple docstring''' def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): _A = {F"lr_group_{i}": param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(snake_case_ ) @rank_zero_only def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=True ): logger.info(F"***** {type_path} results at step {trainer.global_step:05d} *****" ) _A = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results _A = Path(pl_module.hparams.output_dir ) if type_path == "test": _A = od / 'test_results.txt' _A = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _A = od / F"{type_path}_results/{trainer.global_step:05d}.txt" _A = od / F"{type_path}_generations/{trainer.global_step:05d}.txt" results_file.parent.mkdir(exist_ok=snake_case_ ) generations_file.parent.mkdir(exist_ok=snake_case_ ) with open(snake_case_ , 'a+' ) as writer: for key in sorted(snake_case_ ): if key in ["log", "progress_bar", "preds"]: continue _A = metrics[key] if isinstance(snake_case_ , torch.Tensor ): _A = val.item() _A = F"{key}: {val:.6f}\n" writer.write(snake_case_ ) if not save_generations: return if "preds" in metrics: _A = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(snake_case_ ) @rank_zero_only def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): try: _A = pl_module.model.model.num_parameters() except AttributeError: _A = pl_module.model.num_parameters() _A = count_trainable_parameters(snake_case_ ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} ) @rank_zero_only def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(snake_case_ , snake_case_ , 'test' ) @rank_zero_only def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
27
1
'''simple docstring''' from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class lowerCamelCase__ ( A ): '''simple docstring''' @slow @require_torch def __UpperCAmelCase ( self : Any ) -> Any: '''simple docstring''' _lowercase : List[Any] = EncoderDecoderModel.from_encoder_decoder_pretrained('prajjwal1/bert-tiny' , 'prajjwal1/bert-tiny' ) _lowercase : Tuple = BertTokenizer.from_pretrained('bert-base-uncased' ) _lowercase : Optional[Any] = bertabert.config.encoder.vocab_size _lowercase : Optional[Any] = tokenizer.sep_token_id _lowercase : Any = tokenizer.cls_token_id _lowercase : Tuple = 128 _lowercase : Any = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='train[:1%]' ) _lowercase : Tuple = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='validation[:1%]' ) _lowercase : Any = train_dataset.select(range(32 ) ) _lowercase : str = val_dataset.select(range(16 ) ) _lowercase : Optional[Any] = 4 def _map_to_encoder_decoder_inputs(UpperCamelCase_ : Dict ): # Tokenizer will automatically set [BOS] <text> [EOS] _lowercase : int = tokenizer(batch['article'] , padding='max_length' , truncation=UpperCamelCase_ , max_length=512 ) _lowercase : List[str] = tokenizer(batch['highlights'] , padding='max_length' , truncation=UpperCamelCase_ , max_length=128 ) _lowercase : Dict = inputs.input_ids _lowercase : str = inputs.attention_mask _lowercase : List[Any] = outputs.input_ids _lowercase : Optional[Any] = outputs.input_ids.copy() _lowercase : Optional[int] = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['labels'] ] _lowercase : Any = outputs.attention_mask assert all(len(UpperCamelCase_ ) == 512 for x in inputs.input_ids ) assert all(len(UpperCamelCase_ ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(UpperCamelCase_ : Union[str, Any] ): _lowercase : int = pred.label_ids _lowercase : Tuple = pred.predictions # all unnecessary tokens are removed _lowercase : Optional[int] = tokenizer.batch_decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) _lowercase : List[Any] = tokenizer.batch_decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) _lowercase : Tuple = sum([int(pred_str[i] == label_str[i] ) for i in range(len(UpperCamelCase_ ) )] ) / len(UpperCamelCase_ ) return {"accuracy": accuracy} # map train dataset _lowercase : Union[str, Any] = train_dataset.map( _map_to_encoder_decoder_inputs , batched=UpperCamelCase_ , batch_size=UpperCamelCase_ , remove_columns=['article', 'highlights'] , ) train_dataset.set_format( type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , ) # same for validation dataset _lowercase : Union[str, Any] = val_dataset.map( _map_to_encoder_decoder_inputs , batched=UpperCamelCase_ , batch_size=UpperCamelCase_ , remove_columns=['article', 'highlights'] , ) val_dataset.set_format( type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , ) _lowercase : Dict = self.get_auto_remove_tmp_dir() _lowercase : Union[str, Any] = SeqaSeqTrainingArguments( output_dir=UpperCamelCase_ , per_device_train_batch_size=UpperCamelCase_ , per_device_eval_batch_size=UpperCamelCase_ , predict_with_generate=UpperCamelCase_ , evaluation_strategy='steps' , do_train=UpperCamelCase_ , do_eval=UpperCamelCase_ , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer _lowercase : List[Any] = SeqaSeqTrainer( model=UpperCamelCase_ , args=UpperCamelCase_ , compute_metrics=_compute_metrics , train_dataset=UpperCamelCase_ , eval_dataset=UpperCamelCase_ , tokenizer=UpperCamelCase_ , ) # start training trainer.train()
4
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax _A : Optional[int] =logging.get_logger(__name__) @add_end_docstrings(A ) class lowerCamelCase__ ( A ): '''simple docstring''' def __init__( self : Tuple , **UpperCamelCase_ : List[str] ) -> int: '''simple docstring''' super().__init__(**UpperCamelCase_ ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : int , UpperCamelCase_ : Union[str, List[str], "Image", List["Image"]] , **UpperCamelCase_ : Tuple ) -> List[Any]: '''simple docstring''' return super().__call__(UpperCamelCase_ , **UpperCamelCase_ ) def __UpperCAmelCase ( self : List[Any] , **UpperCamelCase_ : str ) -> List[str]: '''simple docstring''' _lowercase : Optional[int] = {} if "candidate_labels" in kwargs: _lowercase : Union[str, Any] = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: _lowercase : int = kwargs['hypothesis_template'] return preprocess_params, {}, {} def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : str="This is a photo of {}." ) -> Union[str, Any]: '''simple docstring''' _lowercase : Dict = load_image(UpperCamelCase_ ) _lowercase : List[str] = self.image_processor(images=[image] , return_tensors=self.framework ) _lowercase : Optional[Any] = candidate_labels _lowercase : List[Any] = [hypothesis_template.format(UpperCamelCase_ ) for x in candidate_labels] _lowercase : Union[str, Any] = self.tokenizer(UpperCamelCase_ , return_tensors=self.framework , padding=UpperCamelCase_ ) _lowercase : Any = [text_inputs] return inputs def __UpperCAmelCase ( self : str , UpperCamelCase_ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' _lowercase : Optional[Any] = model_inputs.pop('candidate_labels' ) _lowercase : List[str] = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0] , UpperCamelCase_ ): _lowercase : Optional[int] = text_inputs[0] else: # Batching case. _lowercase : List[str] = text_inputs[0][0] _lowercase : Optional[Any] = self.model(**UpperCamelCase_ , **UpperCamelCase_ ) _lowercase : Optional[Any] = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_image, } return model_outputs def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : int ) -> List[str]: '''simple docstring''' _lowercase : Optional[int] = model_outputs.pop('candidate_labels' ) _lowercase : Optional[int] = model_outputs['logits'][0] if self.framework == "pt": _lowercase : List[Any] = logits.softmax(dim=-1 ).squeeze(-1 ) _lowercase : Tuple = probs.tolist() if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): _lowercase : List[Any] = [scores] elif self.framework == "tf": _lowercase : Optional[int] = stable_softmax(UpperCamelCase_ , axis=-1 ) _lowercase : List[Any] = probs.numpy().tolist() else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) _lowercase : List[Any] = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(UpperCamelCase_ , UpperCamelCase_ ) , key=lambda UpperCamelCase_ : -x[0] ) ] return result
4
1
"""simple docstring""" import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging A__ : Any = logging.get_logger(__name__) class lowercase__ ( snake_case__ ): _UpperCAmelCase :List[Any] = ["input_features"] def __init__( self : str , snake_case__ : Any=80 , snake_case__ : str=1_6000 , snake_case__ : Union[str, Any]=160 , snake_case__ : Tuple=30 , snake_case__ : Dict=400 , snake_case__ : int=0.0 , snake_case__ : List[Any]=False , **snake_case__ : List[Any] , ): super().__init__( feature_size=snake_case__ , sampling_rate=snake_case__ , padding_value=snake_case__ , return_attention_mask=snake_case__ , **snake_case__ , ) lowerCamelCase_ : Optional[Any] =n_fft lowerCamelCase_ : Any =hop_length lowerCamelCase_ : Optional[Any] =chunk_length lowerCamelCase_ : Optional[int] =chunk_length * sampling_rate lowerCamelCase_ : Any =self.n_samples // hop_length lowerCamelCase_ : List[Any] =sampling_rate lowerCamelCase_ : int =mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=snake_case__ , min_frequency=0.0 , max_frequency=8_000.0 , sampling_rate=snake_case__ , norm="slaney" , mel_scale="slaney" , ) def UpperCAmelCase__ ( self : Any , snake_case__ : np.array ): lowerCamelCase_ : str =spectrogram( snake_case__ , window_function(self.n_fft , "hann" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel="log10" , ) lowerCamelCase_ : Optional[Any] =log_spec[:, :-1] lowerCamelCase_ : Tuple =np.maximum(snake_case__ , log_spec.max() - 8.0 ) lowerCamelCase_ : Dict =(log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def UpperCAmelCase__ ( snake_case__ : List[np.ndarray] , snake_case__ : List[np.ndarray] , snake_case__ : float = 0.0 ): if attention_mask is not None: lowerCamelCase_ : Dict =np.array(snake_case__ , np.intaa ) lowerCamelCase_ : List[str] =[] for vector, length in zip(snake_case__ , attention_mask.sum(-1 ) ): lowerCamelCase_ : Dict =(vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: lowerCamelCase_ : Optional[int] =padding_value normed_input_values.append(snake_case__ ) else: lowerCamelCase_ : Any =[(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def __call__( self : Optional[int] , snake_case__ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , snake_case__ : bool = True , snake_case__ : Optional[int] = None , snake_case__ : Optional[Union[str, TensorType]] = None , snake_case__ : Optional[bool] = None , snake_case__ : Optional[str] = "max_length" , snake_case__ : Optional[int] = None , snake_case__ : Optional[int] = None , snake_case__ : Optional[bool] = None , **snake_case__ : Optional[int] , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" F""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" F""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) lowerCamelCase_ : Dict =isinstance(snake_case__ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) lowerCamelCase_ : Optional[int] =is_batched_numpy or ( isinstance(snake_case__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCamelCase_ : str =[np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(snake_case__ , np.ndarray ): lowerCamelCase_ : Optional[Any] =np.asarray(snake_case__ , dtype=np.floataa ) elif isinstance(snake_case__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCamelCase_ : Tuple =raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCamelCase_ : Optional[Any] =[np.asarray([raw_speech] ).T] lowerCamelCase_ : List[Any] =BatchFeature({"input_features": raw_speech} ) # convert into correct format for padding lowerCamelCase_ : int =self.pad( snake_case__ , padding=snake_case__ , max_length=max_length if max_length else self.n_samples , truncation=snake_case__ , pad_to_multiple_of=snake_case__ , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: lowerCamelCase_ : List[str] =self.zero_mean_unit_var_norm( padded_inputs["input_features"] , attention_mask=padded_inputs["attention_mask"] , padding_value=self.padding_value , ) lowerCamelCase_ : List[str] =np.stack(padded_inputs["input_features"] , axis=0 ) # make sure list is in array format lowerCamelCase_ : List[str] =padded_inputs.get("input_features" ).transpose(2 , 0 , 1 ) lowerCamelCase_ : str =[self._np_extract_fbank_features(snake_case__ ) for waveform in input_features[0]] if isinstance(input_features[0] , snake_case__ ): lowerCamelCase_ : Optional[Any] =[np.asarray(snake_case__ , dtype=np.floataa ) for feature in input_features] else: lowerCamelCase_ : Tuple =input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) lowerCamelCase_ : Optional[int] =padded_inputs["attention_mask"][:, :: self.hop_length] if return_tensors is not None: lowerCamelCase_ : Optional[int] =padded_inputs.convert_to_tensors(snake_case__ ) return padded_inputs def UpperCAmelCase__ ( self : Any ): lowerCamelCase_ : Any =copy.deepcopy(self.__dict__ ) lowerCamelCase_ : Optional[int] =self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
153
"""simple docstring""" import math import qiskit def _snake_case ( lowerCamelCase__ : int = 1 , lowerCamelCase__ : int = 1 , lowerCamelCase__ : int = 1 ) -> qiskit.result.counts.Counts: if ( isinstance(lowerCamelCase__ , lowerCamelCase__ ) or isinstance(lowerCamelCase__ , lowerCamelCase__ ) or isinstance(lowerCamelCase__ , lowerCamelCase__ ) ): raise TypeError("inputs must be integers." ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError("inputs must be positive." ) if ( (math.floor(lowerCamelCase__ ) != input_a) or (math.floor(lowerCamelCase__ ) != input_a) or (math.floor(lowerCamelCase__ ) != carry_in) ): raise ValueError("inputs must be exact integers." ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError("inputs must be less or equal to 2." ) # build registers lowerCamelCase_ : Optional[Any] =qiskit.QuantumRegister(4 , "qr" ) lowerCamelCase_ : List[Any] =qiskit.ClassicalRegister(2 , "cr" ) # list the entries lowerCamelCase_ : Tuple =[input_a, input_a, carry_in] lowerCamelCase_ : Union[str, Any] =qiskit.QuantumCircuit(lowerCamelCase__ , lowerCamelCase__ ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(lowerCamelCase__ ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(lowerCamelCase__ ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(lowerCamelCase__ ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , lowerCamelCase__ ) # measure the last two qbits lowerCamelCase_ : Any =qiskit.Aer.get_backend("aer_simulator" ) lowerCamelCase_ : str =qiskit.execute(lowerCamelCase__ , lowerCamelCase__ , shots=1_000 ) return job.result().get_counts(lowerCamelCase__ ) if __name__ == "__main__": print(f'Total sum count for state is: {quantum_full_adder(1, 1, 1)}')
153
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) __magic_name__ : List[Any] = {'''configuration_beit''': ['''BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BeitConfig''', '''BeitOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ : Optional[int] = ['''BeitFeatureExtractor'''] __magic_name__ : Optional[int] = ['''BeitImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ : Optional[Any] = [ '''BEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BeitForImageClassification''', '''BeitForMaskedImageModeling''', '''BeitForSemanticSegmentation''', '''BeitModel''', '''BeitPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ : Any = [ '''FlaxBeitForImageClassification''', '''FlaxBeitForMaskedImageModeling''', '''FlaxBeitModel''', '''FlaxBeitPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys __magic_name__ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
711
import argparse import os import re import packaging.version __magic_name__ : Dict = '''examples/''' __magic_name__ : List[str] = { '''examples''': (re.compile(r'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(r'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(r'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), r'''\1version="VERSION",'''), '''doc''': (re.compile(r'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''), } __magic_name__ : Any = { '''init''': '''src/transformers/__init__.py''', '''setup''': '''setup.py''', } __magic_name__ : int = '''README.md''' def lowercase__ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) -> Union[str, Any]: """simple docstring""" with open(_UpperCamelCase , 'r' , encoding='utf-8' , newline='\n') as f: UpperCamelCase = f.read() UpperCamelCase , UpperCamelCase = REPLACE_PATTERNS[pattern] UpperCamelCase = replace.replace('VERSION' , _UpperCamelCase) UpperCamelCase = re_pattern.sub(_UpperCamelCase , _UpperCamelCase) with open(_UpperCamelCase , 'w' , encoding='utf-8' , newline='\n') as f: f.write(_UpperCamelCase) def lowercase__ ( _UpperCamelCase) -> Dict: """simple docstring""" for folder, directories, fnames in os.walk(_UpperCamelCase): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('research_projects') if "legacy" in directories: directories.remove('legacy') for fname in fnames: if fname.endswith('.py'): update_version_in_file(os.path.join(_UpperCamelCase , _UpperCamelCase) , _UpperCamelCase , pattern='examples') def lowercase__ ( _UpperCamelCase , _UpperCamelCase=False) -> Any: """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase) if not patch: update_version_in_examples(_UpperCamelCase) def lowercase__ ( ) -> str: """simple docstring""" UpperCamelCase = '🤗 Transformers currently provides the following architectures' UpperCamelCase = '1. Want to contribute a new model?' with open(_UpperCamelCase , 'r' , encoding='utf-8' , newline='\n') as f: UpperCamelCase = f.readlines() # Find the start of the list. UpperCamelCase = 0 while not lines[start_index].startswith(_start_prompt): start_index += 1 start_index += 1 UpperCamelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt): if lines[index].startswith('1.'): UpperCamelCase = lines[index].replace( 'https://huggingface.co/docs/transformers/main/model_doc' , 'https://huggingface.co/docs/transformers/model_doc' , ) index += 1 with open(_UpperCamelCase , 'w' , encoding='utf-8' , newline='\n') as f: f.writelines(_UpperCamelCase) def lowercase__ ( ) -> str: """simple docstring""" with open(REPLACE_FILES['init'] , 'r') as f: UpperCamelCase = f.read() UpperCamelCase = REPLACE_PATTERNS['init'][0].search(_UpperCamelCase).groups()[0] return packaging.version.parse(_UpperCamelCase) def lowercase__ ( _UpperCamelCase=False) -> str: """simple docstring""" UpperCamelCase = get_version() if patch and default_version.is_devrelease: raise ValueError('Can\'t create a patch version from the dev branch, checkout a released version!') if default_version.is_devrelease: UpperCamelCase = default_version.base_version elif patch: UpperCamelCase = F'{default_version.major}.{default_version.minor}.{default_version.micro + 1}' else: UpperCamelCase = F'{default_version.major}.{default_version.minor + 1}.0' # Now let's ask nicely if that's the right one. UpperCamelCase = input(F'Which version are you releasing? [{default_version}]') if len(_UpperCamelCase) == 0: UpperCamelCase = default_version print(F'Updating version to {version}.') global_version_update(_UpperCamelCase , patch=_UpperCamelCase) if not patch: print('Cleaning main README, don\'t forget to run `make fix-copies`.') clean_main_ref_in_model_list() def lowercase__ ( ) -> int: """simple docstring""" UpperCamelCase = get_version() UpperCamelCase = F'{current_version.major}.{current_version.minor + 1}.0.dev0' UpperCamelCase = current_version.base_version # Check with the user we got that right. UpperCamelCase = input(F'Which version are we developing now? [{dev_version}]') if len(_UpperCamelCase) == 0: UpperCamelCase = dev_version print(F'Updating version to {version}.') global_version_update(_UpperCamelCase) print('Cleaning main README, don\'t forget to run `make fix-copies`.') clean_main_ref_in_model_list() if __name__ == "__main__": __magic_name__ : List[str] = argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') __magic_name__ : Optional[Any] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
410
0
import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowercase_ = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_sentencepiece_available(): import sentencepiece as sp lowercase_ = 5 lowercase_ = 10 @require_sentencepiece @require_tokenizers class __UpperCamelCase ( lowerCAmelCase__ , unittest.TestCase ): """simple docstring""" lowerCAmelCase_ = SpeechaTextTokenizer lowerCAmelCase_ = False lowerCAmelCase_ = True def UpperCAmelCase__ ( self : Any ): """simple docstring""" super().setUp() __SCREAMING_SNAKE_CASE : Union[str, Any] = sp.SentencePieceProcessor() spm_model.Load(_A ) __SCREAMING_SNAKE_CASE : Optional[Any] = ['''<s>''', '''<pad>''', '''</s>''', '''<unk>'''] vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(_A ) )] __SCREAMING_SNAKE_CASE : Optional[Any] = dict(zip(_A , range(len(_A ) ) ) ) __SCREAMING_SNAKE_CASE : List[str] = Path(self.tmpdirname ) save_json(_A , save_dir / VOCAB_FILES_NAMES['''vocab_file'''] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(_A , save_dir / VOCAB_FILES_NAMES['''spm_file'''] ) __SCREAMING_SNAKE_CASE : Optional[Any] = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = '''<pad>''' __SCREAMING_SNAKE_CASE : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(_A ) , 1001 ) def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1001 ) def UpperCAmelCase__ ( self : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE : Dict = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [289, 50, 14, 174, 386] , ) __SCREAMING_SNAKE_CASE : Any = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _A , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.'''] , ) __SCREAMING_SNAKE_CASE : List[Any] = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual(_A , [12, 25, 88, 59, 28, 23, 11, 4, 606, 351, 351, 351, 7, 16, 70, 50, 76, 84, 10, 4, 8] ) __SCREAMING_SNAKE_CASE : str = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.'''] , ) @slow def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = {'''input_ids''': [[3791, 797, 31, 11, 64, 797, 31, 2429, 433, 12, 1176, 12, 20, 786, 915, 142, 2413, 240, 37, 3238, 797, 31, 11, 35, 93, 915, 142, 2413, 240, 37, 5540, 567, 1276, 93, 37, 610, 40, 62, 455, 657, 1042, 123, 780, 177, 37, 309, 241, 1298, 514, 20, 292, 2737, 114, 2469, 241, 85, 64, 302, 548, 528, 423, 4, 509, 406, 423, 37, 601, 4, 777, 302, 548, 528, 423, 284, 4, 3388, 511, 459, 4, 3555, 40, 321, 302, 705, 4, 3388, 511, 583, 326, 5, 5, 5, 62, 3310, 560, 177, 2680, 217, 1508, 32, 31, 853, 418, 64, 583, 511, 1605, 62, 35, 93, 560, 177, 2680, 217, 1508, 1521, 64, 583, 511, 519, 62, 20, 1515, 764, 20, 149, 261, 5625, 7972, 20, 5540, 567, 1276, 93, 3925, 1675, 11, 15, 802, 7972, 576, 217, 1508, 11, 35, 93, 1253, 2441, 15, 289, 652, 31, 416, 321, 3842, 115, 40, 911, 8, 476, 619, 4, 380, 142, 423, 335, 240, 35, 93, 264, 8, 11, 335, 569, 420, 163, 5, 2], [260, 548, 528, 423, 20, 451, 20, 2681, 1153, 3434, 20, 5540, 37, 567, 126, 1253, 2441, 3376, 449, 210, 431, 1563, 177, 767, 5540, 11, 1203, 472, 11, 2953, 685, 285, 364, 706, 1153, 20, 6799, 20, 2869, 20, 4464, 126, 40, 2429, 20, 1040, 866, 2664, 418, 20, 318, 20, 1726, 186, 20, 265, 522, 35, 93, 2191, 4634, 20, 1040, 12, 6799, 15, 228, 2356, 142, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2575, 2666, 684, 1582, 1176, 12, 627, 149, 619, 20, 4902, 563, 11, 20, 149, 261, 3420, 2356, 174, 142, 4714, 131, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''facebook/s2t-small-mustc-en-de-st''' , revision='''a14f04cf0776c02f62a8cb800cf7909e15ea23ad''' , ) @require_sentencepiece class __UpperCamelCase ( unittest.TestCase ): """simple docstring""" lowerCAmelCase_ = '''valhalla/s2t_mustc_multilinguial_medium''' lowerCAmelCase_ = '''C\'est trop cool''' lowerCAmelCase_ = '''Esto es genial''' @classmethod def UpperCAmelCase__ ( cls : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : SpeechaTextTokenizer = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name ) return cls def UpperCAmelCase__ ( self : str ): """simple docstring""" self.assertEqual(self.tokenizer.lang_code_to_id['''pt'''] , 4 ) self.assertEqual(self.tokenizer.lang_code_to_id['''ru'''] , 6 ) self.assertEqual(self.tokenizer.lang_code_to_id['''it'''] , 9 ) self.assertEqual(self.tokenizer.lang_code_to_id['''de'''] , 11 ) def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" self.assertEqual(self.tokenizer.vocab_size , 1_0000 ) def UpperCAmelCase__ ( self : int ): """simple docstring""" self.assertIn(_A , self.tokenizer.all_special_ids ) __SCREAMING_SNAKE_CASE : Any = [ES_CODE, 4, 1601, 47, 7647, 2] __SCREAMING_SNAKE_CASE : int = self.tokenizer.decode(_A , skip_special_tokens=_A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_A ) self.assertEqual(_A , _A ) self.assertNotIn(self.tokenizer.eos_token , _A ) def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = '''fr''' __SCREAMING_SNAKE_CASE : Optional[Any] = self.tokenizer(self.french_text ).input_ids self.assertEqual(encoded[0] , _A ) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id ) def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = '''fr''' self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] ) __SCREAMING_SNAKE_CASE : Optional[int] = '''es''' self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
74
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __SCREAMING_SNAKE_CASE : List[str] = {"""configuration_glpn""": ["""GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GLPNConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Dict = ["""GLPNFeatureExtractor"""] __SCREAMING_SNAKE_CASE : str = ["""GLPNImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Dict = [ """GLPN_PRETRAINED_MODEL_ARCHIVE_LIST""", """GLPNForDepthEstimation""", """GLPNLayer""", """GLPNModel""", """GLPNPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
244
0
"""simple docstring""" from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
292
"""simple docstring""" def lowercase_ ( _lowercase : List[str] , _lowercase : Tuple , _lowercase : int , _lowercase : Optional[Any] ): '''simple docstring''' UpperCAmelCase : int = [False] * len(_lowercase ) UpperCAmelCase : List[str] = [] queue.append(_lowercase ) UpperCAmelCase : List[Any] = True while queue: UpperCAmelCase : Any = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(_lowercase ) UpperCAmelCase : Optional[int] = True UpperCAmelCase : int = u return visited[t] def lowercase_ ( _lowercase : Tuple , _lowercase : Dict , _lowercase : Optional[int] ): '''simple docstring''' UpperCAmelCase : List[Any] = [-1] * (len(_lowercase )) UpperCAmelCase : List[Any] = 0 while bfs(_lowercase , _lowercase , _lowercase , _lowercase ): UpperCAmelCase : List[str] = float("Inf" ) UpperCAmelCase : str = sink while s != source: # Find the minimum value in select path UpperCAmelCase : Tuple = min(_lowercase , graph[parent[s]][s] ) UpperCAmelCase : Optional[Any] = parent[s] max_flow += path_flow UpperCAmelCase : List[str] = sink while v != source: UpperCAmelCase : Dict = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow UpperCAmelCase : Dict = parent[v] return max_flow snake_case_ : Optional[Any] = [ [0, 1_6, 1_3, 0, 0, 0], [0, 0, 1_0, 1_2, 0, 0], [0, 4, 0, 0, 1_4, 0], [0, 0, 9, 0, 0, 2_0], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] snake_case_ , snake_case_ : str = 0, 5 print(ford_fulkerson(graph, source, sink))
292
1
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Optional[Any] = {"""ctrl""": """https://huggingface.co/ctrl/resolve/main/config.json"""} class UpperCamelCase ( a_ ): a__ :Any = '''ctrl''' a__ :str = ['''past_key_values'''] a__ :Tuple = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__(self , __UpperCamelCase=246_534 , __UpperCamelCase=256 , __UpperCamelCase=1_280 , __UpperCamelCase=8_192 , __UpperCamelCase=48 , __UpperCamelCase=16 , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=1E-6 , __UpperCamelCase=0.02 , __UpperCamelCase=True , **__UpperCamelCase , ) -> List[str]: UpperCamelCase_ : Dict = vocab_size UpperCamelCase_ : Tuple = n_positions UpperCamelCase_ : Union[str, Any] = n_embd UpperCamelCase_ : Tuple = n_layer UpperCamelCase_ : List[Any] = n_head UpperCamelCase_ : Optional[int] = dff UpperCamelCase_ : Optional[int] = resid_pdrop UpperCamelCase_ : Dict = embd_pdrop UpperCamelCase_ : Tuple = layer_norm_epsilon UpperCamelCase_ : Union[str, Any] = initializer_range UpperCamelCase_ : List[Any] = use_cache super().__init__(**__SCREAMING_SNAKE_CASE )
635
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) def __A ( _A , _A , _A , _A ): """simple docstring""" __a = original_name.split("." )[0] __a = key.split("." ) __a = int(key_list[key_list.index(_A ) - 2] ) __a = int(key_list[key_list.index(_A ) - 1] ) __a = orig_block_num - offset __a = key.replace(f"""{orig_block_num}.{layer_num}.{original_name}""" , f"""block.{new_block_num}.{layer_num}.{new_name}""" ) return key def __A ( _A ): """simple docstring""" __a = OrderedDict() __a , __a = 0, 0 for key, value in state_dict.items(): if key.startswith("network" ): __a = key.replace("network" , "poolformer.encoder" ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith("bias" ) and "patch_embed" not in key: patch_emb_offset += 1 __a = key[: key.find("proj" )] __a = key.replace(_A , f"""patch_embeddings.{total_embed_found}.""" ) __a = key.replace("proj" , "projection" ) if key.endswith("bias" ): total_embed_found += 1 if "patch_embeddings" in key: __a = "poolformer.encoder." + key if "mlp.fc1" in key: __a = replace_key_with_offset(_A , _A , "mlp.fc1" , "output.conv1" ) if "mlp.fc2" in key: __a = replace_key_with_offset(_A , _A , "mlp.fc2" , "output.conv2" ) if "norm1" in key: __a = replace_key_with_offset(_A , _A , "norm1" , "before_norm" ) if "norm2" in key: __a = replace_key_with_offset(_A , _A , "norm2" , "after_norm" ) if "layer_scale_1" in key: __a = replace_key_with_offset(_A , _A , "layer_scale_1" , "layer_scale_1" ) if "layer_scale_2" in key: __a = replace_key_with_offset(_A , _A , "layer_scale_2" , "layer_scale_2" ) if "head" in key: __a = key.replace("head" , "classifier" ) __a = value return new_state_dict def __A ( ): """simple docstring""" __a = "http://images.cocodataset.org/val2017/000000039769.jpg" __a = Image.open(requests.get(_A , stream=_A ).raw ) return image @torch.no_grad() def __A ( _A , _A , _A ): """simple docstring""" __a = PoolFormerConfig() # set attributes based on model_name __a = "huggingface/label-files" __a = model_name[-3:] __a = 1000 __a = "imagenet-1k-id2label.json" __a = (1, 1000) # set config attributes __a = json.load(open(hf_hub_download(_A , _A , repo_type="dataset" ) , "r" ) ) __a = {int(_A ): v for k, v in idalabel.items()} __a = idalabel __a = {v: k for k, v in idalabel.items()} if size == "s12": __a = [2, 2, 6, 2] __a = [64, 128, 320, 512] __a = 4.0 __a = 0.9 elif size == "s24": __a = [4, 4, 12, 4] __a = [64, 128, 320, 512] __a = 4.0 __a = 0.9 elif size == "s36": __a = [6, 6, 18, 6] __a = [64, 128, 320, 512] __a = 4.0 __a = 1E-6 __a = 0.9 elif size == "m36": __a = [6, 6, 18, 6] __a = [96, 192, 384, 768] __a = 4.0 __a = 1E-6 __a = 0.95 elif size == "m48": __a = [8, 8, 24, 8] __a = [96, 192, 384, 768] __a = 4.0 __a = 1E-6 __a = 0.95 else: raise ValueError(f"""Size {size} not supported""" ) # load image processor __a = PoolFormerImageProcessor(crop_pct=_A ) # Prepare image __a = prepare_img() __a = image_processor(images=_A , return_tensors="pt" ).pixel_values logger.info(f"""Converting model {model_name}...""" ) # load original state dict __a = torch.load(_A , map_location=torch.device("cpu" ) ) # rename keys __a = rename_keys(_A ) # create HuggingFace model and load state dict __a = PoolFormerForImageClassification(_A ) model.load_state_dict(_A ) model.eval() # Define image processor __a = PoolFormerImageProcessor(crop_pct=_A ) __a = image_processor(images=prepare_img() , return_tensors="pt" ).pixel_values # forward pass __a = model(_A ) __a = outputs.logits # define expected logit slices for different models if size == "s12": __a = torch.tensor([-0.3045, -0.6758, -0.4869] ) elif size == "s24": __a = torch.tensor([0.4402, -0.1374, -0.8045] ) elif size == "s36": __a = torch.tensor([-0.6080, -0.5133, -0.5898] ) elif size == "m36": __a = torch.tensor([0.3952, 0.2263, -1.2668] ) elif size == "m48": __a = torch.tensor([0.1167, -0.0656, -0.3423] ) else: raise ValueError(f"""Size {size} not supported""" ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , _A , atol=1E-2 ) # finally, save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(_A ).mkdir(exist_ok=_A ) model.save_pretrained(_A ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_A ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""poolformer_s12""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) SCREAMING_SNAKE_CASE : Any = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
197
0
"""simple docstring""" import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class lowerCamelCase__ ( A ): """simple docstring""" def __init__( self : List[Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : int , UpperCamelCase : Optional[int] ): '''simple docstring''' __UpperCAmelCase : str = dataset __UpperCAmelCase : str = process __UpperCAmelCase : str = params def __len__( self : str ): '''simple docstring''' return len(self.dataset ) def __getitem__( self : Tuple , UpperCamelCase : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : List[Any] = self.dataset[i] __UpperCAmelCase : List[str] = self.process(UpperCamelCase , **self.params ) return processed class lowerCamelCase__ ( A ): """simple docstring""" def __init__( self : Tuple , UpperCamelCase : Dict , UpperCamelCase : Optional[Any] , UpperCamelCase : List[str] , UpperCamelCase : Any=None ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = loader __UpperCAmelCase : Dict = infer __UpperCAmelCase : Tuple = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether __UpperCAmelCase : List[str] = None __UpperCAmelCase : Optional[int] = loader_batch_size # Internal bookkeeping __UpperCAmelCase : Dict = None __UpperCAmelCase : Tuple = None def __len__( self : Tuple ): '''simple docstring''' return len(self.loader ) def __iter__( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : Tuple = iter(self.loader ) return self def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice __UpperCAmelCase : Optional[Any] = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) __UpperCAmelCase : str = {} for k, element in self._loader_batch_data.items(): if isinstance(UpperCamelCase , UpperCamelCase ): # Convert ModelOutput to tuple first __UpperCAmelCase : List[str] = element.to_tuple() if isinstance(element[0] , torch.Tensor ): __UpperCAmelCase : List[str] = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): __UpperCAmelCase : Tuple = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(UpperCamelCase , UpperCamelCase ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): __UpperCAmelCase : str = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): __UpperCAmelCase : List[str] = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around __UpperCAmelCase : Optional[Any] = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers __UpperCAmelCase : Optional[int] = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers __UpperCAmelCase : Optional[int] = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. __UpperCAmelCase : List[Any] = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 __UpperCAmelCase : List[Any] = self._loader_batch_data.__class__(UpperCamelCase ) self._loader_batch_index += 1 return result def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch __UpperCAmelCase : str = next(self.iterator ) __UpperCAmelCase : Optional[int] = self.infer(UpperCamelCase , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(UpperCamelCase , torch.Tensor ): __UpperCAmelCase : int = processed else: __UpperCAmelCase : List[Any] = list(processed.keys() )[0] __UpperCAmelCase : Any = processed[key] if isinstance(UpperCamelCase , UpperCamelCase ): __UpperCAmelCase : str = len(UpperCamelCase ) else: __UpperCAmelCase : List[str] = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. __UpperCAmelCase : str = observed_batch_size # Setting internal index to unwrap the batch __UpperCAmelCase : List[str] = processed __UpperCAmelCase : Tuple = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class lowerCamelCase__ ( A ): """simple docstring""" def __init__( self : Optional[Any] , UpperCamelCase : int , UpperCamelCase : Union[str, Any] , UpperCamelCase : List[Any] , UpperCamelCase : Optional[Any]=None ): '''simple docstring''' super().__init__(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def __iter__( self : Dict ): '''simple docstring''' __UpperCAmelCase : Any = iter(self.loader ) __UpperCAmelCase : Optional[int] = None return self def lowerCamelCase__ ( self : Dict ): '''simple docstring''' if self.subiterator is None: __UpperCAmelCase : List[Any] = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item __UpperCAmelCase : Tuple = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators __UpperCAmelCase : Dict = self.infer(next(self.iterator ) , **self.params ) __UpperCAmelCase : Optional[int] = next(self.subiterator ) return processed class lowerCamelCase__ ( A ): """simple docstring""" def __iter__( self : Dict ): '''simple docstring''' __UpperCAmelCase : str = iter(self.loader ) return self def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase : Tuple = False __UpperCAmelCase : Optional[Any] = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: __UpperCAmelCase : str = self.loader_batch_item() __UpperCAmelCase : Any = item.pop("""is_last""" ) accumulator.append(UpperCamelCase ) if is_last: return accumulator while not is_last: __UpperCAmelCase : Tuple = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(UpperCamelCase , torch.Tensor ): __UpperCAmelCase : Any = processed else: __UpperCAmelCase : int = list(processed.keys() )[0] __UpperCAmelCase : Union[str, Any] = processed[key] if isinstance(UpperCamelCase , UpperCamelCase ): __UpperCAmelCase : Dict = len(UpperCamelCase ) else: __UpperCAmelCase : int = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. __UpperCAmelCase : Optional[int] = observed_batch_size __UpperCAmelCase : Any = processed __UpperCAmelCase : Tuple = 0 while self._loader_batch_index < self.loader_batch_size: __UpperCAmelCase : int = self.loader_batch_item() __UpperCAmelCase : List[Any] = item.pop("""is_last""" ) accumulator.append(UpperCamelCase ) if is_last: return accumulator else: __UpperCAmelCase : Optional[int] = processed __UpperCAmelCase : Any = item.pop("""is_last""" ) accumulator.append(UpperCamelCase ) return accumulator class lowerCamelCase__ ( A ): """simple docstring""" def __init__( self : Any , UpperCamelCase : Dataset , UpperCamelCase : str ): '''simple docstring''' __UpperCAmelCase : Dict = dataset __UpperCAmelCase : str = key def __len__( self : Tuple ): '''simple docstring''' return len(self.dataset ) def __getitem__( self : List[Any] , UpperCamelCase : str ): '''simple docstring''' return self.dataset[i][self.key] class lowerCamelCase__ ( A ): """simple docstring""" def __init__( self : Dict , UpperCamelCase : Dataset , UpperCamelCase : str , UpperCamelCase : str ): '''simple docstring''' __UpperCAmelCase : int = dataset __UpperCAmelCase : Optional[int] = keya __UpperCAmelCase : int = keya def __len__( self : str ): '''simple docstring''' return len(self.dataset ) def __getitem__( self : Tuple , UpperCamelCase : Union[str, Any] ): '''simple docstring''' return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
299
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase : List[str] = { 'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/resolve/main/config.json', 'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/config.json', 'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json', 'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json', 'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/config.json', 'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json', } class lowerCamelCase__ ( A ): """simple docstring""" __a = """bloom""" __a = ["""past_key_values"""] __a = { """num_hidden_layers""": """n_layer""", """num_attention_heads""": """n_head""", } def __init__( self : Optional[Any] , UpperCamelCase : Any=250_880 , UpperCamelCase : int=64 , UpperCamelCase : Tuple=2 , UpperCamelCase : Optional[int]=8 , UpperCamelCase : int=1e-5 , UpperCamelCase : str=0.02 , UpperCamelCase : List[str]=True , UpperCamelCase : Dict=1 , UpperCamelCase : Union[str, Any]=2 , UpperCamelCase : Optional[Any]=False , UpperCamelCase : List[Any]=0.0 , UpperCamelCase : Dict=0.0 , UpperCamelCase : Optional[int]=1 , UpperCamelCase : Any=False , **UpperCamelCase : str , ): '''simple docstring''' __UpperCAmelCase : int = vocab_size # Backward compatibility with n_embed kwarg __UpperCAmelCase : Union[str, Any] = kwargs.pop("""n_embed""" , UpperCamelCase ) __UpperCAmelCase : Dict = hidden_size if n_embed is None else n_embed __UpperCAmelCase : List[Any] = n_layer __UpperCAmelCase : Tuple = n_head __UpperCAmelCase : Tuple = layer_norm_epsilon __UpperCAmelCase : Union[str, Any] = initializer_range __UpperCAmelCase : Optional[Any] = use_cache __UpperCAmelCase : Union[str, Any] = pretraining_tp __UpperCAmelCase : Optional[int] = apply_residual_connection_post_layernorm __UpperCAmelCase : List[Any] = hidden_dropout __UpperCAmelCase : List[str] = attention_dropout __UpperCAmelCase : Optional[int] = bos_token_id __UpperCAmelCase : List[Any] = eos_token_id __UpperCAmelCase : List[Any] = slow_but_exact super().__init__(bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , **UpperCamelCase ) class lowerCamelCase__ ( A ): """simple docstring""" __a = version.parse("""1.12""" ) def __init__( self : Optional[Any] , UpperCamelCase : PretrainedConfig , UpperCamelCase : str = "default" , UpperCamelCase : List[PatchingSpec] = None , UpperCamelCase : bool = False , ): '''simple docstring''' super().__init__(UpperCamelCase , task=UpperCamelCase , patching_specs=UpperCamelCase , use_past=UpperCamelCase ) if not getattr(self._config , """pad_token_id""" , UpperCamelCase ): # TODO: how to do that better? __UpperCAmelCase : List[str] = 0 @property def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase : Dict = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(UpperCamelCase , direction="""inputs""" , inverted_values_shape=UpperCamelCase ) __UpperCAmelCase : Any = {0: """batch""", 1: """past_sequence + sequence"""} else: __UpperCAmelCase : List[str] = {0: """batch""", 1: """sequence"""} return common_inputs @property def lowerCamelCase__ ( self : int ): '''simple docstring''' return self._config.n_layer @property def lowerCamelCase__ ( self : str ): '''simple docstring''' return self._config.n_head @property def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' return 1e-3 def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : "PreTrainedTokenizer" , UpperCamelCase : int = -1 , UpperCamelCase : int = -1 , UpperCamelCase : bool = False , UpperCamelCase : Optional["TensorType"] = None , ): '''simple docstring''' __UpperCAmelCase : List[Any] = super(UpperCamelCase , self ).generate_dummy_inputs( UpperCamelCase , batch_size=UpperCamelCase , seq_length=UpperCamelCase , is_pair=UpperCamelCase , framework=UpperCamelCase ) # We need to order the input in the way they appears in the forward() __UpperCAmelCase : Optional[Any] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __UpperCAmelCase ,__UpperCAmelCase : Any = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __UpperCAmelCase : Union[str, Any] = seqlen + 2 __UpperCAmelCase : int = self._config.hidden_size // self.num_attention_heads __UpperCAmelCase : Optional[Any] = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) __UpperCAmelCase : Optional[Any] = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) __UpperCAmelCase : str = [ (torch.zeros(UpperCamelCase ), torch.zeros(UpperCamelCase )) for _ in range(self.num_layers ) ] __UpperCAmelCase : Union[str, Any] = common_inputs["""attention_mask"""] if self.use_past: __UpperCAmelCase : List[str] = ordered_inputs["""attention_mask"""].dtype __UpperCAmelCase : List[str] = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(UpperCamelCase , UpperCamelCase , dtype=UpperCamelCase )] , dim=1 ) return ordered_inputs @property def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' return 13
299
1
"""simple docstring""" import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class UpperCAmelCase ( unittest.TestCase ): @slow def __UpperCAmelCase ( self : int ): """simple docstring""" _snake_case = FlaxXLMRobertaModel.from_pretrained('''xlm-roberta-base''' ) _snake_case = AutoTokenizer.from_pretrained('''xlm-roberta-base''' ) _snake_case = '''The dog is cute and lives in the garden house''' _snake_case = jnp.array([tokenizer.encode(__lowerCamelCase )] ) _snake_case = (1, 1_2, 7_6_8) # batch_size, sequence_length, embedding_vector_dim _snake_case = jnp.array( [[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]] ) _snake_case = model(__lowerCamelCase )['''last_hidden_state'''] self.assertEqual(output.shape , __lowerCamelCase ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , __lowerCamelCase , atol=1E-3 ) )
103
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class a__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _A = TextToVideoSDPipeline _A = TEXT_TO_IMAGE_PARAMS _A = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. _A = frozenset( [ "num_inference_steps", "generator", "latents", "return_dict", "callback", "callback_steps", ] ) def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_: int = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D""") , up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""") , cross_attention_dim=32 , attention_head_dim=4 , ) lowerCamelCase_: Dict = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=A_ , set_alpha_to_one=A_ , ) torch.manual_seed(0 ) lowerCamelCase_: Tuple = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) lowerCamelCase_: str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , ) lowerCamelCase_: Dict = CLIPTextModel(A_ ) lowerCamelCase_: Optional[int] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowerCamelCase_: Optional[Any] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def lowerCAmelCase ( self : Optional[int] , A_ : Union[str, Any] , A_ : Dict=0 ) -> List[Any]: """simple docstring""" if str(A_ ).startswith("""mps""" ): lowerCamelCase_: Dict = torch.manual_seed(A_ ) else: lowerCamelCase_: Tuple = torch.Generator(device=A_ ).manual_seed(A_ ) lowerCamelCase_: Optional[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def lowerCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" lowerCamelCase_: List[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCamelCase_: Optional[int] = self.get_dummy_components() lowerCamelCase_: Any = TextToVideoSDPipeline(**A_ ) lowerCamelCase_: int = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) lowerCamelCase_: Tuple = self.get_dummy_inputs(A_ ) lowerCamelCase_: str = """np""" lowerCamelCase_: int = sd_pipe(**A_ ).frames lowerCamelCase_: Optional[int] = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) lowerCamelCase_: Dict = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCAmelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" self._test_attention_slicing_forward_pass(test_mean_pixel_difference=A_ , expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=A_ , expected_max_diff=1e-2 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" pass def lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" return super().test_progress_bar() @slow @skip_mps class a__ ( unittest.TestCase ): def lowerCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" lowerCamelCase_: int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy""" ) lowerCamelCase_: str = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) lowerCamelCase_: Tuple = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) lowerCamelCase_: List[Any] = pipe.to("""cuda""" ) lowerCamelCase_: Optional[Any] = """Spiderman is surfing""" lowerCamelCase_: int = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowerCamelCase_: List[Any] = pipe(A_ , generator=A_ , num_inference_steps=25 , output_type="""pt""" ).frames lowerCamelCase_: Optional[Any] = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def lowerCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" lowerCamelCase_: List[str] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy""" ) lowerCamelCase_: int = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) lowerCamelCase_: Optional[Any] = pipe.to("""cuda""" ) lowerCamelCase_: Union[str, Any] = """Spiderman is surfing""" lowerCamelCase_: Union[str, Any] = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowerCamelCase_: Any = pipe(A_ , generator=A_ , num_inference_steps=2 , output_type="""pt""" ).frames lowerCamelCase_: int = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
423
0
import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="""%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s""", datefmt="""%Y-%m-%d %H:%M:%S""", level=os.environ.get("""LOGLEVEL""", """INFO""").upper(), stream=sys.stdout, ) snake_case__ : Dict = logging.getLogger(__name__) snake_case__ : int = {"facebook/bart-base": BartForConditionalGeneration} snake_case__ : List[str] = {"facebook/bart-base": BartTokenizer} def _snake_case (): UpperCamelCase_ = argparse.ArgumentParser(description='Export Bart model + Beam Search to ONNX graph.') parser.add_argument( '--validation_file' , type=__lowerCAmelCase , default=__lowerCAmelCase , help='A csv or a json file containing the validation data.') parser.add_argument( '--max_length' , type=__lowerCAmelCase , default=5 , help='The maximum total input sequence length after tokenization.' , ) parser.add_argument( '--num_beams' , type=__lowerCAmelCase , default=__lowerCAmelCase , help=( 'Number of beams to use for evaluation. This argument will be ' 'passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.' ) , ) parser.add_argument( '--model_name_or_path' , type=__lowerCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=__lowerCAmelCase , ) parser.add_argument( '--config_name' , type=__lowerCAmelCase , default=__lowerCAmelCase , help='Pretrained config name or path if not the same as model_name' , ) parser.add_argument( '--device' , type=__lowerCAmelCase , default='cpu' , help='Device where the model will be run' , ) parser.add_argument('--output_file_path' , type=__lowerCAmelCase , default=__lowerCAmelCase , help='Where to store the final ONNX file.') UpperCamelCase_ = parser.parse_args() return args def _snake_case (__lowercase , __lowercase="cpu"): UpperCamelCase_ = model_dict[model_name].from_pretrained(__lowerCAmelCase).to(__lowerCAmelCase) UpperCamelCase_ = tokenizer_dict[model_name].from_pretrained(__lowerCAmelCase) if model_name in ["facebook/bart-base"]: UpperCamelCase_ = 0 UpperCamelCase_ = None UpperCamelCase_ = 0 return huggingface_model, tokenizer def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase , __lowercase): model.eval() UpperCamelCase_ = None UpperCamelCase_ = torch.jit.script(BARTBeamSearchGenerator(__lowerCAmelCase)) with torch.no_grad(): UpperCamelCase_ = """My friends are cool but they eat too many carbs.""" UpperCamelCase_ = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1024 , return_tensors='pt').to(model.device) UpperCamelCase_ = model.generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , num_beams=__lowerCAmelCase , max_length=__lowerCAmelCase , early_stopping=__lowerCAmelCase , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( __lowerCAmelCase , ( inputs['input_ids'], inputs['attention_mask'], num_beams, max_length, model.config.decoder_start_token_id, ) , __lowerCAmelCase , opset_version=14 , input_names=['input_ids', 'attention_mask', 'num_beams', 'max_length', 'decoder_start_token_id'] , output_names=['output_ids'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'seq'}, 'output_ids': {0: 'batch', 1: 'seq_out'}, } , example_outputs=__lowerCAmelCase , ) logger.info('Model exported to {}'.format(__lowerCAmelCase)) UpperCamelCase_ = remove_dup_initializers(os.path.abspath(__lowerCAmelCase)) logger.info('Deduplicated and optimized model written to {}'.format(__lowerCAmelCase)) UpperCamelCase_ = onnxruntime.InferenceSession(__lowerCAmelCase) UpperCamelCase_ = ort_sess.run( __lowerCAmelCase , { 'input_ids': inputs['input_ids'].cpu().numpy(), 'attention_mask': inputs['attention_mask'].cpu().numpy(), 'num_beams': np.array(__lowerCAmelCase), 'max_length': np.array(__lowerCAmelCase), 'decoder_start_token_id': np.array(model.config.decoder_start_token_id), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1e-3 , atol=1e-3) logger.info('Model outputs from torch and ONNX Runtime are similar.') logger.info('Success.') def _snake_case (): UpperCamelCase_ = parse_args() UpperCamelCase_ = 5 UpperCamelCase_ = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.setLevel(logging.INFO) transformers.utils.logging.set_verbosity_error() UpperCamelCase_ = torch.device(args.device) UpperCamelCase_ = load_model_tokenizer(args.model_name_or_path , __lowerCAmelCase) if model.config.decoder_start_token_id is None: raise ValueError('Make sure that `config.decoder_start_token_id` is correctly defined') model.to(__lowerCAmelCase) if args.max_length: UpperCamelCase_ = args.max_length if args.num_beams: UpperCamelCase_ = args.num_beams if args.output_file_path: UpperCamelCase_ = args.output_file_path else: UpperCamelCase_ = """BART.onnx""" logger.info('Exporting model to ONNX') export_and_validate_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase) if __name__ == "__main__": main()
712
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures snake_case__ : Any = logging.get_logger(__name__) @dataclass class _a : """simple docstring""" A_ = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(glue_processors.keys() )} ) A_ = field( metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""} ) A_ = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) A_ = field( default=UpperCAmelCase__ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def _UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase_ = self.task_name.lower() class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = """train""" A_ = """dev""" A_ = """test""" class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = 42 A_ = 42 A_ = 42 def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = Split.train , _UpperCAmelCase = None , ) -> Tuple: warnings.warn( 'This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets ' 'library. You can have a look at this example script for pointers: ' 'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py' , _UpperCAmelCase , ) UpperCamelCase_ = args UpperCamelCase_ = glue_processors[args.task_name]() UpperCamelCase_ = glue_output_modes[args.task_name] if isinstance(_UpperCAmelCase , _UpperCAmelCase ): try: UpperCamelCase_ = Split[mode] except KeyError: raise KeyError('mode is not a valid split name' ) # Load data features from cache or dataset file UpperCamelCase_ = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}""" , ) UpperCamelCase_ = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCamelCase_ , UpperCamelCase_ = label_list[2], label_list[1] UpperCamelCase_ = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCamelCase_ = cached_features_file + '.lock' with FileLock(_UpperCAmelCase ): if os.path.exists(_UpperCAmelCase ) and not args.overwrite_cache: UpperCamelCase_ = time.time() UpperCamelCase_ = torch.load(_UpperCAmelCase ) logger.info( f"""Loading features from cached file {cached_features_file} [took %.3f s]""" , time.time() - start ) else: logger.info(f"""Creating features from dataset file at {args.data_dir}""" ) if mode == Split.dev: UpperCamelCase_ = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: UpperCamelCase_ = self.processor.get_test_examples(args.data_dir ) else: UpperCamelCase_ = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: UpperCamelCase_ = examples[:limit_length] UpperCamelCase_ = glue_convert_examples_to_features( _UpperCAmelCase , _UpperCAmelCase , max_length=args.max_seq_length , label_list=_UpperCAmelCase , output_mode=self.output_mode , ) UpperCamelCase_ = time.time() torch.save(self.features , _UpperCAmelCase ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""" ) def __len__( self ) -> List[str]: return len(self.features ) def __getitem__( self , _UpperCAmelCase ) -> InputFeatures: return self.features[i] def _UpperCAmelCase ( self ) -> Tuple: return self.label_list
618
0
def SCREAMING_SNAKE_CASE ( ) -> str: snake_case__ = 0 for i in range(1 , 1001 ): total += i**i return str(__lowerCAmelCase )[-10:] if __name__ == "__main__": print(solution())
33
'''simple docstring''' def UpperCAmelCase ( UpperCAmelCase__ : int = 50): lowerCamelCase : List[Any] = [1] * (length + 1) for row_length in range(length + 1): for tile_length in range(2 , 5): for tile_start in range(row_length - tile_length + 1): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(f"""{solution() = }""")
320
0
from __future__ import annotations import os from collections.abc import Mapping __lowerCAmelCase = tuple[int, int] class __a : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: '''simple docstring''' lowercase__: Optional[Any] = vertices lowercase__: int = { (min(lowerCAmelCase__ ), max(lowerCAmelCase__ )): weight for edge, weight in edges.items() } def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) lowercase__: Optional[Any] = weight def SCREAMING_SNAKE_CASE__ ( self ) -> str: '''simple docstring''' lowercase__: List[str] = Graph({min(self.vertices )} , {} ) lowercase__: Dict = 42 lowercase__: str = 42 lowercase__: Optional[Any] = 42 lowercase__: str = 42 while len(subgraph.vertices ) < len(self.vertices ): lowercase__: Optional[int] = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: lowercase__: Any = edge lowercase__: int = weight subgraph.add_edge(lowerCAmelCase__ , lowerCAmelCase__ ) return subgraph def snake_case_ ( snake_case = "p107_network.txt" ) -> int: lowercase__: Tuple = os.path.abspath(os.path.dirname(_UpperCamelCase ) ) lowercase__: List[Any] = os.path.join(_UpperCamelCase , _UpperCamelCase ) lowercase__: Union[str, Any] = {} lowercase__: int = 42 lowercase__: str = 42 lowercase__: Any = 42 with open(_UpperCamelCase ) as f: lowercase__: List[str] = f.read().strip().split('\n' ) lowercase__: List[str] = [line.split(',' ) for line in data] for edgea in range(1 , len(_UpperCamelCase ) ): for edgea in range(_UpperCamelCase ): if adjaceny_matrix[edgea][edgea] != "-": lowercase__: Optional[int] = int(adjaceny_matrix[edgea][edgea] ) lowercase__: Union[str, Any] = Graph(set(range(len(_UpperCamelCase ) ) ) , _UpperCamelCase ) lowercase__: Optional[Any] = graph.prims_algorithm() lowercase__: Optional[int] = sum(graph.edges.values() ) lowercase__: str = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(F'''{solution() = }''')
716
import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __a ( __UpperCamelCase , unittest.TestCase ): __lowercase : int = DDIMPipeline __lowercase : Dict = UNCONDITIONAL_IMAGE_GENERATION_PARAMS __lowercase : List[str] = PipelineTesterMixin.required_optional_params - { 'num_images_per_prompt', 'latents', 'callback', 'callback_steps', } __lowercase : Optional[int] = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS __lowercase : Any = False def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) lowercase__: Dict = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) lowercase__: int = DDIMScheduler() lowercase__: List[Any] = {'unet': unet, 'scheduler': scheduler} return components def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__=0 ) -> List[str]: '''simple docstring''' if str(lowerCAmelCase__ ).startswith('mps' ): lowercase__: Any = torch.manual_seed(lowerCAmelCase__ ) else: lowercase__: Any = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) lowercase__: Any = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' lowercase__: int = 'cpu' lowercase__: List[str] = self.get_dummy_components() lowercase__: Union[str, Any] = self.pipeline_class(**lowerCAmelCase__ ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowercase__: List[str] = self.get_dummy_inputs(lowerCAmelCase__ ) lowercase__: str = pipe(**lowerCAmelCase__ ).images lowercase__: List[str] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) lowercase__: Optional[Any] = np.array( [1.000E00, 5.717E-01, 4.717E-01, 1.000E00, 0.000E00, 1.000E00, 3.000E-04, 0.000E00, 9.000E-04] ) lowercase__: int = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCAmelCase__ , 1E-3 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' super().test_save_load_local(expected_max_difference=3E-3 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=3E-3 ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __a ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' lowercase__: Tuple = 'google/ddpm-cifar10-32' lowercase__: Union[str, Any] = UNetaDModel.from_pretrained(lowerCAmelCase__ ) lowercase__: Optional[Any] = DDIMScheduler() lowercase__: List[str] = DDIMPipeline(unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ ) ddim.to(lowerCAmelCase__ ) ddim.set_progress_bar_config(disable=lowerCAmelCase__ ) lowercase__: Optional[Any] = torch.manual_seed(0 ) lowercase__: str = ddim(generator=lowerCAmelCase__ , eta=0.0 , output_type='numpy' ).images lowercase__: Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase__: Optional[Any] = np.array([0.1_7_2_3, 0.1_6_1_7, 0.1_6_0_0, 0.1_6_2_6, 0.1_4_9_7, 0.1_5_1_3, 0.1_5_0_5, 0.1_4_4_2, 0.1_4_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' lowercase__: Tuple = 'google/ddpm-ema-bedroom-256' lowercase__: int = UNetaDModel.from_pretrained(lowerCAmelCase__ ) lowercase__: Tuple = DDIMScheduler.from_pretrained(lowerCAmelCase__ ) lowercase__: Any = DDIMPipeline(unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ ) ddpm.to(lowerCAmelCase__ ) ddpm.set_progress_bar_config(disable=lowerCAmelCase__ ) lowercase__: Optional[int] = torch.manual_seed(0 ) lowercase__: Tuple = ddpm(generator=lowerCAmelCase__ , output_type='numpy' ).images lowercase__: str = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) lowercase__: List[str] = np.array([0.0_0_6_0, 0.0_2_0_1, 0.0_3_4_4, 0.0_0_2_4, 0.0_0_1_8, 0.0_0_0_2, 0.0_0_2_2, 0.0_0_0_0, 0.0_0_6_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
335
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available snake_case__ : List[str] = { 'configuration_tapas': ['TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TapasConfig'], 'tokenization_tapas': ['TapasTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Optional[Any] = [ 'TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TapasForMaskedLM', 'TapasForQuestionAnswering', 'TapasForSequenceClassification', 'TapasModel', 'TapasPreTrainedModel', 'load_tf_weights_in_tapas', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Dict = [ 'TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFTapasForMaskedLM', 'TFTapasForQuestionAnswering', 'TFTapasForSequenceClassification', 'TFTapasModel', 'TFTapasPreTrainedModel', ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys snake_case__ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
278
"""simple docstring""" from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = False ) -> list[float]: '''simple docstring''' if radian_mode: return [magnitude * cos(__lowerCAmelCase ), magnitude * sin(__lowerCAmelCase )] return [magnitude * cos(radians(__lowerCAmelCase ) ), magnitude * sin(radians(__lowerCAmelCase ) )] def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 10**-1 ) -> bool: '''simple docstring''' lowerCamelCase__ =cross(__lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ =sum(__lowerCAmelCase ) return abs(__lowerCAmelCase ) < eps if __name__ == "__main__": # Test to check if it works a =array( [ polar_force(718.4, 180 - 30), polar_force(879.54, 45), polar_force(100, -90), ] ) a =array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg a =array( [ polar_force(30 * 9.81, 15), polar_force(215, 180 - 45), polar_force(264, 90 - 30), ] ) a =array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg a =array([[0, -2000], [0, -1200], [0, 1_5600], [0, -1_2400]]) a =array([[0, 0], [6, 0], [10, 0], [12, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
530
0
'''simple docstring''' import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class _lowerCAmelCase ( __A ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=1024 , _lowerCamelCase=1024 , _lowerCamelCase=3.6 ) -> Dict: A_ : Optional[int] = tokenizer A_ : Any = tokenizer.bos_token_id A_ : int = dataset A_ : str = seq_length A_ : Optional[Any] = seq_length * chars_per_token * num_of_sequences def __iter__( self ) -> Dict: A_ : List[Any] = iter(self.dataset ) A_ : Dict = True while more_examples: A_ , A_ : int = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(_lowerCamelCase )["""content"""] ) buffer_len += len(buffer[-1] ) except StopIteration: A_ : List[str] = False break A_ : Any = tokenizer(_lowerCamelCase , truncation=_lowerCamelCase )["""input_ids"""] A_ : Tuple = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(_lowerCamelCase ) , self.seq_length ): A_ : List[Any] = all_token_ids[i : i + self.seq_length] if len(_lowerCamelCase ) == self.seq_length: yield torch.tensor(_lowerCamelCase ) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" A_ : Dict = {"""streaming""": True} A_ : Any = load_dataset(args.dataset_name , split="""train""" , **a_ ) A_ : Optional[Any] = ConstantLengthDataset(a_ , a_ , seq_length=args.seq_length ) A_ : Optional[int] = DataLoader(a_ , batch_size=args.batch_size ) return eval_dataloader def UpperCAmelCase ( a_ ) -> Any: """simple docstring""" model.eval() A_ : Any = [] for step, batch in enumerate(a_ ): with torch.no_grad(): A_ : Optional[Any] = model(a_ , labels=a_ ) A_ : Optional[int] = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(a_ ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break A_ : Any = torch.mean(torch.cat(a_ ) ) try: A_ : Dict = torch.exp(a_ ) except OverflowError: A_ : Optional[int] = float("""inf""" ) return loss.item(), perplexity.item() # Setup Accelerator UpperCamelCase__ : List[str] = Accelerator() # Parse configuration UpperCamelCase__ : int = HfArgumentParser(EvaluationArguments) UpperCamelCase__ : str = parser.parse_args() set_seed(args.seed) # Logging UpperCamelCase__ : Tuple = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer UpperCamelCase__ : List[Any] = AutoModelForCausalLM.from_pretrained(args.model_ckpt) UpperCamelCase__ : Any = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader UpperCamelCase__ : List[Any] = create_dataloader(args) # Prepare everything with our `accelerator`. UpperCamelCase__ , UpperCamelCase__ : Optional[int] = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') UpperCamelCase__ , UpperCamelCase__ : Union[str, Any] = evaluate(args) logger.info(f'loss/eval: {eval_loss}, perplexity: {perplexity}')
385
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer UpperCamelCase__ : str = logging.get_logger(__name__) UpperCamelCase__ : str = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} UpperCamelCase__ : str = { 'vocab_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json' ), }, } UpperCamelCase__ : Union[str, Any] = { 'yjernite/retribert-base-uncased': 512, } UpperCamelCase__ : Dict = { 'yjernite/retribert-base-uncased': {'do_lower_case': True}, } class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = VOCAB_FILES_NAMES lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase = PRETRAINED_INIT_CONFIGURATION lowerCamelCase = RetriBertTokenizer lowerCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase="[UNK]" , _lowerCamelCase="[SEP]" , _lowerCamelCase="[PAD]" , _lowerCamelCase="[CLS]" , _lowerCamelCase="[MASK]" , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase , ) -> Tuple: super().__init__( _lowerCamelCase , tokenizer_file=_lowerCamelCase , do_lower_case=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , pad_token=_lowerCamelCase , cls_token=_lowerCamelCase , mask_token=_lowerCamelCase , tokenize_chinese_chars=_lowerCamelCase , strip_accents=_lowerCamelCase , **_lowerCamelCase , ) A_ : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , _lowerCamelCase ) != do_lower_case or normalizer_state.get("""strip_accents""" , _lowerCamelCase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , _lowerCamelCase ) != tokenize_chinese_chars ): A_ : Dict = getattr(_lowerCamelCase , normalizer_state.pop("""type""" ) ) A_ : List[str] = do_lower_case A_ : List[Any] = strip_accents A_ : Optional[int] = tokenize_chinese_chars A_ : int = normalizer_class(**_lowerCamelCase ) A_ : Tuple = do_lower_case def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase=None ) -> Any: A_ : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None ) -> List[int]: A_ : Optional[int] = [self.sep_token_id] A_ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None ) -> Tuple[str]: A_ : Dict = self._tokenizer.model.save(_lowerCamelCase , name=_lowerCamelCase ) return tuple(_lowerCamelCase )
385
1
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent A__ : Tuple = {"""UserAgent""": UserAgent().random} def _a ( __UpperCamelCase : Optional[Any] ): lowerCAmelCase__ : Any = script.contents[0] lowerCAmelCase__ : Dict = json.loads(data[data.find('''{"config"''' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class lowercase : def __init__( self , SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCAmelCase__ : Dict = f'''https://www.instagram.com/{username}/''' lowerCAmelCase__ : int = self.get_json() def lowercase_ ( self ): """simple docstring""" lowerCAmelCase__ : Dict = requests.get(self.url , headers=SCREAMING_SNAKE_CASE__ ).text lowerCAmelCase__ : List[str] = BeautifulSoup(SCREAMING_SNAKE_CASE__ , '''html.parser''' ).find_all('''script''' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self ): """simple docstring""" return f'''{self.__class__.__name__}(\'{self.username}\')''' def __str__( self ): """simple docstring""" return f'''{self.fullname} ({self.username}) is {self.biography}''' @property def lowercase_ ( self ): """simple docstring""" return self.user_data["username"] @property def lowercase_ ( self ): """simple docstring""" return self.user_data["full_name"] @property def lowercase_ ( self ): """simple docstring""" return self.user_data["biography"] @property def lowercase_ ( self ): """simple docstring""" return self.user_data["business_email"] @property def lowercase_ ( self ): """simple docstring""" return self.user_data["external_url"] @property def lowercase_ ( self ): """simple docstring""" return self.user_data["edge_followed_by"]["count"] @property def lowercase_ ( self ): """simple docstring""" return self.user_data["edge_follow"]["count"] @property def lowercase_ ( self ): """simple docstring""" return self.user_data["edge_owner_to_timeline_media"]["count"] @property def lowercase_ ( self ): """simple docstring""" return self.user_data["profile_pic_url_hd"] @property def lowercase_ ( self ): """simple docstring""" return self.user_data["is_verified"] @property def lowercase_ ( self ): """simple docstring""" return self.user_data["is_private"] def _a ( __UpperCamelCase : str = "github" ): import os if os.environ.get('''CI''' ): return # test failing on GitHub Actions lowerCAmelCase__ : Any = InstagramUser(__UpperCamelCase ) assert instagram_user.user_data assert isinstance(instagram_user.user_data ,__UpperCamelCase ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 12_0000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('''https://instagram.''' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() A__ : int = InstagramUser("""github""") print(instagram_user) print(f"""{instagram_user.number_of_posts = }""") print(f"""{instagram_user.number_of_followers = }""") print(f"""{instagram_user.number_of_followings = }""") print(f"""{instagram_user.email = }""") print(f"""{instagram_user.website = }""") print(f"""{instagram_user.profile_picture_url = }""") print(f"""{instagram_user.is_verified = }""") print(f"""{instagram_user.is_private = }""")
233
from math import isclose, sqrt def _a ( __UpperCamelCase : float ,__UpperCamelCase : float ,__UpperCamelCase : float ): lowerCAmelCase__ : Union[str, Any] = point_y / 4 / point_x lowerCAmelCase__ : str = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) lowerCAmelCase__ : str = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) lowerCAmelCase__ : List[Any] = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 lowerCAmelCase__ : str = outgoing_gradient**2 + 4 lowerCAmelCase__ : List[Any] = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) lowerCAmelCase__ : Tuple = (point_y - outgoing_gradient * point_x) ** 2 - 100 lowerCAmelCase__ : Optional[Any] = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) lowerCAmelCase__ : Any = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point lowerCAmelCase__ : Tuple = x_minus if isclose(__UpperCamelCase ,__UpperCamelCase ) else x_plus lowerCAmelCase__ : Dict = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def _a ( __UpperCamelCase : float = 1.4 ,__UpperCamelCase : float = -9.6 ): lowerCAmelCase__ : int = 0 lowerCAmelCase__ : float = first_x_coord lowerCAmelCase__ : float = first_y_coord lowerCAmelCase__ : float = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Dict = next_point(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(f"""{solution() = }""")
233
1
def __lowercase ( UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" if mass < 0: raise ValueError('The mass of a body cannot be negative' ) return 0.5 * mass * abs(UpperCAmelCase__ ) * abs(UpperCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
102
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCamelCase = { '''configuration_data2vec_audio''': ['''DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Data2VecAudioConfig'''], '''configuration_data2vec_text''': [ '''DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Data2VecTextConfig''', '''Data2VecTextOnnxConfig''', ], '''configuration_data2vec_vision''': [ '''DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Data2VecVisionConfig''', '''Data2VecVisionOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ '''DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Data2VecAudioForAudioFrameClassification''', '''Data2VecAudioForCTC''', '''Data2VecAudioForSequenceClassification''', '''Data2VecAudioForXVector''', '''Data2VecAudioModel''', '''Data2VecAudioPreTrainedModel''', ] lowerCamelCase = [ '''DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Data2VecTextForCausalLM''', '''Data2VecTextForMaskedLM''', '''Data2VecTextForMultipleChoice''', '''Data2VecTextForQuestionAnswering''', '''Data2VecTextForSequenceClassification''', '''Data2VecTextForTokenClassification''', '''Data2VecTextModel''', '''Data2VecTextPreTrainedModel''', ] lowerCamelCase = [ '''DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Data2VecVisionForImageClassification''', '''Data2VecVisionForMaskedImageModeling''', '''Data2VecVisionForSemanticSegmentation''', '''Data2VecVisionModel''', '''Data2VecVisionPreTrainedModel''', ] if is_tf_available(): lowerCamelCase = [ '''TFData2VecVisionForImageClassification''', '''TFData2VecVisionForSemanticSegmentation''', '''TFData2VecVisionModel''', '''TFData2VecVisionPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
102
1
'''simple docstring''' def lowerCamelCase_ ( A_ ): __lowerCamelCase = len(A_ ) for i in range(A_ ): for j in range(i + 1 , A_ ): if numbers[j] < numbers[i]: __lowerCamelCase , __lowerCamelCase = numbers[j], numbers[i] return numbers if __name__ == "__main__": _UpperCamelCase : Optional[Any] =input("Enter numbers separated by a comma:\n").strip() _UpperCamelCase : List[Any] =[int(item) for item in user_input.split(",")] print(exchange_sort(unsorted))
316
'''simple docstring''' import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _lowercase : Optional[Any] = logging.get_logger(__name__) class UpperCamelCase__( enum.Enum ): __magic_name__ : Tuple = 0 __magic_name__ : Union[str, Any] = 1 @add_end_docstrings(lowerCAmelCase ) class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Optional[Any] = "generated" def __init__( self : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : int )-> Dict: """simple docstring""" super().__init__(*lowerCAmelCase , **lowerCAmelCase ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def a__( self : Tuple , lowerCAmelCase : List[str]=None , lowerCAmelCase : Dict=None , lowerCAmelCase : str=None , lowerCAmelCase : Tuple=None , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : List[str]=None , **lowerCAmelCase : Union[str, Any] , )-> Optional[Any]: """simple docstring""" UpperCAmelCase = {} if truncation is not None: UpperCAmelCase = truncation UpperCAmelCase = generate_kwargs UpperCAmelCase = {} if return_tensors is not None and return_type is None: UpperCAmelCase = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: UpperCAmelCase = return_type if clean_up_tokenization_spaces is not None: UpperCAmelCase = clean_up_tokenization_spaces if stop_sequence is not None: UpperCAmelCase = self.tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) if len(lowerCAmelCase ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) UpperCAmelCase = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def a__( self : Optional[Any] , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int )-> Optional[Any]: """simple docstring""" return True def a__( self : Optional[int] , *lowerCAmelCase : Tuple , lowerCAmelCase : int )-> List[Any]: """simple docstring""" UpperCAmelCase = self.model.config.prefix if self.model.config.prefix is not None else '''''' if isinstance(args[0] , lowerCAmelCase ): if self.tokenizer.pad_token_id is None: raise ValueError('''Please make sure that the tokenizer has a pad_token_id when using a batch input''' ) UpperCAmelCase = ([prefix + arg for arg in args[0]],) UpperCAmelCase = True elif isinstance(args[0] , lowerCAmelCase ): UpperCAmelCase = (prefix + args[0],) UpperCAmelCase = False else: raise ValueError( F""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""" ) UpperCAmelCase = self.tokenizer(*lowerCAmelCase , padding=lowerCAmelCase , truncation=lowerCAmelCase , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self : Optional[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : str )-> Optional[Any]: """simple docstring""" UpperCAmelCase = super().__call__(*lowerCAmelCase , **lowerCAmelCase ) if ( isinstance(args[0] , lowerCAmelCase ) and all(isinstance(lowerCAmelCase , lowerCAmelCase ) for el in args[0] ) and all(len(lowerCAmelCase ) == 1 for res in result ) ): return [res[0] for res in result] return result def a__( self : str , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict=TruncationStrategy.DO_NOT_TRUNCATE , **lowerCAmelCase : List[Any] )-> Tuple: """simple docstring""" UpperCAmelCase = self._parse_and_tokenize(lowerCAmelCase , truncation=lowerCAmelCase , **lowerCAmelCase ) return inputs def a__( self : Optional[int] , lowerCAmelCase : str , **lowerCAmelCase : Dict )-> str: """simple docstring""" if self.framework == "pt": UpperCAmelCase , UpperCAmelCase = model_inputs['''input_ids'''].shape elif self.framework == "tf": UpperCAmelCase , UpperCAmelCase = tf.shape(model_inputs['''input_ids'''] ).numpy() UpperCAmelCase = generate_kwargs.get('''min_length''' , self.model.config.min_length ) UpperCAmelCase = generate_kwargs.get('''max_length''' , self.model.config.max_length ) self.check_inputs(lowerCAmelCase , generate_kwargs['''min_length'''] , generate_kwargs['''max_length'''] ) UpperCAmelCase = self.model.generate(**lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = output_ids.shape[0] if self.framework == "pt": UpperCAmelCase = output_ids.reshape(lowerCAmelCase , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": UpperCAmelCase = tf.reshape(lowerCAmelCase , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def a__( self : List[Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : str=ReturnType.TEXT , lowerCAmelCase : Tuple=False )-> List[Any]: """simple docstring""" UpperCAmelCase = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: UpperCAmelCase = {F"""{self.return_name}_token_ids""": output_ids} elif return_type == ReturnType.TEXT: UpperCAmelCase = { F"""{self.return_name}_text""": self.tokenizer.decode( lowerCAmelCase , skip_special_tokens=lowerCAmelCase , clean_up_tokenization_spaces=lowerCAmelCase , ) } records.append(lowerCAmelCase ) return records @add_end_docstrings(lowerCAmelCase ) class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Dict = "summary" def __call__( self : List[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Union[str, Any] )-> Dict: """simple docstring""" return super().__call__(*lowerCAmelCase , **lowerCAmelCase ) def a__( self : int , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int )-> bool: """simple docstring""" if max_length < min_length: logger.warning(F"""Your min_length={min_length} must be inferior than your max_length={max_length}.""" ) if input_length < max_length: logger.warning( F"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """ '''a summarization task, where outputs shorter than the input are typically wanted, you might ''' F"""consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})""" ) @add_end_docstrings(lowerCAmelCase ) class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Any = "translation" def a__( self : Any , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int )-> Union[str, Any]: """simple docstring""" if input_length > 0.9 * max_length: logger.warning( F"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """ '''increasing your max_length manually, e.g. translator(\'...\', max_length=400)''' ) return True def a__( self : int , *lowerCAmelCase : List[str] , lowerCAmelCase : Optional[int]=TruncationStrategy.DO_NOT_TRUNCATE , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Tuple=None )-> Any: """simple docstring""" if getattr(self.tokenizer , '''_build_translation_inputs''' , lowerCAmelCase ): return self.tokenizer._build_translation_inputs( *lowerCAmelCase , return_tensors=self.framework , truncation=lowerCAmelCase , src_lang=lowerCAmelCase , tgt_lang=lowerCAmelCase ) else: return super()._parse_and_tokenize(*lowerCAmelCase , truncation=lowerCAmelCase ) def a__( self : Any , lowerCAmelCase : int=None , lowerCAmelCase : Optional[Any]=None , **lowerCAmelCase : List[str] )-> str: """simple docstring""" UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = super()._sanitize_parameters(**lowerCAmelCase ) if src_lang is not None: UpperCAmelCase = src_lang if tgt_lang is not None: UpperCAmelCase = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. UpperCAmelCase = kwargs.get('''task''' , self.task ) UpperCAmelCase = task.split('''_''' ) if task and len(lowerCAmelCase ) == 4: # translation, XX, to YY UpperCAmelCase = items[1] UpperCAmelCase = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self : str , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : int )-> Tuple: """simple docstring""" return super().__call__(*lowerCAmelCase , **lowerCAmelCase )
210
0
from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch('''socket.socket''' ) @patch('''builtins.open''' ) def _lowerCamelCase ( _a , _a ): """simple docstring""" _lowerCamelCase = Mock() _lowerCamelCase = conn, Mock() _lowerCamelCase = iter([1, None] ) _lowerCamelCase = lambda _a : next(_a ) # ===== invoke ===== send_file(filename='''mytext.txt''' , testing=_a ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
297
from __future__ import annotations from typing import Any def _lowerCamelCase ( _a ): """simple docstring""" if not postfix_notation: return 0 _lowerCamelCase = {'''+''', '''-''', '''*''', '''/'''} _lowerCamelCase = [] for token in postfix_notation: if token in operations: _lowerCamelCase , _lowerCamelCase = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(_a ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
297
1