code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> int: if len(__A ) != len(__A ): raise ValueError('''String lengths must match!''' ) lowercase__ : List[Any] = 0 for chara, chara in zip(__A , __A ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
560
'''simple docstring''' import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset lowerCamelCase_ = random.Random() def SCREAMING_SNAKE_CASE_ ( __A : str , __A : Union[str, Any]=1.0 , __A : Dict=None , __A : List[Any]=None ) -> Optional[Any]: if rng is None: _SCREAMING_SNAKE_CASE = global_rng _SCREAMING_SNAKE_CASE = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowercase_ ( unittest.TestCase ): """simple docstring""" def __init__( self : Any , __lowerCamelCase : str , __lowerCamelCase : Tuple=7 , __lowerCamelCase : Tuple=4_0_0 , __lowerCamelCase : List[Any]=2_0_0_0 , __lowerCamelCase : Optional[Any]=2_0_4_8 , __lowerCamelCase : List[Any]=1_2_8 , __lowerCamelCase : Union[str, Any]=1 , __lowerCamelCase : Union[str, Any]=5_1_2 , __lowerCamelCase : Optional[int]=3_0 , __lowerCamelCase : str=4_4_1_0_0 , ): """simple docstring""" _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = min_seq_length _SCREAMING_SNAKE_CASE = max_seq_length _SCREAMING_SNAKE_CASE = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _SCREAMING_SNAKE_CASE = spectrogram_length _SCREAMING_SNAKE_CASE = feature_size _SCREAMING_SNAKE_CASE = num_audio_channels _SCREAMING_SNAKE_CASE = hop_length _SCREAMING_SNAKE_CASE = chunk_length _SCREAMING_SNAKE_CASE = sampling_rate def lowerCAmelCase_ ( self : Union[str, Any] ): """simple docstring""" return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def lowerCAmelCase_ ( self : Tuple , __lowerCamelCase : Union[str, Any]=False , __lowerCamelCase : str=False ): """simple docstring""" def _flatten(__lowerCamelCase : List[str] ): return list(itertools.chain(*__lowerCamelCase ) ) if equal_length: _SCREAMING_SNAKE_CASE = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _SCREAMING_SNAKE_CASE = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _SCREAMING_SNAKE_CASE = [np.asarray(__lowerCamelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowercase_ ( A , unittest.TestCase ): """simple docstring""" lowerCamelCase_ = TvltFeatureExtractor def lowerCAmelCase_ ( self : str ): """simple docstring""" _SCREAMING_SNAKE_CASE = TvltFeatureExtractionTester(self ) def lowerCAmelCase_ ( self : str ): """simple docstring""" _SCREAMING_SNAKE_CASE = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(__lowerCamelCase , "spectrogram_length" ) ) self.assertTrue(hasattr(__lowerCamelCase , "feature_size" ) ) self.assertTrue(hasattr(__lowerCamelCase , "num_audio_channels" ) ) self.assertTrue(hasattr(__lowerCamelCase , "hop_length" ) ) self.assertTrue(hasattr(__lowerCamelCase , "chunk_length" ) ) self.assertTrue(hasattr(__lowerCamelCase , "sampling_rate" ) ) def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" _SCREAMING_SNAKE_CASE = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _SCREAMING_SNAKE_CASE = feat_extract_first.save_pretrained(__lowerCamelCase )[0] check_json_file_has_correct_format(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = self.feature_extraction_class.from_pretrained(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = feat_extract_first.to_dict() _SCREAMING_SNAKE_CASE = feat_extract_second.to_dict() _SCREAMING_SNAKE_CASE = dict_first.pop("mel_filters" ) _SCREAMING_SNAKE_CASE = dict_second.pop("mel_filters" ) self.assertTrue(np.allclose(__lowerCamelCase , __lowerCamelCase ) ) self.assertEqual(__lowerCamelCase , __lowerCamelCase ) def lowerCAmelCase_ ( self : List[str] ): """simple docstring""" _SCREAMING_SNAKE_CASE = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _SCREAMING_SNAKE_CASE = os.path.join(__lowerCamelCase , "feat_extract.json" ) feat_extract_first.to_json_file(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = self.feature_extraction_class.from_json_file(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = feat_extract_first.to_dict() _SCREAMING_SNAKE_CASE = feat_extract_second.to_dict() _SCREAMING_SNAKE_CASE = dict_first.pop("mel_filters" ) _SCREAMING_SNAKE_CASE = dict_second.pop("mel_filters" ) self.assertTrue(np.allclose(__lowerCamelCase , __lowerCamelCase ) ) self.assertEqual(__lowerCamelCase , __lowerCamelCase ) def lowerCAmelCase_ ( self : Optional[Any] ): """simple docstring""" # Initialize feature_extractor _SCREAMING_SNAKE_CASE = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 _SCREAMING_SNAKE_CASE = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _SCREAMING_SNAKE_CASE = [np.asarray(__lowerCamelCase ) for speech_input in speech_inputs] # Test not batched input _SCREAMING_SNAKE_CASE = feature_extractor(np_speech_inputs[0] , return_tensors="np" , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched _SCREAMING_SNAKE_CASE = feature_extractor(__lowerCamelCase , return_tensors="np" , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking _SCREAMING_SNAKE_CASE = feature_extractor( __lowerCamelCase , return_tensors="np" , sampling_rate=4_4_1_0_0 , mask_audio=__lowerCamelCase ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. _SCREAMING_SNAKE_CASE = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] _SCREAMING_SNAKE_CASE = np.asarray(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = feature_extractor(__lowerCamelCase , return_tensors="np" , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def lowerCAmelCase_ ( self : int , __lowerCamelCase : Union[str, Any] ): """simple docstring""" _SCREAMING_SNAKE_CASE = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech _SCREAMING_SNAKE_CASE = ds.sort("id" ).select(range(__lowerCamelCase ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def lowerCAmelCase_ ( self : int ): """simple docstring""" _SCREAMING_SNAKE_CASE = self._load_datasamples(1 ) _SCREAMING_SNAKE_CASE = TvltFeatureExtractor() _SCREAMING_SNAKE_CASE = feature_extractor(__lowerCamelCase , return_tensors="pt" ).audio_values self.assertEquals(audio_values.shape , (1, 1, 1_9_2, 1_2_8) ) _SCREAMING_SNAKE_CASE = torch.tensor([[-0.3_0_3_2, -0.2_7_0_8], [-0.4_4_3_4, -0.4_0_0_7]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , __lowerCamelCase , atol=1e-4 ) )
418
0
def A_ ( __a : str = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" a__ = set() # Replace all the whitespace in our sentence a__ = input_str.replace(""" """ , """""" ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(__a ) == 26 def A_ ( __a : str = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" a__ = [False] * 26 for char in input_str: if char.islower(): a__ = True elif char.isupper(): a__ = True return all(__a ) def A_ ( __a : str = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def A_ ( ): """simple docstring""" from timeit import timeit a__ = """from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest""" print(timeit("""is_pangram()""" , setup=__a ) ) print(timeit("""is_pangram_faster()""" , setup=__a ) ) print(timeit("""is_pangram_fastest()""" , setup=__a ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
351
from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def A_ ( __a : str = "laptop" ): """simple docstring""" a__ = F'''https://www.amazon.in/laptop/s?k={product}''' a__ = { """User-Agent""": """Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36""", """Accept-Language""": """en-US, en;q=0.5""", } a__ = BeautifulSoup(requests.get(__a , headers=__a ).text ) # Initialize a Pandas dataframe with the column titles a__ = DataFrame( columns=[ """Product Title""", """Product Link""", """Current Price of the product""", """Product Rating""", """MRP of the product""", """Discount""", ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( """div""" , attrs={"""class""": """s-result-item""", """data-component-type""": """s-search-result"""} , ) , soup.find_all("""div""" , attrs={"""class""": """a-row a-size-base a-color-base"""} ) , ): try: a__ = item.ha.text a__ = """https://www.amazon.in/""" + item.ha.a["""href"""] a__ = item.find("""span""" , attrs={"""class""": """a-offscreen"""} ).text try: a__ = item.find("""span""" , attrs={"""class""": """a-icon-alt"""} ).text except AttributeError: a__ = """Not available""" try: a__ = ( """₹""" + item.find( """span""" , attrs={"""class""": """a-price a-text-price"""} ).text.split("""₹""" )[1] ) except AttributeError: a__ = """""" try: a__ = float( ( ( float(product_mrp.strip("""₹""" ).replace(""",""" , """""" ) ) - float(product_price.strip("""₹""" ).replace(""",""" , """""" ) ) ) / float(product_mrp.strip("""₹""" ).replace(""",""" , """""" ) ) ) * 100 ) except ValueError: a__ = float("""nan""" ) except AttributeError: pass a__ = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] a__ = """ """ a__ = """ """ data_frame.index += 1 return data_frame if __name__ == "__main__": UpperCAmelCase = """headphones""" get_amazon_product_data(product).to_csv(f"""Amazon Product Data for {product}.csv""")
351
1
"""simple docstring""" import importlib.metadata import operator import re import sys from typing import Optional from packaging import version __magic_name__ : List[str] = { """<""": operator.lt, """<=""": operator.le, """==""": operator.eq, """!=""": operator.ne, """>=""": operator.ge, """>""": operator.gt, } def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): if got_ver is None or want_ver is None: raise ValueError( f"""Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider""" f""" reinstalling {pkg}.""" ) if not ops[op](version.parse(SCREAMING_SNAKE_CASE ) , version.parse(SCREAMING_SNAKE_CASE ) ): raise ImportError( f"""{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}""" ) def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ): UpperCamelCase : str = f"""\n{hint}""" if hint is not None else """""" # non-versioned check if re.match(r"""^[\w_\-\d]+$""" , SCREAMING_SNAKE_CASE ): UpperCamelCase , UpperCamelCase , UpperCamelCase : Tuple = requirement, None, None else: UpperCamelCase : str = re.findall(r"""^([^!=<>\s]+)([\s!=<>]{1,2}.+)""" , SCREAMING_SNAKE_CASE ) if not match: raise ValueError( """requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but""" f""" got {requirement}""" ) UpperCamelCase , UpperCamelCase : Dict = match[0] UpperCamelCase : List[str] = want_full.split(""",""" ) # there could be multiple requirements UpperCamelCase : List[Any] = {} for w in want_range: UpperCamelCase : Dict = re.findall(r"""^([\s!=<>]{1,2})(.+)""" , SCREAMING_SNAKE_CASE ) if not match: raise ValueError( """requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,""" f""" but got {requirement}""" ) UpperCamelCase , UpperCamelCase : List[Any] = match[0] UpperCamelCase : Any = want_ver if op not in ops: raise ValueError(f"""{requirement}: need one of {list(ops.keys() )}, but got {op}""" ) # special case if pkg == "python": UpperCamelCase : Optional[Any] = """.""".join([str(SCREAMING_SNAKE_CASE ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return # check if any version is installed try: UpperCamelCase : Tuple = importlib.metadata.version(SCREAMING_SNAKE_CASE ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( f"""The '{requirement}' distribution was not found and is required by this application. {hint}""" ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def UpperCamelCase (SCREAMING_SNAKE_CASE ): UpperCamelCase : Any = """Try: pip install transformers -U or pip install -e '.[dev]' if you're working with git main""" return require_version(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
102
"""simple docstring""" from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def lowerCamelCase_ (UpperCamelCase__ : Union[str, Any] ): if isinstance(UpperCamelCase__ , collections.abc.Iterable ): return x return (x, x) @require_tf class _UpperCAmelCase : '''simple docstring''' def __lowerCAmelCase ( self , A , A ) -> Tuple: pass def __lowerCAmelCase ( self ) -> Optional[int]: pass def __lowerCAmelCase ( self ) -> str: pass def __lowerCAmelCase ( self , A , A , A , A , A=None , **A ) -> List[Any]: _UpperCAmelCase : Optional[Any] = VisionTextDualEncoderConfig.from_vision_text_configs(A , A ) _UpperCAmelCase : Dict = TFVisionTextDualEncoderModel(A ) _UpperCAmelCase : List[str] = model(input_ids=A , pixel_values=A , attention_mask=A ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], config.projection_dim) ) def __lowerCAmelCase ( self , A , A , A , A , A=None , **A ) -> str: _UpperCAmelCase , _UpperCAmelCase : Dict = self.get_vision_text_model(A , A ) _UpperCAmelCase : int = TFVisionTextDualEncoderModel(vision_model=A , text_model=A ) _UpperCAmelCase : Optional[int] = model(input_ids=A , pixel_values=A , attention_mask=A ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim) ) def __lowerCAmelCase ( self , A , A , A , A , A=None , **A ) -> Optional[int]: _UpperCAmelCase , _UpperCAmelCase : int = self.get_vision_text_model(A , A ) _UpperCAmelCase : str = {'''vision_model''': vision_model, '''text_model''': text_model} _UpperCAmelCase : str = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**A ) _UpperCAmelCase : Dict = model(input_ids=A , pixel_values=A , attention_mask=A ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim) ) def __lowerCAmelCase ( self , A , A , A , A , A=None , **A ) -> List[str]: _UpperCAmelCase , _UpperCAmelCase : List[Any] = self.get_vision_text_model(A , A ) _UpperCAmelCase : str = TFVisionTextDualEncoderModel(vision_model=A , text_model=A ) _UpperCAmelCase : List[str] = model(input_ids=A , pixel_values=A , attention_mask=A ) _UpperCAmelCase : Optional[Any] = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(A ) _UpperCAmelCase : Optional[Any] = TFVisionTextDualEncoderModel.from_pretrained(A ) _UpperCAmelCase : Tuple = model(input_ids=A , pixel_values=A , attention_mask=A ) _UpperCAmelCase : Union[str, Any] = after_output[0].numpy() _UpperCAmelCase : Any = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(A , 1E-5 ) def __lowerCAmelCase ( self , A , A , A , A , A=None , **A ) -> int: _UpperCAmelCase , _UpperCAmelCase : str = self.get_vision_text_model(A , A ) _UpperCAmelCase : Tuple = TFVisionTextDualEncoderModel(vision_model=A , text_model=A ) _UpperCAmelCase : List[Any] = model( input_ids=A , pixel_values=A , attention_mask=A , output_attentions=A ) _UpperCAmelCase : List[Any] = output.vision_model_output.attentions self.assertEqual(len(A ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) _UpperCAmelCase : Any = to_atuple(vision_model.config.image_size ) _UpperCAmelCase : Tuple = to_atuple(vision_model.config.patch_size ) _UpperCAmelCase : Any = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _UpperCAmelCase : Optional[int] = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) _UpperCAmelCase : str = output.text_model_output.attentions self.assertEqual(len(A ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def __lowerCAmelCase ( self , A , A , A ) -> Any: _UpperCAmelCase : int = np.abs((a - b) ).max() self.assertLessEqual(A , A , f'Difference between torch and flax is {diff} (>= {tol}).' ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**A ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _UpperCAmelCase : int = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**A ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**A ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _UpperCAmelCase : str = self.prepare_config_and_inputs() self.check_save_load(**A ) def __lowerCAmelCase ( self ) -> List[str]: _UpperCAmelCase : str = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**A ) @slow def __lowerCAmelCase ( self ) -> Optional[int]: _UpperCAmelCase , _UpperCAmelCase : Optional[int] = self.get_pretrained_model_and_inputs() _UpperCAmelCase : int = model_a(**A ) _UpperCAmelCase : Tuple = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(A ) _UpperCAmelCase : Optional[Any] = TFVisionTextDualEncoderModel.from_pretrained(A ) _UpperCAmelCase : Optional[int] = model_a(**A ) _UpperCAmelCase : Any = after_outputs[0].numpy() _UpperCAmelCase : Tuple = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(A , 1E-5 ) @require_tf class _UpperCAmelCase ( a ,unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self ) -> Any: _UpperCAmelCase : Any = TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-vit''' , '''hf-internal-testing/tiny-random-bert''' ) _UpperCAmelCase : Tuple = 1_3 _UpperCAmelCase : Dict = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) _UpperCAmelCase : Optional[Any] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) _UpperCAmelCase : Union[str, Any] = random_attention_mask([batch_size, 4] ) _UpperCAmelCase : Optional[Any] = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def __lowerCAmelCase ( self , A , A ) -> Union[str, Any]: _UpperCAmelCase : int = TFViTModel(A , name='''vision_model''' ) _UpperCAmelCase : str = TFBertModel(A , name='''text_model''' ) return vision_model, text_model def __lowerCAmelCase ( self ) -> Optional[Any]: _UpperCAmelCase : int = TFViTModelTester(self ) _UpperCAmelCase : Optional[int] = TFBertModelTester(self ) _UpperCAmelCase : List[str] = vit_model_tester.prepare_config_and_inputs() _UpperCAmelCase : Tuple = bert_model_tester.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Tuple = vision_config_and_inputs ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) : Any = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class _UpperCAmelCase ( a ,unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self ) -> Optional[Any]: # DeiT repo doesn't have TF weights, but we don't actually use the weights at all so let's # just reinitialize it. _UpperCAmelCase : Optional[int] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''Rocketknight1/tiny-random-deit-tf''' , '''hf-internal-testing/tiny-random-roberta''' ) _UpperCAmelCase : List[str] = 1_3 _UpperCAmelCase : List[Any] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) _UpperCAmelCase : List[str] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) _UpperCAmelCase : int = random_attention_mask([batch_size, 4] ) _UpperCAmelCase : List[str] = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def __lowerCAmelCase ( self , A , A , A , A , A=None , **A ) -> Tuple: _UpperCAmelCase , _UpperCAmelCase : List[Any] = self.get_vision_text_model(A , A ) _UpperCAmelCase : Dict = TFVisionTextDualEncoderModel(vision_model=A , text_model=A ) _UpperCAmelCase : Tuple = model( input_ids=A , pixel_values=A , attention_mask=A , output_attentions=A ) _UpperCAmelCase : Union[str, Any] = output.vision_model_output.attentions self.assertEqual(len(A ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) _UpperCAmelCase : Optional[int] = to_atuple(vision_model.config.image_size ) _UpperCAmelCase : List[str] = to_atuple(vision_model.config.patch_size ) _UpperCAmelCase : Optional[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _UpperCAmelCase : List[Any] = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) _UpperCAmelCase : Any = output.text_model_output.attentions self.assertEqual(len(A ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def __lowerCAmelCase ( self , A , A ) -> Dict: _UpperCAmelCase : Optional[int] = TFDeiTModel(A , name='''vision_model''' ) _UpperCAmelCase : Union[str, Any] = TFRobertaModel(A , name='''text_model''' ) return vision_model, text_model def __lowerCAmelCase ( self ) -> Dict: _UpperCAmelCase : str = TFDeiTModelTester(self ) _UpperCAmelCase : Union[str, Any] = TFRobertaModelTester(self ) _UpperCAmelCase : List[str] = vit_model_tester.prepare_config_and_inputs() _UpperCAmelCase : Any = bert_model_tester.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Any = vision_config_and_inputs ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) : List[str] = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class _UpperCAmelCase ( a ,unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self ) -> List[str]: _UpperCAmelCase : List[Any] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''Rocketknight1/tiny-random-clip-tf''' , '''hf-internal-testing/tiny-random-bert''' ) _UpperCAmelCase : Optional[int] = 1_3 _UpperCAmelCase : Optional[int] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) _UpperCAmelCase : Union[str, Any] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) _UpperCAmelCase : Any = random_attention_mask([batch_size, 4] ) _UpperCAmelCase : List[str] = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def __lowerCAmelCase ( self , A , A ) -> Optional[int]: _UpperCAmelCase : int = TFCLIPVisionModel(A , name='''vision_model''' ) _UpperCAmelCase : List[str] = TFBertModel(A , name='''text_model''' ) return vision_model, text_model def __lowerCAmelCase ( self ) -> Union[str, Any]: _UpperCAmelCase : Optional[int] = TFCLIPVisionModelTester(self ) _UpperCAmelCase : Optional[Any] = TFBertModelTester(self ) _UpperCAmelCase : List[Any] = clip_model_tester.prepare_config_and_inputs() _UpperCAmelCase : int = bert_model_tester.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase : Any = vision_config_and_inputs ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) : List[str] = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def __lowerCAmelCase ( self ) -> str: _UpperCAmelCase : List[Any] = TFVisionTextDualEncoderModel.from_pretrained( '''clip-italian/clip-italian''' , logit_scale_init_value=1.0 , from_pt=A ) _UpperCAmelCase : Tuple = VisionTextDualEncoderProcessor.from_pretrained('''clip-italian/clip-italian''' ) _UpperCAmelCase : Optional[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) _UpperCAmelCase : List[Any] = processor( text=['''una foto di un gatto''', '''una foto di un cane'''] , images=A , padding=A , return_tensors='''np''' ) _UpperCAmelCase : Union[str, Any] = model(**A ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) _UpperCAmelCase : Optional[int] = np.array([[1.2_284_727, 0.3_104_122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , A , atol=1E-3 ) )
506
0
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar a__ : Optional[Any] = TypeVar("""T""") def A__ ( __lowerCamelCase ): """simple docstring""" return (position - 1) // 2 def A__ ( __lowerCamelCase ): """simple docstring""" return (2 * position) + 1 def A__ ( __lowerCamelCase ): """simple docstring""" return (2 * position) + 2 class __magic_name__ ( Generic[T] ): def __init__( self ): """simple docstring""" _lowerCAmelCase = [] _lowerCAmelCase = {} _lowerCAmelCase = 0 def __len__( self ): """simple docstring""" return self.elements def __repr__( self ): """simple docstring""" return str(self.heap ) def _lowerCamelCase ( self ): """simple docstring""" return self.elements == 0 def _lowerCamelCase ( self , __magic_name__ , __magic_name__ ): """simple docstring""" self.heap.append((elem, weight) ) _lowerCAmelCase = self.elements self.elements += 1 self._bubble_up(lowercase__ ) def _lowerCamelCase ( self ): """simple docstring""" if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) _lowerCAmelCase = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: _lowerCAmelCase = self.heap[0] self._bubble_down(lowercase__ ) return elem def _lowerCamelCase ( self , __magic_name__ , __magic_name__ ): """simple docstring""" _lowerCAmelCase = self.position_map[elem] _lowerCAmelCase = (elem, weight) if position > 0: _lowerCAmelCase = get_parent_position(lowercase__ ) _lowerCAmelCase = self.heap[parent_position] if parent_weight > weight: self._bubble_up(lowercase__ ) else: self._bubble_down(lowercase__ ) else: self._bubble_down(lowercase__ ) def _lowerCamelCase ( self , __magic_name__ ): """simple docstring""" _lowerCAmelCase = self.position_map[elem] if curr_pos == 0: return None _lowerCAmelCase = get_parent_position(lowercase__ ) _lowerCAmelCase = self.heap[curr_pos] _lowerCAmelCase = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(lowercase__ , lowercase__ ) return self._bubble_up(lowercase__ ) return None def _lowerCamelCase ( self , __magic_name__ ): """simple docstring""" _lowerCAmelCase = self.position_map[elem] _lowerCAmelCase = self.heap[curr_pos] _lowerCAmelCase = get_child_left_position(lowercase__ ) _lowerCAmelCase = get_child_right_position(lowercase__ ) if child_left_position < self.elements and child_right_position < self.elements: _lowerCAmelCase = self.heap[child_left_position] _lowerCAmelCase = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(lowercase__ , lowercase__ ) return self._bubble_down(lowercase__ ) if child_left_position < self.elements: _lowerCAmelCase = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(lowercase__ , lowercase__ ) return self._bubble_down(lowercase__ ) else: return None if child_right_position < self.elements: _lowerCAmelCase = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(lowercase__ , lowercase__ ) return self._bubble_down(lowercase__ ) return None def _lowerCamelCase ( self , __magic_name__ , __magic_name__ ): """simple docstring""" _lowerCAmelCase = self.heap[nodea_pos][0] _lowerCAmelCase = self.heap[nodea_pos][0] _lowerCAmelCase = ( self.heap[nodea_pos], self.heap[nodea_pos], ) _lowerCAmelCase = nodea_pos _lowerCAmelCase = nodea_pos class __magic_name__ ( Generic[T] ): def __init__( self ): """simple docstring""" _lowerCAmelCase = {} _lowerCAmelCase = 0 def __repr__( self ): """simple docstring""" return str(self.connections ) def __len__( self ): """simple docstring""" return self.nodes def _lowerCamelCase ( self , __magic_name__ ): """simple docstring""" if node not in self.connections: _lowerCAmelCase = {} self.nodes += 1 def _lowerCamelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ ): """simple docstring""" self.add_node(lowercase__ ) self.add_node(lowercase__ ) _lowerCAmelCase = weight _lowerCAmelCase = weight def A__ ( __lowerCamelCase, ): """simple docstring""" _lowerCAmelCase = {node: maxsize for node in graph.connections} _lowerCAmelCase = {node: None for node in graph.connections} _lowerCAmelCase = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(lowerCAmelCase_, lowerCAmelCase_ ) if priority_queue.is_empty(): return dist, parent # initialization _lowerCAmelCase = priority_queue.extract_min() _lowerCAmelCase = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: _lowerCAmelCase = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(lowerCAmelCase_, dist[neighbour] ) _lowerCAmelCase = node # running prim's algorithm while not priority_queue.is_empty(): _lowerCAmelCase = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: _lowerCAmelCase = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(lowerCAmelCase_, dist[neighbour] ) _lowerCAmelCase = node return dist, parent
703
"""simple docstring""" import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __magic_name__ ( _UpperCamelCase ,unittest.TestCase ): UpperCamelCase : List[Any] = "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline" def _lowerCamelCase ( self , __magic_name__=0 ): """simple docstring""" _lowerCAmelCase = floats_tensor((1, 3, 1_2_8, 1_2_8) , rng=random.Random(__magic_name__ ) ) _lowerCAmelCase = np.random.RandomState(__magic_name__ ) _lowerCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'strength': 0.75, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=__magic_name__ ) _lowerCAmelCase = self.get_dummy_inputs() _lowerCAmelCase = pipe(**__magic_name__ ).images _lowerCAmelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 1_2_8, 1_2_8, 3) _lowerCAmelCase = np.array([0.6_96_43, 0.5_84_84, 0.5_03_14, 0.5_87_60, 0.5_53_68, 0.5_96_43, 0.5_15_29, 0.4_12_17, 0.4_90_87] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) _lowerCAmelCase = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) _lowerCAmelCase = self.get_dummy_inputs() _lowerCAmelCase = pipe(**__magic_name__ ).images _lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) _lowerCAmelCase = np.array([0.6_17_37, 0.5_46_42, 0.5_31_83, 0.5_44_65, 0.5_27_42, 0.6_05_25, 0.4_99_69, 0.4_06_55, 0.4_81_54] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) _lowerCAmelCase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__magic_name__ ) # warmup pass to apply optimizations _lowerCAmelCase = pipe(**self.get_dummy_inputs() ) _lowerCAmelCase = self.get_dummy_inputs() _lowerCAmelCase = pipe(**__magic_name__ ).images _lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) _lowerCAmelCase = np.array([0.5_27_61, 0.5_99_77, 0.4_90_33, 0.4_96_19, 0.5_42_82, 0.5_03_11, 0.4_76_00, 0.4_09_18, 0.4_52_03] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) _lowerCAmelCase = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__magic_name__ ) _lowerCAmelCase = self.get_dummy_inputs() _lowerCAmelCase = pipe(**__magic_name__ ).images _lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) _lowerCAmelCase = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) _lowerCAmelCase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__magic_name__ ) _lowerCAmelCase = self.get_dummy_inputs() _lowerCAmelCase = pipe(**__magic_name__ ).images _lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) _lowerCAmelCase = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) _lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__magic_name__ ) _lowerCAmelCase = self.get_dummy_inputs() _lowerCAmelCase = pipe(**__magic_name__ ).images _lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) _lowerCAmelCase = np.array([0.6_53_31, 0.5_82_77, 0.4_82_04, 0.5_60_59, 0.5_36_65, 0.5_62_35, 0.5_09_69, 0.4_00_09, 0.4_65_52] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class __magic_name__ ( unittest.TestCase ): @property def _lowerCamelCase ( self ): """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = ort.SessionOptions() _lowerCAmelCase = False return options def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) _lowerCAmelCase = init_image.resize((7_6_8, 5_1_2) ) # using the PNDM scheduler by default _lowerCAmelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='onnx' , safety_checker=__magic_name__ , feature_extractor=__magic_name__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__magic_name__ ) _lowerCAmelCase = 'A fantasy landscape, trending on artstation' _lowerCAmelCase = np.random.RandomState(0 ) _lowerCAmelCase = pipe( prompt=__magic_name__ , image=__magic_name__ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=1_0 , generator=__magic_name__ , output_type='np' , ) _lowerCAmelCase = output.images _lowerCAmelCase = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 7_6_8, 3) _lowerCAmelCase = np.array([0.49_09, 0.50_59, 0.53_72, 0.46_23, 0.48_76, 0.50_49, 0.48_20, 0.49_56, 0.50_19] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) _lowerCAmelCase = init_image.resize((7_6_8, 5_1_2) ) _lowerCAmelCase = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5' , subfolder='scheduler' , revision='onnx' ) _lowerCAmelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , revision='onnx' , scheduler=__magic_name__ , safety_checker=__magic_name__ , feature_extractor=__magic_name__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__magic_name__ ) _lowerCAmelCase = 'A fantasy landscape, trending on artstation' _lowerCAmelCase = np.random.RandomState(0 ) _lowerCAmelCase = pipe( prompt=__magic_name__ , image=__magic_name__ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=2_0 , generator=__magic_name__ , output_type='np' , ) _lowerCAmelCase = output.images _lowerCAmelCase = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 7_6_8, 3) _lowerCAmelCase = np.array([0.80_43, 0.9_26, 0.95_81, 0.81_19, 0.89_54, 0.9_13, 0.72_09, 0.74_63, 0.74_31] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
309
0
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class lowercase : def __init__( self : Optional[int] , _lowercase : Union[str, Any] , _lowercase : Any=2 , _lowercase : str=True , _lowercase : List[Any]=False , _lowercase : Optional[Any]=10 , _lowercase : Tuple=3 , _lowercase : int=32 * 8 , _lowercase : str=32 * 8 , _lowercase : Optional[Any]=4 , _lowercase : Optional[int]=64 , ): SCREAMING_SNAKE_CASE__ : int = parent SCREAMING_SNAKE_CASE__ : List[Any] = batch_size SCREAMING_SNAKE_CASE__ : List[Any] = is_training SCREAMING_SNAKE_CASE__ : Any = use_auxiliary_loss SCREAMING_SNAKE_CASE__ : Optional[Any] = num_queries SCREAMING_SNAKE_CASE__ : int = num_channels SCREAMING_SNAKE_CASE__ : Optional[int] = min_size SCREAMING_SNAKE_CASE__ : Dict = max_size SCREAMING_SNAKE_CASE__ : Dict = num_labels SCREAMING_SNAKE_CASE__ : List[Any] = hidden_dim SCREAMING_SNAKE_CASE__ : str = hidden_dim def lowercase__ ( self : str ): SCREAMING_SNAKE_CASE__ : str = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _lowercase ) SCREAMING_SNAKE_CASE__ : str = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_lowercase ) SCREAMING_SNAKE_CASE__ : int = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_lowercase ) > 0.5 ).float() SCREAMING_SNAKE_CASE__ : List[Any] = (torch.rand((self.batch_size, self.num_labels) , device=_lowercase ) > 0.5).long() SCREAMING_SNAKE_CASE__ : int = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowercase__ ( self : Dict ): SCREAMING_SNAKE_CASE__ : str = MaskaFormerConfig( hidden_size=self.hidden_dim , ) SCREAMING_SNAKE_CASE__ : List[str] = self.num_queries SCREAMING_SNAKE_CASE__ : List[Any] = self.num_labels SCREAMING_SNAKE_CASE__ : Any = [1, 1, 1, 1] SCREAMING_SNAKE_CASE__ : int = self.num_channels SCREAMING_SNAKE_CASE__ : List[str] = 64 SCREAMING_SNAKE_CASE__ : Optional[int] = 1_28 SCREAMING_SNAKE_CASE__ : int = self.hidden_dim SCREAMING_SNAKE_CASE__ : int = self.hidden_dim SCREAMING_SNAKE_CASE__ : Optional[int] = self.hidden_dim return config def lowercase__ ( self : List[str] ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ : List[Any] = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def lowercase__ ( self : List[Any] , _lowercase : int , _lowercase : List[Any] ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = output.encoder_hidden_states SCREAMING_SNAKE_CASE__ : Any = output.pixel_decoder_hidden_states SCREAMING_SNAKE_CASE__ : Tuple = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_lowercase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_lowercase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_lowercase ) , config.decoder_layers ) def lowercase__ ( self : str , _lowercase : Optional[int] , _lowercase : Optional[int] , _lowercase : Tuple , _lowercase : Any=False ): with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Union[str, Any] = MaskaFormerModel(config=_lowercase ) model.to(_lowercase ) model.eval() SCREAMING_SNAKE_CASE__ : Optional[Any] = model(pixel_values=_lowercase , pixel_mask=_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] = model(_lowercase , output_hidden_states=_lowercase ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_lowercase , _lowercase ) def lowercase__ ( self : str , _lowercase : Union[str, Any] , _lowercase : List[Any] , _lowercase : int , _lowercase : Union[str, Any] , _lowercase : List[Any] ): SCREAMING_SNAKE_CASE__ : Any = MaskaFormerForUniversalSegmentation(config=_lowercase ) model.to(_lowercase ) model.eval() def comm_check_on_output(_lowercase : Optional[int] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Any = model(pixel_values=_lowercase , pixel_mask=_lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = model(_lowercase ) comm_check_on_output(_lowercase ) SCREAMING_SNAKE_CASE__ : Any = model( pixel_values=_lowercase , pixel_mask=_lowercase , mask_labels=_lowercase , class_labels=_lowercase ) comm_check_on_output(_lowercase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class lowercase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): lowerCamelCase : Any = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () lowerCamelCase : Dict = {'''feature-extraction''': MaskaFormerModel} if is_torch_available() else {} lowerCamelCase : str = False lowerCamelCase : Dict = False lowerCamelCase : Dict = False lowerCamelCase : Any = False def lowercase__ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ : Tuple = MaskaFormerModelTester(self ) SCREAMING_SNAKE_CASE__ : List[Any] = ConfigTester(self , config_class=_lowercase , has_text_modality=_lowercase ) def lowercase__ ( self : str ): self.config_tester.run_common_tests() def lowercase__ ( self : Optional[int] ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_lowercase , **_lowercase , output_hidden_states=_lowercase ) def lowercase__ ( self : Dict ): SCREAMING_SNAKE_CASE__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*_lowercase ) @unittest.skip(reason='''Mask2Former does not use inputs_embeds''' ) def lowercase__ ( self : int ): pass @unittest.skip(reason='''Mask2Former does not have a get_input_embeddings method''' ) def lowercase__ ( self : List[str] ): pass @unittest.skip(reason='''Mask2Former is not a generative model''' ) def lowercase__ ( self : List[Any] ): pass @unittest.skip(reason='''Mask2Former does not use token embeddings''' ) def lowercase__ ( self : Optional[int] ): pass @require_torch_multi_gpu @unittest.skip( reason='''Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def lowercase__ ( self : Union[str, Any] ): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowercase__ ( self : Optional[Any] ): pass def lowercase__ ( self : Dict ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : int = model_class(_lowercase ) SCREAMING_SNAKE_CASE__ : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE__ : List[str] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE__ : Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowercase ) @slow def lowercase__ ( self : Dict ): for model_name in ["facebook/mask2former-swin-small-coco-instance"]: SCREAMING_SNAKE_CASE__ : Optional[Any] = MaskaFormerModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) def lowercase__ ( self : Any ): SCREAMING_SNAKE_CASE__ : List[str] = (self.model_tester.min_size,) * 2 SCREAMING_SNAKE_CASE__ : Union[str, Any] = { '''pixel_values''': torch.randn((2, 3, *size) , device=_lowercase ), '''mask_labels''': torch.randn((2, 10, *size) , device=_lowercase ), '''class_labels''': torch.zeros(2 , 10 , device=_lowercase ).long(), } SCREAMING_SNAKE_CASE__ : Optional[int] = self.model_tester.get_config() SCREAMING_SNAKE_CASE__ : List[str] = MaskaFormerForUniversalSegmentation(_lowercase ).to(_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = model(**_lowercase ) self.assertTrue(outputs.loss is not None ) def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_lowercase , **_lowercase , output_hidden_states=_lowercase ) def lowercase__ ( self : Optional[int] ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : Optional[int] = model_class(_lowercase ).to(_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = model(**_lowercase , output_attentions=_lowercase ) self.assertTrue(outputs.attentions is not None ) def lowercase__ ( self : List[Any] ): if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE__ : Optional[int] = self.all_model_classes[1] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = self.model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ : str = model_class(_lowercase ) model.to(_lowercase ) model.train() SCREAMING_SNAKE_CASE__ : int = model(_lowercase , mask_labels=_lowercase , class_labels=_lowercase ).loss loss.backward() def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : str = self.all_model_classes[1] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ : Union[str, Any] = True SCREAMING_SNAKE_CASE__ : Union[str, Any] = True SCREAMING_SNAKE_CASE__ : Optional[Any] = model_class(_lowercase ).to(_lowercase ) model.train() SCREAMING_SNAKE_CASE__ : Optional[Any] = model(_lowercase , mask_labels=_lowercase , class_labels=_lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() SCREAMING_SNAKE_CASE__ : Dict = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() SCREAMING_SNAKE_CASE__ : Any = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() SCREAMING_SNAKE_CASE__ : Union[str, Any] = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_lowercase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) a_ :Optional[int] = 1e-4 def a ( ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @slow class lowercase ( unittest.TestCase ): @cached_property def lowercase__ ( self : Tuple ): return "facebook/mask2former-swin-small-coco-instance" @cached_property def lowercase__ ( self : Any ): return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def lowercase__ ( self : Any ): SCREAMING_SNAKE_CASE__ : int = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(_lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.default_image_processor SCREAMING_SNAKE_CASE__ : Tuple = prepare_img() SCREAMING_SNAKE_CASE__ : List[str] = image_processor(_lowercase , return_tensors='''pt''' ).to(_lowercase ) SCREAMING_SNAKE_CASE__ : int = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_lowercase , (1, 3, 3_84, 3_84) ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Optional[Any] = model(**_lowercase ) SCREAMING_SNAKE_CASE__ : Dict = torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(_lowercase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _lowercase , atol=_lowercase ) ) SCREAMING_SNAKE_CASE__ : Any = torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(_lowercase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _lowercase , atol=_lowercase ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(_lowercase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _lowercase , atol=_lowercase ) ) def lowercase__ ( self : int ): SCREAMING_SNAKE_CASE__ : List[Any] = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_lowercase ).eval() SCREAMING_SNAKE_CASE__ : Optional[int] = self.default_image_processor SCREAMING_SNAKE_CASE__ : Optional[int] = prepare_img() SCREAMING_SNAKE_CASE__ : str = image_processor(_lowercase , return_tensors='''pt''' ).to(_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_lowercase , (1, 3, 3_84, 3_84) ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Tuple = model(**_lowercase ) # masks_queries_logits SCREAMING_SNAKE_CASE__ : Optional[Any] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) SCREAMING_SNAKE_CASE__ : int = [ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] SCREAMING_SNAKE_CASE__ : str = torch.tensor(_lowercase ).to(_lowercase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _lowercase , atol=_lowercase ) ) # class_queries_logits SCREAMING_SNAKE_CASE__ : Tuple = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) SCREAMING_SNAKE_CASE__ : Dict = torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(_lowercase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _lowercase , atol=_lowercase ) ) def lowercase__ ( self : str ): SCREAMING_SNAKE_CASE__ : List[Any] = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_lowercase ).eval() SCREAMING_SNAKE_CASE__ : Any = self.default_image_processor SCREAMING_SNAKE_CASE__ : Union[str, Any] = image_processor( [np.zeros((3, 8_00, 13_33) ), np.zeros((3, 8_00, 13_33) )] , segmentation_maps=[np.zeros((3_84, 3_84) ).astype(np.floataa ), np.zeros((3_84, 3_84) ).astype(np.floataa )] , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE__ : Tuple = inputs['''pixel_values'''].to(_lowercase ) SCREAMING_SNAKE_CASE__ : Dict = [el.to(_lowercase ) for el in inputs['''mask_labels''']] SCREAMING_SNAKE_CASE__ : List[Any] = [el.to(_lowercase ) for el in inputs['''class_labels''']] with torch.no_grad(): SCREAMING_SNAKE_CASE__ : List[str] = model(**_lowercase ) self.assertTrue(outputs.loss is not None )
35
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available a_ :List[str] = { 'configuration_groupvit': [ 'GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GroupViTConfig', 'GroupViTOnnxConfig', 'GroupViTTextConfig', 'GroupViTVisionConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :str = [ 'GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GroupViTModel', 'GroupViTPreTrainedModel', 'GroupViTTextModel', 'GroupViTVisionModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :List[Any] = [ 'TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFGroupViTModel', 'TFGroupViTPreTrainedModel', 'TFGroupViTTextModel', 'TFGroupViTVisionModel', ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys a_ :Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
35
1
"""simple docstring""" def _lowercase ( __lowerCAmelCase ) -> bool: if not all(x.isalpha() for x in string ): raise ValueError("""String must only contain alphabetic characters.""" ) SCREAMING_SNAKE_CASE__ : Any = sorted(string.lower() ) return len(__lowerCAmelCase ) == len(set(__lowerCAmelCase ) ) if __name__ == "__main__": a :str = input("Enter a string ").strip() a :List[Any] = is_isogram(input_str) print(f'{input_str} is {"an" if isogram else "not an"} isogram.')
12
"""simple docstring""" def _lowercase ( __lowerCAmelCase ) -> int: if divisor % 5 == 0 or divisor % 2 == 0: return 0 SCREAMING_SNAKE_CASE__ : List[Any] = 1 SCREAMING_SNAKE_CASE__ : int = 1 while repunit: SCREAMING_SNAKE_CASE__ : str = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def _lowercase ( __lowerCAmelCase = 100_0000 ) -> int: SCREAMING_SNAKE_CASE__ : Dict = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(__lowerCAmelCase ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(f'{solution() = }')
12
1
'''simple docstring''' from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar SCREAMING_SNAKE_CASE_ = TypeVar('KEY') SCREAMING_SNAKE_CASE_ = TypeVar('VAL') @dataclass(frozen=__lowerCAmelCase , slots=__lowerCAmelCase ) class a ( Generic[KEY, VAL] ): """simple docstring""" __lowerCAmelCase = 42 __lowerCAmelCase = 42 class a ( _Item ): """simple docstring""" def __init__( self ): '''simple docstring''' super().__init__(snake_case_ , snake_case_ ) def __bool__( self ): '''simple docstring''' return False SCREAMING_SNAKE_CASE_ = _DeletedItem() class a ( MutableMapping[KEY, VAL] ): """simple docstring""" def __init__( self , snake_case_ = 8 , snake_case_ = 0.7_5 ): '''simple docstring''' __UpperCAmelCase: Optional[Any] = initial_block_size __UpperCAmelCase: list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 __UpperCAmelCase: int = capacity_factor __UpperCAmelCase: Union[str, Any] = 0 def lowercase_ ( self , snake_case_ ): '''simple docstring''' return hash(snake_case_ ) % len(self._buckets ) def lowercase_ ( self , snake_case_ ): '''simple docstring''' return (ind + 1) % len(self._buckets ) def lowercase_ ( self , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' __UpperCAmelCase: Optional[int] = self._buckets[ind] if not stored: __UpperCAmelCase: List[str] = _Item(snake_case_ , snake_case_ ) self._len += 1 return True elif stored.key == key: __UpperCAmelCase: int = _Item(snake_case_ , snake_case_ ) return True else: return False def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Optional[Any] = len(self._buckets ) * self._capacity_factor return len(self ) >= int(snake_case_ ) def lowercase_ ( self ): '''simple docstring''' if len(self._buckets ) <= self._initial_block_size: return False __UpperCAmelCase: Optional[Any] = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def lowercase_ ( self , snake_case_ ): '''simple docstring''' __UpperCAmelCase: Optional[Any] = self._buckets __UpperCAmelCase: Tuple = [None] * new_size __UpperCAmelCase: int = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def lowercase_ ( self ): '''simple docstring''' self._resize(len(self._buckets ) * 2 ) def lowercase_ ( self ): '''simple docstring''' self._resize(len(self._buckets ) // 2 ) def lowercase_ ( self , snake_case_ ): '''simple docstring''' __UpperCAmelCase: int = self._get_bucket_index(snake_case_ ) for _ in range(len(self._buckets ) ): yield ind __UpperCAmelCase: Optional[Any] = self._get_next_ind(snake_case_ ) def lowercase_ ( self , snake_case_ , snake_case_ ): '''simple docstring''' for ind in self._iterate_buckets(snake_case_ ): if self._try_set(snake_case_ , snake_case_ , snake_case_ ): break def __setitem__( self , snake_case_ , snake_case_ ): '''simple docstring''' if self._is_full(): self._size_up() self._add_item(snake_case_ , snake_case_ ) def __delitem__( self , snake_case_ ): '''simple docstring''' for ind in self._iterate_buckets(snake_case_ ): __UpperCAmelCase: int = self._buckets[ind] if item is None: raise KeyError(snake_case_ ) if item is _deleted: continue if item.key == key: __UpperCAmelCase: str = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self , snake_case_ ): '''simple docstring''' for ind in self._iterate_buckets(snake_case_ ): __UpperCAmelCase: Optional[Any] = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(snake_case_ ) def __len__( self ): '''simple docstring''' return self._len def __iter__( self ): '''simple docstring''' yield from (item.key for item in self._buckets if item) def __repr__( self ): '''simple docstring''' __UpperCAmelCase: Optional[Any] = """ ,""".join( F'''{item.key}: {item.val}''' for item in self._buckets if item ) return F'''HashMap({val_string})'''
523
'''simple docstring''' from math import pi def UpperCamelCase__ ( _lowercase : int , _lowercase : int ) -> float: return 2 * pi * radius * (angle / 3_6_0) if __name__ == "__main__": print(arc_length(90, 10))
523
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase : int = { "configuration_mask2former": [ "MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "Mask2FormerConfig", ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[int] = ["Mask2FormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[Any] = [ "MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "Mask2FormerForUniversalSegmentation", "Mask2FormerModel", "Mask2FormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys lowercase : int = _LazyModule(__name__, globals()["__file__"], _import_structure)
542
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase : int = { "configuration_mask2former": [ "MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "Mask2FormerConfig", ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[int] = ["Mask2FormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[Any] = [ "MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "Mask2FormerForUniversalSegmentation", "Mask2FormerModel", "Mask2FormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys lowercase : int = _LazyModule(__name__, globals()["__file__"], _import_structure)
542
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowercase : Tuple = logging.get_logger(__name__) lowercase : int = { "microsoft/swin-tiny-patch4-window7-224": ( "https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json" ), # See all Swin models at https://huggingface.co/models?filter=swin } class __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ : Dict = '''swin''' UpperCAmelCase_ : Any = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , __UpperCAmelCase=2_24 , __UpperCAmelCase=4 , __UpperCAmelCase=3 , __UpperCAmelCase=96 , __UpperCAmelCase=[2, 2, 6, 2] , __UpperCAmelCase=[3, 6, 12, 24] , __UpperCAmelCase=7 , __UpperCAmelCase=4.0 , __UpperCAmelCase=True , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase="gelu" , __UpperCAmelCase=False , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=1E-5 , __UpperCAmelCase=32 , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> Optional[Any]: super().__init__(**__UpperCAmelCase ) A : Union[str, Any] = image_size A : List[str] = patch_size A : Dict = num_channels A : Tuple = embed_dim A : Dict = depths A : Tuple = len(__UpperCAmelCase ) A : List[str] = num_heads A : Union[str, Any] = window_size A : Tuple = mlp_ratio A : Optional[int] = qkv_bias A : List[Any] = hidden_dropout_prob A : Union[str, Any] = attention_probs_dropout_prob A : Optional[Any] = drop_path_rate A : List[Any] = hidden_act A : Any = use_absolute_embeddings A : List[str] = layer_norm_eps A : int = initializer_range A : Dict = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model A : str = int(embed_dim * 2 ** (len(__UpperCAmelCase ) - 1) ) A : Dict = ['''stem'''] + [f'stage{idx}' for idx in range(1 , len(__UpperCAmelCase ) + 1 )] A , A : List[Any] = get_aligned_output_features_output_indices( out_features=__UpperCAmelCase , out_indices=__UpperCAmelCase , stage_names=self.stage_names ) class __lowercase ( _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ : Dict = version.parse('''1.11''' ) @property def snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def snake_case ( self ) -> float: return 1E-4
542
import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __lowercase ( _SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any: super().__init__() self.register_modules(vqvae=__UpperCAmelCase , unet=__UpperCAmelCase , scheduler=__UpperCAmelCase ) @torch.no_grad() def __call__( self , __UpperCAmelCase = 1 , __UpperCAmelCase = None , __UpperCAmelCase = 0.0 , __UpperCAmelCase = 50 , __UpperCAmelCase = "pil" , __UpperCAmelCase = True , **__UpperCAmelCase , ) -> Union[Tuple, ImagePipelineOutput]: A : List[Any] = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=__UpperCAmelCase , ) A : List[Any] = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler A : Optional[int] = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(__UpperCAmelCase ) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature A : str = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) A : List[str] = {} if accepts_eta: A : Optional[Any] = eta for t in self.progress_bar(self.scheduler.timesteps ): A : Any = self.scheduler.scale_model_input(__UpperCAmelCase , __UpperCAmelCase ) # predict the noise residual A : Dict = self.unet(__UpperCAmelCase , __UpperCAmelCase ).sample # compute the previous noisy sample x_t -> x_t-1 A : int = self.scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample # decode the image latents with the VAE A : str = self.vqvae.decode(__UpperCAmelCase ).sample A : Tuple = (image / 2 + 0.5).clamp(0 , 1 ) A : int = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": A : Union[str, Any] = self.numpy_to_pil(__UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__UpperCAmelCase )
542
1
'''simple docstring''' import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient __lowerCamelCase = WebClient(token=os.environ['''CI_SLACK_BOT_TOKEN''']) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> List[Any]: A_ = test_results.split(""" """ ) A_ = 0 A_ = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. A_ = expressions[-2] if """=""" in expressions[-1] else expressions[-1] for i, expression in enumerate(UpperCAmelCase__ ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Any: A_ = {} A_ = None A_ = False for line in failures_short_lines.split("""\n""" ): if re.search(r"""_ \[doctest\]""", UpperCAmelCase__ ): A_ = True A_ = line.split(""" """ )[2] elif in_error and not line.split(""" """ )[0].isdigit(): A_ = line A_ = False return failures class A__ : def __init__( self , UpperCamelCase__ , UpperCamelCase__ ) -> int: '''simple docstring''' A_ = title A_ = doc_test_results["""time_spent"""].split(""",""" )[0] A_ = doc_test_results["""success"""] A_ = doc_test_results["""failures"""] A_ = self.n_success + self.n_failures # Failures and success of the modeling tests A_ = doc_test_results @property def snake_case_ ( self ) -> str: '''simple docstring''' A_ = [self._time_spent] A_ = 0 for time in time_spent: A_ = time.split(""":""" ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(UpperCamelCase__ ) == 1: A_ = [0, 0, time_parts[0]] A_ , A_ , A_ = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds A_ , A_ , A_ = total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return f'''{int(UpperCamelCase__ )}h{int(UpperCamelCase__ )}m{int(UpperCamelCase__ )}s''' @property def snake_case_ ( self ) -> Dict: '''simple docstring''' return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def snake_case_ ( self ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": f'''🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.''', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f'''https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } @property def snake_case_ ( self ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": ( f'''There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in''' f''' {self.time}.''' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f'''https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } @property def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = 40 A_ = {k: v["""failed"""] for k, v in doc_test_results.items() if isinstance(UpperCamelCase__ , UpperCamelCase__ )} A_ = """""" for category, failures in category_failures.items(): if len(UpperCamelCase__ ) == 0: continue if report != "": report += "\n\n" report += f'''*{category} failures*:'''.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(UpperCamelCase__ ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": f'''The following examples had failures:\n\n\n{report}\n''', }, } @property def snake_case_ ( self ) -> str: '''simple docstring''' A_ = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(UpperCamelCase__ ) @staticmethod def snake_case_ ( ) -> Optional[int]: '''simple docstring''' A_ = [ { """type""": """section""", """text""": { """type""": """plain_text""", """text""": """There was an issue running the tests.""", }, """accessory""": { """type""": """button""", """text""": {"""type""": """plain_text""", """text""": """Check Action results""", """emoji""": True}, """url""": f'''https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } ] print("""Sending the following payload""" ) print(json.dumps({"""blocks""": json.loads(UpperCamelCase__ )} ) ) client.chat_postMessage( channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , text="""There was an issue running the tests.""" , blocks=UpperCamelCase__ , ) def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' print("""Sending the following payload""" ) print(json.dumps({"""blocks""": json.loads(self.payload )} ) ) A_ = f'''{self.n_failures} failures out of {self.n_tests} tests,''' if self.n_failures else """All tests passed.""" A_ = client.chat_postMessage( channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , blocks=self.payload , text=UpperCamelCase__ , ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Any: '''simple docstring''' A_ = """""" for key, value in failures.items(): A_ = value[:200] + """ [Truncated]""" if len(UpperCamelCase__ ) > 250 else value failures_text += f'''*{key}*\n_{value}_\n\n''' A_ = job_name A_ = {"""type""": """section""", """text""": {"""type""": """mrkdwn""", """text""": text}} if job_link is not None: A_ = { """type""": """button""", """text""": {"""type""": """plain_text""", """text""": """GitHub Action job""", """emoji""": True}, """url""": job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def snake_case_ ( self ) -> int: '''simple docstring''' if self.thread_ts is None: raise ValueError("""Can only post reply if a post has been made.""" ) A_ = self.doc_test_results.pop("""job_link""" ) self.doc_test_results.pop("""failures""" ) self.doc_test_results.pop("""success""" ) self.doc_test_results.pop("""time_spent""" ) A_ = sorted(self.doc_test_results.items() , key=lambda UpperCamelCase__ : t[0] ) for job, job_result in sorted_dict: if len(job_result["""failures"""] ): A_ = f'''*Num failures* :{len(job_result["failed"] )} \n''' A_ = job_result["""failures"""] A_ = self.get_reply_blocks(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , text=UpperCamelCase__ ) print("""Sending the following reply""" ) print(json.dumps({"""blocks""": blocks} ) ) client.chat_postMessage( channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , text=f'''Results for {job}''' , blocks=UpperCamelCase__ , thread_ts=self.thread_ts["""ts"""] , ) time.sleep(1 ) def UpperCAmelCase__ ( ) -> Optional[int]: A_ = os.environ["""GITHUB_RUN_ID"""] A_ = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100''' A_ = requests.get(UpperCAmelCase__ ).json() A_ = {} try: jobs.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) A_ = math.ceil((result["""total_count"""] - 1_00) / 1_00 ) for i in range(UpperCAmelCase__ ): A_ = requests.get(url + F'''&page={i + 2}''' ).json() jobs.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return jobs except Exception as e: print("""Unknown error, could not fetch links.""", UpperCAmelCase__ ) return {} def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = {} if os.path.exists(UpperCAmelCase__ ): A_ = os.listdir(UpperCAmelCase__ ) for file in files: try: with open(os.path.join(UpperCAmelCase__, UpperCAmelCase__ ), encoding="""utf-8""" ) as f: A_ = f.read() except UnicodeDecodeError as e: raise ValueError(F'''Could not open {os.path.join(UpperCAmelCase__, UpperCAmelCase__ )}.''' ) from e return _artifact def UpperCAmelCase__ ( ) -> Optional[Any]: class A__ : def __init__( self , UpperCamelCase__ ) -> int: '''simple docstring''' A_ = name A_ = [] def __str__( self ) -> Dict: '''simple docstring''' return self.name def snake_case_ ( self , UpperCamelCase__ ) -> Dict: '''simple docstring''' self.paths.append({"""name""": self.name, """path""": path} ) A_ = {} A_ = filter(os.path.isdir, os.listdir() ) for directory in directories: A_ = directory if artifact_name not in _available_artifacts: A_ = Artifact(UpperCAmelCase__ ) _available_artifacts[artifact_name].add_path(UpperCAmelCase__ ) return _available_artifacts if __name__ == "__main__": __lowerCamelCase = get_job_links() __lowerCamelCase = retrieve_available_artifacts() __lowerCamelCase = collections.OrderedDict( [ ('''*.py''', '''API Examples'''), ('''*.md''', '''MD Examples'''), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' __lowerCamelCase = { v: { '''failed''': [], '''failures''': {}, } for v in docs.values() } # Link to the GitHub Action job __lowerCamelCase = github_actions_job_links.get('''run_doctests''') __lowerCamelCase = available_artifacts['''doc_tests_gpu_test_reports'''].paths[0] __lowerCamelCase = retrieve_artifact(artifact_path['''name''']) if "stats" in artifact: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = handle_test_results(artifact['''stats''']) __lowerCamelCase = failed __lowerCamelCase = success __lowerCamelCase = time_spent[1:-1] + ''', ''' __lowerCamelCase = extract_first_line_failure(artifact['''failures_short''']) for line in artifact["summary_short"].split('''\n'''): if re.search('''FAILED''', line): __lowerCamelCase = line.replace('''FAILED ''', '''''') __lowerCamelCase = line.split()[0].replace('''\n''', '''''') if "::" in line: __lowerCamelCase , __lowerCamelCase = line.split('''::''') else: __lowerCamelCase , __lowerCamelCase = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): __lowerCamelCase = docs[file_regex] doc_test_results[category]["failed"].append(test) __lowerCamelCase = all_failures[test] if test in all_failures else '''N/A''' __lowerCamelCase = failure break __lowerCamelCase = Message('''🤗 Results of the doc tests.''', doc_test_results) message.post() message.post_reply()
667
'''simple docstring''' from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class A__ ( _snake_case ): lowercase = "ClapFeatureExtractor" lowercase = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: '''simple docstring''' super().__init__(UpperCamelCase__ , UpperCamelCase__ ) def __call__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' A_ = kwargs.pop("""sampling_rate""" , UpperCamelCase__ ) if text is None and audios is None: raise ValueError("""You have to specify either text or audios. Both cannot be none.""" ) if text is not None: A_ = self.tokenizer(UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if audios is not None: A_ = self.feature_extractor( UpperCamelCase__ , sampling_rate=UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if text is not None and audios is not None: A_ = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase__ ) , tensor_type=UpperCamelCase__ ) def snake_case_ ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def snake_case_ ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> str: '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @property def snake_case_ ( self ) -> int: '''simple docstring''' A_ = self.tokenizer.model_input_names A_ = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
667
1
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer a__ : Tuple = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} a__ : Optional[Any] = { """vocab_file""": { """google/electra-small-generator""": ( """https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt""" ), """google/electra-base-generator""": """https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt""", """google/electra-large-generator""": ( """https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt""" ), """google/electra-small-discriminator""": ( """https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt""" ), """google/electra-base-discriminator""": ( """https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt""" ), """google/electra-large-discriminator""": ( """https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """google/electra-small-generator""": ( """https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json""" ), """google/electra-base-generator""": ( """https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json""" ), """google/electra-large-generator""": ( """https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json""" ), """google/electra-small-discriminator""": ( """https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json""" ), """google/electra-base-discriminator""": ( """https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json""" ), """google/electra-large-discriminator""": ( """https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json""" ), }, } a__ : Optional[Any] = { """google/electra-small-generator""": 512, """google/electra-base-generator""": 512, """google/electra-large-generator""": 512, """google/electra-small-discriminator""": 512, """google/electra-base-discriminator""": 512, """google/electra-large-discriminator""": 512, } a__ : Optional[Any] = { """google/electra-small-generator""": {"""do_lower_case""": True}, """google/electra-base-generator""": {"""do_lower_case""": True}, """google/electra-large-generator""": {"""do_lower_case""": True}, """google/electra-small-discriminator""": {"""do_lower_case""": True}, """google/electra-base-discriminator""": {"""do_lower_case""": True}, """google/electra-large-discriminator""": {"""do_lower_case""": True}, } class __magic_name__ ( __UpperCAmelCase ): UpperCamelCase : Tuple = VOCAB_FILES_NAMES UpperCamelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase : Tuple = PRETRAINED_INIT_CONFIGURATION UpperCamelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase : Optional[Any] = ElectraTokenizer def __init__( self , __magic_name__=None , __magic_name__=None , __magic_name__=True , __magic_name__="[UNK]" , __magic_name__="[SEP]" , __magic_name__="[PAD]" , __magic_name__="[CLS]" , __magic_name__="[MASK]" , __magic_name__=True , __magic_name__=None , **__magic_name__ , ): """simple docstring""" super().__init__( lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , do_lower_case=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , tokenize_chinese_chars=lowerCamelCase__ , strip_accents=lowerCamelCase__ , **lowerCamelCase__ , ) _lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , lowerCamelCase__ ) != do_lower_case or normalizer_state.get('strip_accents' , lowerCamelCase__ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , lowerCamelCase__ ) != tokenize_chinese_chars ): _lowerCAmelCase = getattr(lowerCamelCase__ , normalizer_state.pop('type' ) ) _lowerCAmelCase = do_lower_case _lowerCAmelCase = strip_accents _lowerCAmelCase = tokenize_chinese_chars _lowerCAmelCase = normalizer_class(**lowerCamelCase__ ) _lowerCAmelCase = do_lower_case def _lowerCamelCase ( self , __magic_name__ , __magic_name__=None ): """simple docstring""" _lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _lowerCamelCase ( self , __magic_name__ , __magic_name__ = None ): """simple docstring""" _lowerCAmelCase = [self.sep_token_id] _lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowerCamelCase ( self , __magic_name__ , __magic_name__ = None ): """simple docstring""" _lowerCAmelCase = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ ) return tuple(lowerCamelCase__ )
589
'''simple docstring''' import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy __A = logging.getLogger(__name__) def _A ( lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = False , ): lowercase__ = bnb_quantization_config.load_in_abit lowercase__ = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( """You have a version of `bitsandbytes` that is not compatible with 8bit quantization,""" """ make sure you have the latest version of `bitsandbytes` installed.""" ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( """You have a version of `bitsandbytes` that is not compatible with 4bit quantization,""" """make sure you have the latest version of `bitsandbytes` installed.""" ) lowercase__ = [] # custom device map if isinstance(lowercase__ , lowercase__ ) and len(device_map.keys() ) > 1: lowercase__ = [key for key, value in device_map.items() if value in ["""disk""", """cpu"""]] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: lowercase__ = get_keys_to_not_convert(lowercase__ ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(lowercase__ ) lowercase__ = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: lowercase__ = [] lowercase__ = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(lowercase__ ) # compatibility with peft lowercase__ = load_in_abit lowercase__ = load_in_abit lowercase__ = get_parameter_device(lowercase__ ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( """It is not recommended to quantize a loaded model. """ """The model should be instantiated under the `init_empty_weights` context manager.""" ) lowercase__ = replace_with_bnb_layers(lowercase__ , lowercase__ , modules_to_not_convert=lowercase__ ) # convert param to the right dtype lowercase__ = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: lowercase__ = name.replace(""".weight""" , """""" ).replace(""".bias""" , """""" ) lowercase__ = getattr(lowercase__ , lowercase__ , lowercase__ ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(lowercase__ ): param.to(lowercase__ ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" ) logger.info( f'''The model device type is {model_device.type}. However, cuda is needed for quantization.''' """We move the model to cuda.""" ) return model elif weights_location is None: raise RuntimeError( f'''`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ''' ) else: with init_empty_weights(): lowercase__ = replace_with_bnb_layers( lowercase__ , lowercase__ , modules_to_not_convert=lowercase__ ) lowercase__ = get_quantized_model_device_map( lowercase__ , lowercase__ , lowercase__ , max_memory=lowercase__ , no_split_module_classes=lowercase__ , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): lowercase__ = True lowercase__ = any(x in list(device_map.values() ) for x in ["""cpu""", """disk"""] ) load_checkpoint_in_model( lowercase__ , lowercase__ , lowercase__ , dtype=bnb_quantization_config.torch_dtype , offload_folder=lowercase__ , offload_state_dict=lowercase__ , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(lowercase__ , device_map=lowercase__ , offload_dir=lowercase__ ) def _A ( lowercase__ , lowercase__ , lowercase__=None , lowercase__=None , lowercase__=None ): if device_map is None: if torch.cuda.is_available(): lowercase__ = {"""""": torch.cuda.current_device()} else: raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" ) logger.info("""The device_map was not initialized.""" """Setting device_map to `{'':torch.cuda.current_device()}`.""" ) if isinstance(lowercase__ , lowercase__ ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( """If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or """ """'sequential'.""" ) lowercase__ = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) lowercase__ = {} lowercase__ = special_dtypes lowercase__ = no_split_module_classes lowercase__ = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": lowercase__ = get_balanced_memory( lowercase__ , low_zero=(device_map == """balanced_low_0""") , max_memory=lowercase__ , **lowercase__ , ) lowercase__ = max_memory lowercase__ = infer_auto_device_map(lowercase__ , **lowercase__ ) if isinstance(lowercase__ , lowercase__ ): # check if don't have any quantized module on the cpu lowercase__ = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules lowercase__ = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( """ Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules in `torch_dtype`, you need to pass a custom `device_map` to `load_and_quantize_model`. Check https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk for more details. """ ) else: logger.info( """Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit""" ) del device_map_without_some_modules return device_map def _A ( lowercase__ , lowercase__ , lowercase__=None , lowercase__=None ): if modules_to_not_convert is None: lowercase__ = [] lowercase__ , lowercase__ = _replace_with_bnb_layers( lowercase__ , lowercase__ , lowercase__ , lowercase__ ) if not has_been_replaced: logger.warning( """You are loading your model in 8bit or 4bit but no linear modules were found in your model.""" """ this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.""" """ Please double check your model architecture, or submit an issue on github if you think this is""" """ a bug.""" ) return model def _A ( lowercase__ , lowercase__ , lowercase__=None , lowercase__=None , ): lowercase__ = False for name, module in model.named_children(): if current_key_name is None: lowercase__ = [] current_key_name.append(lowercase__ ) if isinstance(lowercase__ , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` lowercase__ = """.""".join(lowercase__ ) lowercase__ = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: lowercase__ = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: lowercase__ = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=lowercase__ , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: lowercase__ = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError("""load_in_8bit and load_in_4bit can't be both False""" ) lowercase__ = module.weight.data if module.bias is not None: lowercase__ = module.bias.data bnb_module.requires_grad_(lowercase__ ) setattr(lowercase__ , lowercase__ , lowercase__ ) lowercase__ = True if len(list(module.children() ) ) > 0: lowercase__ , lowercase__ = _replace_with_bnb_layers( lowercase__ , lowercase__ , lowercase__ , lowercase__ ) lowercase__ = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def _A ( lowercase__ ): # Create a copy of the model with init_empty_weights(): lowercase__ = deepcopy(lowercase__ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` lowercase__ = find_tied_parameters(lowercase__ ) # For compatibility with Accelerate < 0.18 if isinstance(lowercase__ , lowercase__ ): lowercase__ = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: lowercase__ = sum(lowercase__ , [] ) lowercase__ = len(lowercase__ ) > 0 # Check if it is a base model lowercase__ = False if hasattr(lowercase__ , """base_model_prefix""" ): lowercase__ = not hasattr(lowercase__ , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head lowercase__ = list(model.named_children() ) lowercase__ = [list_modules[-1][0]] # add last module together with tied weights lowercase__ = set(lowercase__ ) - set(lowercase__ ) lowercase__ = list(set(lowercase__ ) ) + list(lowercase__ ) # remove ".weight" from the keys lowercase__ = [""".weight""", """.bias"""] lowercase__ = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: lowercase__ = name.replace(lowercase__ , """""" ) filtered_module_names.append(lowercase__ ) return filtered_module_names def _A ( lowercase__ ): for m in model.modules(): if isinstance(lowercase__ , bnb.nn.Linearabit ): return True return False def _A ( lowercase__ ): return next(parameter.parameters() ).device def _A ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): # if it is not quantized, we quantize and offload the quantized weights and the SCB stats if fpaa_statistics is None: set_module_tensor_to_device(lowercase__ , lowercase__ , 0 , dtype=lowercase__ , value=lowercase__ ) lowercase__ = param_name lowercase__ = model if "." in tensor_name: lowercase__ = tensor_name.split(""".""" ) for split in splits[:-1]: lowercase__ = getattr(lowercase__ , lowercase__ ) if new_module is None: raise ValueError(f'''{module} has no attribute {split}.''' ) lowercase__ = new_module lowercase__ = splits[-1] # offload weights lowercase__ = False offload_weight(module._parameters[tensor_name] , lowercase__ , lowercase__ , index=lowercase__ ) if hasattr(module._parameters[tensor_name] , """SCB""" ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace("""weight""" , """SCB""" ) , lowercase__ , index=lowercase__ , ) else: offload_weight(lowercase__ , lowercase__ , lowercase__ , index=lowercase__ ) offload_weight(lowercase__ , param_name.replace("""weight""" , """SCB""" ) , lowercase__ , index=lowercase__ ) set_module_tensor_to_device(lowercase__ , lowercase__ , """meta""" , dtype=lowercase__ , value=torch.empty(*param.size() ) )
325
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ : Tuple = logging.get_logger(__name__) lowerCAmelCase_ : List[str] = { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json''', '''google/bigbird-roberta-large''': '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json''', '''google/bigbird-base-trivia-itc''': '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json''', # See all BigBird models at https://huggingface.co/models?filter=big_bird } class UpperCamelCase_ ( a_ ): _A : Any = 'big_bird' def __init__( self , snake_case__=5_03_58 , snake_case__=7_68 , snake_case__=12 , snake_case__=12 , snake_case__=30_72 , snake_case__="gelu_new" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=40_96 , snake_case__=2 , snake_case__=0.02 , snake_case__=1e-12 , snake_case__=True , snake_case__=0 , snake_case__=1 , snake_case__=2 , snake_case__=66 , snake_case__="block_sparse" , snake_case__=True , snake_case__=False , snake_case__=64 , snake_case__=3 , snake_case__=None , **snake_case__ , ) -> List[str]: """simple docstring""" super().__init__( pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , sep_token_id=snake_case__ , **snake_case__ , ) UpperCAmelCase = vocab_size UpperCAmelCase = max_position_embeddings UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = initializer_range UpperCAmelCase = type_vocab_size UpperCAmelCase = layer_norm_eps UpperCAmelCase = use_cache UpperCAmelCase = rescale_embeddings UpperCAmelCase = attention_type UpperCAmelCase = use_bias UpperCAmelCase = block_size UpperCAmelCase = num_random_blocks UpperCAmelCase = classifier_dropout class UpperCamelCase_ ( a_ ): @property def UpperCamelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": UpperCAmelCase = {0: """batch""", 1: """choice""", 2: """sequence"""} else: UpperCAmelCase = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
378
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ : Any = logging.get_logger(__name__) lowerCAmelCase_ : Any = { '''google/canine-s''': '''https://huggingface.co/google/canine-s/resolve/main/config.json''', # See all CANINE models at https://huggingface.co/models?filter=canine } class UpperCamelCase_ ( a_ ): _A : Tuple = 'canine' def __init__( self , snake_case__=7_68 , snake_case__=12 , snake_case__=12 , snake_case__=30_72 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=1_63_84 , snake_case__=16 , snake_case__=0.02 , snake_case__=1e-12 , snake_case__=0 , snake_case__=0xE_0_0_0 , snake_case__=0xE_0_0_1 , snake_case__=4 , snake_case__=4 , snake_case__=8 , snake_case__=1_63_84 , snake_case__=1_28 , **snake_case__ , ) -> int: """simple docstring""" super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) UpperCAmelCase = max_position_embeddings UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = initializer_range UpperCAmelCase = type_vocab_size UpperCAmelCase = layer_norm_eps # Character config: UpperCAmelCase = downsampling_rate UpperCAmelCase = upsampling_kernel_size UpperCAmelCase = num_hash_functions UpperCAmelCase = num_hash_buckets UpperCAmelCase = local_transformer_stride
378
1
from ...processing_utils import ProcessorMixin class snake_case ( UpperCamelCase_ ): lowercase_ = ['image_processor', 'feature_extractor'] lowercase_ = 'TvltImageProcessor' lowercase_ = 'TvltFeatureExtractor' def __init__( self : int , a_ : List[str] , a_ : Dict )-> str: """simple docstring""" super().__init__(image_processor=a_ , feature_extractor=a_ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = image_processor SCREAMING_SNAKE_CASE__ : Any = feature_extractor def __call__( self : Optional[Any] , a_ : int=None , a_ : str=None , a_ : int=None , a_ : Tuple=None , a_ : Tuple=False , a_ : Dict=False , *a_ : Tuple , **a_ : Union[str, Any] , )-> List[str]: """simple docstring""" if images is None and audio is None: raise ValueError('You need to specify either an `images` or `audio` input to process.' ) SCREAMING_SNAKE_CASE__ : Optional[Any] = None if images is not None: SCREAMING_SNAKE_CASE__ : Tuple = self.image_processor(a_ , mask_pixel=a_ , *a_ , **a_ ) if images_mixed is not None: SCREAMING_SNAKE_CASE__ : List[str] = self.image_processor(a_ , is_mixed=a_ , *a_ , **a_ ) if audio is not None: SCREAMING_SNAKE_CASE__ : Tuple = self.feature_extractor( a_ , *a_ , sampling_rate=a_ , mask_audio=a_ , **a_ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = {} if audio is not None: output_dict.update(a_ ) if images is not None: output_dict.update(a_ ) if images_mixed_dict is not None: output_dict.update(a_ ) return output_dict @property def __lowercase( self : Dict )-> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.image_processor.model_input_names SCREAMING_SNAKE_CASE__ : List[str] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
85
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE__ : Optional[Any] = {"configuration_fnet": ["FNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : List[Any] = ["FNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : List[str] = ["FNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Tuple = [ "FNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FNetForMaskedLM", "FNetForMultipleChoice", "FNetForNextSentencePrediction", "FNetForPreTraining", "FNetForQuestionAnswering", "FNetForSequenceClassification", "FNetForTokenClassification", "FNetLayer", "FNetModel", "FNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
85
1
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : int = 1_0_0_0 ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = 2**power lowerCAmelCase : Dict = str(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[int] = list(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[int] = 0 for i in list_num: sum_of_num += int(SCREAMING_SNAKE_CASE ) return sum_of_num if __name__ == "__main__": lowerCAmelCase__ = int(input('''Enter the power of 2: ''').strip()) print('''2 ^ ''', power, ''' = ''', 2**power) lowerCAmelCase__ = solution(power) print('''Sum of the digits is: ''', result)
681
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCAmelCase__ = { '''configuration_efficientformer''': [ '''EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientFormerConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''EfficientFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientFormerForImageClassification''', '''EfficientFormerForImageClassificationWithTeacher''', '''EfficientFormerModel''', '''EfficientFormerPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFEfficientFormerForImageClassification''', '''TFEfficientFormerForImageClassificationWithTeacher''', '''TFEfficientFormerModel''', '''TFEfficientFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
681
1
from heapq import heappop, heappush import numpy as np def _a ( lowercase__ : np.ndarray , lowercase__ : tuple[int, int] , lowercase__ : tuple[int, int] , lowercase__ : bool , ): '''simple docstring''' SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = grid.shape SCREAMING_SNAKE_CASE__ : Optional[Any] = [-1, 1, 0, 0] SCREAMING_SNAKE_CASE__ : Tuple = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = [(0, source)], set() SCREAMING_SNAKE_CASE__ : str = np.full((rows, cols) , np.inf ) SCREAMING_SNAKE_CASE__ : List[Any] = 0 SCREAMING_SNAKE_CASE__ : Dict = np.empty((rows, cols) , dtype=lowercase__ ) SCREAMING_SNAKE_CASE__ : List[Any] = None while queue: ((SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__)) : Optional[Any] = heappop(lowercase__ ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: SCREAMING_SNAKE_CASE__ : Any = [] while (x, y) != source: path.append((x, y) ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = predecessors[x, y] path.append(lowercase__ ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(lowercase__ ) ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: SCREAMING_SNAKE_CASE__ : Optional[Any] = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(lowercase__ , (dist + 1, (nx, ny)) ) SCREAMING_SNAKE_CASE__ : List[str] = dist + 1 SCREAMING_SNAKE_CASE__ : Any = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
85
"""simple docstring""" def A_ ( __lowercase , __lowercase , __lowercase ): if len(__lowercase ) != len(__lowercase ): raise ValueError('The length of profit and weight must be same.' ) if max_weight <= 0: raise ValueError('max_weight must greater than zero.' ) if any(p < 0 for p in profit ): raise ValueError('Profit can not be negative.' ) if any(w < 0 for w in weight ): raise ValueError('Weight can not be negative.' ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. UpperCamelCase_ : int =[p / w for p, w in zip(__lowercase , __lowercase )] # Creating a copy of the list and sorting profit/weight in ascending order UpperCamelCase_ : Optional[int] =sorted(__lowercase ) # declaring useful variables UpperCamelCase_ : Optional[int] =len(__lowercase ) UpperCamelCase_ : Optional[int] =0 UpperCamelCase_ : List[Any] =0 UpperCamelCase_ : Optional[int] =0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight UpperCamelCase_ : List[str] =sorted_profit_by_weight[length - i - 1] UpperCamelCase_ : Optional[Any] =profit_by_weight.index(__lowercase ) UpperCamelCase_ : str =-1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( 'Input profits, weights, and then max_weight (all positive ints) separated by ' 'spaces.' ) __SCREAMING_SNAKE_CASE = [int(x) for x in input('Input profits separated by spaces: ').split()] __SCREAMING_SNAKE_CASE = [int(x) for x in input('Input weights separated by spaces: ').split()] __SCREAMING_SNAKE_CASE = int(input('Max weight allowed: ')) # Function Call calc_profit(profit, weight, max_weight)
357
0
import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE ={ "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/config.json", # See all BART models at https://huggingface.co/models?filter=bart } class UpperCamelCase ( lowercase_ ): lowercase = 'bart' lowercase = ['past_key_values'] lowercase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self ,__UpperCamelCase=5_0265 ,__UpperCamelCase=1024 ,__UpperCamelCase=12 ,__UpperCamelCase=4096 ,__UpperCamelCase=16 ,__UpperCamelCase=12 ,__UpperCamelCase=4096 ,__UpperCamelCase=16 ,__UpperCamelCase=0.0 ,__UpperCamelCase=0.0 ,__UpperCamelCase="gelu" ,__UpperCamelCase=1024 ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.0 ,__UpperCamelCase=0.0 ,__UpperCamelCase=0.02 ,__UpperCamelCase=0.0 ,__UpperCamelCase=False ,__UpperCamelCase=True ,__UpperCamelCase=3 ,__UpperCamelCase=1 ,__UpperCamelCase=0 ,__UpperCamelCase=2 ,__UpperCamelCase=True ,__UpperCamelCase=2 ,__UpperCamelCase=2 ,**__UpperCamelCase ,) -> Tuple: '''simple docstring''' lowercase_ : List[str] = vocab_size lowercase_ : Optional[Any] = max_position_embeddings lowercase_ : Optional[int] = d_model lowercase_ : Tuple = encoder_ffn_dim lowercase_ : Union[str, Any] = encoder_layers lowercase_ : List[str] = encoder_attention_heads lowercase_ : Optional[Any] = decoder_ffn_dim lowercase_ : str = decoder_layers lowercase_ : Any = decoder_attention_heads lowercase_ : Union[str, Any] = dropout lowercase_ : Any = attention_dropout lowercase_ : Any = activation_dropout lowercase_ : Dict = activation_function lowercase_ : List[str] = init_std lowercase_ : Tuple = encoder_layerdrop lowercase_ : str = decoder_layerdrop lowercase_ : Any = classifier_dropout lowercase_ : int = use_cache lowercase_ : List[Any] = encoder_layers lowercase_ : Dict = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=__UpperCamelCase ,pad_token_id=__UpperCamelCase ,bos_token_id=__UpperCamelCase ,eos_token_id=__UpperCamelCase ,is_encoder_decoder=__UpperCamelCase ,decoder_start_token_id=__UpperCamelCase ,forced_eos_token_id=__UpperCamelCase ,**__UpperCamelCase ,) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get('force_bos_token_to_be_generated' ,__UpperCamelCase ): lowercase_ : Optional[Any] = self.bos_token_id warnings.warn( f'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ''' 'The config can simply be saved and uploaded again to be fixed.' ) class UpperCamelCase ( lowercase_ ): @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: lowercase_ : Union[str, Any] = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: lowercase_ : Optional[Any] = {0: 'batch'} lowercase_ : Optional[int] = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: lowercase_ : Optional[int] = {0: 'batch', 1: 'decoder_sequence'} lowercase_ : Optional[Any] = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(__UpperCamelCase ,direction='inputs' ) elif self.task == "causal-lm": # TODO: figure this case out. lowercase_ : Union[str, Any] = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: lowercase_ : Union[str, Any] = self.num_layers for i in range(__UpperCamelCase ): lowercase_ : Union[str, Any] = {0: 'batch', 2: 'past_sequence + sequence'} lowercase_ : List[Any] = {0: 'batch', 2: 'past_sequence + sequence'} else: lowercase_ : List[str] = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ] ) return common_inputs @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: lowercase_ : Union[str, Any] = super().outputs else: lowercase_ : Tuple = super(__UpperCamelCase ,self ).outputs if self.use_past: lowercase_ : Optional[Any] = self.num_layers for i in range(__UpperCamelCase ): lowercase_ : Any = {0: 'batch', 2: 'past_sequence + sequence'} lowercase_ : List[str] = {0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = -1 ,__UpperCamelCase = -1 ,__UpperCamelCase = False ,__UpperCamelCase = None ,) -> Mapping[str, Any]: '''simple docstring''' lowercase_ : List[str] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) # Generate decoder inputs lowercase_ : Optional[Any] = seq_length if not self.use_past else 1 lowercase_ : Optional[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) lowercase_ : Optional[int] = {f'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} lowercase_ : Dict = dict(**__UpperCamelCase ,**__UpperCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch lowercase_ : Optional[int] = common_inputs['input_ids'].shape lowercase_ : str = common_inputs['decoder_input_ids'].shape[1] lowercase_ : List[str] = self.num_attention_heads lowercase_ : Dict = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) lowercase_ : Any = decoder_seq_length + 3 lowercase_ : List[Any] = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) lowercase_ : List[str] = torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(__UpperCamelCase ,__UpperCamelCase )] ,dim=1 ) lowercase_ : Optional[int] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered lowercase_ : str = self.num_layers lowercase_ : Optional[Any] = min(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : Any = max(__UpperCamelCase ,__UpperCamelCase ) - min_num_layers lowercase_ : Union[str, Any] = 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(__UpperCamelCase ): common_inputs["past_key_values"].append( ( torch.zeros(__UpperCamelCase ), torch.zeros(__UpperCamelCase ), torch.zeros(__UpperCamelCase ), torch.zeros(__UpperCamelCase ), ) ) # TODO: test this. lowercase_ : List[Any] = encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(__UpperCamelCase ,__UpperCamelCase ): common_inputs["past_key_values"].append((torch.zeros(__UpperCamelCase ), torch.zeros(__UpperCamelCase )) ) return common_inputs def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = -1 ,__UpperCamelCase = -1 ,__UpperCamelCase = False ,__UpperCamelCase = None ,) -> Mapping[str, Any]: '''simple docstring''' lowercase_ : Optional[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch lowercase_ : Dict = common_inputs['input_ids'].shape # Not using the same length for past_key_values lowercase_ : Union[str, Any] = seqlen + 2 lowercase_ : Tuple = self.num_layers lowercase_ : Union[str, Any] = self.num_attention_heads lowercase_ : Any = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) lowercase_ : List[Any] = common_inputs['attention_mask'].dtype lowercase_ : Optional[Any] = torch.cat( [common_inputs['attention_mask'], torch.ones(__UpperCamelCase ,__UpperCamelCase ,dtype=__UpperCamelCase )] ,dim=1 ) lowercase_ : Any = [ (torch.zeros(__UpperCamelCase ), torch.zeros(__UpperCamelCase )) for _ in range(__UpperCamelCase ) ] return common_inputs def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = -1 ,__UpperCamelCase = -1 ,__UpperCamelCase = False ,__UpperCamelCase = None ,) -> Mapping[str, Any]: '''simple docstring''' lowercase_ : List[Any] = compute_effective_axis_dimension( __UpperCamelCase ,fixed_dimension=OnnxConfig.default_fixed_batch ,num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowercase_ : int = tokenizer.num_special_tokens_to_add(__UpperCamelCase ) lowercase_ : Optional[Any] = compute_effective_axis_dimension( __UpperCamelCase ,fixed_dimension=OnnxConfig.default_fixed_sequence ,num_token_to_add=__UpperCamelCase ) # Generate dummy inputs according to compute batch and sequence lowercase_ : Tuple = [' '.join([tokenizer.unk_token] ) * seq_length] * batch_size lowercase_ : int = dict(tokenizer(__UpperCamelCase ,return_tensors=__UpperCamelCase ) ) return common_inputs def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = -1 ,__UpperCamelCase = -1 ,__UpperCamelCase = False ,__UpperCamelCase = None ,) -> Mapping[str, Any]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: lowercase_ : List[Any] = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __UpperCamelCase ,batch_size=__UpperCamelCase ,seq_length=__UpperCamelCase ,is_pair=__UpperCamelCase ,framework=__UpperCamelCase ) elif self.task == "causal-lm": lowercase_ : List[Any] = self._generate_dummy_inputs_for_causal_lm( __UpperCamelCase ,batch_size=__UpperCamelCase ,seq_length=__UpperCamelCase ,is_pair=__UpperCamelCase ,framework=__UpperCamelCase ) else: lowercase_ : Dict = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __UpperCamelCase ,batch_size=__UpperCamelCase ,seq_length=__UpperCamelCase ,is_pair=__UpperCamelCase ,framework=__UpperCamelCase ) return common_inputs def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> int: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: lowercase_ : Dict = super()._flatten_past_key_values_(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) else: lowercase_ : Tuple = super(__UpperCamelCase ,self )._flatten_past_key_values_( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
716
"""simple docstring""" import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class UpperCamelCase ( unittest.TestCase ): def __init__( self ,__UpperCamelCase ,__UpperCamelCase=13 ,__UpperCamelCase=7 ,__UpperCamelCase=True ,__UpperCamelCase=True ,__UpperCamelCase=True ,__UpperCamelCase=True ,__UpperCamelCase=99 ,__UpperCamelCase=32 ,__UpperCamelCase=5 ,__UpperCamelCase=4 ,__UpperCamelCase=37 ,__UpperCamelCase="gelu" ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.1 ,__UpperCamelCase=512 ,__UpperCamelCase=16 ,__UpperCamelCase=2 ,__UpperCamelCase=0.02 ,__UpperCamelCase=4 ,) -> str: '''simple docstring''' lowercase_ : str = parent lowercase_ : List[str] = batch_size lowercase_ : Optional[Any] = seq_length lowercase_ : str = is_training lowercase_ : Any = use_attention_mask lowercase_ : int = use_token_type_ids lowercase_ : Union[str, Any] = use_labels lowercase_ : int = vocab_size lowercase_ : Union[str, Any] = hidden_size lowercase_ : Optional[int] = num_hidden_layers lowercase_ : Dict = num_attention_heads lowercase_ : Dict = intermediate_size lowercase_ : str = hidden_act lowercase_ : Union[str, Any] = hidden_dropout_prob lowercase_ : Dict = attention_probs_dropout_prob lowercase_ : Union[str, Any] = max_position_embeddings lowercase_ : List[Any] = type_vocab_size lowercase_ : str = type_sequence_label_size lowercase_ : Optional[Any] = initializer_range lowercase_ : Any = num_choices def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowercase_ : List[Any] = None if self.use_attention_mask: lowercase_ : Dict = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ : Optional[Any] = DistilBertConfig( vocab_size=self.vocab_size ,dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,hidden_dim=self.intermediate_size ,hidden_act=self.hidden_act ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,tie_weights_=__UpperCamelCase ,) return config, input_ids, attention_mask def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : Any = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ : str = config_and_inputs lowercase_ : List[str] = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class UpperCamelCase ( lowercase_ , unittest.TestCase ): lowercase = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : Optional[Any] = FlaxDistilBertModelTester(self ) @slow def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' for model_class_name in self.all_model_classes: lowercase_ : Optional[int] = model_class_name.from_pretrained('distilbert-base-uncased' ) lowercase_ : List[str] = model(np.ones((1, 1) ) ) self.assertIsNotNone(__UpperCamelCase ) @require_flax class UpperCamelCase ( unittest.TestCase ): @slow def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : Optional[int] = FlaxDistilBertModel.from_pretrained('distilbert-base-uncased' ) lowercase_ : Tuple = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) lowercase_ : Optional[int] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) lowercase_ : Any = model(__UpperCamelCase ,attention_mask=__UpperCamelCase )[0] lowercase_ : Tuple = (1, 11, 768) self.assertEqual(output.shape ,__UpperCamelCase ) lowercase_ : Union[str, Any] = np.array([[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] ,__UpperCamelCase ,atol=1e-4 ) )
477
0
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def lowerCAmelCase_ ( ): __magic_name__ : Optional[int] ="""https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png""" __magic_name__ : Optional[int] =Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw ).convert("""RGB""" ) return image def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : List[Any] =[] # fmt: off # vision encoder rename_keys.append(("""visual_encoder.cls_token""", """vision_model.embeddings.class_embedding""") ) rename_keys.append(("""visual_encoder.pos_embed""", """vision_model.embeddings.position_embedding""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.weight""", """vision_model.embeddings.patch_embedding.weight""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.bias""", """vision_model.embeddings.patch_embedding.bias""") ) rename_keys.append(("""ln_vision.weight""", """vision_model.post_layernorm.weight""") ) rename_keys.append(("""ln_vision.bias""", """vision_model.post_layernorm.bias""") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F"visual_encoder.blocks.{i}.norm1.weight", F"vision_model.encoder.layers.{i}.layer_norm1.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.norm1.bias", F"vision_model.encoder.layers.{i}.layer_norm1.bias") ) rename_keys.append((F"visual_encoder.blocks.{i}.norm2.weight", F"vision_model.encoder.layers.{i}.layer_norm2.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.norm2.bias", F"vision_model.encoder.layers.{i}.layer_norm2.bias") ) rename_keys.append((F"visual_encoder.blocks.{i}.attn.qkv.weight", F"vision_model.encoder.layers.{i}.self_attn.qkv.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.attn.proj.weight", F"vision_model.encoder.layers.{i}.self_attn.projection.weight",) ) rename_keys.append((F"visual_encoder.blocks.{i}.attn.proj.bias", F"vision_model.encoder.layers.{i}.self_attn.projection.bias") ) rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc1.weight", F"vision_model.encoder.layers.{i}.mlp.fc1.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc1.bias", F"vision_model.encoder.layers.{i}.mlp.fc1.bias") ) rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc2.weight", F"vision_model.encoder.layers.{i}.mlp.fc2.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc2.bias", F"vision_model.encoder.layers.{i}.mlp.fc2.bias") ) # QFormer rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.weight""", """qformer.layernorm.weight""") ) rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.bias""", """qformer.layernorm.bias""") ) # fmt: on return rename_keys def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : List[str] =dct.pop(lowerCamelCase ) __magic_name__ : Optional[int] =val def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases __magic_name__ : List[Any] =state_dict.pop(F"visual_encoder.blocks.{i}.attn.q_bias" ) __magic_name__ : List[Any] =state_dict.pop(F"visual_encoder.blocks.{i}.attn.v_bias" ) # next, set bias in the state dict __magic_name__ : List[Any] =torch.cat((q_bias, torch.zeros_like(lowerCamelCase , requires_grad=lowerCamelCase ), v_bias) ) __magic_name__ : int =qkv_bias def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): __magic_name__ : Dict =364 if """coco""" in model_name else 224 __magic_name__ : Dict =BlipaVisionConfig(image_size=lowerCamelCase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: __magic_name__ : List[Any] =OPTConfig.from_pretrained("""facebook/opt-2.7b""" , eos_token_id=lowerCamelCase ).to_dict() elif "opt-6.7b" in model_name: __magic_name__ : int =OPTConfig.from_pretrained("""facebook/opt-6.7b""" , eos_token_id=lowerCamelCase ).to_dict() elif "t5-xl" in model_name: __magic_name__ : Dict =TaConfig.from_pretrained("""google/flan-t5-xl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: __magic_name__ : Union[str, Any] =TaConfig.from_pretrained("""google/flan-t5-xxl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() __magic_name__ : Dict =BlipaConfig(vision_config=lowerCamelCase , text_config=lowerCamelCase ) return config, image_size @torch.no_grad() def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=None , lowerCamelCase=False ): __magic_name__ : List[Any] =( AutoTokenizer.from_pretrained("""facebook/opt-2.7b""" ) if """opt""" in model_name else AutoTokenizer.from_pretrained("""google/flan-t5-xl""" ) ) __magic_name__ : List[str] =tokenizer("""\n""" , add_special_tokens=lowerCamelCase ).input_ids[0] __magic_name__ , __magic_name__ : Dict =get_blipa_config(lowerCamelCase , eos_token_id=lowerCamelCase ) __magic_name__ : Union[str, Any] =BlipaForConditionalGeneration(lowerCamelCase ).eval() __magic_name__ : List[Any] ={ """blip2-opt-2.7b""": ("""blip2_opt""", """pretrain_opt2.7b"""), """blip2-opt-6.7b""": ("""blip2_opt""", """pretrain_opt6.7b"""), """blip2-opt-2.7b-coco""": ("""blip2_opt""", """caption_coco_opt2.7b"""), """blip2-opt-6.7b-coco""": ("""blip2_opt""", """caption_coco_opt6.7b"""), """blip2-flan-t5-xl""": ("""blip2_t5""", """pretrain_flant5xl"""), """blip2-flan-t5-xl-coco""": ("""blip2_t5""", """caption_coco_flant5xl"""), """blip2-flan-t5-xxl""": ("""blip2_t5""", """pretrain_flant5xxl"""), } __magic_name__ , __magic_name__ : int =model_name_to_original[model_name] # load original model print("""Loading original model...""" ) __magic_name__ : List[str] ="""cuda""" if torch.cuda.is_available() else """cpu""" __magic_name__ , __magic_name__ , __magic_name__ : str =load_model_and_preprocess( name=lowerCamelCase , model_type=lowerCamelCase , is_eval=lowerCamelCase , device=lowerCamelCase ) original_model.eval() print("""Done!""" ) # update state dict keys __magic_name__ : Tuple =original_model.state_dict() __magic_name__ : str =create_rename_keys(lowerCamelCase ) for src, dest in rename_keys: rename_key(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): __magic_name__ : Optional[Any] =state_dict.pop(lowerCamelCase ) if key.startswith("""Qformer.bert""" ): __magic_name__ : Tuple =key.replace("""Qformer.bert""" , """qformer""" ) if "attention.self" in key: __magic_name__ : str =key.replace("""self""" , """attention""" ) if "opt_proj" in key: __magic_name__ : Optional[int] =key.replace("""opt_proj""" , """language_projection""" ) if "t5_proj" in key: __magic_name__ : Tuple =key.replace("""t5_proj""" , """language_projection""" ) if key.startswith("""opt""" ): __magic_name__ : Union[str, Any] =key.replace("""opt""" , """language""" ) if key.startswith("""t5""" ): __magic_name__ : List[str] =key.replace("""t5""" , """language""" ) __magic_name__ : List[str] =val # read in qv biases read_in_q_v_bias(lowerCamelCase , lowerCamelCase ) __magic_name__ , __magic_name__ : int =hf_model.load_state_dict(lowerCamelCase , strict=lowerCamelCase ) assert len(lowerCamelCase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] __magic_name__ : int =load_demo_image() __magic_name__ : Tuple =vis_processors["""eval"""](lowerCamelCase ).unsqueeze(0 ).to(lowerCamelCase ) __magic_name__ : List[Any] =tokenizer(["""\n"""] , return_tensors="""pt""" ).input_ids.to(lowerCamelCase ) # create processor __magic_name__ : Union[str, Any] =BlipImageProcessor( size={"""height""": image_size, """width""": image_size} , image_mean=lowerCamelCase , image_std=lowerCamelCase ) __magic_name__ : Optional[int] =BlipaProcessor(image_processor=lowerCamelCase , tokenizer=lowerCamelCase ) __magic_name__ : Optional[Any] =processor(images=lowerCamelCase , return_tensors="""pt""" ).pixel_values.to(lowerCamelCase ) # make sure processor creates exact same pixel values assert torch.allclose(lowerCamelCase , lowerCamelCase ) original_model.to(lowerCamelCase ) hf_model.to(lowerCamelCase ) with torch.no_grad(): if "opt" in model_name: __magic_name__ : List[Any] =original_model({"""image""": original_pixel_values, """text_input""": [""""""]} ).logits __magic_name__ : List[str] =hf_model(lowerCamelCase , lowerCamelCase ).logits else: __magic_name__ : Union[str, Any] =original_model( {"""image""": original_pixel_values, """text_input""": ["""\n"""], """text_output""": ["""\n"""]} ).logits __magic_name__ : Any =input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -100 ) __magic_name__ : List[str] =hf_model(lowerCamelCase , lowerCamelCase , labels=lowerCamelCase ).logits assert original_logits.shape == logits.shape print("""First values of original logits:""" , original_logits[0, :3, :3] ) print("""First values of HF logits:""" , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": __magic_name__ : Tuple =torch.tensor( [[-4_1.5_8_5_0, -4.4_4_4_0, -8.9_9_2_2], [-4_7.4_3_2_2, -5.9_1_4_3, -1.7_3_4_0]] , device=lowerCamelCase ) assert torch.allclose(logits[0, :3, :3] , lowerCamelCase , atol=1E-4 ) elif model_name == "blip2-flan-t5-xl-coco": __magic_name__ : Union[str, Any] =torch.tensor( [[-5_7.0_1_0_9, -9.8_9_6_7, -1_2.6_2_8_0], [-6_8.6_5_7_8, -1_2.7_1_9_1, -1_0.5_0_6_5]] , device=lowerCamelCase ) else: # cast to same type __magic_name__ : Any =logits.dtype assert torch.allclose(original_logits.to(lowerCamelCase ) , lowerCamelCase , atol=1E-2 ) print("""Looks ok!""" ) print("""Generating a caption...""" ) __magic_name__ : Dict ="""""" __magic_name__ : List[Any] =tokenizer(lowerCamelCase , return_tensors="""pt""" ).input_ids.to(lowerCamelCase ) __magic_name__ : List[str] =original_model.generate({"""image""": original_pixel_values} ) __magic_name__ : int =hf_model.generate( lowerCamelCase , lowerCamelCase , do_sample=lowerCamelCase , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print("""Original generation:""" , lowerCamelCase ) __magic_name__ : List[Any] =input_ids.shape[1] __magic_name__ : int =processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=lowerCamelCase ) __magic_name__ : int =[text.strip() for text in output_text] print("""HF generation:""" , lowerCamelCase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(lowerCamelCase ) hf_model.save_pretrained(lowerCamelCase ) if push_to_hub: processor.push_to_hub(F"nielsr/{model_name}" ) hf_model.push_to_hub(F"nielsr/{model_name}" ) if __name__ == "__main__": UpperCAmelCase_ : Dict = argparse.ArgumentParser() UpperCAmelCase_ : Dict = [ "blip2-opt-2.7b", "blip2-opt-6.7b", "blip2-opt-2.7b-coco", "blip2-opt-6.7b-coco", "blip2-flan-t5-xl", "blip2-flan-t5-xl-coco", "blip2-flan-t5-xxl", ] parser.add_argument( "--model_name", default="blip2-opt-2.7b", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) UpperCAmelCase_ : Optional[int] = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
21
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class __A ( tf.keras.layers.Layer ): def __init__( self :Optional[int] , __snake_case :Dict[str, int] , __snake_case :List[str] , __snake_case :int = None , __snake_case :int = None ): '''simple docstring''' super().__init__() __magic_name__ : Optional[int] =pad_token_id __magic_name__ : List[Any] =max_length __magic_name__ : Dict =vocab __magic_name__ : int =merges __magic_name__ : Optional[int] =BytePairTokenizer(__snake_case , __snake_case , sequence_length=__snake_case ) @classmethod def A__ ( cls :List[Any] , __snake_case :GPTaTokenizer , *__snake_case :int , **__snake_case :Any ): '''simple docstring''' __magic_name__ : List[Any] =[""" """.join(__snake_case ) for m in tokenizer.bpe_ranks.keys()] __magic_name__ : str =tokenizer.get_vocab() return cls(__snake_case , __snake_case , *__snake_case , **__snake_case ) @classmethod def A__ ( cls :Dict , __snake_case :Union[str, os.PathLike] , *__snake_case :Union[str, Any] , **__snake_case :int ): '''simple docstring''' __magic_name__ : Dict =GPTaTokenizer.from_pretrained(__snake_case , *__snake_case , **__snake_case ) return cls.from_tokenizer(__snake_case , *__snake_case , **__snake_case ) @classmethod def A__ ( cls :Optional[Any] , __snake_case :List[Any] ): '''simple docstring''' return cls(**__snake_case ) def A__ ( self :Union[str, Any] ): '''simple docstring''' return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def A__ ( self :List[Any] , __snake_case :Dict , __snake_case :int = None ): '''simple docstring''' __magic_name__ : Optional[Any] =self.tf_tokenizer(__snake_case ) __magic_name__ : Tuple =tf.ones_like(__snake_case ) if self.pad_token_id is not None: # pad the tokens up to max length __magic_name__ : Tuple =max_length if max_length is not None else self.max_length if max_length is not None: __magic_name__ , __magic_name__ : Tuple =pad_model_inputs( __snake_case , max_seq_length=__snake_case , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
21
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class lowercase__ : '''simple docstring''' _snake_case = BlenderbotConfig _snake_case = {} _snake_case = """gelu""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=1_3 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=9_9 , lowerCamelCase__=3_2 , lowerCamelCase__=2 , lowerCamelCase__=4 , lowerCamelCase__=3_7 , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=2_0 , lowerCamelCase__=2 , lowerCamelCase__=1 , lowerCamelCase__=0 , ): '''simple docstring''' UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = eos_token_id UpperCamelCase = pad_token_id UpperCamelCase = bos_token_id def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCamelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCamelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCamelCase = prepare_blenderbot_inputs_dict(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return config, inputs_dict def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' UpperCamelCase = TFBlenderbotModel(config=lowerCAmelCase__ ).get_decoder() UpperCamelCase = inputs_dict["input_ids"] UpperCamelCase = input_ids[:1, :] UpperCamelCase = inputs_dict["attention_mask"][:1, :] UpperCamelCase = inputs_dict["head_mask"] UpperCamelCase = 1 # first forward pass UpperCamelCase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , head_mask=lowerCAmelCase__ , use_cache=lowerCAmelCase__ ) UpperCamelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCamelCase = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCamelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCamelCase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )[0] UpperCamelCase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCamelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCamelCase = output_from_no_past[:, -3:, random_slice_idx] UpperCamelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowerCAmelCase__ , lowerCAmelCase__ , rtol=1e-3 ) def __snake_case ( _UpperCAmelCase : Dict, _UpperCAmelCase : Any, _UpperCAmelCase : Optional[Any], _UpperCAmelCase : Any=None, _UpperCAmelCase : Union[str, Any]=None, _UpperCAmelCase : Union[str, Any]=None, _UpperCAmelCase : Tuple=None, _UpperCAmelCase : Dict=None, ): if attention_mask is None: UpperCamelCase = tf.cast(tf.math.not_equal(_lowercase, config.pad_token_id), tf.inta) if decoder_attention_mask is None: UpperCamelCase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.inta), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id), tf.inta), ], axis=-1, ) if head_mask is None: UpperCamelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads)) if decoder_head_mask is None: UpperCamelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads)) if cross_attn_head_mask is None: UpperCamelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads)) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class lowercase__ ( a__, a__, unittest.TestCase ): '''simple docstring''' _snake_case = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () _snake_case = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () _snake_case = ( { """conversational""": TFBlenderbotForConditionalGeneration, """feature-extraction""": TFBlenderbotModel, """summarization""": TFBlenderbotForConditionalGeneration, """text2text-generation""": TFBlenderbotForConditionalGeneration, """translation""": TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) _snake_case = True _snake_case = False _snake_case = False def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = TFBlenderbotModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=lowerCAmelCase__ ) def UpperCAmelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCAmelCase__ ) @require_tokenizers @require_tf class lowercase__ ( unittest.TestCase ): '''simple docstring''' _snake_case = ["""My friends are cool but they eat too many carbs."""] _snake_case = """facebook/blenderbot-400M-distill""" @cached_property def UpperCAmelCase ( self ): '''simple docstring''' return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = self.tokenizer(self.src_text , return_tensors='''tf''' ) UpperCamelCase = self.model.generate( model_inputs.input_ids , ) UpperCamelCase = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=lowerCAmelCase__ )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
709
'''simple docstring''' def __snake_case ( _UpperCAmelCase : Optional[int]): UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = { '''^''': 3, '''*''': 2, '''/''': 2, '''%''': 2, '''+''': 1, '''-''': 1, } # Priority of each operator UpperCamelCase = len(_UpperCAmelCase) if (len(_UpperCAmelCase) > 7) else 7 # Print table header for output print( '''Symbol'''.center(8), '''Stack'''.center(_UpperCAmelCase), '''Postfix'''.center(_UpperCAmelCase), sep=''' | ''', ) print('''-''' * (print_width * 3 + 7)) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(_UpperCAmelCase) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(_UpperCAmelCase) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop()) # Pop stack & add the content to Postfix stack.pop() else: if len(_UpperCAmelCase) == 0: stack.append(_UpperCAmelCase) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(_UpperCAmelCase) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop()) # pop stack & add to Postfix stack.append(_UpperCAmelCase) # push x to stack print( x.center(8), (''''''.join(_UpperCAmelCase)).ljust(_UpperCAmelCase), (''''''.join(_UpperCAmelCase)).ljust(_UpperCAmelCase), sep=''' | ''', ) # Output in tabular format while len(_UpperCAmelCase) > 0: # while stack is not empty post_fix.append(stack.pop()) # pop stack & add to Postfix print( ''' '''.center(8), (''''''.join(_UpperCAmelCase)).ljust(_UpperCAmelCase), (''''''.join(_UpperCAmelCase)).ljust(_UpperCAmelCase), sep=''' | ''', ) # Output in tabular format return "".join(_UpperCAmelCase) # return Postfix as str def __snake_case ( _UpperCAmelCase : str): UpperCamelCase = list(infix[::-1]) # reverse the infix equation for i in range(len(_UpperCAmelCase)): if infix[i] == "(": UpperCamelCase = ''')''' # change "(" to ")" elif infix[i] == ")": UpperCamelCase = '''(''' # change ")" to "(" return (infix_2_postfix(''''''.join(_UpperCAmelCase)))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": snake_case_ : str = input('\nEnter an Infix Equation = ') # Input an Infix equation snake_case_ : Union[str, Any] = ''.join(Infix.split()) # Remove spaces from the input print('\n\t', Infix, '(Infix) -> ', infix_2_prefix(Infix), '(Prefix)')
350
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __a: Tuple = { """configuration_vision_text_dual_encoder""": ["""VisionTextDualEncoderConfig"""], """processing_vision_text_dual_encoder""": ["""VisionTextDualEncoderProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a: List[Any] = ["""VisionTextDualEncoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a: List[str] = ["""FlaxVisionTextDualEncoderModel"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a: str = ["""TFVisionTextDualEncoderModel"""] if TYPE_CHECKING: from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel else: import sys __a: Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
152
'''simple docstring''' from collections.abc import Sequence def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase = False ): if not arr: return 0 lowercase__ : Tuple = 0 if allow_empty_subarrays else float('''-inf''' ) lowercase__ : int = 0.0 for num in arr: lowercase__ : Tuple = max(0 if allow_empty_subarrays else num , curr_sum + num ) lowercase__ : int = max(UpperCAmelCase , UpperCAmelCase ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() __a: List[str] = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F'{max_subarray_sum(nums) = }')
152
1
'''simple docstring''' import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter SCREAMING_SNAKE_CASE_: List[Any] =True except ImportError: SCREAMING_SNAKE_CASE_: Tuple =False SCREAMING_SNAKE_CASE_: Dict =logging.get_logger(__name__) # pylint: disable=invalid-name def lowerCAmelCase_ ( snake_case_ : Namespace ) -> Tuple: '''simple docstring''' return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class __A ( UpperCamelCase__ ): @staticmethod def _lowercase (__a : ArgumentParser ): UpperCAmelCase_ = parser.add_parser("add-new-model" ) add_new_model_parser.add_argument("--testing" , action="store_true" , help="If in testing mode." ) add_new_model_parser.add_argument("--testing_file" , type=__a , help="Configuration file on which to run." ) add_new_model_parser.add_argument( "--path" , type=__a , help="Path to cookiecutter. Should only be used for testing purposes." ) add_new_model_parser.set_defaults(func=__a ) def __init__(self : int , __a : bool , __a : str , __a : int=None , *__a : Union[str, Any] ): UpperCAmelCase_ = testing UpperCAmelCase_ = testing_file UpperCAmelCase_ = path def _lowercase (self : Optional[Any] ): warnings.warn( "The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. " "It is not actively maintained anymore, so might give a result that won't pass all tests and quality " "checks, you should use `transformers-cli add-new-model-like` instead." ) if not _has_cookiecutter: raise ImportError( "Model creation dependencies are required to use the `add_new_model` command. Install them by running " "the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n" ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory UpperCAmelCase_ = [directory for directory in os.listdir() if "cookiecutter-template-" == directory[:22]] if len(__a ) > 0: raise ValueError( "Several directories starting with `cookiecutter-template-` in current working directory. " "Please clean your directory by removing all folders starting with `cookiecutter-template-` or " "change your working directory." ) UpperCAmelCase_ = ( Path(__a ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) UpperCAmelCase_ = path_to_transformer_root / "templates" / "adding_a_new_model" # Execute cookiecutter if not self._testing: cookiecutter(str(__a ) ) else: with open(self._testing_file , "r" ) as configuration_file: UpperCAmelCase_ = json.load(__a ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) , no_input=__a , extra_context=__a , ) UpperCAmelCase_ = [directory for directory in os.listdir() if "cookiecutter-template-" in directory[:22]][0] # Retrieve configuration with open(directory + "/configuration.json" , "r" ) as configuration_file: UpperCAmelCase_ = json.load(__a ) UpperCAmelCase_ = configuration["lowercase_modelname"] UpperCAmelCase_ = configuration["generate_tensorflow_pytorch_and_flax"] os.remove(f"""{directory}/configuration.json""" ) UpperCAmelCase_ = "PyTorch" in generate_tensorflow_pytorch_and_flax UpperCAmelCase_ = "TensorFlow" in generate_tensorflow_pytorch_and_flax UpperCAmelCase_ = "Flax" in generate_tensorflow_pytorch_and_flax UpperCAmelCase_ = f"""{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}""" os.makedirs(__a , exist_ok=__a ) os.makedirs(f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}""" , exist_ok=__a ) # Tests require submodules as they have parent imports with open(f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py""" , "w" ): pass shutil.move( f"""{directory}/__init__.py""" , f"""{model_dir}/__init__.py""" , ) shutil.move( f"""{directory}/configuration_{lowercase_model_name}.py""" , f"""{model_dir}/configuration_{lowercase_model_name}.py""" , ) def remove_copy_lines(__a : Optional[Any] ): with open(__a , "r" ) as f: UpperCAmelCase_ = f.readlines() with open(__a , "w" ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(__a ) if output_pytorch: if not self._testing: remove_copy_lines(f"""{directory}/modeling_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_{lowercase_model_name}.py""" ) if output_tensorflow: if not self._testing: remove_copy_lines(f"""{directory}/modeling_tf_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_tf_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_tf_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_tf_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_tf_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_tf_{lowercase_model_name}.py""" ) if output_flax: if not self._testing: remove_copy_lines(f"""{directory}/modeling_flax_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_flax_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_flax_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_flax_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_flax_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_flax_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/{lowercase_model_name}.md""" , f"""{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md""" , ) shutil.move( f"""{directory}/tokenization_{lowercase_model_name}.py""" , f"""{model_dir}/tokenization_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/tokenization_fast_{lowercase_model_name}.py""" , f"""{model_dir}/tokenization_{lowercase_model_name}_fast.py""" , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(__a : str , __a : str , __a : List[str] ): # Create temp file UpperCAmelCase_ , UpperCAmelCase_ = mkstemp() UpperCAmelCase_ = False with fdopen(__a , "w" ) as new_file: with open(__a ) as old_file: for line in old_file: new_file.write(__a ) if line_to_copy_below in line: UpperCAmelCase_ = True for line_to_copy in lines_to_copy: new_file.write(__a ) if not line_found: raise ValueError(f"""Line {line_to_copy_below} was not found in file.""" ) # Copy the file permissions from the old file to the new file copymode(__a , __a ) # Remove original file remove(__a ) # Move new file move(__a , __a ) def skip_units(__a : List[str] ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(__a : Optional[Any] ): with open(__a ) as datafile: UpperCAmelCase_ = [] UpperCAmelCase_ = False UpperCAmelCase_ = False for line in datafile: if "# To replace in: " in line and "##" not in line: UpperCAmelCase_ = line.split("\"" )[1] UpperCAmelCase_ = skip_units(__a ) elif "# Below: " in line and "##" not in line: UpperCAmelCase_ = line.split("\"" )[1] UpperCAmelCase_ = skip_units(__a ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(__a , __a , __a ) UpperCAmelCase_ = [] elif "# Replace with" in line and "##" not in line: UpperCAmelCase_ = [] elif "##" not in line: lines_to_copy.append(__a ) remove(__a ) replace_in_files(f"""{directory}/to_replace_{lowercase_model_name}.py""" ) os.rmdir(__a )
719
'''simple docstring''' from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) SCREAMING_SNAKE_CASE_: Optional[Any] =2_99_79_24_58 # Symbols SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_: Optional[Any] =symbols('ct x y z') def lowerCAmelCase_ ( snake_case_ : float ) -> float: '''simple docstring''' if velocity > c: raise ValueError("Speed must not exceed light speed 299,792,458 [m/s]!" ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError("Speed must be greater than or equal to 1!" ) return velocity / c def lowerCAmelCase_ ( snake_case_ : float ) -> float: '''simple docstring''' return 1 / sqrt(1 - beta(snake_case_ ) ** 2 ) def lowerCAmelCase_ ( snake_case_ : float ) -> np.ndarray: '''simple docstring''' return np.array( [ [gamma(snake_case_ ), -gamma(snake_case_ ) * beta(snake_case_ ), 0, 0], [-gamma(snake_case_ ) * beta(snake_case_ ), gamma(snake_case_ ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def lowerCAmelCase_ ( snake_case_ : float , snake_case_ : np.ndarray | None = None ) -> np.ndarray: '''simple docstring''' if event is None: UpperCAmelCase_ = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(snake_case_ ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: SCREAMING_SNAKE_CASE_: Optional[Any] =transform(29_97_92_45) print('Example of four vector: ') print(f"ct' = {four_vector[0]}") print(f"x' = {four_vector[1]}") print(f"y' = {four_vector[2]}") print(f"z' = {four_vector[3]}") # Substitute symbols with numerical values SCREAMING_SNAKE_CASE_: Any ={ct: c, x: 1, y: 1, z: 1} SCREAMING_SNAKE_CASE_: List[Any] =[four_vector[i].subs(sub_dict) for i in range(4)] print(f"\n{numerical_vector}")
415
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase__ : int = { 'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Tuple = [ 'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST', 'PegasusXForConditionalGeneration', 'PegasusXModel', 'PegasusXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys UpperCAmelCase__ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
223
from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def lowerCamelCase__ ( __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : Optional[str] = None ): """simple docstring""" if version.parse(hfh.__version__ ).release < version.parse("0.11.0" ).release: # old versions of hfh don't url-encode the file path lowerCAmelCase_ = quote(__lowerCAmelCase ) return hfh.hf_hub_url(__lowerCAmelCase , __lowerCAmelCase , repo_type="dataset" , revision=__lowerCAmelCase )
290
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a_ : Any = { 'configuration_xlm_roberta': [ 'XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMRobertaConfig', 'XLMRobertaOnnxConfig', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : List[str] = ['XLMRobertaTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Union[str, Any] = ['XLMRobertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Union[str, Any] = [ 'XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMRobertaForCausalLM', 'XLMRobertaForMaskedLM', 'XLMRobertaForMultipleChoice', 'XLMRobertaForQuestionAnswering', 'XLMRobertaForSequenceClassification', 'XLMRobertaForTokenClassification', 'XLMRobertaModel', 'XLMRobertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Dict = [ 'TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLMRobertaForCausalLM', 'TFXLMRobertaForMaskedLM', 'TFXLMRobertaForMultipleChoice', 'TFXLMRobertaForQuestionAnswering', 'TFXLMRobertaForSequenceClassification', 'TFXLMRobertaForTokenClassification', 'TFXLMRobertaModel', 'TFXLMRobertaPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : List[Any] = [ 'FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxXLMRobertaForMaskedLM', 'FlaxXLMRobertaForCausalLM', 'FlaxXLMRobertaForMultipleChoice', 'FlaxXLMRobertaForQuestionAnswering', 'FlaxXLMRobertaForSequenceClassification', 'FlaxXLMRobertaForTokenClassification', 'FlaxXLMRobertaModel', 'FlaxXLMRobertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys a_ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
678
from __future__ import annotations from scipy.special import comb # type: ignore class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self , A ) -> Tuple: '''simple docstring''' __magic_name__ = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. __magic_name__ = len(A ) - 1 def __A ( self , A ) -> list[float]: '''simple docstring''' assert 0 <= t <= 1, "Time t must be between 0 and 1." __magic_name__ = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , A ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(A ) , 5 ) == 1 return output_values def __A ( self , A ) -> tuple[float, float]: '''simple docstring''' assert 0 <= t <= 1, "Time t must be between 0 and 1." __magic_name__ = self.basis_function(A ) __magic_name__ = 0.0 __magic_name__ = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def __A ( self , A = 0.01 ) -> Tuple: '''simple docstring''' from matplotlib import pyplot as plt # type: ignore __magic_name__ = [] # x coordinates of points to plot __magic_name__ = [] # y coordinates of points to plot __magic_name__ = 0.0 while t <= 1: __magic_name__ = self.bezier_curve_function(A ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size __magic_name__ = [i[0] for i in self.list_of_points] __magic_name__ = [i[1] for i in self.list_of_points] plt.plot( A , A , color='''blue''' , label='''Curve of Degree ''' + str(self.degree ) , ) plt.scatter(A , A , color='''red''' , label='''Control Points''' ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
678
1
import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor _snake_case : List[str] = logging.get_logger(__name__) class a (_lowerCAmelCase ): """simple docstring""" def __init__( self : List[str] , *lowerCamelCase : str , **lowerCamelCase : Union[str, Any] ) -> None: warnings.warn( "The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DeiTImageProcessor instead." , lowerCamelCase , ) super().__init__(*lowerCamelCase , **lowerCamelCase )
81
from __future__ import annotations def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) ->Optional[int]: # Checks if the entire collection has been sorted if len(lowerCAmelCase_ ) <= 1 or n <= 1: return insert_next(lowerCAmelCase_ , n - 1 ) rec_insertion_sort(lowerCAmelCase_ , n - 1 ) def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) ->Dict: # Checks order between adjacent elements if index >= len(lowerCAmelCase_ ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order UpperCAmelCase , UpperCAmelCase = ( collection[index], collection[index - 1], ) insert_next(lowerCAmelCase_ , index + 1 ) if __name__ == "__main__": __a = input("""Enter integers separated by spaces: """) __a = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
377
0
'''simple docstring''' import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": __A : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( '--original_config_file', default=None, type=str, help='The YAML config file corresponding to the original architecture.', ) parser.add_argument( '--num_in_channels', default=None, type=int, help='The number of input channels. If `None` number of input channels will be automatically inferred.', ) parser.add_argument( '--scheduler_type', default='pndm', type=str, help='Type of scheduler to use. Should be one of [\'pndm\', \'lms\', \'ddim\', \'euler\', \'euler-ancestral\', \'dpm\']', ) parser.add_argument( '--pipeline_type', default=None, type=str, help=( 'The pipeline type. One of \'FrozenOpenCLIPEmbedder\', \'FrozenCLIPEmbedder\', \'PaintByExample\'' '. If `None` pipeline will be automatically inferred.' ), ) parser.add_argument( '--image_size', default=None, type=int, help=( 'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2' ' Base. Use 768 for Stable Diffusion v2.' ), ) parser.add_argument( '--prediction_type', default=None, type=str, help=( 'The prediction type that the model was trained on. Use \'epsilon\' for Stable Diffusion v1.X and Stable' ' Diffusion v2 Base. Use \'v_prediction\' for Stable Diffusion v2.' ), ) parser.add_argument( '--extract_ema', action='store_true', help=( 'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights' ' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield' ' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.' ), ) parser.add_argument( '--upcast_attention', action='store_true', help=( 'Whether the attention computation should always be upcasted. This is necessary when running stable' ' diffusion 2.1.' ), ) parser.add_argument( '--from_safetensors', action='store_true', help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.', ) parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') parser.add_argument( '--stable_unclip', type=str, default=None, required=False, help='Set if this is a stable unCLIP model. One of \'txt2img\' or \'img2img\'.', ) parser.add_argument( '--stable_unclip_prior', type=str, default=None, required=False, help='Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.', ) parser.add_argument( '--clip_stats_path', type=str, help='Path to the clip stats file. Only required if the stable unclip model\'s config specifies `model.params.noise_aug_config.params.clip_stats_path`.', required=False, ) parser.add_argument( '--controlnet', action='store_true', default=None, help='Set flag if this is a controlnet checkpoint.' ) parser.add_argument('--half', action='store_true', help='Save weights in half precision.') parser.add_argument( '--vae_path', type=str, default=None, required=False, help='Set to a path, hub id to an already converted vae to not convert it again.', ) __A : Optional[int] = parser.parse_args() __A : Tuple = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
714
'''simple docstring''' # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def UpperCAmelCase ( lowerCamelCase_ :Tuple , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :List[Any]=0 ): '''simple docstring''' # Format the message. if name is None: snake_case_ : Tuple = None else: snake_case_ : Optional[Any] = """.""" * max(0 , spaces - 2 ) + """# {:""" + str(50 - spaces ) + """s}""" snake_case_ : Optional[Any] = fmt.format(lowerCamelCase_ ) # Print and recurse (if needed). if isinstance(lowerCamelCase_ , lowerCamelCase_ ): if msg is not None: print(lowerCamelCase_ ) for k in val.keys(): recursive_print(lowerCamelCase_ , val[k] , spaces + 2 ) elif isinstance(lowerCamelCase_ , torch.Tensor ): print(lowerCamelCase_ , """:""" , val.size() ) else: print(lowerCamelCase_ , """:""" , lowerCamelCase_ ) def UpperCAmelCase ( lowerCamelCase_ :Optional[int] , lowerCamelCase_ :List[str] , lowerCamelCase_ :List[Any] , lowerCamelCase_ :List[str] , lowerCamelCase_ :int ): '''simple docstring''' # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. snake_case_ : Any = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] snake_case_ : List[str] = (num_heads, hidden_size, num_splits) + input_shape[1:] snake_case_ : List[Any] = param.view(*lowerCamelCase_ ) snake_case_ : Tuple = param.transpose(0 , 2 ) snake_case_ : List[str] = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] snake_case_ : Tuple = (num_heads, num_splits, hidden_size) + input_shape[1:] snake_case_ : int = param.view(*lowerCamelCase_ ) snake_case_ : str = param.transpose(0 , 1 ).contiguous() snake_case_ : int = param.view(*lowerCamelCase_ ) return param def UpperCAmelCase ( lowerCamelCase_ :List[str] , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :Tuple ): '''simple docstring''' # The converted output model. snake_case_ : Tuple = {} # old versions did not store training args snake_case_ : Optional[Any] = input_state_dict.get("""args""" , lowerCamelCase_ ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) snake_case_ : Optional[int] = ds_args.padded_vocab_size snake_case_ : str = ds_args.max_position_embeddings snake_case_ : Tuple = ds_args.hidden_size snake_case_ : List[str] = ds_args.num_layers snake_case_ : Union[str, Any] = ds_args.num_attention_heads snake_case_ : Tuple = ds_args.ffn_hidden_size # pprint(config) # The number of heads. snake_case_ : int = config.n_head # The hidden_size per head. snake_case_ : Any = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): snake_case_ : Tuple = input_state_dict["""checkpoint_version"""] else: snake_case_ : Dict = 0.0 # The model. snake_case_ : Optional[Any] = input_state_dict["""model"""] # The language model. snake_case_ : Optional[Any] = model["""language_model"""] # The embeddings. snake_case_ : int = lm["""embedding"""] # The word embeddings. snake_case_ : Any = embeddings["""word_embeddings"""]["""weight"""] # Truncate the embedding table to vocab_size rows. snake_case_ : Any = word_embeddings[: config.vocab_size, :] snake_case_ : Union[str, Any] = word_embeddings # The position embeddings. snake_case_ : Tuple = embeddings["""position_embeddings"""]["""weight"""] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] snake_case_ : List[str] = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( F'''pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match''' ) # Store the position embeddings. snake_case_ : List[str] = pos_embeddings # The transformer. snake_case_ : str = lm["""transformer"""] if """transformer""" in lm.keys() else lm["""encoder"""] # The regex to extract layer names. snake_case_ : Union[str, Any] = re.compile(R"""layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)""" ) # The simple map of names for "automated" rules. snake_case_ : Tuple = { """attention.dense""": """.attn.c_proj.""", """self_attention.dense""": """.attn.c_proj.""", """mlp.dense_h_to_4h""": """.mlp.c_fc.""", """mlp.dense_4h_to_h""": """.mlp.c_proj.""", } # Extract the layers. for key, val in transformer.items(): # Match the name. snake_case_ : List[Any] = layer_re.match(lowerCamelCase_ ) # Stop if that's not a layer if m is None: break # The index of the layer. snake_case_ : Any = int(m.group(1 ) ) # The name of the operation. snake_case_ : Any = m.group(2 ) # Is it a weight or a bias? snake_case_ : List[str] = m.group(3 ) # The name of the layer. snake_case_ : List[Any] = F'''transformer.h.{layer_idx}''' # For layernorm(s), simply store the layer norm. if op_name.endswith("""layernorm""" ): snake_case_ : str = """ln_1""" if op_name.startswith("""input""" ) else """ln_2""" snake_case_ : Optional[int] = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. snake_case_ : int = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , lowerCamelCase_ , lowerCamelCase_ ) snake_case_ : Any = causal_mask # Insert a "dummy" tensor for masked_bias. snake_case_ : List[str] = torch.tensor(-1E4 , dtype=torch.floataa ) snake_case_ : Optional[Any] = masked_bias snake_case_ : Optional[Any] = fix_query_key_value_ordering(lowerCamelCase_ , lowerCamelCase_ , 3 , lowerCamelCase_ , lowerCamelCase_ ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. snake_case_ : Any = out_val.transpose(0 , 1 ).contiguous() # Store. snake_case_ : int = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": snake_case_ : Dict = fix_query_key_value_ordering(lowerCamelCase_ , lowerCamelCase_ , 3 , lowerCamelCase_ , lowerCamelCase_ ) # Store. No change of shape. snake_case_ : Tuple = out_val # Transpose the weights. elif weight_or_bias == "weight": snake_case_ : str = megatron_to_transformers[op_name] snake_case_ : Union[str, Any] = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": snake_case_ : str = megatron_to_transformers[op_name] snake_case_ : List[str] = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. snake_case_ : str = transformer["""final_layernorm.weight"""] snake_case_ : int = transformer["""final_layernorm.bias"""] # For LM head, transformers' wants the matrix to weight embeddings. snake_case_ : Optional[int] = word_embeddings # It should be done! return output_state_dict def UpperCAmelCase ( ): '''simple docstring''' # Create the argument parser. snake_case_ : str = argparse.ArgumentParser() parser.add_argument("""--print-checkpoint-structure""" , action="""store_true""" ) parser.add_argument( """path_to_checkpoint""" , type=lowerCamelCase_ , help="""Path to the checkpoint file (.zip archive or direct .pt file)""" , ) parser.add_argument( """--config_file""" , default="""""" , type=lowerCamelCase_ , help="""An optional config json file describing the pre-trained model.""" , ) snake_case_ : Tuple = parser.parse_args() # Extract the basename. snake_case_ : List[str] = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(F'''Extracting PyTorch state dictionary from {args.path_to_checkpoint}''' ) if args.path_to_checkpoint.endswith(""".zip""" ): with zipfile.ZipFile(args.path_to_checkpoint , """r""" ) as checkpoint: with checkpoint.open("""release/mp_rank_00/model_optim_rng.pt""" ) as pytorch_dict: snake_case_ : Dict = torch.load(lowerCamelCase_ , map_location="""cpu""" ) else: snake_case_ : Optional[Any] = torch.load(args.path_to_checkpoint , map_location="""cpu""" ) snake_case_ : Optional[int] = input_state_dict.get("""args""" , lowerCamelCase_ ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: snake_case_ : Tuple = """gelu_fast""" elif ds_args.openai_gelu: snake_case_ : int = """gelu_new""" else: snake_case_ : Optional[Any] = """gelu""" else: # in the very early days this used to be "gelu_new" snake_case_ : int = """gelu_new""" # Spell out all parameters in case the defaults change. snake_case_ : int = GPTaConfig( vocab_size=5_02_57 , n_positions=10_24 , n_embd=10_24 , n_layer=24 , n_head=16 , n_inner=40_96 , activation_function=lowerCamelCase_ , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1E-5 , initializer_range=0.02 , summary_type="""cls_index""" , summary_use_proj=lowerCamelCase_ , summary_activation=lowerCamelCase_ , summary_proj_to_labels=lowerCamelCase_ , summary_first_dropout=0.1 , scale_attn_weights=lowerCamelCase_ , use_cache=lowerCamelCase_ , bos_token_id=5_02_56 , eos_token_id=5_02_56 , ) else: snake_case_ : int = GPTaConfig.from_json_file(args.config_file ) snake_case_ : Optional[int] = ["""GPT2LMHeadModel"""] # Convert. print("""Converting""" ) snake_case_ : Optional[Any] = convert_megatron_checkpoint(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(lowerCamelCase_ , lowerCamelCase_ ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: snake_case_ : str = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": snake_case_ : List[str] = """gpt2""" elif tokenizer_type == "PretrainedFromHF": snake_case_ : str = ds_args.tokenizer_name_or_path else: raise ValueError(F'''Unrecognized tokenizer_type {tokenizer_type}''' ) else: snake_case_ : List[str] = """gpt2""" snake_case_ : Union[str, Any] = AutoTokenizer.from_pretrained(lowerCamelCase_ ) snake_case_ : int = type(lowerCamelCase_ ).__name__ snake_case_ : Union[str, Any] = tokenizer_class # Store the config to file. print("""Saving config""" ) config.save_pretrained(lowerCamelCase_ ) # Save tokenizer based on args print(F'''Adding {tokenizer_class} tokenizer files''' ) tokenizer.save_pretrained(lowerCamelCase_ ) # Store the state_dict to file. snake_case_ : Optional[Any] = os.path.join(lowerCamelCase_ , """pytorch_model.bin""" ) print(F'''Saving checkpoint to "{output_checkpoint_file}"''' ) torch.save(lowerCamelCase_ , lowerCamelCase_ ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
267
0
import random def lowerCamelCase__ ( snake_case_ : List[Any] , snake_case_ : Union[str, Any] , snake_case_ : Optional[Any] ) -> List[str]: __snake_case = a[left_index] __snake_case = left_index + 1 for j in range(left_index + 1 , snake_case_ ): if a[j] < pivot: __snake_case = a[i], a[j] i += 1 __snake_case = a[i - 1], a[left_index] return i - 1 def lowerCamelCase__ ( snake_case_ : Union[str, Any] , snake_case_ : str , snake_case_ : Optional[int] ) -> List[str]: if left < right: __snake_case = random.randint(snake_case_ , right - 1 ) __snake_case = ( a[left], a[pivot], ) # switches the pivot with the left most bound __snake_case = partition(snake_case_ , snake_case_ , snake_case_ ) quick_sort_random( snake_case_ , snake_case_ , snake_case_ ) # recursive quicksort to the left of the pivot point quick_sort_random( snake_case_ , pivot_index + 1 , snake_case_ ) # recursive quicksort to the right of the pivot point def lowerCamelCase__ ( ) -> Any: __snake_case = input('''Enter numbers separated by a comma:\n''' ).strip() __snake_case = [int(snake_case_ ) for item in user_input.split(''',''' )] quick_sort_random(snake_case_ , 0 , len(snake_case_ ) ) print(snake_case_ ) if __name__ == "__main__": main()
592
from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class lowerCamelCase_ ( lowerCamelCase ): a__ = '''''' a__ = '''hf-legacy''' # "hf://"" is reserved for hffs def __init__( self , __lowerCAmelCase = None , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" super().__init__(self , **__lowerCAmelCase ) __magic_name__ :List[Any] = repo_info __magic_name__ :Dict = token __magic_name__ :Optional[Any] = None def A ( self ): """simple docstring""" if self.dir_cache is None: __magic_name__ :Any = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes __magic_name__ :Optional[int] = { '''name''': hf_file.rfilename, '''size''': None, '''type''': '''file''', } self.dir_cache.update( { str(__lowerCAmelCase ): {'''name''': str(__lowerCAmelCase ), '''size''': None, '''type''': '''directory'''} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def A ( self , __lowerCAmelCase , __lowerCAmelCase = "rb" , **__lowerCAmelCase , ): """simple docstring""" if not isinstance(self.repo_info , __lowerCAmelCase ): raise NotImplementedError(F'''Open is only implemented for dataset repositories, but got {self.repo_info}''' ) __magic_name__ :Union[str, Any] = hf_hub_url(self.repo_info.id , __lowerCAmelCase , revision=self.repo_info.sha ) return fsspec.open( __lowerCAmelCase , mode=__lowerCAmelCase , headers=get_authentication_headers_for_url(__lowerCAmelCase , use_auth_token=self.token ) , client_kwargs={'''trust_env''': True} , ).open() def A ( self , __lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" self._get_dirs() __magic_name__ :str = self._strip_protocol(__lowerCAmelCase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(__lowerCAmelCase ) def A ( self , __lowerCAmelCase , __lowerCAmelCase=False , **__lowerCAmelCase ): """simple docstring""" self._get_dirs() __magic_name__ :Union[str, Any] = PurePosixPath(path.strip('''/''' ) ) __magic_name__ :Dict = {} for p, f in self.dir_cache.items(): __magic_name__ :int = PurePosixPath(p.strip('''/''' ) ) __magic_name__ :Tuple = p.parent if root == path: __magic_name__ :Optional[Any] = f __magic_name__ :List[Any] = list(paths.values() ) if detail: return out else: return sorted(f['''name'''] for f in out )
0
0
def lowercase ( _a ) -> list: UpperCAmelCase_: Optional[Any] = len(_a ) for i in range(1 ,_a ): UpperCAmelCase_: List[str] = collection[i] UpperCAmelCase_: List[str] = 0 UpperCAmelCase_: Optional[Any] = i - 1 while low <= high: UpperCAmelCase_: Union[str, Any] = (low + high) // 2 if val < collection[mid]: UpperCAmelCase_: Optional[Any] = mid - 1 else: UpperCAmelCase_: Tuple = mid + 1 for j in range(_a ,_a ,-1 ): UpperCAmelCase_: Optional[int] = collection[j - 1] UpperCAmelCase_: str = val return collection if __name__ == "__main__": _lowerCAmelCase = input("""Enter numbers separated by a comma:\n""").strip() _lowerCAmelCase = [int(item) for item in user_input.split(""",""")] print(binary_insertion_sort(unsorted))
306
import os def lowercase ( _a = "matrix.txt" ) -> int: with open(os.path.join(os.path.dirname(_a ) ,_a ) ) as in_file: UpperCAmelCase_: str = in_file.read() UpperCAmelCase_: Union[str, Any] = [[int(_a ) for cell in row.split("," )] for row in data.strip().splitlines()] UpperCAmelCase_: List[Any] = [[0 for cell in row] for row in grid] UpperCAmelCase_: Any = len(grid[0] ) UpperCAmelCase_: int = [[0 for i in range(_a )] for j in range(_a )] UpperCAmelCase_: int = grid[0][0] for i in range(1 ,_a ): UpperCAmelCase_: List[Any] = grid[0][i] + dp[0][i - 1] for i in range(1 ,_a ): UpperCAmelCase_: Any = grid[i][0] + dp[i - 1][0] for i in range(1 ,_a ): for j in range(1 ,_a ): UpperCAmelCase_: Union[str, Any] = grid[i][j] + min(dp[i - 1][j] ,dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(F"""{solution() = }""")
306
1
"""simple docstring""" def snake_case_ ( A_ : List[str] ): '''simple docstring''' _lowerCamelCase : Tuple = 0 _lowerCamelCase : Union[str, Any] = len(A_ ) for i in range(n - 1 ): for j in range(i + 1, A_ ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def snake_case_ ( A_ : List[str] ): '''simple docstring''' if len(A_ ) <= 1: return arr, 0 _lowerCamelCase : int = len(A_ ) // 2 _lowerCamelCase : int = arr[0:mid] _lowerCamelCase : int = arr[mid:] _lowerCamelCase , _lowerCamelCase : str = count_inversions_recursive(A_ ) _lowerCamelCase , _lowerCamelCase : int = count_inversions_recursive(A_ ) _lowerCamelCase , _lowerCamelCase : Optional[Any] = _count_cross_inversions(A_, A_ ) _lowerCamelCase : Optional[Any] = inversion_p + inversions_q + cross_inversions return c, num_inversions def snake_case_ ( A_ : int, A_ : Dict ): '''simple docstring''' _lowerCamelCase : Tuple = [] _lowerCamelCase : List[str] = 0 while i < len(A_ ) and j < len(A_ ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(A_ ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(A_ ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : Tuple = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) _lowerCamelCase : List[str] = count_inversions_bf(A_ ) _lowerCamelCase , _lowerCamelCase : List[str] = count_inversions_recursive(A_ ) assert num_inversions_bf == num_inversions_recursive == 8 print('''number of inversions = ''', A_ ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() _lowerCamelCase : List[Any] = count_inversions_bf(A_ ) _lowerCamelCase , _lowerCamelCase : List[Any] = count_inversions_recursive(A_ ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''', A_ ) # an empty list should also have zero inversions _lowerCamelCase : str = [] _lowerCamelCase : Optional[int] = count_inversions_bf(A_ ) _lowerCamelCase , _lowerCamelCase : Any = count_inversions_recursive(A_ ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''', A_ ) if __name__ == "__main__": main()
83
"""simple docstring""" import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class lowercase ( unittest.TestCase ): def UpperCAmelCase (self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase = logging.get_logger() # the current default level is logging.WARNING lowerCAmelCase = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() ,logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() ,logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() ,logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() ,logging.get_verbosity() ) # restore to the original level logging.set_verbosity(SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase (self : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowerCAmelCase = logging.get_verbosity() lowerCAmelCase = logging.get_logger('''transformers.models.bart.tokenization_bart''' ) lowerCAmelCase = '''Testing 1, 2, 3''' # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(SCREAMING_SNAKE_CASE_ ) as cl: logger.warning(SCREAMING_SNAKE_CASE_ ) self.assertEqual(cl.out ,msg + '''\n''' ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(SCREAMING_SNAKE_CASE_ ) as cl: logger.warning(SCREAMING_SNAKE_CASE_ ) self.assertEqual(cl.out ,'''''' ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(SCREAMING_SNAKE_CASE_ ) as cl: logger.warning(SCREAMING_SNAKE_CASE_ ) self.assertEqual(cl.out ,msg + '''\n''' ) # restore to the original level logging.set_verbosity(SCREAMING_SNAKE_CASE_ ) @mockenv(TRANSFORMERS_VERBOSITY='''error''' ) def UpperCAmelCase (self : Any ) -> str: """simple docstring""" transformers.utils.logging._reset_library_root_logger() # this action activates the env var lowerCAmelCase = logging.get_logger('''transformers.models.bart.tokenization_bart''' ) lowerCAmelCase = os.getenv('''TRANSFORMERS_VERBOSITY''' ,SCREAMING_SNAKE_CASE_ ) lowerCAmelCase = logging.log_levels[env_level_str] lowerCAmelCase = logging.get_verbosity() self.assertEqual( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,F"""TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}""" ,) # restore to the original level lowerCAmelCase = '''''' transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY='''super-error''' ) def UpperCAmelCase (self : List[Any] ) -> Tuple: """simple docstring""" transformers.utils.logging._reset_library_root_logger() lowerCAmelCase = logging.logging.getLogger() with CaptureLogger(SCREAMING_SNAKE_CASE_ ) as cl: # this action activates the env var logging.get_logger('''transformers.models.bart.tokenization_bart''' ) self.assertIn('''Unknown option TRANSFORMERS_VERBOSITY=super-error''' ,cl.out ) # no need to restore as nothing was changed def UpperCAmelCase (self : Dict ) -> Any: """simple docstring""" transformers.utils.logging._reset_library_root_logger() lowerCAmelCase = logging.get_logger('''transformers.models.bart.tokenization_bart''' ) lowerCAmelCase = '''Testing 1, 2, 3''' with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='''1''' ): # nothing should be logged as env var disables this method with CaptureLogger(SCREAMING_SNAKE_CASE_ ) as cl: logger.warning_advice(SCREAMING_SNAKE_CASE_ ) self.assertEqual(cl.out ,'''''' ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='''''' ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(SCREAMING_SNAKE_CASE_ ) as cl: logger.warning_advice(SCREAMING_SNAKE_CASE_ ) self.assertEqual(cl.out ,msg + '''\n''' ) def __magic_name__ ( ) -> List[Any]: '''simple docstring''' disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
535
0
import torch from diffusers import DiffusionPipeline class a_ ( a ): def __init__( self : Optional[Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[Any] ): """simple docstring""" super().__init__() self.register_modules(unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ ) def __call__( self : Optional[int] ): """simple docstring""" snake_case : Any = torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) snake_case : Dict = 1 snake_case : Optional[Any] = self.unet(UpperCAmelCase__ , UpperCAmelCase__ ).sample snake_case : List[Any] = self.scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ).prev_sample snake_case : List[Any] = scheduler_output - scheduler_output + torch.ones_like(UpperCAmelCase__ ) return result
84
import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def a_ ( __magic_name__ ) -> Tuple: """simple docstring""" snake_case , snake_case : Any = image.size snake_case , snake_case : List[str] = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 snake_case : List[str] = image.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) snake_case : Dict = np.array(__magic_name__ ).astype(np.floataa ) / 255.0 snake_case : Optional[Any] = image[None].transpose(0 , 3 , 1 , 2 ) snake_case : Tuple = torch.from_numpy(__magic_name__ ) return 2.0 * image - 1.0 class a_ ( a ): def __init__( self : Optional[Any] , UpperCAmelCase__ : VQModel , UpperCAmelCase__ : UNetaDModel , UpperCAmelCase__ : Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ] , ): """simple docstring""" super().__init__() self.register_modules(vqvae=UpperCAmelCase__ , unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ ) @torch.no_grad() def __call__( self : Any , UpperCAmelCase__ : Union[torch.Tensor, PIL.Image.Image] = None , UpperCAmelCase__ : Optional[int] = 1 , UpperCAmelCase__ : Optional[int] = 100 , UpperCAmelCase__ : Optional[float] = 0.0 , UpperCAmelCase__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCAmelCase__ : Optional[str] = "pil" , UpperCAmelCase__ : bool = True , ): """simple docstring""" if isinstance(UpperCAmelCase__ , PIL.Image.Image ): snake_case : Optional[int] = 1 elif isinstance(UpperCAmelCase__ , torch.Tensor ): snake_case : Any = image.shape[0] else: raise ValueError(F"`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(UpperCAmelCase__ )}" ) if isinstance(UpperCAmelCase__ , PIL.Image.Image ): snake_case : Optional[Any] = preprocess(UpperCAmelCase__ ) snake_case , snake_case : Union[str, Any] = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image snake_case : List[Any] = (batch_size, self.unet.config.in_channels // 2, height, width) snake_case : str = next(self.unet.parameters() ).dtype snake_case : Dict = randn_tensor(UpperCAmelCase__ , generator=UpperCAmelCase__ , device=self.device , dtype=UpperCAmelCase__ ) snake_case : Any = image.to(device=self.device , dtype=UpperCAmelCase__ ) # set timesteps and move to the correct device self.scheduler.set_timesteps(UpperCAmelCase__ , device=self.device ) snake_case : Optional[Any] = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler snake_case : Union[str, Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] snake_case : Any = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) snake_case : Optional[Any] = {} if accepts_eta: snake_case : Dict = eta for t in self.progress_bar(UpperCAmelCase__ ): # concat latents and low resolution image in the channel dimension. snake_case : Optional[int] = torch.cat([latents, image] , dim=1 ) snake_case : str = self.scheduler.scale_model_input(UpperCAmelCase__ , UpperCAmelCase__ ) # predict the noise residual snake_case : int = self.unet(UpperCAmelCase__ , UpperCAmelCase__ ).sample # compute the previous noisy sample x_t -> x_t-1 snake_case : Any = self.scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ ).prev_sample # decode the image latents with the VQVAE snake_case : Optional[int] = self.vqvae.decode(UpperCAmelCase__ ).sample snake_case : int = torch.clamp(UpperCAmelCase__ , -1.0 , 1.0 ) snake_case : Dict = image / 2 + 0.5 snake_case : int = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": snake_case : Any = self.numpy_to_pil(UpperCAmelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCAmelCase__ )
84
1
"""simple docstring""" import requests A__ : Tuple = '''''' # <-- Put your OpenWeatherMap appid here! A__ : Optional[Any] = '''https://api.openweathermap.org/data/2.5/''' def _snake_case ( lowerCamelCase__ : int = "Chicago" , lowerCamelCase__ : Optional[int] = APPID ) -> Tuple: return requests.get(URL_BASE + "weather" , params=locals() ).json() def _snake_case ( lowerCamelCase__ : Optional[int] = "Kolkata, India" , lowerCamelCase__ : Optional[Any] = APPID ) -> Optional[int]: return requests.get(URL_BASE + "forecast" , params=locals() ).json() def _snake_case ( lowerCamelCase__ : List[Any] = 55.68 , lowerCamelCase__ : Tuple = 12.57 , lowerCamelCase__ : Tuple = APPID ) -> List[str]: return requests.get(URL_BASE + "onecall" , params=locals() ).json() if __name__ == "__main__": from pprint import pprint while True: A__ : Optional[Any] = input('Enter a location:').strip() if location: pprint(current_weather(location)) else: break
153
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class A_ ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE__ ( self : str ): lowercase = XLMRobertaModel.from_pretrained("""xlm-roberta-base""" ) lowercase = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] ) # The dog is cute and lives in the garden house lowercase = torch.Size((1, 12, 7_68) ) # batch_size, sequence_length, embedding_vector_dim lowercase = torch.tensor( [[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): lowercase = model(snake_case__ )["""last_hidden_state"""].detach() self.assertEqual(output.shape , snake_case__ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , snake_case__ , atol=1E-3 ) ) @slow def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): lowercase = XLMRobertaModel.from_pretrained("""xlm-roberta-large""" ) lowercase = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] ) # The dog is cute and lives in the garden house lowercase = torch.Size((1, 12, 10_24) ) # batch_size, sequence_length, embedding_vector_dim lowercase = torch.tensor( [[-0.0_699, -0.0_318, 0.0_705, -0.1_241, 0.0_999, -0.0_520, 0.1_004, -0.1_838, -0.4_704, 0.1_437, 0.0_821, 0.0_126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): lowercase = model(snake_case__ )["""last_hidden_state"""].detach() self.assertEqual(output.shape , snake_case__ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , snake_case__ , atol=1E-3 ) )
428
0
"""simple docstring""" from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class _lowerCamelCase (__lowerCamelCase ): _snake_case = ["input_features", "attention_mask"] def __init__( self : int , lowerCamelCase_ : List[str]=8_0 , lowerCamelCase_ : Tuple=1_6_0_0_0 , lowerCamelCase_ : Union[str, Any]=0.0 , lowerCamelCase_ : List[Any]=1_0 , lowerCamelCase_ : List[str]=2_5 , lowerCamelCase_ : List[Any]="hamming_window" , lowerCamelCase_ : Tuple=3_2_7_6_8.0 , lowerCamelCase_ : int=0.97 , lowerCamelCase_ : Optional[int]=1.0 , lowerCamelCase_ : Optional[Any]=True , lowerCamelCase_ : Union[str, Any]=True , lowerCamelCase_ : Optional[int]=False , **lowerCamelCase_ : Optional[Any] , ): """simple docstring""" super().__init__(feature_size=lowerCamelCase_ , sampling_rate=lowerCamelCase_ , padding_value=lowerCamelCase_ , **lowerCamelCase_ ) _lowercase : Dict = feature_size _lowercase : Dict = sampling_rate _lowercase : Tuple = padding_value _lowercase : int = hop_length _lowercase : Any = win_length _lowercase : Union[str, Any] = frame_signal_scale _lowercase : Tuple = preemphasis_coeff _lowercase : Tuple = mel_floor _lowercase : Tuple = normalize_means _lowercase : List[Any] = normalize_vars _lowercase : List[str] = win_function _lowercase : int = return_attention_mask _lowercase : Optional[Any] = win_length * sampling_rate // 1_0_0_0 _lowercase : Tuple = hop_length * sampling_rate // 1_0_0_0 _lowercase : str = optimal_fft_length(self.sample_size ) _lowercase : Dict = (self.n_fft // 2) + 1 def __UpperCAmelCase ( self : List[str] , lowerCamelCase_ : np.array ): """simple docstring""" if self.win_function == "hamming_window": _lowercase : List[Any] = window_function(window_length=self.sample_size , name=self.win_function , periodic=lowerCamelCase_ ) else: _lowercase : Union[str, Any] = window_function(window_length=self.sample_size , name=self.win_function ) _lowercase : Tuple = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , ) _lowercase : Tuple = spectrogram( one_waveform * self.frame_signal_scale , window=lowerCamelCase_ , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=lowerCamelCase_ , preemphasis=self.preemphasis_coeff , mel_filters=lowerCamelCase_ , mel_floor=self.mel_floor , log_mel='log' , ) return msfc_features.T def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : Dict , lowerCamelCase_ : Tuple ): """simple docstring""" if self.normalize_means: _lowercase : Optional[int] = x[:input_length].mean(axis=0 ) _lowercase : int = np.subtract(lowerCamelCase_ , lowerCamelCase_ ) if self.normalize_vars: _lowercase : int = x[:input_length].std(axis=0 ) _lowercase : Optional[Any] = np.divide(lowerCamelCase_ , lowerCamelCase_ ) if input_length < x.shape[0]: _lowercase : Dict = padding_value # make sure array is in float32 _lowercase : Tuple = x.astype(np.floataa ) return x def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : List[np.ndarray] , lowerCamelCase_ : Optional[np.ndarray] = None ): """simple docstring""" _lowercase : Dict = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(lowerCamelCase_ , lowerCamelCase_ , self.padding_value ) for x, n in zip(lowerCamelCase_ , lowerCamelCase_ )] def __call__( self : Dict , lowerCamelCase_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , lowerCamelCase_ : Union[bool, str, PaddingStrategy] = False , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : Optional[bool] = None , lowerCamelCase_ : Optional[Union[str, TensorType]] = None , lowerCamelCase_ : Optional[int] = None , **lowerCamelCase_ : Optional[int] , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' F''' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with''' F''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the ``sampling_rate`` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) _lowercase : Optional[Any] = isinstance(lowerCamelCase_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) _lowercase : Optional[int] = is_batched_numpy or ( isinstance(lowerCamelCase_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _lowercase : str = [np.asarray(lowerCamelCase_ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCamelCase_ , np.ndarray ): _lowercase : Tuple = np.asarray(lowerCamelCase_ , dtype=np.floataa ) elif isinstance(lowerCamelCase_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _lowercase : Optional[int] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _lowercase : str = [raw_speech] # extract fbank features _lowercase : Optional[Any] = [self._extract_mfsc_features(lowerCamelCase_ ) for one_waveform in raw_speech] # convert into correct format for padding _lowercase : Optional[int] = BatchFeature({'input_features': features} ) _lowercase : Tuple = self.pad( lowerCamelCase_ , padding=lowerCamelCase_ , max_length=lowerCamelCase_ , truncation=lowerCamelCase_ , pad_to_multiple_of=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , **lowerCamelCase_ , ) # make sure list is in array format _lowercase : Dict = padded_inputs.get('input_features' ) if isinstance(input_features[0] , lowerCamelCase_ ): _lowercase : List[str] = [np.asarray(lowerCamelCase_ , dtype=np.floataa ) for feature in input_features] _lowercase : List[Any] = padded_inputs.get('attention_mask' ) if attention_mask is not None: _lowercase : Union[str, Any] = [np.asarray(lowerCamelCase_ , dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: _lowercase : int = ( np.array(lowerCamelCase_ , dtype=np.intaa ) if self._get_padding_strategies(lowerCamelCase_ , max_length=lowerCamelCase_ ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) _lowercase : List[Any] = self.normalize( padded_inputs['input_features'] , attention_mask=lowerCamelCase_ ) if return_tensors is not None: _lowercase : Union[str, Any] = padded_inputs.convert_to_tensors(lowerCamelCase_ ) return padded_inputs
716
"""simple docstring""" from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class _lowerCamelCase (__lowerCamelCase ): _snake_case = ["input_features", "attention_mask"] def __init__( self : int , lowerCamelCase_ : List[str]=8_0 , lowerCamelCase_ : Tuple=1_6_0_0_0 , lowerCamelCase_ : Union[str, Any]=0.0 , lowerCamelCase_ : List[Any]=1_0 , lowerCamelCase_ : List[str]=2_5 , lowerCamelCase_ : List[Any]="hamming_window" , lowerCamelCase_ : Tuple=3_2768.0 , lowerCamelCase_ : int=0.97 , lowerCamelCase_ : Optional[int]=1.0 , lowerCamelCase_ : Optional[Any]=True , lowerCamelCase_ : Union[str, Any]=True , lowerCamelCase_ : Optional[int]=False , **lowerCamelCase_ : Optional[Any] , ): """simple docstring""" super().__init__(feature_size=lowerCamelCase_ , sampling_rate=lowerCamelCase_ , padding_value=lowerCamelCase_ , **lowerCamelCase_ ) _lowercase : Dict = feature_size _lowercase : Dict = sampling_rate _lowercase : Tuple = padding_value _lowercase : int = hop_length _lowercase : Any = win_length _lowercase : Union[str, Any] = frame_signal_scale _lowercase : Tuple = preemphasis_coeff _lowercase : Tuple = mel_floor _lowercase : Tuple = normalize_means _lowercase : List[Any] = normalize_vars _lowercase : List[str] = win_function _lowercase : int = return_attention_mask _lowercase : Optional[Any] = win_length * sampling_rate // 1_0_0_0 _lowercase : Tuple = hop_length * sampling_rate // 1_0_0_0 _lowercase : str = optimal_fft_length(self.sample_size ) _lowercase : Dict = (self.n_fft // 2) + 1 def __UpperCAmelCase ( self : List[str] , lowerCamelCase_ : np.array ): """simple docstring""" if self.win_function == "hamming_window": _lowercase : List[Any] = window_function(window_length=self.sample_size , name=self.win_function , periodic=lowerCamelCase_ ) else: _lowercase : Union[str, Any] = window_function(window_length=self.sample_size , name=self.win_function ) _lowercase : Tuple = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , ) _lowercase : Tuple = spectrogram( one_waveform * self.frame_signal_scale , window=lowerCamelCase_ , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=lowerCamelCase_ , preemphasis=self.preemphasis_coeff , mel_filters=lowerCamelCase_ , mel_floor=self.mel_floor , log_mel='log' , ) return msfc_features.T def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : Dict , lowerCamelCase_ : Tuple ): """simple docstring""" if self.normalize_means: _lowercase : Optional[int] = x[:input_length].mean(axis=0 ) _lowercase : int = np.subtract(lowerCamelCase_ , lowerCamelCase_ ) if self.normalize_vars: _lowercase : int = x[:input_length].std(axis=0 ) _lowercase : Optional[Any] = np.divide(lowerCamelCase_ , lowerCamelCase_ ) if input_length < x.shape[0]: _lowercase : Dict = padding_value # make sure array is in float32 _lowercase : Tuple = x.astype(np.floataa ) return x def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : List[np.ndarray] , lowerCamelCase_ : Optional[np.ndarray] = None ): """simple docstring""" _lowercase : Dict = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(lowerCamelCase_ , lowerCamelCase_ , self.padding_value ) for x, n in zip(lowerCamelCase_ , lowerCamelCase_ )] def __call__( self : Dict , lowerCamelCase_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , lowerCamelCase_ : Union[bool, str, PaddingStrategy] = False , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : Optional[bool] = None , lowerCamelCase_ : Optional[Union[str, TensorType]] = None , lowerCamelCase_ : Optional[int] = None , **lowerCamelCase_ : Optional[int] , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' F''' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with''' F''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the ``sampling_rate`` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) _lowercase : Optional[Any] = isinstance(lowerCamelCase_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) _lowercase : Optional[int] = is_batched_numpy or ( isinstance(lowerCamelCase_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _lowercase : str = [np.asarray(lowerCamelCase_ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCamelCase_ , np.ndarray ): _lowercase : Tuple = np.asarray(lowerCamelCase_ , dtype=np.floataa ) elif isinstance(lowerCamelCase_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _lowercase : Optional[int] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _lowercase : str = [raw_speech] # extract fbank features _lowercase : Optional[Any] = [self._extract_mfsc_features(lowerCamelCase_ ) for one_waveform in raw_speech] # convert into correct format for padding _lowercase : Optional[int] = BatchFeature({'input_features': features} ) _lowercase : Tuple = self.pad( lowerCamelCase_ , padding=lowerCamelCase_ , max_length=lowerCamelCase_ , truncation=lowerCamelCase_ , pad_to_multiple_of=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , **lowerCamelCase_ , ) # make sure list is in array format _lowercase : Dict = padded_inputs.get('input_features' ) if isinstance(input_features[0] , lowerCamelCase_ ): _lowercase : List[str] = [np.asarray(lowerCamelCase_ , dtype=np.floataa ) for feature in input_features] _lowercase : List[Any] = padded_inputs.get('attention_mask' ) if attention_mask is not None: _lowercase : Union[str, Any] = [np.asarray(lowerCamelCase_ , dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: _lowercase : int = ( np.array(lowerCamelCase_ , dtype=np.intaa ) if self._get_padding_strategies(lowerCamelCase_ , max_length=lowerCamelCase_ ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) _lowercase : List[Any] = self.normalize( padded_inputs['input_features'] , attention_mask=lowerCamelCase_ ) if return_tensors is not None: _lowercase : Union[str, Any] = padded_inputs.convert_to_tensors(lowerCamelCase_ ) return padded_inputs
283
0
"""simple docstring""" import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class lowerCamelCase_( A__ ): '''simple docstring''' def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = False , **lowerCamelCase__ , ): super().__init__(features=lowerCamelCase__ , cache_dir=lowerCamelCase__ , keep_in_memory=lowerCamelCase__ , **lowerCamelCase__ ) _lowerCamelCase = Sql( cache_dir=lowerCamelCase__ , features=lowerCamelCase__ , sql=lowerCamelCase__ , con=lowerCamelCase__ , **lowerCamelCase__ , ) def snake_case__ ( self ): _lowerCamelCase = None _lowerCamelCase = None _lowerCamelCase = None _lowerCamelCase = None self.builder.download_and_prepare( download_config=lowerCamelCase__ , download_mode=lowerCamelCase__ , verification_mode=lowerCamelCase__ , base_path=lowerCamelCase__ , ) # Build dataset for splits _lowerCamelCase = self.builder.as_dataset( split='''train''' , verification_mode=lowerCamelCase__ , in_memory=self.keep_in_memory ) return dataset class lowerCamelCase_: '''simple docstring''' def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , **lowerCamelCase__ , ): if num_proc is not None and num_proc <= 0: raise ValueError(F"""num_proc {num_proc} must be an integer > 0.""" ) _lowerCamelCase = dataset _lowerCamelCase = name _lowerCamelCase = con _lowerCamelCase = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE _lowerCamelCase = num_proc _lowerCamelCase = to_sql_kwargs def snake_case__ ( self ): _lowerCamelCase = self.to_sql_kwargs.pop('''sql''' , lowerCamelCase__ ) _lowerCamelCase = self.to_sql_kwargs.pop('''con''' , lowerCamelCase__ ) _lowerCamelCase = self.to_sql_kwargs.pop('''index''' , lowerCamelCase__ ) _lowerCamelCase = self._write(index=lowerCamelCase__ , **self.to_sql_kwargs ) return written def snake_case__ ( self , lowerCamelCase__ ): _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = args _lowerCamelCase = {**to_sql_kwargs, '''if_exists''': '''append'''} if offset > 0 else to_sql_kwargs _lowerCamelCase = query_table( table=self.dataset.data , key=slice(lowerCamelCase__ , offset + self.batch_size ) , indices=self.dataset._indices , ) _lowerCamelCase = batch.to_pandas() _lowerCamelCase = df.to_sql(self.name , self.con , index=lowerCamelCase__ , **lowerCamelCase__ ) return num_rows or len(lowerCamelCase__ ) def snake_case__ ( self , lowerCamelCase__ , **lowerCamelCase__ ): _lowerCamelCase = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: _lowerCamelCase , _lowerCamelCase = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , lowerCamelCase__ , lowerCamelCase__ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += num_rows return written
661
"""simple docstring""" from __future__ import annotations __SCREAMING_SNAKE_CASE : Dict = 1.6_0_2_1e-1_9 # units = C def lowerCAmelCase_( lowercase_ : float , lowercase_ : float , lowercase_ : float , ) -> tuple[str, float]: if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif conductivity < 0: raise ValueError('''Conductivity cannot be negative''' ) elif electron_conc < 0: raise ValueError('''Electron concentration cannot be negative''' ) elif mobility < 0: raise ValueError('''mobility cannot be negative''' ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
661
1
'''simple docstring''' import argparse import math import traceback import dateutil.parser as date_parser import requests def _A (lowerCAmelCase__ :str ) -> Optional[int]: '''simple docstring''' _a = {} _a = job['started_at'] _a = job['completed_at'] _a = date_parser.parse(lowerCAmelCase__ ) _a = date_parser.parse(lowerCAmelCase__ ) _a = round((end_datetime - start_datetime).total_seconds() / 6_0.0 ) _a = start _a = end _a = duration_in_min return job_info def _A (lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Union[str, Any]=None ) -> int: '''simple docstring''' _a = None if token is not None: _a = {'Accept': 'application/vnd.github+json', 'Authorization': f'Bearer {token}'} _a = f'https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100' _a = requests.get(lowerCAmelCase__ , headers=lowerCAmelCase__ ).json() _a = {} try: job_time.update({job['name']: extract_time_from_single_job(lowerCAmelCase__ ) for job in result['jobs']} ) _a = math.ceil((result['total_count'] - 1_00) / 1_00 ) for i in range(lowerCAmelCase__ ): _a = requests.get(url + f'&page={i + 2}' , headers=lowerCAmelCase__ ).json() job_time.update({job['name']: extract_time_from_single_job(lowerCAmelCase__ ) for job in result['jobs']} ) return job_time except Exception: print(f'Unknown error, could not fetch links:\n{traceback.format_exc()}' ) return {} if __name__ == "__main__": a_ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") a_ : Tuple = parser.parse_args() a_ : Any = get_job_time(args.workflow_run_id) a_ : Any = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(f'''{k}: {v['duration']}''')
532
'''simple docstring''' def _A (lowerCAmelCase__ :Union[str, Any] ) -> List[str]: '''simple docstring''' return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def _A (lowerCAmelCase__ :dict[int, list[int]] ) -> list[tuple[int, int]]: '''simple docstring''' _a = 0 _a = len(lowerCAmelCase__ ) # No of vertices in graph _a = [0] * n _a = [False] * n def dfs(lowerCAmelCase__ :Dict , lowerCAmelCase__ :str , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Union[str, Any] ): _a = True _a = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , id_ ) _a = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge _a = min(low[at] , low[to] ) _a = [] for i in range(lowerCAmelCase__ ): if not visited[i]: dfs(lowerCAmelCase__ , -1 , lowerCAmelCase__ , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
532
1
import requests from bsa import BeautifulSoup def __A ( _lowercase = "https://www.worldometers.info/coronavirus" ): '''simple docstring''' _A = BeautifulSoup(requests.get(_lowercase ).text , '''html.parser''' ) _A = soup.findAll('''h1''' ) _A = soup.findAll('''div''' , {'''class''': '''maincounter-number'''} ) keys += soup.findAll('''span''' , {'''class''': '''panel-title'''} ) values += soup.findAll('''div''' , {'''class''': '''number-table-main'''} ) return {key.text.strip(): value.text.strip() for key, value in zip(_lowercase , _lowercase )} if __name__ == "__main__": print('\033[1m' + 'COVID-19 Status of the World' + '\033[0m\n') for key, value in world_covidaa_stats().items(): print(f'{key}\n{value}\n')
484
import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def __A ( _lowercase ): '''simple docstring''' return sum(param.float().sum() if '''encoder.embeddings''' not in key else 0 for key, param in state_dict.items() ) def __A ( _lowercase , _lowercase ): '''simple docstring''' _A = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue _A = key.replace('''heads.cmd.mim_head.cls.predictions''' , '''mmm_image_head''' ) _A = key.replace('''heads.cmd.mlm_head.cls.predictions''' , '''mmm_text_head''' ) _A = key.replace('''heads.cmd.itm_head.cls''' , '''itm_head''' ) _A = key.replace('''heads.cmd.itm_head.pooler''' , '''itm_head.pooler''' ) _A = key.replace('''heads.cmd.clip_head.logit_scale''' , '''flava.logit_scale''' ) _A = key.replace('''heads.fairseq_mlm.cls.predictions''' , '''mlm_head''' ) _A = key.replace('''heads.imagenet.mim_head.cls.predictions''' , '''mim_head''' ) _A = key.replace('''mm_text_projection''' , '''flava.text_to_mm_projection''' ) _A = key.replace('''mm_image_projection''' , '''flava.image_to_mm_projection''' ) _A = key.replace('''image_encoder.module''' , '''flava.image_model''' ) _A = key.replace('''text_encoder.module''' , '''flava.text_model''' ) _A = key.replace('''mm_encoder.module.encoder.cls_token''' , '''flava.multimodal_model.cls_token''' ) _A = key.replace('''mm_encoder.module''' , '''flava.multimodal_model''' ) _A = key.replace('''text_projection''' , '''flava.text_projection''' ) _A = key.replace('''image_projection''' , '''flava.image_projection''' ) _A = value.float() for key, value in codebook_state_dict.items(): _A = value return upgrade @torch.no_grad() def __A ( _lowercase , _lowercase , _lowercase , _lowercase=None ): '''simple docstring''' if config_path is not None: _A = FlavaConfig.from_pretrained(_lowercase ) else: _A = FlavaConfig() _A = FlavaForPreTraining(_lowercase ).eval() _A = convert_dalle_checkpoint(_lowercase , _lowercase , save_checkpoint=_lowercase ) if os.path.exists(_lowercase ): _A = torch.load(_lowercase , map_location='''cpu''' ) else: _A = torch.hub.load_state_dict_from_url(_lowercase , map_location='''cpu''' ) _A = upgrade_state_dict(_lowercase , _lowercase ) hf_model.load_state_dict(_lowercase ) _A = hf_model.state_dict() _A = count_parameters(_lowercase ) _A = count_parameters(_lowercase ) + count_parameters(_lowercase ) assert torch.allclose(_lowercase , _lowercase , atol=1e-3 ) hf_model.save_pretrained(_lowercase ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint') parser.add_argument('--codebook_path', default=None, type=str, help='Path to flava codebook checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') __A = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
484
1
'''simple docstring''' from typing import List from .keymap import KEYMAP, get_character def UpperCAmelCase_ ( lowercase__ ): '''simple docstring''' def decorator(lowercase__ ): a_ =getattr(lowercase__ , "handle_key" , [] ) handle += [key] setattr(lowercase__ , "handle_key" , lowercase__ ) return func return decorator def UpperCAmelCase_ ( *lowercase__ ): '''simple docstring''' def decorator(lowercase__ ): a_ =getattr(lowercase__ , "handle_key" , [] ) handle += keys setattr(lowercase__ , "handle_key" , lowercase__ ) return func return decorator class UpperCAmelCase ( __a): '''simple docstring''' def __new__( cls , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) -> Optional[int]: """simple docstring""" a_ =super().__new__(cls , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) if not hasattr(lowerCAmelCase_ , "key_handler"): setattr(lowerCAmelCase_ , "key_handler" , {}) setattr(lowerCAmelCase_ , "handle_input" , KeyHandler.handle_input) for value in attrs.values(): a_ =getattr(lowerCAmelCase_ , "handle_key" , []) for key in handled_keys: a_ =value return new_cls @staticmethod def lowercase_ ( cls) -> Optional[int]: """simple docstring""" a_ =get_character() if char != KEYMAP["undefined"]: a_ =ord(lowerCAmelCase_) a_ =cls.key_handler.get(lowerCAmelCase_) if handler: a_ =char return handler(cls) else: return None def UpperCAmelCase_ ( cls ): '''simple docstring''' return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
41
'''simple docstring''' import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def UpperCAmelCase_ ( lowercase__ , lowercase__ , lowercase__ , lowercase__=5 ): '''simple docstring''' assert masked_input.count("<mask>" ) == 1 a_ =torch.tensor(tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ ) ).unsqueeze(0 ) # Batch size 1 a_ =model(lowercase__ )[0] # The last hidden-state is the first element of the output tuple a_ =(input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() a_ =logits[0, masked_index, :] a_ =logits.softmax(dim=0 ) a_ , a_ =prob.topk(k=lowercase__ , dim=0 ) a_ =" ".join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(lowercase__ ) )] ) a_ =tokenizer.mask_token a_ =[] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(" " ) ): a_ =predicted_token_bpe.replace("\u2581" , " " ) if " {0}".format(lowercase__ ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(" {0}".format(lowercase__ ) , lowercase__ ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(lowercase__ , lowercase__ ), values[index].item(), predicted_token, ) ) return topk_filled_outputs lowercase = CamembertTokenizer.from_pretrained('''camembert-base''') lowercase = CamembertForMaskedLM.from_pretrained('''camembert-base''') model.eval() lowercase = '''Le camembert est <mask> :)''' print(fill_mask(masked_input, model, tokenizer, topk=3))
41
1
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE : List[Any] = { "facebook/mask2former-swin-small-coco-instance": ( "https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) class __lowercase ( A ): __magic_name__ : List[Any] = '''mask2former''' __magic_name__ : List[Any] = ['''swin'''] __magic_name__ : int = {'''hidden_size''': '''hidden_dim'''} def __init__( self , a__ = None , a__ = 2_5_6 , a__ = 2_5_6 , a__ = 2_5_6 , a__ = 1_0_2_4 , a__ = "relu" , a__ = 6 , a__ = 1_0 , a__ = 8 , a__ = 0.0 , a__ = 2_0_4_8 , a__ = False , a__ = False , a__ = 4 , a__ = 2_5_5 , a__ = 1_0_0 , a__ = 0.1 , a__ = 2.0 , a__ = 5.0 , a__ = 5.0 , a__ = 1_2_5_4_4 , a__ = 3.0 , a__ = 0.75 , a__ = 0.02 , a__ = 1.0 , a__ = True , a__ = [4, 8, 1_6, 3_2] , a__ = None , **a__ , ) -> Optional[int]: '''simple docstring''' if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.''' ) A_ = CONFIG_MAPPING['''swin''']( image_size=2_2_4 , in_channels=3 , patch_size=4 , embed_dim=9_6 , depths=[2, 2, 1_8, 2] , num_heads=[3, 6, 1_2, 2_4] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=a__ , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) if isinstance(a__ , a__ ): A_ = backbone_config.pop('''model_type''' ) A_ = CONFIG_MAPPING[backbone_model_type] A_ = config_class.from_dict(a__ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F"Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. " F"Supported model types: {','.join(self.backbones_supported )}" ) A_ = backbone_config A_ = feature_size A_ = mask_feature_size A_ = hidden_dim A_ = encoder_feedforward_dim A_ = activation_function A_ = encoder_layers A_ = decoder_layers A_ = num_attention_heads A_ = dropout A_ = dim_feedforward A_ = pre_norm A_ = enforce_input_projection A_ = common_stride A_ = ignore_value A_ = num_queries A_ = no_object_weight A_ = class_weight A_ = mask_weight A_ = dice_weight A_ = train_num_points A_ = oversample_ratio A_ = importance_sample_ratio A_ = init_std A_ = init_xavier_std A_ = use_auxiliary_loss A_ = feature_strides A_ = output_auxiliary_logits A_ = decoder_layers super().__init__(**a__ ) @classmethod def lowerCAmelCase_ ( cls , a__ , **a__ ) -> Optional[Any]: '''simple docstring''' return cls( backbone_config=a__ , **a__ , ) def lowerCAmelCase_ ( self ) -> Dict[str, any]: '''simple docstring''' A_ = copy.deepcopy(self.__dict__ ) A_ = self.backbone_config.to_dict() A_ = self.__class__.model_type return output
141
def lowerCamelCase_ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(__UpperCamelCase , n - 1 , __UpperCamelCase ) * a) % mod else: A_ = binary_exponentiation(__UpperCamelCase , n / 2 , __UpperCamelCase ) return (b * b) % mod # a prime number SCREAMING_SNAKE_CASE : str = 701 SCREAMING_SNAKE_CASE : int = 10_0000_0000 SCREAMING_SNAKE_CASE : Optional[Any] = 10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
141
1
"""simple docstring""" import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput __lowercase = logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _lowercase ( __a ): """simple docstring""" def __init__( self : int , *UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : str=None , UpperCamelCase__ : List[str]=None , **UpperCamelCase__ : str ) -> Optional[int]: '''simple docstring''' super().__init__(*UpperCamelCase__ , **UpperCamelCase__ ) __UpperCamelCase =eval_examples __UpperCamelCase =post_process_function __UpperCamelCase =quant_trainer_args __UpperCamelCase =128 # default number of calibration samples def UpperCAmelCase_ ( self : Any , UpperCamelCase__ : int=None ) -> Optional[Any]: '''simple docstring''' if calib_dataset is None and self.calib_dataset is None: raise ValueError('''Trainer: calibration requires an calib_dataset.''' ) __UpperCamelCase =calib_dataset if calib_dataset is not None else self.calib_dataset __UpperCamelCase =self._remove_unused_columns(UpperCamelCase__ , description='''Calibration''' ) return DataLoader( UpperCamelCase__ , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=UpperCamelCase__ , ) def UpperCAmelCase_ ( self : Union[str, Any] , UpperCamelCase__ : str=None ) -> Dict: '''simple docstring''' __UpperCamelCase =self.train_dataset if calib_dataset is None else calib_dataset __UpperCamelCase =self.get_calib_dataloader(UpperCamelCase__ ) __UpperCamelCase =self.model quant_trainer.configure_model(UpperCamelCase__ , self.quant_trainer_args , calib=UpperCamelCase__ ) model.eval() quant_trainer.enable_calibration(UpperCamelCase__ ) logger.info('''***** Running calibration *****''' ) logger.info(f""" Num examples = {self.calib_num}""" ) logger.info(f""" Batch size = {calib_dataloader.batch_size}""" ) for step, inputs in enumerate(UpperCamelCase__ ): # Prediction step __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =self.prediction_step(UpperCamelCase__ , UpperCamelCase__ , prediction_loss_only=UpperCamelCase__ ) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(UpperCamelCase__ , self.quant_trainer_args ) __UpperCamelCase =model def UpperCAmelCase_ ( self : Optional[Any] , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : Optional[int]=None , UpperCamelCase__ : str = "eval" ) -> Tuple: '''simple docstring''' __UpperCamelCase =self.eval_dataset if eval_dataset is None else eval_dataset __UpperCamelCase =self.get_eval_dataloader(UpperCamelCase__ ) __UpperCamelCase =self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. __UpperCamelCase =self.compute_metrics __UpperCamelCase =None __UpperCamelCase =self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __UpperCamelCase =eval_loop( UpperCamelCase__ , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase__ , ) finally: __UpperCamelCase =compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: __UpperCamelCase =self.post_process_function(UpperCamelCase__ , UpperCamelCase__ , output.predictions ) __UpperCamelCase =self.compute_metrics(UpperCamelCase__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): __UpperCamelCase =metrics.pop(UpperCamelCase__ ) self.log(UpperCamelCase__ ) else: __UpperCamelCase ={} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) __UpperCamelCase =self.callback_handler.on_evaluate(self.args , self.state , self.control , UpperCamelCase__ ) return metrics def UpperCAmelCase_ ( self : Dict , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Dict=None , UpperCamelCase__ : str = "test" ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase =self.get_test_dataloader(UpperCamelCase__ ) # Temporarily disable metric computation, we will do it in the loop here. __UpperCamelCase =self.compute_metrics __UpperCamelCase =None __UpperCamelCase =self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __UpperCamelCase =eval_loop( UpperCamelCase__ , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase__ , ) finally: __UpperCamelCase =compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output __UpperCamelCase =self.post_process_function(UpperCamelCase__ , UpperCamelCase__ , output.predictions , '''predict''' ) __UpperCamelCase =self.compute_metrics(UpperCamelCase__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): __UpperCamelCase =metrics.pop(UpperCamelCase__ ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=UpperCamelCase__ ) def UpperCAmelCase_ ( self : int , UpperCamelCase__ : Any="./" ) -> Tuple: '''simple docstring''' __UpperCamelCase =self.eval_dataset __UpperCamelCase =self.get_eval_dataloader(UpperCamelCase__ ) __UpperCamelCase =next(iter(UpperCamelCase__ ) ) # saving device - to make it consistent __UpperCamelCase =torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) # convert to tuple __UpperCamelCase =tuple(v.to(UpperCamelCase__ ) for k, v in batch.items() ) logger.info('''Converting model to be onnx compatible''' ) from pytorch_quantization.nn import TensorQuantizer __UpperCamelCase =True __UpperCamelCase =self.model.to(UpperCamelCase__ ) model.eval() model.float() __UpperCamelCase =model.module if hasattr(UpperCamelCase__ , '''module''' ) else model quant_trainer.configure_model(UpperCamelCase__ , self.quant_trainer_args ) __UpperCamelCase =os.path.join(UpperCamelCase__ , '''model.onnx''' ) logger.info(f"""exporting model to {output_model_file}""" ) __UpperCamelCase ={0: '''batch_size''', 1: '''seq_len'''} torch.onnx.export( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , export_params=UpperCamelCase__ , opset_version=13 , do_constant_folding=UpperCamelCase__ , input_names=['''input_ids''', '''attention_mask''', '''token_type_ids'''] , output_names=['''output_start_logits''', '''output_end_logits'''] , dynamic_axes={ '''input_ids''': axes, '''attention_mask''': axes, '''token_type_ids''': axes, '''output_start_logits''': axes, '''output_end_logits''': axes, } , verbose=UpperCamelCase__ , ) logger.info('''onnx export finished''' )
719
"""simple docstring""" import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def lowerCAmelCase (): """simple docstring""" raise RuntimeError('''CUDA out of memory.''' ) class _lowercase ( nn.Module ): """simple docstring""" def __init__( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' super().__init__() __UpperCamelCase =nn.Linear(3 , 4 ) __UpperCamelCase =nn.BatchNormad(4 ) __UpperCamelCase =nn.Linear(4 , 5 ) def UpperCAmelCase_ ( self : str , UpperCamelCase__ : int ) -> str: '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(UpperCamelCase__ ) ) ) class _lowercase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self : Any ) -> Any: '''simple docstring''' __UpperCamelCase =[] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(UpperCamelCase__ : List[str] ): nonlocal batch_sizes batch_sizes.append(UpperCamelCase__ ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(UpperCamelCase__ , [128, 64, 32, 16, 8] ) def UpperCAmelCase_ ( self : str ) -> int: '''simple docstring''' __UpperCamelCase =[] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int] ): nonlocal batch_sizes batch_sizes.append(UpperCamelCase__ ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga __UpperCamelCase , __UpperCamelCase =mock_training_loop_function('''hello''' ) self.assertListEqual(UpperCamelCase__ , [128, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, '''hello'''] ) def UpperCAmelCase_ ( self : Tuple ) -> Any: '''simple docstring''' @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(UpperCamelCase__ : Tuple ): pass with self.assertRaises(UpperCamelCase__ ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def UpperCAmelCase_ ( self : Any ) -> Dict: '''simple docstring''' @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(UpperCamelCase__ : int ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(UpperCamelCase__ ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: '''simple docstring''' @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Union[str, Any] ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(UpperCamelCase__ ) as cm: mock_training_loop_function(128 , '''hello''' , '''world''' ) self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0] ) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0] ) def UpperCAmelCase_ ( self : Any ) -> str: '''simple docstring''' @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(UpperCamelCase__ : Any ): raise ValueError('''Oops, we had an error!''' ) with self.assertRaises(UpperCamelCase__ ) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0] ) @require_cuda def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: '''simple docstring''' __UpperCamelCase =torch.cuda.memory_allocated() __UpperCamelCase =ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , UpperCamelCase__ ) __UpperCamelCase =release_memory(UpperCamelCase__ ) self.assertEqual(torch.cuda.memory_allocated() , UpperCamelCase__ )
296
0
import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) __snake_case :Optional[Any] =getLogger(__name__) def lowerCamelCase_ ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : str , lowerCAmelCase__ : int = 8 , lowerCAmelCase__ : int = 1024 , lowerCAmelCase__ : Union[str, Any]="val" , lowerCAmelCase__ : List[Any]=None , lowerCAmelCase__ : Optional[Any]=False , lowerCAmelCase__ : int="summarization" , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : Dict=1 , lowerCAmelCase__ : Dict = None , lowerCAmelCase__ : Dict="" , **lowerCAmelCase__ : Union[str, Any] , ) -> Dict: '''simple docstring''' A = str(lowerCAmelCase__ ) assert local_rank is not None torch.distributed.init_process_group(backend='nccl' , rank=lowerCAmelCase__ ) A = Path(lowerCAmelCase__ ) A = save_dir.joinpath(F'''rank_{local_rank}_output.json''' ) torch.cuda.set_device(lowerCAmelCase__ ) A = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase__ ).cuda() if fpaa: A = model.half() # determine if we need to increase num_beams use_task_specific_params(lowerCAmelCase__ , lowerCAmelCase__ ) # update config with task specific params A = generate_kwargs.pop('num_beams' , model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: A = num_return_sequences A = AutoTokenizer.from_pretrained(lowerCAmelCase__ ) logger.info(F'''Inferred tokenizer type: {tokenizer.__class__}''' ) # if this is wrong, check config.model_type. if max_source_length is None: A = tokenizer.model_max_length if prefix is None: A = prefix or getattr(model.config , 'prefix' , '' ) or '' A = SeqaSeqDataset( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , max_target_length=1024 , type_path=lowerCAmelCase__ , n_obs=lowerCAmelCase__ , prefix=lowerCAmelCase__ , **lowerCAmelCase__ , ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. A = ds.make_sortish_sampler(lowerCAmelCase__ , distributed=lowerCAmelCase__ , add_extra_examples=lowerCAmelCase__ , shuffle=lowerCAmelCase__ ) A = DataLoader(lowerCAmelCase__ , sampler=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , collate_fn=ds.collate_fn ) A = [] for batch in tqdm(lowerCAmelCase__ ): A = model.generate( input_ids=batch['input_ids'].to(model.device ) , attention_mask=batch['attention_mask'].to(model.device ) , num_return_sequences=lowerCAmelCase__ , num_beams=lowerCAmelCase__ , **lowerCAmelCase__ , ) A = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ , clean_up_tokenization_spaces=lowerCAmelCase__ ) A = batch['ids'] if num_return_sequences > 1: A = chunks(lowerCAmelCase__ , lowerCAmelCase__ ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(lowerCAmelCase__ ): results.append({'pred': pred, 'id': ids[i].item()} ) save_json(lowerCAmelCase__ , lowerCAmelCase__ ) return results, sampler.num_replicas def lowerCamelCase_ ( ) -> List[str]: '''simple docstring''' A = argparse.ArgumentParser( epilog='Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate' ) parser.add_argument('--data_dir' , type=lowerCAmelCase__ , help='like cnn_dm/test.source' ) parser.add_argument( '--model_name' , type=lowerCAmelCase__ , help='like facebook/bart-large-cnn,t5-base, etc.' , default='sshleifer/distilbart-xsum-12-3' , ) parser.add_argument('--save_dir' , type=lowerCAmelCase__ , help='where to save' , default='tmp_gen' ) parser.add_argument('--max_source_length' , type=lowerCAmelCase__ , default=lowerCAmelCase__ ) parser.add_argument( '--type_path' , type=lowerCAmelCase__ , default='test' , help='which subset to evaluate typically train/val/test' ) parser.add_argument('--task' , type=lowerCAmelCase__ , default='summarization' , help='used for task_specific_params + metrics' ) parser.add_argument('--bs' , type=lowerCAmelCase__ , default=8 , required=lowerCAmelCase__ , help='batch size' ) parser.add_argument( '--local_rank' , type=lowerCAmelCase__ , default=-1 , required=lowerCAmelCase__ , help='should be passed by distributed.launch' ) parser.add_argument( '--n_obs' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , required=lowerCAmelCase__ , help='How many observations. Defaults to all.' ) parser.add_argument( '--num_return_sequences' , type=lowerCAmelCase__ , default=1 , required=lowerCAmelCase__ , help='How many sequences to return' ) parser.add_argument( '--sync_timeout' , type=lowerCAmelCase__ , default=600 , required=lowerCAmelCase__ , help='How long should master process wait for other processes to finish.' , ) parser.add_argument('--src_lang' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , required=lowerCAmelCase__ ) parser.add_argument('--tgt_lang' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , required=lowerCAmelCase__ ) parser.add_argument( '--prefix' , type=lowerCAmelCase__ , required=lowerCAmelCase__ , default=lowerCAmelCase__ , help='will be added to the begininng of src examples' ) parser.add_argument('--fp16' , action='store_true' ) parser.add_argument('--debug' , action='store_true' ) A = time.time() A , A = parser.parse_known_args() A = parse_numeric_n_bool_cl_kwargs(lowerCAmelCase__ ) if generate_kwargs and args.local_rank <= 0: print(F'''parsed the following generate kwargs: {generate_kwargs}''' ) A = Path(args.save_dir + '_tmp' ) Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) # this handles locking. A = list(json_save_dir.glob('rank_*.json' ) ) if intermediate_files: raise ValueError(F'''Found files at {json_save_dir} please move or remove them.''' ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. A = {} if args.src_lang is not None: A = args.src_lang if args.tgt_lang is not None: A = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=lowerCAmelCase__ ) A , A = eval_data_dir( args.data_dir , lowerCAmelCase__ , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=lowerCAmelCase__ , **lowerCAmelCase__ , ) if args.local_rank <= 0: A = Path(args.save_dir ) save_dir.mkdir(exist_ok=lowerCAmelCase__ ) A = gather_results_from_each_node(lowerCAmelCase__ , lowerCAmelCase__ , args.sync_timeout ) A = combine_partial_results(lowerCAmelCase__ ) if args.num_return_sequences > 1: A = save_dir.joinpath('pseudolabel_results.json' ) print(F'''Saving aggregated results at {save_path}, intermediate in {json_save_dir}/''' ) save_json(lowerCAmelCase__ , lowerCAmelCase__ ) return A = Path(args.data_dir ).joinpath(args.type_path + '.target' ) with open(lowerCAmelCase__ ) as f: A = [x.rstrip() for x in f.readlines()][: len(lowerCAmelCase__ )] # Calculate metrics, save metrics, and save _generations.txt A = 'translation' in args.task A = calculate_bleu if calc_bleu else calculate_rouge A = 'bleu' if calc_bleu else 'rouge' A = score_fn(lowerCAmelCase__ , lowerCAmelCase__ ) A = len(lowerCAmelCase__ ) A = time.time() - start_time A = round(runtime / metrics['n_obs'] , 4 ) A = num_replicas # TODO(@stas00): add whatever metadata to metrics A = save_dir.joinpath(F'''{args.type_path}_{metric_name}.json''' ) save_json(lowerCAmelCase__ , lowerCAmelCase__ , indent=lowerCAmelCase__ ) print(lowerCAmelCase__ ) write_txt_file(lowerCAmelCase__ , save_dir.joinpath(F'''{args.type_path}_generations.txt''' ) ) if args.debug: write_txt_file(lowerCAmelCase__ , save_dir.joinpath(F'''{args.type_path}.target''' ) ) else: shutil.rmtree(lowerCAmelCase__ ) def lowerCamelCase_ ( lowerCAmelCase__ : List[Any] ) -> List: '''simple docstring''' A = [] for partial_result in partial_results: records.extend(lowerCAmelCase__ ) A = sorted(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : x["id"] ) A = [x['pred'] for x in records] return preds def lowerCamelCase_ ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : int ) -> List[Dict[str, List]]: '''simple docstring''' A = time.time() logger.info('waiting for all nodes to finish' ) A = None while (time.time() - start_wait) < timeout: A = list(save_dir.glob('rank_*.json' ) ) if len(lowerCAmelCase__ ) < num_replicas: continue try: # make sure all json files are fully saved A = lmap(lowerCAmelCase__ , lowerCAmelCase__ ) return json_data except JSONDecodeError: continue else: raise TimeoutError('Rank 0 gave up on waiting for other processes' ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
106
import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class lowerCAmelCase__ ( unittest.TestCase ): def __UpperCamelCase ( self : List[str] ) -> Any: A = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(__UpperCamelCase ) ) def __UpperCamelCase ( self : str ) -> List[Any]: A = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(__UpperCamelCase ) ) def __UpperCamelCase ( self : Any ) -> Tuple: A = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(__UpperCamelCase ) ) def __UpperCamelCase ( self : Dict ) -> Any: A = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] self.assertTrue(is_safetensors_compatible(__UpperCamelCase ) ) def __UpperCamelCase ( self : Optional[int] ) -> List[str]: A = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', # Removed: 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(__UpperCamelCase ) ) def __UpperCamelCase ( self : List[str] ) -> List[str]: A = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] A = 'fp16' self.assertTrue(is_safetensors_compatible(__UpperCamelCase , variant=__UpperCamelCase ) ) def __UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]: A = [ 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] A = 'fp16' self.assertTrue(is_safetensors_compatible(__UpperCamelCase , variant=__UpperCamelCase ) ) def __UpperCamelCase ( self : int ) -> Optional[int]: # pass variant but use the non-variant filenames A = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] A = 'fp16' self.assertTrue(is_safetensors_compatible(__UpperCamelCase , variant=__UpperCamelCase ) ) def __UpperCamelCase ( self : Any ) -> List[str]: A = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] A = 'fp16' self.assertFalse(is_safetensors_compatible(__UpperCamelCase , variant=__UpperCamelCase ) ) def __UpperCamelCase ( self : Optional[Any] ) -> Optional[int]: A = [ 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', ] A = 'fp16' self.assertTrue(is_safetensors_compatible(__UpperCamelCase , variant=__UpperCamelCase ) ) def __UpperCamelCase ( self : List[str] ) -> int: # pass variant but use the non-variant filenames A = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] A = 'fp16' self.assertTrue(is_safetensors_compatible(__UpperCamelCase , variant=__UpperCamelCase ) ) def __UpperCamelCase ( self : List[str] ) -> Optional[Any]: A = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', # 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] A = 'fp16' self.assertFalse(is_safetensors_compatible(__UpperCamelCase , variant=__UpperCamelCase ) )
106
1
'''simple docstring''' from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class _lowerCAmelCase ( a__ ): __SCREAMING_SNAKE_CASE : torch.FloatTensor class _lowerCAmelCase ( nn.Module ): def __init__(self , lowercase=3 , lowercase=3 , lowercase=("DownEncoderBlock2D",) , lowercase=(64,) , lowercase=2 , lowercase=32 , lowercase="silu" , lowercase=True , ): super().__init__() A_ : Tuple = layers_per_block A_ : List[str] = torch.nn.Convad( lowerCAmelCase__ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) A_ : str = None A_ : Any = nn.ModuleList([] ) # down A_ : Tuple = block_out_channels[0] for i, down_block_type in enumerate(lowerCAmelCase__ ): A_ : Dict = output_channel A_ : str = block_out_channels[i] A_ : int = i == len(lowerCAmelCase__ ) - 1 A_ : List[Any] = get_down_block( lowerCAmelCase__ , num_layers=self.layers_per_block , in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , add_downsample=not is_final_block , resnet_eps=1E-6 , downsample_padding=0 , resnet_act_fn=lowerCAmelCase__ , resnet_groups=lowerCAmelCase__ , attention_head_dim=lowerCAmelCase__ , temb_channels=lowerCAmelCase__ , ) self.down_blocks.append(lowerCAmelCase__ ) # mid A_ : str = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=lowerCAmelCase__ , output_scale_factor=1 , resnet_time_scale_shift="""default""" , attention_head_dim=block_out_channels[-1] , resnet_groups=lowerCAmelCase__ , temb_channels=lowerCAmelCase__ , ) # out A_ : Tuple = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=lowerCAmelCase__ , eps=1E-6 ) A_ : Dict = nn.SiLU() A_ : Union[str, Any] = 2 * out_channels if double_z else out_channels A_ : List[Any] = nn.Convad(block_out_channels[-1] , lowerCAmelCase__ , 3 , padding=1 ) A_ : List[str] = False def _a (self , lowercase ): A_ : Optional[Any] = x A_ : Dict = self.conv_in(lowerCAmelCase__ ) if self.training and self.gradient_checkpointing: def create_custom_forward(lowercase ): def custom_forward(*lowercase ): return module(*lowerCAmelCase__ ) return custom_forward # down if is_torch_version(""">=""" , """1.11.0""" ): for down_block in self.down_blocks: A_ : List[Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(lowerCAmelCase__ ) , lowerCAmelCase__ , use_reentrant=lowerCAmelCase__ ) # middle A_ : List[str] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , lowerCAmelCase__ , use_reentrant=lowerCAmelCase__ ) else: for down_block in self.down_blocks: A_ : List[Any] = torch.utils.checkpoint.checkpoint(create_custom_forward(lowerCAmelCase__ ) , lowerCAmelCase__ ) # middle A_ : Optional[int] = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , lowerCAmelCase__ ) else: # down for down_block in self.down_blocks: A_ : Optional[int] = down_block(lowerCAmelCase__ ) # middle A_ : int = self.mid_block(lowerCAmelCase__ ) # post-process A_ : Tuple = self.conv_norm_out(lowerCAmelCase__ ) A_ : int = self.conv_act(lowerCAmelCase__ ) A_ : str = self.conv_out(lowerCAmelCase__ ) return sample class _lowerCAmelCase ( nn.Module ): def __init__(self , lowercase=3 , lowercase=3 , lowercase=("UpDecoderBlock2D",) , lowercase=(64,) , lowercase=2 , lowercase=32 , lowercase="silu" , lowercase="group" , ): super().__init__() A_ : List[str] = layers_per_block A_ : Optional[int] = nn.Convad( lowerCAmelCase__ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) A_ : int = None A_ : Union[str, Any] = nn.ModuleList([] ) A_ : Optional[int] = in_channels if norm_type == "spatial" else None # mid A_ : Any = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=lowerCAmelCase__ , output_scale_factor=1 , resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=lowerCAmelCase__ , temb_channels=lowerCAmelCase__ , ) # up A_ : List[str] = list(reversed(lowerCAmelCase__ ) ) A_ : List[Any] = reversed_block_out_channels[0] for i, up_block_type in enumerate(lowerCAmelCase__ ): A_ : str = output_channel A_ : Tuple = reversed_block_out_channels[i] A_ : Any = i == len(lowerCAmelCase__ ) - 1 A_ : str = get_up_block( lowerCAmelCase__ , num_layers=self.layers_per_block + 1 , in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , prev_output_channel=lowerCAmelCase__ , add_upsample=not is_final_block , resnet_eps=1E-6 , resnet_act_fn=lowerCAmelCase__ , resnet_groups=lowerCAmelCase__ , attention_head_dim=lowerCAmelCase__ , temb_channels=lowerCAmelCase__ , resnet_time_scale_shift=lowerCAmelCase__ , ) self.up_blocks.append(lowerCAmelCase__ ) A_ : List[str] = output_channel # out if norm_type == "spatial": A_ : Optional[Any] = SpatialNorm(block_out_channels[0] , lowerCAmelCase__ ) else: A_ : Optional[Any] = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=lowerCAmelCase__ , eps=1E-6 ) A_ : int = nn.SiLU() A_ : Union[str, Any] = nn.Convad(block_out_channels[0] , lowerCAmelCase__ , 3 , padding=1 ) A_ : int = False def _a (self , lowercase , lowercase=None ): A_ : Any = z A_ : Union[str, Any] = self.conv_in(lowerCAmelCase__ ) A_ : Any = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(lowercase ): def custom_forward(*lowercase ): return module(*lowerCAmelCase__ ) return custom_forward if is_torch_version(""">=""" , """1.11.0""" ): # middle A_ : Optional[Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , lowerCAmelCase__ , lowerCAmelCase__ , use_reentrant=lowerCAmelCase__ ) A_ : List[Any] = sample.to(lowerCAmelCase__ ) # up for up_block in self.up_blocks: A_ : str = torch.utils.checkpoint.checkpoint( create_custom_forward(lowerCAmelCase__ ) , lowerCAmelCase__ , lowerCAmelCase__ , use_reentrant=lowerCAmelCase__ ) else: # middle A_ : Optional[Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , lowerCAmelCase__ , lowerCAmelCase__ ) A_ : int = sample.to(lowerCAmelCase__ ) # up for up_block in self.up_blocks: A_ : Dict = torch.utils.checkpoint.checkpoint(create_custom_forward(lowerCAmelCase__ ) , lowerCAmelCase__ , lowerCAmelCase__ ) else: # middle A_ : List[Any] = self.mid_block(lowerCAmelCase__ , lowerCAmelCase__ ) A_ : int = sample.to(lowerCAmelCase__ ) # up for up_block in self.up_blocks: A_ : Optional[Any] = up_block(lowerCAmelCase__ , lowerCAmelCase__ ) # post-process if latent_embeds is None: A_ : str = self.conv_norm_out(lowerCAmelCase__ ) else: A_ : Optional[int] = self.conv_norm_out(lowerCAmelCase__ , lowerCAmelCase__ ) A_ : Any = self.conv_act(lowerCAmelCase__ ) A_ : Tuple = self.conv_out(lowerCAmelCase__ ) return sample class _lowerCAmelCase ( nn.Module ): def __init__(self , lowercase , lowercase , lowercase , lowercase=None , lowercase="random" , lowercase=False , lowercase=True ): super().__init__() A_ : Union[str, Any] = n_e A_ : Optional[Any] = vq_embed_dim A_ : int = beta A_ : Any = legacy A_ : str = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) A_ : str = remap if self.remap is not None: self.register_buffer("""used""" , torch.tensor(np.load(self.remap ) ) ) A_ : List[Any] = self.used.shape[0] A_ : Optional[int] = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": A_ : List[str] = self.re_embed A_ : List[str] = self.re_embed + 1 print( F'Remapping {self.n_e} indices to {self.re_embed} indices. ' F'Using {self.unknown_index} for unknown indices.' ) else: A_ : str = n_e A_ : Union[str, Any] = sane_index_shape def _a (self , lowercase ): A_ : List[Any] = inds.shape assert len(lowerCAmelCase__ ) > 1 A_ : Union[str, Any] = inds.reshape(ishape[0] , -1 ) A_ : Optional[Any] = self.used.to(lowerCAmelCase__ ) A_ : List[str] = (inds[:, :, None] == used[None, None, ...]).long() A_ : str = match.argmax(-1 ) A_ : int = match.sum(2 ) < 1 if self.unknown_index == "random": A_ : Optional[int] = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: A_ : Optional[Any] = self.unknown_index return new.reshape(lowerCAmelCase__ ) def _a (self , lowercase ): A_ : str = inds.shape assert len(lowerCAmelCase__ ) > 1 A_ : Tuple = inds.reshape(ishape[0] , -1 ) A_ : Dict = self.used.to(lowerCAmelCase__ ) if self.re_embed > self.used.shape[0]: # extra token A_ : Optional[Any] = 0 # simply set to zero A_ : Optional[Any] = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , lowerCAmelCase__ ) return back.reshape(lowerCAmelCase__ ) def _a (self , lowercase ): # reshape z -> (batch, height, width, channel) and flatten A_ : Tuple = z.permute(0 , 2 , 3 , 1 ).contiguous() A_ : Optional[int] = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z A_ : Tuple = torch.argmin(torch.cdist(lowerCAmelCase__ , self.embedding.weight ) , dim=1 ) A_ : Dict = self.embedding(lowerCAmelCase__ ).view(z.shape ) A_ : Dict = None A_ : Tuple = None # compute loss for embedding if not self.legacy: A_ : Optional[int] = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: A_ : Union[str, Any] = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients A_ : Optional[int] = z + (z_q - z).detach() # reshape back to match original input shape A_ : Dict = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: A_ : Optional[Any] = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis A_ : Optional[Any] = self.remap_to_used(lowerCAmelCase__ ) A_ : List[Any] = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: A_ : List[Any] = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def _a (self , lowercase , lowercase ): # shape specifying (batch, height, width, channel) if self.remap is not None: A_ : List[str] = indices.reshape(shape[0] , -1 ) # add batch axis A_ : Optional[Any] = self.unmap_to_all(lowerCAmelCase__ ) A_ : Any = indices.reshape(-1 ) # flatten again # get quantized latent vectors A_ : str = self.embedding(lowerCAmelCase__ ) if shape is not None: A_ : List[str] = z_q.view(lowerCAmelCase__ ) # reshape back to match original input shape A_ : Optional[int] = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class _lowerCAmelCase ( a__ ): def __init__(self , lowercase , lowercase=False ): A_ : Any = parameters A_ : Tuple = torch.chunk(lowerCAmelCase__ , 2 , dim=1 ) A_ : Optional[Any] = torch.clamp(self.logvar , -30.0 , 20.0 ) A_ : int = deterministic A_ : Optional[Any] = torch.exp(0.5 * self.logvar ) A_ : Optional[int] = torch.exp(self.logvar ) if self.deterministic: A_ : int = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def _a (self , lowercase = None ): # make sure sample is on the same device as the parameters and has same dtype A_ : List[str] = randn_tensor( self.mean.shape , generator=lowerCAmelCase__ , device=self.parameters.device , dtype=self.parameters.dtype ) A_ : List[str] = self.mean + self.std * sample return x def _a (self , lowercase=None ): if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def _a (self , lowercase , lowercase=[1, 2, 3] ): if self.deterministic: return torch.Tensor([0.0] ) A_ : List[str] = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=lowerCAmelCase__ ) def _a (self ): return self.mean
709
'''simple docstring''' lowerCamelCase :dict[tuple[int, int, int], int] = {} def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on A_ : Tuple = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one A_ : int = _calculate(days - 1 , lowerCamelCase__ , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 A_ : Union[str, Any] = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter A_ : Optional[int] = _calculate(days - 1 , lowerCamelCase__ , 0 ) A_ : Optional[Any] = state_late + state_absent + state_ontime A_ : Dict = prizestrings return prizestrings def a ( lowerCamelCase__ = 30 ): '''simple docstring''' return _calculate(lowerCamelCase__ , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
686
0
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" _SCREAMING_SNAKE_CASE = """philschmid/bart-large-cnn-samsum""" _SCREAMING_SNAKE_CASE = ( """This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, """ """and returns a summary of the text.""" ) _SCREAMING_SNAKE_CASE = """summarizer""" _SCREAMING_SNAKE_CASE = AutoTokenizer _SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM _SCREAMING_SNAKE_CASE = ["""text"""] _SCREAMING_SNAKE_CASE = ["""text"""] def A ( self : Union[str, Any] , UpperCamelCase__ : List[str] ): """simple docstring""" return self.pre_processor(UpperCamelCase__ , return_tensors='pt' , truncation=UpperCamelCase__ ) def A ( self : str , UpperCamelCase__ : int ): """simple docstring""" return self.model.generate(**UpperCamelCase__ )[0] def A ( self : Any , UpperCamelCase__ : str ): """simple docstring""" return self.pre_processor.decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ , clean_up_tokenization_spaces=UpperCamelCase__ )
430
'''simple docstring''' import argparse import os import re _lowerCamelCase : int = "src/transformers/models/auto" # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict _lowerCamelCase : Union[str, Any] = re.compile(R"[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict") # re pattern that matches identifiers in mappings _lowerCamelCase : Optional[Any] = re.compile(R"\s*\(\s*\"(\S[^\"]+)\"") def __lowerCamelCase ( A__ , A__ = False ) -> Any: """simple docstring""" with open(A__ , 'r' , encoding='utf-8' ) as f: UpperCamelCase = f.read() UpperCamelCase = content.split('\n' ) UpperCamelCase = [] UpperCamelCase = 0 while line_idx < len(A__ ): if _re_intro_mapping.search(lines[line_idx] ) is not None: UpperCamelCase = len(re.search(R'^(\s*)\S' , lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(' ' * indent + '(' ): new_lines.append(lines[line_idx] ) line_idx += 1 UpperCamelCase = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": UpperCamelCase = line_idx while not lines[line_idx].startswith(' ' * indent + ')' ): line_idx += 1 blocks.append('\n'.join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers UpperCamelCase = sorted(A__ , key=lambda A__ : _re_identifier.search(A__ ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(A__ , 'w' , encoding='utf-8' ) as f: f.write('\n'.join(A__ ) ) elif "\n".join(A__ ) != content: return True def __lowerCamelCase ( A__ = False ) -> List[Any]: """simple docstring""" UpperCamelCase = [os.path.join(A__ , A__ ) for f in os.listdir(A__ ) if f.endswith('.py' )] UpperCamelCase = [sort_auto_mapping(A__ , overwrite=A__ ) for fname in fnames] if not overwrite and any(A__ ): UpperCamelCase = [f for f, d in zip(A__ , A__ ) if d] raise ValueError( F"""The following files have auto mappings that need sorting: {', '.join(A__ )}. Run `make style` to fix""" ' this.' ) if __name__ == "__main__": _lowerCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.") _lowerCamelCase : str = parser.parse_args() sort_all_auto_mappings(not args.check_only)
430
1
import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _UpperCAmelCase : Optional[Any] =logging.get_logger(__name__) _UpperCAmelCase : List[Any] ={"""vocab_file""": """spiece.model"""} _UpperCAmelCase : Union[str, Any] ={ """vocab_file""": { """AI-Sweden/gpt-sw3-126m""": """https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-350m""": """https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-1.6b""": """https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-6.7b""": """https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-20b""": """https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model""", } } _UpperCAmelCase : Optional[int] ={ """AI-Sweden/gpt-sw3-126m""": 2048, """AI-Sweden/gpt-sw3-350m""": 2048, """AI-Sweden/gpt-sw3-1.6b""": 2048, """AI-Sweden/gpt-sw3-6.7b""": 2048, """AI-Sweden/gpt-sw3-20b""": 2048, } class snake_case__( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : str = ["""input_ids""", """attention_mask"""] def __init__( self , __lowercase , __lowercase=False , __lowercase=False , __lowercase=False , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase = None , **__lowercase , ) -> None: lowerCAmelCase_ : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs lowerCAmelCase_ : Union[str, Any] = kwargs.get('''name_or_path''' ) if name_or_path is None: logger.warning( '''name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,''' ''' you are testing the model, this can safely be ignored''' ) lowerCAmelCase_ : Optional[int] = '''None''' # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing lowerCAmelCase_ : Union[str, Any] = '''<|endoftext|>''' if eos_token is None else eos_token lowerCAmelCase_ : str = '''<unk>''' if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: lowerCAmelCase_ : Tuple = unk_token if pad_token is None else pad_token lowerCAmelCase_ : str = eos_token if bos_token is None else bos_token else: lowerCAmelCase_ : List[str] = '''<pad>''' if pad_token is None else pad_token lowerCAmelCase_ : List[str] = '''<s>''' if bos_token is None else bos_token super().__init__( do_lower_case=__lowercase , remove_space=__lowercase , keep_accents=__lowercase , bos_token=__lowercase , eos_token=__lowercase , unk_token=__lowercase , pad_token=__lowercase , sp_model_kwargs=self.sp_model_kwargs , **__lowercase , ) lowerCAmelCase_ : Tuple = do_lower_case lowerCAmelCase_ : Optional[Any] = remove_space lowerCAmelCase_ : Tuple = keep_accents lowerCAmelCase_ : Optional[int] = vocab_file lowerCAmelCase_ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__lowercase ) # Used for whitespace normalization in input texts # fmt : off lowerCAmelCase_ : Dict = {''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', '''''', '''„'''} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing lowerCAmelCase_ : Any = re.compile( f"""[{"".join(map(__lowercase , list(range(0 , 9 ) ) + list(range(1_1 , 3_2 ) ) + list(range(1_2_7 , 1_6_0 ) ) + [1_6_0, 1_7_3, 8_2_0_3] ) )}]""" ) def __getstate__( self ) -> List[Any]: lowerCAmelCase_ : Optional[int] = self.__dict__.copy() lowerCAmelCase_ : Union[str, Any] = None return state def __setstate__( self , __lowercase ) -> List[Any]: lowerCAmelCase_ : Union[str, Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowerCAmelCase_ : List[str] = {} lowerCAmelCase_ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def lowercase_ ( self ) -> int: return len(self.sp_model ) def lowercase_ ( self , __lowercase ) -> str: lowerCAmelCase_ : List[Any] = self.non_printing_characters_re.sub('''''' , __lowercase ) # Normalize whitespaces lowerCAmelCase_ : str = ''''''.join([char if char not in self.whitespaces else ''' ''' for char in text] ) # NFC Unicode normalization lowerCAmelCase_ : Any = unicodedata.normalize('''NFC''' , __lowercase ) return text def lowercase_ ( self , __lowercase , **__lowercase ) -> List[str]: lowerCAmelCase_ : Optional[int] = self.preprocess_text(__lowercase ) return self.sp_model.encode(__lowercase , out_type=__lowercase ) def lowercase_ ( self , __lowercase ) -> int: return self.sp_model.PieceToId(__lowercase ) def lowercase_ ( self , __lowercase ) -> str: return self.sp_model.IdToPiece(__lowercase ) @staticmethod def lowercase_ ( __lowercase ) -> str: return out_string def lowercase_ ( self , __lowercase ) -> str: lowerCAmelCase_ : str = [] lowerCAmelCase_ : Union[str, Any] = '''''' lowerCAmelCase_ : str = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__lowercase ) + token lowerCAmelCase_ : Optional[Any] = True lowerCAmelCase_ : Dict = [] else: current_sub_tokens.append(__lowercase ) lowerCAmelCase_ : str = False out_string += self.sp_model.decode(__lowercase ) return out_string def lowercase_ ( self ) -> Dict[str, int]: lowerCAmelCase_ : List[Any] = {self.convert_ids_to_tokens(__lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowercase_ ( self , __lowercase , __lowercase = None ) -> Tuple[str]: if not os.path.isdir(__lowercase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCAmelCase_ : int = os.path.join( __lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowercase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowercase ) elif not os.path.isfile(self.vocab_file ): with open(__lowercase , '''wb''' ) as fi: lowerCAmelCase_ : str = self.sp_model.serialized_model_proto() fi.write(__lowercase ) return (out_vocab_file,) def lowercase_ ( self , __lowercase , __lowercase = False ) -> Union[List[int], List[List[int]], "torch.Tensor"]: if isinstance(__lowercase , __lowercase ): lowerCAmelCase_ : Optional[Any] = self.preprocess_text(__lowercase ) lowerCAmelCase_ : Optional[Any] = self.sp_model.encode(__lowercase ) else: lowerCAmelCase_ : Any = [self.preprocess_text(__lowercase ) for t in text] lowerCAmelCase_ : List[str] = self.sp_model.encode(__lowercase ) if return_tensors is True or return_tensors == "pt": lowerCAmelCase_ : int = torch.tensor(__lowercase ) return token_ids def lowercase_ ( self , __lowercase ) -> str: return self.sp_model.decode(__lowercase ) def lowercase_ ( self , __lowercase ) -> List[int]: lowerCAmelCase_ : Optional[int] = [f"""User: {text}""" if is_user else f"""Bot: {text}""" for is_user, text in conversation.iter_texts()] lowerCAmelCase_ : List[str] = ( f"""{self.eos_token}{self.bos_token}""" + f"""{self.bos_token}""".join(__lowercase ) + f"""{self.bos_token}Bot:""" ) return self.encode(text=__lowercase )
619
import math import qiskit def lowerCAmelCase ( lowerCAmelCase_ = 1 , lowerCAmelCase_ = 1 , lowerCAmelCase_ = 1 )-> qiskit.result.counts.Counts: if ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) ): raise TypeError('''inputs must be integers.''' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('''inputs must be positive.''' ) if ( (math.floor(lowerCAmelCase_ ) != input_a) or (math.floor(lowerCAmelCase_ ) != input_a) or (math.floor(lowerCAmelCase_ ) != carry_in) ): raise ValueError('''inputs must be exact integers.''' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('''inputs must be less or equal to 2.''' ) # build registers lowerCAmelCase_ : str = qiskit.QuantumRegister(4 , '''qr''' ) lowerCAmelCase_ : str = qiskit.ClassicalRegister(2 , '''cr''' ) # list the entries lowerCAmelCase_ : Any = [input_a, input_a, carry_in] lowerCAmelCase_ : int = qiskit.QuantumCircuit(lowerCAmelCase_ , lowerCAmelCase_ ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(lowerCAmelCase_ ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(lowerCAmelCase_ ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(lowerCAmelCase_ ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , lowerCAmelCase_ ) # measure the last two qbits lowerCAmelCase_ : Tuple = qiskit.Aer.get_backend('''aer_simulator''' ) lowerCAmelCase_ : Union[str, Any] = qiskit.execute(lowerCAmelCase_ , lowerCAmelCase_ , shots=1_000 ) return job.result().get_counts(lowerCAmelCase_ ) if __name__ == "__main__": print(f"""Total sum count for state is: {quantum_full_adder(1, 1, 1)}""")
619
1
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging lowerCamelCase : Tuple = logging.get_logger(__name__) logging.set_verbosity_info() def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): if "xprophetnet" in prophetnet_checkpoint_path: __lowercase : List[Any] = XLMProphetNetForConditionalGenerationOld.from_pretrained(lowerCAmelCase_ ) __lowercase , __lowercase : Optional[Any] = XLMProphetNetForConditionalGeneration.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ ) else: __lowercase : Dict = ProphetNetForConditionalGenerationOld.from_pretrained(lowerCAmelCase_ ) __lowercase , __lowercase : str = ProphetNetForConditionalGeneration.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ ) __lowercase : List[Any] = ["""key_proj""", """value_proj""", """query_proj"""] __lowercase : Optional[int] = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: __lowercase : List[str] = key.split(""".""" ) if attributes[0] == "lm_head": __lowercase : List[Any] = prophet __lowercase : List[Any] = prophet_old else: __lowercase : List[Any] = prophet.prophetnet __lowercase : Optional[Any] = prophet_old.model __lowercase : Any = False for attribute in attributes: if attribute in mapping: __lowercase : Tuple = mapping[attribute] if not hasattr(lowerCAmelCase_ , lowerCAmelCase_ ) and len(lowerCAmelCase_ ) > 0: __lowercase : Optional[int] = attribute elif hasattr(lowerCAmelCase_ , lowerCAmelCase_ ): __lowercase : int = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" __lowercase : Dict = old_model.weight logger.info(F"{attribute} is initialized." ) __lowercase : Optional[int] = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" __lowercase : int = old_model.bias logger.info(F"{attribute} is initialized" ) __lowercase : Tuple = True break elif attribute in special_keys and hasattr(lowerCAmelCase_ , """in_proj_weight""" ): __lowercase : Dict = old_model.in_proj_weight.shape[0] // 3 __lowercase : Tuple = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": __lowercase : Any = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) __lowercase : Tuple = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": __lowercase : Any = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) __lowercase : Tuple = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": __lowercase : Any = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) __lowercase : Optional[Any] = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) __lowercase : int = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." __lowercase : int = nn.Parameter(old_model.embed_positions.weight[:512, :] ) __lowercase : int = True break if attribute.isdigit(): __lowercase : int = model[int(lowerCAmelCase_ )] __lowercase : Optional[int] = old_model[int(lowerCAmelCase_ )] else: __lowercase : int = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) if old_attribute == "": __lowercase : Tuple = old_model else: if not hasattr(lowerCAmelCase_ , lowerCAmelCase_ ): raise ValueError(F"{old_model} does not have {old_attribute}" ) __lowercase : str = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) if not is_key_init: raise ValueError(F"{key} was not correctly initialized!" ) print(F"Saving model to {pytorch_dump_folder_path}" ) prophet.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": lowerCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--prophetnet_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCamelCase : List[Any] = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
149
import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class lowerCAmelCase : '''simple docstring''' def __init__( self : List[str] , __a : Optional[int] , __a : List[str]=14 , __a : Optional[Any]=7 , __a : List[Any]=True , __a : Tuple=True , __a : Union[str, Any]=True , __a : Any=True , __a : Any=True , __a : Dict=99 , __a : List[Any]=32 , __a : Union[str, Any]=5 , __a : List[Any]=4 , __a : Tuple=37 , __a : Dict="gelu" , __a : Tuple=0.1 , __a : str=0.1 , __a : Optional[int]=512 , __a : Union[str, Any]=16 , __a : Tuple=2 , __a : Tuple=0.02 , __a : List[str]=3 , __a : Tuple=4 , __a : int=None , ) -> int: """simple docstring""" __lowercase : Tuple = parent __lowercase : Optional[int] = batch_size __lowercase : int = seq_length __lowercase : Any = is_training __lowercase : str = use_token_type_ids __lowercase : Dict = use_input_mask __lowercase : Tuple = use_labels __lowercase : Optional[Any] = use_mc_token_ids __lowercase : int = vocab_size __lowercase : Optional[int] = hidden_size __lowercase : int = num_hidden_layers __lowercase : Tuple = num_attention_heads __lowercase : Any = intermediate_size __lowercase : Any = hidden_act __lowercase : Optional[Any] = hidden_dropout_prob __lowercase : Dict = attention_probs_dropout_prob __lowercase : str = max_position_embeddings __lowercase : List[Any] = type_vocab_size __lowercase : List[str] = type_sequence_label_size __lowercase : Optional[Any] = initializer_range __lowercase : List[Any] = num_labels __lowercase : str = num_choices __lowercase : List[str] = scope __lowercase : Optional[Any] = self.vocab_size - 1 def lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" __lowercase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : int = None if self.use_input_mask: __lowercase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : Tuple = None if self.use_token_type_ids: __lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase : Dict = None if self.use_mc_token_ids: __lowercase : int = ids_tensor([self.batch_size, self.num_choices] , self.seq_length ) __lowercase : Tuple = None __lowercase : int = None __lowercase : Any = None if self.use_labels: __lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase : int = ids_tensor([self.batch_size] , self.num_choices ) __lowercase : Dict = self.get_config() __lowercase : Union[str, Any] = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" return CTRLConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) def lowerCAmelCase ( self : List[str] , __a : Tuple , __a : str , __a : Optional[int] , __a : Any , __a : Union[str, Any] , *__a : List[str] ) -> Tuple: """simple docstring""" __lowercase : int = CTRLModel(config=__a ) model.to(__a ) model.eval() model(__a , token_type_ids=__a , head_mask=__a ) model(__a , token_type_ids=__a ) __lowercase : int = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) , config.n_layer ) def lowerCAmelCase ( self : Any , __a : Union[str, Any] , __a : str , __a : List[Any] , __a : Union[str, Any] , __a : Optional[Any] , *__a : List[Any] ) -> Tuple: """simple docstring""" __lowercase : str = CTRLLMHeadModel(__a ) model.to(__a ) model.eval() __lowercase : Any = model(__a , token_type_ids=__a , labels=__a ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : List[str] = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) : int = config_and_inputs __lowercase : Optional[int] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """head_mask""": head_mask} return config, inputs_dict def lowerCAmelCase ( self : int , __a : int , __a : Dict , __a : str , __a : List[str] , *__a : str ) -> int: """simple docstring""" __lowercase : List[str] = self.num_labels __lowercase : Optional[Any] = CTRLForSequenceClassification(__a ) model.to(__a ) model.eval() __lowercase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : List[str] = model(__a , token_type_ids=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) @require_torch class lowerCAmelCase ( __a , __a , __a , unittest.TestCase ): '''simple docstring''' _A : Dict = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () _A : Any = (CTRLLMHeadModel,) if is_torch_available() else () _A : Dict = ( { '''feature-extraction''': CTRLModel, '''text-classification''': CTRLForSequenceClassification, '''text-generation''': CTRLLMHeadModel, '''zero-shot''': CTRLForSequenceClassification, } if is_torch_available() else {} ) _A : str = True _A : List[Any] = False _A : List[Any] = False def lowerCAmelCase ( self : int , __a : Tuple , __a : int , __a : str , __a : int , __a : Dict ) -> Dict: """simple docstring""" if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" __lowercase : Tuple = CTRLModelTester(self ) __lowercase : Any = ConfigTester(self , config_class=__a , n_embd=37 ) def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : Tuple ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*__a ) def lowerCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" __lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__a ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" pass @slow def lowerCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : List[Any] = CTRLModel.from_pretrained(__a ) self.assertIsNotNone(__a ) @unittest.skip("""The model doesn't support left padding""" ) # and it's not used enough to be worth fixing :) def lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" pass @require_torch class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" __lowercase : int = CTRLLMHeadModel.from_pretrained("""ctrl""" ) model.to(__a ) __lowercase : str = torch.tensor( [[11859, 0, 1611, 8]] , dtype=torch.long , device=__a ) # Legal the president is __lowercase : Union[str, Any] = [ 11859, 0, 1611, 8, 5, 150, 26449, 2, 19, 348, 469, 3, 2595, 48, 20740, 246533, 246533, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a __lowercase : List[Any] = model.generate(__a , do_sample=__a ) self.assertListEqual(output_ids[0].tolist() , __a )
149
1
'''simple docstring''' from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal a__ : Any = logging.get_logger(__name__) a__ : Dict = TypeVar('DatasetType', Dataset, IterableDataset) def __snake_case ( SCREAMING_SNAKE_CASE_ : List[DatasetType] , SCREAMING_SNAKE_CASE_ : Optional[List[float]] = None , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : Optional[DatasetInfo] = None , SCREAMING_SNAKE_CASE_ : Optional[NamedSplit] = None , SCREAMING_SNAKE_CASE_ : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ) -> DatasetType: """simple docstring""" from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('''Unable to interleave an empty list of datasets.''' ) for i, dataset in enumerate(SCREAMING_SNAKE_CASE_ ): if not isinstance(SCREAMING_SNAKE_CASE_ , (Dataset, IterableDataset) ): if isinstance(SCREAMING_SNAKE_CASE_ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " '''is an empty dataset dictionary.''' ) raise ValueError( f"Dataset at position {i} has at least one split: {list(SCREAMING_SNAKE_CASE_ )}\n" f"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(SCREAMING_SNAKE_CASE_ ) )}']" ) raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(SCREAMING_SNAKE_CASE_ ).__name__}." ) if i == 0: UpperCAmelCase, UpperCAmelCase = ( (Dataset, IterableDataset) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else (IterableDataset, Dataset) ) elif not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError( f"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(f"{stopping_strategy} is not supported. Please enter a valid stopping_strategy." ) if dataset_type is Dataset: return _interleave_map_style_datasets( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , info=SCREAMING_SNAKE_CASE_ , split=SCREAMING_SNAKE_CASE_ , stopping_strategy=SCREAMING_SNAKE_CASE_ ) else: return _interleave_iterable_datasets( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , info=SCREAMING_SNAKE_CASE_ , split=SCREAMING_SNAKE_CASE_ , stopping_strategy=SCREAMING_SNAKE_CASE_ ) def __snake_case ( SCREAMING_SNAKE_CASE_ : List[DatasetType] , SCREAMING_SNAKE_CASE_ : Optional[DatasetInfo] = None , SCREAMING_SNAKE_CASE_ : Optional[NamedSplit] = None , SCREAMING_SNAKE_CASE_ : int = 0 , ) -> DatasetType: """simple docstring""" if not dsets: raise ValueError('''Unable to concatenate an empty list of datasets.''' ) for i, dataset in enumerate(SCREAMING_SNAKE_CASE_ ): if not isinstance(SCREAMING_SNAKE_CASE_ , (Dataset, IterableDataset) ): if isinstance(SCREAMING_SNAKE_CASE_ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " '''is an empty dataset dictionary.''' ) raise ValueError( f"Dataset at position {i} has at least one split: {list(SCREAMING_SNAKE_CASE_ )}\n" f"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(SCREAMING_SNAKE_CASE_ ) )}']" ) raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(SCREAMING_SNAKE_CASE_ ).__name__}." ) if i == 0: UpperCAmelCase, UpperCAmelCase = ( (Dataset, IterableDataset) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else (IterableDataset, Dataset) ) elif not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError( f"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if dataset_type is Dataset: return _concatenate_map_style_datasets(SCREAMING_SNAKE_CASE_ , info=SCREAMING_SNAKE_CASE_ , split=SCREAMING_SNAKE_CASE_ , axis=SCREAMING_SNAKE_CASE_ ) else: return _concatenate_iterable_datasets(SCREAMING_SNAKE_CASE_ , info=SCREAMING_SNAKE_CASE_ , split=SCREAMING_SNAKE_CASE_ , axis=SCREAMING_SNAKE_CASE_ )
717
'''simple docstring''' def __snake_case ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> int: """simple docstring""" if exponent == 1: return base if exponent % 2 == 0: UpperCAmelCase = _modexpt(SCREAMING_SNAKE_CASE_ , exponent // 2 , SCREAMING_SNAKE_CASE_ ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(SCREAMING_SNAKE_CASE_ , exponent - 1 , SCREAMING_SNAKE_CASE_ )) % modulo_value def __snake_case ( SCREAMING_SNAKE_CASE_ : int = 1_777 , SCREAMING_SNAKE_CASE_ : int = 1_855 , SCREAMING_SNAKE_CASE_ : int = 8 ) -> int: """simple docstring""" UpperCAmelCase = base for _ in range(1 , SCREAMING_SNAKE_CASE_ ): UpperCAmelCase = _modexpt(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 10**digits ) return result if __name__ == "__main__": print(F"""{solution() = }""")
570
0
'''simple docstring''' import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def __UpperCAmelCase ( _UpperCAmelCase : int = 3 ) -> qiskit.result.counts.Counts: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise TypeError("number of qubits must be a integer." ) if number_of_qubits <= 0: raise ValueError("number of qubits must be > 0." ) if math.floor(_UpperCAmelCase ) != number_of_qubits: raise ValueError("number of qubits must be exact integer." ) if number_of_qubits > 10: raise ValueError("number of qubits too large to simulate(>10)." ) __snake_case = QuantumRegister(_UpperCAmelCase , "qr" ) __snake_case = ClassicalRegister(_UpperCAmelCase , "cr" ) __snake_case = QuantumCircuit(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = number_of_qubits for i in range(_UpperCAmelCase ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(_UpperCAmelCase ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , _UpperCAmelCase , _UpperCAmelCase ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(_UpperCAmelCase , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(_UpperCAmelCase , _UpperCAmelCase ) # simulate with 10000 shots __snake_case = Aer.get_backend("qasm_simulator" ) __snake_case = execute(_UpperCAmelCase , _UpperCAmelCase , shots=1_00_00 ) return job.result().get_counts(_UpperCAmelCase ) if __name__ == "__main__": print( F'''Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}''' )
69
import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger lowerCAmelCase_ = get_logger(__name__) lowerCAmelCase_ = Path(__file__).parent / '''model_card_template.md''' lowerCAmelCase_ = uuida().hex lowerCAmelCase_ = os.getenv('''HF_HUB_OFFLINE''', '''''').upper() in ENV_VARS_TRUE_VALUES lowerCAmelCase_ = os.getenv('''DISABLE_TELEMETRY''', '''''').upper() in ENV_VARS_TRUE_VALUES lowerCAmelCase_ = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '''/api/telemetry/''' def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = None ): snake_case_ = F'''diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}''' if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += F'''; torch/{_torch_version}''' if is_flax_available(): ua += F'''; jax/{_jax_version}''' ua += F'''; flax/{_flax_version}''' if is_onnx_available(): ua += F'''; onnxruntime/{_onnxruntime_version}''' # CI will set this value to True if os.environ.get('''DIFFUSERS_IS_CI''' , '''''' ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): ua += "; " + "; ".join(F'''{k}/{v}''' for k, v in user_agent.items() ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): ua += "; " + user_agent return ua def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None ): if token is None: snake_case_ = HfFolder.get_token() if organization is None: snake_case_ = whoami(SCREAMING_SNAKE_CASE__ )['''name'''] return F'''{username}/{model_id}''' else: return F'''{organization}/{model_id}''' def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if not is_jinja_available(): raise ValueError( '''Modelcard rendering is based on Jinja templates.''' ''' Please make sure to have `jinja` installed before using `create_model_card`.''' ''' To install it, please run `pip install Jinja2`.''' ) if hasattr(SCREAMING_SNAKE_CASE__ , '''local_rank''' ) and args.local_rank not in [-1, 0]: return snake_case_ = args.hub_token if hasattr(SCREAMING_SNAKE_CASE__ , '''hub_token''' ) else None snake_case_ = get_full_repo_name(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ ) snake_case_ = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='''en''' , license='''apache-2.0''' , library_name='''diffusers''' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=SCREAMING_SNAKE_CASE__ , model_name=SCREAMING_SNAKE_CASE__ , repo_name=SCREAMING_SNAKE_CASE__ , dataset_name=args.dataset_name if hasattr(SCREAMING_SNAKE_CASE__ , '''dataset_name''' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(SCREAMING_SNAKE_CASE__ , '''gradient_accumulation_steps''' ) else None ) , adam_betaa=args.adam_betaa if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_beta1''' ) else None , adam_betaa=args.adam_betaa if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_beta2''' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_weight_decay''' ) else None , adam_epsilon=args.adam_epsilon if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_epsilon''' ) else None , lr_scheduler=args.lr_scheduler if hasattr(SCREAMING_SNAKE_CASE__ , '''lr_scheduler''' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(SCREAMING_SNAKE_CASE__ , '''lr_warmup_steps''' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(SCREAMING_SNAKE_CASE__ , '''ema_inv_gamma''' ) else None , ema_power=args.ema_power if hasattr(SCREAMING_SNAKE_CASE__ , '''ema_power''' ) else None , ema_max_decay=args.ema_max_decay if hasattr(SCREAMING_SNAKE_CASE__ , '''ema_max_decay''' ) else None , mixed_precision=args.mixed_precision , ) snake_case_ = os.path.join(args.output_dir , '''README.md''' ) model_card.save(SCREAMING_SNAKE_CASE__ ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): if resolved_file is None or commit_hash is not None: return commit_hash snake_case_ = str(Path(SCREAMING_SNAKE_CASE__ ).as_posix() ) snake_case_ = re.search(R'''snapshots/([^/]+)/''' , SCREAMING_SNAKE_CASE__ ) if search is None: return None snake_case_ = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(SCREAMING_SNAKE_CASE__ ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. lowerCAmelCase_ = os.path.expanduser( os.getenv('''HF_HOME''', os.path.join(os.getenv('''XDG_CACHE_HOME''', '''~/.cache'''), '''huggingface''')) ) lowerCAmelCase_ = os.path.join(hf_cache_home, '''diffusers''') def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None ): if new_cache_dir is None: snake_case_ = DIFFUSERS_CACHE if old_cache_dir is None: snake_case_ = old_diffusers_cache snake_case_ = Path(SCREAMING_SNAKE_CASE__ ).expanduser() snake_case_ = Path(SCREAMING_SNAKE_CASE__ ).expanduser() for old_blob_path in old_cache_dir.glob('''**/blobs/*''' ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): snake_case_ = new_cache_dir / old_blob_path.relative_to(SCREAMING_SNAKE_CASE__ ) new_blob_path.parent.mkdir(parents=SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) os.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) try: os.symlink(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) except OSError: logger.warning( '''Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.''' ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). lowerCAmelCase_ = os.path.join(DIFFUSERS_CACHE, '''version_diffusers_cache.txt''') if not os.path.isfile(cache_version_file): lowerCAmelCase_ = 0 else: with open(cache_version_file) as f: try: lowerCAmelCase_ = int(f.read()) except ValueError: lowerCAmelCase_ = 0 if cache_version < 1: lowerCAmelCase_ = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( '''The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ''' '''existing cached models. This is a one-time operation, you can interrupt it or run it ''' '''later by calling `diffusers.utils.hub_utils.move_cache()`.''' ) try: move_cache() except Exception as e: lowerCAmelCase_ = '''\n'''.join(traceback.format_tb(e.__traceback__)) logger.error( f"""There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease """ '''file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ''' '''message and we will do our best to help.''' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, '''w''') as f: f.write('''1''') except Exception: logger.warning( f"""There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure """ '''the directory exists and can be written to.''' ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): if variant is not None: snake_case_ = weights_name.split('''.''' ) snake_case_ = splits[:-1] + [variant] + splits[-1:] snake_case_ = '''.'''.join(SCREAMING_SNAKE_CASE__ ) return weights_name def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , *, SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None , ): snake_case_ = str(SCREAMING_SNAKE_CASE__ ) if os.path.isfile(SCREAMING_SNAKE_CASE__ ): return pretrained_model_name_or_path elif os.path.isdir(SCREAMING_SNAKE_CASE__ ): if os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ): # Load from a PyTorch checkpoint snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ): snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return model_file else: raise EnvironmentError( F'''Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.''' ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(SCREAMING_SNAKE_CASE__ ).base_version ) >= version.parse('''0.20.0''' ) ): try: snake_case_ = hf_hub_download( SCREAMING_SNAKE_CASE__ , filename=_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , proxies=SCREAMING_SNAKE_CASE__ , resume_download=SCREAMING_SNAKE_CASE__ , local_files_only=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , user_agent=SCREAMING_SNAKE_CASE__ , subfolder=SCREAMING_SNAKE_CASE__ , revision=revision or commit_hash , ) warnings.warn( F'''Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.''' , SCREAMING_SNAKE_CASE__ , ) return model_file except: # noqa: E722 warnings.warn( F'''You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}\' so that the correct variant file can be added.''' , SCREAMING_SNAKE_CASE__ , ) try: # 2. Load model file as usual snake_case_ = hf_hub_download( SCREAMING_SNAKE_CASE__ , filename=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , proxies=SCREAMING_SNAKE_CASE__ , resume_download=SCREAMING_SNAKE_CASE__ , local_files_only=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , user_agent=SCREAMING_SNAKE_CASE__ , subfolder=SCREAMING_SNAKE_CASE__ , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( F'''{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier ''' '''listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ''' '''token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ''' '''login`.''' ) except RevisionNotFoundError: raise EnvironmentError( F'''{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for ''' '''this model name. Check the model page at ''' F'''\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.''' ) except EntryNotFoundError: raise EnvironmentError( F'''{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.''' ) except HTTPError as err: raise EnvironmentError( F'''There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}''' ) except ValueError: raise EnvironmentError( F'''We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it''' F''' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a''' F''' directory containing a file named {weights_name} or''' ''' \nCheckout your internet connection or see how to run the library in''' ''' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.''' ) except EnvironmentError: raise EnvironmentError( F'''Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from ''' '''\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ''' F'''Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory ''' F'''containing a file named {weights_name}''' )
39
0
"""simple docstring""" from __future__ import annotations from typing import Generic, TypeVar A = TypeVar('T') class UpperCAmelCase__ ( Generic[T] ): def __init__( self : Union[str, Any] , snake_case : T ) -> None: '''simple docstring''' A = data A = self A = 0 class UpperCAmelCase__ ( Generic[T] ): def __init__( self : str ) -> None: '''simple docstring''' A = {} def A_ ( self : List[str] , snake_case : T ) -> None: '''simple docstring''' A = DisjointSetTreeNode(snake_case ) def A_ ( self : Dict , snake_case : T ) -> DisjointSetTreeNode[T]: '''simple docstring''' A = self.map[data] if elem_ref != elem_ref.parent: A = self.find_set(elem_ref.parent.data ) return elem_ref.parent def A_ ( self : List[Any] , snake_case : DisjointSetTreeNode[T] , snake_case : DisjointSetTreeNode[T] ) -> None: '''simple docstring''' if nodea.rank > nodea.rank: A = nodea else: A = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def A_ ( self : str , snake_case : T , snake_case : T ) -> None: '''simple docstring''' self.link(self.find_set(snake_case ) , self.find_set(snake_case ) ) class UpperCAmelCase__ ( Generic[T] ): def __init__( self : Optional[int] ) -> None: '''simple docstring''' A = {} def A_ ( self : List[str] , snake_case : T ) -> None: '''simple docstring''' if node not in self.connections: A = {} def A_ ( self : Optional[Any] , snake_case : T , snake_case : T , snake_case : int ) -> None: '''simple docstring''' self.add_node(snake_case ) self.add_node(snake_case ) A = weight A = weight def A_ ( self : Optional[Any] ) -> GraphUndirectedWeighted[T]: '''simple docstring''' A = [] A = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda snake_case : x[2] ) # creating the disjoint set A = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(snake_case ) # MST generation A = 0 A = 0 A = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: A , A , A = edges[index] index += 1 A = disjoint_set.find_set(snake_case ) A = disjoint_set.find_set(snake_case ) if parent_u != parent_v: num_edges += 1 graph.add_edge(snake_case , snake_case , snake_case ) disjoint_set.union(snake_case , snake_case ) return graph
109
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A = {'configuration_mra': ['MRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MraConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ 'MRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MraForMaskedLM', 'MraForMultipleChoice', 'MraForQuestionAnswering', 'MraForSequenceClassification', 'MraForTokenClassification', 'MraLayer', 'MraModel', 'MraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys A = _LazyModule(__name__, globals()['__file__'], _import_structure)
109
1
from __future__ import annotations def _snake_case ( __snake_case ): return [ord(__snake_case ) - 96 for elem in plain] def _snake_case ( __snake_case ): return "".join(chr(elem + 96 ) for elem in encoded ) def _snake_case ( ): _UpperCamelCase = encode(input('''-> ''' ).strip().lower() ) print('''Encoded: ''' , __snake_case ) print('''Decoded:''' , decode(__snake_case ) ) if __name__ == "__main__": main()
10
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Optional[Any] = ( '''This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.''' '''It takes two arguments named `image` which should be the original image, and `label` which should be a text ''' '''describing the elements what should be identified in the segmentation mask. The tool returns the mask.''' ) UpperCamelCase_ : Union[str, Any] = '''CIDAS/clipseg-rd64-refined''' UpperCamelCase_ : Any = '''image_segmenter''' UpperCamelCase_ : int = CLIPSegForImageSegmentation UpperCamelCase_ : Optional[Any] = ['''image''', '''text'''] UpperCamelCase_ : int = ['''image'''] def __init__( self : str , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(self , ["vision"] ) super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_ ) def _A ( self : Tuple , UpperCAmelCase_ : "Image" , UpperCAmelCase_ : str ): return self.pre_processor(text=[label] , images=[image] , padding=UpperCAmelCase_ , return_tensors="pt" ) def _A ( self : str , UpperCAmelCase_ : Optional[Any] ): with torch.no_grad(): SCREAMING_SNAKE_CASE : str = self.model(**UpperCAmelCase_ ).logits return logits def _A ( self : Union[str, Any] , UpperCAmelCase_ : List[str] ): SCREAMING_SNAKE_CASE : Optional[int] = outputs.cpu().detach().numpy() SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : str = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
62
0
def a_ ( lowerCamelCase : List[Any] ): lowerCAmelCase = len(__snake_case ) for i in range(length - 1 ): lowerCAmelCase = i for k in range(i + 1 , __snake_case ): if collection[k] < collection[least]: lowerCAmelCase = k if least != i: lowerCAmelCase , lowerCAmelCase = (collection[i], collection[least]) return collection if __name__ == "__main__": __snake_case =input("""Enter numbers separated by a comma:\n""").strip() __snake_case =[int(item) for item in user_input.split(""",""")] print(selection_sort(unsorted))
705
'''simple docstring''' from __future__ import annotations def a_ ( lowerCamelCase : list , lowerCamelCase : int ): # Checks if the entire collection has been sorted if len(lowerCamelCase ) <= 1 or n <= 1: return insert_next(lowerCamelCase , n - 1 ) rec_insertion_sort(lowerCamelCase , n - 1 ) def a_ ( lowerCamelCase : list , lowerCamelCase : int ): # Checks order between adjacent elements if index >= len(lowerCamelCase ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order lowerCAmelCase , lowerCAmelCase = ( collection[index], collection[index - 1], ) insert_next(lowerCamelCase , index + 1 ) if __name__ == "__main__": __snake_case =input("""Enter integers separated by spaces: """) __snake_case =[int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
513
0
import re def __magic_name__ ( lowerCAmelCase_): '''simple docstring''' if len(re.findall("[ATCG]" , lowerCAmelCase_)) != len(lowerCAmelCase_): raise ValueError("Invalid Strand") return dna.translate(dna.maketrans("ATCG" , "TAGC")) if __name__ == "__main__": import doctest doctest.testmod()
250
import warnings warnings.warn( '''memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: ''' '''`from accelerate import find_executable_batch_size` to avoid this warning.''', FutureWarning, )
250
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _UpperCAmelCase : str = { "configuration_swiftformer": [ "SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "SwiftFormerConfig", "SwiftFormerOnnxConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Optional[int] = [ "SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "SwiftFormerForImageClassification", "SwiftFormerModel", "SwiftFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys _UpperCAmelCase : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
288
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class lowerCAmelCase_ ( unittest.TestCase ): def __snake_case ( self : Optional[int] ): lowerCAmelCase__ = '''ylacombe/bark-small''' lowerCAmelCase__ = tempfile.mkdtemp() lowerCAmelCase__ = '''en_speaker_1''' lowerCAmelCase__ = '''This is a test string''' lowerCAmelCase__ = '''speaker_embeddings_path.json''' lowerCAmelCase__ = '''speaker_embeddings''' def __snake_case ( self : Optional[Any] , **SCREAMING_SNAKE_CASE_ : Optional[int] ): return AutoTokenizer.from_pretrained(self.checkpoint , **SCREAMING_SNAKE_CASE_ ) def __snake_case ( self : List[str] ): shutil.rmtree(self.tmpdirname ) def __snake_case ( self : Optional[Any] ): lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = BarkProcessor(tokenizer=SCREAMING_SNAKE_CASE_ ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase__ = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def __snake_case ( self : Any ): lowerCAmelCase__ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) lowerCAmelCase__ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) lowerCAmelCase__ = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='''(BOS)''' , eos_token='''(EOS)''' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def __snake_case ( self : Dict ): lowerCAmelCase__ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) lowerCAmelCase__ = 35 lowerCAmelCase__ = 2 lowerCAmelCase__ = 8 lowerCAmelCase__ = { '''semantic_prompt''': np.ones(SCREAMING_SNAKE_CASE_ ), '''coarse_prompt''': np.ones((nb_codebooks_coarse, seq_len) ), '''fine_prompt''': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset lowerCAmelCase__ = processor(text=self.input_string , voice_preset=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(SCREAMING_SNAKE_CASE_ , np.array([] ) ).tolist() ) # test loading voice preset from npz file lowerCAmelCase__ = os.path.join(self.tmpdirname , '''file.npz''' ) np.savez(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = processor(text=self.input_string , voice_preset=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(SCREAMING_SNAKE_CASE_ , np.array([] ) ).tolist() ) # test loading voice preset from the hub lowerCAmelCase__ = processor(text=self.input_string , voice_preset=self.voice_preset ) def __snake_case ( self : Optional[int] ): lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = BarkProcessor(tokenizer=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = processor(text=self.input_string ) lowerCAmelCase__ = tokenizer( self.input_string , padding='''max_length''' , max_length=256 , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
288
1
'''simple docstring''' from __future__ import annotations from collections.abc import MutableSequence class lowerCamelCase_ : """simple docstring""" def __init__( self : Optional[int] , _a : int , _a : MutableSequence[float] ) -> None: if len(_a ) != degree + 1: raise ValueError( 'The number of coefficients should be equal to the degree + 1.' ) __lowerCamelCase : list[float] = list(_a ) __lowerCamelCase : Dict = degree def __add__( self : Tuple , _a : Polynomial ) -> Polynomial: if self.degree > polynomial_a.degree: __lowerCamelCase : Optional[Any] = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , _a ) else: __lowerCamelCase : Optional[Any] = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , _a ) def __sub__( self : Dict , _a : Polynomial ) -> Polynomial: return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self : Any ) -> Polynomial: return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self : Optional[Any] , _a : Polynomial ) -> Polynomial: __lowerCamelCase : list[float] = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , _a ) def _lowercase ( self : Tuple , _a : int | float ) -> int | float: __lowerCamelCase : int | float = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self : Any ) -> str: __lowerCamelCase : Optional[int] = '' for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(_a ) return polynomial def __repr__( self : Tuple ) -> str: return self.__str__() def _lowercase ( self : Any ) -> Polynomial: __lowerCamelCase : list[float] = [0] * self.degree for i in range(self.degree ): __lowerCamelCase : Tuple = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , _a ) def _lowercase ( self : int , _a : int | float = 0 ) -> Polynomial: __lowerCamelCase : list[float] = [0] * (self.degree + 2) __lowerCamelCase : List[Any] = constant for i in range(self.degree + 1 ): __lowerCamelCase : Optional[int] = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , _a ) def __eq__( self : int , _a : object ) -> bool: if not isinstance(_a , _a ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self : List[str] , _a : object ) -> bool: return not self.__eq__(_a )
459
'''simple docstring''' from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging _UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCamelCase_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self : Union[str, Any] , _a : CLIPSegForImageSegmentation , _a : CLIPSegProcessor , _a : AutoencoderKL , _a : CLIPTextModel , _a : CLIPTokenizer , _a : UNetaDConditionModel , _a : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , _a : StableDiffusionSafetyChecker , _a : CLIPImageProcessor , ) -> int: super().__init__() if hasattr(scheduler.config , 'steps_offset' ) and scheduler.config.steps_offset != 1: __lowerCamelCase : int = ( f'The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`' f' should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure ' 'to update the config accordingly as leaving `steps_offset` might led to incorrect results' ' in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,' ' it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`' ' file' ) deprecate('steps_offset!=1' , '1.0.0' , _a , standard_warn=_a ) __lowerCamelCase : int = dict(scheduler.config ) __lowerCamelCase : Any = 1 __lowerCamelCase : List[Any] = FrozenDict(_a ) if hasattr(scheduler.config , 'skip_prk_steps' ) and scheduler.config.skip_prk_steps is False: __lowerCamelCase : str = ( f'The configuration file of this scheduler: {scheduler} has not set the configuration' ' `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make' ' sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to' ' incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face' ' Hub, it would be very nice if you could open a Pull request for the' ' `scheduler/scheduler_config.json` file' ) deprecate('skip_prk_steps not set' , '1.0.0' , _a , standard_warn=_a ) __lowerCamelCase : Dict = dict(scheduler.config ) __lowerCamelCase : Tuple = True __lowerCamelCase : Union[str, Any] = FrozenDict(_a ) if safety_checker is None: logger.warning( f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure' ' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered' ' results in services or applications open to the public. Both the diffusers team and Hugging Face' ' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling' ' it only for use-cases that involve analyzing network behavior or auditing its results. For more' ' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .' ) self.register_modules( segmentation_model=_a , segmentation_processor=_a , vae=_a , text_encoder=_a , tokenizer=_a , unet=_a , scheduler=_a , safety_checker=_a , feature_extractor=_a , ) def _lowercase ( self : Optional[int] , _a : Optional[Union[str, int]] = "auto" ) -> List[str]: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __lowerCamelCase : List[Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_a ) def _lowercase ( self : Optional[Any] ) -> int: self.enable_attention_slicing(_a ) def _lowercase ( self : str ) -> Any: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) __lowerCamelCase : Dict = torch.device('cuda' ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(_a , _a ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _lowercase ( self : Dict ) -> int: if self.device != torch.device('meta' ) or not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(_a , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self : List[str] , _a : Union[str, List[str]] , _a : Union[torch.FloatTensor, PIL.Image.Image] , _a : str , _a : int = 512 , _a : int = 512 , _a : int = 50 , _a : float = 7.5 , _a : Optional[Union[str, List[str]]] = None , _a : Optional[int] = 1 , _a : float = 0.0 , _a : Optional[torch.Generator] = None , _a : Optional[torch.FloatTensor] = None , _a : Optional[str] = "pil" , _a : bool = True , _a : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , _a : int = 1 , **_a : Optional[Any] , ) -> int: __lowerCamelCase : Union[str, Any] = self.segmentation_processor( text=[text] , images=[image] , padding='max_length' , return_tensors='pt' ).to(self.device ) __lowerCamelCase : Union[str, Any] = self.segmentation_model(**_a ) __lowerCamelCase : List[str] = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() __lowerCamelCase : Optional[Any] = self.numpy_to_pil(_a )[0].resize(image.size ) # Run inpainting pipeline with the generated mask __lowerCamelCase : Tuple = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=_a , image=_a , mask_image=_a , height=_a , width=_a , num_inference_steps=_a , guidance_scale=_a , negative_prompt=_a , num_images_per_prompt=_a , eta=_a , generator=_a , latents=_a , output_type=_a , return_dict=_a , callback=_a , callback_steps=_a , )
459
1
'''simple docstring''' import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer lowercase : Union[str, Any] = logging.get_logger(__name__) class _lowerCAmelCase ( UpperCamelCase_ ): """simple docstring""" lowerCAmelCase = 'AutoTokenizer' lowerCAmelCase = ['tokenizer'] lowerCAmelCase = { 'semantic_prompt': 1, 'coarse_prompt': 2, 'fine_prompt': 2, } def __init__( self : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Any=None ) -> List[Any]: """simple docstring""" super().__init__(SCREAMING_SNAKE_CASE ) lowerCAmelCase = speaker_embeddings @classmethod def __A ( cls : List[str] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Any="speaker_embeddings_path.json" , **SCREAMING_SNAKE_CASE : List[str] ) -> Dict: """simple docstring""" if speaker_embeddings_dict_path is not None: lowerCAmelCase = get_file_from_repo( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , subfolder=kwargs.pop("subfolder" , SCREAMING_SNAKE_CASE ) , cache_dir=kwargs.pop("cache_dir" , SCREAMING_SNAKE_CASE ) , force_download=kwargs.pop("force_download" , SCREAMING_SNAKE_CASE ) , proxies=kwargs.pop("proxies" , SCREAMING_SNAKE_CASE ) , resume_download=kwargs.pop("resume_download" , SCREAMING_SNAKE_CASE ) , local_files_only=kwargs.pop("local_files_only" , SCREAMING_SNAKE_CASE ) , use_auth_token=kwargs.pop("use_auth_token" , SCREAMING_SNAKE_CASE ) , revision=kwargs.pop("revision" , SCREAMING_SNAKE_CASE ) , ) if speaker_embeddings_path is None: logger.warning( f"`{os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}` does not exists\n , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json\n dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`." ) lowerCAmelCase = None else: with open(SCREAMING_SNAKE_CASE ) as speaker_embeddings_json: lowerCAmelCase = json.load(SCREAMING_SNAKE_CASE ) else: lowerCAmelCase = None lowerCAmelCase = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) return cls(tokenizer=SCREAMING_SNAKE_CASE , speaker_embeddings=SCREAMING_SNAKE_CASE ) def __A ( self : Dict , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[Any]="speaker_embeddings_path.json" , SCREAMING_SNAKE_CASE : Optional[int]="speaker_embeddings" , SCREAMING_SNAKE_CASE : bool = False , **SCREAMING_SNAKE_CASE : List[str] , ) -> str: """simple docstring""" if self.speaker_embeddings is not None: os.makedirs(os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , "v2" ) , exist_ok=SCREAMING_SNAKE_CASE ) lowerCAmelCase = {} lowerCAmelCase = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": lowerCAmelCase = self._load_voice_preset(SCREAMING_SNAKE_CASE ) lowerCAmelCase = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict["repo_or_path"] , SCREAMING_SNAKE_CASE , f"{prompt_key}_{key}" ) , voice_preset[key] , allow_pickle=SCREAMING_SNAKE_CASE , ) lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE , f"{prompt_key}_{key}.npy" ) lowerCAmelCase = tmp_dict with open(os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , "w" ) as fp: json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) super().save_pretrained(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __A ( self : Any , SCREAMING_SNAKE_CASE : str = None , **SCREAMING_SNAKE_CASE : str ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase = self.speaker_embeddings[voice_preset] lowerCAmelCase = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( f"Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}]." ) lowerCAmelCase = get_file_from_repo( self.speaker_embeddings.get("repo_or_path" , "/" ) , voice_preset_paths[key] , subfolder=kwargs.pop("subfolder" , SCREAMING_SNAKE_CASE ) , cache_dir=kwargs.pop("cache_dir" , SCREAMING_SNAKE_CASE ) , force_download=kwargs.pop("force_download" , SCREAMING_SNAKE_CASE ) , proxies=kwargs.pop("proxies" , SCREAMING_SNAKE_CASE ) , resume_download=kwargs.pop("resume_download" , SCREAMING_SNAKE_CASE ) , local_files_only=kwargs.pop("local_files_only" , SCREAMING_SNAKE_CASE ) , use_auth_token=kwargs.pop("use_auth_token" , SCREAMING_SNAKE_CASE ) , revision=kwargs.pop("revision" , SCREAMING_SNAKE_CASE ) , ) if path is None: raise ValueError( f"`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists\n , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset}\n embeddings." ) lowerCAmelCase = np.load(SCREAMING_SNAKE_CASE ) return voice_preset_dict def __A ( self : str , SCREAMING_SNAKE_CASE : Optional[dict] = None ) -> Any: """simple docstring""" for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(f"Voice preset unrecognized, missing {key} as a key." ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(f"{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray." ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(f"{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray." ) def __call__( self : str , SCREAMING_SNAKE_CASE : Optional[Any]=None , SCREAMING_SNAKE_CASE : Optional[int]=None , SCREAMING_SNAKE_CASE : Dict="pt" , SCREAMING_SNAKE_CASE : Optional[Any]=2_5_6 , SCREAMING_SNAKE_CASE : Tuple=False , SCREAMING_SNAKE_CASE : Tuple=True , SCREAMING_SNAKE_CASE : Dict=False , **SCREAMING_SNAKE_CASE : Union[str, Any] , ) -> List[Any]: """simple docstring""" if voice_preset is not None and not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): if ( isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): lowerCAmelCase = self._load_voice_preset(SCREAMING_SNAKE_CASE ) else: if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and not voice_preset.endswith(".npz" ): lowerCAmelCase = voice_preset + ".npz" lowerCAmelCase = np.load(SCREAMING_SNAKE_CASE ) if voice_preset is not None: self._validate_voice_preset_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) lowerCAmelCase = BatchFeature(data=SCREAMING_SNAKE_CASE , tensor_type=SCREAMING_SNAKE_CASE ) lowerCAmelCase = self.tokenizer( SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , padding="max_length" , max_length=SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , return_token_type_ids=SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) if voice_preset is not None: lowerCAmelCase = voice_preset return encoded_text
159
'''simple docstring''' from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
159
1
import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class lowerCamelCase__ ( lowerCamelCase_): """simple docstring""" a__ : Dict = """microsoft/speecht5_tts""" a__ : str = ( """This is a tool that reads an English text out loud. It takes an input named `text` which should contain the """ """text to read (in English) and returns a waveform object containing the sound.""" ) a__ : Dict = """text_reader""" a__ : List[Any] = SpeechTaProcessor a__ : Union[str, Any] = SpeechTaForTextToSpeech a__ : Any = SpeechTaHifiGan a__ : int = ["""text"""] a__ : Optional[int] = ["""audio"""] def snake_case_ ( self : Tuple ) -> str: if self.post_processor is None: _A = '''microsoft/speecht5_hifigan''' super().setup() def snake_case_ ( self : Tuple , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : int=None ) -> Tuple: _A = self.pre_processor(text=lowerCAmelCase__ , return_tensors='''pt''' , truncation=lowerCAmelCase__ ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError('''Datasets needs to be installed if not passing speaker embeddings.''' ) _A = load_dataset('''Matthijs/cmu-arctic-xvectors''' , split='''validation''' ) _A = torch.tensor(embeddings_dataset[73_05]['''xvector'''] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def snake_case_ ( self : List[str] , __lowerCAmelCase : List[Any] ) -> Tuple: with torch.no_grad(): return self.model.generate_speech(**lowerCAmelCase__ ) def snake_case_ ( self : List[Any] , __lowerCAmelCase : List[Any] ) -> int: with torch.no_grad(): return self.post_processor(lowerCAmelCase__ ).cpu().detach()
2
"""simple docstring""" import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets __UpperCamelCase = '''\ @inproceedings{popovic-2015-chrf, title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation", author = "Popovi{\'c}, Maja", booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation", month = sep, year = "2015", address = "Lisbon, Portugal", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/W15-3049", doi = "10.18653/v1/W15-3049", pages = "392--395", } @inproceedings{popovic-2017-chrf, title = "chr{F}++: words helping character n-grams", author = "Popovi{\'c}, Maja", booktitle = "Proceedings of the Second Conference on Machine Translation", month = sep, year = "2017", address = "Copenhagen, Denmark", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/W17-4770", doi = "10.18653/v1/W17-4770", pages = "612--618", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' __UpperCamelCase = '''\ ChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches, and ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation that is already present in sacrebleu. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information. ''' __UpperCamelCase = ''' Produces ChrF(++) scores for hypotheses given reference translations. Args: predictions (list of str): The predicted sentences. references (list of list of str): The references. There should be one reference sub-list for each prediction sentence. char_order (int): Character n-gram order. Defaults to `6`. word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`. beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`. lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`. whitespace (bool): If `True`, include whitespaces when extracting character n-grams. eps_smoothing (bool): If `True`, applies epsilon smoothing similar to reference chrF++.py, NLTK and Moses implementations. If `False`, it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`. Returns: \'score\' (float): The chrF (chrF++) score, \'char_order\' (int): The character n-gram order, \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++, \'beta\' (int): Determine the importance of recall w.r.t precision Examples: Example 1--a simple example of calculating chrF: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, references=reference) >>> print(results) {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2} Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2) >>> print(results) {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2} Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2, ... lowercase=True) >>> print(results) {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase ( datasets.Metric ): '''simple docstring''' def __A ( self ) -> List[str]: if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/mjpost/sacreBLEU#chrf--chrf' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#chrf--chrf'] , reference_urls=[ 'https://github.com/m-popovic/chrF', ] , ) def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = CHRF.CHAR_ORDER , lowerCAmelCase__ = CHRF.WORD_ORDER , lowerCAmelCase__ = CHRF.BETA , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = False , ) -> Optional[Any]: SCREAMING_SNAKE_CASE = len(references[0] ) if any(len(lowerCAmelCase__ ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) SCREAMING_SNAKE_CASE = [[refs[i] for refs in references] for i in range(lowerCAmelCase__ )] SCREAMING_SNAKE_CASE = CHRF(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = sb_chrf.corpus_score(lowerCAmelCase__ , lowerCAmelCase__ ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
247
0
"""simple docstring""" def __lowercase ( a : List[str] , a : Union[str, Any] ) -> Optional[int]: __snake_case : Optional[int] ='''''' for i in table: res += inp[i - 1] return res def __lowercase ( a : List[str] ) -> List[str]: return data[1:] + data[0] def __lowercase ( a : Tuple , a : List[Any] ) -> str: __snake_case : Union[str, Any] ='''''' for i in range(len(a ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def __lowercase ( a : Dict , a : Union[str, Any] ) -> Optional[int]: __snake_case : List[Any] =int('''0b''' + data[0] + data[-1] , 2 ) __snake_case : Dict =int('''0b''' + data[1:3] , 2 ) return bin(s[row][col] )[2:] def __lowercase ( a : Optional[Any] , a : Any , a : Optional[int] , a : List[str] , a : int ) -> Optional[Any]: __snake_case : Optional[Any] =message[:4] __snake_case : Dict =message[4:] __snake_case : str =apply_table(a , a ) __snake_case : Optional[int] =xor(a , a ) __snake_case : str =apply_sbox(a , temp[:4] ) # noqa: E741 __snake_case : int =apply_sbox(a , temp[4:] ) __snake_case : List[str] ='''0''' * (2 - len(a )) + l # noqa: E741 __snake_case : List[str] ='''0''' * (2 - len(a )) + r __snake_case : int =apply_table(l + r , a ) __snake_case : Optional[int] =xor(a , a ) return temp + right if __name__ == "__main__": UpperCamelCase_ : Tuple = input("""Enter 10 bit key: """) UpperCamelCase_ : List[Any] = input("""Enter 8 bit message: """) UpperCamelCase_ : str = [6, 3, 7, 4, 8, 5, 10, 9] UpperCamelCase_ : List[str] = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] UpperCamelCase_ : Tuple = [2, 4, 3, 1] UpperCamelCase_ : Dict = [2, 6, 3, 1, 4, 8, 5, 7] UpperCamelCase_ : int = [4, 1, 3, 5, 7, 2, 8, 6] UpperCamelCase_ : List[str] = [4, 1, 2, 3, 2, 3, 4, 1] UpperCamelCase_ : Dict = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] UpperCamelCase_ : Optional[int] = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation UpperCamelCase_ : Optional[int] = apply_table(key, paa_table) UpperCamelCase_ : Optional[int] = temp[:5] UpperCamelCase_ : Dict = temp[5:] UpperCamelCase_ : List[Any] = left_shift(left) UpperCamelCase_ : Optional[int] = left_shift(right) UpperCamelCase_ : List[str] = apply_table(left + right, pa_table) UpperCamelCase_ : Optional[Any] = left_shift(left) UpperCamelCase_ : List[str] = left_shift(right) UpperCamelCase_ : Optional[int] = left_shift(left) UpperCamelCase_ : Optional[Any] = left_shift(right) UpperCamelCase_ : Dict = apply_table(left + right, pa_table) # encryption UpperCamelCase_ : Any = apply_table(message, IP) UpperCamelCase_ : Any = function(expansion, sa, sa, keya, temp) UpperCamelCase_ : Any = temp[4:] + temp[:4] UpperCamelCase_ : Optional[int] = function(expansion, sa, sa, keya, temp) UpperCamelCase_ : Any = apply_table(temp, IP_inv) print("""Cipher text is:""", CT) # decryption UpperCamelCase_ : List[Any] = apply_table(CT, IP) UpperCamelCase_ : Optional[int] = function(expansion, sa, sa, keya, temp) UpperCamelCase_ : Optional[int] = temp[4:] + temp[:4] UpperCamelCase_ : List[str] = function(expansion, sa, sa, keya, temp) UpperCamelCase_ : Tuple = apply_table(temp, IP_inv) print("""Plain text after decypting is:""", PT)
497
"""simple docstring""" def __lowercase ( a : int , a : int ) -> int: return x if y == 0 else greatest_common_divisor(a , x % y ) def __lowercase ( a : int , a : int ) -> int: return (x * y) // greatest_common_divisor(a , a ) def __lowercase ( a : int = 20 ) -> int: __snake_case : Optional[Any] =1 for i in range(1 , n + 1 ): __snake_case : Optional[int] =lcm(a , a ) return g if __name__ == "__main__": print(F'''{solution() = }''')
497
1
'''simple docstring''' import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class A : def __init__( self : int , __a : List[str] , __a : str=1_3 , __a : Tuple=7 , __a : int=True , __a : Any=True , __a : Optional[int]=False , __a : Optional[Any]=True , __a : List[str]=9_9 , __a : Optional[Any]=3_2 , __a : Optional[Any]=5 , __a : Optional[int]=4 , __a : List[Any]=3_7 , __a : Any="gelu" , __a : Optional[Any]=0.1 , __a : str=0.1 , __a : Tuple=5_1_2 , __a : Union[str, Any]=1_6 , __a : int=2 , __a : int=0.0_2 , __a : Any=3 , __a : Optional[int]=4 , __a : Union[str, Any]=None , ) -> Optional[int]: __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = seq_length __UpperCAmelCase = is_training __UpperCAmelCase = use_input_mask __UpperCAmelCase = use_token_type_ids __UpperCAmelCase = use_labels __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_act __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = type_vocab_size __UpperCAmelCase = type_sequence_label_size __UpperCAmelCase = initializer_range __UpperCAmelCase = num_labels __UpperCAmelCase = num_choices __UpperCAmelCase = scope def snake_case__ ( self : Tuple ) -> Optional[Any]: __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase = None if self.use_input_mask: __UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase = None if self.use_token_type_ids: __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None if self.use_labels: __UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self : Union[str, Any] ) -> List[str]: return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , ) def snake_case__ ( self : Tuple , __a : Any , __a : Tuple , __a : Union[str, Any] , __a : Dict , __a : str , __a : Optional[Any] , __a : int ) -> Optional[int]: __UpperCAmelCase = BioGptModel(config=__a ) model.to(__a ) model.eval() __UpperCAmelCase = model(__a , attention_mask=__a ) __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self : Dict , __a : str , __a : Optional[int] , __a : str , __a : int , __a : Tuple , __a : Union[str, Any] , __a : Optional[Any] , __a : List[Any] , __a : Optional[int] , ) -> Optional[Any]: __UpperCAmelCase = BioGptForCausalLM(config=__a ) model.to(__a ) model.eval() __UpperCAmelCase = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__ ( self : Dict , __a : List[Any] , __a : Tuple , __a : Any , __a : Tuple , __a : Any , *__a : Dict ) -> Union[str, Any]: __UpperCAmelCase = BioGptModel(config=__a ) model.to(__a ) model.eval() # create attention mask __UpperCAmelCase = torch.ones(input_ids.shape , dtype=torch.long , device=__a ) __UpperCAmelCase = self.seq_length // 2 __UpperCAmelCase = 0 # first forward pass __UpperCAmelCase , __UpperCAmelCase = model(__a , attention_mask=__a ).to_tuple() # create hypothetical next token and extent to next_input_ids __UpperCAmelCase = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids __UpperCAmelCase = ids_tensor((1,) , __a ).item() + 1 __UpperCAmelCase = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) __UpperCAmelCase = random_other_next_tokens # append to next input_ids and attn_mask __UpperCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) __UpperCAmelCase = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=__a )] , dim=1 , ) # get two different outputs __UpperCAmelCase = model(__a , attention_mask=__a )['''last_hidden_state'''] __UpperCAmelCase = model(__a , past_key_values=__a , attention_mask=__a )['''last_hidden_state'''] # select random slice __UpperCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() __UpperCAmelCase = output_from_no_past[:, -1, random_slice_idx].detach() __UpperCAmelCase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__a , __a , atol=1e-3 ) ) def snake_case__ ( self : Any , __a : Optional[Any] , __a : Tuple , __a : Dict , __a : int , __a : Dict , *__a : int ) -> Optional[Any]: __UpperCAmelCase = BioGptModel(config=__a ).to(__a ).eval() __UpperCAmelCase = torch.ones(input_ids.shape , dtype=torch.long , device=__a ) # first forward pass __UpperCAmelCase = model(__a , attention_mask=__a , use_cache=__a ) __UpperCAmelCase , __UpperCAmelCase = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids __UpperCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) __UpperCAmelCase = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and __UpperCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) __UpperCAmelCase = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) __UpperCAmelCase = model(__a , attention_mask=__a )['''last_hidden_state'''] __UpperCAmelCase = model(__a , attention_mask=__a , past_key_values=__a )[ '''last_hidden_state''' ] # select random slice __UpperCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() __UpperCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach() __UpperCAmelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__a , __a , atol=1e-3 ) ) def snake_case__ ( self : List[Any] , __a : Any , __a : Optional[Any] , __a : Optional[int] , __a : Dict , __a : Optional[Any] , *__a : Any , __a : Union[str, Any]=False ) -> Union[str, Any]: __UpperCAmelCase = BioGptForCausalLM(__a ) model.to(__a ) if gradient_checkpointing: model.gradient_checkpointing_enable() __UpperCAmelCase = model(__a , labels=__a ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def snake_case__ ( self : Union[str, Any] , __a : int , *__a : List[Any] ) -> List[str]: __UpperCAmelCase = BioGptModel(__a ) __UpperCAmelCase = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.0_0_1 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.0_1 ) def snake_case__ ( self : Tuple , __a : int , __a : List[str] , __a : Any , __a : str , __a : Optional[Any] , *__a : Tuple ) -> Union[str, Any]: __UpperCAmelCase = self.num_labels __UpperCAmelCase = BioGptForTokenClassification(__a ) model.to(__a ) model.eval() __UpperCAmelCase = model(__a , attention_mask=__a , token_type_ids=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case__ ( self : Union[str, Any] ) -> int: __UpperCAmelCase = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) = config_and_inputs __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class A ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): a_ = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) a_ = (BioGptForCausalLM,) if is_torch_available() else () a_ = ( { '''feature-extraction''': BioGptModel, '''text-classification''': BioGptForSequenceClassification, '''text-generation''': BioGptForCausalLM, '''token-classification''': BioGptForTokenClassification, '''zero-shot''': BioGptForSequenceClassification, } if is_torch_available() else {} ) a_ = False def snake_case__ ( self : Tuple ) -> List[Any]: __UpperCAmelCase = BioGptModelTester(self ) __UpperCAmelCase = ConfigTester(self , config_class=__a , hidden_size=3_7 ) def snake_case__ ( self : int ) -> int: self.config_tester.run_common_tests() def snake_case__ ( self : Tuple ) -> int: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def snake_case__ ( self : List[Any] ) -> List[str]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCAmelCase = type self.model_tester.create_and_check_model(*__a ) def snake_case__ ( self : List[str] ) -> int: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*__a ) def snake_case__ ( self : str ) -> List[Any]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*__a , gradient_checkpointing=__a ) def snake_case__ ( self : int ) -> Any: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*__a ) def snake_case__ ( self : Optional[Any] ) -> Any: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*__a ) def snake_case__ ( self : Any ) -> Any: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*__a ) @slow def snake_case__ ( self : int ) -> Tuple: __UpperCAmelCase = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) model.to(__a ) __UpperCAmelCase = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) __UpperCAmelCase = '''left''' # Define PAD Token = EOS Token = 50256 __UpperCAmelCase = tokenizer.eos_token __UpperCAmelCase = model.config.eos_token_id # use different length sentences to test batching __UpperCAmelCase = [ '''Hello, my dog is a little''', '''Today, I''', ] __UpperCAmelCase = tokenizer(__a , return_tensors='''pt''' , padding=__a ) __UpperCAmelCase = inputs['''input_ids'''].to(__a ) __UpperCAmelCase = model.generate( input_ids=__a , attention_mask=inputs['''attention_mask'''].to(__a ) , ) __UpperCAmelCase = tokenizer(sentences[0] , return_tensors='''pt''' ).input_ids.to(__a ) __UpperCAmelCase = model.generate(input_ids=__a ) __UpperCAmelCase = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item() __UpperCAmelCase = tokenizer(sentences[1] , return_tensors='''pt''' ).input_ids.to(__a ) __UpperCAmelCase = model.generate(input_ids=__a , max_length=model.config.max_length - num_paddings ) __UpperCAmelCase = tokenizer.batch_decode(__a , skip_special_tokens=__a ) __UpperCAmelCase = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__a ) __UpperCAmelCase = tokenizer.decode(output_padded[0] , skip_special_tokens=__a ) __UpperCAmelCase = [ '''Hello, my dog is a little bit bigger than a little bit.''', '''Today, I have a good idea of how to use the information''', ] self.assertListEqual(__a , __a ) self.assertListEqual(__a , [non_padded_sentence, padded_sentence] ) @slow def snake_case__ ( self : Any ) -> Dict: for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase = BioGptModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def snake_case__ ( self : List[str] ) -> Union[str, Any]: __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase = 3 __UpperCAmelCase = input_dict['''input_ids'''] __UpperCAmelCase = input_ids.ne(1 ).to(__a ) __UpperCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __UpperCAmelCase = BioGptForSequenceClassification(__a ) model.to(__a ) model.eval() __UpperCAmelCase = model(__a , attention_mask=__a , labels=__a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case__ ( self : List[Any] ) -> Optional[Any]: __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase = 3 __UpperCAmelCase = '''multi_label_classification''' __UpperCAmelCase = input_dict['''input_ids'''] __UpperCAmelCase = input_ids.ne(1 ).to(__a ) __UpperCAmelCase = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __UpperCAmelCase = BioGptForSequenceClassification(__a ) model.to(__a ) model.eval() __UpperCAmelCase = model(__a , attention_mask=__a , labels=__a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class A ( unittest.TestCase ): @slow def snake_case__ ( self : int ) -> Optional[int]: __UpperCAmelCase = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) __UpperCAmelCase = torch.tensor([[2, 4_8_0_5, 9, 6_5_6, 2_1]] ) __UpperCAmelCase = model(__a )[0] __UpperCAmelCase = 4_2_3_8_4 __UpperCAmelCase = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , __a ) __UpperCAmelCase = torch.tensor( [[[-9.5_2_3_6, -9.8_9_1_8, 1_0.4_5_5_7], [-1_1.0_4_6_9, -9.6_4_2_3, 8.1_0_2_2], [-8.8_6_6_4, -7.8_8_2_6, 5.5_3_2_5]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1e-4 ) ) @slow def snake_case__ ( self : Dict ) -> List[str]: __UpperCAmelCase = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) __UpperCAmelCase = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) model.to(__a ) torch.manual_seed(0 ) __UpperCAmelCase = tokenizer('''COVID-19 is''' , return_tensors='''pt''' ).to(__a ) __UpperCAmelCase = model.generate( **__a , min_length=1_0_0 , max_length=1_0_2_4 , num_beams=5 , early_stopping=__a , ) __UpperCAmelCase = tokenizer.decode(output_ids[0] , skip_special_tokens=__a ) __UpperCAmelCase = ( '''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the''' ''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and''' ''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),''' ''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and''' ''' more than 800,000 deaths.''' ) self.assertEqual(__a , __a )
262
'''simple docstring''' import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class A : def __init__( self : List[str] , __a : List[Any] , __a : Dict=None , __a : str=None , __a : List[Any]=None , __a : Union[str, Any]="resnet50" , __a : List[Any]=3 , __a : List[Any]=3_2 , __a : List[Any]=3 , __a : Optional[int]=True , __a : str=True , ) -> Any: __UpperCAmelCase = parent __UpperCAmelCase = out_indices if out_indices is not None else [4] __UpperCAmelCase = stage_names __UpperCAmelCase = out_features __UpperCAmelCase = backbone __UpperCAmelCase = batch_size __UpperCAmelCase = image_size __UpperCAmelCase = num_channels __UpperCAmelCase = use_pretrained_backbone __UpperCAmelCase = is_training def snake_case__ ( self : Optional[Any] ) -> Optional[int]: __UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase = self.get_config() return config, pixel_values def snake_case__ ( self : Union[str, Any] ) -> str: return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def snake_case__ ( self : int , __a : Union[str, Any] , __a : List[Any] ) -> Tuple: __UpperCAmelCase = TimmBackbone(config=__a ) model.to(__a ) model.eval() with torch.no_grad(): __UpperCAmelCase = model(__a ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 1_4, 1_4) , ) def snake_case__ ( self : Dict ) -> Tuple: __UpperCAmelCase = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase = config_and_inputs __UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch @require_timm class A ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): a_ = (TimmBackbone,) if is_torch_available() else () a_ = {'''feature-extraction''': TimmBackbone} if is_torch_available() else {} a_ = False a_ = False a_ = False a_ = False def snake_case__ ( self : Optional[int] ) -> List[str]: __UpperCAmelCase = TimmBackboneModelTester(self ) __UpperCAmelCase = ConfigTester(self , config_class=__a , has_text_modality=__a ) def snake_case__ ( self : List[str] ) -> int: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case__ ( self : List[str] ) -> str: __UpperCAmelCase = '''resnet18''' __UpperCAmelCase = '''microsoft/resnet-18''' __UpperCAmelCase = AutoBackbone.from_pretrained(__a , use_timm_backbone=__a ) __UpperCAmelCase = AutoBackbone.from_pretrained(__a ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) __UpperCAmelCase = AutoBackbone.from_pretrained(__a , use_timm_backbone=__a , out_indices=[1, 2, 3] ) __UpperCAmelCase = AutoBackbone.from_pretrained(__a , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('''TimmBackbone doesn\'t support feed forward chunking''' ) def snake_case__ ( self : str ) -> Optional[Any]: pass @unittest.skip('''TimmBackbone doesn\'t have num_hidden_layers attribute''' ) def snake_case__ ( self : str ) -> List[Any]: pass @unittest.skip('''TimmBackbone initialization is managed on the timm side''' ) def snake_case__ ( self : str ) -> int: pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def snake_case__ ( self : Optional[Any] ) -> Union[str, Any]: pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def snake_case__ ( self : Optional[int] ) -> Dict: pass @unittest.skip('''TimmBackbone model cannot be created without specifying a backbone checkpoint''' ) def snake_case__ ( self : str ) -> Dict: pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def snake_case__ ( self : Optional[Any] ) -> Union[str, Any]: pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def snake_case__ ( self : Union[str, Any] ) -> Dict: pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def snake_case__ ( self : List[str] ) -> Union[str, Any]: pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def snake_case__ ( self : str ) -> List[Any]: pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def snake_case__ ( self : Tuple ) -> int: pass @unittest.skip('''TimmBackbone doesn\'t have hidden size info in its configuration.''' ) def snake_case__ ( self : Union[str, Any] ) -> Union[str, Any]: pass @unittest.skip('''TimmBackbone doesn\'t support output_attentions.''' ) def snake_case__ ( self : List[str] ) -> Dict: pass @unittest.skip('''Safetensors is not supported by timm.''' ) def snake_case__ ( self : int ) -> int: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def snake_case__ ( self : int ) -> int: pass def snake_case__ ( self : Optional[Any] ) -> Optional[int]: __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = model_class(__a ) __UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase = [*signature.parameters.keys()] __UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __a ) def snake_case__ ( self : Any ) -> int: __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase = True __UpperCAmelCase = self.has_attentions # no need to test all models as different heads yield the same functionality __UpperCAmelCase = self.all_model_classes[0] __UpperCAmelCase = model_class(__a ) model.to(__a ) __UpperCAmelCase = self._prepare_for_class(__a , __a ) __UpperCAmelCase = model(**__a ) __UpperCAmelCase = outputs[0][-1] # Encoder-/Decoder-only models __UpperCAmelCase = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __UpperCAmelCase = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=__a ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def snake_case__ ( self : Any ) -> Union[str, Any]: __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = model_class(__a ) model.to(__a ) model.eval() __UpperCAmelCase = model(**__a ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None __UpperCAmelCase = copy.deepcopy(__a ) __UpperCAmelCase = None __UpperCAmelCase = model_class(__a ) model.to(__a ) model.eval() __UpperCAmelCase = model(**__a ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights __UpperCAmelCase = copy.deepcopy(__a ) __UpperCAmelCase = False __UpperCAmelCase = model_class(__a ) model.to(__a ) model.eval() __UpperCAmelCase = model(**__a )
262
1
def UpperCAmelCase_ ( _A ): '''simple docstring''' if not isinstance(_A , _A ): raise ValueError('''Input series is not valid, valid series - [2, 4, 6]''' ) if len(_A ) == 0: raise ValueError('''Input list must be a non empty list''' ) if len(_A ) == 1: return True SCREAMING_SNAKE_CASE__ = series[1] - series[0] for index in range(len(_A ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def UpperCAmelCase_ ( _A ): '''simple docstring''' if not isinstance(_A , _A ): raise ValueError('''Input series is not valid, valid series - [2, 4, 6]''' ) if len(_A ) == 0: raise ValueError('''Input list must be a non empty list''' ) SCREAMING_SNAKE_CASE__ = 0 for val in series: answer += val return answer / len(_A ) if __name__ == "__main__": import doctest doctest.testmod()
713
from dataclasses import dataclass, field from typing import Optional @dataclass class UpperCAmelCase__ : """simple docstring""" a = field( default="codeparrot/codeparrot" , metadata={"help": "Model name or path of model to be trained."} ) a = field( default="./" , metadata={"help": "Save dir where model repo is cloned and models updates are saved to."} ) a = field( default="codeparrot/codeparrot-clean-train" , metadata={"help": "Name or path of training dataset."} ) a = field( default="codeparrot/codeparrot-clean-valid" , metadata={"help": "Name or path of validation dataset."} ) a = field(default=2 , metadata={"help": "Batch size for training."} ) a = field(default=2 , metadata={"help": "Batch size for evaluation."} ) a = field(default=0.1 , metadata={"help": "Value of weight decay."} ) a = field( default=1_00_00 , metadata={"help": "Size of buffer used to shuffle streaming dataset."} ) a = field(default=2e-4 , metadata={"help": "Learning rate fo training."} ) a = field(default="cosine" , metadata={"help": "Learning rate."} ) a = field( default=7_50 , metadata={"help": "Number of warmup steps in the learning rate schedule."} ) a = field( default=16 , metadata={"help": "Number of gradient accumulation steps."} ) a = field( default=A__ , metadata={"help": "Use gradient checkpointing to reduce memory footprint."} ) a = field(default=5_00_00 , metadata={"help": "Maximum number of training steps."} ) a = field( default=-1 , metadata={"help": "Maximum number of evaluation steps. If -1 the full dataset is evaluated."} ) a = field(default=10_24 , metadata={"help": "Sequence lengths used for training."} ) a = field(default=1 , metadata={"help": "Training seed."} ) a = field( default=10_24 , metadata={"help": "Interval to save checkpoints. Measured as number of forward passes not training steps."} , ) a = field( default=A__ , metadata={"help": "States path if the training should continue from a checkpoint folder."} ) a = field(default=A__ , metadata={"help": "If True the data is pretokenized."} ) @dataclass class UpperCAmelCase__ : """simple docstring""" a = field( default="codeparrot/codeparrot" , metadata={"help": "Model name or path of model to be evaluated."} ) a = field( default="codeparrot/codeparrot-clean-valid" , metadata={"help": "Name or path of validation dataset."} ) a = field(default=2 , metadata={"help": "Batch size used for evaluation."} ) a = field( default=-1 , metadata={"help": "Maximum number of evaluation steps. If -1 the full dataset is evaluated."} ) a = field(default=10_24 , metadata={"help": "Length of sequences to be evaluated."} ) a = field(default=1 , metadata={"help": "Random seed used for evaluation."} ) @dataclass class UpperCAmelCase__ : """simple docstring""" a = field( default="codeparrot/codeparrot" , metadata={"help": "Model name or path of model to be evaluated."} ) a = field(default=A__ , metadata={"help": "Number of workers used for code evaluation."} ) a = field( default=A__ , metadata={"help": "The number of human-eval tasks to run. If not included all tasks are evaluated."} , ) a = field( default=A__ , metadata={"help": "Sample from the language model's output distribution."} ) a = field(default=0.2 , metadata={"help": "Sampling temperature used for generation."} ) a = field(default=2_56 , metadata={"help": "Maximum number of newly generated tokens."} ) a = field(default=0 , metadata={"help": "Top-k parameter used for generation."} ) a = field(default=0.9_5 , metadata={"help": "Top-p parameter used for nucleus sampling."} ) a = field(default=10 , metadata={"help": "Number of generations to run in parallel."} ) a = field( default=2_00 , metadata={"help": "Number of completions to generate for each sample."} ) a = field(default=1 , metadata={"help": "Random seed used for evaluation."} ) a = field( default="eval_results.json" , metadata={"help": "Random seed used for evaluation."} ) a = field( default="0" , metadata={"help": "Allow `code_eval` to execute Python code on machine"} ) a = field( default=-1 , metadata={ "help": ( "Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive" " number corresponds to which GPU device id to run on." ) } , ) @dataclass class UpperCAmelCase__ : """simple docstring""" a = field( default=A__ , metadata={ "help": "The number of CPU cores to use for parallel preprocessing. Default uses the maximum available." } , ) a = field( default="transformersbook/codeparrot" , metadata={"help": "Folder or name of dataset to process."} ) a = field( default="codeparrot-clean" , metadata={"help": "Folder to save processed processed dataset."} ) a = field( default=10_00_00 , metadata={"help": "Number of files to save per JSON output file."} ) a = field(default="content" , metadata={"help": "Column containing text data to process."} ) a = field( default=10_00 , metadata={"help": "Maximum line length in file, otherwise file is filtered."} ) a = field( default=1_00 , metadata={"help": "Maximum mean line length in file, otherwise file is filtered."} ) a = field( default=0.2_5 , metadata={"help": "Maximum fraction of non-alphanumeric characters, otherwise file is filtered."} ) a = field( default=1.5 , metadata={"help": "Minimum character token ratio for the file, otherwise file is filtered."} ) a = field( default=0.7 , metadata={"help": "Probability for filtering config, test and uncommon files."} ) a = field( default="codeparrot/codeparrot" , metadata={"help": "Name or path to the tokenizer."} , ) a = field( default=A__ , metadata={"help": "If True, near-duplicate samples are removed."} ) a = field( default=0.8_5 , metadata={"help": "Jaccard threshold for near-duplicate samples."} ) @dataclass class UpperCAmelCase__ : """simple docstring""" a = field( default="gpt2" , metadata={"help": "Base tokenizer to build new tokenizer from."} ) a = field( default="transformersbook/codeparrot-train" , metadata={"help": "Dataset to train tokenizer on."} ) a = field(default="content" , metadata={"help": "Column containing text data to process."} ) a = field(default=20_00_00 , metadata={"help": "Number of examples to train tokenizer on."} ) a = field( default=3_27_68 , metadata={"help": "Number of examples to train the tokenizer on."} ) a = field(default="codeparrot" , metadata={"help": "Name of new tokenizer."} ) a = field(default=A__ , metadata={"help": "Push saved tokenizer to the hub."} ) @dataclass class UpperCAmelCase__ : """simple docstring""" a = field( default="codeparrot/codeparrot" , metadata={"help": "Name or path to the tokenizer."} ) a = field( default="codeparrot/codeparrot-clean-train" , metadata={"help": "Name or path to the dataset to pretokenize."} ) a = field( default="tokenized-codeparrot-train" , metadata={"help": "Repo name of the pretokenized data."} ) a = field(default=A__ , metadata={"help": "Number of workers used for code evaluation."} ) @dataclass class UpperCAmelCase__ : """simple docstring""" a = field( default="gpt2-large" , metadata={"help": "Configuration to use for model initialization."} ) a = field( default="codeparrot/codeparrot" , metadata={"help": "Tokenizer attached to model."} ) a = field(default="codeparrot" , metadata={"help": "Name of the created model."} ) a = field(default=A__ , metadata={"help": "Push saved tokenizer to the hub."} )
472
0
"""simple docstring""" import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params lowercase__ :Dict = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['memory_attention', 'encoder_attn'], ['attention', 'attn'], ['/', '.'], ['.LayerNorm.gamma', '_layer_norm.weight'], ['.LayerNorm.beta', '_layer_norm.bias'], ['r.layer_', 'r.layers.'], ['output_proj', 'out_proj'], ['ffn.dense_1.', 'fc2.'], ['ffn.dense.', 'fc1.'], ['ffn_layer_norm', 'final_layer_norm'], ['kernel', 'weight'], ['encoder_layer_norm.', 'encoder.layer_norm.'], ['decoder_layer_norm.', 'decoder.layer_norm.'], ['embeddings.weights', 'shared.weight'], ] def lowerCamelCase_ ( UpperCAmelCase_ ) ->Tuple: """simple docstring""" for pegasus_name, hf_name in PATTERNS: __UpperCAmelCase : str = k.replace(UpperCAmelCase_ , UpperCAmelCase_ ) return k def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ ) ->PegasusForConditionalGeneration: """simple docstring""" __UpperCAmelCase : Tuple = DEFAULTS.copy() cfg_kwargs.update(UpperCAmelCase_ ) __UpperCAmelCase : Union[str, Any] = PegasusConfig(**UpperCAmelCase_ ) __UpperCAmelCase : Optional[Any] = PegasusForConditionalGeneration(UpperCAmelCase_ ) __UpperCAmelCase : Optional[Any] = torch_model.model.state_dict() __UpperCAmelCase : List[Any] = {} for k, v in tf_weights.items(): __UpperCAmelCase : Optional[Any] = rename_state_dict_key(UpperCAmelCase_ ) if new_k not in sd: raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' ) if "dense" in k or "proj" in new_k: __UpperCAmelCase : Optional[Any] = v.T __UpperCAmelCase : Union[str, Any] = torch.tensor(UpperCAmelCase_ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f'''{new_k}, {k}, {v.shape}, {sd[new_k].shape}''' # make sure embedding.padding_idx is respected __UpperCAmelCase : Dict = torch.zeros_like(mapping['''shared.weight'''][cfg.pad_token_id + 1] ) __UpperCAmelCase : Dict = mapping['''shared.weight'''] __UpperCAmelCase : str = mapping['''shared.weight'''] __UpperCAmelCase : Optional[Any] = {k: torch.zeros_like(UpperCAmelCase_ ) for k, v in sd.items() if k.endswith('''bias''' ) and k not in mapping} mapping.update(**UpperCAmelCase_ ) __UpperCAmelCase , __UpperCAmelCase : str = torch_model.model.load_state_dict(UpperCAmelCase_ , strict=UpperCAmelCase_ ) __UpperCAmelCase : List[Any] = [ k for k in missing if k not in ['''encoder.embed_positions.weight''', '''decoder.embed_positions.weight'''] ] assert unexpected_missing == [], f'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], f'''no matches found for the following tf keys {extra}''' return torch_model def lowerCamelCase_ ( UpperCAmelCase_="./ckpt/aeslc/model.ckpt-32000" ) ->Dict: """simple docstring""" __UpperCAmelCase : List[Any] = tf.train.list_variables(UpperCAmelCase_ ) __UpperCAmelCase : Union[str, Any] = {} __UpperCAmelCase : List[Any] = ['''Adafactor''', '''global_step'''] for name, shape in tqdm(UpperCAmelCase_ , desc='''converting tf checkpoint to dict''' ): __UpperCAmelCase : Union[str, Any] = any(pat in name for pat in ignore_name ) if skip_key: continue __UpperCAmelCase : List[Any] = tf.train.load_variable(UpperCAmelCase_ , UpperCAmelCase_ ) __UpperCAmelCase : Union[str, Any] = array return tf_weights def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ ) ->Union[str, Any]: """simple docstring""" __UpperCAmelCase : Union[str, Any] = Path(UpperCAmelCase_ ).parent.name __UpperCAmelCase : Tuple = task_specific_params[f'''summarization_{dataset}''']['''max_position_embeddings'''] __UpperCAmelCase : List[str] = PegasusTokenizer.from_pretrained('''sshleifer/pegasus''' , model_max_length=UpperCAmelCase_ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(UpperCAmelCase_ ) # convert model __UpperCAmelCase : Optional[Any] = get_tf_weights_as_numpy(UpperCAmelCase_ ) __UpperCAmelCase : Union[str, Any] = task_specific_params[f'''summarization_{dataset}'''] if dataset == "large": __UpperCAmelCase : Union[str, Any] = task_specific_params __UpperCAmelCase : Union[str, Any] = convert_pegasus(UpperCAmelCase_ , UpperCAmelCase_ ) torch_model.save_pretrained(UpperCAmelCase_ ) __UpperCAmelCase : Dict = torch_model.state_dict() sd.pop('''model.decoder.embed_positions.weight''' ) sd.pop('''model.encoder.embed_positions.weight''' ) torch.save(UpperCAmelCase_ , Path(UpperCAmelCase_ ) / '''pytorch_model.bin''' ) if __name__ == "__main__": lowercase__ :Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('save_dir', default=None, type=str, help='Path to the output PyTorch model.') lowercase__ :Optional[Any] = parser.parse_args() if args.save_dir is None: lowercase__ :Optional[Any] = Path(args.tf_ckpt_path).parent.name lowercase__ :Tuple = os.path.join('pegasus', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
522
"""simple docstring""" import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline lowercase__ :Union[str, Any] = argparse.ArgumentParser('Stable Diffusion script with intel optimization', add_help=False) parser.add_argument('--dpm', action='store_true', help='Enable DPMSolver or not') parser.add_argument('--steps', default=None, type=int, help='Num inference steps') lowercase__ :List[Any] = parser.parse_args() lowercase__ :Tuple = 'cpu' lowercase__ :Any = 'a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings' lowercase__ :Optional[int] = 'path-to-your-trained-model' lowercase__ :Union[str, Any] = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: lowercase__ :Optional[int] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) lowercase__ :List[str] = pipe.to(device) # to channels last lowercase__ :List[Any] = pipe.unet.to(memory_format=torch.channels_last) lowercase__ :Dict = pipe.vae.to(memory_format=torch.channels_last) lowercase__ :str = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: lowercase__ :Tuple = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex lowercase__ :Optional[int] = torch.randn(2, 4, 6_4, 6_4) lowercase__ :str = torch.rand(1) * 9_9_9 lowercase__ :Optional[int] = torch.randn(2, 7_7, 7_6_8) lowercase__ :str = (sample, timestep, encoder_hidden_status) try: lowercase__ :Dict = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: lowercase__ :Optional[int] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) lowercase__ :Optional[int] = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) lowercase__ :Any = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: lowercase__ :Tuple = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute lowercase__ :Any = 6_6_6 lowercase__ :Tuple = torch.Generator(device).manual_seed(seed) lowercase__ :Tuple = {'generator': generator} if args.steps is not None: lowercase__ :List[str] = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): lowercase__ :List[Any] = pipe(prompt, **generate_kwargs).images[0] # save image image.save('generated.png')
522
1
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=UpperCAmelCase__ ) class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' _SCREAMING_SNAKE_CASE : str = field(default="""question-answering-extractive""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) _SCREAMING_SNAKE_CASE : ClassVar[Features] = Features({"""question""": Value("""string""" ), """context""": Value("""string""" )} ) _SCREAMING_SNAKE_CASE : ClassVar[Features] = Features( { """answers""": Sequence( { """text""": Value("""string""" ), """answer_start""": Value("""int32""" ), } ) } ) _SCREAMING_SNAKE_CASE : str = "question" _SCREAMING_SNAKE_CASE : str = "context" _SCREAMING_SNAKE_CASE : str = "answers" @property def a ( self : Tuple ) -> Dict[str, str]: return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
330
'''simple docstring''' from collections import defaultdict class _lowercase : '''simple docstring''' def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]: __lowerCAmelCase = total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 __lowerCAmelCase = [ [-1 for i in range(total + 1 )] for j in range(2 ** len(SCREAMING_SNAKE_CASE__ ) ) ] __lowerCAmelCase = defaultdict(SCREAMING_SNAKE_CASE__ ) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 __lowerCAmelCase = (1 << len(SCREAMING_SNAKE_CASE__ )) - 1 def a ( self : Dict , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]: # if mask == self.finalmask all persons are distributed tasks, return 1 if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement __lowerCAmelCase = self.count_ways_until(SCREAMING_SNAKE_CASE__ , task_no + 1 ) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.count_ways_until(mask | (1 << p) , task_no + 1 ) # save the value. __lowerCAmelCase = total_ways_util return self.dp[mask][task_no] def a ( self : Any , SCREAMING_SNAKE_CASE__ : int ) -> str: # Store the list of persons for each task for i in range(len(SCREAMING_SNAKE_CASE__ ) ): for j in task_performed[i]: self.task[j].append(SCREAMING_SNAKE_CASE__ ) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.count_ways_until(0 , 1 ) if __name__ == "__main__": _A : Optional[int] = 5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. _A : Union[str, Any] = [[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways( task_performed ) )
330
1
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def lowerCAmelCase_ ( _lowerCamelCase: str , _lowerCamelCase: str , _lowerCamelCase: str , _lowerCamelCase: PreTrainedTokenizer , _lowerCamelCase: int , _lowerCamelCase: Optional[int] = None , ): __SCREAMING_SNAKE_CASE : Union[str, Any] = {} if train_file is not None: __SCREAMING_SNAKE_CASE : Any = [train_file] if eval_file is not None: __SCREAMING_SNAKE_CASE : Any = [eval_file] if test_file is not None: __SCREAMING_SNAKE_CASE : Optional[Any] = [test_file] __SCREAMING_SNAKE_CASE : Optional[Any] = datasets.load_dataset("""csv""" , data_files=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : List[str] = list(ds[list(files.keys() )[0]].features.keys() ) __SCREAMING_SNAKE_CASE : Dict = features_name.pop(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Optional[int] = list(set(ds[list(files.keys() )[0]][label_name] ) ) __SCREAMING_SNAKE_CASE : str = {label: i for i, label in enumerate(_lowerCamelCase )} __SCREAMING_SNAKE_CASE : Any = tokenizer.model_input_names __SCREAMING_SNAKE_CASE : Any = {} if len(_lowerCamelCase ) == 1: for k in files.keys(): __SCREAMING_SNAKE_CASE : Optional[int] = ds[k].map( lambda _lowerCamelCase : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=_lowerCamelCase , max_length=_lowerCamelCase , padding="""max_length""" ) , batched=_lowerCamelCase , ) elif len(_lowerCamelCase ) == 2: for k in files.keys(): __SCREAMING_SNAKE_CASE : int = ds[k].map( lambda _lowerCamelCase : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=_lowerCamelCase , max_length=_lowerCamelCase , padding="""max_length""" , ) , batched=_lowerCamelCase , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: __SCREAMING_SNAKE_CASE : int = {k: v for k, v in ex.items() if k in input_names} __SCREAMING_SNAKE_CASE : str = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: __SCREAMING_SNAKE_CASE : str = {k: v for k, v in ex.items() if k in input_names} __SCREAMING_SNAKE_CASE : int = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: __SCREAMING_SNAKE_CASE : Optional[int] = {k: v for k, v in ex.items() if k in input_names} __SCREAMING_SNAKE_CASE : str = labelaid[ex[label_name]] yield (d, label) __SCREAMING_SNAKE_CASE : Tuple = ( tf.data.Dataset.from_generator( _lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: __SCREAMING_SNAKE_CASE : Dict = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = ( tf.data.Dataset.from_generator( _lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: __SCREAMING_SNAKE_CASE : Any = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) __SCREAMING_SNAKE_CASE : Union[str, Any] = ( tf.data.Dataset.from_generator( _lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: __SCREAMING_SNAKE_CASE : Optional[int] = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid UpperCamelCase__ : List[str] = logging.getLogger(__name__) @dataclass class _UpperCamelCase : '''simple docstring''' _A : int = field(metadata={'''help''': '''Which column contains the label'''} ) _A : str = field(default=lowerCamelCase__ , metadata={'''help''': '''The path of the training file'''} ) _A : Optional[str] = field(default=lowerCamelCase__ , metadata={'''help''': '''The path of the development file'''} ) _A : Optional[str] = field(default=lowerCamelCase__ , metadata={'''help''': '''The path of the test file'''} ) _A : int = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _A : bool = field( default=lowerCamelCase__ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) @dataclass class _UpperCamelCase : '''simple docstring''' _A : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) _A : Optional[str] = field( default=lowerCamelCase__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) _A : Optional[str] = field( default=lowerCamelCase__ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) _A : bool = field(default=lowerCamelCase__ , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. _A : Optional[str] = field( default=lowerCamelCase__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) def lowerCAmelCase_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __SCREAMING_SNAKE_CASE : List[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[str] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. Use" """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.info( F"n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, " F"16-bits training: {training_args.fpaa}" ) logger.info(F"Training/evaluation parameters {training_args}" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __SCREAMING_SNAKE_CASE : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[Any] = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=_lowerCamelCase , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) __SCREAMING_SNAKE_CASE : List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(_lowerCamelCase ) , labelaid=_lowerCamelCase , idalabel={id: label for label, id in labelaid.items()} , finetuning_task="""text-classification""" , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): __SCREAMING_SNAKE_CASE : List[Any] = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool(""".bin""" in model_args.model_name_or_path ) , config=_lowerCamelCase , cache_dir=model_args.cache_dir , ) def compute_metrics(_lowerCamelCase: EvalPrediction ) -> Dict: __SCREAMING_SNAKE_CASE : List[Any] = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer __SCREAMING_SNAKE_CASE : List[Any] = TFTrainer( model=_lowerCamelCase , args=_lowerCamelCase , train_dataset=_lowerCamelCase , eval_dataset=_lowerCamelCase , compute_metrics=_lowerCamelCase , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __SCREAMING_SNAKE_CASE : Dict = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __SCREAMING_SNAKE_CASE : Union[str, Any] = trainer.evaluate() __SCREAMING_SNAKE_CASE : List[str] = os.path.join(training_args.output_dir , """eval_results.txt""" ) with open(_lowerCamelCase , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(F" {key} = {value}" ) writer.write(F"{key} = {value}\n" ) results.update(_lowerCamelCase ) return results if __name__ == "__main__": main()
578
'''simple docstring''' def lowerCAmelCase_ ( _lowerCamelCase: list ): if len(_lowerCamelCase ) <= 1: return [tuple(_lowerCamelCase )] __SCREAMING_SNAKE_CASE : Optional[int] = [] def generate(_lowerCamelCase: int , _lowerCamelCase: list ): __SCREAMING_SNAKE_CASE : Dict = [0] * n res.append(tuple(_lowerCamelCase ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = 0 while i < n: if c[i] < i: if i % 2 == 0: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[int] = arr[i], arr[0] else: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Any = arr[i], arr[c[i]] res.append(tuple(_lowerCamelCase ) ) c[i] += 1 __SCREAMING_SNAKE_CASE : Dict = 0 else: __SCREAMING_SNAKE_CASE : List[str] = 0 i += 1 generate(len(_lowerCamelCase ) , _lowerCamelCase ) return res if __name__ == "__main__": UpperCamelCase__ : List[str] = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase__ : List[Any] = [int(item) for item in user_input.split(''',''')] print(heaps(arr))
578
1
"""simple docstring""" from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class lowerCamelCase__ ( A ): """simple docstring""" def __init__( self : Dict , UpperCamelCase : pyspark.sql.DataFrame , UpperCamelCase : Optional[NamedSplit] = None , UpperCamelCase : Optional[Features] = None , UpperCamelCase : bool = True , UpperCamelCase : str = None , UpperCamelCase : bool = False , UpperCamelCase : str = None , UpperCamelCase : bool = True , UpperCamelCase : str = "arrow" , **UpperCamelCase : List[Any] , ): '''simple docstring''' super().__init__( split=UpperCamelCase , features=UpperCamelCase , cache_dir=UpperCamelCase , keep_in_memory=UpperCamelCase , streaming=UpperCamelCase , **UpperCamelCase , ) __UpperCAmelCase : Optional[int] = load_from_cache_file __UpperCAmelCase : Dict = file_format __UpperCAmelCase : Tuple = Spark( df=UpperCamelCase , features=UpperCamelCase , cache_dir=UpperCamelCase , working_dir=UpperCamelCase , **UpperCamelCase , ) def lowerCamelCase__ ( self : str ): '''simple docstring''' if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) __UpperCAmelCase : Tuple = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=UpperCamelCase , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
721
"""simple docstring""" def lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : str ) -> str: '''simple docstring''' if not (isinstance(_UpperCamelCase , _UpperCamelCase ) and isinstance(_UpperCamelCase , _UpperCamelCase )): raise ValueError("""longest_common_substring() takes two strings for inputs""" ) __UpperCAmelCase : List[str] = len(_UpperCamelCase ) __UpperCAmelCase : List[str] = len(_UpperCamelCase ) __UpperCAmelCase : Dict = [[0] * (texta_length + 1) for _ in range(texta_length + 1 )] __UpperCAmelCase : Optional[int] = 0 __UpperCAmelCase : List[Any] = 0 for i in range(1 , texta_length + 1 ): for j in range(1 , texta_length + 1 ): if texta[i - 1] == texta[j - 1]: __UpperCAmelCase : Optional[Any] = 1 + dp[i - 1][j - 1] if dp[i][j] > ans_length: __UpperCAmelCase : Optional[int] = i __UpperCAmelCase : Any = dp[i][j] return texta[ans_index - ans_length : ans_index] if __name__ == "__main__": import doctest doctest.testmod()
299
0
'''simple docstring''' import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging lowerCamelCase : Tuple = logging.get_logger(__name__) logging.set_verbosity_info() def _lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : str ) -> List[str]: """simple docstring""" if "xprophetnet" in prophetnet_checkpoint_path: _SCREAMING_SNAKE_CASE =XLMProphetNetForConditionalGenerationOld.from_pretrained(_UpperCamelCase ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =XLMProphetNetForConditionalGeneration.from_pretrained( _UpperCamelCase , output_loading_info=_UpperCamelCase ) else: _SCREAMING_SNAKE_CASE =ProphetNetForConditionalGenerationOld.from_pretrained(_UpperCamelCase ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =ProphetNetForConditionalGeneration.from_pretrained( _UpperCamelCase , output_loading_info=_UpperCamelCase ) _SCREAMING_SNAKE_CASE =['key_proj', 'value_proj', 'query_proj'] _SCREAMING_SNAKE_CASE ={ 'self_attn': 'ngram_self_attn', 'cross_attn': 'encoder_attn', 'cross_attn_layer_norm': 'encoder_attn_layer_norm', 'feed_forward_layer_norm': 'final_layer_norm', 'feed_forward': '', 'intermediate': 'fc1', 'output': 'fc2', 'key_proj': 'k_proj', 'query_proj': 'q_proj', 'value_proj': 'v_proj', 'word_embeddings': 'embed_tokens', 'embeddings_layer_norm': 'emb_layer_norm', 'relative_pos_embeddings': 'relative_linear', 'ngram_embeddings': 'ngram_input_embed', 'position_embeddings': 'embed_positions', } for key in loading_info["missing_keys"]: _SCREAMING_SNAKE_CASE =key.split('.' ) if attributes[0] == "lm_head": _SCREAMING_SNAKE_CASE =prophet _SCREAMING_SNAKE_CASE =prophet_old else: _SCREAMING_SNAKE_CASE =prophet.prophetnet _SCREAMING_SNAKE_CASE =prophet_old.model _SCREAMING_SNAKE_CASE =False for attribute in attributes: if attribute in mapping: _SCREAMING_SNAKE_CASE =mapping[attribute] if not hasattr(_UpperCamelCase , _UpperCamelCase ) and len(_UpperCamelCase ) > 0: _SCREAMING_SNAKE_CASE =attribute elif hasattr(_UpperCamelCase , _UpperCamelCase ): _SCREAMING_SNAKE_CASE =attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" _SCREAMING_SNAKE_CASE =old_model.weight logger.info(f"{attribute} is initialized." ) _SCREAMING_SNAKE_CASE =True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" _SCREAMING_SNAKE_CASE =old_model.bias logger.info(f"{attribute} is initialized" ) _SCREAMING_SNAKE_CASE =True break elif attribute in special_keys and hasattr(_UpperCamelCase , 'in_proj_weight' ): _SCREAMING_SNAKE_CASE =old_model.in_proj_weight.shape[0] // 3 _SCREAMING_SNAKE_CASE =getattr(_UpperCamelCase , _UpperCamelCase ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": _SCREAMING_SNAKE_CASE =nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) _SCREAMING_SNAKE_CASE =nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": _SCREAMING_SNAKE_CASE =nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) _SCREAMING_SNAKE_CASE =nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": _SCREAMING_SNAKE_CASE =nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) _SCREAMING_SNAKE_CASE =nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) _SCREAMING_SNAKE_CASE =True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 5_12, "We want 512 position_embeddings." _SCREAMING_SNAKE_CASE =nn.Parameter(old_model.embed_positions.weight[:5_12, :] ) _SCREAMING_SNAKE_CASE =True break if attribute.isdigit(): _SCREAMING_SNAKE_CASE =model[int(_UpperCamelCase )] _SCREAMING_SNAKE_CASE =old_model[int(_UpperCamelCase )] else: _SCREAMING_SNAKE_CASE =getattr(_UpperCamelCase , _UpperCamelCase ) if old_attribute == "": _SCREAMING_SNAKE_CASE =old_model else: if not hasattr(_UpperCamelCase , _UpperCamelCase ): raise ValueError(f"{old_model} does not have {old_attribute}" ) _SCREAMING_SNAKE_CASE =getattr(_UpperCamelCase , _UpperCamelCase ) if not is_key_init: raise ValueError(f"{key} was not correctly initialized!" ) print(f"Saving model to {pytorch_dump_folder_path}" ) prophet.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": lowerCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--prophetnet_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowerCamelCase : Any = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
405
'''simple docstring''' import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html lowerCamelCase : str = "platform" import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def _lowerCAmelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : int , _UpperCamelCase : Optional[int]=None , _UpperCamelCase : Any=None , _UpperCamelCase : str=None , _UpperCamelCase : int=None , _UpperCamelCase : str=None , _UpperCamelCase : Union[str, Any]=None , ) -> List[str]: """simple docstring""" if attention_mask is None: _SCREAMING_SNAKE_CASE =np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: _SCREAMING_SNAKE_CASE =np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: _SCREAMING_SNAKE_CASE =np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _SCREAMING_SNAKE_CASE =np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _SCREAMING_SNAKE_CASE =np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class A__ : def __init__( self : Optional[Any] , _a : Union[str, Any] , _a : List[Any]=13 , _a : int=7 , _a : List[Any]=True , _a : Optional[Any]=False , _a : Tuple=99 , _a : List[str]=16 , _a : Any=2 , _a : Tuple=4 , _a : List[str]=4 , _a : Optional[int]="gelu" , _a : List[str]=0.1 , _a : Optional[Any]=0.1 , _a : int=32 , _a : int=2 , _a : str=1 , _a : Dict=0 , _a : Tuple=0.02 , ) -> int: '''simple docstring''' _SCREAMING_SNAKE_CASE =parent _SCREAMING_SNAKE_CASE =batch_size _SCREAMING_SNAKE_CASE =seq_length _SCREAMING_SNAKE_CASE =is_training _SCREAMING_SNAKE_CASE =use_labels _SCREAMING_SNAKE_CASE =vocab_size _SCREAMING_SNAKE_CASE =hidden_size _SCREAMING_SNAKE_CASE =num_hidden_layers _SCREAMING_SNAKE_CASE =num_attention_heads _SCREAMING_SNAKE_CASE =intermediate_size _SCREAMING_SNAKE_CASE =hidden_act _SCREAMING_SNAKE_CASE =hidden_dropout_prob _SCREAMING_SNAKE_CASE =attention_probs_dropout_prob _SCREAMING_SNAKE_CASE =max_position_embeddings _SCREAMING_SNAKE_CASE =eos_token_id _SCREAMING_SNAKE_CASE =pad_token_id _SCREAMING_SNAKE_CASE =bos_token_id _SCREAMING_SNAKE_CASE =initializer_range def A ( self : int ) -> Any: '''simple docstring''' _SCREAMING_SNAKE_CASE =np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) _SCREAMING_SNAKE_CASE =np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) _SCREAMING_SNAKE_CASE =shift_tokens_right(_a , 1 , 2 ) _SCREAMING_SNAKE_CASE =BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=_a , ) _SCREAMING_SNAKE_CASE =prepare_blenderbot_inputs_dict(_a , _a , _a ) return config, inputs_dict def A ( self : str ) -> Union[str, Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs() return config, inputs_dict def A ( self : Dict , _a : Dict , _a : Union[str, Any] , _a : List[str] ) -> List[str]: '''simple docstring''' _SCREAMING_SNAKE_CASE =20 _SCREAMING_SNAKE_CASE =model_class_name(_a ) _SCREAMING_SNAKE_CASE =model.encode(inputs_dict['input_ids'] ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) _SCREAMING_SNAKE_CASE =model.init_cache(decoder_input_ids.shape[0] , _a , _a ) _SCREAMING_SNAKE_CASE =jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' ) _SCREAMING_SNAKE_CASE =jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _SCREAMING_SNAKE_CASE =model.decode( decoder_input_ids[:, :-1] , _a , decoder_attention_mask=_a , past_key_values=_a , decoder_position_ids=_a , ) _SCREAMING_SNAKE_CASE =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) _SCREAMING_SNAKE_CASE =model.decode( decoder_input_ids[:, -1:] , _a , decoder_attention_mask=_a , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_a , ) _SCREAMING_SNAKE_CASE =model.decode(_a , _a ) _SCREAMING_SNAKE_CASE =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"Max diff is {diff}" ) def A ( self : Optional[int] , _a : List[str] , _a : Optional[Any] , _a : str ) -> List[str]: '''simple docstring''' _SCREAMING_SNAKE_CASE =20 _SCREAMING_SNAKE_CASE =model_class_name(_a ) _SCREAMING_SNAKE_CASE =model.encode(inputs_dict['input_ids'] ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) _SCREAMING_SNAKE_CASE =jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) _SCREAMING_SNAKE_CASE =model.init_cache(decoder_input_ids.shape[0] , _a , _a ) _SCREAMING_SNAKE_CASE =jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _SCREAMING_SNAKE_CASE =model.decode( decoder_input_ids[:, :-1] , _a , decoder_attention_mask=_a , past_key_values=_a , decoder_position_ids=_a , ) _SCREAMING_SNAKE_CASE =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) _SCREAMING_SNAKE_CASE =model.decode( decoder_input_ids[:, -1:] , _a , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_a , decoder_position_ids=_a , ) _SCREAMING_SNAKE_CASE =model.decode(_a , _a , decoder_attention_mask=_a ) _SCREAMING_SNAKE_CASE =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"Max diff is {diff}" ) @require_flax class A__ ( unittest.TestCase ): A__ = 99 def A ( self : Optional[Any] ) -> List[str]: '''simple docstring''' _SCREAMING_SNAKE_CASE =np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) _SCREAMING_SNAKE_CASE =input_ids.shape[0] _SCREAMING_SNAKE_CASE =BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def A ( self : Union[str, Any] ) -> Any: '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self._get_config_and_data() _SCREAMING_SNAKE_CASE =FlaxBlenderbotSmallForConditionalGeneration(_a ) _SCREAMING_SNAKE_CASE =lm_model(input_ids=_a ) _SCREAMING_SNAKE_CASE =(batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['logits'].shape , _a ) def A ( self : List[str] ) -> Tuple: '''simple docstring''' _SCREAMING_SNAKE_CASE =BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) _SCREAMING_SNAKE_CASE =FlaxBlenderbotSmallForConditionalGeneration(_a ) _SCREAMING_SNAKE_CASE =np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) _SCREAMING_SNAKE_CASE =np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) _SCREAMING_SNAKE_CASE =lm_model(input_ids=_a , decoder_input_ids=_a ) _SCREAMING_SNAKE_CASE =(*summary.shape, config.vocab_size) self.assertEqual(outputs['logits'].shape , _a ) def A ( self : Union[str, Any] ) -> int: '''simple docstring''' _SCREAMING_SNAKE_CASE =np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) _SCREAMING_SNAKE_CASE =shift_tokens_right(_a , 1 , 2 ) _SCREAMING_SNAKE_CASE =np.equal(_a , 1 ).astype(np.floataa ).sum() _SCREAMING_SNAKE_CASE =np.equal(_a , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(_a , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class A__ ( A__ , unittest.TestCase , A__ ): A__ = True A__ = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) A__ = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def A ( self : Tuple ) -> int: '''simple docstring''' _SCREAMING_SNAKE_CASE =FlaxBlenderbotSmallModelTester(self ) def A ( self : Dict ) -> Union[str, Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(_a , _a , _a ) def A ( self : Any ) -> Tuple: '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(_a , _a , _a ) def A ( self : List[str] ) -> Dict: '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _SCREAMING_SNAKE_CASE =self._prepare_for_class(_a , _a ) _SCREAMING_SNAKE_CASE =model_class(_a ) @jax.jit def encode_jitted(_a : Optional[Any] , _a : Optional[Any]=None , **_a : Any ): return model.encode(input_ids=_a , attention_mask=_a ) with self.subTest('JIT Enabled' ): _SCREAMING_SNAKE_CASE =encode_jitted(**_a ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): _SCREAMING_SNAKE_CASE =encode_jitted(**_a ).to_tuple() self.assertEqual(len(_a ) , len(_a ) ) for jitted_output, output in zip(_a , _a ): self.assertEqual(jitted_output.shape , output.shape ) def A ( self : str ) -> Dict: '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _SCREAMING_SNAKE_CASE =model_class(_a ) _SCREAMING_SNAKE_CASE =model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] ) _SCREAMING_SNAKE_CASE ={ 'decoder_input_ids': inputs_dict['decoder_input_ids'], 'decoder_attention_mask': inputs_dict['decoder_attention_mask'], 'encoder_outputs': encoder_outputs, } @jax.jit def decode_jitted(_a : Tuple , _a : Any , _a : Optional[Any] ): return model.decode( decoder_input_ids=_a , decoder_attention_mask=_a , encoder_outputs=_a , ) with self.subTest('JIT Enabled' ): _SCREAMING_SNAKE_CASE =decode_jitted(**_a ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): _SCREAMING_SNAKE_CASE =decode_jitted(**_a ).to_tuple() self.assertEqual(len(_a ) , len(_a ) ) for jitted_output, output in zip(_a , _a ): self.assertEqual(jitted_output.shape , output.shape ) @slow def A ( self : Any ) -> int: '''simple docstring''' for model_class_name in self.all_model_classes: _SCREAMING_SNAKE_CASE =model_class_name.from_pretrained('facebook/blenderbot_small-90M' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids _SCREAMING_SNAKE_CASE =np.ones((1, 1) ) * model.config.eos_token_id _SCREAMING_SNAKE_CASE =model(_a ) self.assertIsNotNone(_a )
405
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : int ): snake_case__ : Dict = tempfile.mkdtemp() # fmt: off snake_case__ : Optional[int] = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on snake_case__ : Tuple = dict(zip(_lowercase , range(len(_lowercase ) ) ) ) snake_case__ : int = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] snake_case__ : List[str] = {"""unk_token""": """<unk>"""} snake_case__ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) snake_case__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(_lowercase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(_lowercase ) ) snake_case__ : Optional[Any] = { """do_resize""": True, """size""": 2_0, """do_center_crop""": True, """crop_size""": 1_8, """do_normalize""": True, """image_mean""": [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], """image_std""": [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } snake_case__ : Tuple = os.path.join(self.tmpdirname , _lowercase ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(_lowercase , _lowercase ) def _lowercase ( self : List[Any] , **__A : List[str] ): return CLIPTokenizer.from_pretrained(self.tmpdirname , **_lowercase ) def _lowercase ( self : List[Any] , **__A : str ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **_lowercase ) def _lowercase ( self : Union[str, Any] , **__A : int ): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **_lowercase ) def _lowercase ( self : Optional[Any] ): shutil.rmtree(self.tmpdirname ) def _lowercase ( self : Any ): snake_case__ : Tuple = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] snake_case__ : Optional[int] = [Image.fromarray(np.moveaxis(_lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _lowercase ( self : Any ): snake_case__ : Any = self.get_tokenizer() snake_case__ : Union[str, Any] = self.get_rust_tokenizer() snake_case__ : List[Any] = self.get_image_processor() snake_case__ : Dict = CLIPProcessor(tokenizer=_lowercase , image_processor=_lowercase ) processor_slow.save_pretrained(self.tmpdirname ) snake_case__ : Optional[Any] = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=_lowercase ) snake_case__ : Optional[int] = CLIPProcessor(tokenizer=_lowercase , image_processor=_lowercase ) processor_fast.save_pretrained(self.tmpdirname ) snake_case__ : int = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _lowercase ) self.assertIsInstance(processor_fast.tokenizer , _lowercase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _lowercase ) self.assertIsInstance(processor_fast.image_processor , _lowercase ) def _lowercase ( self : Tuple ): snake_case__ : Optional[Any] = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) snake_case__ : Tuple = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) snake_case__ : List[str] = self.get_image_processor(do_normalize=_lowercase , padding_value=1.0 ) snake_case__ : int = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=_lowercase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowercase ) def _lowercase ( self : Dict ): snake_case__ : Optional[Any] = self.get_image_processor() snake_case__ : Dict = self.get_tokenizer() snake_case__ : Dict = CLIPProcessor(tokenizer=_lowercase , image_processor=_lowercase ) snake_case__ : str = self.prepare_image_inputs() snake_case__ : Union[str, Any] = image_processor(_lowercase , return_tensors="np" ) snake_case__ : Any = processor(images=_lowercase , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _lowercase ( self : Optional[Any] ): snake_case__ : List[Any] = self.get_image_processor() snake_case__ : List[str] = self.get_tokenizer() snake_case__ : Optional[int] = CLIPProcessor(tokenizer=_lowercase , image_processor=_lowercase ) snake_case__ : int = """lower newer""" snake_case__ : List[str] = processor(text=_lowercase ) snake_case__ : Optional[int] = tokenizer(_lowercase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _lowercase ( self : Any ): snake_case__ : int = self.get_image_processor() snake_case__ : str = self.get_tokenizer() snake_case__ : Union[str, Any] = CLIPProcessor(tokenizer=_lowercase , image_processor=_lowercase ) snake_case__ : str = """lower newer""" snake_case__ : Tuple = self.prepare_image_inputs() snake_case__ : Dict = processor(text=_lowercase , images=_lowercase ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(_lowercase ): processor() def _lowercase ( self : List[str] ): snake_case__ : Tuple = self.get_image_processor() snake_case__ : Optional[Any] = self.get_tokenizer() snake_case__ : Optional[int] = CLIPProcessor(tokenizer=_lowercase , image_processor=_lowercase ) snake_case__ : Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] snake_case__ : str = processor.batch_decode(_lowercase ) snake_case__ : Any = tokenizer.batch_decode(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) def _lowercase ( self : str ): snake_case__ : Dict = self.get_image_processor() snake_case__ : int = self.get_tokenizer() snake_case__ : List[Any] = CLIPProcessor(tokenizer=_lowercase , image_processor=_lowercase ) snake_case__ : Union[str, Any] = """lower newer""" snake_case__ : Optional[Any] = self.prepare_image_inputs() snake_case__ : Optional[Any] = processor(text=_lowercase , images=_lowercase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
721
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __lowerCamelCase : Union[str, Any] = """2.13.1""" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("""3.7"""): raise ImportWarning( """To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition.""" ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( """To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n""" """If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.""" ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip __lowerCamelCase : List[Any] = concatenate_datasets __lowerCamelCase : List[str] = DownloadConfig __lowerCamelCase : Union[str, Any] = DownloadManager __lowerCamelCase : str = DownloadMode __lowerCamelCase : Union[str, Any] = DownloadConfig __lowerCamelCase : List[str] = DownloadMode __lowerCamelCase : Dict = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
25
0
'''simple docstring''' from math import factorial, pi def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase = 30 ): if not isinstance(UpperCAmelCase , (int, float) ): raise ValueError('''maclaurin_sin() requires either an int or float for theta''' ) if not isinstance(UpperCAmelCase , UpperCAmelCase ) or accuracy <= 0: raise ValueError('''maclaurin_sin() requires a positive int for accuracy''' ) lowercase__ : Tuple = float(UpperCAmelCase ) lowercase__ : List[str] = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(UpperCAmelCase ) ) def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase = 30 ): if not isinstance(UpperCAmelCase , (int, float) ): raise ValueError('''maclaurin_cos() requires either an int or float for theta''' ) if not isinstance(UpperCAmelCase , UpperCAmelCase ) or accuracy <= 0: raise ValueError('''maclaurin_cos() requires a positive int for accuracy''' ) lowercase__ : int = float(UpperCAmelCase ) lowercase__ : str = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(UpperCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
152
'''simple docstring''' def __UpperCamelCase ( UpperCAmelCase ): lowercase__ : Optional[int] = 0 lowercase__ : int = len(UpperCAmelCase ) for i in range(n - 1 ): for j in range(i + 1 , UpperCAmelCase ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def __UpperCamelCase ( UpperCAmelCase ): if len(UpperCAmelCase ) <= 1: return arr, 0 lowercase__ : List[str] = len(UpperCAmelCase ) // 2 lowercase__ : Optional[Any] = arr[0:mid] lowercase__ : Any = arr[mid:] lowercase__ , lowercase__ : Any = count_inversions_recursive(UpperCAmelCase ) lowercase__ , lowercase__ : List[str] = count_inversions_recursive(UpperCAmelCase ) lowercase__ , lowercase__ : Optional[Any] = _count_cross_inversions(UpperCAmelCase , UpperCAmelCase ) lowercase__ : Optional[Any] = inversion_p + inversions_q + cross_inversions return c, num_inversions def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): lowercase__ : Union[str, Any] = [] lowercase__ : List[Any] = 0 while i < len(UpperCAmelCase ) and j < len(UpperCAmelCase ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(UpperCAmelCase ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(UpperCAmelCase ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def __UpperCamelCase ( ): lowercase__ : str = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) lowercase__ : Dict = count_inversions_bf(UpperCAmelCase ) lowercase__ , lowercase__ : Union[str, Any] = count_inversions_recursive(UpperCAmelCase ) assert num_inversions_bf == num_inversions_recursive == 8 print('''number of inversions = ''' , UpperCAmelCase ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() lowercase__ : Optional[int] = count_inversions_bf(UpperCAmelCase ) lowercase__ , lowercase__ : int = count_inversions_recursive(UpperCAmelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , UpperCAmelCase ) # an empty list should also have zero inversions lowercase__ : Optional[Any] = [] lowercase__ : Any = count_inversions_bf(UpperCAmelCase ) lowercase__ , lowercase__ : List[Any] = count_inversions_recursive(UpperCAmelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , UpperCAmelCase ) if __name__ == "__main__": main()
152
1
'''simple docstring''' def snake_case__ ( lowerCamelCase_ ): if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): A : List[Any] = F'Input value of [number={number}] must be an integer' raise TypeError(_lowerCAmelCase ) if number < 1: A : str = F'Input value of [number={number}] must be > 0' raise ValueError(_lowerCAmelCase ) A : Optional[int] = 1 for i in range(1 , _lowerCAmelCase ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
701
import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex lowercase : Dict = logging.getLogger(__name__) class __lowercase : """simple docstring""" def __init__( self ) -> Optional[int]: A : int = False def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: if not self.initialized: A : str = RagRetriever( __UpperCAmelCase , question_encoder_tokenizer=__UpperCAmelCase , generator_tokenizer=__UpperCAmelCase , index=__UpperCAmelCase , init_retrieval=__UpperCAmelCase , ) A : Tuple = True def snake_case ( self ) -> int: self.retriever.index.init_index() def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase ) -> str: A , A : str = self.retriever._main_retrieve(__UpperCAmelCase , __UpperCAmelCase ) return doc_ids, retrieved_doc_embeds class __lowercase ( _SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None ) -> Optional[Any]: if index is not None and index.is_initialized() and len(__UpperCAmelCase ) > 0: raise ValueError( '''When using Ray for distributed fine-tuning, ''' '''you\'ll need to provide the paths instead, ''' '''as the dataset and the index are loaded ''' '''separately. More info in examples/rag/use_own_knowledge_dataset.py ''' ) super().__init__( __UpperCAmelCase , question_encoder_tokenizer=__UpperCAmelCase , generator_tokenizer=__UpperCAmelCase , index=__UpperCAmelCase , init_retrieval=__UpperCAmelCase , ) A : Optional[int] = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) for worker in self.retrieval_workers ] ) def snake_case ( self ) -> Union[str, Any]: logger.info('''initializing retrieval''' ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. A : List[Any] = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] A , A : Union[str, Any] = ray.get(random_worker.retrieve.remote(__UpperCAmelCase , __UpperCAmelCase ) ) else: A , A : Any = self._main_retrieve(__UpperCAmelCase , __UpperCAmelCase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__UpperCAmelCase ) @classmethod def snake_case ( cls , __UpperCAmelCase , __UpperCAmelCase=None , **__UpperCAmelCase ) -> Any: return super(__UpperCAmelCase , cls ).get_tokenizers(__UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) @classmethod def snake_case ( cls , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , **__UpperCAmelCase ) -> Dict: A : int = kwargs.pop('''config''' , __UpperCAmelCase ) or RagConfig.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) A : Tuple = RagTokenizer.from_pretrained(__UpperCAmelCase , config=__UpperCAmelCase ) A : Any = rag_tokenizer.question_encoder A : int = rag_tokenizer.generator if indexed_dataset is not None: A : Optional[int] = '''custom''' A : Tuple = CustomHFIndex(config.retrieval_vector_size , __UpperCAmelCase ) else: A : Union[str, Any] = cls._build_index(__UpperCAmelCase ) return cls( __UpperCAmelCase , question_encoder_tokenizer=__UpperCAmelCase , generator_tokenizer=__UpperCAmelCase , retrieval_workers=__UpperCAmelCase , index=__UpperCAmelCase , )
423
0
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> int: # noqa: E741 """simple docstring""" _A = len(_SCREAMING_SNAKE_CASE ) _A = 0 _A = [0] * n _A = [False] * n _A = [False] * n def dfs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if parent == root: out_edge_count += 1 _A = True _A = at for to in l[at]: if to == parent: pass elif not visited[to]: _A = dfs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _A = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: _A = True # AP found via cycle if at == low[to]: _A = True else: _A = min(low[at] , _SCREAMING_SNAKE_CASE ) return out_edge_count for i in range(_SCREAMING_SNAKE_CASE ): if not visited[i]: _A = 0 _A = dfs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , -1 , _SCREAMING_SNAKE_CASE ) _A = out_edge_count > 1 for x in range(len(_SCREAMING_SNAKE_CASE ) ): if is_art[x] is True: print(_SCREAMING_SNAKE_CASE ) # Adjacency list of graph __A : str = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
27
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class __lowercase : def __init__(self : Dict , snake_case : Dict , snake_case : List[Any]=13 , snake_case : int=7 , snake_case : List[str]=True , snake_case : List[Any]=True , snake_case : Union[str, Any]=True , snake_case : Dict=True , snake_case : Optional[Any]=99 , snake_case : str=32 , snake_case : Any=2 , snake_case : Optional[Any]=4 , snake_case : int=37 , snake_case : Dict="gelu" , snake_case : Dict=0.1 , snake_case : Dict=0.1 , snake_case : Optional[int]=512 , snake_case : Dict=16 , snake_case : Union[str, Any]=2 , snake_case : Dict=0.02 , snake_case : str=3 , snake_case : str=4 , snake_case : Optional[Any]=None , snake_case : str=0 , ) -> Optional[Any]: _lowercase : int = parent _lowercase : Tuple = batch_size _lowercase : str = seq_length _lowercase : Optional[Any] = is_training _lowercase : List[Any] = use_input_mask _lowercase : Tuple = use_token_type_ids _lowercase : List[Any] = use_labels _lowercase : List[str] = vocab_size _lowercase : Dict = hidden_size _lowercase : str = num_hidden_layers _lowercase : Tuple = num_attention_heads _lowercase : Dict = intermediate_size _lowercase : List[Any] = hidden_act _lowercase : Optional[Any] = hidden_dropout_prob _lowercase : Dict = attention_probs_dropout_prob _lowercase : int = max_position_embeddings _lowercase : Tuple = type_vocab_size _lowercase : List[str] = type_sequence_label_size _lowercase : str = initializer_range _lowercase : Tuple = num_labels _lowercase : List[Any] = num_choices _lowercase : Dict = scope _lowercase : Optional[Any] = projection_dim def _a(self : Tuple ) -> List[str]: _lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowercase : Optional[int] = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py _lowercase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) _lowercase : List[Any] = None if self.use_token_type_ids: _lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowercase : Tuple = None _lowercase : Optional[Any] = None _lowercase : Optional[Any] = None if self.use_labels: _lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowercase : List[str] = ids_tensor([self.batch_size] , self.num_choices ) _lowercase : Union[str, Any] = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case , initializer_range=self.initializer_range , ) _lowercase : Any = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a(self : Union[str, Any] , snake_case : Any , snake_case : Tuple , snake_case : str , snake_case : str , snake_case : Union[str, Any] , snake_case : Tuple , snake_case : str ) -> List[str]: _lowercase : List[Any] = TFDPRContextEncoder(config=snake_case ) _lowercase : Dict = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case ) _lowercase : Optional[int] = model(snake_case , token_type_ids=snake_case ) _lowercase : Union[str, Any] = model(snake_case ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def _a(self : List[Any] , snake_case : List[str] , snake_case : Tuple , snake_case : Any , snake_case : int , snake_case : Optional[int] , snake_case : Any , snake_case : Union[str, Any] ) -> int: _lowercase : Optional[Any] = TFDPRQuestionEncoder(config=snake_case ) _lowercase : int = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case ) _lowercase : str = model(snake_case , token_type_ids=snake_case ) _lowercase : str = model(snake_case ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def _a(self : Union[str, Any] , snake_case : Any , snake_case : int , snake_case : List[str] , snake_case : Union[str, Any] , snake_case : Tuple , snake_case : Optional[Any] , snake_case : Union[str, Any] ) -> Any: _lowercase : Any = TFDPRReader(config=snake_case ) _lowercase : Optional[Any] = model(snake_case , attention_mask=snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def _a(self : int ) -> Optional[Any]: _lowercase : Union[str, Any] = self.prepare_config_and_inputs() ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : int = config_and_inputs _lowercase : int = {"input_ids": input_ids} return config, inputs_dict @require_tf class __lowercase ( __snake_case , __snake_case , unittest.TestCase ): _A = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) _A = {"feature-extraction": TFDPRQuestionEncoder} if is_tf_available() else {} _A = False _A = False _A = False _A = False _A = False def _a(self : str ) -> List[str]: _lowercase : List[Any] = TFDPRModelTester(self ) _lowercase : Any = ConfigTester(self , config_class=snake_case , hidden_size=37 ) def _a(self : str ) -> Union[str, Any]: self.config_tester.run_common_tests() def _a(self : Any ) -> Tuple: _lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*snake_case ) def _a(self : Dict ) -> Optional[Any]: _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*snake_case ) def _a(self : List[Any] ) -> Any: _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*snake_case ) @slow def _a(self : int ) -> str: for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : str = TFDPRContextEncoder.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : List[str] = TFDPRContextEncoder.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : int = TFDPRQuestionEncoder.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : Any = TFDPRReader.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @require_tf class __lowercase ( unittest.TestCase ): @slow def _a(self : Dict ) -> Any: _lowercase : Any = TFDPRQuestionEncoder.from_pretrained("facebook/dpr-question_encoder-single-nq-base" ) _lowercase : Optional[int] = tf.constant( [[101, 7592, 1010, 2003, 2026, 3899, 1_0140, 1029, 102]] ) # [CLS] hello, is my dog cute? [SEP] _lowercase : List[Any] = model(snake_case )[0] # embedding shape = (1, 768) # compare the actual values for a slice. _lowercase : Optional[Any] = tf.constant( [ [ 0.03_23_62_53, 0.12_75_33_35, 0.16_81_85_09, 0.00_27_97_86, 0.3_89_69_33, 0.24_26_49_45, 0.2_17_89_71, -0.02_33_52_27, -0.08_48_19_59, -0.14_32_41_17, ] ] ) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1e-4 ) )
461
0
'''simple docstring''' import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class lowerCamelCase (a__ ): _lowercase : Optional[int] = """MCTCTFeatureExtractor""" _lowercase : str = """AutoTokenizer""" def __init__( self , lowercase__ , lowercase__ ) -> int: """simple docstring""" super().__init__(lowercase__ , lowercase__ ) _snake_case : List[str] = self.feature_extractor _snake_case : Any = False def __call__( self , *lowercase__ , **lowercase__ ) -> Optional[Any]: """simple docstring""" if self._in_target_context_manager: return self.current_processor(*lowercase__ , **lowercase__ ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) _snake_case : List[str] = kwargs.pop('''raw_speech''' ) else: _snake_case : str = kwargs.pop('''audio''' , lowercase__ ) _snake_case : Dict = kwargs.pop('''sampling_rate''' , lowercase__ ) _snake_case : Optional[int] = kwargs.pop('''text''' , lowercase__ ) if len(lowercase__ ) > 0: _snake_case : Any = args[0] _snake_case : List[str] = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: _snake_case : Tuple = self.feature_extractor(lowercase__ , *lowercase__ , sampling_rate=lowercase__ , **lowercase__ ) if text is not None: _snake_case : str = self.tokenizer(lowercase__ , **lowercase__ ) if text is None: return inputs elif audio is None: return encodings else: _snake_case : Dict = encodings['''input_ids'''] return inputs def UpperCAmelCase_ ( self , *lowercase__ , **lowercase__ ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.batch_decode(*lowercase__ , **lowercase__ ) def UpperCAmelCase_ ( self , *lowercase__ , **lowercase__ ) -> Optional[int]: """simple docstring""" if self._in_target_context_manager: return self.current_processor.pad(*lowercase__ , **lowercase__ ) _snake_case : int = kwargs.pop('''input_features''' , lowercase__ ) _snake_case : Tuple = kwargs.pop('''labels''' , lowercase__ ) if len(lowercase__ ) > 0: _snake_case : Union[str, Any] = args[0] _snake_case : List[Any] = args[1:] if input_features is not None: _snake_case : Union[str, Any] = self.feature_extractor.pad(lowercase__ , *lowercase__ , **lowercase__ ) if labels is not None: _snake_case : Union[str, Any] = self.tokenizer.pad(lowercase__ , **lowercase__ ) if labels is None: return input_features elif input_features is None: return labels else: _snake_case : List[Any] = labels['''input_ids'''] return input_features def UpperCAmelCase_ ( self , *lowercase__ , **lowercase__ ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.decode(*lowercase__ , **lowercase__ ) @contextmanager def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) _snake_case : List[str] = True _snake_case : Union[str, Any] = self.tokenizer yield _snake_case : Optional[int] = self.feature_extractor _snake_case : Union[str, Any] = False
717
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase : Optional[int] = logging.get_logger(__name__) UpperCAmelCase : List[Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase : Any = { 'tokenizer_file': { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json', }, } UpperCAmelCase : Optional[Any] = { 'gpt-neox-20b': 2_0_4_8, } class lowerCamelCase (a__ ): _lowercase : Optional[int] = VOCAB_FILES_NAMES _lowercase : str = PRETRAINED_VOCAB_FILES_MAP _lowercase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : Optional[int] = ["""input_ids""", """attention_mask"""] def __init__( self , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__="<|endoftext|>" , lowercase__="<|endoftext|>" , lowercase__="<|endoftext|>" , lowercase__=False , **lowercase__ , ) -> List[Any]: """simple docstring""" super().__init__( lowercase__ , lowercase__ , tokenizer_file=lowercase__ , unk_token=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , add_prefix_space=lowercase__ , **lowercase__ , ) _snake_case : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , lowercase__ ) != add_prefix_space: _snake_case : int = getattr(lowercase__ , pre_tok_state.pop('''type''' ) ) _snake_case : int = add_prefix_space _snake_case : Optional[Any] = pre_tok_class(**lowercase__ ) _snake_case : List[str] = add_prefix_space def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None ) -> Tuple[str]: """simple docstring""" _snake_case : Optional[int] = self._tokenizer.model.save(lowercase__ , name=lowercase__ ) return tuple(lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ ) -> List[int]: """simple docstring""" _snake_case : List[str] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowercase__ , add_special_tokens=lowercase__ ) + [self.eos_token_id] ) if len(lowercase__ ) > self.model_max_length: _snake_case : Dict = input_ids[-self.model_max_length :] return input_ids
47
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __snake_case : Dict = { "configuration_albert": ["ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "AlbertConfig", "AlbertOnnxConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Optional[Any] = ["AlbertTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Tuple = ["AlbertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Any = [ "ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "AlbertForMaskedLM", "AlbertForMultipleChoice", "AlbertForPreTraining", "AlbertForQuestionAnswering", "AlbertForSequenceClassification", "AlbertForTokenClassification", "AlbertModel", "AlbertPreTrainedModel", "load_tf_weights_in_albert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Dict = [ "TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFAlbertForMaskedLM", "TFAlbertForMultipleChoice", "TFAlbertForPreTraining", "TFAlbertForQuestionAnswering", "TFAlbertForSequenceClassification", "TFAlbertForTokenClassification", "TFAlbertMainLayer", "TFAlbertModel", "TFAlbertPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Any = [ "FlaxAlbertForMaskedLM", "FlaxAlbertForMultipleChoice", "FlaxAlbertForPreTraining", "FlaxAlbertForQuestionAnswering", "FlaxAlbertForSequenceClassification", "FlaxAlbertForTokenClassification", "FlaxAlbertModel", "FlaxAlbertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert import AlbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert_fast import AlbertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_albert import ( ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, AlbertPreTrainedModel, load_tf_weights_in_albert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_albert import ( TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFAlbertForMaskedLM, TFAlbertForMultipleChoice, TFAlbertForPreTraining, TFAlbertForQuestionAnswering, TFAlbertForSequenceClassification, TFAlbertForTokenClassification, TFAlbertMainLayer, TFAlbertModel, TFAlbertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, FlaxAlbertPreTrainedModel, ) else: import sys __snake_case : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
131
'''simple docstring''' import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class A ( a , unittest.TestCase ): __UpperCAmelCase : List[Any] = ProphetNetTokenizer __UpperCAmelCase : Dict = False def __lowerCAmelCase ( self ) -> int: super().setUp() _a = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def __lowerCAmelCase ( self , snake_case_ ) -> Dict: _a = "UNwant\u00E9d,running" _a = "unwanted, running" return input_text, output_text def __lowerCAmelCase ( self ) -> Optional[int]: _a = self.tokenizer_class(self.vocab_file ) _a = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(snake_case_ , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case_ ) , [9, 6, 7, 1_2, 1_0, 1_1] ) def __lowerCAmelCase ( self ) -> Any: _a = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def __lowerCAmelCase ( self ) -> str: _a = BasicTokenizer(do_lower_case=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __lowerCAmelCase ( self ) -> Optional[int]: _a = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def __lowerCAmelCase ( self ) -> Dict: _a = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __lowerCAmelCase ( self ) -> Optional[Any]: _a = BasicTokenizer(do_lower_case=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __lowerCAmelCase ( self ) -> List[str]: _a = BasicTokenizer(do_lower_case=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def __lowerCAmelCase ( self ) -> Optional[int]: _a = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def __lowerCAmelCase ( self ) -> Any: _a = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = BasicTokenizer(do_lower_case=snake_case_ , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def __lowerCAmelCase ( self ) -> List[Any]: _a = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] _a = {} for i, token in enumerate(snake_case_ ): _a = i _a = WordpieceTokenizer(vocab=snake_case_ , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) @require_torch def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = self.tokenizer_class.from_pretrained("microsoft/prophetnet-large-uncased" ) _a = ["A long paragraph for summarization.", "Another paragraph for summarization."] _a = [1_0_3_7, 2_1_4_6, 2_0_4_2_3, 2_0_0_5, 7_6_8_0, 7_8_4_9, 3_9_8_9, 1_0_1_2, 1_0_2] _a = tokenizer(snake_case_ , padding=snake_case_ , return_tensors="pt" ) self.assertIsInstance(snake_case_ , snake_case_ ) _a = list(batch.input_ids.numpy()[0] ) self.assertListEqual(snake_case_ , snake_case_ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def __lowerCAmelCase ( self ) -> Tuple: self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def __lowerCAmelCase ( self ) -> str: self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def __lowerCAmelCase ( self ) -> int: self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) @slow def __lowerCAmelCase ( self ) -> str: _a = self.tokenizer_class.from_pretrained("microsoft/prophetnet-large-uncased" ) _a = tokenizer.encode("sequence builders" , add_special_tokens=snake_case_ ) _a = tokenizer.encode("multi-sequence build" , add_special_tokens=snake_case_ ) _a = tokenizer.build_inputs_with_special_tokens(snake_case_ ) _a = tokenizer.build_inputs_with_special_tokens(snake_case_ , snake_case_ ) assert encoded_sentence == text + [1_0_2] assert encoded_pair == text + [1_0_2] + text_a + [1_0_2]
131
1
from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar lowerCAmelCase : Optional[int] =TypeVar("T") class __snake_case ( Generic[T] ): '''simple docstring''' def __init__( self : Tuple , _UpperCamelCase : list[T] , _UpperCamelCase : Callable[[T, T], T]) ->None: """simple docstring""" _lowerCamelCase : Any | T = None _lowerCamelCase : int = len(_UpperCamelCase) _lowerCamelCase : list[T] = [any_type for _ in range(self.N)] + arr _lowerCamelCase : List[Any] = fnc self.build() def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->None: """simple docstring""" for p in range(self.N - 1 , 0 , -1): _lowerCamelCase : Tuple = self.fn(self.st[p * 2] , self.st[p * 2 + 1]) def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : int , _UpperCamelCase : T) ->None: """simple docstring""" p += self.N _lowerCamelCase : List[Any] = v while p > 1: _lowerCamelCase : Union[str, Any] = p // 2 _lowerCamelCase : List[Any] = self.fn(self.st[p * 2] , self.st[p * 2 + 1]) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : int , _UpperCamelCase : int) ->T | None: # noqa: E741 """simple docstring""" _lowerCamelCase , _lowerCamelCase : List[str] = l + self.N, r + self.N _lowerCamelCase : T | None = None while l <= r: if l % 2 == 1: _lowerCamelCase : int = self.st[l] if res is None else self.fn(_UpperCamelCase , self.st[l]) if r % 2 == 0: _lowerCamelCase : List[Any] = self.st[r] if res is None else self.fn(_UpperCamelCase , self.st[r]) _lowerCamelCase , _lowerCamelCase : Tuple = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce lowerCAmelCase : Optional[int] =[1, 10, -2, 9, -3, 8, 4, -7, 5, 6, 11, -12] lowerCAmelCase : str ={ 0: 7, 1: 2, 2: 6, 3: -14, 4: 5, 5: 4, 6: 7, 7: -10, 8: 9, 9: 10, 10: 12, 11: 1, } lowerCAmelCase : Union[str, Any] =SegmentTree(test_array, min) lowerCAmelCase : Any =SegmentTree(test_array, max) lowerCAmelCase : Any =SegmentTree(test_array, lambda a, b: a + b) def A__ ( ): '''simple docstring''' for i in range(len(__A ) ): for j in range(__A , len(__A ) ): _lowerCamelCase : Optional[int] = reduce(__A , test_array[i : j + 1] ) _lowerCamelCase : Union[str, Any] = reduce(__A , test_array[i : j + 1] ) _lowerCamelCase : Union[str, Any] = reduce(lambda __A , __A : a + b , test_array[i : j + 1] ) assert min_range == min_segment_tree.query(__A , __A ) assert max_range == max_segment_tree.query(__A , __A ) assert sum_range == sum_segment_tree.query(__A , __A ) test_all_segments() for index, value in test_updates.items(): lowerCAmelCase : Union[str, Any] =value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
15
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase : Any =logging.get_logger(__name__) lowerCAmelCase : List[Any] ={ "microsoft/swin-tiny-patch4-window7-224": ( "https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json" ), # See all Swin models at https://huggingface.co/models?filter=swin } class __snake_case ( __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' _snake_case = 'swin' _snake_case = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : Optional[int] , _UpperCamelCase : List[str]=224 , _UpperCamelCase : List[str]=4 , _UpperCamelCase : List[Any]=3 , _UpperCamelCase : Dict=96 , _UpperCamelCase : Any=[2, 2, 6, 2] , _UpperCamelCase : Any=[3, 6, 12, 24] , _UpperCamelCase : Tuple=7 , _UpperCamelCase : Tuple=4.0 , _UpperCamelCase : Dict=True , _UpperCamelCase : Tuple=0.0 , _UpperCamelCase : Any=0.0 , _UpperCamelCase : Optional[int]=0.1 , _UpperCamelCase : Any="gelu" , _UpperCamelCase : str=False , _UpperCamelCase : str=0.0_2 , _UpperCamelCase : Dict=1E-5 , _UpperCamelCase : List[str]=32 , _UpperCamelCase : Optional[Any]=None , _UpperCamelCase : List[Any]=None , **_UpperCamelCase : List[Any] , ) ->Tuple: """simple docstring""" super().__init__(**_UpperCamelCase) _lowerCamelCase : List[str] = image_size _lowerCamelCase : Tuple = patch_size _lowerCamelCase : Dict = num_channels _lowerCamelCase : Union[str, Any] = embed_dim _lowerCamelCase : str = depths _lowerCamelCase : str = len(_UpperCamelCase) _lowerCamelCase : Optional[Any] = num_heads _lowerCamelCase : Tuple = window_size _lowerCamelCase : int = mlp_ratio _lowerCamelCase : Optional[int] = qkv_bias _lowerCamelCase : List[str] = hidden_dropout_prob _lowerCamelCase : str = attention_probs_dropout_prob _lowerCamelCase : Tuple = drop_path_rate _lowerCamelCase : List[str] = hidden_act _lowerCamelCase : Dict = use_absolute_embeddings _lowerCamelCase : int = layer_norm_eps _lowerCamelCase : str = initializer_range _lowerCamelCase : Dict = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCamelCase : int = int(embed_dim * 2 ** (len(_UpperCamelCase) - 1)) _lowerCamelCase : Dict = ["""stem"""] + [F"""stage{idx}""" for idx in range(1 , len(_UpperCamelCase) + 1)] _lowerCamelCase , _lowerCamelCase : List[str] = get_aligned_output_features_output_indices( out_features=_UpperCamelCase , out_indices=_UpperCamelCase , stage_names=self.stage_names) class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = version.parse('1.11' ) @property def _SCREAMING_SNAKE_CASE ( self : Tuple) ->Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ]) @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->float: """simple docstring""" return 1E-4
15
1
import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase__ = get_tests_dir("""fixtures/test_sentencepiece.model""") lowerCamelCase__ = get_tests_dir("""fixtures/test_sentencepiece_bpe.model""") lowerCamelCase__ = """pt""" if is_torch_available() else """tf""" @require_sentencepiece @require_tokenizers class snake_case__ ( lowercase_ , unittest.TestCase): '''simple docstring''' lowerCamelCase : str = CamembertTokenizer lowerCamelCase : int = CamembertTokenizerFast lowerCamelCase : Tuple = True lowerCamelCase : Any = True def __lowercase ( self ) -> List[str]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __snake_case :List[Any] = CamembertTokenizer(a__ ) tokenizer.save_pretrained(self.tmpdirname ) def __lowercase ( self ) -> List[str]: '''simple docstring''' __snake_case :Tuple = """<pad>""" __snake_case :Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a__ ) , a__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a__ ) , a__ ) def __lowercase ( self ) -> int: '''simple docstring''' __snake_case :int = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>NOTUSED""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(a__ ) , 10_04 ) def __lowercase ( self ) -> str: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 10_05 ) def __lowercase ( self ) -> List[Any]: '''simple docstring''' __snake_case :List[Any] = CamembertTokenizer(a__ ) tokenizer.save_pretrained(self.tmpdirname ) __snake_case :Union[str, Any] = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) __snake_case :Any = """I was born in 92000, and this is falsé.""" __snake_case :Optional[int] = tokenizer.encode(a__ ) __snake_case :List[Any] = rust_tokenizer.encode(a__ ) self.assertListEqual(a__ , a__ ) __snake_case :Tuple = tokenizer.encode(a__ , add_special_tokens=a__ ) __snake_case :str = rust_tokenizer.encode(a__ , add_special_tokens=a__ ) self.assertListEqual(a__ , a__ ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) __snake_case :Optional[Any] = tokenizer.convert_ids_to_tokens(a__ ) __snake_case :Optional[int] = rust_tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) def __lowercase ( self ) -> int: '''simple docstring''' if not self.test_rust_tokenizer: return __snake_case :Optional[Any] = self.get_tokenizer() __snake_case :Optional[int] = self.get_rust_tokenizer() __snake_case :Union[str, Any] = """I was born in 92000, and this is falsé.""" __snake_case :Dict = tokenizer.tokenize(a__ ) __snake_case :int = rust_tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) __snake_case :Tuple = tokenizer.encode(a__ , add_special_tokens=a__ ) __snake_case :List[str] = rust_tokenizer.encode(a__ , add_special_tokens=a__ ) self.assertListEqual(a__ , a__ ) __snake_case :Optional[Any] = self.get_rust_tokenizer() __snake_case :Tuple = tokenizer.encode(a__ ) __snake_case :Tuple = rust_tokenizer.encode(a__ ) self.assertListEqual(a__ , a__ ) @slow def __lowercase ( self ) -> int: '''simple docstring''' __snake_case :Any = {"""input_ids""": [[5, 54, 71_96, 2_97, 30, 23, 7_76, 18, 11, 32_15, 37_05, 82_52, 22, 31_64, 11_81, 21_16, 29, 16, 8_13, 25, 7_91, 33_14, 20, 34_46, 38, 2_75_75, 1_20, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 4_68, 17, 11, 90_88, 20, 15_17, 8, 2_28_04, 1_88_18, 10, 38, 6_29, 6_07, 6_07, 1_42, 19, 71_96, 8_67, 56, 1_03_26, 24, 22_67, 20, 4_16, 50_72, 1_56_12, 2_33, 7_34, 7, 23_99, 27, 16, 30_15, 16_49, 7, 24, 20, 43_38, 23_99, 27, 13, 34_00, 14, 13, 61_89, 8, 9_30, 9, 6]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. __snake_case :str = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=a__ , model_name="""camembert-base""" , revision="""3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf""" , sequences=a__ , )
455
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration lowerCamelCase__ = 50_0000 lowerCamelCase__ , lowerCamelCase__ = os.path.split(__file__) lowerCamelCase__ = os.path.join(RESULTS_BASEPATH, """results""", RESULTS_FILENAME.replace(""".py""", """.json""")) @get_duration def UpperCamelCase ( snake_case__ : datasets.Dataset ,**snake_case__ : Any ): '''simple docstring''' __snake_case :List[str] = dataset.map(**snake_case__ ) @get_duration def UpperCamelCase ( snake_case__ : datasets.Dataset ,**snake_case__ : Dict ): '''simple docstring''' __snake_case :int = dataset.filter(**snake_case__ ) def UpperCamelCase ( ): '''simple docstring''' __snake_case :str = {"""num examples""": SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: __snake_case :Dict = datasets.Features({"""text""": datasets.Value("""string""" ), """numbers""": datasets.Value("""float32""" )} ) __snake_case :Optional[int] = generate_example_dataset( os.path.join(snake_case__ ,"""dataset.arrow""" ) ,snake_case__ ,num_examples=snake_case__ ) __snake_case :str = transformers.AutoTokenizer.from_pretrained("""bert-base-cased""" ,use_fast=snake_case__ ) def tokenize(snake_case__ : Optional[int] ): return tokenizer(examples["""text"""] ) __snake_case :Optional[Any] = map(snake_case__ ) __snake_case :Optional[Any] = map(snake_case__ ,batched=snake_case__ ) __snake_case :Optional[Any] = map(snake_case__ ,function=lambda snake_case__ : None ,batched=snake_case__ ) with dataset.formatted_as(type="""numpy""" ): __snake_case :int = map(snake_case__ ,function=lambda snake_case__ : None ,batched=snake_case__ ) with dataset.formatted_as(type="""pandas""" ): __snake_case :List[Any] = map(snake_case__ ,function=lambda snake_case__ : None ,batched=snake_case__ ) with dataset.formatted_as(type="""torch""" ,columns="""numbers""" ): __snake_case :str = map(snake_case__ ,function=lambda snake_case__ : None ,batched=snake_case__ ) with dataset.formatted_as(type="""tensorflow""" ,columns="""numbers""" ): __snake_case :Optional[int] = map(snake_case__ ,function=lambda snake_case__ : None ,batched=snake_case__ ) __snake_case :Dict = map(snake_case__ ,function=snake_case__ ,batched=snake_case__ ) __snake_case :Tuple = filter(snake_case__ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(snake_case__ ,"""wb""" ) as f: f.write(json.dumps(snake_case__ ).encode("""utf-8""" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
455
1
'''simple docstring''' from math import pi, sqrt, tan def lowerCamelCase__ ( a ): if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def lowerCamelCase__ ( a , a , a ): if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def lowerCamelCase__ ( a ): if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def lowerCamelCase__ ( a ): if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def lowerCamelCase__ ( a , a ): if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def lowerCamelCase__ ( a , a , a ): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) __snake_case = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def lowerCamelCase__ ( a , a ): if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def lowerCamelCase__ ( a , a ): if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(A_ , 2 ) * torus_radius * tube_radius def lowerCamelCase__ ( a , a ): if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def lowerCamelCase__ ( a ): if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def lowerCamelCase__ ( a , a ): if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def lowerCamelCase__ ( a , a , a ): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) __snake_case = (sidea + sidea + sidea) / 2 __snake_case = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def lowerCamelCase__ ( a , a ): if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def lowerCamelCase__ ( a , a , a ): if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def lowerCamelCase__ ( a ): if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def lowerCamelCase__ ( a , a ): if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def lowerCamelCase__ ( a , a ): if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def lowerCamelCase__ ( a , a ): if not isinstance(A_ , A_ ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \\nequal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \\nlength of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print("""[DEMO] Areas of various geometric shapes: \n""") print(f'''Rectangle: {area_rectangle(10, 20) = }''') print(f'''Square: {area_square(10) = }''') print(f'''Triangle: {area_triangle(10, 10) = }''') print(f'''Triangle: {area_triangle_three_sides(5, 12, 13) = }''') print(f'''Parallelogram: {area_parallelogram(10, 20) = }''') print(f'''Rhombus: {area_rhombus(10, 20) = }''') print(f'''Trapezium: {area_trapezium(10, 20, 30) = }''') print(f'''Circle: {area_circle(20) = }''') print(f'''Ellipse: {area_ellipse(10, 20) = }''') print("""\nSurface Areas of various geometric shapes: \n""") print(f'''Cube: {surface_area_cube(20) = }''') print(f'''Cuboid: {surface_area_cuboid(10, 20, 30) = }''') print(f'''Sphere: {surface_area_sphere(20) = }''') print(f'''Hemisphere: {surface_area_hemisphere(20) = }''') print(f'''Cone: {surface_area_cone(10, 20) = }''') print(f'''Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }''') print(f'''Cylinder: {surface_area_cylinder(10, 20) = }''') print(f'''Torus: {surface_area_torus(20, 10) = }''') print(f'''Equilateral Triangle: {area_reg_polygon(3, 10) = }''') print(f'''Square: {area_reg_polygon(4, 10) = }''') print(f'''Reqular Pentagon: {area_reg_polygon(5, 10) = }''')
710
'''simple docstring''' from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers _lowercase = [ """python""", """tqdm""", """regex""", """requests""", """packaging""", """filelock""", """numpy""", """tokenizers""", """huggingface-hub""", """safetensors""", """accelerate""", """pyyaml""", ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def lowerCamelCase__ ( a , a=None ): require_version(deps[pkg] , a )
427
0
'''simple docstring''' import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { 'b0': efficientnet.EfficientNetBa, 'b1': efficientnet.EfficientNetBa, 'b2': efficientnet.EfficientNetBa, 'b3': efficientnet.EfficientNetBa, 'b4': efficientnet.EfficientNetBa, 'b5': efficientnet.EfficientNetBa, 'b6': efficientnet.EfficientNetBa, 'b7': efficientnet.EfficientNetBa, } SCREAMING_SNAKE_CASE = { 'b0': { 'hidden_dim': 1_280, 'width_coef': 1.0, 'depth_coef': 1.0, 'image_size': 224, 'dropout_rate': 0.2, 'dw_padding': [], }, 'b1': { 'hidden_dim': 1_280, 'width_coef': 1.0, 'depth_coef': 1.1, 'image_size': 240, 'dropout_rate': 0.2, 'dw_padding': [16], }, 'b2': { 'hidden_dim': 1_408, 'width_coef': 1.1, 'depth_coef': 1.2, 'image_size': 260, 'dropout_rate': 0.3, 'dw_padding': [5, 8, 16], }, 'b3': { 'hidden_dim': 1_536, 'width_coef': 1.2, 'depth_coef': 1.4, 'image_size': 300, 'dropout_rate': 0.3, 'dw_padding': [5, 18], }, 'b4': { 'hidden_dim': 1_792, 'width_coef': 1.4, 'depth_coef': 1.8, 'image_size': 380, 'dropout_rate': 0.4, 'dw_padding': [6], }, 'b5': { 'hidden_dim': 2_048, 'width_coef': 1.6, 'depth_coef': 2.2, 'image_size': 456, 'dropout_rate': 0.4, 'dw_padding': [13, 27], }, 'b6': { 'hidden_dim': 2_304, 'width_coef': 1.8, 'depth_coef': 2.6, 'image_size': 528, 'dropout_rate': 0.5, 'dw_padding': [31], }, 'b7': { 'hidden_dim': 2_560, 'width_coef': 2.0, 'depth_coef': 3.1, 'image_size': 600, 'dropout_rate': 0.5, 'dw_padding': [18], }, } def lowercase_ ( __A : Optional[int] ) -> Tuple: """simple docstring""" lowercase : int =EfficientNetConfig() lowercase : Optional[int] =CONFIG_MAP[model_name]['''hidden_dim'''] lowercase : Dict =CONFIG_MAP[model_name]['''width_coef'''] lowercase : Optional[Any] =CONFIG_MAP[model_name]['''depth_coef'''] lowercase : List[str] =CONFIG_MAP[model_name]['''image_size'''] lowercase : str =CONFIG_MAP[model_name]['''dropout_rate'''] lowercase : Any =CONFIG_MAP[model_name]['''dw_padding'''] lowercase : Optional[int] ='''huggingface/label-files''' lowercase : Tuple ='''imagenet-1k-id2label.json''' lowercase : Union[str, Any] =1_0_0_0 lowercase : List[Any] =json.load(open(hf_hub_download(__A , __A , repo_type='''dataset''' ) , '''r''' ) ) lowercase : str ={int(__A ): v for k, v in idalabel.items()} lowercase : Dict =idalabel lowercase : Tuple ={v: k for k, v in idalabel.items()} return config def lowercase_ ( ) -> Dict: """simple docstring""" lowercase : str ='''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase : Tuple =Image.open(requests.get(__A , stream=__A ).raw ) return im def lowercase_ ( __A : int ) -> Dict: """simple docstring""" lowercase : Optional[Any] =CONFIG_MAP[model_name]['''image_size'''] lowercase : Tuple =EfficientNetImageProcessor( size={'''height''': size, '''width''': size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.47853944, 0.4732864, 0.47434163] , do_center_crop=__A , ) return preprocessor def lowercase_ ( __A : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowercase : Union[str, Any] =[v.split('''_''' )[0].split('''block''' )[1] for v in original_param_names if v.startswith('''block''' )] lowercase : Any =sorted(set(__A ) ) lowercase : Dict =len(__A ) lowercase : Dict ={b: str(__A ) for b, i in zip(__A , range(__A ) )} lowercase : str =[] rename_keys.append(('''stem_conv/kernel:0''', '''embeddings.convolution.weight''') ) rename_keys.append(('''stem_bn/gamma:0''', '''embeddings.batchnorm.weight''') ) rename_keys.append(('''stem_bn/beta:0''', '''embeddings.batchnorm.bias''') ) rename_keys.append(('''stem_bn/moving_mean:0''', '''embeddings.batchnorm.running_mean''') ) rename_keys.append(('''stem_bn/moving_variance:0''', '''embeddings.batchnorm.running_var''') ) for b in block_names: lowercase : List[Any] =block_name_mapping[b] rename_keys.append((F'block{b}_expand_conv/kernel:0', F'encoder.blocks.{hf_b}.expansion.expand_conv.weight') ) rename_keys.append((F'block{b}_expand_bn/gamma:0', F'encoder.blocks.{hf_b}.expansion.expand_bn.weight') ) rename_keys.append((F'block{b}_expand_bn/beta:0', F'encoder.blocks.{hf_b}.expansion.expand_bn.bias') ) rename_keys.append( (F'block{b}_expand_bn/moving_mean:0', F'encoder.blocks.{hf_b}.expansion.expand_bn.running_mean') ) rename_keys.append( (F'block{b}_expand_bn/moving_variance:0', F'encoder.blocks.{hf_b}.expansion.expand_bn.running_var') ) rename_keys.append( (F'block{b}_dwconv/depthwise_kernel:0', F'encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight') ) rename_keys.append((F'block{b}_bn/gamma:0', F'encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight') ) rename_keys.append((F'block{b}_bn/beta:0', F'encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias') ) rename_keys.append( (F'block{b}_bn/moving_mean:0', F'encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean') ) rename_keys.append( (F'block{b}_bn/moving_variance:0', F'encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var') ) rename_keys.append((F'block{b}_se_reduce/kernel:0', F'encoder.blocks.{hf_b}.squeeze_excite.reduce.weight') ) rename_keys.append((F'block{b}_se_reduce/bias:0', F'encoder.blocks.{hf_b}.squeeze_excite.reduce.bias') ) rename_keys.append((F'block{b}_se_expand/kernel:0', F'encoder.blocks.{hf_b}.squeeze_excite.expand.weight') ) rename_keys.append((F'block{b}_se_expand/bias:0', F'encoder.blocks.{hf_b}.squeeze_excite.expand.bias') ) rename_keys.append( (F'block{b}_project_conv/kernel:0', F'encoder.blocks.{hf_b}.projection.project_conv.weight') ) rename_keys.append((F'block{b}_project_bn/gamma:0', F'encoder.blocks.{hf_b}.projection.project_bn.weight') ) rename_keys.append((F'block{b}_project_bn/beta:0', F'encoder.blocks.{hf_b}.projection.project_bn.bias') ) rename_keys.append( (F'block{b}_project_bn/moving_mean:0', F'encoder.blocks.{hf_b}.projection.project_bn.running_mean') ) rename_keys.append( (F'block{b}_project_bn/moving_variance:0', F'encoder.blocks.{hf_b}.projection.project_bn.running_var') ) rename_keys.append(('''top_conv/kernel:0''', '''encoder.top_conv.weight''') ) rename_keys.append(('''top_bn/gamma:0''', '''encoder.top_bn.weight''') ) rename_keys.append(('''top_bn/beta:0''', '''encoder.top_bn.bias''') ) rename_keys.append(('''top_bn/moving_mean:0''', '''encoder.top_bn.running_mean''') ) rename_keys.append(('''top_bn/moving_variance:0''', '''encoder.top_bn.running_var''') ) lowercase : str ={} for item in rename_keys: if item[0] in original_param_names: lowercase : Optional[Any] ='''efficientnet.''' + item[1] lowercase : str ='''classifier.weight''' lowercase : Optional[Any] ='''classifier.bias''' return key_mapping def lowercase_ ( __A : Any , __A : Dict , __A : List[Any] ) -> Union[str, Any]: """simple docstring""" for key, value in tf_params.items(): if "normalization" in key: continue lowercase : Union[str, Any] =key_mapping[key] if "_conv" in key and "kernel" in key: lowercase : Dict =torch.from_numpy(__A ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: lowercase : Optional[int] =torch.from_numpy(__A ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: lowercase : Optional[Any] =torch.from_numpy(np.transpose(__A ) ) else: lowercase : str =torch.from_numpy(__A ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(__A ) @torch.no_grad() def lowercase_ ( __A : Dict , __A : str , __A : List[Any] , __A : int ) -> List[Any]: """simple docstring""" lowercase : Optional[Any] =model_classes[model_name]( include_top=__A , weights='''imagenet''' , input_tensor=__A , input_shape=__A , pooling=__A , classes=1_0_0_0 , classifier_activation='''softmax''' , ) lowercase : Union[str, Any] =original_model.trainable_variables lowercase : str =original_model.non_trainable_variables lowercase : Union[str, Any] ={param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: lowercase : Dict =param.numpy() lowercase : Any =list(tf_params.keys() ) # Load HuggingFace model lowercase : Optional[Any] =get_efficientnet_config(__A ) lowercase : str =EfficientNetForImageClassification(__A ).eval() lowercase : str =hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print('''Converting parameters...''' ) lowercase : Optional[int] =rename_keys(__A ) replace_params(__A , __A , __A ) # Initialize preprocessor and preprocess input image lowercase : Optional[int] =convert_image_processor(__A ) lowercase : List[Any] =preprocessor(images=prepare_img() , return_tensors='''pt''' ) # HF model inference hf_model.eval() with torch.no_grad(): lowercase : Any =hf_model(**__A ) lowercase : str =outputs.logits.detach().numpy() # Original model inference lowercase : List[str] =False lowercase : int =CONFIG_MAP[model_name]['''image_size'''] lowercase : str =prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) lowercase : Dict =image.img_to_array(__A ) lowercase : str =np.expand_dims(__A , axis=0 ) lowercase : Tuple =original_model.predict(__A ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(__A , __A , atol=1E-3 ), "The predicted logits are not the same." print('''Model outputs match!''' ) if save_model: # Create folder to save model if not os.path.isdir(__A ): os.mkdir(__A ) # Save converted model and image processor hf_model.save_pretrained(__A ) preprocessor.save_pretrained(__A ) if push_to_hub: # Push model and image processor to hub print(F'Pushing converted {model_name} to the hub...' ) lowercase : Optional[Any] =F'efficientnet-{model_name}' preprocessor.push_to_hub(__A ) hf_model.push_to_hub(__A ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='b0', type=str, help='Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].', ) parser.add_argument( '--pytorch_dump_folder_path', default='hf_model', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--save_model', action='store_true', help='Save model to local') parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') SCREAMING_SNAKE_CASE = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
94
"""simple docstring""" import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def A__ ( A__ , A__ , **A__ ) -> Tuple: '''simple docstring''' _UpperCAmelCase = AutoConfig.from_pretrained(A__ , **A__ ) _UpperCAmelCase = AutoModelForSeqaSeqLM.from_config(A__ ) model.save_pretrained(A__ ) AutoTokenizer.from_pretrained(A__ ).save_pretrained(A__ ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
426
0
'''simple docstring''' import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification _UpperCAmelCase : Tuple = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co _UpperCAmelCase : List[str] = """main""" # Default branch name _UpperCAmelCase : str = """f2c752cfc5c0ab6f4bdec59acea69eefbee381c2""" # One particular commit (not the top of `main`) _UpperCAmelCase : Any = """aaaaaaa""" # This commit does not exist, so we should 404. _UpperCAmelCase : Union[str, Any] = """d9e9f15bc825e4b2c9249e9578f884bbcb5e3684""" # Sha-1 of config.json on the top of `main`, for checking purposes _UpperCAmelCase : Tuple = """4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3""" @contextlib.contextmanager def __magic_name__( ): print('''Welcome!''') yield print('''Bye!''') @contextlib.contextmanager def __magic_name__( ): print('''Bonjour!''') yield print('''Au revoir!''') class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): # If the spec is missing, importlib would not be able to import the module dynamically. assert transformers.__spec__ is not None assert importlib.util.find_spec('''transformers''' ) is not None class a__ ( unittest.TestCase ): """simple docstring""" @unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO ) def _snake_case (self , __lowercase ): with ContextManagers([] ): print('''Transformers are awesome!''' ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , '''Transformers are awesome!\n''' ) @unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO ) def _snake_case (self , __lowercase ): with ContextManagers([context_en()] ): print('''Transformers are awesome!''' ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , '''Welcome!\nTransformers are awesome!\nBye!\n''' ) @unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO ) def _snake_case (self , __lowercase ): with ContextManagers([context_fr(), context_en()] ): print('''Transformers are awesome!''' ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , '''Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n''' ) @require_torch def _snake_case (self ): self.assertEqual(find_labels(__lowercase ) , ['''labels'''] ) self.assertEqual(find_labels(__lowercase ) , ['''labels''', '''next_sentence_label'''] ) self.assertEqual(find_labels(__lowercase ) , ['''start_positions''', '''end_positions'''] ) class a__ ( __A ): """simple docstring""" pass self.assertEqual(find_labels(__lowercase ) , ['''labels'''] ) @require_tf def _snake_case (self ): self.assertEqual(find_labels(__lowercase ) , ['''labels'''] ) self.assertEqual(find_labels(__lowercase ) , ['''labels''', '''next_sentence_label'''] ) self.assertEqual(find_labels(__lowercase ) , ['''start_positions''', '''end_positions'''] ) class a__ ( __A ): """simple docstring""" pass self.assertEqual(find_labels(__lowercase ) , ['''labels'''] ) @require_flax def _snake_case (self ): # Flax models don't have labels self.assertEqual(find_labels(__lowercase ) , [] ) self.assertEqual(find_labels(__lowercase ) , [] ) self.assertEqual(find_labels(__lowercase ) , [] ) class a__ ( __A ): """simple docstring""" pass self.assertEqual(find_labels(__lowercase ) , [] )
474
'''simple docstring''' import requests from bsa import BeautifulSoup def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = BeautifulSoup(requests.get(lowerCamelCase, params=lowerCamelCase).content, '''html.parser''') __lowerCAmelCase = soup.find('''div''', attrs={'''class''': '''gs_ri'''}) __lowerCAmelCase = div.find('''div''', attrs={'''class''': '''gs_fl'''}).find_all('''a''') return anchors[2].get_text() if __name__ == "__main__": _UpperCAmelCase : Union[str, Any] = { """title""": ( """Precisely geometry controlled microsupercapacitors for ultrahigh areal """ """capacitance, volumetric capacitance, and energy density""" ), """journal""": """Chem. Mater.""", """volume""": 3_0, """pages""": """3979-3990""", """year""": 2_0_1_8, """hl""": """en""", } print(get_citation("""https://scholar.google.com/scholar_lookup""", params=params))
474
1
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def UpperCamelCase ( snake_case__ : Optional[int] , snake_case__ : Dict , snake_case__ : Union[str, Any] , snake_case__ : Optional[int] ) -> Dict: for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), F"""Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), F"""Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})""" def UpperCamelCase ( snake_case__ : Optional[Any] , snake_case__ : Tuple , snake_case__ : Dict , snake_case__ : Tuple , snake_case__ : Union[str, Any]=True ) -> Tuple: model.train() UpperCamelCase : Union[str, Any] = model(snake_case__ ) UpperCamelCase : Optional[Any] = F.mse_loss(snake_case__ , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(snake_case__ ) def UpperCamelCase ( snake_case__ : Tuple , snake_case__ : Any=False ) -> List[str]: set_seed(42 ) UpperCamelCase : Tuple = RegressionModel() UpperCamelCase : Dict = deepcopy(snake_case__ ) UpperCamelCase : Tuple = RegressionDataset(length=80 ) UpperCamelCase : Dict = DataLoader(snake_case__ , batch_size=16 ) model.to(accelerator.device ) if sched: UpperCamelCase : str = AdamW(params=model.parameters() , lr=1E-3 ) UpperCamelCase : Dict = AdamW(params=ddp_model.parameters() , lr=1E-3 ) UpperCamelCase : Optional[int] = LambdaLR(snake_case__ , lr_lambda=lambda snake_case__ : epoch**0.65 ) UpperCamelCase : int = LambdaLR(snake_case__ , lr_lambda=lambda snake_case__ : epoch**0.65 ) # Make a copy of `model` if sched: UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : Any = accelerator.prepare(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) else: UpperCamelCase , UpperCamelCase : List[str] = accelerator.prepare(snake_case__ , snake_case__ ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def UpperCamelCase ( snake_case__ : str ) -> Optional[int]: # Test when on a single CPU or GPU that the context manager does nothing UpperCamelCase , UpperCamelCase , UpperCamelCase : Optional[Any] = get_training_setup(snake_case__ ) # Use a single batch UpperCamelCase , UpperCamelCase : Any = next(iter(snake_case__ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model UpperCamelCase , UpperCamelCase : Tuple = accelerator.gather((ddp_input, ddp_target) ) UpperCamelCase , UpperCamelCase : List[str] = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(snake_case__ ): step_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) else: # Sync grads step_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), F"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) UpperCamelCase : str = ddp_input[torch.randperm(len(snake_case__ ) )] def UpperCamelCase ( snake_case__ : int ) -> Tuple: # Test on distributed setup that context manager behaves properly UpperCamelCase , UpperCamelCase , UpperCamelCase : Any = get_training_setup(snake_case__ ) # Use a single batch UpperCamelCase , UpperCamelCase : Dict = next(iter(snake_case__ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model UpperCamelCase , UpperCamelCase : int = accelerator.gather((ddp_input, ddp_target) ) UpperCamelCase , UpperCamelCase : Optional[int] = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(snake_case__ ): step_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) else: # Sync grads step_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F"""Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) UpperCamelCase : str = ddp_input[torch.randperm(len(snake_case__ ) )] def UpperCamelCase ( snake_case__ : Optional[int]=False , snake_case__ : Dict=False ) -> Tuple: UpperCamelCase : Tuple = Accelerator( split_batches=snake_case__ , dispatch_batches=snake_case__ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly UpperCamelCase , UpperCamelCase , UpperCamelCase : Union[str, Any] = get_training_setup(snake_case__ ) for iteration, batch in enumerate(snake_case__ ): UpperCamelCase , UpperCamelCase : Optional[int] = batch.values() # Gather the distributed inputs and targs for the base model UpperCamelCase , UpperCamelCase : str = accelerator.gather((ddp_input, ddp_target) ) UpperCamelCase , UpperCamelCase : str = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # Do "gradient accumulation" (noop) with accelerator.accumulate(snake_case__ ): step_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(snake_case__ ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F"""Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F"""Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) UpperCamelCase : Any = ddp_input[torch.randperm(len(snake_case__ ) )] GradientState._reset_state() def UpperCamelCase ( snake_case__ : Optional[int]=False , snake_case__ : List[Any]=False ) -> Union[str, Any]: UpperCamelCase : List[Any] = Accelerator( split_batches=snake_case__ , dispatch_batches=snake_case__ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : str = get_training_setup(snake_case__ , snake_case__ ) for iteration, batch in enumerate(snake_case__ ): UpperCamelCase , UpperCamelCase : List[str] = batch.values() # Gather the distributed inputs and targs for the base model UpperCamelCase , UpperCamelCase : str = accelerator.gather((ddp_input, ddp_target) ) UpperCamelCase , UpperCamelCase : Dict = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(snake_case__ )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(snake_case__ ): step_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), F"""Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n""" UpperCamelCase : int = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(snake_case__ )) if accelerator.num_processes > 1: check_model_parameters(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) GradientState._reset_state() def UpperCamelCase ( ) -> Optional[int]: UpperCamelCase : Any = Accelerator() UpperCamelCase : int = RegressionDataset(length=80 ) UpperCamelCase : Dict = DataLoader(snake_case__ , batch_size=16 ) UpperCamelCase : Optional[Any] = RegressionDataset(length=96 ) UpperCamelCase : List[str] = DataLoader(snake_case__ , batch_size=16 ) UpperCamelCase , UpperCamelCase : List[Any] = accelerator.prepare(snake_case__ , snake_case__ ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(snake_case__ ): assert id(accelerator.gradient_state.active_dataloader ) == id(snake_case__ ) if iteration < len(snake_case__ ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(snake_case__ ): assert id(accelerator.gradient_state.active_dataloader ) == id(snake_case__ ) if batch_num < len(snake_case__ ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def UpperCamelCase ( ) -> int: UpperCamelCase : str = Accelerator() UpperCamelCase : List[Any] = accelerator.state if state.local_process_index == 0: print('**Test `accumulate` gradient accumulation with dataloader break**' ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print('**Test NOOP `no_sync` context manager**' ) test_noop_sync(snake_case__ ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print('**Test Distributed `no_sync` context manager**' ) test_distributed_sync(snake_case__ ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( '**Test `accumulate` gradient accumulation, ' , F"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation(snake_case__ , snake_case__ ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version('<' , '2.0' ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( '**Test `accumulate` gradient accumulation with optimizer and scheduler, ' , '`split_batches=False`, `dispatch_batches=False`**' , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( '**Test `accumulate` gradient accumulation with optimizer and scheduler, ' , F"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation_with_opt_and_scheduler(snake_case__ , snake_case__ ) def UpperCamelCase ( snake_case__ : Optional[Any] ) -> Optional[int]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
40
def UpperCamelCase ( snake_case__ : int ) -> str: if isinstance(snake_case__ , snake_case__ ): raise TypeError('\'float\' object cannot be interpreted as an integer' ) if isinstance(snake_case__ , snake_case__ ): raise TypeError('\'str\' object cannot be interpreted as an integer' ) if num == 0: return "0b0" UpperCamelCase : int = False if num < 0: UpperCamelCase : Optional[Any] = True UpperCamelCase : Tuple = -num UpperCamelCase : list[int] = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(snake_case__ ) for e in binary ) return "0b" + "".join(str(snake_case__ ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
40
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : Tuple = logging.get_logger(__name__) lowercase : Union[str, Any] = { 'microsoft/cvt-13': 'https://huggingface.co/microsoft/cvt-13/resolve/main/config.json', # See all Cvt models at https://huggingface.co/models?filter=cvt } class A ( _A ): __magic_name__ = '''cvt''' def __init__( self , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=[7, 3, 3] , SCREAMING_SNAKE_CASE=[4, 2, 2] , SCREAMING_SNAKE_CASE=[2, 1, 1] , SCREAMING_SNAKE_CASE=[64, 192, 384] , SCREAMING_SNAKE_CASE=[1, 3, 6] , SCREAMING_SNAKE_CASE=[1, 2, 10] , SCREAMING_SNAKE_CASE=[4.0, 4.0, 4.0] , SCREAMING_SNAKE_CASE=[0.0, 0.0, 0.0] , SCREAMING_SNAKE_CASE=[0.0, 0.0, 0.0] , SCREAMING_SNAKE_CASE=[0.0, 0.0, 0.1] , SCREAMING_SNAKE_CASE=[True, True, True] , SCREAMING_SNAKE_CASE=[False, False, True] , SCREAMING_SNAKE_CASE=["dw_bn", "dw_bn", "dw_bn"] , SCREAMING_SNAKE_CASE=[3, 3, 3] , SCREAMING_SNAKE_CASE=[1, 1, 1] , SCREAMING_SNAKE_CASE=[2, 2, 2] , SCREAMING_SNAKE_CASE=[1, 1, 1] , SCREAMING_SNAKE_CASE=[1, 1, 1] , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=1e-12 , **SCREAMING_SNAKE_CASE , ) -> Dict: """simple docstring""" super().__init__(**UpperCamelCase__ ) A : List[Any] = num_channels A : Optional[Any] = patch_sizes A : Optional[Any] = patch_stride A : int = patch_padding A : Any = embed_dim A : Optional[int] = num_heads A : Union[str, Any] = depth A : Optional[Any] = mlp_ratio A : List[str] = attention_drop_rate A : int = drop_rate A : Tuple = drop_path_rate A : Any = qkv_bias A : Dict = cls_token A : Dict = qkv_projection_method A : List[str] = kernel_qkv A : List[Any] = padding_kv A : Optional[int] = stride_kv A : str = padding_q A : Tuple = stride_q A : str = initializer_range A : Optional[Any] = layer_norm_eps
710
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase : List[str] = { 'configuration_pix2struct': [ 'PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Pix2StructConfig', 'Pix2StructTextConfig', 'Pix2StructVisionConfig', ], 'processing_pix2struct': ['Pix2StructProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : str = ['Pix2StructImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Union[str, Any] = [ 'PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Pix2StructPreTrainedModel', 'Pix2StructForConditionalGeneration', 'Pix2StructVisionModel', 'Pix2StructTextModel', ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys lowercase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
343
0
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class _a : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=14 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=4 , _UpperCAmelCase=4 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=0.0_2 , ) -> Dict: UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = seq_length UpperCamelCase_ = is_training UpperCamelCase_ = use_input_mask UpperCamelCase_ = use_token_type_ids UpperCamelCase_ = use_labels UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = rotary_dim UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_act UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = initializer_range UpperCamelCase_ = None UpperCamelCase_ = vocab_size - 1 UpperCamelCase_ = vocab_size - 1 UpperCamelCase_ = vocab_size - 1 def _UpperCAmelCase ( self ) -> Tuple: UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_ = None if self.use_input_mask: UpperCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase_ = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=_UpperCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def _UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase_ = self.prepare_config_and_inputs() UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = config_and_inputs UpperCamelCase_ = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: UpperCamelCase_ = 20 UpperCamelCase_ = model_class_name(_UpperCAmelCase ) UpperCamelCase_ = model.init_cache(input_ids.shape[0] , _UpperCAmelCase ) UpperCamelCase_ = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='i4' ) UpperCamelCase_ = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) UpperCamelCase_ = model( input_ids[:, :-1] , attention_mask=_UpperCAmelCase , past_key_values=_UpperCAmelCase , position_ids=_UpperCAmelCase , ) UpperCamelCase_ = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) UpperCamelCase_ = model( input_ids[:, -1:] , attention_mask=_UpperCAmelCase , past_key_values=outputs_cache.past_key_values , position_ids=_UpperCAmelCase , ) UpperCamelCase_ = model(_UpperCAmelCase ) UpperCamelCase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: UpperCamelCase_ = 20 UpperCamelCase_ = model_class_name(_UpperCAmelCase ) UpperCamelCase_ = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) UpperCamelCase_ = model.init_cache(input_ids.shape[0] , _UpperCAmelCase ) UpperCamelCase_ = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) UpperCamelCase_ = model( input_ids[:, :-1] , attention_mask=_UpperCAmelCase , past_key_values=_UpperCAmelCase , position_ids=_UpperCAmelCase , ) UpperCamelCase_ = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) UpperCamelCase_ = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=_UpperCAmelCase , position_ids=_UpperCAmelCase , ) UpperCamelCase_ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase ) UpperCamelCase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) @require_flax class _a ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): """simple docstring""" A_ = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () A_ = (FlaxGPTJForCausalLM,) if is_flax_available() else () def _UpperCAmelCase ( self ) -> str: UpperCamelCase_ = FlaxGPTJModelTester(self ) def _UpperCAmelCase ( self ) -> Any: for model_class_name in self.all_model_classes: UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def _UpperCAmelCase ( self ) -> List[Any]: for model_class_name in self.all_model_classes: UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) @tooslow def _UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase_ = GPTaTokenizer.from_pretrained('gpt2' , pad_token='<|endoftext|>' , padding_side='left' ) UpperCamelCase_ = tokenizer(['Hello this is a long string', 'Hey'] , return_tensors='np' , padding=_UpperCAmelCase , truncation=_UpperCAmelCase ) UpperCamelCase_ = FlaxGPTJForCausalLM.from_pretrained('EleutherAI/gpt-j-6B' ) UpperCamelCase_ = False UpperCamelCase_ = model.config.eos_token_id UpperCamelCase_ = jax.jit(model.generate ) UpperCamelCase_ = jit_generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , pad_token_id=tokenizer.pad_token_id ).sequences UpperCamelCase_ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) UpperCamelCase_ = [ 'Hello this is a long string of text.\n\nI\'m trying to get the text of the', 'Hey, I\'m a little late to the party. I\'m going to', ] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) @is_pt_flax_cross_test def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs UpperCamelCase_ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) UpperCamelCase_ = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class UpperCamelCase_ = model_class.__name__[4:] # Skip the "Flax" at the beginning UpperCamelCase_ = getattr(_UpperCAmelCase , _UpperCAmelCase ) UpperCamelCase_ , UpperCamelCase_ = pt_inputs['input_ids'].shape UpperCamelCase_ = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_UpperCAmelCase ): UpperCamelCase_ = 0 UpperCamelCase_ = 1 UpperCamelCase_ = 0 UpperCamelCase_ = 1 UpperCamelCase_ = pt_model_class(_UpperCAmelCase ).eval() UpperCamelCase_ = model_class(_UpperCAmelCase , dtype=jnp.floataa ) UpperCamelCase_ = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , _UpperCAmelCase ) UpperCamelCase_ = fx_state with torch.no_grad(): UpperCamelCase_ = pt_model(**_UpperCAmelCase ).to_tuple() UpperCamelCase_ = fx_model(**_UpperCAmelCase ).to_tuple() self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(_UpperCAmelCase , _UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(_UpperCAmelCase ) UpperCamelCase_ = model_class.from_pretrained(_UpperCAmelCase , from_pt=_UpperCAmelCase ) UpperCamelCase_ = fx_model_loaded(**_UpperCAmelCase ).to_tuple() self.assertEqual( len(_UpperCAmelCase ) , len(_UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output_loaded, pt_output in zip(_UpperCAmelCase , _UpperCAmelCase ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @is_pt_flax_cross_test def _UpperCAmelCase ( self ) -> Tuple: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs UpperCamelCase_ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) UpperCamelCase_ = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class UpperCamelCase_ = model_class.__name__[4:] # Skip the "Flax" at the beginning UpperCamelCase_ = getattr(_UpperCAmelCase , _UpperCAmelCase ) UpperCamelCase_ = pt_model_class(_UpperCAmelCase ).eval() UpperCamelCase_ = model_class(_UpperCAmelCase , dtype=jnp.floataa ) UpperCamelCase_ = load_flax_weights_in_pytorch_model(_UpperCAmelCase , fx_model.params ) UpperCamelCase_ , UpperCamelCase_ = pt_inputs['input_ids'].shape UpperCamelCase_ = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_UpperCAmelCase ): UpperCamelCase_ = 0 UpperCamelCase_ = 1 UpperCamelCase_ = 0 UpperCamelCase_ = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): UpperCamelCase_ = pt_model(**_UpperCAmelCase ).to_tuple() UpperCamelCase_ = fx_model(**_UpperCAmelCase ).to_tuple() self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(_UpperCAmelCase , _UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(_UpperCAmelCase ) UpperCamelCase_ = pt_model_class.from_pretrained(_UpperCAmelCase , from_flax=_UpperCAmelCase ) with torch.no_grad(): UpperCamelCase_ = pt_model_loaded(**_UpperCAmelCase ).to_tuple() self.assertEqual( len(_UpperCAmelCase ) , len(_UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(_UpperCAmelCase , _UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @tooslow def _UpperCAmelCase ( self ) -> Optional[int]: for model_class_name in self.all_model_classes: UpperCamelCase_ = model_class_name.from_pretrained('EleutherAI/gpt-j-6B' ) UpperCamelCase_ = model(np.ones((1, 1) ) ) self.assertIsNotNone(_UpperCAmelCase )
23
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor lowerCAmelCase__ = logging.get_logger(__name__) class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : List[Any] ,*lowercase__ : Optional[Any] ,**lowercase__ : int ): warnings.warn( '''The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use YolosImageProcessor instead.''' ,lowercase__ ,) super().__init__(*lowercase__ ,**lowercase__ )
41
0
import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version lowerCAmelCase__ = version.parse(importlib_metadata.version("""nltk""")) if NLTK_VERSION >= version.Version("""3.6.4"""): from nltk import word_tokenize lowerCAmelCase__ = """\ @inproceedings{banarjee2005, title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments}, author = {Banerjee, Satanjeev and Lavie, Alon}, booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization}, month = jun, year = {2005}, address = {Ann Arbor, Michigan}, publisher = {Association for Computational Linguistics}, url = {https://www.aclweb.org/anthology/W05-0909}, pages = {65--72}, } """ lowerCAmelCase__ = """\ METEOR, an automatic metric for machine translation evaluation that is based on a generalized concept of unigram matching between the machine-produced translation and human-produced reference translations. Unigrams can be matched based on their surface forms, stemmed forms, and meanings; furthermore, METEOR can be easily extended to include more advanced matching strategies. Once all generalized unigram matches between the two strings have been found, METEOR computes a score for this matching using a combination of unigram-precision, unigram-recall, and a measure of fragmentation that is designed to directly capture how well-ordered the matched words in the machine translation are in relation to the reference. METEOR gets an R correlation value of 0.347 with human evaluation on the Arabic data and 0.331 on the Chinese data. This is shown to be an improvement on using simply unigram-precision, unigram-recall and their harmonic F1 combination. """ lowerCAmelCase__ = """ Computes METEOR score of translated segments against one or more references. Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. alpha: Parameter for controlling relative weights of precision and recall. default: 0.9 beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3 gamma: Relative weight assigned to fragmentation penalty. default: 0.5 Returns: 'meteor': meteor score. Examples: >>> meteor = datasets.load_metric('meteor') >>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"] >>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"] >>> results = meteor.compute(predictions=predictions, references=references) >>> print(round(results[\"meteor\"], 4)) 0.6944 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): """simple docstring""" def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py"] , reference_urls=[ "https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score", "https://en.wikipedia.org/wiki/METEOR", ] , ) def UpperCamelCase ( self , lowercase ) -> int: '''simple docstring''' import nltk nltk.download("wordnet" ) if NLTK_VERSION >= version.Version("3.6.5" ): nltk.download("punkt" ) if NLTK_VERSION >= version.Version("3.6.6" ): nltk.download("omw-1.4" ) def UpperCamelCase ( self , lowercase , lowercase , lowercase=0.9 , lowercase=3 , lowercase=0.5 ) -> Dict: '''simple docstring''' if NLTK_VERSION >= version.Version("3.6.5" ): A__ = [ meteor_score.single_meteor_score( word_tokenize(lowercase ) , word_tokenize(lowercase ) , alpha=lowercase , beta=lowercase , gamma=lowercase ) for ref, pred in zip(lowercase , lowercase ) ] else: A__ = [ meteor_score.single_meteor_score(lowercase , lowercase , alpha=lowercase , beta=lowercase , gamma=lowercase ) for ref, pred in zip(lowercase , lowercase ) ] return {"meteor": np.mean(lowercase )}
717
from __future__ import annotations def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: list[int] , SCREAMING_SNAKE_CASE_: list[int] , SCREAMING_SNAKE_CASE_: list[int] , SCREAMING_SNAKE_CASE_: list[list[str]] , SCREAMING_SNAKE_CASE_: int , ) -> None: '''simple docstring''' A__ = len(SCREAMING_SNAKE_CASE_ ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([". " * i + "Q " + ". " * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(SCREAMING_SNAKE_CASE_ ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: int ) -> None: '''simple docstring''' A__ = [] depth_first_search([] , [] , [] , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Print all the boards for board in boards: for column in board: print(SCREAMING_SNAKE_CASE_ ) print("" ) print(len(SCREAMING_SNAKE_CASE_ ) , "solutions were found." ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
626
0
'''simple docstring''' import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Tuple = tmp_path / "file.csv" _lowerCamelCase : Optional[int] = textwrap.dedent( "\\n header1,header2\n 1,2\n 10,20\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : List[Any] ): """simple docstring""" _lowerCamelCase : Any = tmp_path / "malformed_file.csv" _lowerCamelCase : Any = textwrap.dedent( "\\n header1,header2\n 1,2\n 10,20,\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : int = tmp_path / "csv_with_image.csv" _lowerCamelCase : int = textwrap.dedent( F'\\n image\n {image_file}\n ' ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : Dict = tmp_path / "csv_with_label.csv" _lowerCamelCase : int = textwrap.dedent( "\\n label\n good\n bad\n good\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : Dict = tmp_path / "csv_with_int_list.csv" _lowerCamelCase : Any = textwrap.dedent( "\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Tuple ): """simple docstring""" _lowerCamelCase : List[Any] = Csv() _lowerCamelCase : Any = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(_lowerCAmelCase , match="Error tokenizing data" ): for _ in generator: pass assert any( record.levelname == "ERROR" and "Failed to read file" in record.message and os.path.basename(_lowerCAmelCase ) in record.message for record in caplog.records ) @require_pil def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" with open(_lowerCAmelCase , encoding="utf-8" ) as f: _lowerCamelCase : Any = f.read().splitlines()[1] _lowerCamelCase : Optional[Any] = Csv(encoding="utf-8" , features=Features({"image": Image()} ) ) _lowerCamelCase : Union[str, Any] = csv._generate_tables([[csv_file_with_image]] ) _lowerCamelCase : List[str] = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("image" ).type == Image()() _lowerCamelCase : int = pa_table.to_pydict()["image"] assert generated_content == [{"path": image_file, "bytes": None}] def A_ ( _lowerCAmelCase : List[Any] ): """simple docstring""" with open(_lowerCAmelCase , encoding="utf-8" ) as f: _lowerCamelCase : List[Any] = f.read().splitlines()[1:] _lowerCamelCase : int = Csv(encoding="utf-8" , features=Features({"label": ClassLabel(names=["good", "bad"] )} ) ) _lowerCamelCase : Tuple = csv._generate_tables([[csv_file_with_label]] ) _lowerCamelCase : int = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("label" ).type == ClassLabel(names=["good", "bad"] )() _lowerCamelCase : Union[str, Any] = pa_table.to_pydict()["label"] assert generated_content == [ClassLabel(names=["good", "bad"] ).straint(_lowerCAmelCase ) for label in labels] def A_ ( _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Dict = Csv(encoding="utf-8" , sep="," , converters={"int_list": lambda _lowerCAmelCase : [int(_lowerCAmelCase ) for i in x.split()]} ) _lowerCamelCase : List[Any] = csv._generate_tables([[csv_file_with_int_list]] ) _lowerCamelCase : Optional[int] = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("int_list" ).type ) _lowerCamelCase : Optional[Any] = pa_table.to_pydict()["int_list"] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
44
from __future__ import annotations from math import pow, sqrt def __lowercase( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if resistance == 0: return {"resistance": sqrt(pow(UpperCAmelCase__ , 2 ) - pow(UpperCAmelCase__ , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(UpperCAmelCase__ , 2 ) - pow(UpperCAmelCase__ , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(UpperCAmelCase__ , 2 ) + pow(UpperCAmelCase__ , 2 ) )} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
623
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase_ = { "configuration_data2vec_audio": ["DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecAudioConfig"], "configuration_data2vec_text": [ "DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecTextConfig", "Data2VecTextOnnxConfig", ], "configuration_data2vec_vision": [ "DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecVisionConfig", "Data2VecVisionOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecAudioForAudioFrameClassification", "Data2VecAudioForCTC", "Data2VecAudioForSequenceClassification", "Data2VecAudioForXVector", "Data2VecAudioModel", "Data2VecAudioPreTrainedModel", ] UpperCamelCase_ = [ "DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecTextForCausalLM", "Data2VecTextForMaskedLM", "Data2VecTextForMultipleChoice", "Data2VecTextForQuestionAnswering", "Data2VecTextForSequenceClassification", "Data2VecTextForTokenClassification", "Data2VecTextModel", "Data2VecTextPreTrainedModel", ] UpperCamelCase_ = [ "DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecVisionForImageClassification", "Data2VecVisionForMaskedImageModeling", "Data2VecVisionForSemanticSegmentation", "Data2VecVisionModel", "Data2VecVisionPreTrainedModel", ] if is_tf_available(): UpperCamelCase_ = [ "TFData2VecVisionForImageClassification", "TFData2VecVisionForSemanticSegmentation", "TFData2VecVisionModel", "TFData2VecVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
714
'''simple docstring''' from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize('''repo_id''' , ['''canonical_dataset_name''', '''org-name/dataset-name'''] ) @pytest.mark.parametrize('''path''' , ['''filename.csv''', '''filename with blanks.csv'''] ) @pytest.mark.parametrize('''revision''' , [None, '''v2'''] ) def lowerCAmelCase__ ( a_ : Tuple , a_ : Dict , a_ : Tuple ) -> List[str]: UpperCAmelCase__ : Union[str, Any] = hf_hub_url(repo_id=a_ , path=a_ , revision=a_ ) assert url == f"""https://huggingface.co/datasets/{repo_id}/resolve/{revision or "main"}/{quote(a_ )}"""
599
0
import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowercase__ : Optional[int] = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F"""encoder.deit.blocks.{i}.norm1.weight""", F"""encoder.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""encoder.deit.blocks.{i}.norm1.bias""", F"""encoder.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.attn.proj.weight""", F"""encoder.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.attn.proj.bias""", F"""encoder.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.norm2.weight""", F"""encoder.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""encoder.deit.blocks.{i}.norm2.bias""", F"""encoder.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.mlp.fc1.weight""", F"""encoder.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.mlp.fc1.bias""", F"""encoder.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.mlp.fc2.weight""", F"""encoder.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""encoder.deit.blocks.{i}.mlp.fc2.bias""", F"""encoder.encoder.layer.{i}.output.dense.bias""") ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ("encoder.deit.cls_token", "encoder.embeddings.cls_token"), ("encoder.deit.pos_embed", "encoder.embeddings.position_embeddings"), ("encoder.deit.patch_embed.proj.weight", "encoder.embeddings.patch_embeddings.projection.weight"), ("encoder.deit.patch_embed.proj.bias", "encoder.embeddings.patch_embeddings.projection.bias"), ("encoder.deit.norm.weight", "encoder.layernorm.weight"), ("encoder.deit.norm.bias", "encoder.layernorm.bias"), ] ) return rename_keys def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) lowercase__ : Optional[Any] = state_dict.pop(F"""encoder.deit.blocks.{i}.attn.qkv.weight""" ) lowercase__ : Union[str, Any] = in_proj_weight[ : encoder_config.hidden_size, : ] lowercase__ : Union[str, Any] = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] lowercase__ : Union[str, Any] = in_proj_weight[ -encoder_config.hidden_size :, : ] def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowercase__ : List[Any] = dct.pop(lowerCamelCase__ ) lowercase__ : int = val def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" if "handwritten" in checkpoint_url: lowercase__ : Optional[Any] = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg" # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: lowercase__ : Tuple = "https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg" lowercase__ : str = Image.open(requests.get(lowerCamelCase__ , stream=lowerCamelCase__ ).raw ).convert("RGB" ) return im @torch.no_grad() def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowercase__ : List[Any] = ViTConfig(image_size=384 , qkv_bias=lowerCamelCase__ ) lowercase__ : Tuple = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: lowercase__ : List[Any] = 768 elif "large" in checkpoint_url: # use ViT-large encoder lowercase__ : Any = 1_024 lowercase__ : Optional[int] = 4_096 lowercase__ : Optional[int] = 24 lowercase__ : List[Any] = 16 lowercase__ : Optional[int] = 1_024 else: raise ValueError("Should either find 'base' or 'large' in checkpoint URL" ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: lowercase__ : Dict = False lowercase__ : Optional[int] = "relu" lowercase__ : Optional[Any] = 1_024 lowercase__ : int = True lowercase__ : List[str] = False lowercase__ : int = False # load HuggingFace model lowercase__ : List[str] = ViTModel(lowerCamelCase__ , add_pooling_layer=lowerCamelCase__ ) lowercase__ : Optional[int] = TrOCRForCausalLM(lowerCamelCase__ ) lowercase__ : Dict = VisionEncoderDecoderModel(encoder=lowerCamelCase__ , decoder=lowerCamelCase__ ) model.eval() # load state_dict of original model, rename some keys lowercase__ : List[str] = torch.hub.load_state_dict_from_url(lowerCamelCase__ , map_location="cpu" , check_hash=lowerCamelCase__ )["model"] lowercase__ : List[str] = create_rename_keys(lowerCamelCase__ , lowerCamelCase__ ) for src, dest in rename_keys: rename_key(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) read_in_q_k_v(lowerCamelCase__ , lowerCamelCase__ ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): lowercase__ : int = state_dict.pop(lowerCamelCase__ ) if key.startswith("decoder" ) and "output_projection" not in key: lowercase__ : Optional[int] = val else: lowercase__ : str = val # load state dict model.load_state_dict(lowerCamelCase__ ) # Check outputs on an image lowercase__ : Union[str, Any] = ViTImageProcessor(size=encoder_config.image_size ) lowercase__ : List[Any] = RobertaTokenizer.from_pretrained("roberta-large" ) lowercase__ : int = TrOCRProcessor(lowerCamelCase__ , lowerCamelCase__ ) lowercase__ : int = processor(images=prepare_img(lowerCamelCase__ ) , return_tensors="pt" ).pixel_values # verify logits lowercase__ : List[Any] = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) lowercase__ : Any = model(pixel_values=lowerCamelCase__ , decoder_input_ids=lowerCamelCase__ ) lowercase__ : Tuple = outputs.logits lowercase__ : Dict = torch.Size([1, 1, 50_265] ) if "trocr-base-handwritten" in checkpoint_url: lowercase__ : Optional[int] = torch.tensor( [-1.4502, -4.6683, -0.5347, -2.9291, 9.1435, -3.0571, 8.9764, 1.7560, 8.7358, -1.5311] ) elif "trocr-large-handwritten" in checkpoint_url: lowercase__ : Optional[Any] = torch.tensor( [-2.6437, -1.3129, -2.2596, -5.3455, 6.3539, 1.7604, 5.4991, 1.4702, 5.6113, 2.0170] ) elif "trocr-base-printed" in checkpoint_url: lowercase__ : int = torch.tensor( [-5.6816, -5.8388, 1.1398, -6.9034, 6.8505, -2.4393, 1.2284, -1.0232, -1.9661, -3.9210] ) elif "trocr-large-printed" in checkpoint_url: lowercase__ : Dict = torch.tensor( [-6.0162, -7.0959, 4.4155, -5.1063, 7.0468, -3.1631, 2.6466, -0.3081, -0.8106, -1.7535] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10] , lowerCamelCase__ , atol=1e-3 ), "First elements of logits not as expected" Path(lowerCamelCase__ ).mkdir(exist_ok=lowerCamelCase__ ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCamelCase__ ) print(F"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(lowerCamelCase__ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) lowerCAmelCase__ = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
496
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''b0''': efficientnet.EfficientNetBa, '''b1''': efficientnet.EfficientNetBa, '''b2''': efficientnet.EfficientNetBa, '''b3''': efficientnet.EfficientNetBa, '''b4''': efficientnet.EfficientNetBa, '''b5''': efficientnet.EfficientNetBa, '''b6''': efficientnet.EfficientNetBa, '''b7''': efficientnet.EfficientNetBa, } lowerCAmelCase__ = { '''b0''': { '''hidden_dim''': 1_2_8_0, '''width_coef''': 1.0, '''depth_coef''': 1.0, '''image_size''': 2_2_4, '''dropout_rate''': 0.2, '''dw_padding''': [], }, '''b1''': { '''hidden_dim''': 1_2_8_0, '''width_coef''': 1.0, '''depth_coef''': 1.1, '''image_size''': 2_4_0, '''dropout_rate''': 0.2, '''dw_padding''': [1_6], }, '''b2''': { '''hidden_dim''': 1_4_0_8, '''width_coef''': 1.1, '''depth_coef''': 1.2, '''image_size''': 2_6_0, '''dropout_rate''': 0.3, '''dw_padding''': [5, 8, 1_6], }, '''b3''': { '''hidden_dim''': 1_5_3_6, '''width_coef''': 1.2, '''depth_coef''': 1.4, '''image_size''': 3_0_0, '''dropout_rate''': 0.3, '''dw_padding''': [5, 1_8], }, '''b4''': { '''hidden_dim''': 1_7_9_2, '''width_coef''': 1.4, '''depth_coef''': 1.8, '''image_size''': 3_8_0, '''dropout_rate''': 0.4, '''dw_padding''': [6], }, '''b5''': { '''hidden_dim''': 2_0_4_8, '''width_coef''': 1.6, '''depth_coef''': 2.2, '''image_size''': 4_5_6, '''dropout_rate''': 0.4, '''dw_padding''': [1_3, 2_7], }, '''b6''': { '''hidden_dim''': 2_3_0_4, '''width_coef''': 1.8, '''depth_coef''': 2.6, '''image_size''': 5_2_8, '''dropout_rate''': 0.5, '''dw_padding''': [3_1], }, '''b7''': { '''hidden_dim''': 2_5_6_0, '''width_coef''': 2.0, '''depth_coef''': 3.1, '''image_size''': 6_0_0, '''dropout_rate''': 0.5, '''dw_padding''': [1_8], }, } def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ : str = EfficientNetConfig() lowercase__ : str = CONFIG_MAP[model_name]["hidden_dim"] lowercase__ : Union[str, Any] = CONFIG_MAP[model_name]["width_coef"] lowercase__ : List[Any] = CONFIG_MAP[model_name]["depth_coef"] lowercase__ : Optional[int] = CONFIG_MAP[model_name]["image_size"] lowercase__ : Tuple = CONFIG_MAP[model_name]["dropout_rate"] lowercase__ : Dict = CONFIG_MAP[model_name]["dw_padding"] lowercase__ : str = "huggingface/label-files" lowercase__ : List[Any] = "imagenet-1k-id2label.json" lowercase__ : Any = 1_000 lowercase__ : Any = json.load(open(hf_hub_download(lowerCamelCase__ , lowerCamelCase__ , repo_type="dataset" ) , "r" ) ) lowercase__ : Optional[int] = {int(lowerCamelCase__ ): v for k, v in idalabel.items()} lowercase__ : Tuple = idalabel lowercase__ : Dict = {v: k for k, v in idalabel.items()} return config def __lowerCamelCase ( ): """simple docstring""" lowercase__ : List[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" lowercase__ : Optional[int] = Image.open(requests.get(lowerCamelCase__ , stream=lowerCamelCase__ ).raw ) return im def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ : Any = CONFIG_MAP[model_name]["image_size"] lowercase__ : List[str] = EfficientNetImageProcessor( size={"height": size, "width": size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.47853944, 0.4732864, 0.47434163] , do_center_crop=lowerCamelCase__ , ) return preprocessor def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ : Tuple = [v.split("_" )[0].split("block" )[1] for v in original_param_names if v.startswith("block" )] lowercase__ : List[str] = sorted(set(lowerCamelCase__ ) ) lowercase__ : Optional[int] = len(lowerCamelCase__ ) lowercase__ : Optional[int] = {b: str(lowerCamelCase__ ) for b, i in zip(lowerCamelCase__ , range(lowerCamelCase__ ) )} lowercase__ : Tuple = [] rename_keys.append(("stem_conv/kernel:0", "embeddings.convolution.weight") ) rename_keys.append(("stem_bn/gamma:0", "embeddings.batchnorm.weight") ) rename_keys.append(("stem_bn/beta:0", "embeddings.batchnorm.bias") ) rename_keys.append(("stem_bn/moving_mean:0", "embeddings.batchnorm.running_mean") ) rename_keys.append(("stem_bn/moving_variance:0", "embeddings.batchnorm.running_var") ) for b in block_names: lowercase__ : Optional[Any] = block_name_mapping[b] rename_keys.append((F"""block{b}_expand_conv/kernel:0""", F"""encoder.blocks.{hf_b}.expansion.expand_conv.weight""") ) rename_keys.append((F"""block{b}_expand_bn/gamma:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.weight""") ) rename_keys.append((F"""block{b}_expand_bn/beta:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.bias""") ) rename_keys.append( (F"""block{b}_expand_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_mean""") ) rename_keys.append( (F"""block{b}_expand_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_var""") ) rename_keys.append( (F"""block{b}_dwconv/depthwise_kernel:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight""") ) rename_keys.append((F"""block{b}_bn/gamma:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight""") ) rename_keys.append((F"""block{b}_bn/beta:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias""") ) rename_keys.append( (F"""block{b}_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean""") ) rename_keys.append( (F"""block{b}_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var""") ) rename_keys.append((F"""block{b}_se_reduce/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.weight""") ) rename_keys.append((F"""block{b}_se_reduce/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.bias""") ) rename_keys.append((F"""block{b}_se_expand/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.weight""") ) rename_keys.append((F"""block{b}_se_expand/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.bias""") ) rename_keys.append( (F"""block{b}_project_conv/kernel:0""", F"""encoder.blocks.{hf_b}.projection.project_conv.weight""") ) rename_keys.append((F"""block{b}_project_bn/gamma:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.weight""") ) rename_keys.append((F"""block{b}_project_bn/beta:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.bias""") ) rename_keys.append( (F"""block{b}_project_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_mean""") ) rename_keys.append( (F"""block{b}_project_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_var""") ) rename_keys.append(("top_conv/kernel:0", "encoder.top_conv.weight") ) rename_keys.append(("top_bn/gamma:0", "encoder.top_bn.weight") ) rename_keys.append(("top_bn/beta:0", "encoder.top_bn.bias") ) rename_keys.append(("top_bn/moving_mean:0", "encoder.top_bn.running_mean") ) rename_keys.append(("top_bn/moving_variance:0", "encoder.top_bn.running_var") ) lowercase__ : Any = {} for item in rename_keys: if item[0] in original_param_names: lowercase__ : Optional[Any] = "efficientnet." + item[1] lowercase__ : str = "classifier.weight" lowercase__ : Optional[int] = "classifier.bias" return key_mapping def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" for key, value in tf_params.items(): if "normalization" in key: continue lowercase__ : List[Any] = key_mapping[key] if "_conv" in key and "kernel" in key: lowercase__ : Optional[int] = torch.from_numpy(lowerCamelCase__ ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: lowercase__ : str = torch.from_numpy(lowerCamelCase__ ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: lowercase__ : Tuple = torch.from_numpy(np.transpose(lowerCamelCase__ ) ) else: lowercase__ : Optional[Any] = torch.from_numpy(lowerCamelCase__ ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(lowerCamelCase__ ) @torch.no_grad() def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowercase__ : str = model_classes[model_name]( include_top=lowerCamelCase__ , weights="imagenet" , input_tensor=lowerCamelCase__ , input_shape=lowerCamelCase__ , pooling=lowerCamelCase__ , classes=1_000 , classifier_activation="softmax" , ) lowercase__ : List[str] = original_model.trainable_variables lowercase__ : Optional[int] = original_model.non_trainable_variables lowercase__ : str = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: lowercase__ : List[Any] = param.numpy() lowercase__ : Optional[Any] = list(tf_params.keys() ) # Load HuggingFace model lowercase__ : List[Any] = get_efficientnet_config(lowerCamelCase__ ) lowercase__ : Union[str, Any] = EfficientNetForImageClassification(lowerCamelCase__ ).eval() lowercase__ : List[Any] = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("Converting parameters..." ) lowercase__ : Optional[Any] = rename_keys(lowerCamelCase__ ) replace_params(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Initialize preprocessor and preprocess input image lowercase__ : str = convert_image_processor(lowerCamelCase__ ) lowercase__ : int = preprocessor(images=prepare_img() , return_tensors="pt" ) # HF model inference hf_model.eval() with torch.no_grad(): lowercase__ : Optional[Any] = hf_model(**lowerCamelCase__ ) lowercase__ : Dict = outputs.logits.detach().numpy() # Original model inference lowercase__ : Tuple = False lowercase__ : Dict = CONFIG_MAP[model_name]["image_size"] lowercase__ : Any = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) lowercase__ : Dict = image.img_to_array(lowerCamelCase__ ) lowercase__ : Optional[int] = np.expand_dims(lowerCamelCase__ , axis=0 ) lowercase__ : Dict = original_model.predict(lowerCamelCase__ ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 ), "The predicted logits are not the same." print("Model outputs match!" ) if save_model: # Create folder to save model if not os.path.isdir(lowerCamelCase__ ): os.mkdir(lowerCamelCase__ ) # Save converted model and image processor hf_model.save_pretrained(lowerCamelCase__ ) preprocessor.save_pretrained(lowerCamelCase__ ) if push_to_hub: # Push model and image processor to hub print(F"""Pushing converted {model_name} to the hub...""" ) lowercase__ : List[Any] = F"""efficientnet-{model_name}""" preprocessor.push_to_hub(lowerCamelCase__ ) hf_model.push_to_hub(lowerCamelCase__ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''b0''', type=str, help='''Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''hf_model''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--save_model''', action='''store_true''', help='''Save model to local''') parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') lowerCAmelCase__ = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
496
1
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A__ : Tuple = logging.get_logger(__name__) def a_ ( _UpperCAmelCase : Tuple ,_UpperCAmelCase : Union[str, Any]=False ) -> Dict: __snake_case : List[Any] = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith('head' ): __snake_case : Union[str, Any] = 'segformer.encoder.' + key if key.startswith('backbone' ): __snake_case : Union[str, Any] = key.replace('backbone' ,'segformer.encoder' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 __snake_case : int = key[key.find('patch_embed' ) + len('patch_embed' )] __snake_case : str = key.replace(f'''patch_embed{idx}''' ,f'''patch_embeddings.{int(_UpperCAmelCase )-1}''' ) if "norm" in key: __snake_case : str = key.replace('norm' ,'layer_norm' ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 __snake_case : str = key[key.find('segformer.encoder.layer_norm' ) + len('segformer.encoder.layer_norm' )] __snake_case : int = key.replace(f'''layer_norm{idx}''' ,f'''layer_norm.{int(_UpperCAmelCase )-1}''' ) if "layer_norm1" in key: __snake_case : List[Any] = key.replace('layer_norm1' ,'layer_norm_1' ) if "layer_norm2" in key: __snake_case : Tuple = key.replace('layer_norm2' ,'layer_norm_2' ) if "block" in key: # replace for example block1 by block.0 __snake_case : Tuple = key[key.find('block' ) + len('block' )] __snake_case : Union[str, Any] = key.replace(f'''block{idx}''' ,f'''block.{int(_UpperCAmelCase )-1}''' ) if "attn.q" in key: __snake_case : Optional[Any] = key.replace('attn.q' ,'attention.self.query' ) if "attn.proj" in key: __snake_case : int = key.replace('attn.proj' ,'attention.output.dense' ) if "attn" in key: __snake_case : Tuple = key.replace('attn' ,'attention.self' ) if "fc1" in key: __snake_case : str = key.replace('fc1' ,'dense1' ) if "fc2" in key: __snake_case : Any = key.replace('fc2' ,'dense2' ) if "linear_pred" in key: __snake_case : Optional[Any] = key.replace('linear_pred' ,'classifier' ) if "linear_fuse" in key: __snake_case : Tuple = key.replace('linear_fuse.conv' ,'linear_fuse' ) __snake_case : Tuple = key.replace('linear_fuse.bn' ,'batch_norm' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 __snake_case : List[str] = key[key.find('linear_c' ) + len('linear_c' )] __snake_case : int = key.replace(f'''linear_c{idx}''' ,f'''linear_c.{int(_UpperCAmelCase )-1}''' ) if key.startswith('head' ): __snake_case : Dict = key.replace('head' ,'classifier' ) __snake_case : str = value return new_state_dict def a_ ( _UpperCAmelCase : Optional[int] ,_UpperCAmelCase : Optional[int] ) -> Optional[int]: # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) __snake_case : Tuple = state_dict.pop(f'''segformer.encoder.block.{i}.{j}.attention.self.kv.weight''' ) __snake_case : str = state_dict.pop(f'''segformer.encoder.block.{i}.{j}.attention.self.kv.bias''' ) # next, add keys and values (in that order) to the state dict __snake_case : Union[str, Any] = kv_weight[ : config.hidden_sizes[i], : ] __snake_case : int = kv_bias[: config.hidden_sizes[i]] __snake_case : List[str] = kv_weight[ config.hidden_sizes[i] :, : ] __snake_case : Any = kv_bias[ config.hidden_sizes[i] : ] def a_ ( ) -> Dict: __snake_case : Optional[int] = 'http://images.cocodataset.org/val2017/000000039769.jpg' __snake_case : int = Image.open(requests.get(_UpperCAmelCase ,stream=_UpperCAmelCase ).raw ) return image @torch.no_grad() def a_ ( _UpperCAmelCase : List[Any] ,_UpperCAmelCase : List[Any] ,_UpperCAmelCase : List[Any] ) -> str: __snake_case : Any = SegformerConfig() __snake_case : Optional[Any] = False # set attributes based on model_name __snake_case : Union[str, Any] = 'huggingface/label-files' if "segformer" in model_name: __snake_case : Optional[Any] = model_name[len('segformer.' ) : len('segformer.' ) + 2] if "ade" in model_name: __snake_case : str = 1_50 __snake_case : Optional[Any] = 'ade20k-id2label.json' __snake_case : str = (1, 1_50, 1_28, 1_28) elif "city" in model_name: __snake_case : List[str] = 19 __snake_case : Any = 'cityscapes-id2label.json' __snake_case : Optional[int] = (1, 19, 1_28, 1_28) else: raise ValueError(f'''Model {model_name} not supported''' ) elif "mit" in model_name: __snake_case : Dict = True __snake_case : Union[str, Any] = model_name[4:6] __snake_case : str = 10_00 __snake_case : Optional[int] = 'imagenet-1k-id2label.json' __snake_case : Any = (1, 10_00) else: raise ValueError(f'''Model {model_name} not supported''' ) # set config attributes __snake_case : Tuple = json.load(open(hf_hub_download(_UpperCAmelCase ,_UpperCAmelCase ,repo_type='dataset' ) ,'r' ) ) __snake_case : str = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} __snake_case : str = idalabel __snake_case : Union[str, Any] = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": __snake_case : Union[str, Any] = [64, 1_28, 3_20, 5_12] __snake_case : Dict = 2_56 elif size == "b2": __snake_case : Optional[Any] = [64, 1_28, 3_20, 5_12] __snake_case : Any = 7_68 __snake_case : str = [3, 4, 6, 3] elif size == "b3": __snake_case : List[Any] = [64, 1_28, 3_20, 5_12] __snake_case : List[Any] = 7_68 __snake_case : Dict = [3, 4, 18, 3] elif size == "b4": __snake_case : str = [64, 1_28, 3_20, 5_12] __snake_case : Optional[int] = 7_68 __snake_case : List[str] = [3, 8, 27, 3] elif size == "b5": __snake_case : int = [64, 1_28, 3_20, 5_12] __snake_case : Union[str, Any] = 7_68 __snake_case : Dict = [3, 6, 40, 3] else: raise ValueError(f'''Size {size} not supported''' ) # load image processor (only resize + normalize) __snake_case : int = SegformerImageProcessor( image_scale=(5_12, 5_12) ,keep_ratio=_UpperCAmelCase ,align=_UpperCAmelCase ,do_random_crop=_UpperCAmelCase ) # prepare image __snake_case : Tuple = prepare_img() __snake_case : Optional[int] = image_processor(images=_UpperCAmelCase ,return_tensors='pt' ).pixel_values logger.info(f'''Converting model {model_name}...''' ) # load original state dict if encoder_only: __snake_case : Dict = torch.load(_UpperCAmelCase ,map_location=torch.device('cpu' ) ) else: __snake_case : Tuple = torch.load(_UpperCAmelCase ,map_location=torch.device('cpu' ) )['state_dict'] # rename keys __snake_case : Dict = rename_keys(_UpperCAmelCase ,encoder_only=_UpperCAmelCase ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(_UpperCAmelCase ,_UpperCAmelCase ) # create HuggingFace model and load state dict if encoder_only: __snake_case : int = False __snake_case : Optional[int] = SegformerForImageClassification(_UpperCAmelCase ) else: __snake_case : Union[str, Any] = SegformerForSemanticSegmentation(_UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) model.eval() # forward pass __snake_case : List[Any] = model(_UpperCAmelCase ) __snake_case : Any = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": __snake_case : Tuple = torch.tensor( [ [[-4.6_3_1_0, -5.5_2_3_2, -6.2_3_5_6], [-5.1_9_2_1, -6.1_4_4_4, -6.5_9_9_6], [-5.4_4_2_4, -6.2_7_9_0, -6.7_5_7_4]], [[-12.13_91, -13.31_22, -13.95_54], [-12.87_32, -13.93_52, -14.35_63], [-12.94_38, -13.82_26, -14.25_13]], [[-12.51_34, -13.46_86, -14.49_15], [-12.86_69, -14.43_43, -14.77_58], [-13.25_23, -14.58_19, -15.06_94]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": __snake_case : str = torch.tensor( [ [[-7.5_8_2_0, -8.7_2_3_1, -8.3_2_1_5], [-8.0_6_0_0, -10.35_29, -10.03_04], [-7.5_2_0_8, -9.4_1_0_3, -9.6_2_3_9]], [[-12.69_18, -13.89_94, -13.71_37], [-13.31_96, -15.75_23, -15.47_89], [-12.93_43, -14.87_57, -14.96_89]], [[-11.19_11, -11.94_21, -11.32_43], [-11.33_42, -13.68_39, -13.35_81], [-10.39_09, -12.18_32, -12.48_58]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": __snake_case : int = torch.tensor( [ [[-11.81_73, -14.38_50, -16.31_28], [-14.56_48, -16.58_04, -18.65_68], [-14.72_23, -15.73_87, -18.42_18]], [[-15.72_90, -17.91_71, -19.44_23], [-18.31_05, -19.94_48, -21.46_61], [-17.92_96, -18.64_97, -20.79_10]], [[-15.07_83, -17.03_36, -18.27_89], [-16.87_71, -18.68_70, -20.16_12], [-16.24_54, -17.14_26, -19.50_55]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": __snake_case : Dict = torch.tensor( [ [[-9.0_8_7_8, -10.20_81, -10.18_91], [-9.3_1_4_4, -10.79_41, -10.98_43], [-9.2_2_9_4, -10.38_55, -10.57_04]], [[-12.23_16, -13.90_68, -13.61_02], [-12.91_61, -14.37_02, -14.32_35], [-12.52_33, -13.71_74, -13.79_32]], [[-14.62_75, -15.24_90, -14.97_27], [-14.34_00, -15.96_87, -16.28_27], [-14.14_84, -15.40_33, -15.89_37]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": __snake_case : Union[str, Any] = torch.tensor( [ [[-12.31_44, -13.24_47, -14.08_02], [-13.36_14, -14.58_16, -15.61_17], [-13.33_40, -14.44_33, -16.22_19]], [[-19.27_81, -20.41_28, -20.75_06], [-20.61_53, -21.65_66, -22.09_98], [-19.98_00, -21.04_30, -22.14_94]], [[-18.87_39, -19.78_04, -21.18_34], [-20.12_33, -21.67_65, -23.29_44], [-20.03_15, -21.26_41, -23.69_44]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": __snake_case : Optional[Any] = torch.tensor( [ [[-9.5_5_2_4, -12.08_35, -11.73_48], [-10.52_29, -13.64_46, -14.56_62], [-9.5_8_4_2, -12.88_51, -13.94_14]], [[-15.34_32, -17.53_23, -17.08_18], [-16.33_30, -18.92_55, -19.21_01], [-15.13_40, -17.78_48, -18.39_71]], [[-12.60_72, -14.94_86, -14.66_31], [-13.76_29, -17.09_07, -17.77_45], [-12.78_99, -16.16_95, -17.16_71]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": __snake_case : Union[str, Any] = torch.tensor( [ [[-11.92_95, -13.40_57, -14.81_06], [-13.34_31, -14.81_79, -15.37_81], [-14.28_36, -15.59_42, -16.15_88]], [[-11.49_06, -12.80_67, -13.65_64], [-13.11_89, -14.05_00, -14.15_43], [-13.87_48, -14.51_36, -14.87_89]], [[0.5_3_7_4, 0.1_0_6_7, -0.4_7_4_2], [0.1_1_4_1, -0.2_2_5_5, -0.7_0_9_9], [-0.3_0_0_0, -0.5_9_2_4, -1.3_1_0_5]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": __snake_case : Optional[Any] = torch.tensor( [ [[-7.8_2_1_7, -9.8_7_6_7, -10.17_17], [-9.4_4_3_8, -10.90_58, -11.40_47], [-9.7_9_3_9, -12.34_95, -12.10_79]], [[-7.1_5_1_4, -9.5_3_3_6, -10.08_60], [-9.7_7_7_6, -11.68_22, -11.84_39], [-10.14_11, -12.76_55, -12.89_72]], [[0.3_0_2_1, 0.0_8_0_5, -0.2_3_1_0], [-0.0_3_2_8, -0.1_6_0_5, -0.2_7_1_4], [-0.1_4_0_8, -0.5_4_7_7, -0.6_9_7_6]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": __snake_case : Optional[Any] = torch.tensor( [ [ [-1.1372E01, -1.2787E01, -1.3477E01], [-1.2536E01, -1.4194E01, -1.4409E01], [-1.3217E01, -1.4888E01, -1.5327E01], ], [ [-1.4791E01, -1.7122E01, -1.8277E01], [-1.7163E01, -1.9192E01, -1.9533E01], [-1.7897E01, -1.9991E01, -2.0315E01], ], [ [7.6723E-01, 4.1921E-01, -7.7878E-02], [4.7772E-01, 9.5557E-03, -2.8082E-01], [3.6032E-01, -2.4826E-01, -5.1168E-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": __snake_case : Optional[int] = torch.tensor( [ [[-9.4_9_5_9, -11.30_87, -11.74_79], [-11.00_25, -12.65_40, -12.33_19], [-11.40_64, -13.04_87, -12.99_05]], [[-9.8_9_0_5, -11.30_84, -12.08_54], [-11.17_26, -12.76_98, -12.95_83], [-11.59_85, -13.32_78, -14.17_74]], [[0.2_2_1_3, 0.0_1_9_2, -0.2_4_6_6], [-0.1_7_3_1, -0.4_2_1_3, -0.4_8_7_4], [-0.3_1_2_6, -0.6_5_4_1, -1.1_3_8_9]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": __snake_case : Any = torch.tensor( [ [[-13.57_48, -13.91_11, -12.65_00], [-14.35_00, -15.36_83, -14.23_28], [-14.75_32, -16.04_24, -15.60_87]], [[-17.16_51, -15.87_25, -12.96_53], [-17.25_80, -17.37_18, -14.82_23], [-16.60_58, -16.87_83, -16.74_52]], [[-3.6_4_5_6, -3.0_2_0_9, -1.4_2_0_3], [-3.0_7_9_7, -3.1_9_5_9, -2.0_0_0_0], [-1.8_7_5_7, -1.9_2_1_7, -1.6_9_9_7]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": __snake_case : Dict = torch.tensor( [ [[-16.09_76, -16.48_56, -17.39_62], [-16.62_34, -19.03_42, -19.76_85], [-16.09_00, -18.06_61, -19.11_80]], [[-18.47_50, -18.84_88, -19.50_74], [-19.40_30, -22.15_70, -22.59_77], [-19.11_91, -20.84_86, -22.37_83]], [[-4.5_1_7_8, -5.5_0_3_7, -6.5_1_0_9], [-5.0_8_8_4, -7.2_1_7_4, -8.0_3_3_4], [-4.4_1_5_6, -5.8_1_1_7, -7.2_9_7_0]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": __snake_case : Any = torch.tensor( [ [[-14.20_81, -14.47_32, -14.19_77], [-14.58_67, -16.44_23, -16.63_56], [-13.44_41, -14.96_85, -16.86_96]], [[-14.45_76, -14.70_73, -15.04_51], [-15.08_16, -17.62_37, -17.98_73], [-14.42_13, -16.01_99, -18.59_92]], [[-4.7_3_4_9, -4.9_5_8_8, -5.0_9_6_6], [-4.3_2_1_0, -6.9_3_2_5, -7.2_5_9_1], [-3.4_3_1_2, -4.7_4_8_4, -7.1_9_1_7]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": __snake_case : str = torch.tensor( [ [[-11.77_37, -11.95_26, -11.32_73], [-13.66_92, -14.45_74, -13.88_78], [-13.89_37, -14.69_24, -15.93_45]], [[-14.67_06, -14.53_30, -14.13_06], [-16.15_02, -16.81_80, -16.42_69], [-16.83_38, -17.89_39, -20.17_46]], [[1.0_4_9_1, 0.8_2_8_9, 1.0_3_1_0], [1.1_0_4_4, 0.5_2_1_9, 0.8_0_5_5], [1.0_8_9_9, 0.6_9_2_6, 0.5_5_9_0]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": __snake_case : str = torch.tensor( [ [[-12.56_41, -13.47_77, -13.06_84], [-13.95_87, -15.89_83, -16.65_57], [-13.31_09, -15.73_50, -16.31_41]], [[-14.70_74, -15.43_52, -14.59_44], [-16.63_53, -18.16_63, -18.61_20], [-15.17_02, -18.03_29, -18.15_47]], [[-1.7_9_9_0, -2.0_9_5_1, -1.7_7_8_4], [-2.6_3_9_7, -3.8_2_4_5, -3.9_6_8_6], [-1.5_2_6_4, -2.8_1_2_6, -2.9_3_1_6]], ] ) else: __snake_case : int = logits.argmax(-1 ).item() print('Predicted class:' ,model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] ,_UpperCAmelCase ,atol=1E-2 ) # finally, save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) image_processor.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": A__ : Any = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''segformer.b0.512x512.ade.160k''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) A__ : List[Any] = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
707
'''simple docstring''' from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class snake_case__ : def __init__( self : Optional[int] , __a : Any , __a : Optional[Any]=13 , __a : str=7 , __a : List[str]=True , __a : List[Any]=True , __a : Optional[Any]=True , __a : Optional[Any]=True , __a : Optional[int]=99 , __a : List[Any]=32 , __a : Optional[int]=2 , __a : Optional[Any]=4 , __a : Dict=37 , __a : str="gelu" , __a : str=0.1 , __a : List[Any]=0.1 , __a : Optional[Any]=512 , __a : Optional[int]=16 , __a : List[Any]=2 , __a : Any=0.0_2 , __a : Tuple=3 , __a : Optional[int]=4 , __a : List[str]=None , __a : str=1000 , ) -> Optional[int]: '''simple docstring''' __snake_case : Union[str, Any] = parent __snake_case : List[Any] = batch_size __snake_case : str = seq_length __snake_case : List[str] = is_training __snake_case : Union[str, Any] = use_input_mask __snake_case : Tuple = use_token_type_ids __snake_case : List[str] = use_labels __snake_case : Optional[int] = vocab_size __snake_case : List[str] = hidden_size __snake_case : Any = num_hidden_layers __snake_case : Optional[int] = num_attention_heads __snake_case : List[Any] = intermediate_size __snake_case : Tuple = hidden_act __snake_case : Optional[int] = hidden_dropout_prob __snake_case : Union[str, Any] = attention_probs_dropout_prob __snake_case : Dict = max_position_embeddings __snake_case : Any = type_vocab_size __snake_case : List[Any] = type_sequence_label_size __snake_case : Any = initializer_range __snake_case : Union[str, Any] = num_labels __snake_case : Tuple = num_choices __snake_case : Tuple = scope __snake_case : List[str] = range_bbox def A_ ( self : int ) -> int: '''simple docstring''' __snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment __snake_case : Any = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __snake_case : List[Any] = bbox[i, j, 3] __snake_case : Optional[int] = bbox[i, j, 1] __snake_case : Optional[Any] = t if bbox[i, j, 2] < bbox[i, j, 0]: __snake_case : int = bbox[i, j, 2] __snake_case : Any = bbox[i, j, 0] __snake_case : Any = t __snake_case : Any = tf.convert_to_tensor(__a ) __snake_case : Optional[Any] = None if self.use_input_mask: __snake_case : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : str = None if self.use_token_type_ids: __snake_case : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case : Any = None __snake_case : str = None __snake_case : Dict = None if self.use_labels: __snake_case : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case : str = ids_tensor([self.batch_size] , self.num_choices ) __snake_case : List[str] = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A_ ( self : Optional[Any] , __a : Optional[int] , __a : Optional[Any] , __a : List[Any] , __a : int , __a : Union[str, Any] , __a : Optional[Any] , __a : int , __a : int ) -> Dict: '''simple docstring''' __snake_case : Tuple = TFLayoutLMModel(config=__a ) __snake_case : Union[str, Any] = model(__a , __a , attention_mask=__a , token_type_ids=__a ) __snake_case : str = model(__a , __a , token_type_ids=__a ) __snake_case : List[str] = model(__a , __a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def A_ ( self : Dict , __a : Any , __a : Union[str, Any] , __a : Optional[int] , __a : int , __a : Optional[Any] , __a : str , __a : List[Any] , __a : List[str] ) -> Optional[Any]: '''simple docstring''' __snake_case : Tuple = TFLayoutLMForMaskedLM(config=__a ) __snake_case : Union[str, Any] = model(__a , __a , attention_mask=__a , token_type_ids=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A_ ( self : List[str] , __a : Any , __a : Dict , __a : List[str] , __a : Optional[Any] , __a : Dict , __a : str , __a : Optional[int] , __a : Optional[int] ) -> Union[str, Any]: '''simple docstring''' __snake_case : Union[str, Any] = self.num_labels __snake_case : str = TFLayoutLMForSequenceClassification(config=__a ) __snake_case : Any = model(__a , __a , attention_mask=__a , token_type_ids=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A_ ( self : Union[str, Any] , __a : List[Any] , __a : Optional[Any] , __a : List[Any] , __a : Optional[int] , __a : List[Any] , __a : Any , __a : Union[str, Any] , __a : Optional[int] ) -> List[str]: '''simple docstring''' __snake_case : Optional[Any] = self.num_labels __snake_case : Union[str, Any] = TFLayoutLMForTokenClassification(config=__a ) __snake_case : str = model(__a , __a , attention_mask=__a , token_type_ids=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A_ ( self : Tuple , __a : Optional[Any] , __a : List[str] , __a : str , __a : str , __a : Optional[int] , __a : Tuple , __a : Any , __a : List[str] ) -> List[str]: '''simple docstring''' __snake_case : Tuple = TFLayoutLMForQuestionAnswering(config=__a ) __snake_case : Optional[Any] = model(__a , __a , attention_mask=__a , token_type_ids=__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A_ ( self : str ) -> str: '''simple docstring''' __snake_case : Optional[Any] = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : int = config_and_inputs __snake_case : int = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class snake_case__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): A__ = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) A__ = ( { '''feature-extraction''': TFLayoutLMModel, '''fill-mask''': TFLayoutLMForMaskedLM, '''text-classification''': TFLayoutLMForSequenceClassification, '''token-classification''': TFLayoutLMForTokenClassification, '''zero-shot''': TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) A__ = False A__ = True A__ = 10 def A_ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' __snake_case : Tuple = TFLayoutLMModelTester(self ) __snake_case : List[Any] = ConfigTester(self , config_class=__a , hidden_size=37 ) def A_ ( self : Dict ) -> Any: '''simple docstring''' self.config_tester.run_common_tests() def A_ ( self : Tuple ) -> str: '''simple docstring''' __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def A_ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' __snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a ) def A_ ( self : Dict ) -> List[Any]: '''simple docstring''' __snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__a ) def A_ ( self : List[Any] ) -> List[Any]: '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) def A_ ( self : List[str] ) -> List[str]: '''simple docstring''' __snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__a ) @slow def A_ ( self : List[str] ) -> int: '''simple docstring''' for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Optional[int] = TFLayoutLMModel.from_pretrained(__a ) self.assertIsNotNone(__a ) @unittest.skip('Onnx compliancy broke with TF 2.10' ) def A_ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' pass def a_ ( ) -> Optional[int]: # Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on: # fmt: off __snake_case : Optional[Any] = tf.convert_to_tensor([[1_01,10_19,10_14,10_16,10_37,1_28_49,47_47,10_04,1_42_46,22_78,54_39,45_24,50_02,29_30,21_93,29_30,43_41,32_08,10_05,10_55,21_71,28_48,1_13_00,35_31,1_02],[1_01,40_70,40_34,70_20,10_24,30_58,10_15,10_13,28_61,10_13,60_70,1_92_74,27_72,62_05,2_78_14,1_61_47,1_61_47,43_43,20_47,1_02_83,1_09_69,1_43_89,10_12,23_38,1_02]] ) # noqa: E231 __snake_case : List[Any] = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 __snake_case : Optional[int] = tf.convert_to_tensor([[[0,0,0,0],[4_23,2_37,4_40,2_51],[4_27,2_72,4_41,2_87],[4_19,1_15,4_37,1_29],[9_61,8_85,9_92,9_12],[2_56,38,3_30,58],[2_56,38,3_30,58],[3_36,42,3_53,57],[3_60,39,4_01,56],[3_60,39,4_01,56],[4_11,39,4_71,59],[4_79,41,5_28,59],[5_33,39,6_30,60],[67,1_13,1_34,1_31],[1_41,1_15,2_09,1_32],[68,1_49,1_33,1_66],[1_41,1_49,1_87,1_64],[1_95,1_48,2_87,1_65],[1_95,1_48,2_87,1_65],[1_95,1_48,2_87,1_65],[2_95,1_48,3_49,1_65],[4_41,1_49,4_92,1_66],[4_97,1_49,5_46,1_64],[64,2_01,1_25,2_18],[10_00,10_00,10_00,10_00]],[[0,0,0,0],[6_62,1_50,7_54,1_66],[6_65,1_99,7_42,2_11],[5_19,2_13,5_54,2_28],[5_19,2_13,5_54,2_28],[1_34,4_33,1_87,4_54],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[3_14,4_69,3_76,4_82],[5_04,6_84,5_82,7_06],[9_41,8_25,9_73,9_00],[9_41,8_25,9_73,9_00],[9_41,8_25,9_73,9_00],[9_41,8_25,9_73,9_00],[6_10,7_49,6_52,7_65],[1_30,6_59,1_68,6_72],[1_76,6_57,2_37,6_72],[2_38,6_57,3_12,6_72],[4_43,6_53,6_28,6_72],[4_43,6_53,6_28,6_72],[7_16,3_01,8_25,3_17],[10_00,10_00,10_00,10_00]]] ) # noqa: E231 __snake_case : Union[str, Any] = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) __snake_case : int = tf.convert_to_tensor([[-1_00,10,10,10,9,1,-1_00,7,7,-1_00,7,7,4,2,5,2,8,8,-1_00,-1_00,5,0,3,2,-1_00],[-1_00,12,12,12,-1_00,12,10,-1_00,-1_00,-1_00,-1_00,10,12,9,-1_00,-1_00,-1_00,10,10,10,9,12,-1_00,10,-1_00]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class snake_case__ ( unittest.TestCase ): @slow def A_ ( self : Dict ) -> Tuple: '''simple docstring''' __snake_case : str = TFLayoutLMModel.from_pretrained('microsoft/layoutlm-base-uncased' ) __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Dict = prepare_layoutlm_batch_inputs() # forward pass __snake_case : List[str] = model(input_ids=__a , bbox=__a , attention_mask=__a , token_type_ids=__a ) # test the sequence output on [0, :3, :3] __snake_case : Tuple = tf.convert_to_tensor( [[0.1_7_8_5, -0.1_9_4_7, -0.0_4_2_5], [-0.3_2_5_4, -0.2_8_0_7, 0.2_5_5_3], [-0.5_3_9_1, -0.3_3_2_2, 0.3_3_6_4]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , __a , atol=1e-3 ) ) # test the pooled output on [1, :3] __snake_case : Any = tf.convert_to_tensor([-0.6_5_8_0, -0.0_2_1_4, 0.8_5_5_2] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , __a , atol=1e-3 ) ) @slow def A_ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' # initialize model with randomly initialized sequence classification head __snake_case : Optional[Any] = TFLayoutLMForSequenceClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=2 ) __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : str = prepare_layoutlm_batch_inputs() # forward pass __snake_case : int = model( input_ids=__a , bbox=__a , attention_mask=__a , token_type_ids=__a , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar __snake_case : Optional[int] = outputs.loss __snake_case : Tuple = (2,) self.assertEqual(loss.shape , __a ) # test the shape of the logits __snake_case : Optional[int] = outputs.logits __snake_case : str = (2, 2) self.assertEqual(logits.shape , __a ) @slow def A_ ( self : List[str] ) -> Dict: '''simple docstring''' # initialize model with randomly initialized token classification head __snake_case : Dict = TFLayoutLMForTokenClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=13 ) __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Any = prepare_layoutlm_batch_inputs() # forward pass __snake_case : List[str] = model( input_ids=__a , bbox=__a , attention_mask=__a , token_type_ids=__a , labels=__a ) # test the shape of the logits __snake_case : Any = outputs.logits __snake_case : Optional[int] = tf.convert_to_tensor((2, 25, 13) ) self.assertEqual(logits.shape , __a ) @slow def A_ ( self : Union[str, Any] ) -> int: '''simple docstring''' # initialize model with randomly initialized token classification head __snake_case : List[str] = TFLayoutLMForQuestionAnswering.from_pretrained('microsoft/layoutlm-base-uncased' ) __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : int = prepare_layoutlm_batch_inputs() # forward pass __snake_case : Optional[Any] = model(input_ids=__a , bbox=__a , attention_mask=__a , token_type_ids=__a ) # test the shape of the logits __snake_case : Optional[Any] = tf.convert_to_tensor((2, 25) ) self.assertEqual(outputs.start_logits.shape , __a ) self.assertEqual(outputs.end_logits.shape , __a )
124
0
import re def UpperCamelCase_( lowerCamelCase_ ) -> bool: _lowercase : List[Any] = re.compile( R'^(?:0|94|\+94|0{2}94)' R'7(0|1|2|4|5|6|7|8)' R'(-| |)' R'\d{7}$' ) return bool(re.search(lowerCamelCase_ , lowerCamelCase_ ) ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Dict = "0094702343221" print(is_sri_lankan_phone_number(phone))
89
"""simple docstring""" import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' __lowerCamelCase : Tuple =torch.exp(SCREAMING_SNAKE_CASE ) __lowerCamelCase : Dict =torch.sum(SCREAMING_SNAKE_CASE , dim=1 ) # sum of exp(x_i) __lowerCamelCase : Optional[int] =torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i) return torch.log(SCREAMING_SNAKE_CASE ) - B / A class SCREAMING_SNAKE_CASE_ ( nn.Module ): """simple docstring""" def __init__( self :List[str] , __lowercase :int ): super().__init__() __lowerCamelCase : str =config.output_attentions __lowerCamelCase : List[Any] =config.output_hidden_states __lowerCamelCase : Dict =nn.ModuleList([BertLayer(__lowercase ) for _ in range(config.num_hidden_layers )] ) __lowerCamelCase : str =nn.ModuleList([BertHighway(__lowercase ) for _ in range(config.num_hidden_layers )] ) __lowerCamelCase : Optional[Any] =[-1 for _ in range(config.num_hidden_layers )] def __lowercase ( self :Union[str, Any] , __lowercase :Union[str, Any] ): if (type(__lowercase ) is float) or (type(__lowercase ) is int): for i in range(len(self.early_exit_entropy ) ): __lowerCamelCase : Tuple =x else: __lowerCamelCase : Any =x def __lowercase ( self :Union[str, Any] , __lowercase :Tuple ): __lowerCamelCase : Union[str, Any] =pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def __lowercase ( self :Tuple , __lowercase :Optional[int] , __lowercase :Dict=None , __lowercase :Union[str, Any]=None , __lowercase :List[str]=None , __lowercase :str=None , ): __lowerCamelCase : Any =() __lowerCamelCase : List[str] =() __lowerCamelCase : Optional[int] =() for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: __lowerCamelCase : int =all_hidden_states + (hidden_states,) __lowerCamelCase : List[Any] =layer_module( __lowercase , __lowercase , head_mask[i] , __lowercase , __lowercase ) __lowerCamelCase : Optional[int] =layer_outputs[0] if self.output_attentions: __lowerCamelCase : Optional[Any] =all_attentions + (layer_outputs[1],) __lowerCamelCase : Any =(hidden_states,) if self.output_hidden_states: __lowerCamelCase : Optional[Any] =current_outputs + (all_hidden_states,) if self.output_attentions: __lowerCamelCase : Dict =current_outputs + (all_attentions,) __lowerCamelCase : str =self.highway[i](__lowercase ) # logits, pooled_output if not self.training: __lowerCamelCase : Tuple =highway_exit[0] __lowerCamelCase : Tuple =entropy(__lowercase ) __lowerCamelCase : Tuple =highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy __lowerCamelCase : Optional[int] =all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: __lowerCamelCase : Dict =(highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(__lowercase , i + 1 ) else: __lowerCamelCase : Union[str, Any] =all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: __lowerCamelCase : Optional[Any] =all_hidden_states + (hidden_states,) __lowerCamelCase : List[Any] =(hidden_states,) if self.output_hidden_states: __lowerCamelCase : Tuple =outputs + (all_hidden_states,) if self.output_attentions: __lowerCamelCase : Optional[int] =outputs + (all_attentions,) __lowerCamelCase : int =outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( """The Bert Model transformer with early exiting (DeeBERT). """ , snake_case__ , ) class SCREAMING_SNAKE_CASE_ ( snake_case__ ): """simple docstring""" def __init__( self :Union[str, Any] , __lowercase :str ): super().__init__(__lowercase ) __lowerCamelCase : Union[str, Any] =config __lowerCamelCase : List[str] =BertEmbeddings(__lowercase ) __lowerCamelCase : Dict =DeeBertEncoder(__lowercase ) __lowerCamelCase : List[Any] =BertPooler(__lowercase ) self.init_weights() def __lowercase ( self :Tuple ): self.encoder.init_highway_pooler(self.pooler ) def __lowercase ( self :Dict ): return self.embeddings.word_embeddings def __lowercase ( self :List[str] , __lowercase :int ): __lowerCamelCase : Union[str, Any] =value def __lowercase ( self :List[Any] , __lowercase :Dict ): for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(__lowercase ) @add_start_docstrings_to_model_forward(__lowercase ) def __lowercase ( self :Optional[Any] , __lowercase :List[str]=None , __lowercase :List[Any]=None , __lowercase :Any=None , __lowercase :Tuple=None , __lowercase :Union[str, Any]=None , __lowercase :Optional[Any]=None , __lowercase :Union[str, Any]=None , __lowercase :Tuple=None , ): if input_ids is not None and inputs_embeds is not None: raise ValueError('''You cannot specify both input_ids and inputs_embeds at the same time''' ) elif input_ids is not None: __lowerCamelCase : List[str] =input_ids.size() elif inputs_embeds is not None: __lowerCamelCase : str =inputs_embeds.size()[:-1] else: raise ValueError('''You have to specify either input_ids or inputs_embeds''' ) __lowerCamelCase : Optional[int] =input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __lowerCamelCase : str =torch.ones(__lowercase , device=__lowercase ) if encoder_attention_mask is None: __lowerCamelCase : Tuple =torch.ones(__lowercase , device=__lowercase ) if token_type_ids is None: __lowerCamelCase : List[Any] =torch.zeros(__lowercase , dtype=torch.long , device=__lowercase ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __lowerCamelCase : torch.Tensor =self.get_extended_attention_mask(__lowercase , __lowercase , __lowercase ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: __lowerCamelCase : List[str] =encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: __lowerCamelCase : Any =encoder_attention_mask[:, None, None, :] __lowerCamelCase : Optional[Any] =encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility __lowerCamelCase : List[str] =(1.0 - encoder_extended_attention_mask) * -10000.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __lowerCamelCase : Union[str, Any] =self.get_head_mask(__lowercase , self.config.num_hidden_layers ) __lowerCamelCase : str =self.embeddings( input_ids=__lowercase , position_ids=__lowercase , token_type_ids=__lowercase , inputs_embeds=__lowercase ) __lowerCamelCase : Dict =self.encoder( __lowercase , attention_mask=__lowercase , head_mask=__lowercase , encoder_hidden_states=__lowercase , encoder_attention_mask=__lowercase , ) __lowerCamelCase : int =encoder_outputs[0] __lowerCamelCase : Tuple =self.pooler(__lowercase ) __lowerCamelCase : int =( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class SCREAMING_SNAKE_CASE_ ( snake_case__ ): """simple docstring""" def __init__( self :List[Any] , __lowercase :Optional[Any] , __lowercase :Dict ): __lowerCamelCase : List[Any] =message __lowerCamelCase : int =exit_layer # start from 1! class SCREAMING_SNAKE_CASE_ ( nn.Module ): """simple docstring""" def __init__( self :Any , __lowercase :str ): super().__init__() __lowerCamelCase : str =BertPooler(__lowercase ) __lowerCamelCase : Union[str, Any] =nn.Dropout(config.hidden_dropout_prob ) __lowerCamelCase : List[str] =nn.Linear(config.hidden_size , config.num_labels ) def __lowercase ( self :Union[str, Any] , __lowercase :List[str] ): # Pooler __lowerCamelCase : Optional[Any] =encoder_outputs[0] __lowerCamelCase : Any =self.pooler(__lowercase ) # "return" pooler_output # BertModel __lowerCamelCase : List[str] =(pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification __lowerCamelCase : List[Any] =bmodel_output[1] __lowerCamelCase : Optional[Any] =self.dropout(__lowercase ) __lowerCamelCase : int =self.classifier(__lowercase ) return logits, pooled_output @add_start_docstrings( """Bert Model (with early exiting - DeeBERT) with a classifier on top, also takes care of multi-layer training. """ , snake_case__ , ) class SCREAMING_SNAKE_CASE_ ( snake_case__ ): """simple docstring""" def __init__( self :Union[str, Any] , __lowercase :Dict ): super().__init__(__lowercase ) __lowerCamelCase : Any =config.num_labels __lowerCamelCase : int =config.num_hidden_layers __lowerCamelCase : Tuple =DeeBertModel(__lowercase ) __lowerCamelCase : Optional[int] =nn.Dropout(config.hidden_dropout_prob ) __lowerCamelCase : Optional[int] =nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(__lowercase ) def __lowercase ( self :List[str] , __lowercase :List[str]=None , __lowercase :str=None , __lowercase :Optional[Any]=None , __lowercase :List[Any]=None , __lowercase :Union[str, Any]=None , __lowercase :Dict=None , __lowercase :int=None , __lowercase :int=-1 , __lowercase :List[str]=False , ): __lowerCamelCase : Union[str, Any] =self.num_layers try: __lowerCamelCase : Union[str, Any] =self.bert( __lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , position_ids=__lowercase , head_mask=__lowercase , inputs_embeds=__lowercase , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits __lowerCamelCase : List[Any] =outputs[1] __lowerCamelCase : Optional[Any] =self.dropout(__lowercase ) __lowerCamelCase : Tuple =self.classifier(__lowercase ) __lowerCamelCase : int =(logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: __lowerCamelCase : Union[str, Any] =e.message __lowerCamelCase : Optional[Any] =e.exit_layer __lowerCamelCase : Any =outputs[0] if not self.training: __lowerCamelCase : List[Any] =entropy(__lowercase ) __lowerCamelCase : Union[str, Any] =[] __lowerCamelCase : int =[] if labels is not None: if self.num_labels == 1: # We are doing regression __lowerCamelCase : Union[str, Any] =MSELoss() __lowerCamelCase : List[Any] =loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: __lowerCamelCase : Dict =CrossEntropyLoss() __lowerCamelCase : List[Any] =loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits __lowerCamelCase : str =[] for highway_exit in outputs[-1]: __lowerCamelCase : List[str] =highway_exit[0] if not self.training: highway_logits_all.append(__lowercase ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression __lowerCamelCase : Optional[int] =MSELoss() __lowerCamelCase : Optional[Any] =loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: __lowerCamelCase : int =CrossEntropyLoss() __lowerCamelCase : int =loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(__lowercase ) if train_highway: __lowerCamelCase : Dict =(sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: __lowerCamelCase : List[str] =(loss,) + outputs if not self.training: __lowerCamelCase : List[Any] =outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: __lowerCamelCase : Dict =( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
179
0
'''simple docstring''' import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCamelCase ( self : List[Any]): '''simple docstring''' super().tearDown() gc.collect() def __lowerCamelCase ( self : List[str]): '''simple docstring''' __lowercase =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png') __lowercase =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png') __lowercase ='xvjiarui/stable-diffusion-2-inpainting' __lowercase , __lowercase =FlaxStableDiffusionInpaintPipeline.from_pretrained(_lowerCAmelCase , safety_checker=_lowerCAmelCase) __lowercase ='Face of a yellow cat, high resolution, sitting on a park bench' __lowercase =jax.random.PRNGKey(0) __lowercase =5_0 __lowercase =jax.device_count() __lowercase =num_samples * [prompt] __lowercase =num_samples * [init_image] __lowercase =num_samples * [mask_image] __lowercase , __lowercase , __lowercase =pipeline.prepare_inputs(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase) # shard inputs and rng __lowercase =replicate(_lowerCAmelCase) __lowercase =jax.random.split(_lowerCAmelCase , jax.device_count()) __lowercase =shard(_lowerCAmelCase) __lowercase =shard(_lowerCAmelCase) __lowercase =shard(_lowerCAmelCase) __lowercase =pipeline( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , jit=_lowerCAmelCase) __lowercase =output.images.reshape(_lowerCAmelCase , 5_1_2 , 5_1_2 , 3) __lowercase =images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] __lowercase =jnp.asarray(jax.device_get(image_slice.flatten())) __lowercase =jnp.array( [0.361_1307, 0.3764_9736, 0.375_7408, 0.3821_3953, 0.3929_5167, 0.384_1631, 0.4155_4978, 0.413_7475, 0.421_7084]) print(f"""output_slice: {output_slice}""") assert jnp.abs(output_slice - expected_slice).max() < 1e-2
706
'''simple docstring''' import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCamelCase ( self : List[Any]): '''simple docstring''' super().tearDown() gc.collect() def __lowerCamelCase ( self : List[str]): '''simple docstring''' __lowercase =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png') __lowercase =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png') __lowercase ='xvjiarui/stable-diffusion-2-inpainting' __lowercase , __lowercase =FlaxStableDiffusionInpaintPipeline.from_pretrained(_lowerCAmelCase , safety_checker=_lowerCAmelCase) __lowercase ='Face of a yellow cat, high resolution, sitting on a park bench' __lowercase =jax.random.PRNGKey(0) __lowercase =5_0 __lowercase =jax.device_count() __lowercase =num_samples * [prompt] __lowercase =num_samples * [init_image] __lowercase =num_samples * [mask_image] __lowercase , __lowercase , __lowercase =pipeline.prepare_inputs(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase) # shard inputs and rng __lowercase =replicate(_lowerCAmelCase) __lowercase =jax.random.split(_lowerCAmelCase , jax.device_count()) __lowercase =shard(_lowerCAmelCase) __lowercase =shard(_lowerCAmelCase) __lowercase =shard(_lowerCAmelCase) __lowercase =pipeline( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , jit=_lowerCAmelCase) __lowercase =output.images.reshape(_lowerCAmelCase , 5_1_2 , 5_1_2 , 3) __lowercase =images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] __lowercase =jnp.asarray(jax.device_get(image_slice.flatten())) __lowercase =jnp.array( [0.361_1307, 0.3764_9736, 0.375_7408, 0.3821_3953, 0.3929_5167, 0.384_1631, 0.4155_4978, 0.413_7475, 0.421_7084]) print(f"""output_slice: {output_slice}""") assert jnp.abs(output_slice - expected_slice).max() < 1e-2
454
0
'''simple docstring''' def __a ( A__ , A__ , A__ ) -> Tuple: if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(A__ , n - 1 , A__ ) * a) % mod else: lowerCAmelCase = binary_exponentiation(A__ , n / 2 , A__ ) return (b * b) % mod # a prime number lowercase : List[str] = 7_0_1 lowercase : Union[str, Any] = 1_0_0_0_0_0_0_0_0_0 lowercase : Tuple = 1_0 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
649
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : List[str] = logging.get_logger(__name__) lowercase : Any = { 'google/switch-base-8': 'https://huggingface.co/google/switch-base-8/blob/main/config.json', } class _lowerCAmelCase ( UpperCamelCase_ ): """simple docstring""" lowerCAmelCase = 'switch_transformers' lowerCAmelCase = ['past_key_values'] lowerCAmelCase = {'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE : Optional[int]=3_2_1_2_8 , SCREAMING_SNAKE_CASE : Tuple=7_6_8 , SCREAMING_SNAKE_CASE : Union[str, Any]=6_4 , SCREAMING_SNAKE_CASE : Optional[Any]=2_0_4_8 , SCREAMING_SNAKE_CASE : Union[str, Any]=6_4 , SCREAMING_SNAKE_CASE : int=1_2 , SCREAMING_SNAKE_CASE : Tuple=3 , SCREAMING_SNAKE_CASE : Optional[Any]=1_2 , SCREAMING_SNAKE_CASE : str=3 , SCREAMING_SNAKE_CASE : int=1_2 , SCREAMING_SNAKE_CASE : str=8 , SCREAMING_SNAKE_CASE : Dict=False , SCREAMING_SNAKE_CASE : Any=0.0_1 , SCREAMING_SNAKE_CASE : Union[str, Any]="float32" , SCREAMING_SNAKE_CASE : Union[str, Any]=False , SCREAMING_SNAKE_CASE : Union[str, Any]=3_2 , SCREAMING_SNAKE_CASE : str=1_2_8 , SCREAMING_SNAKE_CASE : Any=0.1 , SCREAMING_SNAKE_CASE : Optional[int]=1E-6 , SCREAMING_SNAKE_CASE : Optional[int]=0.0_0_1 , SCREAMING_SNAKE_CASE : Optional[Any]=0.0_0_1 , SCREAMING_SNAKE_CASE : List[str]=1.0 , SCREAMING_SNAKE_CASE : str="relu" , SCREAMING_SNAKE_CASE : Optional[Any]=True , SCREAMING_SNAKE_CASE : List[Any]=False , SCREAMING_SNAKE_CASE : List[Any]=True , SCREAMING_SNAKE_CASE : Dict=0 , SCREAMING_SNAKE_CASE : Tuple=1 , **SCREAMING_SNAKE_CASE : List[Any] , ) -> Dict: """simple docstring""" lowerCAmelCase = vocab_size lowerCAmelCase = d_model lowerCAmelCase = d_kv lowerCAmelCase = d_ff lowerCAmelCase = num_sparse_encoder_layers lowerCAmelCase = num_layers lowerCAmelCase = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry lowerCAmelCase = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: lowerCAmelCase = self.num_layers // self.num_sparse_encoder_layers else: lowerCAmelCase = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: lowerCAmelCase = self.num_decoder_layers // self.num_sparse_decoder_layers else: lowerCAmelCase = self.num_decoder_layers # HACK: this will create 0 sparse layers lowerCAmelCase = num_heads lowerCAmelCase = num_experts lowerCAmelCase = expert_capacity lowerCAmelCase = router_bias lowerCAmelCase = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f"`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}" ) lowerCAmelCase = router_dtype lowerCAmelCase = router_ignore_padding_tokens lowerCAmelCase = relative_attention_num_buckets lowerCAmelCase = relative_attention_max_distance lowerCAmelCase = dropout_rate lowerCAmelCase = layer_norm_epsilon lowerCAmelCase = initializer_factor lowerCAmelCase = feed_forward_proj lowerCAmelCase = use_cache lowerCAmelCase = add_router_probs lowerCAmelCase = router_z_loss_coef lowerCAmelCase = router_aux_loss_coef lowerCAmelCase = self.feed_forward_proj.split("-" ) lowerCAmelCase = act_info[-1] lowerCAmelCase = act_info[0] == "gated" if len(SCREAMING_SNAKE_CASE ) > 1 and act_info[0] != "gated" or len(SCREAMING_SNAKE_CASE ) > 2: raise ValueError( f"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer." "Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. " "'gated-gelu' or 'relu'" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": lowerCAmelCase = "gelu_new" super().__init__( pad_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , is_encoder_decoder=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , )
649
1
'''simple docstring''' def _snake_case ( lowercase ) -> list: if len(lowercase ) < 2: return collection def circle_sort_util(lowercase , lowercase , lowercase ) -> bool: __a : Optional[int] = False if low == high: return swapped __a : List[Any] = low __a : List[str] = high while left < right: if collection[left] > collection[right]: __a , __a : Optional[Any] = ( collection[right], collection[left], ) __a : Dict = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: __a , __a : Optional[int] = ( collection[right + 1], collection[left], ) __a : List[str] = True __a : Any = low + int((high - low) / 2 ) __a : int = circle_sort_util(lowercase , lowercase , lowercase ) __a : Tuple = circle_sort_util(lowercase , mid + 1 , lowercase ) return swapped or left_swap or right_swap __a : int = True while is_not_sorted is True: __a : Any = circle_sort_util(lowercase , 0 , len(lowercase ) - 1 ) return collection if __name__ == "__main__": __SCREAMING_SNAKE_CASE : List[str] = input('Enter numbers separated by a comma:\n').strip() __SCREAMING_SNAKE_CASE : Dict = [int(item) for item in user_input.split(',')] print(circle_sort(unsorted))
697
'''simple docstring''' import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class SCREAMING_SNAKE_CASE__ : def __init__( self , __UpperCamelCase , __UpperCamelCase=2 , __UpperCamelCase=32 , __UpperCamelCase=16 , __UpperCamelCase=3 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=32 , __UpperCamelCase=4 , __UpperCamelCase=[0, 1, 2, 3] , __UpperCamelCase=4 , __UpperCamelCase=37 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=0.0_2 , __UpperCamelCase=3 , __UpperCamelCase=[1, 384, 24, 24] , __UpperCamelCase=True , __UpperCamelCase=None , ): '''simple docstring''' __a : List[str] = parent __a : Tuple = batch_size __a : str = image_size __a : int = patch_size __a : Dict = num_channels __a : int = is_training __a : Dict = use_labels __a : Union[str, Any] = hidden_size __a : Dict = num_hidden_layers __a : Dict = backbone_out_indices __a : Optional[int] = num_attention_heads __a : List[str] = intermediate_size __a : Optional[Any] = hidden_act __a : Dict = hidden_dropout_prob __a : Tuple = attention_probs_dropout_prob __a : Any = initializer_range __a : Any = num_labels __a : Optional[Any] = backbone_featmap_shape __a : List[Any] = scope __a : List[str] = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) __a : Union[str, Any] = (image_size // patch_size) ** 2 __a : List[str] = num_patches + 1 def __lowerCamelCase ( self ): '''simple docstring''' __a : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a : Union[str, Any] = None if self.use_labels: __a : str = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __a : Tuple = self.get_config() return config, pixel_values, labels def __lowerCamelCase ( self ): '''simple docstring''' __a : List[str] = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, """hidden_sizes""": [96, 192, 384, 768], """num_groups""": 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=__UpperCamelCase , backbone_featmap_shape=self.backbone_featmap_shape , ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' __a : Optional[Any] = DPTModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __a : List[str] = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' __a : List[str] = self.num_labels __a : Union[str, Any] = DPTForDepthEstimation(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __a : Tuple = model(__UpperCamelCase ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' __a : Dict = self.num_labels __a : Tuple = DPTForSemanticSegmentation(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __a : str = model(__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[int] = self.prepare_config_and_inputs() __a , __a , __a : Tuple = config_and_inputs __a : List[str] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): lowercase__ = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () lowercase__ = ( { "depth-estimation": DPTForDepthEstimation, "feature-extraction": DPTModel, "image-segmentation": DPTForSemanticSegmentation, } if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[int] = DPTModelTester(self ) __a : List[Any] = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase , hidden_size=37 ) def __lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""DPT does not use inputs_embeds""" ) def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' __a , __a : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : str = model_class(__UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __a : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCamelCase , nn.Linear ) ) def __lowerCamelCase ( self ): '''simple docstring''' __a , __a : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : Any = model_class(__UpperCamelCase ) __a : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a : int = [*signature.parameters.keys()] __a : List[str] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*__UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __a , __a : Dict = self.model_tester.prepare_config_and_inputs_for_common() __a : List[Any] = True if model_class in get_values(__UpperCamelCase ): continue __a : str = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.train() __a : Union[str, Any] = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) __a : List[Any] = model(**__UpperCamelCase ).loss loss.backward() def __lowerCamelCase ( self ): '''simple docstring''' for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __a , __a : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __a : Any = False __a : Dict = True if model_class in get_values(__UpperCamelCase ) or not model_class.supports_gradient_checkpointing: continue __a : Any = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.gradient_checkpointing_enable() model.train() __a : List[str] = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) __a : Dict = model(**__UpperCamelCase ).loss loss.backward() def __lowerCamelCase ( self ): '''simple docstring''' __a , __a : Any = self.model_tester.prepare_config_and_inputs_for_common() __a : Any = _config_zero_init(__UpperCamelCase ) for model_class in self.all_model_classes: __a : Any = model_class(config=__UpperCamelCase ) # Skip the check for the backbone __a : Optional[Any] = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": __a : Optional[int] = [f"""{name}.{key}""" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def __lowerCamelCase ( self ): '''simple docstring''' pass @slow def __lowerCamelCase ( self ): '''simple docstring''' for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: __a : int = DPTModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a , __a : int = self.model_tester.prepare_config_and_inputs_for_common() __a : Optional[int] = """add""" with self.assertRaises(__UpperCamelCase ): __a : int = DPTForDepthEstimation(__UpperCamelCase ) def _snake_case ( ) -> Any: __a : Dict = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' __a : int = DPTImageProcessor.from_pretrained("""Intel/dpt-hybrid-midas""" ) __a : int = DPTForDepthEstimation.from_pretrained("""Intel/dpt-hybrid-midas""" ).to(__UpperCamelCase ) __a : Union[str, Any] = prepare_img() __a : Any = image_processor(images=__UpperCamelCase , return_tensors="""pt""" ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): __a : Optional[Any] = model(**__UpperCamelCase ) __a : int = outputs.predicted_depth # verify the predicted depth __a : Any = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , __UpperCamelCase ) __a : int = torch.tensor( [[[5.6_4_3_7, 5.6_1_4_6, 5.6_5_1_1], [5.4_3_7_1, 5.5_6_4_9, 5.5_9_5_8], [5.5_2_1_5, 5.5_1_8_4, 5.5_2_9_3]]] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , __UpperCamelCase , atol=1E-4 ) )
697
1
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class _a ( __snake_case , unittest.TestCase ): a_ : int = ShapEPipeline a_ : Tuple = ['prompt'] a_ : str = ['prompt'] a_ : Dict = [ 'num_images_per_prompt', 'num_inference_steps', 'generator', 'latents', 'guidance_scale', 'frame_size', 'output_type', 'return_dict', ] a_ : str = False @property def _UpperCamelCase ( self : Dict ): return 32 @property def _UpperCamelCase ( self : Optional[Any] ): return 32 @property def _UpperCamelCase ( self : List[str] ): return self.time_input_dim * 4 @property def _UpperCamelCase ( self : Tuple ): return 8 @property def _UpperCamelCase ( self : Any ): lowerCamelCase__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def _UpperCamelCase ( self : List[str] ): torch.manual_seed(0 ) lowerCamelCase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModelWithProjection(SCREAMING_SNAKE_CASE__ ) @property def _UpperCamelCase ( self : Any ): torch.manual_seed(0 ) lowerCamelCase__ = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } lowerCamelCase__ = PriorTransformer(**SCREAMING_SNAKE_CASE__ ) return model @property def _UpperCamelCase ( self : str ): torch.manual_seed(0 ) lowerCamelCase__ = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } lowerCamelCase__ = ShapERenderer(**SCREAMING_SNAKE_CASE__ ) return model def _UpperCamelCase ( self : int ): lowerCamelCase__ = self.dummy_prior lowerCamelCase__ = self.dummy_text_encoder lowerCamelCase__ = self.dummy_tokenizer lowerCamelCase__ = self.dummy_renderer lowerCamelCase__ = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=10_24 , prediction_type='sample' , use_karras_sigmas=SCREAMING_SNAKE_CASE__ , clip_sample=SCREAMING_SNAKE_CASE__ , clip_sample_range=1.0 , ) lowerCamelCase__ = { 'prior': prior, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'renderer': renderer, 'scheduler': scheduler, } return components def _UpperCamelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : int=0 ): if str(SCREAMING_SNAKE_CASE__ ).startswith('mps' ): lowerCamelCase__ = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) else: lowerCamelCase__ = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = { 'prompt': 'horse', 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def _UpperCamelCase ( self : int ): lowerCamelCase__ = 'cpu' lowerCamelCase__ = self.get_dummy_components() lowerCamelCase__ = self.pipeline_class(**SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = pipe(**self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) ) lowerCamelCase__ = output.images[0] lowerCamelCase__ = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) lowerCamelCase__ = np.array( [ 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _UpperCamelCase ( self : Dict ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def _UpperCamelCase ( self : str ): lowerCamelCase__ = torch_device == 'cpu' lowerCamelCase__ = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=SCREAMING_SNAKE_CASE__ , relax_max_difference=SCREAMING_SNAKE_CASE__ , ) def _UpperCamelCase ( self : Tuple ): lowerCamelCase__ = self.get_dummy_components() lowerCamelCase__ = self.pipeline_class(**SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = 1 lowerCamelCase__ = 2 lowerCamelCase__ = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) for key in inputs.keys(): if key in self.batch_params: lowerCamelCase__ = batch_size * [inputs[key]] lowerCamelCase__ = pipe(**SCREAMING_SNAKE_CASE__ , num_images_per_prompt=SCREAMING_SNAKE_CASE__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class _a ( unittest.TestCase ): def _UpperCamelCase ( self : Tuple ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCamelCase ( self : Dict ): lowerCamelCase__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_np_out.npy' ) lowerCamelCase__ = ShapEPipeline.from_pretrained('openai/shap-e' ) lowerCamelCase__ = pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(0 ) lowerCamelCase__ = pipe( 'a shark' , generator=SCREAMING_SNAKE_CASE__ , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
510
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowerCAmelCase = { 'configuration_wav2vec2': ['WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Wav2Vec2Config'], 'feature_extraction_wav2vec2': ['Wav2Vec2FeatureExtractor'], 'processing_wav2vec2': ['Wav2Vec2Processor'], 'tokenization_wav2vec2': ['Wav2Vec2CTCTokenizer', 'Wav2Vec2Tokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Wav2Vec2ForAudioFrameClassification', 'Wav2Vec2ForCTC', 'Wav2Vec2ForMaskedLM', 'Wav2Vec2ForPreTraining', 'Wav2Vec2ForSequenceClassification', 'Wav2Vec2ForXVector', 'Wav2Vec2Model', 'Wav2Vec2PreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWav2Vec2ForCTC', 'TFWav2Vec2Model', 'TFWav2Vec2PreTrainedModel', 'TFWav2Vec2ForSequenceClassification', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'FlaxWav2Vec2ForCTC', 'FlaxWav2Vec2ForPreTraining', 'FlaxWav2Vec2Model', 'FlaxWav2Vec2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
585
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { '''google/vivit-b-16x2-kinetics400''': ( '''https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json''' ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class lowerCamelCase_ ( __a ): lowerCAmelCase__ = 'vivit' def __init__( self : Union[str, Any] , _A : Union[str, Any]=224 , _A : List[str]=32 , _A : Dict=[2, 16, 16] , _A : str=3 , _A : Any=768 , _A : Optional[Any]=12 , _A : int=12 , _A : Tuple=3_072 , _A : Any="gelu_fast" , _A : int=0.0 , _A : Union[str, Any]=0.0 , _A : Any=0.0_2 , _A : Tuple=1e-06 , _A : int=True , **_A : int , ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = hidden_size UpperCAmelCase__ : int = num_hidden_layers UpperCAmelCase__ : Tuple = num_attention_heads UpperCAmelCase__ : List[str] = intermediate_size UpperCAmelCase__ : str = hidden_act UpperCAmelCase__ : List[Any] = hidden_dropout_prob UpperCAmelCase__ : int = attention_probs_dropout_prob UpperCAmelCase__ : Optional[Any] = initializer_range UpperCAmelCase__ : Tuple = layer_norm_eps UpperCAmelCase__ : Union[str, Any] = image_size UpperCAmelCase__ : List[Any] = num_frames UpperCAmelCase__ : Tuple = tubelet_size UpperCAmelCase__ : int = num_channels UpperCAmelCase__ : Dict = qkv_bias super().__init__(**_A )
312
'''simple docstring''' from __future__ import annotations UpperCamelCase__ = 8.9_88e9 # units = N * m^s * C^-2 def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> dict[str, float]: UpperCAmelCase__ : List[str] = abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if distance < 0: raise ValueError('''Distance cannot be negative''' ) if force == 0: UpperCAmelCase__ : Optional[int] = COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: UpperCAmelCase__ : List[Any] = abs(lowerCAmelCase__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: UpperCAmelCase__ : List[Any] = abs(lowerCAmelCase__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: UpperCAmelCase__ : List[Any] = (COULOMBS_CONSTANT * charge_product / abs(lowerCAmelCase__ )) ** 0.5 return {"distance": distance} raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
312
1
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self , _a ) -> str: for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ): _a : Optional[Any] = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(_a ) def __lowercase ( self ) -> Tuple: _a : Tuple = '''sshleifer/tiny-gpt2''' _a : Dict = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) _a : int = PyTorchBenchmark(_a ) _a : str = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowercase ( self ) -> str: _a : str = '''sgugger/tiny-distilbert-classification''' _a : str = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , only_pretrain_model=_a , ) _a : Any = PyTorchBenchmark(_a ) _a : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowercase ( self ) -> int: _a : Optional[Any] = '''sshleifer/tiny-gpt2''' _a : Optional[int] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , torchscript=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) _a : int = PyTorchBenchmark(_a ) _a : Any = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def __lowercase ( self ) -> int: _a : Optional[int] = '''sshleifer/tiny-gpt2''' _a : Any = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , fpaa=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) _a : int = PyTorchBenchmark(_a ) _a : Any = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowercase ( self ) -> List[Any]: _a : Union[str, Any] = '''sshleifer/tiny-gpt2''' _a : Dict = AutoConfig.from_pretrained(_a ) # set architectures equal to `None` _a : List[Any] = None _a : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) _a : List[Any] = PyTorchBenchmark(_a , configs=[config] ) _a : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowercase ( self ) -> Dict: _a : Tuple = '''sshleifer/tiny-gpt2''' _a : int = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) _a : Dict = PyTorchBenchmark(_a ) _a : str = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Can\'t do half precision''' ) def __lowercase ( self ) -> Optional[Any]: _a : Any = '''sshleifer/tiny-gpt2''' _a : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_a , multi_process=_a , ) _a : Tuple = PyTorchBenchmark(_a ) _a : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __lowercase ( self ) -> Any: _a : int = '''sshleifer/tiny-gpt2''' _a : List[str] = AutoConfig.from_pretrained(_a ) _a : List[str] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) _a : Tuple = PyTorchBenchmark(_a , configs=[config] ) _a : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowercase ( self ) -> Union[str, Any]: _a : Union[str, Any] = '''sshleifer/tinier_bart''' _a : Optional[int] = AutoConfig.from_pretrained(_a ) _a : Optional[int] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) _a : List[str] = PyTorchBenchmark(_a , configs=[config] ) _a : Any = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowercase ( self ) -> int: _a : Optional[int] = '''sshleifer/tiny-gpt2''' _a : int = AutoConfig.from_pretrained(_a ) _a : Union[str, Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) _a : Tuple = PyTorchBenchmark(_a , configs=[config] ) _a : str = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __lowercase ( self ) -> List[Any]: _a : Dict = '''sshleifer/tinier_bart''' _a : Dict = AutoConfig.from_pretrained(_a ) _a : List[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) _a : int = PyTorchBenchmark(_a , configs=[config] ) _a : Any = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __lowercase ( self ) -> List[str]: _a : List[str] = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: _a : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , save_to_csv=_a , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_a , '''inf_time.csv''' ) , train_memory_csv_file=os.path.join(_a , '''train_mem.csv''' ) , inference_memory_csv_file=os.path.join(_a , '''inf_mem.csv''' ) , train_time_csv_file=os.path.join(_a , '''train_time.csv''' ) , env_info_csv_file=os.path.join(_a , '''env.csv''' ) , multi_process=_a , ) _a : List[str] = PyTorchBenchmark(_a ) benchmark.run() self.assertTrue(Path(os.path.join(_a , '''inf_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_a , '''train_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_a , '''inf_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_a , '''train_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_a , '''env.csv''' ) ).exists() ) def __lowercase ( self ) -> Optional[Any]: _a : Optional[int] = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(_a ): self.assertTrue(hasattr(_a , '''sequential''' ) ) self.assertTrue(hasattr(_a , '''cumulative''' ) ) self.assertTrue(hasattr(_a , '''current''' ) ) self.assertTrue(hasattr(_a , '''total''' ) ) with tempfile.TemporaryDirectory() as tmp_dir: _a : str = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_a , '''log.txt''' ) , log_print=_a , trace_memory_line_by_line=_a , multi_process=_a , ) _a : List[str] = PyTorchBenchmark(_a ) _a : Any = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(_a , '''log.txt''' ) ).exists() )
14
'''simple docstring''' import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> Dict: """simple docstring""" snake_case_ : Tuple = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value") snake_case_ : Union[str, Any] = ( ("layer.", "layer_"), ("word_embeddings.weight", "word_embeddings"), ("position_embeddings.weight", "position_embeddings"), ("token_type_embeddings.weight", "token_type_embeddings"), (".", "/"), ("LayerNorm/weight", "LayerNorm/gamma"), ("LayerNorm/bias", "LayerNorm/beta"), ("weight", "kernel"), ) if not os.path.isdir(__magic_name__ ): os.makedirs(__magic_name__ ) snake_case_ : str = model.state_dict() def to_tf_var_name(__magic_name__ ): for patt, repl in iter(__magic_name__ ): snake_case_ : List[str] = name.replace(__magic_name__ ,__magic_name__ ) return F'''bert/{name}''' def create_tf_var(__magic_name__ ,__magic_name__ ,__magic_name__ ): snake_case_ : List[Any] = tf.dtypes.as_dtype(tensor.dtype ) snake_case_ : Union[str, Any] = tf.get_variable(dtype=__magic_name__ ,shape=tensor.shape ,name=__magic_name__ ,initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(__magic_name__ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: snake_case_ : Optional[int] = to_tf_var_name(__magic_name__ ) snake_case_ : Dict = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): snake_case_ : List[Any] = torch_tensor.T snake_case_ : Union[str, Any] = create_tf_var(tensor=__magic_name__ ,name=__magic_name__ ,session=__magic_name__ ) tf.keras.backend.set_value(__magic_name__ ,__magic_name__ ) snake_case_ : List[str] = session.run(__magic_name__ ) print(F'''Successfully created {tf_name}: {np.allclose(__magic_name__ ,__magic_name__ )}''' ) snake_case_ : Any = tf.train.Saver(tf.trainable_variables() ) saver.save(__magic_name__ ,os.path.join(__magic_name__ ,model_name.replace("-" ,"_" ) + ".ckpt" ) ) def __UpperCAmelCase ( __magic_name__=None )-> Optional[Any]: """simple docstring""" snake_case_ : Any = argparse.ArgumentParser() parser.add_argument("--model_name" ,type=__magic_name__ ,required=__magic_name__ ,help="model name e.g. bert-base-uncased" ) parser.add_argument( "--cache_dir" ,type=__magic_name__ ,default=__magic_name__ ,required=__magic_name__ ,help="Directory containing pytorch model" ) parser.add_argument("--pytorch_model_path" ,type=__magic_name__ ,required=__magic_name__ ,help="/path/to/<pytorch-model-name>.bin" ) parser.add_argument("--tf_cache_dir" ,type=__magic_name__ ,required=__magic_name__ ,help="Directory in which to save tensorflow model" ) snake_case_ : Optional[int] = parser.parse_args(__magic_name__ ) snake_case_ : Optional[int] = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name ,state_dict=torch.load(args.pytorch_model_path ) ,cache_dir=args.cache_dir ,) convert_pytorch_checkpoint_to_tf(model=__magic_name__ ,ckpt_dir=args.tf_cache_dir ,model_name=args.model_name ) if __name__ == "__main__": main()
653
0
import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class __lowerCamelCase ( __UpperCAmelCase ): """simple docstring""" snake_case__ = None snake_case__ = None @property def a ( self : int ) -> Optional[int]: return self.feat_extract_tester.prepare_feat_extract_dict() def a ( self : Any ) -> Optional[int]: lowerCAmelCase__ = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(lowerCAmelCase_ , "feature_size" ) ) self.assertTrue(hasattr(lowerCAmelCase_ , "sampling_rate" ) ) self.assertTrue(hasattr(lowerCAmelCase_ , "padding_value" ) ) def a ( self : str ) -> Optional[Any]: lowerCAmelCase__ = self.feat_extract_tester.prepare_inputs_for_common() lowerCAmelCase__ = self.feature_extraction_class(**self.feat_extract_dict ) lowerCAmelCase__ = feat_extract.model_input_names[0] lowerCAmelCase__ = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ) for x, y in zip(lowerCAmelCase_ , processed_features[input_name] ) ) ) lowerCAmelCase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase_ ) lowerCAmelCase__ = BatchFeature({input_name: speech_inputs} , tensor_type="np" ) lowerCAmelCase__ = processed_features[input_name] if len(batch_features_input.shape ) < 3: lowerCAmelCase__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_torch def a ( self : Dict ) -> Dict: lowerCAmelCase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase_ ) lowerCAmelCase__ = self.feature_extraction_class(**self.feat_extract_dict ) lowerCAmelCase__ = feat_extract.model_input_names[0] lowerCAmelCase__ = BatchFeature({input_name: speech_inputs} , tensor_type="pt" ) lowerCAmelCase__ = processed_features[input_name] if len(batch_features_input.shape ) < 3: lowerCAmelCase__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_tf def a ( self : Optional[Any] ) -> Union[str, Any]: lowerCAmelCase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase_ ) lowerCAmelCase__ = self.feature_extraction_class(**self.feat_extract_dict ) lowerCAmelCase__ = feat_extract.model_input_names[0] lowerCAmelCase__ = BatchFeature({input_name: speech_inputs} , tensor_type="tf" ) lowerCAmelCase__ = processed_features[input_name] if len(batch_features_input.shape ) < 3: lowerCAmelCase__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple=False ) -> Union[str, Any]: def _inputs_have_equal_length(SCREAMING_SNAKE_CASE__ : Dict ): lowerCAmelCase__ = len(input[0] ) for input_slice in input[1:]: if len(lowerCAmelCase_ ) != length: return False return True def _inputs_are_equal(SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ): return False for input_slice_a, input_slice_a in zip(lowerCAmelCase_ , lowerCAmelCase_ ): if not np.allclose(np.asarray(lowerCAmelCase_ ) , np.asarray(lowerCAmelCase_ ) , atol=1e-3 ): return False return True lowerCAmelCase__ = self.feature_extraction_class(**self.feat_extract_dict ) lowerCAmelCase__ = self.feat_extract_tester.prepare_inputs_for_common(numpify=lowerCAmelCase_ ) lowerCAmelCase__ = feat_extract.model_input_names[0] lowerCAmelCase__ = BatchFeature({input_name: speech_inputs} ) lowerCAmelCase__ = self.feat_extract_tester.seq_length_diff lowerCAmelCase__ = self.feat_extract_tester.max_seq_length + pad_diff lowerCAmelCase__ = self.feat_extract_tester.min_seq_length lowerCAmelCase__ = self.feat_extract_tester.batch_size lowerCAmelCase__ = self.feat_extract_tester.feature_size # test padding for List[int] + numpy lowerCAmelCase__ = feat_extract.pad(lowerCAmelCase_ , padding=lowerCAmelCase_ ) lowerCAmelCase__ = input_a[input_name] lowerCAmelCase__ = feat_extract.pad(lowerCAmelCase_ , padding="longest" ) lowerCAmelCase__ = input_a[input_name] lowerCAmelCase__ = feat_extract.pad(lowerCAmelCase_ , padding="max_length" , max_length=len(speech_inputs[-1] ) ) lowerCAmelCase__ = input_a[input_name] lowerCAmelCase__ = feat_extract.pad(lowerCAmelCase_ , padding="longest" , return_tensors="np" ) lowerCAmelCase__ = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(lowerCAmelCase_ ): feat_extract.pad(lowerCAmelCase_ , padding="max_length" )[input_name] lowerCAmelCase__ = feat_extract.pad( lowerCAmelCase_ , padding="max_length" , max_length=lowerCAmelCase_ , return_tensors="np" ) lowerCAmelCase__ = input_a[input_name] self.assertFalse(_inputs_have_equal_length(lowerCAmelCase_ ) ) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase_ ) ) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase_ ) ) self.assertTrue(_inputs_are_equal(lowerCAmelCase_ , lowerCAmelCase_ ) ) self.assertTrue(len(input_a[0] ) == pad_min_length ) self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff ) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) ) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size ) # test padding for `pad_to_multiple_of` for List[int] + numpy lowerCAmelCase__ = feat_extract.pad(lowerCAmelCase_ , pad_to_multiple_of=10 ) lowerCAmelCase__ = input_a[input_name] lowerCAmelCase__ = feat_extract.pad(lowerCAmelCase_ , padding="longest" , pad_to_multiple_of=10 ) lowerCAmelCase__ = input_a[input_name] lowerCAmelCase__ = feat_extract.pad( lowerCAmelCase_ , padding="max_length" , pad_to_multiple_of=10 , max_length=lowerCAmelCase_ ) lowerCAmelCase__ = input_a[input_name] lowerCAmelCase__ = feat_extract.pad( lowerCAmelCase_ , padding="max_length" , pad_to_multiple_of=10 , max_length=lowerCAmelCase_ , return_tensors="np" , ) lowerCAmelCase__ = input_a[input_name] self.assertTrue(all(len(lowerCAmelCase_ ) % 10 == 0 for x in input_a ) ) self.assertTrue(_inputs_are_equal(lowerCAmelCase_ , lowerCAmelCase_ ) ) lowerCAmelCase__ = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(lowerCAmelCase_ ) == expected_mult_pad_length for x in input_a ) ) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size ) # Check padding value is correct lowerCAmelCase__ = (np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) ) < 1e-3 ) def a ( self : Any , SCREAMING_SNAKE_CASE__ : List[str]=False ) -> Tuple: def _inputs_have_equal_length(SCREAMING_SNAKE_CASE__ : Union[str, Any] ): lowerCAmelCase__ = len(input[0] ) for input_slice in input[1:]: if len(lowerCAmelCase_ ) != length: return False return True def _inputs_are_equal(SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : int ): if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ): return False for input_slice_a, input_slice_a in zip(lowerCAmelCase_ , lowerCAmelCase_ ): if not np.allclose(np.asarray(lowerCAmelCase_ ) , np.asarray(lowerCAmelCase_ ) , atol=1e-3 ): return False return True lowerCAmelCase__ = self.feature_extraction_class(**self.feat_extract_dict ) lowerCAmelCase__ = self.feat_extract_tester.prepare_inputs_for_common(numpify=lowerCAmelCase_ ) lowerCAmelCase__ = feat_extract.model_input_names[0] lowerCAmelCase__ = BatchFeature({input_name: speech_inputs} ) # truncate to smallest lowerCAmelCase__ = feat_extract.pad( lowerCAmelCase_ , padding="max_length" , max_length=len(speech_inputs[0] ) , truncation=lowerCAmelCase_ ) lowerCAmelCase__ = input_a[input_name] lowerCAmelCase__ = feat_extract.pad(lowerCAmelCase_ , padding="max_length" , max_length=len(speech_inputs[0] ) ) lowerCAmelCase__ = input_a[input_name] self.assertTrue(_inputs_have_equal_length(lowerCAmelCase_ ) ) self.assertFalse(_inputs_have_equal_length(lowerCAmelCase_ ) ) # truncate to smallest with np lowerCAmelCase__ = feat_extract.pad( lowerCAmelCase_ , padding="max_length" , max_length=len(speech_inputs[0] ) , return_tensors="np" , truncation=lowerCAmelCase_ , ) lowerCAmelCase__ = input_a[input_name] lowerCAmelCase__ = feat_extract.pad( lowerCAmelCase_ , padding="max_length" , max_length=len(speech_inputs[0] ) , return_tensors="np" ) lowerCAmelCase__ = input_a[input_name] self.assertTrue(_inputs_have_equal_length(lowerCAmelCase_ ) ) self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(lowerCAmelCase_ ) ) # truncate to middle lowerCAmelCase__ = feat_extract.pad( lowerCAmelCase_ , padding="max_length" , max_length=len(speech_inputs[1] ) , truncation=lowerCAmelCase_ , return_tensors="np" , ) lowerCAmelCase__ = input_a[input_name] lowerCAmelCase__ = feat_extract.pad( lowerCAmelCase_ , padding="max_length" , max_length=len(speech_inputs[1] ) , truncation=lowerCAmelCase_ ) lowerCAmelCase__ = input_a[input_name] lowerCAmelCase__ = feat_extract.pad( lowerCAmelCase_ , padding="max_length" , max_length=len(speech_inputs[1] ) , return_tensors="np" ) lowerCAmelCase__ = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) ) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase_ ) ) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase_ ) ) self.assertTrue(_inputs_are_equal(lowerCAmelCase_ , lowerCAmelCase_ ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(lowerCAmelCase_ ) ) self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) ) # padding has to be max_length when setting `truncation=True` with self.assertRaises(lowerCAmelCase_ ): feat_extract.pad(lowerCAmelCase_ , truncation=lowerCAmelCase_ )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(lowerCAmelCase_ ): feat_extract.pad(lowerCAmelCase_ , padding="longest" , truncation=lowerCAmelCase_ )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(lowerCAmelCase_ ): feat_extract.pad(lowerCAmelCase_ , padding="longest" , truncation=lowerCAmelCase_ )[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(lowerCAmelCase_ ): feat_extract.pad(lowerCAmelCase_ , padding="max_length" , truncation=lowerCAmelCase_ )[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy lowerCAmelCase__ = 12 lowerCAmelCase__ = feat_extract.pad( lowerCAmelCase_ , padding="max_length" , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=lowerCAmelCase_ , truncation=lowerCAmelCase_ , ) lowerCAmelCase__ = input_a[input_name] lowerCAmelCase__ = feat_extract.pad( lowerCAmelCase_ , padding="max_length" , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=lowerCAmelCase_ , ) lowerCAmelCase__ = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of lowerCAmelCase__ = len(speech_inputs[0] ) if expected_length % pad_to_multiple_of != 0: lowerCAmelCase__ = ((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0] ) == expected_length ) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase_ ) ) self.assertFalse(_inputs_have_equal_length(lowerCAmelCase_ ) ) def a ( self : Any ) -> List[Any]: self._check_padding(numpify=lowerCAmelCase_ ) def a ( self : int ) -> Union[str, Any]: self._check_padding(numpify=lowerCAmelCase_ ) def a ( self : Union[str, Any] ) -> Union[str, Any]: self._check_truncation(numpify=lowerCAmelCase_ ) def a ( self : Dict ) -> Union[str, Any]: self._check_truncation(numpify=lowerCAmelCase_ ) @require_torch def a ( self : str ) -> Tuple: lowerCAmelCase__ = self.feature_extraction_class(**self.feat_extract_dict ) lowerCAmelCase__ = self.feat_extract_tester.prepare_inputs_for_common() lowerCAmelCase__ = feat_extract.model_input_names[0] lowerCAmelCase__ = BatchFeature({input_name: speech_inputs} ) lowerCAmelCase__ = feat_extract.pad(lowerCAmelCase_ , padding="longest" , return_tensors="np" )[input_name] lowerCAmelCase__ = feat_extract.pad(lowerCAmelCase_ , padding="longest" , return_tensors="pt" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) @require_tf def a ( self : List[Any] ) -> Any: lowerCAmelCase__ = self.feature_extraction_class(**self.feat_extract_dict ) lowerCAmelCase__ = self.feat_extract_tester.prepare_inputs_for_common() lowerCAmelCase__ = feat_extract.model_input_names[0] lowerCAmelCase__ = BatchFeature({input_name: speech_inputs} ) lowerCAmelCase__ = feat_extract.pad(lowerCAmelCase_ , padding="longest" , return_tensors="np" )[input_name] lowerCAmelCase__ = feat_extract.pad(lowerCAmelCase_ , padding="longest" , return_tensors="tf" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def a ( self : Dict ) -> Optional[Any]: lowerCAmelCase__ = self.feat_extract_dict lowerCAmelCase__ = True lowerCAmelCase__ = self.feature_extraction_class(**lowerCAmelCase_ ) lowerCAmelCase__ = self.feat_extract_tester.prepare_inputs_for_common() lowerCAmelCase__ = [len(lowerCAmelCase_ ) for x in speech_inputs] lowerCAmelCase__ = feat_extract.model_input_names[0] lowerCAmelCase__ = BatchFeature({input_name: speech_inputs} ) lowerCAmelCase__ = feat_extract.pad(lowerCAmelCase_ , padding="longest" , return_tensors="np" ) self.assertIn("attention_mask" , lowerCAmelCase_ ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , lowerCAmelCase_ ) def a ( self : str ) -> Optional[Any]: lowerCAmelCase__ = self.feat_extract_dict lowerCAmelCase__ = True lowerCAmelCase__ = self.feature_extraction_class(**lowerCAmelCase_ ) lowerCAmelCase__ = self.feat_extract_tester.prepare_inputs_for_common() lowerCAmelCase__ = [len(lowerCAmelCase_ ) for x in speech_inputs] lowerCAmelCase__ = feat_extract.model_input_names[0] lowerCAmelCase__ = BatchFeature({input_name: speech_inputs} ) lowerCAmelCase__ = min(lowerCAmelCase_ ) lowerCAmelCase__ = feat_extract.pad( lowerCAmelCase_ , padding="max_length" , max_length=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors="np" ) self.assertIn("attention_mask" , lowerCAmelCase_ ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] )
712
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" snake_case__ = ["image_processor", "tokenizer"] snake_case__ = "ViTImageProcessor" snake_case__ = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : str=None , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> str: lowerCAmelCase__ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = kwargs.pop("feature_extractor" ) lowerCAmelCase__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __call__( self : List[str] , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , **SCREAMING_SNAKE_CASE__ : Tuple ) -> Tuple: if text is None and visual_prompt is None and images is None: raise ValueError("You have to specify either text, visual prompt or images." ) if text is not None and visual_prompt is not None: raise ValueError("You have to specify exactly one type of prompt. Either text or visual prompt." ) if text is not None: lowerCAmelCase__ = self.tokenizer(SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) if visual_prompt is not None: lowerCAmelCase__ = self.image_processor(SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) if images is not None: lowerCAmelCase__ = self.image_processor(SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) if visual_prompt is not None and images is not None: lowerCAmelCase__ = { "pixel_values": image_features.pixel_values, "conditional_pixel_values": prompt_features.pixel_values, } return encoding elif text is not None and images is not None: lowerCAmelCase__ = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: lowerCAmelCase__ = { "conditional_pixel_values": prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**SCREAMING_SNAKE_CASE__ ) , tensor_type=SCREAMING_SNAKE_CASE__ ) def a ( self : Any , *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[str]: return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def a ( self : str , *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Dict: return self.tokenizer.decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) @property def a ( self : Dict ) -> Optional[Any]: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , SCREAMING_SNAKE_CASE__ , ) return self.image_processor_class @property def a ( self : Union[str, Any] ) -> int: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , SCREAMING_SNAKE_CASE__ , ) return self.image_processor
125
0
'''simple docstring''' import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class a_ ( unittest.TestCase ): def __init__( self : Dict , a_ : List[Any] , a_ : bool = True , a_ : Dict[str, int] = None , a_ : int = 3_2 , a_ : bool = True , a_ : Union[int, float] = 1 / 2_5_5 , a_ : bool = True , a_ : bool = True , a_ : Optional[Union[float, List[float]]] = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , a_ : Optional[Union[float, List[float]]] = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , a_ : bool = True , a_ : Optional[Any]=7 , a_ : Any=3_0 , a_ : Optional[int]=4_0_0 , a_ : Optional[Any]=3 , ) -> Union[str, Any]: snake_case: int =parent snake_case: Union[str, Any] =do_resize snake_case: Union[str, Any] =size if size is not None else {'shortest_edge': 2_8_8} snake_case: Union[str, Any] =size_divisor snake_case: Dict =do_rescale snake_case: List[Any] =rescale_factor snake_case: Tuple =do_normalize snake_case: List[Any] =do_center_crop snake_case: Union[str, Any] =image_mean snake_case: Optional[Any] =image_std snake_case: Union[str, Any] =do_pad snake_case: int =batch_size snake_case: Optional[Any] =num_channels snake_case: str =min_resolution snake_case: List[str] =max_resolution def UpperCamelCase ( self : List[Any] ) -> Optional[int]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def UpperCamelCase ( self : Optional[int] , a_ : str , a_ : Optional[Any]=False ) -> str: if not batched: snake_case: str =self.size['shortest_edge'] snake_case: Union[str, Any] =image_inputs[0] if isinstance(a_ , Image.Image ): snake_case , snake_case: Tuple =image.size else: snake_case , snake_case: Dict =image.shape[1], image.shape[2] snake_case: Tuple =size / min(a_ , a_ ) if h < w: snake_case , snake_case: List[Any] =size, scale * w else: snake_case , snake_case: List[str] =scale * h, size snake_case: List[Any] =int((1_3_3_3 / 8_0_0) * size ) if max(a_ , a_ ) > max_size: snake_case: List[Any] =max_size / max(a_ , a_ ) snake_case: List[str] =newh * scale snake_case: Optional[int] =neww * scale snake_case , snake_case: Dict =int(newh + 0.5 ), int(neww + 0.5 ) snake_case , snake_case: List[str] =( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: snake_case: Any =[] for image in image_inputs: snake_case , snake_case: Union[str, Any] =self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case: int =max(a_ , key=lambda a_ : item[0] )[0] snake_case: Any =max(a_ , key=lambda a_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class a_ ( snake_case , unittest.TestCase ): UpperCAmelCase : Any = BridgeTowerImageProcessor if is_vision_available() else None def UpperCamelCase ( self : str ) -> Dict: snake_case: Tuple =BridgeTowerImageProcessingTester(self ) @property def UpperCamelCase ( self : Union[str, Any] ) -> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase ( self : List[str] ) -> Dict: snake_case: Optional[Any] =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a_ , 'image_mean' ) ) self.assertTrue(hasattr(a_ , 'image_std' ) ) self.assertTrue(hasattr(a_ , 'do_normalize' ) ) self.assertTrue(hasattr(a_ , 'do_resize' ) ) self.assertTrue(hasattr(a_ , 'size' ) ) self.assertTrue(hasattr(a_ , 'size_divisor' ) ) def UpperCamelCase ( self : Any ) -> List[Any]: pass def UpperCamelCase ( self : Optional[int] ) -> Any: # Initialize image processor snake_case: Dict =self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case: Union[str, Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ ) for image in image_inputs: self.assertIsInstance(a_ , Image.Image ) # Test not batched input snake_case: List[str] =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case , snake_case: Optional[int] =self.image_processor_tester.get_expected_values(a_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case: str =image_processing(a_ , return_tensors='pt' ).pixel_values snake_case , snake_case: Optional[Any] =self.image_processor_tester.get_expected_values(a_ , batched=a_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase ( self : Optional[int] ) -> Dict: # Initialize image processor snake_case: Optional[Any] =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case: str =prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , numpify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , np.ndarray ) # Test not batched input snake_case: Optional[Any] =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case , snake_case: Optional[int] =self.image_processor_tester.get_expected_values(a_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case: int =image_processing(a_ , return_tensors='pt' ).pixel_values snake_case , snake_case: str =self.image_processor_tester.get_expected_values(a_ , batched=a_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase ( self : Any ) -> Any: # Initialize image processor snake_case: int =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case: Dict =prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , torchify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , torch.Tensor ) # Test not batched input snake_case: int =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case , snake_case: List[str] =self.image_processor_tester.get_expected_values(a_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case: Union[str, Any] =image_processing(a_ , return_tensors='pt' ).pixel_values snake_case , snake_case: Optional[int] =self.image_processor_tester.get_expected_values(a_ , batched=a_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
350
'''simple docstring''' from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class a_ : pass
350
1
import warnings from typing import Dict, List, Optional, Tuple from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ : int = logging.get_logger(__name__) class UpperCamelCase ( _UpperCAmelCase ): lowerCAmelCase : int = ["""input_ids""", """attention_mask"""] def __init__( self , UpperCAmelCase__="</s>" , UpperCAmelCase__="<unk>" , UpperCAmelCase__="<pad>" , UpperCAmelCase__=125 , UpperCAmelCase__=None , **UpperCAmelCase__ , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: A__ = [F"""<extra_id_{i}>""" for i in range(UpperCAmelCase__ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens A__ = len(set(filter(lambda UpperCAmelCase__ : bool("extra_id" in str(UpperCAmelCase__ ) ) , UpperCAmelCase__ ) ) ) if extra_tokens != extra_ids: raise ValueError( F"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are""" " provided to ByT5Tokenizer. In this case the additional_special_tokens must include the" " extra_ids tokens" ) A__ = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else pad_token A__ = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else eos_token A__ = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else unk_token super().__init__( eos_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , extra_ids=UpperCAmelCase__ , additional_special_tokens=UpperCAmelCase__ , **UpperCAmelCase__ , ) A__ = extra_ids A__ = 2**8 # utf is 8 bits # define special tokens dict A__ = { self.pad_token: 0, self.eos_token: 1, self.unk_token: 2, } A__ = len(self.special_tokens_encoder ) A__ = len(UpperCAmelCase__ ) for i, token in enumerate(UpperCAmelCase__ ): A__ = self.vocab_size + i - n A__ = {v: k for k, v in self.special_tokens_encoder.items()} @property def __A ( self ): return self._utf_vocab_size + self._num_special_tokens + self._extra_ids def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ = None , UpperCAmelCase__ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase__ , token_ids_a=UpperCAmelCase__ , already_has_special_tokens=UpperCAmelCase__ ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(UpperCAmelCase__ )) + [1] return ([0] * len(UpperCAmelCase__ )) + [1] + ([0] * len(UpperCAmelCase__ )) + [1] def __A ( self , UpperCAmelCase__ ): if len(UpperCAmelCase__ ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F"""This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated""" " eos tokens being added." ) return token_ids else: return token_ids + [self.eos_token_id] def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ = None ): A__ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ = None ): A__ = self._add_eos_if_not_present(UpperCAmelCase__ ) if token_ids_a is None: return token_ids_a else: A__ = self._add_eos_if_not_present(UpperCAmelCase__ ) return token_ids_a + token_ids_a def __A ( self , UpperCAmelCase__ ): A__ = [chr(UpperCAmelCase__ ) for i in text.encode("utf-8" )] return tokens def __A ( self , UpperCAmelCase__ ): if token in self.special_tokens_encoder: A__ = self.special_tokens_encoder[token] elif token in self.added_tokens_encoder: A__ = self.added_tokens_encoder[token] elif len(UpperCAmelCase__ ) != 1: A__ = self.unk_token_id else: A__ = ord(UpperCAmelCase__ ) + self._num_special_tokens return token_id def __A ( self , UpperCAmelCase__ ): if index in self.special_tokens_decoder: A__ = self.special_tokens_decoder[index] else: A__ = chr(index - self._num_special_tokens ) return token def __A ( self , UpperCAmelCase__ ): A__ = b"" for token in tokens: if token in self.special_tokens_decoder: A__ = self.special_tokens_decoder[token].encode("utf-8" ) elif token in self.added_tokens_decoder: A__ = self.special_tokens_decoder[token].encode("utf-8" ) elif token in self.special_tokens_encoder: A__ = token.encode("utf-8" ) elif token in self.added_tokens_encoder: A__ = token.encode("utf-8" ) else: A__ = bytes([ord(UpperCAmelCase__ )] ) bstring += tok_string A__ = bstring.decode("utf-8" , errors="ignore" ) return string def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ = None ): return ()
232
# Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() UpperCAmelCase_ : Union[str, Any] = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model UpperCAmelCase_ : Any = { # fairseq: "wmt19-ru-en": {"length_penalty": 1.1}, "wmt19-en-ru": {"length_penalty": 1.15}, "wmt19-en-de": {"length_penalty": 1.0}, "wmt19-de-en": {"length_penalty": 1.1}, # allenai: "wmt16-en-de-dist-12-1": {"length_penalty": 0.6}, "wmt16-en-de-dist-6-1": {"length_penalty": 0.6}, "wmt16-en-de-12-1": {"length_penalty": 0.8}, "wmt19-de-en-6-6-base": {"length_penalty": 0.6}, "wmt19-de-en-6-6-big": {"length_penalty": 0.6}, } # this remaps the different models to their organization names UpperCAmelCase_ : Union[str, Any] = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: UpperCAmelCase_ : Union[str, Any] = "facebook" for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: UpperCAmelCase_ : List[str] = "allenai" def UpperCamelCase ( _A : Tuple )-> Dict: """simple docstring""" A__ = dict((re.sub(R"@@$" , "" , _A ), v) if k.endswith("@@" ) else (re.sub(R"$" , "</w>" , _A ), v) for k, v in d.items() ) A__ = "<s> <pad> </s> <unk>".split() # restore the special tokens for k in keep_keys: del da[f"""{k}</w>"""] A__ = d[k] # restore return da def UpperCamelCase ( _A : str , _A : Dict )-> Dict: """simple docstring""" assert os.path.exists(_A ) os.makedirs(_A , exist_ok=_A ) print(f"""Writing results to {pytorch_dump_folder_path}""" ) # handle various types of models A__ = basename(_A ) A__ = dirname(_A ) A__ = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel A__ = cls.hub_models() A__ = {"bpe": "fastbpe", "tokenizer": "moses"} A__ = "." # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(f"""using checkpoint {checkpoint_file}""" ) A__ = hub_utils.from_pretrained( _A , _A , _A , archive_map=_A , **_A ) A__ = vars(chkpt["args"]["model"] ) A__ = args["source_lang"] A__ = args["target_lang"] A__ = dirname(_A ) A__ = basename(_A ) # dicts A__ = os.path.join(_A , f"""dict.{src_lang}.txt""" ) A__ = os.path.join(_A , f"""dict.{tgt_lang}.txt""" ) A__ = Dictionary.load(_A ) A__ = rewrite_dict_keys(src_dict.indices ) A__ = len(_A ) A__ = os.path.join(_A , "vocab-src.json" ) print(f"""Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records""" ) with open(_A , "w" , encoding="utf-8" ) as f: f.write(json.dumps(_A , ensure_ascii=_A , indent=_A ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab A__ = True for k in src_vocab.keys(): if not k.islower(): A__ = False break A__ = Dictionary.load(_A ) A__ = rewrite_dict_keys(tgt_dict.indices ) A__ = len(_A ) A__ = os.path.join(_A , "vocab-tgt.json" ) print(f"""Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records""" ) with open(_A , "w" , encoding="utf-8" ) as f: f.write(json.dumps(_A , ensure_ascii=_A , indent=_A ) ) # merges_file (bpecodes) A__ = os.path.join(_A , VOCAB_FILES_NAMES["merges_file"] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" A__ = os.path.join(_A , _A ) if os.path.exists(_A ): break with open(_A , encoding="utf-8" ) as fin: A__ = fin.read() A__ = re.sub(R" \d+$" , "" , _A , 0 , re.M ) # remove frequency number print(f"""Generating {merges_file}""" ) with open(_A , "w" , encoding="utf-8" ) as fout: fout.write(_A ) # model config A__ = os.path.join(_A , "config.json" ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", f"""need to extend tokenizer to support bpe={args["bpe"]}""" assert args["tokenizer"] == "moses", f"""need to extend tokenizer to support bpe={args["tokenizer"]}""" A__ = { "architectures": ["FSMTForConditionalGeneration"], "model_type": "fsmt", "activation_dropout": args["activation_dropout"], "activation_function": "relu", "attention_dropout": args["attention_dropout"], "d_model": args["decoder_embed_dim"], "dropout": args["dropout"], "init_std": 0.02, "max_position_embeddings": args["max_source_positions"], "num_hidden_layers": args["encoder_layers"], "src_vocab_size": src_vocab_size, "tgt_vocab_size": tgt_vocab_size, "langs": [src_lang, tgt_lang], "encoder_attention_heads": args["encoder_attention_heads"], "encoder_ffn_dim": args["encoder_ffn_embed_dim"], "encoder_layerdrop": args["encoder_layerdrop"], "encoder_layers": args["encoder_layers"], "decoder_attention_heads": args["decoder_attention_heads"], "decoder_ffn_dim": args["decoder_ffn_embed_dim"], "decoder_layerdrop": args["decoder_layerdrop"], "decoder_layers": args["decoder_layers"], "bos_token_id": 0, "pad_token_id": 1, "eos_token_id": 2, "is_encoder_decoder": True, "scale_embedding": not args["no_scale_embedding"], "tie_word_embeddings": args["share_all_embeddings"], } # good hparam defaults to start with A__ = 5 A__ = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: A__ = best_score_hparams[model_dir]["length_penalty"] else: A__ = 1.0 print(f"""Generating {fsmt_model_config_file}""" ) with open(_A , "w" , encoding="utf-8" ) as f: f.write(json.dumps(_A , ensure_ascii=_A , indent=_A ) ) # tokenizer config A__ = os.path.join(_A , _A ) A__ = { "langs": [src_lang, tgt_lang], "model_max_length": 1024, "do_lower_case": do_lower_case, } print(f"""Generating {fsmt_tokenizer_config_file}""" ) with open(_A , "w" , encoding="utf-8" ) as f: f.write(json.dumps(_A , ensure_ascii=_A , indent=_A ) ) # model A__ = chkpt["models"][0] A__ = model.state_dict() # rename keys to start with 'model.' A__ = OrderedDict(("model." + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys A__ = [ "model.model", "model.encoder.version", "model.decoder.version", "model.encoder_embed_tokens.weight", "model.decoder_embed_tokens.weight", "model.encoder.embed_positions._float_tensor", "model.decoder.embed_positions._float_tensor", ] for k in ignore_keys: model_state_dict.pop(_A , _A ) A__ = FSMTConfig.from_pretrained(_A ) A__ = FSMTForConditionalGeneration(_A ) # check that it loads ok model_new.load_state_dict(_A , strict=_A ) # save A__ = os.path.join(_A , _A ) print(f"""Generating {pytorch_weights_dump_path}""" ) torch.save(_A , _A ) print("Conversion is done!" ) print("\nLast step is to upload the files to s3" ) print(f"""cd {data_root}""" ) print(f"""transformers-cli upload {model_dir}""" ) if __name__ == "__main__": UpperCAmelCase_ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fsmt_checkpoint_path", default=None, type=str, required=True, help=( "Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts," " bpecodes, etc." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCAmelCase_ : Dict = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
232
1
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") __UpperCamelCase : List[str] = logging.getLogger(__name__) @dataclass class __lowerCAmelCase : UpperCamelCase__ = field( default='''tab_fact''' , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) UpperCamelCase__ = field( default='''tab_fact''' , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} , ) UpperCamelCase__ = field( default=1024 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) UpperCamelCase__ = field( default=__magic_name__ , metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} ) UpperCamelCase__ = field( default=__magic_name__ , metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) } , ) UpperCamelCase__ = field( default=__magic_name__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) UpperCamelCase__ = field( default=__magic_name__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) UpperCamelCase__ = field( default=__magic_name__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of prediction examples to this ''' '''value if set.''' ) } , ) UpperCamelCase__ = field( default=__magic_name__ , metadata={'''help''': '''A csv or a json file containing the training data.'''} ) UpperCamelCase__ = field( default=__magic_name__ , metadata={'''help''': '''A csv or a json file containing the validation data.'''} ) UpperCamelCase__ = field(default=__magic_name__ , metadata={'''help''': '''A csv or a json file containing the test data.'''} ) def lowerCamelCase__ ( self :Union[str, Any] ): '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError("""Need either a GLUE task, a training/validation file or a dataset name.""" ) else: a = self.train_file.split(""".""" )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." a = self.validation_file.split(""".""" )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class __lowerCAmelCase : UpperCamelCase__ = field( default=__magic_name__ , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) UpperCamelCase__ = field( default=__magic_name__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase__ = field( default=__magic_name__ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase__ = field( default=__magic_name__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) UpperCamelCase__ = field( default=__magic_name__ , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) UpperCamelCase__ = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCamelCase__ = field( default=__magic_name__ , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) def __A ( ) -> List[str]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. a = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. a , a , a = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: a , a , a = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) a = training_args.get_process_log_level() logger.setLevel(__lowerCamelCase ) datasets.utils.logging.set_verbosity(__lowerCamelCase ) transformers.utils.logging.set_verbosity(__lowerCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. a = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: a = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. a = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. a = {"""train""": data_args.train_file, """validation""": data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: a = data_args.train_file.split(""".""" )[-1] a = data_args.test_file.split(""".""" )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." a = data_args.test_file else: raise ValueError("""Need either a GLUE task or a test file for `do_predict`.""" ) for key in data_files.keys(): logger.info(f'load a local file for {key}: {data_files[key]}' ) if data_args.train_file.endswith(""".csv""" ): # Loading a dataset from local csv files a = load_dataset("""csv""" , data_files=__lowerCamelCase , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files a = load_dataset("""json""" , data_files=__lowerCamelCase , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels a = raw_datasets["""train"""].features["""label"""].names a = len(__lowerCamelCase ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. a = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__lowerCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer a = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=__lowerCamelCase , ) a = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=__lowerCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: a = """max_length""" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch a = False # Some models have set the order of the labels to use, so let's make sure we do use it. a = {"""Refused""": 0, """Entailed""": 1} a = {0: """Refused""", 1: """Entailed"""} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f'The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the' f'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) a = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(__lowerCamelCase ): # Tokenize the texts def _convert_table_text_to_pandas(__lowerCamelCase ): a = [_table_row.split("""#""" ) for _table_row in _table_text.strip("""\n""" ).split("""\n""" )] a = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd a = examples["""statement"""] a = list(map(_convert_table_text_to_pandas , examples["""table_text"""] ) ) a = tokenizer(__lowerCamelCase , __lowerCamelCase , padding=__lowerCamelCase , max_length=__lowerCamelCase , truncation=__lowerCamelCase ) a = examples["""label"""] return result with training_args.main_process_first(desc="""dataset map pre-processing""" ): a = raw_datasets.map( __lowerCamelCase , batched=__lowerCamelCase , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on dataset""" , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) a = raw_datasets["""train"""] if data_args.max_train_samples is not None: a = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) a = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: a = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError("""--do_predict requires a test dataset""" ) a = raw_datasets["""test"""] if data_args.max_predict_samples is not None: a = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(__lowerCamelCase ) ) , 3 ): logger.info(f'Sample {index} of the training set: {train_dataset[index]}.' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__lowerCamelCase ): a = p.predictions[0] if isinstance(p.predictions , __lowerCamelCase ) else p.predictions a = np.argmax(__lowerCamelCase , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: a = default_data_collator elif training_args.fpaa: a = DataCollatorWithPadding(__lowerCamelCase , pad_to_multiple_of=8 ) else: a = None # Initialize our Trainer a = Trainer( model=__lowerCamelCase , args=__lowerCamelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=__lowerCamelCase , tokenizer=__lowerCamelCase , data_collator=__lowerCamelCase , ) # Training if training_args.do_train: a = None if training_args.resume_from_checkpoint is not None: a = training_args.resume_from_checkpoint elif last_checkpoint is not None: a = last_checkpoint a = trainer.train(resume_from_checkpoint=__lowerCamelCase ) a = train_result.metrics a = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__lowerCamelCase ) ) a = min(__lowerCamelCase , len(__lowerCamelCase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("""train""" , __lowerCamelCase ) trainer.save_metrics("""train""" , __lowerCamelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) a = trainer.evaluate(eval_dataset=__lowerCamelCase ) a = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__lowerCamelCase ) a = min(__lowerCamelCase , len(__lowerCamelCase ) ) trainer.log_metrics("""eval""" , __lowerCamelCase ) trainer.save_metrics("""eval""" , __lowerCamelCase ) if training_args.do_predict: logger.info("""*** Predict ***""" ) # Removing the `label` columns because it contains -1 and Trainer won't like that. a = predict_dataset.remove_columns("""label""" ) a = trainer.predict(__lowerCamelCase , metric_key_prefix="""predict""" ).predictions a = np.argmax(__lowerCamelCase , axis=1 ) a = os.path.join(training_args.output_dir , """predict_results_tabfact.txt""" ) if trainer.is_world_process_zero(): with open(__lowerCamelCase , """w""" ) as writer: logger.info("""***** Predict Results *****""" ) writer.write("""index\tprediction\n""" ) for index, item in enumerate(__lowerCamelCase ): a = label_list[item] writer.write(f'{index}\t{item}\n' ) a = {"""finetuned_from""": model_args.model_name_or_path, """tasks""": """text-classification"""} if training_args.push_to_hub: trainer.push_to_hub(**__lowerCamelCase ) else: trainer.create_model_card(**__lowerCamelCase ) def __A ( __lowerCamelCase ) -> List[str]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
468
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def __A ( __lowerCamelCase , __lowerCamelCase=None ) -> Tuple: a = None if token is not None: a = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'Bearer {token}'} a = f'https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100' a = requests.get(__lowerCamelCase , headers=__lowerCamelCase ).json() a = {} try: job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) a = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(__lowerCamelCase ): a = requests.get(url + f'&page={i + 2}' , headers=__lowerCamelCase ).json() job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return job_links except Exception: print(f'Unknown error, could not fetch links:\n{traceback.format_exc()}' ) return {} def __A ( __lowerCamelCase , __lowerCamelCase=None ) -> Dict: a = None if token is not None: a = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'Bearer {token}'} a = f'https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100' a = requests.get(__lowerCamelCase , headers=__lowerCamelCase ).json() a = {} try: artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) a = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(__lowerCamelCase ): a = requests.get(url + f'&page={i + 2}' , headers=__lowerCamelCase ).json() artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) return artifacts except Exception: print(f'Unknown error, could not fetch links:\n{traceback.format_exc()}' ) return {} def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[int]: a = None if token is not None: a = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'Bearer {token}'} a = requests.get(__lowerCamelCase , headers=__lowerCamelCase , allow_redirects=__lowerCamelCase ) a = result.headers["""Location"""] a = requests.get(__lowerCamelCase , allow_redirects=__lowerCamelCase ) a = os.path.join(__lowerCamelCase , f'{artifact_name}.zip' ) with open(__lowerCamelCase , """wb""" ) as fp: fp.write(response.content ) def __A ( __lowerCamelCase , __lowerCamelCase=None ) -> Tuple: a = [] a = [] a = None with zipfile.ZipFile(__lowerCamelCase ) as z: for filename in z.namelist(): if not os.path.isdir(__lowerCamelCase ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(__lowerCamelCase ) as f: for line in f: a = line.decode("""UTF-8""" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs a = line[: line.index(""": """ )] a = line[line.index(""": """ ) + len(""": """ ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("""FAILED """ ): # `test` is the test method that failed a = line[len("""FAILED """ ) :] failed_tests.append(__lowerCamelCase ) elif filename == "job_name.txt": a = line if len(__lowerCamelCase ) != len(__lowerCamelCase ): raise ValueError( f'`errors` and `failed_tests` should have the same number of elements. Got {len(__lowerCamelCase )} for `errors` ' f'and {len(__lowerCamelCase )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some' """ problem.""" ) a = None if job_name and job_links: a = job_links.get(__lowerCamelCase , __lowerCamelCase ) # A list with elements of the form (line of error, error, failed test) a = [x + [y] + [job_link] for x, y in zip(__lowerCamelCase , __lowerCamelCase )] return result def __A ( __lowerCamelCase , __lowerCamelCase=None ) -> Dict: a = [] a = [os.path.join(__lowerCamelCase , __lowerCamelCase ) for p in os.listdir(__lowerCamelCase ) if p.endswith(""".zip""" )] for p in paths: errors.extend(get_errors_from_single_artifact(__lowerCamelCase , job_links=__lowerCamelCase ) ) return errors def __A ( __lowerCamelCase , __lowerCamelCase=None ) -> Tuple: a = Counter() counter.update([x[1] for x in logs] ) a = counter.most_common() a = {} for error, count in counts: if error_filter is None or error not in error_filter: a = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]} a = dict(sorted(r.items() , key=lambda __lowerCamelCase : item[1]["count"] , reverse=__lowerCamelCase ) ) return r def __A ( __lowerCamelCase ) -> List[str]: a = test.split("""::""" )[0] if test.startswith("""tests/models/""" ): a = test.split("""/""" )[2] else: a = None return test def __A ( __lowerCamelCase , __lowerCamelCase=None ) -> Any: a = [(x[0], x[1], get_model(x[2] )) for x in logs] a = [x for x in logs if x[2] is not None] a = {x[2] for x in logs} a = {} for test in tests: a = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) a = counter.most_common() a = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} a = sum(error_counts.values() ) if n_errors > 0: a = {"""count""": n_errors, """errors""": error_counts} a = dict(sorted(r.items() , key=lambda __lowerCamelCase : item[1]["count"] , reverse=__lowerCamelCase ) ) return r def __A ( __lowerCamelCase ) -> Optional[int]: a = """| no. | error | status |""" a = """|-:|:-|:-|""" a = [header, sep] for error in reduced_by_error: a = reduced_by_error[error]["""count"""] a = f'| {count} | {error[:100]} | |' lines.append(__lowerCamelCase ) return "\n".join(__lowerCamelCase ) def __A ( __lowerCamelCase ) -> int: a = """| model | no. of errors | major error | count |""" a = """|-:|-:|-:|-:|""" a = [header, sep] for model in reduced_by_model: a = reduced_by_model[model]["""count"""] a , a = list(reduced_by_model[model]["""errors"""].items() )[0] a = f'| {model} | {count} | {error[:60]} | {_count} |' lines.append(__lowerCamelCase ) return "\n".join(__lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") parser.add_argument( "--output_dir", type=str, required=True, help="Where to store the downloaded artifacts and other result files.", ) parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.") __UpperCamelCase : Any = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) __UpperCamelCase : Optional[Any] = get_job_links(args.workflow_run_id, token=args.token) __UpperCamelCase : str = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: __UpperCamelCase : List[str] = k.find(" / ") __UpperCamelCase : List[Any] = k[index + len(" / ") :] __UpperCamelCase : List[str] = v with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) __UpperCamelCase : Tuple = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) __UpperCamelCase : int = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error __UpperCamelCase : Optional[Any] = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors __UpperCamelCase : Any = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) __UpperCamelCase : Union[str, Any] = reduce_by_error(errors) __UpperCamelCase : Dict = reduce_by_model(errors) __UpperCamelCase : Union[str, Any] = make_github_table(reduced_by_error) __UpperCamelCase : Union[str, Any] = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp: fp.write(sa) with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp: fp.write(sa)
468
1
def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) SCREAMING_SNAKE_CASE__ = str(bin(_A ) )[2:] # remove the leading "0b" SCREAMING_SNAKE_CASE__ = str(bin(_A ) )[2:] # remove the leading "0b" SCREAMING_SNAKE_CASE__ = max(len(_A ) , len(_A ) ) return "0b" + "".join( str(int(char_a == '''1''' and char_b == '''1''' ) ) for char_a, char_b in zip(a_binary.zfill(_A ) , b_binary.zfill(_A ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
472
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) def UpperCAmelCase_ ( _A , _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = original_name.split('''.''' )[0] SCREAMING_SNAKE_CASE__ = key.split('''.''' ) SCREAMING_SNAKE_CASE__ = int(key_list[key_list.index(_A ) - 2] ) SCREAMING_SNAKE_CASE__ = int(key_list[key_list.index(_A ) - 1] ) SCREAMING_SNAKE_CASE__ = orig_block_num - offset SCREAMING_SNAKE_CASE__ = key.replace(F'''{orig_block_num}.{layer_num}.{original_name}''' , F'''block.{new_block_num}.{layer_num}.{new_name}''' ) return key def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = OrderedDict() SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = 0, 0 for key, value in state_dict.items(): if key.startswith('''network''' ): SCREAMING_SNAKE_CASE__ = key.replace('''network''' , '''poolformer.encoder''' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('''bias''' ) and "patch_embed" not in key: patch_emb_offset += 1 SCREAMING_SNAKE_CASE__ = key[: key.find('''proj''' )] SCREAMING_SNAKE_CASE__ = key.replace(_A , F'''patch_embeddings.{total_embed_found}.''' ) SCREAMING_SNAKE_CASE__ = key.replace('''proj''' , '''projection''' ) if key.endswith('''bias''' ): total_embed_found += 1 if "patch_embeddings" in key: SCREAMING_SNAKE_CASE__ = '''poolformer.encoder.''' + key if "mlp.fc1" in key: SCREAMING_SNAKE_CASE__ = replace_key_with_offset(_A , _A , '''mlp.fc1''' , '''output.conv1''' ) if "mlp.fc2" in key: SCREAMING_SNAKE_CASE__ = replace_key_with_offset(_A , _A , '''mlp.fc2''' , '''output.conv2''' ) if "norm1" in key: SCREAMING_SNAKE_CASE__ = replace_key_with_offset(_A , _A , '''norm1''' , '''before_norm''' ) if "norm2" in key: SCREAMING_SNAKE_CASE__ = replace_key_with_offset(_A , _A , '''norm2''' , '''after_norm''' ) if "layer_scale_1" in key: SCREAMING_SNAKE_CASE__ = replace_key_with_offset(_A , _A , '''layer_scale_1''' , '''layer_scale_1''' ) if "layer_scale_2" in key: SCREAMING_SNAKE_CASE__ = replace_key_with_offset(_A , _A , '''layer_scale_2''' , '''layer_scale_2''' ) if "head" in key: SCREAMING_SNAKE_CASE__ = key.replace('''head''' , '''classifier''' ) SCREAMING_SNAKE_CASE__ = value return new_state_dict def UpperCAmelCase_ ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' SCREAMING_SNAKE_CASE__ = Image.open(requests.get(_A , stream=_A ).raw ) return image @torch.no_grad() def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = PoolFormerConfig() # set attributes based on model_name SCREAMING_SNAKE_CASE__ = '''huggingface/label-files''' SCREAMING_SNAKE_CASE__ = model_name[-3:] SCREAMING_SNAKE_CASE__ = 10_00 SCREAMING_SNAKE_CASE__ = '''imagenet-1k-id2label.json''' SCREAMING_SNAKE_CASE__ = (1, 10_00) # set config attributes SCREAMING_SNAKE_CASE__ = json.load(open(hf_hub_download(_A , _A , repo_type='''dataset''' ) , '''r''' ) ) SCREAMING_SNAKE_CASE__ = {int(_A ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE__ = idalabel SCREAMING_SNAKE_CASE__ = {v: k for k, v in idalabel.items()} if size == "s12": SCREAMING_SNAKE_CASE__ = [2, 2, 6, 2] SCREAMING_SNAKE_CASE__ = [64, 1_28, 3_20, 5_12] SCREAMING_SNAKE_CASE__ = 4.0 SCREAMING_SNAKE_CASE__ = 0.9 elif size == "s24": SCREAMING_SNAKE_CASE__ = [4, 4, 12, 4] SCREAMING_SNAKE_CASE__ = [64, 1_28, 3_20, 5_12] SCREAMING_SNAKE_CASE__ = 4.0 SCREAMING_SNAKE_CASE__ = 0.9 elif size == "s36": SCREAMING_SNAKE_CASE__ = [6, 6, 18, 6] SCREAMING_SNAKE_CASE__ = [64, 1_28, 3_20, 5_12] SCREAMING_SNAKE_CASE__ = 4.0 SCREAMING_SNAKE_CASE__ = 1e-6 SCREAMING_SNAKE_CASE__ = 0.9 elif size == "m36": SCREAMING_SNAKE_CASE__ = [6, 6, 18, 6] SCREAMING_SNAKE_CASE__ = [96, 1_92, 3_84, 7_68] SCREAMING_SNAKE_CASE__ = 4.0 SCREAMING_SNAKE_CASE__ = 1e-6 SCREAMING_SNAKE_CASE__ = 0.9_5 elif size == "m48": SCREAMING_SNAKE_CASE__ = [8, 8, 24, 8] SCREAMING_SNAKE_CASE__ = [96, 1_92, 3_84, 7_68] SCREAMING_SNAKE_CASE__ = 4.0 SCREAMING_SNAKE_CASE__ = 1e-6 SCREAMING_SNAKE_CASE__ = 0.9_5 else: raise ValueError(F'''Size {size} not supported''' ) # load image processor SCREAMING_SNAKE_CASE__ = PoolFormerImageProcessor(crop_pct=_A ) # Prepare image SCREAMING_SNAKE_CASE__ = prepare_img() SCREAMING_SNAKE_CASE__ = image_processor(images=_A , return_tensors='''pt''' ).pixel_values logger.info(F'''Converting model {model_name}...''' ) # load original state dict SCREAMING_SNAKE_CASE__ = torch.load(_A , map_location=torch.device('''cpu''' ) ) # rename keys SCREAMING_SNAKE_CASE__ = rename_keys(_A ) # create HuggingFace model and load state dict SCREAMING_SNAKE_CASE__ = PoolFormerForImageClassification(_A ) model.load_state_dict(_A ) model.eval() # Define image processor SCREAMING_SNAKE_CASE__ = PoolFormerImageProcessor(crop_pct=_A ) SCREAMING_SNAKE_CASE__ = image_processor(images=prepare_img() , return_tensors='''pt''' ).pixel_values # forward pass SCREAMING_SNAKE_CASE__ = model(_A ) SCREAMING_SNAKE_CASE__ = outputs.logits # define expected logit slices for different models if size == "s12": SCREAMING_SNAKE_CASE__ = torch.tensor([-0.3_0_4_5, -0.6_7_5_8, -0.4_8_6_9] ) elif size == "s24": SCREAMING_SNAKE_CASE__ = torch.tensor([0.4_4_0_2, -0.1_3_7_4, -0.8_0_4_5] ) elif size == "s36": SCREAMING_SNAKE_CASE__ = torch.tensor([-0.6_0_8_0, -0.5_1_3_3, -0.5_8_9_8] ) elif size == "m36": SCREAMING_SNAKE_CASE__ = torch.tensor([0.3_9_5_2, 0.2_2_6_3, -1.2_6_6_8] ) elif size == "m48": SCREAMING_SNAKE_CASE__ = torch.tensor([0.1_1_6_7, -0.0_6_5_6, -0.3_4_2_3] ) else: raise ValueError(F'''Size {size} not supported''' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , _A , atol=1e-2 ) # finally, save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(_A ).mkdir(exist_ok=_A ) model.save_pretrained(_A ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_A ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''poolformer_s12''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) _SCREAMING_SNAKE_CASE : Tuple = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
472
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : List[Any] = logging.get_logger(__name__) def __lowerCamelCase ( A__ ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = DPTConfig(embedding_type='hybrid' ) if "large" in checkpoint_url: UpperCamelCase = 1_024 UpperCamelCase = 4_096 UpperCamelCase = 24 UpperCamelCase = 16 UpperCamelCase = [5, 11, 17, 23] UpperCamelCase = [256, 512, 1_024, 1_024] UpperCamelCase = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: UpperCamelCase = 768 UpperCamelCase = [1, 1, 1, 0.5] UpperCamelCase = [256, 512, 768, 768] UpperCamelCase = 150 UpperCamelCase = 16 UpperCamelCase = (1, 384, 384) UpperCamelCase = False UpperCamelCase = 'project' if "ade" in checkpoint_url: UpperCamelCase = True UpperCamelCase = 768 UpperCamelCase = [1, 1, 1, 0.5] UpperCamelCase = 150 UpperCamelCase = 16 UpperCamelCase = 'huggingface/label-files' UpperCamelCase = 'ade20k-id2label.json' UpperCamelCase = json.load(open(cached_download(hf_hub_url(A__ , A__ , repo_type='dataset' ) ) , 'r' ) ) UpperCamelCase = {int(A__ ): v for k, v in idalabel.items()} UpperCamelCase = idalabel UpperCamelCase = {v: k for k, v in idalabel.items()} UpperCamelCase = [1, 150, 480, 480] return config, expected_shape def __lowerCamelCase ( A__ ) -> int: """simple docstring""" UpperCamelCase = ['pretrained.model.head.weight', 'pretrained.model.head.bias'] for k in ignore_keys: state_dict.pop(A__ , A__ ) def __lowerCamelCase ( A__ ) -> List[Any]: """simple docstring""" if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): UpperCamelCase = name.replace('pretrained.model' , 'dpt.encoder' ) if "pretrained.model" in name: UpperCamelCase = name.replace('pretrained.model' , 'dpt.embeddings' ) if "patch_embed" in name: UpperCamelCase = name.replace('patch_embed' , '' ) if "pos_embed" in name: UpperCamelCase = name.replace('pos_embed' , 'position_embeddings' ) if "attn.proj" in name: UpperCamelCase = name.replace('attn.proj' , 'attention.output.dense' ) if "proj" in name and "project" not in name: UpperCamelCase = name.replace('proj' , 'projection' ) if "blocks" in name: UpperCamelCase = name.replace('blocks' , 'layer' ) if "mlp.fc1" in name: UpperCamelCase = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: UpperCamelCase = name.replace('mlp.fc2' , 'output.dense' ) if "norm1" in name and "backbone" not in name: UpperCamelCase = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name and "backbone" not in name: UpperCamelCase = name.replace('norm2' , 'layernorm_after' ) if "scratch.output_conv" in name: UpperCamelCase = name.replace('scratch.output_conv' , 'head' ) if "scratch" in name: UpperCamelCase = name.replace('scratch' , 'neck' ) if "layer1_rn" in name: UpperCamelCase = name.replace('layer1_rn' , 'convs.0' ) if "layer2_rn" in name: UpperCamelCase = name.replace('layer2_rn' , 'convs.1' ) if "layer3_rn" in name: UpperCamelCase = name.replace('layer3_rn' , 'convs.2' ) if "layer4_rn" in name: UpperCamelCase = name.replace('layer4_rn' , 'convs.3' ) if "refinenet" in name: UpperCamelCase = int(name[len('neck.refinenet' ) : len('neck.refinenet' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 UpperCamelCase = name.replace(F"""refinenet{layer_idx}""" , F"""fusion_stage.layers.{abs(layer_idx-4 )}""" ) if "out_conv" in name: UpperCamelCase = name.replace('out_conv' , 'projection' ) if "resConfUnit1" in name: UpperCamelCase = name.replace('resConfUnit1' , 'residual_layer1' ) if "resConfUnit2" in name: UpperCamelCase = name.replace('resConfUnit2' , 'residual_layer2' ) if "conv1" in name: UpperCamelCase = name.replace('conv1' , 'convolution1' ) if "conv2" in name: UpperCamelCase = name.replace('conv2' , 'convolution2' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: UpperCamelCase = name.replace('pretrained.act_postprocess1.0.project.0' , 'neck.reassemble_stage.readout_projects.0.0' ) if "pretrained.act_postprocess2.0.project.0" in name: UpperCamelCase = name.replace('pretrained.act_postprocess2.0.project.0' , 'neck.reassemble_stage.readout_projects.1.0' ) if "pretrained.act_postprocess3.0.project.0" in name: UpperCamelCase = name.replace('pretrained.act_postprocess3.0.project.0' , 'neck.reassemble_stage.readout_projects.2.0' ) if "pretrained.act_postprocess4.0.project.0" in name: UpperCamelCase = name.replace('pretrained.act_postprocess4.0.project.0' , 'neck.reassemble_stage.readout_projects.3.0' ) # resize blocks if "pretrained.act_postprocess1.3" in name: UpperCamelCase = name.replace('pretrained.act_postprocess1.3' , 'neck.reassemble_stage.layers.0.projection' ) if "pretrained.act_postprocess1.4" in name: UpperCamelCase = name.replace('pretrained.act_postprocess1.4' , 'neck.reassemble_stage.layers.0.resize' ) if "pretrained.act_postprocess2.3" in name: UpperCamelCase = name.replace('pretrained.act_postprocess2.3' , 'neck.reassemble_stage.layers.1.projection' ) if "pretrained.act_postprocess2.4" in name: UpperCamelCase = name.replace('pretrained.act_postprocess2.4' , 'neck.reassemble_stage.layers.1.resize' ) if "pretrained.act_postprocess3.3" in name: UpperCamelCase = name.replace('pretrained.act_postprocess3.3' , 'neck.reassemble_stage.layers.2.projection' ) if "pretrained.act_postprocess4.3" in name: UpperCamelCase = name.replace('pretrained.act_postprocess4.3' , 'neck.reassemble_stage.layers.3.projection' ) if "pretrained.act_postprocess4.4" in name: UpperCamelCase = name.replace('pretrained.act_postprocess4.4' , 'neck.reassemble_stage.layers.3.resize' ) if "pretrained" in name: UpperCamelCase = name.replace('pretrained' , 'dpt' ) if "bn" in name: UpperCamelCase = name.replace('bn' , 'batch_norm' ) if "head" in name: UpperCamelCase = name.replace('head' , 'head.head' ) if "encoder.norm" in name: UpperCamelCase = name.replace('encoder.norm' , 'layernorm' ) if "auxlayer" in name: UpperCamelCase = name.replace('auxlayer' , 'auxiliary_head.head' ) if "backbone" in name: UpperCamelCase = name.replace('backbone' , 'backbone.bit.encoder' ) if ".." in name: UpperCamelCase = name.replace('..' , '.' ) if "stem.conv" in name: UpperCamelCase = name.replace('stem.conv' , 'bit.embedder.convolution' ) if "blocks" in name: UpperCamelCase = name.replace('blocks' , 'layers' ) if "convolution" in name and "backbone" in name: UpperCamelCase = name.replace('convolution' , 'conv' ) if "layer" in name and "backbone" in name: UpperCamelCase = name.replace('layer' , 'layers' ) if "backbone.bit.encoder.bit" in name: UpperCamelCase = name.replace('backbone.bit.encoder.bit' , 'backbone.bit' ) if "embedder.conv" in name: UpperCamelCase = name.replace('embedder.conv' , 'embedder.convolution' ) if "backbone.bit.encoder.stem.norm" in name: UpperCamelCase = name.replace('backbone.bit.encoder.stem.norm' , 'backbone.bit.embedder.norm' ) return name def __lowerCamelCase ( A__ , A__ ) -> str: """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCamelCase = state_dict.pop(F"""dpt.encoder.layer.{i}.attn.qkv.weight""" ) UpperCamelCase = state_dict.pop(F"""dpt.encoder.layer.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase = in_proj_weight[: config.hidden_size, :] UpperCamelCase = in_proj_bias[: config.hidden_size] UpperCamelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCamelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCamelCase = in_proj_weight[ -config.hidden_size :, : ] UpperCamelCase = in_proj_bias[-config.hidden_size :] def __lowerCamelCase ( ) -> Optional[int]: """simple docstring""" UpperCamelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCamelCase = Image.open(requests.get(A__ , stream=A__ ).raw ) return im @torch.no_grad() def __lowerCamelCase ( A__ , A__ , A__ , A__ , A__ ) -> Union[str, Any]: """simple docstring""" UpperCamelCase , UpperCamelCase = get_dpt_config(A__ ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") UpperCamelCase = torch.load(A__ , map_location='cpu' ) # remove certain keys remove_ignore_keys_(A__ ) # rename keys for key in state_dict.copy().keys(): UpperCamelCase = state_dict.pop(A__ ) UpperCamelCase = val # read in qkv matrices read_in_q_k_v(A__ , A__ ) # load HuggingFace model UpperCamelCase = DPTForSemanticSegmentation(A__ ) if 'ade' in checkpoint_url else DPTForDepthEstimation(A__ ) model.load_state_dict(A__ ) model.eval() # Check outputs on an image UpperCamelCase = 480 if 'ade' in checkpoint_url else 384 UpperCamelCase = DPTImageProcessor(size=A__ ) UpperCamelCase = prepare_img() UpperCamelCase = image_processor(A__ , return_tensors='pt' ) # forward pass UpperCamelCase = model(**A__ ).logits if 'ade' in checkpoint_url else model(**A__ ).predicted_depth if show_prediction: UpperCamelCase = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode='bicubic' , align_corners=A__ , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(A__ ).mkdir(exist_ok=A__ ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(A__ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(A__ ) if push_to_hub: model.push_to_hub('ybelkada/dpt-hybrid-midas' ) image_processor.push_to_hub('ybelkada/dpt-hybrid-midas' ) if __name__ == "__main__": _lowerCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt", type=str, help="URL of the original DPT checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=False, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", ) parser.add_argument( "--model_name", default="dpt-large", type=str, help="Name of the model, in case you're pushing to the hub.", ) parser.add_argument( "--show_prediction", action="store_true", ) _lowerCamelCase : int = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
430
'''simple docstring''' import os import unittest from tempfile import TemporaryDirectory import torch import torch.nn as nn from accelerate.utils import ( OffloadedWeightsLoader, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, ) class SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" def __init__( self : List[Any] ): """simple docstring""" super().__init__() UpperCamelCase = nn.Linear(3 , 4 ) UpperCamelCase = nn.BatchNormad(4 ) UpperCamelCase = nn.Linear(4 , 5 ) def A ( self : str , UpperCamelCase__ : Optional[int] ): """simple docstring""" return self.lineara(self.batchnorm(self.lineara(UpperCamelCase__ ) ) ) class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def A ( self : List[Any] ): """simple docstring""" UpperCamelCase = ModelForTest() with TemporaryDirectory() as tmp_dir: offload_state_dict(UpperCamelCase__ , model.state_dict() ) UpperCamelCase = os.path.join(UpperCamelCase__ , 'index.json' ) self.assertTrue(os.path.isfile(UpperCamelCase__ ) ) # TODO: add tests on what is inside the index for key in ["linear1.weight", "linear1.bias", "linear2.weight", "linear2.bias"]: UpperCamelCase = os.path.join(UpperCamelCase__ , f"""{key}.dat""" ) self.assertTrue(os.path.isfile(UpperCamelCase__ ) ) # TODO: add tests on the fact weights are properly loaded def A ( self : str ): """simple docstring""" UpperCamelCase = [torch.floataa, torch.floataa, torch.bfloataa] for dtype in dtypes: UpperCamelCase = torch.randn(2 , 3 , dtype=UpperCamelCase__ ) with TemporaryDirectory() as tmp_dir: UpperCamelCase = offload_weight(UpperCamelCase__ , 'weight' , UpperCamelCase__ , {} ) UpperCamelCase = os.path.join(UpperCamelCase__ , 'weight.dat' ) self.assertTrue(os.path.isfile(UpperCamelCase__ ) ) self.assertDictEqual(UpperCamelCase__ , {'weight': {'shape': [2, 3], 'dtype': str(UpperCamelCase__ ).split('.' )[1]}} ) UpperCamelCase = load_offloaded_weight(UpperCamelCase__ , index['weight'] ) self.assertTrue(torch.equal(UpperCamelCase__ , UpperCamelCase__ ) ) def A ( self : int ): """simple docstring""" UpperCamelCase = ModelForTest() UpperCamelCase = model.state_dict() UpperCamelCase = {k: v for k, v in state_dict.items() if 'linear2' not in k} UpperCamelCase = {k: v for k, v in state_dict.items() if 'linear2' in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(UpperCamelCase__ , UpperCamelCase__ ) UpperCamelCase = OffloadedWeightsLoader(state_dict=UpperCamelCase__ , save_folder=UpperCamelCase__ ) # Every key is there with the right value self.assertEqual(sorted(UpperCamelCase__ ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(UpperCamelCase__ , weight_map[key] ) ) UpperCamelCase = {k: v for k, v in state_dict.items() if 'weight' in k} UpperCamelCase = {k: v for k, v in state_dict.items() if 'weight' not in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(UpperCamelCase__ , UpperCamelCase__ ) UpperCamelCase = OffloadedWeightsLoader(state_dict=UpperCamelCase__ , save_folder=UpperCamelCase__ ) # Every key is there with the right value self.assertEqual(sorted(UpperCamelCase__ ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(UpperCamelCase__ , weight_map[key] ) ) with TemporaryDirectory() as tmp_dir: offload_state_dict(UpperCamelCase__ , UpperCamelCase__ ) # Duplicates are removed UpperCamelCase = OffloadedWeightsLoader(state_dict=UpperCamelCase__ , save_folder=UpperCamelCase__ ) # Every key is there with the right value self.assertEqual(sorted(UpperCamelCase__ ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(UpperCamelCase__ , weight_map[key] ) ) def A ( self : Any ): """simple docstring""" UpperCamelCase = {'a.1': 0, 'a.10': 1, 'a.2': 2} UpperCamelCase = extract_submodules_state_dict(UpperCamelCase__ , ['a.1', 'a.2'] ) self.assertDictEqual(UpperCamelCase__ , {'a.1': 0, 'a.2': 2} ) UpperCamelCase = {'a.1.a': 0, 'a.10.a': 1, 'a.2.a': 2} UpperCamelCase = extract_submodules_state_dict(UpperCamelCase__ , ['a.1', 'a.2'] ) self.assertDictEqual(UpperCamelCase__ , {'a.1.a': 0, 'a.2.a': 2} )
430
1
"""simple docstring""" import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def a__ ( SCREAMING_SNAKE_CASE : bytes , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase : List[str] = f"""{sampling_rate}""" lowerCAmelCase : str = "1" lowerCAmelCase : int = "f32le" lowerCAmelCase : List[str] = [ "ffmpeg", "-i", "pipe:0", "-ac", ac, "-ar", ar, "-f", format_for_conversion, "-hide_banner", "-loglevel", "quiet", "pipe:1", ] try: with subprocess.Popen(SCREAMING_SNAKE_CASE , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: lowerCAmelCase : Any = ffmpeg_process.communicate(SCREAMING_SNAKE_CASE ) except FileNotFoundError as error: raise ValueError("ffmpeg was not found but is required to load audio files from filename" ) from error lowerCAmelCase : Union[str, Any] = output_stream[0] lowerCAmelCase : Tuple = np.frombuffer(SCREAMING_SNAKE_CASE , np.floataa ) if audio.shape[0] == 0: raise ValueError("Malformed soundfile" ) return audio def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : str = "f32le" , ): '''simple docstring''' lowerCAmelCase : List[Any] = f"""{sampling_rate}""" lowerCAmelCase : Tuple = "1" if format_for_conversion == "s16le": lowerCAmelCase : List[Any] = 2 elif format_for_conversion == "f32le": lowerCAmelCase : List[str] = 4 else: raise ValueError(f"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) lowerCAmelCase : Union[str, Any] = platform.system() if system == "Linux": lowerCAmelCase : Any = "alsa" lowerCAmelCase : Optional[int] = "default" elif system == "Darwin": lowerCAmelCase : Union[str, Any] = "avfoundation" lowerCAmelCase : int = ":0" elif system == "Windows": lowerCAmelCase : Any = "dshow" lowerCAmelCase : Optional[Any] = "default" lowerCAmelCase : Any = [ "ffmpeg", "-f", format_, "-i", input_, "-ac", ac, "-ar", ar, "-f", format_for_conversion, "-fflags", "nobuffer", "-hide_banner", "-loglevel", "quiet", "pipe:1", ] lowerCAmelCase : int = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample lowerCAmelCase : Optional[Any] = _ffmpeg_stream(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for item in iterator: yield item def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : Optional[int] = None , SCREAMING_SNAKE_CASE : Optional[Union[Tuple[float, float], float]] = None , SCREAMING_SNAKE_CASE : str = "f32le" , ): '''simple docstring''' if stream_chunk_s is not None: lowerCAmelCase : Tuple = stream_chunk_s else: lowerCAmelCase : int = chunk_length_s lowerCAmelCase : Union[str, Any] = ffmpeg_microphone(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , format_for_conversion=SCREAMING_SNAKE_CASE ) if format_for_conversion == "s16le": lowerCAmelCase : List[Any] = np.intaa lowerCAmelCase : Dict = 2 elif format_for_conversion == "f32le": lowerCAmelCase : Optional[Any] = np.floataa lowerCAmelCase : Optional[Any] = 4 else: raise ValueError(f"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) if stride_length_s is None: lowerCAmelCase : Dict = chunk_length_s / 6 lowerCAmelCase : List[str] = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(SCREAMING_SNAKE_CASE , (int, float) ): lowerCAmelCase : str = [stride_length_s, stride_length_s] lowerCAmelCase : Optional[Any] = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample lowerCAmelCase : Union[str, Any] = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample lowerCAmelCase : str = datetime.datetime.now() lowerCAmelCase : Optional[Any] = datetime.timedelta(seconds=SCREAMING_SNAKE_CASE ) for item in chunk_bytes_iter(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , stride=(stride_left, stride_right) , stream=SCREAMING_SNAKE_CASE ): # Put everything back in numpy scale lowerCAmelCase : str = np.frombuffer(item["raw"] , dtype=SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[int] = ( item["stride"][0] // size_of_sample, item["stride"][1] // size_of_sample, ) lowerCAmelCase : Union[str, Any] = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 1_0 * delta: # We're late !! SKIP continue yield item def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Tuple[int, int] , SCREAMING_SNAKE_CASE : bool = False ): '''simple docstring''' lowerCAmelCase : Optional[Any] = B"" lowerCAmelCase , lowerCAmelCase : List[Any] = stride if stride_left + stride_right >= chunk_len: raise ValueError( f"""Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}""" ) lowerCAmelCase : Any = 0 for raw in iterator: acc += raw if stream and len(SCREAMING_SNAKE_CASE ) < chunk_len: lowerCAmelCase : Tuple = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(SCREAMING_SNAKE_CASE ) >= chunk_len: # We are flushing the accumulator lowerCAmelCase : str = (_stride_left, stride_right) lowerCAmelCase : str = {"raw": acc[:chunk_len], "stride": stride} if stream: lowerCAmelCase : int = False yield item lowerCAmelCase : Dict = stride_left lowerCAmelCase : Union[str, Any] = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(SCREAMING_SNAKE_CASE ) > stride_left: lowerCAmelCase : int = {"raw": acc, "stride": (_stride_left, 0)} if stream: lowerCAmelCase : str = False yield item def a__ ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = 2**2_4 # 16Mo try: with subprocess.Popen(SCREAMING_SNAKE_CASE , stdout=subprocess.PIPE , bufsize=SCREAMING_SNAKE_CASE ) as ffmpeg_process: while True: lowerCAmelCase : Optional[Any] = ffmpeg_process.stdout.read(SCREAMING_SNAKE_CASE ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError("ffmpeg was not found but is required to stream audio files from filename" ) from error
681
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class SCREAMING_SNAKE_CASE__ : """simple docstring""" a : CommonSchedulerState # setable values a : jnp.ndarray a : jnp.ndarray a : Optional[int] =None @classmethod def lowercase__ ( cls , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" return cls(common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ ) @dataclass class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : DDPMSchedulerState class SCREAMING_SNAKE_CASE__ ( lowercase , lowercase ): """simple docstring""" a : Union[str, Any] =[e.name for e in FlaxKarrasDiffusionSchedulers] a : jnp.dtype @property def lowercase__ ( self ): """simple docstring""" return True @register_to_config def __init__( self , snake_case__ = 1_000 , snake_case__ = 0.0001 , snake_case__ = 0.02 , snake_case__ = "linear" , snake_case__ = None , snake_case__ = "fixed_small" , snake_case__ = True , snake_case__ = "epsilon" , snake_case__ = jnp.floataa , ): """simple docstring""" lowerCAmelCase : Any = dtype def lowercase__ ( self , snake_case__ = None ): """simple docstring""" if common is None: lowerCAmelCase : Dict = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution lowerCAmelCase : str = jnp.array(1.0 , dtype=self.dtype ) lowerCAmelCase : Any = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ = None ): """simple docstring""" return sample def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ = () ): """simple docstring""" lowerCAmelCase : List[Any] = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 lowerCAmelCase : Any = (jnp.arange(0 , snake_case__ ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=snake_case__ , timesteps=snake_case__ , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__=None , snake_case__=None ): """simple docstring""" lowerCAmelCase : Optional[Any] = state.common.alphas_cumprod[t] lowerCAmelCase : List[str] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample lowerCAmelCase : Union[str, Any] = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: lowerCAmelCase : List[str] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": lowerCAmelCase : List[Any] = jnp.clip(snake_case__ , a_min=1e-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": lowerCAmelCase : List[str] = jnp.log(jnp.clip(snake_case__ , a_min=1e-20 ) ) elif variance_type == "fixed_large": lowerCAmelCase : Optional[int] = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log lowerCAmelCase : List[str] = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": lowerCAmelCase : List[str] = variance lowerCAmelCase : Dict = state.common.betas[t] lowerCAmelCase : Optional[Any] = (predicted_variance + 1) / 2 lowerCAmelCase : List[str] = frac * max_log + (1 - frac) * min_log return variance def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , snake_case__ = True , ): """simple docstring""" lowerCAmelCase : Optional[Any] = timestep if key is None: lowerCAmelCase : Tuple = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: lowerCAmelCase , lowerCAmelCase : Optional[Any] = jnp.split(snake_case__ , sample.shape[1] , axis=1 ) else: lowerCAmelCase : Tuple = None # 1. compute alphas, betas lowerCAmelCase : Optional[int] = state.common.alphas_cumprod[t] lowerCAmelCase : Optional[int] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) lowerCAmelCase : Dict = 1 - alpha_prod_t lowerCAmelCase : Any = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": lowerCAmelCase : Union[str, Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": lowerCAmelCase : List[Any] = model_output elif self.config.prediction_type == "v_prediction": lowerCAmelCase : Tuple = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` """ " for the FlaxDDPMScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: lowerCAmelCase : Optional[int] = jnp.clip(snake_case__ , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCAmelCase : List[Any] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t lowerCAmelCase : List[str] = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCAmelCase : int = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): lowerCAmelCase : Tuple = jax.random.split(snake_case__ , num=1 ) lowerCAmelCase : str = jax.random.normal(snake_case__ , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(snake_case__ , snake_case__ , predicted_variance=snake_case__ ) ** 0.5) * noise lowerCAmelCase : Union[str, Any] = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) lowerCAmelCase : Union[str, Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=snake_case__ , state=snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): """simple docstring""" return add_noise_common(state.common , snake_case__ , snake_case__ , snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): """simple docstring""" return get_velocity_common(state.common , snake_case__ , snake_case__ , snake_case__ ) def __len__( self ): """simple docstring""" return self.config.num_train_timesteps
681
1
'''simple docstring''' _snake_case : Any = 9.8_0665 def snake_case_ (UpperCamelCase : float , UpperCamelCase : float , UpperCamelCase : float = g ): '''simple docstring''' if fluid_density <= 0: raise ValueError('''Impossible fluid density''' ) if volume < 0: raise ValueError('''Impossible Object volume''' ) if gravity <= 0: raise ValueError('''Impossible Gravity''' ) return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
22
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 _lowerCamelCase : Union[str, Any] = get_tests_dir('''fixtures''') class lowercase ( unittest.TestCase ): def __snake_case( self : str ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = mock.Mock() SCREAMING_SNAKE_CASE = 500 SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = HTTPError SCREAMING_SNAKE_CASE = {} # Download this model to make sure it's in the cache. SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=_UpperCamelCase ) as mock_head: SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" ) # This check we did call the fake head request mock_head.assert_called() def __snake_case( self : List[str] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json" ) @is_staging_test class lowercase ( unittest.TestCase ): @classmethod def __snake_case( cls : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = TOKEN HfFolder.save_token(_UpperCamelCase ) @classmethod def __snake_case( cls : Dict ) -> List[str]: '''simple docstring''' try: delete_repo(token=cls._token , repo_id="test-feature-extractor" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-feature-extractor-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-feature-extractor" ) except HTTPError: pass def __snake_case( self : Any ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor.from_pretrained(_UpperCamelCase ) feature_extractor.push_to_hub("test-feature-extractor" , use_auth_token=self._token ) SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor.from_pretrained(F"{USER}/test-feature-extractor" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_UpperCamelCase , getattr(_UpperCamelCase , _UpperCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id="test-feature-extractor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( _UpperCamelCase , repo_id="test-feature-extractor" , push_to_hub=_UpperCamelCase , use_auth_token=self._token ) SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor.from_pretrained(F"{USER}/test-feature-extractor" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_UpperCamelCase , getattr(_UpperCamelCase , _UpperCamelCase ) ) def __snake_case( self : Optional[int] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor.from_pretrained(_UpperCamelCase ) feature_extractor.push_to_hub("valid_org/test-feature-extractor" , use_auth_token=self._token ) SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_UpperCamelCase , getattr(_UpperCamelCase , _UpperCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-feature-extractor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( _UpperCamelCase , repo_id="valid_org/test-feature-extractor-org" , push_to_hub=_UpperCamelCase , use_auth_token=self._token ) SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor-org" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_UpperCamelCase , getattr(_UpperCamelCase , _UpperCamelCase ) ) def __snake_case( self : List[str] ) -> Tuple: '''simple docstring''' CustomFeatureExtractor.register_for_auto_class() SCREAMING_SNAKE_CASE = CustomFeatureExtractor.from_pretrained(_UpperCamelCase ) feature_extractor.push_to_hub("test-dynamic-feature-extractor" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {"AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor"} , ) SCREAMING_SNAKE_CASE = AutoFeatureExtractor.from_pretrained( F"{USER}/test-dynamic-feature-extractor" , trust_remote_code=_UpperCamelCase ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , "CustomFeatureExtractor" )
403
0
class _UpperCamelCase : def __init__( self: Dict ) -> Tuple: """simple docstring""" UpperCamelCase_ = 0 UpperCamelCase_ = 0 UpperCamelCase_ = {} def lowercase ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Tuple ) -> Any: """simple docstring""" if vertex not in self.adjacency: UpperCamelCase_ = {} self.num_vertices += 1 def lowercase ( self: Dict , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: List[str] ) -> Tuple: """simple docstring""" self.add_vertex(_SCREAMING_SNAKE_CASE ) self.add_vertex(_SCREAMING_SNAKE_CASE ) if head == tail: return UpperCamelCase_ = weight UpperCamelCase_ = weight def lowercase ( self: List[Any] ) -> List[Any]: """simple docstring""" UpperCamelCase_ = self.get_edges() for edge in edges: UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = edge edges.remove((tail, head, weight) ) for i in range(len(_SCREAMING_SNAKE_CASE ) ): UpperCamelCase_ = list(edges[i] ) edges.sort(key=lambda _SCREAMING_SNAKE_CASE : e[2] ) for i in range(len(_SCREAMING_SNAKE_CASE ) - 1 ): if edges[i][2] >= edges[i + 1][2]: UpperCamelCase_ = edges[i][2] + 1 for edge in edges: UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = edge UpperCamelCase_ = weight UpperCamelCase_ = weight def __str__( self: int ) -> str: """simple docstring""" UpperCamelCase_ = "" for tail in self.adjacency: for head in self.adjacency[tail]: UpperCamelCase_ = self.adjacency[head][tail] string += f'''{head} -> {tail} == {weight}\n''' return string.rstrip("\n" ) def lowercase ( self: Any ) -> Any: """simple docstring""" UpperCamelCase_ = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def lowercase ( self: Any ) -> Tuple: """simple docstring""" return self.adjacency.keys() @staticmethod def lowercase ( _SCREAMING_SNAKE_CASE: int=None , _SCREAMING_SNAKE_CASE: Any=None ) -> Tuple: """simple docstring""" UpperCamelCase_ = Graph() if vertices is None: UpperCamelCase_ = [] if edges is None: UpperCamelCase_ = [] for vertex in vertices: g.add_vertex(_SCREAMING_SNAKE_CASE ) for edge in edges: g.add_edge(*_SCREAMING_SNAKE_CASE ) return g class _UpperCamelCase : def __init__( self: List[Any] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = {} UpperCamelCase_ = {} def __len__( self: List[Any] ) -> int: """simple docstring""" return len(self.parent ) def lowercase ( self: str , _SCREAMING_SNAKE_CASE: int ) -> Optional[int]: """simple docstring""" if item in self.parent: return self.find(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = item UpperCamelCase_ = 0 return item def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: List[str] ) -> List[str]: """simple docstring""" if item not in self.parent: return self.make_set(_SCREAMING_SNAKE_CASE ) if item != self.parent[item]: UpperCamelCase_ = self.find(self.parent[item] ) return self.parent[item] def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: Dict ) -> Any: """simple docstring""" UpperCamelCase_ = self.find(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.find(_SCREAMING_SNAKE_CASE ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: UpperCamelCase_ = roota return roota if self.rank[roota] < self.rank[roota]: UpperCamelCase_ = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 UpperCamelCase_ = roota return roota return None @staticmethod def lowercase ( _SCREAMING_SNAKE_CASE: List[Any] ) -> str: """simple docstring""" UpperCamelCase_ = graph.num_vertices UpperCamelCase_ = Graph.UnionFind() UpperCamelCase_ = [] while num_components > 1: UpperCamelCase_ = {} for vertex in graph.get_vertices(): UpperCamelCase_ = -1 UpperCamelCase_ = graph.get_edges() for edge in edges: UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = edge edges.remove((tail, head, weight) ) for edge in edges: UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = edge UpperCamelCase_ = union_find.find(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = union_find.find(_SCREAMING_SNAKE_CASE ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: UpperCamelCase_ = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: UpperCamelCase_ = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = cheap_edge[vertex] if union_find.find(_SCREAMING_SNAKE_CASE ) != union_find.find(_SCREAMING_SNAKE_CASE ): union_find.union(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) mst_edges.append(cheap_edge[vertex] ) UpperCamelCase_ = num_components - 1 UpperCamelCase_ = Graph.build(edges=_SCREAMING_SNAKE_CASE ) return mst
371
import random from typing import Any def lowerCAmelCase_ ( UpperCamelCase_ ) -> list[Any]: for _ in range(len(UpperCamelCase_ ) ): UpperCamelCase_ = random.randint(0 , len(UpperCamelCase_ ) - 1 ) UpperCamelCase_ = random.randint(0 , len(UpperCamelCase_ ) - 1 ) UpperCamelCase_ , UpperCamelCase_ = data[b], data[a] return data if __name__ == "__main__": _UpperCAmelCase = [0, 1, 2, 3, 4, 5, 6, 7] _UpperCAmelCase = ['python', 'says', 'hello', '!'] print('Fisher-Yates Shuffle:') print('List', integers, strings) print('FY Shuffle', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
371
1
'''simple docstring''' import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' if isinstance(lowerCamelCase__ , lowerCamelCase__ ): A_ : Tuple = np.full((len(lowerCamelCase__ ), sequence_length, 2) , lowerCamelCase__ ) else: A_ : List[str] = np.full((len(lowerCamelCase__ ), sequence_length) , lowerCamelCase__ ) for i, tensor in enumerate(lowerCamelCase__ ): if padding_side == "right": if isinstance(lowerCamelCase__ , lowerCamelCase__ ): A_ : Union[str, Any] = tensor[:sequence_length] else: A_ : str = tensor[:sequence_length] else: if isinstance(lowerCamelCase__ , lowerCamelCase__ ): A_ : List[str] = tensor[:sequence_length] else: A_ : Tuple = tensor[:sequence_length] return out_tensor.tolist() def a ( lowerCamelCase__ ): '''simple docstring''' A_ : Any = ord(lowerCamelCase__ ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 1_23 and cp <= 1_26): return True A_ : int = unicodedata.category(lowerCamelCase__ ) if cat.startswith("""P""" ): return True return False @dataclass class _lowerCAmelCase ( __UpperCAmelCase ): __SCREAMING_SNAKE_CASE : PreTrainedTokenizerBase __SCREAMING_SNAKE_CASE : Union[bool, str, PaddingStrategy] = True __SCREAMING_SNAKE_CASE : Optional[int] = None __SCREAMING_SNAKE_CASE : Optional[int] = None __SCREAMING_SNAKE_CASE : int = -100 __SCREAMING_SNAKE_CASE : str = "pt" def _a (self , lowercase ): import torch A_ : str = """label""" if """label""" in features[0].keys() else """labels""" A_ : str = [feature[label_name] for feature in features] if label_name in features[0].keys() else None A_ : str = self.tokenizer.pad( lowercase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" if labels is None else None , ) if labels is None: return batch A_ : int = torch.tensor(batch["""entity_ids"""] ).shape[1] A_ : Tuple = self.tokenizer.padding_side if padding_side == "right": A_ : Tuple = [ list(lowercase ) + [self.label_pad_token_id] * (sequence_length - len(lowercase )) for label in labels ] else: A_ : int = [ [self.label_pad_token_id] * (sequence_length - len(lowercase )) + list(lowercase ) for label in labels ] A_ : Dict = [feature["""ner_tags"""] for feature in features] A_ : Union[str, Any] = padding_tensor(lowercase , -1 , lowercase , lowercase ) A_ : Tuple = [feature["""original_entity_spans"""] for feature in features] A_ : Optional[int] = padding_tensor(lowercase , (-1, -1) , lowercase , lowercase ) A_ : Any = {k: torch.tensor(lowercase , dtype=torch.intaa ) for k, v in batch.items()} return batch
667
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase :Optional[Any] = logging.get_logger(__name__) lowerCamelCase :Tuple = { '''alibaba-damo/mgp-str-base''': '''https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json''', } class _lowerCAmelCase ( __UpperCAmelCase ): __SCREAMING_SNAKE_CASE : List[Any] = 'mgp-str' def __init__(self , lowercase=[32, 128] , lowercase=4 , lowercase=3 , lowercase=27 , lowercase=38 , lowercase=50257 , lowercase=30522 , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=4.0 , lowercase=True , lowercase=False , lowercase=1E-5 , lowercase=0.0 , lowercase=0.0 , lowercase=0.0 , lowercase=False , lowercase=0.02 , **lowercase , ): super().__init__(**lowercase ) A_ : int = image_size A_ : List[str] = patch_size A_ : Tuple = num_channels A_ : List[str] = max_token_length A_ : int = num_character_labels A_ : str = num_bpe_labels A_ : Tuple = num_wordpiece_labels A_ : Optional[int] = hidden_size A_ : List[Any] = num_hidden_layers A_ : int = num_attention_heads A_ : Tuple = mlp_ratio A_ : str = distilled A_ : Union[str, Any] = layer_norm_eps A_ : str = drop_rate A_ : int = qkv_bias A_ : Dict = attn_drop_rate A_ : List[Any] = drop_path_rate A_ : Any = output_aa_attentions A_ : Union[str, Any] = initializer_range
667
1
'''simple docstring''' import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class lowercase : @staticmethod def _snake_case ( *_snake_case , **_snake_case) -> str: pass def SCREAMING_SNAKE_CASE( UpperCamelCase ) -> str: UpperCAmelCase_ : Optional[int] = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class lowercase ( unittest.TestCase ): _lowerCamelCase : Tuple= MODEL_FOR_DEPTH_ESTIMATION_MAPPING def _snake_case ( self , _snake_case , _snake_case , _snake_case) -> Dict: UpperCAmelCase_ : Optional[int] = DepthEstimationPipeline(model=__UpperCamelCase , image_processor=__UpperCamelCase) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def _snake_case ( self , _snake_case , _snake_case) -> Union[str, Any]: UpperCAmelCase_ : List[str] = depth_estimator('./tests/fixtures/tests_samples/COCO/000000039769.png') self.assertEqual({'predicted_depth': ANY(torch.Tensor), 'depth': ANY(Image.Image)} , __UpperCamelCase) import datasets UpperCAmelCase_ : int = datasets.load_dataset('hf-internal-testing/fixtures_image_utils' , 'image' , split='test') UpperCAmelCase_ : Tuple = depth_estimator( [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png'), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ]) self.assertEqual( [ {'predicted_depth': ANY(torch.Tensor), 'depth': ANY(Image.Image)}, {'predicted_depth': ANY(torch.Tensor), 'depth': ANY(Image.Image)}, {'predicted_depth': ANY(torch.Tensor), 'depth': ANY(Image.Image)}, {'predicted_depth': ANY(torch.Tensor), 'depth': ANY(Image.Image)}, {'predicted_depth': ANY(torch.Tensor), 'depth': ANY(Image.Image)}, ] , __UpperCamelCase , ) @require_tf @unittest.skip('Depth estimation is not implemented in TF') def _snake_case ( self) -> str: pass @slow @require_torch def _snake_case ( self) -> Any: UpperCAmelCase_ : Any = 'Intel/dpt-large' UpperCAmelCase_ : int = pipeline('depth-estimation' , model=__UpperCamelCase) UpperCAmelCase_ : List[Any] = depth_estimator('http://images.cocodataset.org/val2017/000000039769.jpg') UpperCAmelCase_ : Optional[Any] = hashimage(outputs['depth']) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['predicted_depth'].max().item()) , 29.304) self.assertEqual(nested_simplify(outputs['predicted_depth'].min().item()) , 2.662) @require_torch def _snake_case ( self) -> int: # This is highly irregular to have no small tests. self.skipTest('There is not hf-internal-testing tiny model for either GLPN nor DPT')
715
'''simple docstring''' import math class lowercase : def __init__( self , _snake_case=0) -> Union[str, Any]: # a graph with Node 0,1,...,N-1 UpperCAmelCase_ : Tuple = n UpperCAmelCase_ : Optional[Any] = [ [math.inf for j in range(0 , _snake_case)] for i in range(0 , _snake_case) ] # adjacency matrix for weight UpperCAmelCase_ : Tuple = [ [math.inf for j in range(0 , _snake_case)] for i in range(0 , _snake_case) ] # dp[i][j] stores minimum distance from i to j def _snake_case ( self , _snake_case , _snake_case , _snake_case) -> List[Any]: UpperCAmelCase_ : Union[str, Any] = w def _snake_case ( self) -> str: for k in range(0 , self.n): for i in range(0 , self.n): for j in range(0 , self.n): UpperCAmelCase_ : Optional[int] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j]) def _snake_case ( self , _snake_case , _snake_case) -> str: return self.dp[u][v] if __name__ == "__main__": lowerCAmelCase__ = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
471
0
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _a ( UpperCamelCase__ ): def __init__( self: int , *UpperCamelCase_: str , UpperCamelCase_: List[str]=None , UpperCamelCase_: int=None , **UpperCamelCase_: Optional[Any] ) -> List[str]: """simple docstring""" super().__init__(*UpperCamelCase_ , **UpperCamelCase_ ) lowercase__ = eval_examples lowercase__ = post_process_function def lowerCamelCase_ ( self: List[str] , UpperCamelCase_: Optional[Dataset] = None , UpperCamelCase_: List[Any]=None , UpperCamelCase_: Optional[List[str]] = None , UpperCamelCase_: str = "eval" , **UpperCamelCase_: int , ) -> Dict[str, float]: """simple docstring""" lowercase__ = gen_kwargs.copy() lowercase__ = ( gen_kwargs['''max_length'''] if gen_kwargs.get('''max_length''' ) is not None else self.args.generation_max_length ) lowercase__ = ( gen_kwargs['''num_beams'''] if gen_kwargs.get('''num_beams''' ) is not None else self.args.generation_num_beams ) lowercase__ = gen_kwargs lowercase__ = self.eval_dataset if eval_dataset is None else eval_dataset lowercase__ = self.get_eval_dataloader(UpperCamelCase_ ) lowercase__ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. lowercase__ = self.compute_metrics lowercase__ = None lowercase__ = time.time() lowercase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowercase__ = eval_loop( UpperCamelCase_ , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase_ , metric_key_prefix=UpperCamelCase_ , ) finally: lowercase__ = compute_metrics lowercase__ = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( UpperCamelCase_ , UpperCamelCase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default lowercase__ = self.post_process_function(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = self.compute_metrics(UpperCamelCase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): lowercase__ = metrics.pop(UpperCamelCase_ ) metrics.update(output.metrics ) else: lowercase__ = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(UpperCamelCase_ ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) lowercase__ = self.callback_handler.on_evaluate(self.args , self.state , self.control , UpperCamelCase_ ) return metrics def lowerCamelCase_ ( self: Dict , UpperCamelCase_: Any , UpperCamelCase_: Tuple , UpperCamelCase_: List[str]=None , UpperCamelCase_: str = "test" , **UpperCamelCase_: Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = gen_kwargs.copy() lowercase__ = self.get_test_dataloader(UpperCamelCase_ ) # Temporarily disable metric computation, we will do it in the loop here. lowercase__ = self.compute_metrics lowercase__ = None lowercase__ = time.time() lowercase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowercase__ = eval_loop( UpperCamelCase_ , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase_ , metric_key_prefix=UpperCamelCase_ , ) finally: lowercase__ = compute_metrics lowercase__ = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( UpperCamelCase_ , UpperCamelCase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output lowercase__ = self.post_process_function(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , '''predict''' ) lowercase__ = self.compute_metrics(UpperCamelCase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): lowercase__ = metrics.pop(UpperCamelCase_ ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=UpperCamelCase_ )
43
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class lowercase_ ( unittest.TestCase ): def __init__( self , UpperCamelCase__ , UpperCamelCase__=7 , UpperCamelCase__=3 , UpperCamelCase__=1_8 , UpperCamelCase__=3_0 , UpperCamelCase__=4_0_0 , UpperCamelCase__=True , UpperCamelCase__=None , UpperCamelCase__=True , UpperCamelCase__=None , UpperCamelCase__=True , UpperCamelCase__=[0.5, 0.5, 0.5] , UpperCamelCase__=[0.5, 0.5, 0.5] , ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ = size if size is not None else {"shortest_edge": 1_8} UpperCAmelCase_ = crop_size if crop_size is not None else {"height": 1_8, "width": 1_8} UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = image_size UpperCAmelCase_ = min_resolution UpperCAmelCase_ = max_resolution UpperCAmelCase_ = do_resize UpperCAmelCase_ = size UpperCAmelCase_ = do_center_crop UpperCAmelCase_ = crop_size UpperCAmelCase_ = do_normalize UpperCAmelCase_ = image_mean UpperCAmelCase_ = image_std def lowerCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class lowercase_ ( _A , unittest.TestCase ): a_ = LevitImageProcessor if is_vision_available() else None def lowerCamelCase_ ( self ) -> List[str]: """simple docstring""" UpperCAmelCase_ = LevitImageProcessingTester(self ) @property def lowerCamelCase_ ( self ) -> List[str]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase_ ( self ) -> List[str]: """simple docstring""" UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase__ , "image_mean" ) ) self.assertTrue(hasattr(UpperCamelCase__ , "image_std" ) ) self.assertTrue(hasattr(UpperCamelCase__ , "do_normalize" ) ) self.assertTrue(hasattr(UpperCamelCase__ , "do_resize" ) ) self.assertTrue(hasattr(UpperCamelCase__ , "do_center_crop" ) ) self.assertTrue(hasattr(UpperCamelCase__ , "size" ) ) def lowerCamelCase_ ( self ) -> int: """simple docstring""" UpperCAmelCase_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 1_8} ) self.assertEqual(image_processor.crop_size , {"height": 1_8, "width": 1_8} ) UpperCAmelCase_ = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {"shortest_edge": 4_2} ) self.assertEqual(image_processor.crop_size , {"height": 8_4, "width": 8_4} ) def lowerCamelCase_ ( self ) -> int: """simple docstring""" pass def lowerCamelCase_ ( self ) -> Any: """simple docstring""" UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , Image.Image ) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched UpperCAmelCase_ = image_processing(UpperCamelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def lowerCamelCase_ ( self ) -> Any: """simple docstring""" UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ , numpify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , np.ndarray ) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched UpperCAmelCase_ = image_processing(UpperCamelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def lowerCamelCase_ ( self ) -> str: """simple docstring""" UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ , torchify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , torch.Tensor ) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched UpperCAmelCase_ = image_processing(UpperCamelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
660
0
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=snake_case__ ) class lowerCAmelCase ( snake_case__ ): '''simple docstring''' A = field(default='image-classification' , metadata={'include_in_asdict_even_if_is_default': True} ) A = Features({'image': Image()} ) A = Features({'labels': ClassLabel} ) A = "image" A = "labels" def lowerCamelCase__ ( self :Tuple , lowerCamelCase_ :str ) -> Union[str, Any]: """simple docstring""" if self.label_column not in features: raise ValueError(f'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column] , lowerCamelCase_ ): raise ValueError(f'Column {self.label_column} is not a ClassLabel.' ) UpperCamelCase__ = copy.deepcopy(self ) UpperCamelCase__ = self.label_schema.copy() UpperCamelCase__ = features[self.label_column] UpperCamelCase__ = label_schema return task_template @property def lowerCamelCase__ ( self :Dict ) -> Dict[str, str]: """simple docstring""" return { self.image_column: "image", self.label_column: "labels", }
304
"""simple docstring""" def snake_case__ ( _snake_case : str ): """simple docstring""" UpperCamelCase__ = 0 # if input_string is "aba" than new_input_string become "a|b|a" UpperCamelCase__ = "" UpperCamelCase__ = "" # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(_snake_case ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring UpperCamelCase__ , UpperCamelCase__ = 0, 0 # length[i] shows the length of palindromic substring with center i UpperCamelCase__ = [1 for i in range(len(_snake_case ) )] # for each character in new_string find corresponding palindromic string UpperCamelCase__ = 0 for j in range(len(_snake_case ) ): UpperCamelCase__ = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(_snake_case ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 UpperCamelCase__ = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: UpperCamelCase__ = j - k + 1 # noqa: E741 UpperCamelCase__ = j + k - 1 # update max_length and start position if max_length < length[j]: UpperCamelCase__ = length[j] UpperCamelCase__ = j # create that string UpperCamelCase__ = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
304
1
from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar UpperCAmelCase_ = TypeVar("""KEY""") UpperCAmelCase_ = TypeVar("""VAL""") @dataclass(frozen=lowerCamelCase__ , slots=lowerCamelCase__ ) class UpperCamelCase__ ( Generic[KEY, VAL] ): '''simple docstring''' __a : KEY __a : VAL class UpperCamelCase__ ( _Item ): '''simple docstring''' def __init__( self ) -> None: """simple docstring""" super().__init__(snake_case__, snake_case__ ) def __bool__( self ) -> bool: """simple docstring""" return False UpperCAmelCase_ = _DeletedItem() class UpperCamelCase__ ( MutableMapping[KEY, VAL] ): '''simple docstring''' def __init__( self, snake_case__ = 8, snake_case__ = 0.75 ) -> None: """simple docstring""" lowercase_ : Dict = initial_block_size lowercase_ : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 lowercase_ : Optional[int] = capacity_factor lowercase_ : Union[str, Any] = 0 def snake_case__ ( self, snake_case__ ) -> int: """simple docstring""" return hash(snake_case__ ) % len(self._buckets ) def snake_case__ ( self, snake_case__ ) -> int: """simple docstring""" return (ind + 1) % len(self._buckets ) def snake_case__ ( self, snake_case__, snake_case__, snake_case__ ) -> bool: """simple docstring""" lowercase_ : Optional[int] = self._buckets[ind] if not stored: lowercase_ : List[str] = _Item(snake_case__, snake_case__ ) self._len += 1 return True elif stored.key == key: lowercase_ : Tuple = _Item(snake_case__, snake_case__ ) return True else: return False def snake_case__ ( self ) -> bool: """simple docstring""" lowercase_ : Optional[int] = len(self._buckets ) * self._capacity_factor return len(self ) >= int(snake_case__ ) def snake_case__ ( self ) -> bool: """simple docstring""" if len(self._buckets ) <= self._initial_block_size: return False lowercase_ : str = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def snake_case__ ( self, snake_case__ ) -> None: """simple docstring""" lowercase_ : List[str] = self._buckets lowercase_ : int = [None] * new_size lowercase_ : str = 0 for item in old_buckets: if item: self._add_item(item.key, item.val ) def snake_case__ ( self ) -> None: """simple docstring""" self._resize(len(self._buckets ) * 2 ) def snake_case__ ( self ) -> None: """simple docstring""" self._resize(len(self._buckets ) // 2 ) def snake_case__ ( self, snake_case__ ) -> Iterator[int]: """simple docstring""" lowercase_ : Optional[Any] = self._get_bucket_index(snake_case__ ) for _ in range(len(self._buckets ) ): yield ind lowercase_ : int = self._get_next_ind(snake_case__ ) def snake_case__ ( self, snake_case__, snake_case__ ) -> None: """simple docstring""" for ind in self._iterate_buckets(snake_case__ ): if self._try_set(snake_case__, snake_case__, snake_case__ ): break def __setitem__( self, snake_case__, snake_case__ ) -> None: """simple docstring""" if self._is_full(): self._size_up() self._add_item(snake_case__, snake_case__ ) def __delitem__( self, snake_case__ ) -> None: """simple docstring""" for ind in self._iterate_buckets(snake_case__ ): lowercase_ : Optional[int] = self._buckets[ind] if item is None: raise KeyError(snake_case__ ) if item is _deleted: continue if item.key == key: lowercase_ : Dict = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self, snake_case__ ) -> VAL: """simple docstring""" for ind in self._iterate_buckets(snake_case__ ): lowercase_ : Optional[int] = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(snake_case__ ) def __len__( self ) -> int: """simple docstring""" return self._len def __iter__( self ) -> Iterator[KEY]: """simple docstring""" yield from (item.key for item in self._buckets if item) def __repr__( self ) -> str: """simple docstring""" lowercase_ : Dict = """ ,""".join( f"""{item.key}: {item.val}""" for item in self._buckets if item ) return f"""HashMap({val_string})"""
458
from __future__ import annotations from math import gcd def __magic_name__ ( lowercase , lowercase = 2 , lowercase = 1 , lowercase = 3 , ) -> int | None: """simple docstring""" if num < 2: raise ValueError("""The input value cannot be less than 2""" ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(lowercase , lowercase , lowercase ) -> int: return (pow(lowercase , 2 ) + step) % modulus for _ in range(lowercase ): # These track the position within the cycle detection logic. lowercase_ : List[Any] = seed lowercase_ : Any = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. lowercase_ : List[str] = rand_fn(lowercase , lowercase , lowercase ) lowercase_ : str = rand_fn(lowercase , lowercase , lowercase ) lowercase_ : Any = rand_fn(lowercase , lowercase , lowercase ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. lowercase_ : Tuple = gcd(hare - tortoise , lowercase ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. lowercase_ : int = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument( """num""", type=int, help="""The value to find a divisor of""", ) parser.add_argument( """--attempts""", type=int, default=3, help="""The number of attempts before giving up""", ) UpperCAmelCase_ = parser.parse_args() UpperCAmelCase_ = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(F'''{args.num} is probably prime''') else: UpperCAmelCase_ = args.num // divisor print(F'''{args.num} = {divisor} * {quotient}''')
458
1
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging lowercase : Union[str, Any] = logging.get_logger(__name__) lowercase : Optional[int] = { "EleutherAI/gpt-neo-1.3B": "https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json", # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class __lowercase ( UpperCamelCase_ ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = '''gpt_neo''' UpperCAmelCase_ : str = ['''past_key_values'''] UpperCAmelCase_ : List[str] = {'''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self , __UpperCAmelCase=5_02_57 , __UpperCAmelCase=20_48 , __UpperCAmelCase=20_48 , __UpperCAmelCase=24 , __UpperCAmelCase=[[["global", "local"], 12]] , __UpperCAmelCase=16 , __UpperCAmelCase=None , __UpperCAmelCase=2_56 , __UpperCAmelCase="gelu_new" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase=1E-5 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=True , __UpperCAmelCase=5_02_56 , __UpperCAmelCase=5_02_56 , **__UpperCAmelCase , ) -> Dict: A : Tuple = vocab_size A : Tuple = max_position_embeddings A : List[Any] = hidden_size A : int = num_layers A : Dict = num_heads A : Optional[int] = intermediate_size A : List[Any] = window_size A : Optional[Any] = activation_function A : str = resid_dropout A : str = embed_dropout A : Union[str, Any] = attention_dropout A : Any = classifier_dropout A : Tuple = layer_norm_epsilon A : Any = initializer_range A : Optional[int] = use_cache A : List[str] = bos_token_id A : int = eos_token_id A : Any = attention_types A : Tuple = self.expand_attention_types_params(__a ) if len(self.attention_layers ) != self.num_layers: raise ValueError( '''Configuration for convolutional module is incorrect. ''' '''It is required that `len(config.attention_layers)` == `config.num_layers` ''' f'but is `len(config.attention_layers) = {len(self.attention_layers )}`, ' f'`config.num_layers = {self.num_layers}`. ' '''`config.attention_layers` is prepared using `config.attention_types`. ''' '''Please verify the value of `config.attention_types` argument.''' ) super().__init__(bos_token_id=__a , eos_token_id=__a , **__a ) @staticmethod def snake_case ( __UpperCAmelCase ) -> Tuple: A : List[str] = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def snake_case__ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Optional[int]: import torch A : str = input.size() A : str = len(lowerCamelCase_ ) A : List[Any] = shape[dimension] A : int = torch.arange(0 , lowerCamelCase_ , lowerCamelCase_ ) A : List[Any] = torch.div(sizedim - size , lowerCamelCase_ , rounding_mode='''floor''' ) + 1 A : Dict = torch.arange(lowerCamelCase_ ) + low_indices[:min_length][:, None] A : int = [slice(lowerCamelCase_ )] * rank A : Dict = indices A : List[str] = input[s] A : Tuple = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(lowerCamelCase_ ) def snake_case__ ( lowerCamelCase_ , lowerCamelCase_ ) -> Union[str, Any]: import torch A : Tuple = torch.arange(1 , lowerCamelCase_ ) A : Tuple = torch.remainder(lowerCamelCase_ , lowerCamelCase_ ) A : Optional[Any] = remainders == 0 A : Optional[int] = candidates[divisor_indices] A : Tuple = torch.max(lowerCamelCase_ ) return largest_divisor, torch.div(lowerCamelCase_ , lowerCamelCase_ , rounding_mode='''floor''' ) class __lowercase ( UpperCamelCase_ ): """simple docstring""" @property def snake_case ( self ) -> Mapping[str, Mapping[int, str]]: A : str = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(__a , direction='''inputs''' ) A : List[str] = {0: 'batch', 1: 'past_sequence + sequence'} else: A : Dict = {0: 'batch', 1: 'sequence'} return common_inputs @property def snake_case ( self ) -> int: return self._config.num_heads def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]: A : int = super(__a , self ).generate_dummy_inputs( __a , batch_size=__a , seq_length=__a , is_pair=__a , framework=__a ) # We need to order the input in the way they appears in the forward() A : str = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch A : Optional[Any] = common_inputs['input_ids'].shape # Not using the same length for past_key_values A : Optional[Any] = seqlen + 2 A : str = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) A : List[Any] = [ (torch.zeros(__a ), torch.zeros(__a )) for _ in range(self.num_layers ) ] A : Any = common_inputs['attention_mask'] if self.use_past: A : Any = ordered_inputs['attention_mask'].dtype A : Optional[Any] = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(__a , __a , dtype=__a )] , dim=1 ) return ordered_inputs @property def snake_case ( self ) -> int: return 13
717
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : List[str] = logging.get_logger(__name__) lowercase : Optional[Any] = { "microsoft/cvt-13": "https://huggingface.co/microsoft/cvt-13/resolve/main/config.json", # See all Cvt models at https://huggingface.co/models?filter=cvt } class __lowercase ( _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ : Optional[int] = '''cvt''' def __init__( self , __UpperCAmelCase=3 , __UpperCAmelCase=[7, 3, 3] , __UpperCAmelCase=[4, 2, 2] , __UpperCAmelCase=[2, 1, 1] , __UpperCAmelCase=[64, 1_92, 3_84] , __UpperCAmelCase=[1, 3, 6] , __UpperCAmelCase=[1, 2, 10] , __UpperCAmelCase=[4.0, 4.0, 4.0] , __UpperCAmelCase=[0.0, 0.0, 0.0] , __UpperCAmelCase=[0.0, 0.0, 0.0] , __UpperCAmelCase=[0.0, 0.0, 0.1] , __UpperCAmelCase=[True, True, True] , __UpperCAmelCase=[False, False, True] , __UpperCAmelCase=["dw_bn", "dw_bn", "dw_bn"] , __UpperCAmelCase=[3, 3, 3] , __UpperCAmelCase=[1, 1, 1] , __UpperCAmelCase=[2, 2, 2] , __UpperCAmelCase=[1, 1, 1] , __UpperCAmelCase=[1, 1, 1] , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=1E-12 , **__UpperCAmelCase , ) -> Optional[Any]: super().__init__(**__UpperCAmelCase ) A : List[Any] = num_channels A : Optional[Any] = patch_sizes A : Optional[int] = patch_stride A : Union[str, Any] = patch_padding A : Union[str, Any] = embed_dim A : Optional[Any] = num_heads A : Any = depth A : Optional[int] = mlp_ratio A : Optional[int] = attention_drop_rate A : Optional[int] = drop_rate A : Tuple = drop_path_rate A : Tuple = qkv_bias A : Dict = cls_token A : List[Any] = qkv_projection_method A : Union[str, Any] = kernel_qkv A : Union[str, Any] = padding_kv A : Union[str, Any] = stride_kv A : str = padding_q A : Union[str, Any] = stride_q A : Dict = initializer_range A : List[str] = layer_norm_eps
423
0