code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
class _snake_case : def __init__( self , a) -> None: SCREAMING_SNAKE_CASE = size SCREAMING_SNAKE_CASE = [0] * size SCREAMING_SNAKE_CASE = [0] * size @staticmethod def SCREAMING_SNAKE_CASE__ ( a) -> int: return index | (index + 1) @staticmethod def SCREAMING_SNAKE_CASE__ ( a) -> int: return (index & (index + 1)) - 1 def SCREAMING_SNAKE_CASE__ ( self , a , a) -> None: SCREAMING_SNAKE_CASE = value while index < self.size: SCREAMING_SNAKE_CASE = self.get_prev(a) + 1 if current_left_border == index: SCREAMING_SNAKE_CASE = value else: SCREAMING_SNAKE_CASE = max(a , a , a) SCREAMING_SNAKE_CASE = self.get_next(a) def SCREAMING_SNAKE_CASE__ ( self , a , a) -> int: right -= 1 # Because of right is exclusive SCREAMING_SNAKE_CASE = 0 while left <= right: SCREAMING_SNAKE_CASE = self.get_prev(a) if left <= current_left: SCREAMING_SNAKE_CASE = max(a , self.tree[right]) SCREAMING_SNAKE_CASE = current_left else: SCREAMING_SNAKE_CASE = max(a , self.arr[right]) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
73
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: A : Optional[Any] = None A : Any = logging.get_logger(__name__) A : Union[str, Any] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} A : List[Any] = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", }, "tokenizer_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json", }, } A : Union[str, Any] = { "xlnet-base-cased": None, "xlnet-large-cased": None, } A : Optional[int] = "▁" # Segments (not really needed) A : str = 0 A : Dict = 1 A : List[str] = 2 A : Tuple = 3 A : Tuple = 4 class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Optional[Any] =VOCAB_FILES_NAMES __UpperCAmelCase : Optional[int] =PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Dict =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : List[Any] ="""left""" __UpperCAmelCase : List[str] =XLNetTokenizer def __init__( self , __a=None , __a=None , __a=False , __a=True , __a=False , __a="<s>" , __a="</s>" , __a="<unk>" , __a="<sep>" , __a="<pad>" , __a="<cls>" , __a="<mask>" , __a=["<eop>", "<eod>"] , **__a , ): # Mask token behave like a normal word, i.e. include the space before it __lowerCAmelCase = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else mask_token super().__init__( vocab_file=__a , tokenizer_file=__a , do_lower_case=__a , remove_space=__a , keep_accents=__a , bos_token=__a , eos_token=__a , unk_token=__a , sep_token=__a , pad_token=__a , cls_token=__a , mask_token=__a , additional_special_tokens=__a , **__a , ) __lowerCAmelCase = 3 __lowerCAmelCase = do_lower_case __lowerCAmelCase = remove_space __lowerCAmelCase = keep_accents __lowerCAmelCase = vocab_file __lowerCAmelCase = False if not self.vocab_file else True def snake_case ( self , __a , __a = None ): __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def snake_case ( self , __a , __a = None ): __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def snake_case ( self , __a , __a = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(__a ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return __lowerCAmelCase = os.path.join( __a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__a ): copyfile(self.vocab_file , __a ) return (out_vocab_file,)
636
0
lowerCAmelCase : List[str] = """Tobias Carryer""" from time import time class a : def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=int(time() ) ): # noqa: B008 """simple docstring""" __SCREAMING_SNAKE_CASE: Optional[Any] = multiplier __SCREAMING_SNAKE_CASE: Any = increment __SCREAMING_SNAKE_CASE: Optional[int] = modulo __SCREAMING_SNAKE_CASE: Tuple = seed def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Any = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. lowerCAmelCase : Optional[Any] = LinearCongruentialGenerator(1664525, 1013904223, 2 << 31) while True: print(lcg.next_number())
146
import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class a ( __lowercase ): SCREAMING_SNAKE_CASE__ : List[Any] = (EulerDiscreteScheduler,) SCREAMING_SNAKE_CASE__ : Any = 10 def snake_case_ ( self , **_lowerCAmelCase ): """simple docstring""" __SCREAMING_SNAKE_CASE: str = { '''num_train_timesteps''': 1100, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**_lowerCAmelCase ) return config def snake_case_ ( self ): """simple docstring""" for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=_lowerCAmelCase ) def snake_case_ ( self ): """simple docstring""" for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=_lowerCAmelCase , beta_end=_lowerCAmelCase ) def snake_case_ ( self ): """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_lowerCAmelCase ) def snake_case_ ( self ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowerCAmelCase ) def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: str = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE: Optional[int] = self.get_scheduler_config() __SCREAMING_SNAKE_CASE: List[str] = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(self.num_inference_steps ) __SCREAMING_SNAKE_CASE: Dict = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE: Optional[Any] = self.dummy_model() __SCREAMING_SNAKE_CASE: Dict = self.dummy_sample_deter * scheduler.init_noise_sigma __SCREAMING_SNAKE_CASE: Optional[int] = sample.to(_lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): __SCREAMING_SNAKE_CASE: Any = scheduler.scale_model_input(_lowerCAmelCase , _lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Union[str, Any] = model(_lowerCAmelCase , _lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Optional[Any] = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: int = output.prev_sample __SCREAMING_SNAKE_CASE: Tuple = torch.sum(torch.abs(_lowerCAmelCase ) ) __SCREAMING_SNAKE_CASE: List[Any] = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Any = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE: Union[str, Any] = self.get_scheduler_config(prediction_type='''v_prediction''' ) __SCREAMING_SNAKE_CASE: str = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(self.num_inference_steps ) __SCREAMING_SNAKE_CASE: str = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE: Optional[int] = self.dummy_model() __SCREAMING_SNAKE_CASE: Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma __SCREAMING_SNAKE_CASE: Any = sample.to(_lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): __SCREAMING_SNAKE_CASE: Tuple = scheduler.scale_model_input(_lowerCAmelCase , _lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Tuple = model(_lowerCAmelCase , _lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Union[str, Any] = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Optional[int] = output.prev_sample __SCREAMING_SNAKE_CASE: List[Any] = torch.sum(torch.abs(_lowerCAmelCase ) ) __SCREAMING_SNAKE_CASE: Any = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 0.0002 ) < 1e-2 assert abs(result_mean.item() - 2.26_76e-06 ) < 1e-3 def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Any = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE: Tuple = self.get_scheduler_config() __SCREAMING_SNAKE_CASE: List[str] = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(self.num_inference_steps , device=_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: List[str] = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE: Optional[Any] = self.dummy_model() __SCREAMING_SNAKE_CASE: int = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() __SCREAMING_SNAKE_CASE: Any = sample.to(_lowerCAmelCase ) for t in scheduler.timesteps: __SCREAMING_SNAKE_CASE: Optional[Any] = scheduler.scale_model_input(_lowerCAmelCase , _lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Tuple = model(_lowerCAmelCase , _lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Optional[int] = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: int = output.prev_sample __SCREAMING_SNAKE_CASE: List[str] = torch.sum(torch.abs(_lowerCAmelCase ) ) __SCREAMING_SNAKE_CASE: Dict = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: int = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE: str = self.get_scheduler_config() __SCREAMING_SNAKE_CASE: Union[str, Any] = scheduler_class(**_lowerCAmelCase , use_karras_sigmas=_lowerCAmelCase ) scheduler.set_timesteps(self.num_inference_steps , device=_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: int = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE: Any = self.dummy_model() __SCREAMING_SNAKE_CASE: str = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() __SCREAMING_SNAKE_CASE: Optional[int] = sample.to(_lowerCAmelCase ) for t in scheduler.timesteps: __SCREAMING_SNAKE_CASE: Optional[Any] = scheduler.scale_model_input(_lowerCAmelCase , _lowerCAmelCase ) __SCREAMING_SNAKE_CASE: List[Any] = model(_lowerCAmelCase , _lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Any = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: List[str] = output.prev_sample __SCREAMING_SNAKE_CASE: int = torch.sum(torch.abs(_lowerCAmelCase ) ) __SCREAMING_SNAKE_CASE: Optional[int] = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 124.52299499511719 ) < 1e-2 assert abs(result_mean.item() - 0.16213932633399963 ) < 1e-3
146
1
def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : Optional[Any] = int(_a) if decimal in (0, 1): # Exit cases for the recursion return str(_a) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : int = divmod(_a , 2) return binary_recursive(_a) + str(_a) def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : Optional[int] = str(_a).strip() if not number: raise ValueError("No input value was provided") SCREAMING_SNAKE_CASE : List[Any] = "-" if number.startswith("-") else "" SCREAMING_SNAKE_CASE : Any = number.lstrip("-") if not number.isnumeric(): raise ValueError("Input value is not an integer") return f"{negative}0b{binary_recursive(int(_a))}" if __name__ == "__main__": from doctest import testmod testmod()
25
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake SCREAMING_SNAKE_CASE : List[str] = numpy.array([0, 0]) SCREAMING_SNAKE_CASE : Tuple = numpy.array([0.5, 0.8660254]) SCREAMING_SNAKE_CASE : Tuple = numpy.array([1, 0]) SCREAMING_SNAKE_CASE : List[str] = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def lowerCamelCase_ ( __UpperCamelCase , __UpperCamelCase ): A_ = initial_vectors for _ in range(__UpperCamelCase ): A_ = iteration_step(__UpperCamelCase ) return vectors def lowerCamelCase_ ( __UpperCamelCase ): A_ = [] for i, start_vector in enumerate(vectors[:-1] ): A_ = vectors[i + 1] new_vectors.append(__UpperCamelCase ) A_ = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def lowerCamelCase_ ( __UpperCamelCase , __UpperCamelCase ): A_ = numpy.radians(__UpperCamelCase ) A_ , A_ = numpy.cos(__UpperCamelCase ), numpy.sin(__UpperCamelCase ) A_ = numpy.array(((c, -s), (s, c)) ) return numpy.dot(__UpperCamelCase , __UpperCamelCase ) def lowerCamelCase_ ( __UpperCamelCase ): A_ = plt.gca() axes.set_aspect('''equal''' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() A_ , A_ = zip(*__UpperCamelCase ) plt.plot(__UpperCamelCase , __UpperCamelCase ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE : Optional[Any] = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
141
0
"""simple docstring""" import itertools import string from collections.abc import Generator, Iterable def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' UpperCAmelCase__ : List[str] = iter(__UpperCamelCase ) while True: UpperCAmelCase__ : List[Any] = tuple(itertools.islice(__UpperCamelCase , __UpperCamelCase ) ) if not chunk: return yield chunk def lowerCAmelCase ( __UpperCamelCase ): '''simple docstring''' UpperCAmelCase__ : Dict = """""".join([c.upper() for c in dirty if c in string.ascii_letters] ) UpperCAmelCase__ : Tuple = """""" if len(__UpperCamelCase ) < 2: return dirty for i in range(len(__UpperCamelCase ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(__UpperCamelCase ) & 1: clean += "X" return clean def lowerCAmelCase ( __UpperCamelCase ): '''simple docstring''' UpperCAmelCase__ : Dict = """ABCDEFGHIKLMNOPQRSTUVWXYZ""" # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler UpperCAmelCase__ : Any = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(__UpperCamelCase ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(__UpperCamelCase ) return table def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' UpperCAmelCase__ : str = generate_table(__UpperCamelCase ) UpperCAmelCase__ : int = prepare_input(__UpperCamelCase ) UpperCAmelCase__ : str = """""" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(__UpperCamelCase , 2 ): UpperCAmelCase__ : int = divmod(table.index(__UpperCamelCase ) , 5 ) UpperCAmelCase__ : Union[str, Any] = divmod(table.index(__UpperCamelCase ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = generate_table(__UpperCamelCase ) UpperCAmelCase__ : List[str] = """""" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(__UpperCamelCase , 2 ): UpperCAmelCase__ : Optional[Any] = divmod(table.index(__UpperCamelCase ) , 5 ) UpperCAmelCase__ : Any = divmod(table.index(__UpperCamelCase ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
715
"""simple docstring""" from __future__ import annotations def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' UpperCAmelCase__ : Dict = list(range(len(__UpperCamelCase ) ) ) UpperCAmelCase__ : Union[str, Any] = [v / w for v, w in zip(__UpperCamelCase , __UpperCamelCase )] index.sort(key=lambda __UpperCamelCase : ratio[i] , reverse=__UpperCamelCase ) UpperCAmelCase__ : float = 0 UpperCAmelCase__ : list[float] = [0] * len(__UpperCamelCase ) for i in index: if weight[i] <= capacity: UpperCAmelCase__ : Optional[Any] = 1 max_value += value[i] capacity -= weight[i] else: UpperCAmelCase__ : Union[str, Any] = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
194
0
from torch import nn def __A ( _A ): """simple docstring""" if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f"""Unsupported activation function: {act_fn}""" )
197
'''simple docstring''' import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class __snake_case : '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE=1_6 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=[0, 1, 2, 3] , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=3_7 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=[1, 3_8_4, 2_4, 2_4] , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , ): snake_case__ : str = parent snake_case__ : Union[str, Any] = batch_size snake_case__ : Union[str, Any] = image_size snake_case__ : Optional[int] = patch_size snake_case__ : List[str] = num_channels snake_case__ : Any = is_training snake_case__ : int = use_labels snake_case__ : str = hidden_size snake_case__ : Tuple = num_hidden_layers snake_case__ : str = backbone_out_indices snake_case__ : List[Any] = num_attention_heads snake_case__ : Dict = intermediate_size snake_case__ : Optional[Any] = hidden_act snake_case__ : str = hidden_dropout_prob snake_case__ : int = attention_probs_dropout_prob snake_case__ : Dict = initializer_range snake_case__ : Optional[int] = num_labels snake_case__ : str = backbone_featmap_shape snake_case__ : List[Any] = scope snake_case__ : Optional[Any] = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) snake_case__ : List[Any] = (image_size // patch_size) ** 2 snake_case__ : Union[str, Any] = num_patches + 1 def __UpperCamelCase ( self ): snake_case__ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ : str = None if self.use_labels: snake_case__ : Dict = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) snake_case__ : Union[str, Any] = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self ): snake_case__ : Any = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, """hidden_sizes""": [9_6, 1_9_2, 3_8_4, 7_6_8], """num_groups""": 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=__SCREAMING_SNAKE_CASE , backbone_featmap_shape=self.backbone_featmap_shape , ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : Dict = DPTModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() snake_case__ : Union[str, Any] = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : Optional[Any] = self.num_labels snake_case__ : str = DPTForDepthEstimation(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() snake_case__ : Optional[Any] = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : Any = self.num_labels snake_case__ : Dict = DPTForSemanticSegmentation(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() snake_case__ : str = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __UpperCamelCase ( self ): snake_case__ : Union[str, Any] = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ : Any = config_and_inputs snake_case__ : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () lowerCamelCase__ = ( { '''depth-estimation''': DPTForDepthEstimation, '''feature-extraction''': DPTModel, '''image-segmentation''': DPTForSemanticSegmentation, } if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def __UpperCamelCase ( self ): snake_case__ : List[Any] = DPTModelTester(self ) snake_case__ : Any = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE , hidden_size=3_7 ) def __UpperCamelCase ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="""DPT does not use inputs_embeds""" ) def __UpperCamelCase ( self ): pass def __UpperCamelCase ( self ): snake_case__ , snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Tuple = model_class(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) snake_case__ : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__SCREAMING_SNAKE_CASE , nn.Linear ) ) def __UpperCamelCase ( self ): snake_case__ , snake_case__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : str = model_class(__SCREAMING_SNAKE_CASE ) snake_case__ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ : List[str] = [*signature.parameters.keys()] snake_case__ : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue snake_case__ , snake_case__ : str = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : int = True if model_class in get_values(__SCREAMING_SNAKE_CASE ): continue snake_case__ : Any = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.train() snake_case__ : Optional[Any] = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[int] = model(**__SCREAMING_SNAKE_CASE ).loss loss.backward() def __UpperCamelCase ( self ): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue snake_case__ , snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : Union[str, Any] = False snake_case__ : str = True if model_class in get_values(__SCREAMING_SNAKE_CASE ) or not model_class.supports_gradient_checkpointing: continue snake_case__ : Any = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.gradient_checkpointing_enable() model.train() snake_case__ : List[str] = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) snake_case__ : Any = model(**__SCREAMING_SNAKE_CASE ).loss loss.backward() def __UpperCamelCase ( self ): snake_case__ , snake_case__ : str = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : str = _config_zero_init(__SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: snake_case__ : Any = model_class(config=__SCREAMING_SNAKE_CASE ) # Skip the check for the backbone snake_case__ : str = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": snake_case__ : Optional[int] = [f"{name}.{key}" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def __UpperCamelCase ( self ): pass @slow def __UpperCamelCase ( self ): for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: snake_case__ : List[str] = DPTModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type snake_case__ , snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : Dict = """add""" with self.assertRaises(__SCREAMING_SNAKE_CASE ): snake_case__ : List[str] = DPTForDepthEstimation(__SCREAMING_SNAKE_CASE ) def UpperCamelCase__ ( ) -> Dict: '''simple docstring''' snake_case__ : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision @slow class __snake_case ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self ): snake_case__ : Dict = DPTImageProcessor.from_pretrained("""Intel/dpt-hybrid-midas""" ) snake_case__ : Union[str, Any] = DPTForDepthEstimation.from_pretrained("""Intel/dpt-hybrid-midas""" ).to(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = prepare_img() snake_case__ : Optional[int] = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).to(__SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): snake_case__ : Dict = model(**__SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = outputs.predicted_depth # verify the predicted depth snake_case__ : Any = torch.Size((1, 3_8_4, 3_8_4) ) self.assertEqual(predicted_depth.shape , __SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = torch.tensor( [[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]] ).to(__SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 1_0_0 , __SCREAMING_SNAKE_CASE , atol=1e-4 ) )
38
0
"""simple docstring""" import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class _lowerCamelCase (__lowerCamelCase ): _snake_case = ComputeEnvironment.AMAZON_SAGEMAKER _snake_case = True _snake_case = "ml.p3.2xlarge" _snake_case = "accelerate_sagemaker_execution_role" _snake_case = "hf-sm" _snake_case = "us-east-1" _snake_case = 1 _snake_case = "accelerate-sagemaker-1" _snake_case = "1.6" _snake_case = "4.4" _snake_case = "train.py" _snake_case = [ "--model_name_or_path", "bert", "--do_train", "False", "--epochs", "3", "--learning_rate", "5e-5", "--max_steps", "50.5", ] _snake_case = [ "--model_name_or_path", "bert", "--do_train", "--do_test", "False", "--do_predict", "--epochs", "3", "--learning_rate", "5e-5", "--max_steps", "50.5", ] class _lowerCamelCase (unittest.TestCase ): def __UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" _lowercase : List[Any] = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args ) assert isinstance(converted_args['model_name_or_path'] , lowerCamelCase_ ) assert isinstance(converted_args['do_train'] , lowerCamelCase_ ) assert isinstance(converted_args['epochs'] , lowerCamelCase_ ) assert isinstance(converted_args['learning_rate'] , lowerCamelCase_ ) assert isinstance(converted_args['max_steps'] , lowerCamelCase_ ) with pytest.raises(lowerCamelCase_ ): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
283
"""simple docstring""" import math def __lowerCAmelCase( __UpperCAmelCase ): """simple docstring""" if not isinstance(__UpperCAmelCase ,__UpperCAmelCase ): _lowercase : List[Any] = F'''Input value of [number={number}] must be an integer''' raise TypeError(__UpperCAmelCase ) if number < 1: _lowercase : List[Any] = F'''Input value of [number={number}] must be > 0''' raise ValueError(__UpperCAmelCase ) elif number == 1: return 3 elif number == 2: return 5 else: _lowercase : str = int(math.log(number // 3 ,2 ) ) + 2 _lowercase : Union[str, Any] = [3, 5] _lowercase : Optional[int] = 2 _lowercase : List[Any] = 3 for block in range(1 ,__UpperCAmelCase ): for _ in range(__UpperCAmelCase ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(11): SCREAMING_SNAKE_CASE = 0 try: SCREAMING_SNAKE_CASE = proth(number) except ValueError: print(f"""ValueError: there is no {number}th Proth number""") continue print(f"""The {number}th Proth number: {value}""")
283
1
'''simple docstring''' from __future__ import annotations class UpperCamelCase__ : """simple docstring""" def __init__( self : Union[str, Any] , __A : str , __A : str ): """simple docstring""" _lowercase = text, pattern _lowercase = len(UpperCamelCase__ ), len(UpperCamelCase__ ) def snake_case ( self : Optional[Any] , __A : str ): """simple docstring""" for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def snake_case ( self : Union[str, Any] , __A : int ): """simple docstring""" for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def snake_case ( self : Optional[int] ): """simple docstring""" _lowercase = [] for i in range(self.textLen - self.patLen + 1 ): _lowercase = self.mismatch_in_text(UpperCamelCase__ ) if mismatch_index == -1: positions.append(UpperCamelCase__ ) else: _lowercase = self.match_in_pattern(self.text[mismatch_index] ) _lowercase = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions __magic_name__ : List[Any] = '''ABAABA''' __magic_name__ : Union[str, Any] = '''AB''' __magic_name__ : str = BoyerMooreSearch(text, pattern) __magic_name__ : Any = bms.bad_character_heuristic() if len(positions) == 0: print('''No match found''') else: print('''Pattern found in following positions: ''') print(positions)
497
'''simple docstring''' from __future__ import annotations from PIL import Image # Define glider example lowercase__ = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example lowercase__ = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ ) -> list[list[int]]: '''simple docstring''' snake_case : Optional[Any] = [] for i in range(len(SCREAMING_SNAKE_CASE__ ) ): snake_case : str = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours snake_case : Any = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(SCREAMING_SNAKE_CASE__ ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(SCREAMING_SNAKE_CASE__ ) - 1: neighbour_count += cells[i + 1][j] if i < len(SCREAMING_SNAKE_CASE__ ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. snake_case : List[Any] = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(SCREAMING_SNAKE_CASE__ ) return next_generation def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> list[Image.Image]: '''simple docstring''' snake_case : Tuple = [] for _ in range(SCREAMING_SNAKE_CASE__ ): # Create output image snake_case : List[Any] = Image.new('''RGB''' , (len(cells[0] ), len(SCREAMING_SNAKE_CASE__ )) ) snake_case : Optional[Any] = img.load() # Save cells to image for x in range(len(SCREAMING_SNAKE_CASE__ ) ): for y in range(len(cells[0] ) ): snake_case : str = 255 - cells[y][x] * 255 snake_case : List[str] = (colour, colour, colour) # Save image images.append(SCREAMING_SNAKE_CASE__ ) snake_case : Dict = new_generation(SCREAMING_SNAKE_CASE__ ) return images if __name__ == "__main__": lowercase__ = generate_images(GLIDER, 1_6) images[0].save("out.gif", save_all=True, append_images=images[1:])
638
0
'''simple docstring''' import random class SCREAMING_SNAKE_CASE : @staticmethod def SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE : str ) -> tuple[list[int], list[int]]: a_ : List[Any] = [ord(__SCREAMING_SNAKE_CASE ) for i in text] a_ : str = [] a_ : Dict = [] for i in plain: a_ : str = random.randint(1 , 300 ) a_ : Union[str, Any] = (i + k) * k cipher.append(__SCREAMING_SNAKE_CASE ) key.append(__SCREAMING_SNAKE_CASE ) return cipher, key @staticmethod def SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : list[int] ) -> str: a_ : List[Any] = [] for i in range(len(__SCREAMING_SNAKE_CASE ) ): a_ : Dict = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(__SCREAMING_SNAKE_CASE ) ) return "".join(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __lowerCAmelCase , __lowerCAmelCase = Onepad().encrypt('Hello') print(c, k) print(Onepad().decrypt(c, k))
666
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( __A : list[int] ): a_ : int = len(__A ) // 2 # choose the middle 3 elements a_ : Dict = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
666
1
"""simple docstring""" from manim import * class __a (_lowerCamelCase): '''simple docstring''' def _a ( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = Rectangle(height=0.5 , width=0.5 ) SCREAMING_SNAKE_CASE__ : str = Rectangle(height=0.25 , width=0.25 ) SCREAMING_SNAKE_CASE__ : List[Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) SCREAMING_SNAKE_CASE__ : Optional[int] = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE__ : Optional[int] = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE__ : int = VGroup(*_A ).arrange(_A , buff=0 ) SCREAMING_SNAKE_CASE__ : Optional[Any] = VGroup(*_A ).arrange(_A , buff=0 ) SCREAMING_SNAKE_CASE__ : List[str] = VGroup(_A , _A ).arrange(_A , buff=0 ) SCREAMING_SNAKE_CASE__ : Any = Text("""CPU""" , font_size=24 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = Group(_A , _A ).arrange(_A , buff=0.5 , aligned_edge=_A ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_A ) SCREAMING_SNAKE_CASE__ : Any = [mem.copy() for i in range(4 )] SCREAMING_SNAKE_CASE__ : Dict = VGroup(*_A ).arrange(_A , buff=0 ) SCREAMING_SNAKE_CASE__ : int = Text("""GPU""" , font_size=24 ) SCREAMING_SNAKE_CASE__ : Optional[int] = Group(_A , _A ).arrange(_A , buff=0.5 , aligned_edge=_A ) gpu.move_to([-1, -1, 0] ) self.add(_A ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE__ : Any = VGroup(*_A ).arrange(_A , buff=0 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = Text("""Model""" , font_size=24 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = Group(_A , _A ).arrange(_A , buff=0.5 , aligned_edge=_A ) model.move_to([3, -1.0, 0] ) self.add(_A ) SCREAMING_SNAKE_CASE__ : Optional[int] = [] SCREAMING_SNAKE_CASE__ : str = [] SCREAMING_SNAKE_CASE__ : Tuple = [] for i, rect in enumerate(_A ): rect.set_stroke(_A ) SCREAMING_SNAKE_CASE__ : List[str] = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(_A , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=_A ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=_A , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=_A , buff=0.0 ) self.add(_A ) model_cpu_arr.append(_A ) self.add(*_A , *_A , *_A ) SCREAMING_SNAKE_CASE__ : List[Any] = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE__ : str = VGroup(*_A ).arrange(_A , buff=0 ) SCREAMING_SNAKE_CASE__ : List[str] = Text("""Loaded Checkpoint""" , font_size=24 ) SCREAMING_SNAKE_CASE__ : Tuple = Group(_A , _A ).arrange(_A , buff=0.5 , aligned_edge=_A ) checkpoint.move_to([3, 0.5, 0] ) self.add(_A ) SCREAMING_SNAKE_CASE__ : int = [] SCREAMING_SNAKE_CASE__ : List[str] = [] for i, rect in enumerate(_A ): SCREAMING_SNAKE_CASE__ : int = fill.copy().set_fill(_A , opacity=0.7 ) target.move_to(_A ) ckpt_arr.append(_A ) SCREAMING_SNAKE_CASE__ : Tuple = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(_A ) self.add(*_A , *_A ) SCREAMING_SNAKE_CASE__ : List[str] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) SCREAMING_SNAKE_CASE__ : Tuple = MarkupText( f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(_A , _A ) SCREAMING_SNAKE_CASE__ : Optional[Any] = MarkupText( f'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , ) blue_text.next_to(_A , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(_A ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = MarkupText( f'''Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) SCREAMING_SNAKE_CASE__ : Optional[Any] = [meta_mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE__ : List[str] = [meta_mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE__ : str = VGroup(*_A ).arrange(_A , buff=0 ) SCREAMING_SNAKE_CASE__ : Optional[Any] = VGroup(*_A ).arrange(_A , buff=0 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = VGroup(_A , _A ).arrange(_A , buff=0 ) SCREAMING_SNAKE_CASE__ : Tuple = Text("""Disk""" , font_size=24 ) SCREAMING_SNAKE_CASE__ : List[Any] = Group(_A , _A ).arrange(_A , buff=0.5 , aligned_edge=_A ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(_A , run_time=3 ) , Write(_A , run_time=1 ) , Create(_A , run_time=1 ) ) SCREAMING_SNAKE_CASE__ : Any = [] for i, rect in enumerate(_A ): SCREAMING_SNAKE_CASE__ : str = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(_A , run_time=1.5 ) ) self.play(*_A ) self.play(FadeOut(_A ) ) SCREAMING_SNAKE_CASE__ : List[Any] = MarkupText(f'''Then, the checkpoint is removed from memory\nthrough garbage collection.''' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(_A , run_time=3 ) ) self.play( FadeOut(_A , _A , *_A , *_A ) , ) self.wait()
680
from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def snake_case( __magic_name__ ) -> Dict: '''simple docstring''' return {key.lstrip('''-''' ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def snake_case( ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] = ArgumentParser( '''HuggingFace Datasets CLI tool''' , usage='''datasets-cli <command> [<args>]''' , allow_abbrev=__magic_name__ ) lowercase : Any = parser.add_subparsers(help='''datasets-cli command helpers''' ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(__magic_name__ ) EnvironmentCommand.register_subcommand(__magic_name__ ) TestCommand.register_subcommand(__magic_name__ ) RunBeamCommand.register_subcommand(__magic_name__ ) DummyDataCommand.register_subcommand(__magic_name__ ) # Parse args lowercase , lowercase : Optional[int] = parser.parse_known_args() if not hasattr(__magic_name__ , '''func''' ): parser.print_help() exit(1 ) lowercase : int = parse_unknown_args(__magic_name__ ) # Run lowercase : str = args.func(__magic_name__ , **__magic_name__ ) service.run() if __name__ == "__main__": main()
217
0
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } lowerCAmelCase__ = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> str: for attribute in key.split('.'): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models UpperCamelCase__ : str = 'lm_head' UpperCamelCase__ : Optional[Any] = getattr(lowerCamelCase_ , lowerCamelCase_) if weight_type is not None: UpperCamelCase__ : List[Any] = getattr(lowerCamelCase_ , lowerCamelCase_).shape else: UpperCamelCase__ : List[str] = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": UpperCamelCase__ : Optional[Any] = value elif weight_type == "weight_g": UpperCamelCase__ : Union[str, Any] = value elif weight_type == "weight_v": UpperCamelCase__ : List[Any] = value elif weight_type == "bias": UpperCamelCase__ : Any = value else: UpperCamelCase__ : Optional[int] = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> List[Any]: UpperCamelCase__ : List[Any] = [] UpperCamelCase__ : int = fairseq_model.state_dict() UpperCamelCase__ : int = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): UpperCamelCase__ : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , hf_model.config.feat_extract_norm == 'group' , ) UpperCamelCase__ : List[Any] = True else: for key, mapped_key in MAPPING.items(): UpperCamelCase__ : List[Any] = 'unispeech.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.')[-1] == name.split('.')[0]: UpperCamelCase__ : Any = True if "*" in mapped_key: UpperCamelCase__ : Any = name.split(lowerCamelCase_)[0].split('.')[-2] UpperCamelCase__ : Union[str, Any] = mapped_key.replace('*' , lowerCamelCase_) if "weight_g" in name: UpperCamelCase__ : int = 'weight_g' elif "weight_v" in name: UpperCamelCase__ : Any = 'weight_v' elif "bias" in name: UpperCamelCase__ : Union[str, Any] = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCamelCase__ : Any = 'weight' else: UpperCamelCase__ : Tuple = None set_recursively(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) continue if not is_used: unused_weights.append(lowerCamelCase_) logger.warning(f'Unused weights: {unused_weights}') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Tuple: UpperCamelCase__ : Dict = full_name.split('conv_layers.')[-1] UpperCamelCase__ : List[Any] = name.split('.') UpperCamelCase__ : Any = int(items[0]) UpperCamelCase__ : int = int(items[1]) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) UpperCamelCase__ : Tuple = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.') elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) UpperCamelCase__ : int = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.') elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) UpperCamelCase__ : Optional[Any] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.') elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) UpperCamelCase__ : List[Any] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.') else: unused_weights.append(lowerCamelCase_) @torch.no_grad() def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=True) -> Tuple: if config_path is not None: UpperCamelCase__ : Optional[Any] = UniSpeechConfig.from_pretrained(lowerCamelCase_) else: UpperCamelCase__ : int = UniSpeechConfig() if is_finetuned: if dict_path: UpperCamelCase__ : Union[str, Any] = Dictionary.load_from_json(lowerCamelCase_) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCamelCase__ : List[Any] = target_dict.pad_index UpperCamelCase__ : Dict = target_dict.bos_index UpperCamelCase__ : Union[str, Any] = target_dict.eos_index UpperCamelCase__ : Tuple = len(target_dict.symbols) UpperCamelCase__ : Dict = os.path.join(lowerCamelCase_ , 'vocab.json') if not os.path.isdir(lowerCamelCase_): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(lowerCamelCase_)) return os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_) UpperCamelCase__ : Optional[int] = target_dict.indices # fairseq has the <pad> and <s> switched UpperCamelCase__ : Any = 42 UpperCamelCase__ : List[str] = 43 with open(lowerCamelCase_ , 'w' , encoding='utf-8') as vocab_handle: json.dump(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase__ : Optional[int] = WavaVecaPhonemeCTCTokenizer( lowerCamelCase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=lowerCamelCase_ , ) UpperCamelCase__ : Optional[Any] = True if config.feat_extract_norm == 'layer' else False UpperCamelCase__ : Union[str, Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , ) UpperCamelCase__ : Tuple = WavaVecaProcessor(feature_extractor=lowerCamelCase_ , tokenizer=lowerCamelCase_) processor.save_pretrained(lowerCamelCase_) UpperCamelCase__ : Dict = UniSpeechForCTC(lowerCamelCase_) else: UpperCamelCase__ : List[Any] = UniSpeechForPreTraining(lowerCamelCase_) if is_finetuned: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/')[:-1]), 'w2v_path': checkpoint_path}) else: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path]) UpperCamelCase__ : int = model[0].eval() recursively_load_weights(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) hf_unispeech.save_pretrained(lowerCamelCase_) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) lowerCAmelCase__ = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
6
'''simple docstring''' from math import log from scipy.constants import Boltzmann, physical_constants lowerCAmelCase__ = 300 # TEMPERATURE (unit = K) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) -> float: if donor_conc <= 0: raise ValueError('Donor concentration should be positive') elif acceptor_conc <= 0: raise ValueError('Acceptor concentration should be positive') elif intrinsic_conc <= 0: raise ValueError('Intrinsic concentration should be positive') elif donor_conc <= intrinsic_conc: raise ValueError( 'Donor concentration should be greater than intrinsic concentration') elif acceptor_conc <= intrinsic_conc: raise ValueError( 'Acceptor concentration should be greater than intrinsic concentration') else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
6
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) _lowerCAmelCase : Dict = { 'BAAI/AltCLIP': 'https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json', # See all AltCLIP models at https://huggingface.co/models?filter=altclip } class lowerCAmelCase ( __UpperCamelCase ): '''simple docstring''' snake_case = 'altclip_text_model' def __init__( self : Optional[int] , __snake_case : Optional[int]=250002 , __snake_case : int=1024 , __snake_case : List[Any]=24 , __snake_case : List[Any]=16 , __snake_case : Optional[int]=4096 , __snake_case : List[str]="gelu" , __snake_case : int=0.1 , __snake_case : Optional[int]=0.1 , __snake_case : Optional[Any]=514 , __snake_case : List[Any]=1 , __snake_case : Any=0.02 , __snake_case : Any=0.02 , __snake_case : Optional[int]=1e-05 , __snake_case : List[str]=1 , __snake_case : Optional[Any]=0 , __snake_case : int=2 , __snake_case : Optional[int]="absolute" , __snake_case : str=True , __snake_case : List[Any]=768 , **__snake_case : List[str] , ) -> Optional[int]: '''simple docstring''' super().__init__(pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase ) lowerCamelCase = vocab_size lowerCamelCase = hidden_size lowerCamelCase = num_hidden_layers lowerCamelCase = num_attention_heads lowerCamelCase = hidden_act lowerCamelCase = intermediate_size lowerCamelCase = hidden_dropout_prob lowerCamelCase = attention_probs_dropout_prob lowerCamelCase = max_position_embeddings lowerCamelCase = type_vocab_size lowerCamelCase = initializer_range lowerCamelCase = initializer_factor lowerCamelCase = layer_norm_eps lowerCamelCase = position_embedding_type lowerCamelCase = use_cache lowerCamelCase = project_dim class lowerCAmelCase ( __UpperCamelCase ): '''simple docstring''' snake_case = 'altclip_vision_model' def __init__( self : Optional[int] , __snake_case : List[str]=768 , __snake_case : Any=3072 , __snake_case : Any=512 , __snake_case : str=12 , __snake_case : Optional[Any]=12 , __snake_case : Optional[Any]=3 , __snake_case : List[Any]=224 , __snake_case : Optional[Any]=32 , __snake_case : Optional[Any]="quick_gelu" , __snake_case : Optional[Any]=1e-5 , __snake_case : str=0.0 , __snake_case : int=0.02 , __snake_case : str=1.0 , **__snake_case : str , ) -> str: '''simple docstring''' super().__init__(**__UpperCamelCase ) lowerCamelCase = hidden_size lowerCamelCase = intermediate_size lowerCamelCase = projection_dim lowerCamelCase = num_hidden_layers lowerCamelCase = num_attention_heads lowerCamelCase = num_channels lowerCamelCase = patch_size lowerCamelCase = image_size lowerCamelCase = initializer_range lowerCamelCase = initializer_factor lowerCamelCase = attention_dropout lowerCamelCase = layer_norm_eps lowerCamelCase = hidden_act @classmethod def lowerCamelCase__ ( cls : Optional[Any] , __snake_case : Union[str, os.PathLike] , **__snake_case : int ) -> Tuple: '''simple docstring''' cls._set_token_in_kwargs(__UpperCamelCase ) lowerCamelCase , lowerCamelCase = cls.get_config_dict(__UpperCamelCase , **__UpperCamelCase ) # get the vision config dict if we are loading from AltCLIPConfig if config_dict.get('model_type' ) == "altclip": lowerCamelCase = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__UpperCamelCase , **__UpperCamelCase ) class lowerCAmelCase ( __UpperCamelCase ): '''simple docstring''' snake_case = 'altclip' snake_case = True def __init__( self : int , __snake_case : Any=None , __snake_case : Optional[int]=None , __snake_case : int=768 , __snake_case : List[Any]=2.6592 , **__snake_case : Union[str, Any] ) -> Optional[int]: '''simple docstring''' lowerCamelCase = kwargs.pop('text_config_dict' , __UpperCamelCase ) lowerCamelCase = kwargs.pop('vision_config_dict' , __UpperCamelCase ) super().__init__(**__UpperCamelCase ) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: lowerCamelCase = {} # This is the complete result when using `text_config_dict`. lowerCamelCase = AltCLIPTextConfig(**__UpperCamelCase ).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: lowerCamelCase = ( F'''`{key}` is found in both `text_config_dict` and `text_config` but with different values. ''' F'''The value `text_config_dict["{key}"]` will be used instead.''' ) # If inferred from default argument values (just to be super careful) else: lowerCamelCase = ( F'''`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The ''' F'''value `text_config["{key}"]` will be overriden.''' ) logger.warning(__UpperCamelCase ) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict ) if vision_config_dict is not None: if vision_config is None: lowerCamelCase = {} # This is the complete result when using `vision_config_dict`. lowerCamelCase = AltCLIPVisionConfig(**__UpperCamelCase ).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: lowerCamelCase = { str(__UpperCamelCase ): value for key, value in _vision_config_dict['id2label'].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: lowerCamelCase = ( F'''`{key}` is found in both `vision_config_dict` and `vision_config` but with different ''' F'''values. The value `vision_config_dict["{key}"]` will be used instead.''' ) # If inferred from default argument values (just to be super careful) else: lowerCamelCase = ( F'''`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. ''' F'''The value `vision_config["{key}"]` will be overriden.''' ) logger.warning(__UpperCamelCase ) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict ) if text_config is None: lowerCamelCase = {} logger.info('`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values.' ) if vision_config is None: lowerCamelCase = {} logger.info('`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values.' ) lowerCamelCase = AltCLIPTextConfig(**__UpperCamelCase ) lowerCamelCase = AltCLIPVisionConfig(**__UpperCamelCase ) lowerCamelCase = projection_dim lowerCamelCase = logit_scale_init_value lowerCamelCase = 1.0 @classmethod def lowerCamelCase__ ( cls : Optional[int] , __snake_case : AltCLIPTextConfig , __snake_case : AltCLIPVisionConfig , **__snake_case : Dict ) -> Union[str, Any]: '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__UpperCamelCase ) def lowerCamelCase__ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' lowerCamelCase = copy.deepcopy(self.__dict__ ) lowerCamelCase = self.text_config.to_dict() lowerCamelCase = self.vision_config.to_dict() lowerCamelCase = self.__class__.model_type return output
246
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand lowercase = ( '''4S 3H 2C 7S 5H''', '''9D 8H 2C 6S 7H''', '''2D 6D 9D TH 7D''', '''TC 8C 2S JH 6C''', '''JH 8S TH AH QH''', '''TS KS 5S 9S AC''', '''KD 6S 9D TH AD''', '''KS 8D 4D 9S 4S''', # pair '''8C 4S KH JS 4D''', # pair '''QH 8H KD JH 8S''', # pair '''KC 4H KS 2H 8D''', # pair '''KD 4S KC 3H 8S''', # pair '''AH 8S AS KC JH''', # pair '''3H 4C 4H 3S 2H''', # 2 pairs '''5S 5D 2C KH KH''', # 2 pairs '''3C KH 5D 5S KH''', # 2 pairs '''AS 3C KH AD KH''', # 2 pairs '''7C 7S 3S 7H 5S''', # 3 of a kind '''7C 7S KH 2H 7H''', # 3 of a kind '''AC KH QH AH AS''', # 3 of a kind '''2H 4D 3C AS 5S''', # straight (low ace) '''3C 5C 4C 2C 6H''', # straight '''6S 8S 7S 5H 9H''', # straight '''JS QS 9H TS KH''', # straight '''QC KH TS JS AH''', # straight (high ace) '''8C 9C 5C 3C TC''', # flush '''3S 8S 9S 5S KS''', # flush '''4C 5C 9C 8C KC''', # flush '''JH 8H AH KH QH''', # flush '''3D 2H 3H 2C 2D''', # full house '''2H 2C 3S 3H 3D''', # full house '''KH KC 3S 3H 3D''', # full house '''JC 6H JS JD JH''', # 4 of a kind '''JC 7H JS JD JH''', # 4 of a kind '''JC KH JS JD JH''', # 4 of a kind '''2S AS 4S 5S 3S''', # straight flush (low ace) '''2D 6D 3D 4D 5D''', # straight flush '''5C 6C 3C 7C 4C''', # straight flush '''JH 9H TH KH QH''', # straight flush '''JH AH TH KH QH''', # royal flush (high ace straight flush) ) lowercase = ( ('''2H 3H 4H 5H 6H''', '''KS AS TS QS JS''', '''Loss'''), ('''2H 3H 4H 5H 6H''', '''AS AD AC AH JD''', '''Win'''), ('''AS AH 2H AD AC''', '''JS JD JC JH 3D''', '''Win'''), ('''2S AH 2H AS AC''', '''JS JD JC JH AD''', '''Loss'''), ('''2S AH 2H AS AC''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''AS 3S 4S 8S 2S''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''2H 3H 5H 6H 7H''', '''2S 3H 4H 5S 6C''', '''Win'''), ('''2S 3H 4H 5S 6C''', '''3D 4C 5H 6H 2S''', '''Tie'''), ('''2S 3H 4H 5S 6C''', '''AH AC 5H 6H AS''', '''Win'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H AS''', '''Loss'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H 7S''', '''Win'''), ('''6S AD 7H 4S AS''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S AH 4H 5S KC''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S 3H 6H 7S 9C''', '''7H 3C TH 6H 9S''', '''Loss'''), ('''4S 5H 6H TS AC''', '''3S 5H 6H TS AC''', '''Win'''), ('''2S AH 4H 5S 6C''', '''AD 4C 5H 6H 2C''', '''Tie'''), ('''AS AH 3H AD AC''', '''AS AH 2H AD AC''', '''Win'''), ('''AH AC 5H 5C QS''', '''AH AC 5H 5C KS''', '''Loss'''), ('''AH AC 5H 5C QS''', '''KH KC 5H 5C QS''', '''Win'''), ('''7C 7S KH 2H 7H''', '''3C 3S AH 2H 3H''', '''Win'''), ('''3C 3S AH 2H 3H''', '''7C 7S KH 2H 7H''', '''Loss'''), ('''6H 5H 4H 3H 2H''', '''5H 4H 3H 2H AH''', '''Win'''), ('''5H 4H 3H 2H AH''', '''5H 4H 3H 2H AH''', '''Tie'''), ('''5H 4H 3H 2H AH''', '''6H 5H 4H 3H 2H''', '''Loss'''), ('''AH AD KS KC AC''', '''AH KD KH AC KC''', '''Win'''), ('''2H 4D 3C AS 5S''', '''2H 4D 3C 6S 5S''', '''Loss'''), ('''2H 3S 3C 3H 2S''', '''3S 3C 2S 2H 2D''', '''Win'''), ('''4D 6D 5D 2D JH''', '''3S 8S 3H TC KH''', '''Loss'''), ('''4S 6C 8S 3S 7S''', '''AD KS 2D 7D 7C''', '''Loss'''), ('''6S 4C 7H 8C 3H''', '''5H JC AH 9D 9C''', '''Loss'''), ('''9D 9H JH TC QH''', '''3C 2S JS 5C 7H''', '''Win'''), ('''2H TC 8S AD 9S''', '''4H TS 7H 2C 5C''', '''Win'''), ('''9D 3S 2C 7S 7C''', '''JC TD 3C TC 9H''', '''Loss'''), ) lowercase = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', True), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', False), ('''AS 3S 4S 8S 2S''', True), ) lowercase = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', False), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', True), ) lowercase = ( ('''2H 4D 3C AS 5S''', True, [5, 4, 3, 2, 1_4]), ('''2H 5D 3C AS 5S''', False, [1_4, 5, 5, 3, 2]), ('''JH QD KC AS TS''', False, [1_4, 1_3, 1_2, 1_1, 1_0]), ('''9D 3S 2C 7S 7C''', False, [9, 7, 7, 3, 2]), ) lowercase = ( ('''JH AH TH KH QH''', 0), ('''JH 9H TH KH QH''', 0), ('''JC KH JS JD JH''', 7), ('''KH KC 3S 3H 3D''', 6), ('''8C 9C 5C 3C TC''', 0), ('''JS QS 9H TS KH''', 0), ('''7C 7S KH 2H 7H''', 3), ('''3C KH 5D 5S KH''', 2), ('''QH 8H KD JH 8S''', 1), ('''2D 6D 9D TH 7D''', 0), ) lowercase = ( ('''JH AH TH KH QH''', 2_3), ('''JH 9H TH KH QH''', 2_2), ('''JC KH JS JD JH''', 2_1), ('''KH KC 3S 3H 3D''', 2_0), ('''8C 9C 5C 3C TC''', 1_9), ('''JS QS 9H TS KH''', 1_8), ('''7C 7S KH 2H 7H''', 1_7), ('''3C KH 5D 5S KH''', 1_6), ('''QH 8H KD JH 8S''', 1_5), ('''2D 6D 9D TH 7D''', 1_4), ) def __lowerCAmelCase ( ) -> List[str]: lowerCamelCase_ , lowerCamelCase_ = randrange(len(UpperCAmelCase__ ) ), randrange(len(UpperCAmelCase__ ) ) lowerCamelCase_ = ["""Loss""", """Tie""", """Win"""][(play >= oppo) + (play > oppo)] lowerCamelCase_ , lowerCamelCase_ = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def __lowerCAmelCase ( UpperCAmelCase__ : int = 1_0_0 ) -> Optional[int]: return (generate_random_hand() for _ in range(UpperCAmelCase__ )) @pytest.mark.parametrize("""hand, expected""" , UpperCAmelCase__ ) def __lowerCAmelCase ( UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Union[str, Any] ) -> List[Any]: assert PokerHand(UpperCAmelCase__ )._is_flush() == expected @pytest.mark.parametrize("""hand, expected""" , UpperCAmelCase__ ) def __lowerCAmelCase ( UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[Any] ) -> int: assert PokerHand(UpperCAmelCase__ )._is_straight() == expected @pytest.mark.parametrize("""hand, expected, card_values""" , UpperCAmelCase__ ) def __lowerCAmelCase ( UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Union[str, Any] ) -> Union[str, Any]: lowerCamelCase_ = PokerHand(UpperCAmelCase__ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("""hand, expected""" , UpperCAmelCase__ ) def __lowerCAmelCase ( UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Dict ) -> str: assert PokerHand(UpperCAmelCase__ )._is_same_kind() == expected @pytest.mark.parametrize("""hand, expected""" , UpperCAmelCase__ ) def __lowerCAmelCase ( UpperCAmelCase__ : Any , UpperCAmelCase__ : Dict ) -> Tuple: assert PokerHand(UpperCAmelCase__ )._hand_type == expected @pytest.mark.parametrize("""hand, other, expected""" , UpperCAmelCase__ ) def __lowerCAmelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Union[str, Any] ) -> Any: assert PokerHand(UpperCAmelCase__ ).compare_with(PokerHand(UpperCAmelCase__ ) ) == expected @pytest.mark.parametrize("""hand, other, expected""" , generate_random_hands() ) def __lowerCAmelCase ( UpperCAmelCase__ : Any , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Dict ) -> List[str]: assert PokerHand(UpperCAmelCase__ ).compare_with(PokerHand(UpperCAmelCase__ ) ) == expected def __lowerCAmelCase ( ) -> Tuple: lowerCamelCase_ = [PokerHand(UpperCAmelCase__ ) for hand in SORTED_HANDS] lowerCamelCase_ = poker_hands.copy() shuffle(UpperCAmelCase__ ) lowerCamelCase_ = chain(sorted(UpperCAmelCase__ ) ) for index, hand in enumerate(UpperCAmelCase__ ): assert hand == poker_hands[index] def __lowerCAmelCase ( ) -> List[Any]: # Test that five high straights are compared correctly. lowerCamelCase_ = [PokerHand("""2D AC 3H 4H 5S""" ), PokerHand("""2S 3H 4H 5S 6C""" )] pokerhands.sort(reverse=UpperCAmelCase__ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def __lowerCAmelCase ( ) -> List[str]: # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. lowerCamelCase_ = PokerHand("""2C 4S AS 3D 5C""" ) lowerCamelCase_ = True lowerCamelCase_ = [5, 4, 3, 2, 1_4] for _ in range(1_0 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def __lowerCAmelCase ( ) -> List[Any]: # Problem number 54 from Project Euler # Testing from poker_hands.txt file lowerCamelCase_ = 0 lowerCamelCase_ = os.path.abspath(os.path.dirname(UpperCAmelCase__ ) ) lowerCamelCase_ = os.path.join(UpperCAmelCase__ , """poker_hands.txt""" ) with open(UpperCAmelCase__ ) as file_hand: for line in file_hand: lowerCamelCase_ = line[:1_4].strip() lowerCamelCase_ = line[1_5:].strip() lowerCamelCase_ , lowerCamelCase_ = PokerHand(UpperCAmelCase__ ), PokerHand(UpperCAmelCase__ ) lowerCamelCase_ = player.compare_with(UpperCAmelCase__ ) if output == "Win": answer += 1 assert answer == 3_7_6
272
0
from functools import lru_cache @lru_cache def lowerCAmelCase ( UpperCamelCase__ : int ) -> int: """simple docstring""" if num < 0: raise ValueError('''Number should not be negative.''' ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
146
from __future__ import annotations def lowerCAmelCase ( UpperCamelCase__ : list[float] ) -> bool: """simple docstring""" if len(UpperCamelCase__ ) < 2: raise ValueError('''Monogons and Digons are not polygons in the Euclidean space''' ) if any(i <= 0 for i in nums ): raise ValueError('''All values must be greater than 0''' ) __SCREAMING_SNAKE_CASE: Optional[int] = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
146
1
import math from collections.abc import Callable def UpperCamelCase_( _A :Any , _A :Union[str, Any] , _A :Tuple )-> Tuple: UpperCamelCase__ = xa UpperCamelCase__ = xa while True: if x_n == x_na or function(_A ) == function(_A ): raise ZeroDivisionError("float division by zero, could not find root" ) UpperCamelCase__ = x_na - ( function(_A ) / ((function(_A ) - function(_A )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 10**-5: return x_na UpperCamelCase__ = x_na UpperCamelCase__ = x_na def UpperCamelCase_( _A :Dict )-> Optional[int]: return math.pow(_A , 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
551
"""simple docstring""" import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() A_ = logging.get_logger(__name__) A_ = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn.grep_linear": "encoder.layers.*.attention.gru_rel_pos_linear", "self_attn.relative_attention_bias": "encoder.layers.*.attention.rel_attn_embed", "self_attn.grep_a": "encoder.layers.*.attention.gru_rel_pos_const", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "ctc_proj", "mask_emb": "masked_spec_embed", } A_ = [ "ctc_proj", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def _UpperCamelCase ( A , A , A , A , A ): for attribute in key.split("." ): UpperCamelCase_ =getattr(A , A ) if weight_type is not None: UpperCamelCase_ =getattr(A , A ).shape else: UpperCamelCase_ =hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCamelCase_ =value elif weight_type == "weight_g": UpperCamelCase_ =value elif weight_type == "weight_v": UpperCamelCase_ =value elif weight_type == "bias": UpperCamelCase_ =value else: UpperCamelCase_ =value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def _UpperCamelCase ( A , A ): UpperCamelCase_ =[] UpperCamelCase_ =fairseq_model.state_dict() UpperCamelCase_ =hf_model.feature_extractor for name, value in fairseq_dict.items(): UpperCamelCase_ =False if "conv_layers" in name: load_conv_layer( A , A , A , A , hf_model.config.feat_extract_norm == "group" , ) UpperCamelCase_ =True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: UpperCamelCase_ =True if "*" in mapped_key: UpperCamelCase_ =name.split(A )[0].split("." )[-2] UpperCamelCase_ =mapped_key.replace("*" , A ) if "weight_g" in name: UpperCamelCase_ ="weight_g" elif "weight_v" in name: UpperCamelCase_ ="weight_v" elif "bias" in name and "relative_attention_bias" not in name: UpperCamelCase_ ="bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCamelCase_ ="weight" else: UpperCamelCase_ =None set_recursively(A , A , A , A , A ) continue if not is_used: unused_weights.append(A ) logger.warning(f"""Unused weights: {unused_weights}""" ) def _UpperCamelCase ( A , A , A , A , A ): UpperCamelCase_ =full_name.split("conv_layers." )[-1] UpperCamelCase_ =name.split("." ) UpperCamelCase_ =int(items[0] ) UpperCamelCase_ =int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCamelCase_ =value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCamelCase_ =value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) UpperCamelCase_ =value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCamelCase_ =value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(A ) @torch.no_grad() def _UpperCamelCase ( A , A , A=None ): # load the pre-trained checkpoints UpperCamelCase_ =torch.load(A ) UpperCamelCase_ =WavLMConfigOrig(checkpoint["cfg"] ) UpperCamelCase_ =WavLMOrig(A ) model.load_state_dict(checkpoint["model"] ) model.eval() if config_path is not None: UpperCamelCase_ =WavLMConfig.from_pretrained(A ) else: UpperCamelCase_ =WavLMConfig() UpperCamelCase_ =WavLMModel(A ) recursively_load_weights(A , A ) hf_wavlm.save_pretrained(A ) if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") A_ = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
391
0
def a ( A__ = 5_0 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F'''{solution() = }''')
250
from __future__ import annotations a_ :str = 8.988e9 # units = N * m^s * C^-2 def a ( A__ , A__ , A__ , A__ ) -> dict[str, float]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if distance < 0: raise ValueError('''Distance cannot be negative''' ) if force == 0: SCREAMING_SNAKE_CASE__ : Dict = COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: SCREAMING_SNAKE_CASE__ : Tuple = abs(A__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: SCREAMING_SNAKE_CASE__ : Optional[int] = abs(A__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: SCREAMING_SNAKE_CASE__ : List[Any] = (COULOMBS_CONSTANT * charge_product / abs(A__ )) ** 0.5 return {"distance": distance} raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
250
1
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : List[Any] ): UpperCAmelCase = [2, 2, 6, 2] if 'tiny' in model_name else [2, 2, 18, 2] UpperCAmelCase = True if 'large' in model_name or 'huge' in model_name else False UpperCAmelCase = True if 'large' in model_name or 'huge' in model_name else False UpperCAmelCase = True if 'large' in model_name or 'huge' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: UpperCAmelCase = [3, 3, 3, 3] UpperCAmelCase = [5, 5, 5, 5] elif "fl4" in model_name: UpperCAmelCase = [4, 4, 4, 4] UpperCAmelCase = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: UpperCAmelCase = [3, 3, 3, 3] if "lrf" in model_name: UpperCAmelCase = [3, 3, 3, 3] else: UpperCAmelCase = [2, 2, 2, 2] if "tiny" in model_name: UpperCAmelCase = 96 elif "small" in model_name: UpperCAmelCase = 96 elif "base" in model_name: UpperCAmelCase = 128 elif "large" in model_name: UpperCAmelCase = 192 elif "xlarge" in model_name: UpperCAmelCase = 256 elif "huge" in model_name: UpperCAmelCase = 352 # set label information UpperCAmelCase = 'huggingface/label-files' if "large" in model_name or "huge" in model_name: UpperCAmelCase = 'imagenet-22k-id2label.json' else: UpperCAmelCase = 'imagenet-1k-id2label.json' UpperCAmelCase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) UpperCAmelCase = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} UpperCAmelCase = {v: k for k, v in idalabel.items()} UpperCAmelCase = FocalNetConfig( embed_dim=SCREAMING_SNAKE_CASE , depths=SCREAMING_SNAKE_CASE , focal_levels=SCREAMING_SNAKE_CASE , focal_windows=SCREAMING_SNAKE_CASE , use_conv_embed=SCREAMING_SNAKE_CASE , idalabel=SCREAMING_SNAKE_CASE , labelaid=SCREAMING_SNAKE_CASE , use_post_layernorm=SCREAMING_SNAKE_CASE , use_layerscale=SCREAMING_SNAKE_CASE , ) return config def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : Dict ): if "patch_embed.proj" in name: UpperCAmelCase = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: UpperCAmelCase = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: UpperCAmelCase = 'encoder.' + name if "encoder.layers" in name: UpperCAmelCase = name.replace('encoder.layers' , 'encoder.stages' ) if "downsample.proj" in name: UpperCAmelCase = name.replace('downsample.proj' , 'downsample.projection' ) if "blocks" in name: UpperCAmelCase = name.replace('blocks' , 'layers' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: UpperCAmelCase = name.replace('modulation.f' , 'modulation.projection_in' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: UpperCAmelCase = name.replace('modulation.h' , 'modulation.projection_context' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: UpperCAmelCase = name.replace('modulation.proj' , 'modulation.projection_out' ) if name == "norm.weight": UpperCAmelCase = 'layernorm.weight' if name == "norm.bias": UpperCAmelCase = 'layernorm.bias' if "head" in name: UpperCAmelCase = name.replace('head' , 'classifier' ) else: UpperCAmelCase = 'focalnet.' + name return name def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[str]=False ): # fmt: off UpperCAmelCase = { 'focalnet-tiny': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth', 'focalnet-tiny-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth', 'focalnet-small': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth', 'focalnet-small-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth', 'focalnet-base': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth', 'focalnet-base-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth', 'focalnet-large-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth', 'focalnet-large-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth', 'focalnet-xlarge-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth', 'focalnet-xlarge-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth', } # fmt: on UpperCAmelCase = model_name_to_url[model_name] print('Checkpoint URL: ' , SCREAMING_SNAKE_CASE ) UpperCAmelCase = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE , map_location='cpu' )['model'] # rename keys for key in state_dict.copy().keys(): UpperCAmelCase = state_dict.pop(SCREAMING_SNAKE_CASE ) UpperCAmelCase = val UpperCAmelCase = get_focalnet_config(SCREAMING_SNAKE_CASE ) UpperCAmelCase = FocalNetForImageClassification(SCREAMING_SNAKE_CASE ) model.eval() # load state dict model.load_state_dict(SCREAMING_SNAKE_CASE ) # verify conversion UpperCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCAmelCase = BitImageProcessor( do_resize=SCREAMING_SNAKE_CASE , size={'shortest_edge': 256} , resample=PILImageResampling.BILINEAR , do_center_crop=SCREAMING_SNAKE_CASE , crop_size=224 , do_normalize=SCREAMING_SNAKE_CASE , image_mean=SCREAMING_SNAKE_CASE , image_std=SCREAMING_SNAKE_CASE , ) UpperCAmelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) UpperCAmelCase = processor(images=SCREAMING_SNAKE_CASE , return_tensors='pt' ) UpperCAmelCase = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) UpperCAmelCase = image_transforms(SCREAMING_SNAKE_CASE ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , SCREAMING_SNAKE_CASE , atol=1E-4 ) UpperCAmelCase = model(**SCREAMING_SNAKE_CASE ) UpperCAmelCase = outputs.logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) print('First values of logits:' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": UpperCAmelCase = torch.tensor([0.2166, -0.4368, 0.2191] ) elif model_name == "focalnet-tiny-lrf": UpperCAmelCase = torch.tensor([1.1669, 0.0125, -0.1695] ) elif model_name == "focalnet-small": UpperCAmelCase = torch.tensor([0.4917, -0.0430, 0.1341] ) elif model_name == "focalnet-small-lrf": UpperCAmelCase = torch.tensor([-0.2588, -0.5342, -0.2331] ) elif model_name == "focalnet-base": UpperCAmelCase = torch.tensor([-0.1655, -0.4090, -0.1730] ) elif model_name == "focalnet-base-lrf": UpperCAmelCase = torch.tensor([0.5306, -0.0483, -0.3928] ) assert torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f'''Saving model and processor of {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE ) processor.save_pretrained(SCREAMING_SNAKE_CASE ) if push_to_hub: print(f'''Pushing model and processor of {model_name} to the hub...''' ) model.push_to_hub(f'''{model_name}''' ) processor.push_to_hub(f'''{model_name}''' ) if __name__ == "__main__": _a : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='focalnet-tiny', type=str, help='Name of the FocalNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub.', ) _a : List[Any] = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
447
'''simple docstring''' def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ): return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(SCREAMING_SNAKE_CASE ) ) def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : list[list[int]] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ): # Base Case if index == len(SCREAMING_SNAKE_CASE ): return True # Recursive Step for i in range(SCREAMING_SNAKE_CASE ): if valid_coloring(graph[index] , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): # Color current vertex UpperCAmelCase = i # Validate coloring if util_color(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , index + 1 ): return True # Backtrack UpperCAmelCase = -1 return False def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : list[list[int]] , SCREAMING_SNAKE_CASE : int ): UpperCAmelCase = [-1] * len(SCREAMING_SNAKE_CASE ) if util_color(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , 0 ): return colored_vertices return []
447
1
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device lowerCAmelCase : Optional[Any] = False class UpperCAmelCase__ ( unittest.TestCase ): pass @nightly @require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase ): def UpperCAmelCase_ ( self ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self ) -> List[Any]: __lowerCAmelCase = VersatileDiffusionTextToImagePipeline.from_pretrained("shi-labs/versatile-diffusion" ) # remove text_unet pipe.remove_unused_weights() pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) __lowerCAmelCase = "A painting of a squirrel eating a burger " __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = pipe( prompt=UpperCamelCase , generator=UpperCamelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(UpperCamelCase ) __lowerCAmelCase = VersatileDiffusionTextToImagePipeline.from_pretrained(UpperCamelCase ) pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) __lowerCAmelCase = generator.manual_seed(0 ) __lowerCAmelCase = pipe( prompt=UpperCamelCase , generator=UpperCamelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def UpperCAmelCase_ ( self ) -> Dict: __lowerCAmelCase = VersatileDiffusionTextToImagePipeline.from_pretrained( "shi-labs/versatile-diffusion" , torch_dtype=torch.floataa ) pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) __lowerCAmelCase = "A painting of a squirrel eating a burger " __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = pipe( prompt=UpperCamelCase , generator=UpperCamelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" ).images __lowerCAmelCase = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __lowerCAmelCase = np.array([0.33_67, 0.31_69, 0.26_56, 0.38_70, 0.47_90, 0.37_96, 0.40_09, 0.48_78, 0.47_78] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
39
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase : Optional[int] = { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json''' ), } class UpperCAmelCase__ ( UpperCamelCase__ ): a : Optional[Any] = """dpr""" def __init__( self , UpperCamelCase=3_0522 , UpperCamelCase=768 , UpperCamelCase=12 , UpperCamelCase=12 , UpperCamelCase=3072 , UpperCamelCase="gelu" , UpperCamelCase=0.1 , UpperCamelCase=0.1 , UpperCamelCase=512 , UpperCamelCase=2 , UpperCamelCase=0.02 , UpperCamelCase=1E-12 , UpperCamelCase=0 , UpperCamelCase="absolute" , UpperCamelCase = 0 , **UpperCamelCase , ) -> Tuple: super().__init__(pad_token_id=UpperCamelCase , **UpperCamelCase ) __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = hidden_act __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = projection_dim __lowerCAmelCase = position_embedding_type
39
1
import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def _lowercase ( lowercase__ ): __lowerCAmelCase : Optional[int] = [] if isinstance(lowercase__ , lowercase__ ): for v in tree.values(): shapes.extend(_fetch_dims(lowercase__ ) ) elif isinstance(lowercase__ , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(lowercase__ ) ) elif isinstance(lowercase__ , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError('''Not supported''' ) return shapes @torch.jit.ignore def _lowercase ( lowercase__ , lowercase__ ): __lowerCAmelCase : Optional[int] = [] for d in reversed(lowercase__ ): idx.append(flat_idx % d ) __lowerCAmelCase : Optional[Any] = flat_idx // d return tuple(reversed(lowercase__ ) ) @torch.jit.ignore def _lowercase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = None , ): # start_edges and end_edges both indicate whether, starting from any given # dimension, the start/end index is at the top/bottom edge of the # corresponding tensor, modeled as a tree def reduce_edge_list(lowercase__ ) -> None: __lowerCAmelCase : str = True for i in range(len(lowercase__ ) ): __lowerCAmelCase : Dict = -1 * (i + 1) l[reversed_idx] &= tally __lowerCAmelCase : Union[str, Any] = l[reversed_idx] if start_edges is None: __lowerCAmelCase : Any = [s == 0 for s in start] reduce_edge_list(lowercase__ ) if end_edges is None: __lowerCAmelCase : int = [e == (d - 1) for e, d in zip(lowercase__ , lowercase__ )] reduce_edge_list(lowercase__ ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(lowercase__ ) == 0: return [()] elif len(lowercase__ ) == 1: return [(slice(start[0] , end[0] + 1 ),)] __lowerCAmelCase : List[Tuple[slice, ...]] = [] __lowerCAmelCase : List[slice] = [] # Dimensions common to start and end can be selected directly for s, e in zip(lowercase__ , lowercase__ ): if s == e: path_list.append(slice(lowercase__ , s + 1 ) ) else: break __lowerCAmelCase : Tuple[slice, ...] = tuple(lowercase__ ) __lowerCAmelCase : int = len(lowercase__ ) # start == end, and we're done if divergence_idx == len(lowercase__ ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None __lowerCAmelCase : Dict = start[divergence_idx] return tuple( path + (slice(lowercase__ , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None __lowerCAmelCase : Union[str, Any] = end[divergence_idx] return tuple( path + (slice(lowercase__ , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) __lowerCAmelCase : Union[str, Any] = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def _lowercase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): __lowerCAmelCase : List[str] = t.shape[:no_batch_dims] __lowerCAmelCase : int = list(_flat_idx_to_idx(lowercase__ , lowercase__ ) ) # _get_minimal_slice_set is inclusive __lowerCAmelCase : Dict = list(_flat_idx_to_idx(flat_end - 1 , lowercase__ ) ) # Get an ordered list of slices to perform __lowerCAmelCase : Optional[int] = _get_minimal_slice_set( lowercase__ , lowercase__ , lowercase__ , ) __lowerCAmelCase : Union[str, Any] = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def _lowercase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = False , lowercase__ = None , lowercase__ = False , ): if not (len(lowercase__ ) > 0): raise ValueError('''Must provide at least one input''' ) __lowerCAmelCase : int = [shape[:no_batch_dims] for shape in _fetch_dims(lowercase__ )] __lowerCAmelCase : List[Any] = tuple([max(lowercase__ ) for s in zip(*lowercase__ )] ) def _prep_inputs(lowercase__ ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: __lowerCAmelCase : Optional[Any] = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) __lowerCAmelCase : Tuple = t.reshape(-1 , *t.shape[no_batch_dims:] ) else: __lowerCAmelCase : List[str] = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t __lowerCAmelCase : Dict[str, Any] = tensor_tree_map(_prep_inputs , lowercase__ ) __lowerCAmelCase : Any = None if _out is not None: __lowerCAmelCase : List[str] = tensor_tree_map(lambda lowercase__ : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) __lowerCAmelCase : Any = 1 for d in orig_batch_dims: flat_batch_dim *= d __lowerCAmelCase : List[Any] = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(lowercase__ ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t __lowerCAmelCase : Optional[int] = 0 __lowerCAmelCase : Optional[Any] = prepped_outputs for _ in range(lowercase__ ): # Chunk the input if not low_mem: __lowerCAmelCase : Dict = _select_chunk else: __lowerCAmelCase : Optional[int] = partial( _chunk_slice , flat_start=lowercase__ , flat_end=min(lowercase__ , i + chunk_size ) , no_batch_dims=len(lowercase__ ) , ) __lowerCAmelCase : Dict[str, Any] = tensor_tree_map(lowercase__ , lowercase__ ) # Run the layer on the chunk __lowerCAmelCase : Union[str, Any] = layer(**lowercase__ ) # Allocate space for the output if out is None: __lowerCAmelCase : str = tensor_tree_map(lambda lowercase__ : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , lowercase__ ) # Put the chunk in its pre-allocated space if isinstance(lowercase__ , lowercase__ ): def assign(lowercase__ , lowercase__ ) -> None: for k, v in da.items(): if isinstance(lowercase__ , lowercase__ ): assign(lowercase__ , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: __lowerCAmelCase : List[Any] = da[k] assign(lowercase__ , lowercase__ ) elif isinstance(lowercase__ , lowercase__ ): for xa, xa in zip(lowercase__ , lowercase__ ): if _add_into_out: xa[i : i + chunk_size] += xa else: __lowerCAmelCase : Optional[int] = xa elif isinstance(lowercase__ , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: __lowerCAmelCase : Optional[int] = output_chunk else: raise ValueError('''Not supported''' ) i += chunk_size __lowerCAmelCase : Union[str, Any] = tensor_tree_map(lambda lowercase__ : t.view(orig_batch_dims + t.shape[1:] ) , lowercase__ ) return out class __lowercase : def __init__( self , A_ = 512 , ) ->Any: '''simple docstring''' __lowerCAmelCase : List[Any] = max_chunk_size __lowerCAmelCase : Optional[int] = None __lowerCAmelCase : Optional[tuple] = None def UpperCamelCase__ ( self , A_ , A_ , A_ ) ->int: '''simple docstring''' logging.info('''Tuning chunk size...''' ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size __lowerCAmelCase : List[int] = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] __lowerCAmelCase : Union[str, Any] = [c for c in candidates if c > min_chunk_size] __lowerCAmelCase : Dict = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(A_ ) -> bool: try: with torch.no_grad(): fn(*A_ , chunk_size=A_ ) return True except RuntimeError: return False __lowerCAmelCase : Optional[Any] = 0 __lowerCAmelCase : int = len(A_ ) - 1 while i > min_viable_chunk_size_index: __lowerCAmelCase : List[str] = test_chunk_size(candidates[i] ) if not viable: __lowerCAmelCase : Dict = (min_viable_chunk_size_index + i) // 2 else: __lowerCAmelCase : Optional[Any] = i __lowerCAmelCase : Dict = (i + len(A_ ) - 1) // 2 return candidates[min_viable_chunk_size_index] def UpperCamelCase__ ( self , A_ , A_ ) ->bool: '''simple docstring''' __lowerCAmelCase : Dict = True for aa, aa in zip(A_ , A_ ): assert type(A_ ) == type(A_ ) if isinstance(A_ , (list, tuple) ): consistent &= self._compare_arg_caches(A_ , A_ ) elif isinstance(A_ , A_ ): __lowerCAmelCase : Dict = [v for _, v in sorted(aa.items() , key=lambda A_ : x[0] )] __lowerCAmelCase : Any = [v for _, v in sorted(aa.items() , key=lambda A_ : x[0] )] consistent &= self._compare_arg_caches(A_ , A_ ) else: consistent &= aa == aa return consistent def UpperCamelCase__ ( self , A_ , A_ , A_ , ) ->int: '''simple docstring''' __lowerCAmelCase : Optional[Any] = True __lowerCAmelCase : tuple = tree_map(lambda A_ : a.shape if isinstance(A_ , torch.Tensor ) else a , A_ , A_ ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(A_ ) __lowerCAmelCase : str = self._compare_arg_caches(self.cached_arg_data , A_ ) else: # Otherwise, we can reuse the precomputed value __lowerCAmelCase : List[Any] = False if not consistent: __lowerCAmelCase : Any = self._determine_favorable_chunk_size( A_ , A_ , A_ , ) __lowerCAmelCase : Any = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
492
from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging _UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class __lowercase (_UpperCAmelCase ): def __init__( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) ->Optional[Any]: '''simple docstring''' super().__init__() if hasattr(scheduler.config , '''steps_offset''' ) and scheduler.config.steps_offset != 1: __lowerCAmelCase : Tuple = ( f"""The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`""" f""" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure """ '''to update the config accordingly as leaving `steps_offset` might led to incorrect results''' ''' in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,''' ''' it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`''' ''' file''' ) deprecate('''steps_offset!=1''' , '''1.0.0''' , A_ , standard_warn=A_ ) __lowerCAmelCase : List[str] = dict(scheduler.config ) __lowerCAmelCase : str = 1 __lowerCAmelCase : Optional[Any] = FrozenDict(A_ ) if hasattr(scheduler.config , '''skip_prk_steps''' ) and scheduler.config.skip_prk_steps is False: __lowerCAmelCase : List[str] = ( f"""The configuration file of this scheduler: {scheduler} has not set the configuration""" ''' `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make''' ''' sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to''' ''' incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face''' ''' Hub, it would be very nice if you could open a Pull request for the''' ''' `scheduler/scheduler_config.json` file''' ) deprecate('''skip_prk_steps not set''' , '''1.0.0''' , A_ , standard_warn=A_ ) __lowerCAmelCase : Any = dict(scheduler.config ) __lowerCAmelCase : Optional[int] = True __lowerCAmelCase : int = FrozenDict(A_ ) if safety_checker is None: logger.warning( f"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( segmentation_model=A_ , segmentation_processor=A_ , vae=A_ , text_encoder=A_ , tokenizer=A_ , unet=A_ , scheduler=A_ , safety_checker=A_ , feature_extractor=A_ , ) def UpperCamelCase__ ( self , A_ = "auto" ) ->Tuple: '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __lowerCAmelCase : int = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(A_ ) def UpperCamelCase__ ( self ) ->Tuple: '''simple docstring''' self.enable_attention_slicing(A_ ) def UpperCamelCase__ ( self ) ->str: '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) __lowerCAmelCase : Union[str, Any] = torch.device('''cuda''' ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(A_ , A_ ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCamelCase__ ( self ) ->List[Any]: '''simple docstring''' if self.device != torch.device('''meta''' ) or not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(A_ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self , A_ , A_ , A_ , A_ = 512 , A_ = 512 , A_ = 50 , A_ = 7.5 , A_ = None , A_ = 1 , A_ = 0.0 , A_ = None , A_ = None , A_ = "pil" , A_ = True , A_ = None , A_ = 1 , **A_ , ) ->int: '''simple docstring''' __lowerCAmelCase : Tuple = self.segmentation_processor( text=[text] , images=[image] , padding='''max_length''' , return_tensors='''pt''' ).to(self.device ) __lowerCAmelCase : List[str] = self.segmentation_model(**A_ ) __lowerCAmelCase : Tuple = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() __lowerCAmelCase : Dict = self.numpy_to_pil(A_ )[0].resize(image.size ) # Run inpainting pipeline with the generated mask __lowerCAmelCase : List[str] = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=A_ , image=A_ , mask_image=A_ , height=A_ , width=A_ , num_inference_steps=A_ , guidance_scale=A_ , negative_prompt=A_ , num_images_per_prompt=A_ , eta=A_ , generator=A_ , latents=A_ , output_type=A_ , return_dict=A_ , callback=A_ , callback_steps=A_ , )
492
1
import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def lowerCamelCase__ (__lowerCamelCase ): # picklable for multiprocessing return x.sum() def lowerCamelCase__ (__lowerCamelCase ): # picklable for multiprocessing return i + 1 @dataclass class lowerCAmelCase__: '''simple docstring''' __snake_case = 4_2 __snake_case = 4_2 class lowerCAmelCase__( __lowercase ): '''simple docstring''' def UpperCamelCase_ ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE : Tuple = {} _SCREAMING_SNAKE_CASE : str = [] _SCREAMING_SNAKE_CASE : List[Any] = 1 _SCREAMING_SNAKE_CASE : Optional[Any] = [1, 2] _SCREAMING_SNAKE_CASE : Tuple = {"a": 1, "b": 2} _SCREAMING_SNAKE_CASE : Optional[int] = {"a": [1, 2], "b": [3, 4]} _SCREAMING_SNAKE_CASE : Tuple = {"a": {"1": 1}, "b": 2} _SCREAMING_SNAKE_CASE : str = {"a": 1, "b": 2, "c": 3, "d": 4} _SCREAMING_SNAKE_CASE : List[str] = {} _SCREAMING_SNAKE_CASE : str = [] _SCREAMING_SNAKE_CASE : List[str] = 2 _SCREAMING_SNAKE_CASE : Union[str, Any] = [2, 3] _SCREAMING_SNAKE_CASE : int = {"a": 2, "b": 3} _SCREAMING_SNAKE_CASE : int = {"a": [2, 3], "b": [4, 5]} _SCREAMING_SNAKE_CASE : List[Any] = {"a": {"1": 2}, "b": 3} _SCREAMING_SNAKE_CASE : Tuple = {"a": 2, "b": 3, "c": 4, "d": 5} self.assertEqual(map_nested(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(map_nested(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(map_nested(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(map_nested(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(map_nested(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(map_nested(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(map_nested(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(map_nested(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = 2 self.assertEqual(map_nested(__lowerCamelCase , __lowerCamelCase , num_proc=__lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(map_nested(__lowerCamelCase , __lowerCamelCase , num_proc=__lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(map_nested(__lowerCamelCase , __lowerCamelCase , num_proc=__lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(map_nested(__lowerCamelCase , __lowerCamelCase , num_proc=__lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(map_nested(__lowerCamelCase , __lowerCamelCase , num_proc=__lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(map_nested(__lowerCamelCase , __lowerCamelCase , num_proc=__lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(map_nested(__lowerCamelCase , __lowerCamelCase , num_proc=__lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(map_nested(__lowerCamelCase , __lowerCamelCase , num_proc=__lowerCamelCase ) , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = {"a": np.eye(2 ), "b": np.zeros(3 ), "c": np.ones(2 )} _SCREAMING_SNAKE_CASE : Union[str, Any] = {"a": 2, "b": 0, "c": 2} _SCREAMING_SNAKE_CASE : Dict = { "a": np.eye(2 ).astype(__lowerCamelCase ), "b": np.zeros(3 ).astype(__lowerCamelCase ), "c": np.ones(2 ).astype(__lowerCamelCase ), } self.assertEqual(map_nested(__lowerCamelCase , __lowerCamelCase , map_numpy=__lowerCamelCase ) , __lowerCamelCase ) self.assertEqual( {k: v.tolist() for k, v in map_nested(__lowerCamelCase , __lowerCamelCase , map_numpy=__lowerCamelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(__lowerCamelCase , __lowerCamelCase , map_numpy=__lowerCamelCase , num_proc=__lowerCamelCase ) , __lowerCamelCase ) self.assertEqual( {k: v.tolist() for k, v in map_nested(__lowerCamelCase , __lowerCamelCase , map_numpy=__lowerCamelCase , num_proc=__lowerCamelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(__lowerCamelCase ): # can't pickle a local lambda map_nested(lambda __lowerCamelCase : x + 1 , __lowerCamelCase , num_proc=__lowerCamelCase ) def UpperCamelCase_ ( self ) -> Dict: _SCREAMING_SNAKE_CASE : Any = {"a": 1, "b": 2} _SCREAMING_SNAKE_CASE : List[str] = {"a": 3, "b": 4} _SCREAMING_SNAKE_CASE : Tuple = {"a": 5, "b": 6} _SCREAMING_SNAKE_CASE : Optional[Any] = sorted([("a", (1, 3, 5)), ("b", (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) ) , __lowerCamelCase ) def UpperCamelCase_ ( self ) -> str: class lowerCAmelCase__: '''simple docstring''' __snake_case = 'bar' _SCREAMING_SNAKE_CASE : Union[str, Any] = Foo() self.assertEqual(foo.my_attr , "bar" ) with temporary_assignment(__lowerCamelCase , "my_attr" , "BAR" ): self.assertEqual(foo.my_attr , "BAR" ) self.assertEqual(foo.my_attr , "bar" ) @pytest.mark.parametrize( "iterable_length, num_proc, expected_num_proc", [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ], ) def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): with patch("datasets.utils.py_utils._single_map_nested" ) as mock_single_map_nested, patch( "datasets.parallel.parallel.Pool" ) as mock_multiprocessing_pool: _SCREAMING_SNAKE_CASE : Tuple = {f"""{i}""": i for i in range(__lowerCamelCase )} _SCREAMING_SNAKE_CASE : Tuple = map_nested(lambda __lowerCamelCase : x + 10, __lowerCamelCase, num_proc=__lowerCamelCase, parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class lowerCAmelCase__( __lowercase ): '''simple docstring''' @require_tf def UpperCamelCase_ ( self ) -> int: import tensorflow as tf from tensorflow.keras import layers _SCREAMING_SNAKE_CASE : Union[str, Any] = layers.Dense(2 ) def gen_random_output(): _SCREAMING_SNAKE_CASE : Optional[int] = tf.random.uniform((1, 3) ) return model(__lowerCamelCase ).numpy() with temp_seed(4_2 , set_tensorflow=__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Optional[Any] = gen_random_output() with temp_seed(4_2 , set_tensorflow=__lowerCamelCase ): _SCREAMING_SNAKE_CASE : List[str] = gen_random_output() _SCREAMING_SNAKE_CASE : Optional[Any] = gen_random_output() np.testing.assert_equal(__lowerCamelCase , __lowerCamelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def UpperCamelCase_ ( self ) -> Any: import torch def gen_random_output(): _SCREAMING_SNAKE_CASE : Optional[Any] = torch.nn.Linear(3 , 2 ) _SCREAMING_SNAKE_CASE : List[Any] = torch.rand(1 , 3 ) return model(__lowerCamelCase ).detach().numpy() with temp_seed(4_2 , set_pytorch=__lowerCamelCase ): _SCREAMING_SNAKE_CASE : str = gen_random_output() with temp_seed(4_2 , set_pytorch=__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Dict = gen_random_output() _SCREAMING_SNAKE_CASE : Any = gen_random_output() np.testing.assert_equal(__lowerCamelCase , __lowerCamelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def UpperCamelCase_ ( self ) -> List[str]: def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(4_2 ): _SCREAMING_SNAKE_CASE : Union[str, Any] = gen_random_output() with temp_seed(4_2 ): _SCREAMING_SNAKE_CASE : List[str] = gen_random_output() _SCREAMING_SNAKE_CASE : Dict = gen_random_output() np.testing.assert_equal(__lowerCamelCase , __lowerCamelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize("input_data", [{}] ) def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Any = NestedDataStructure(__lowerCamelCase ).data assert output_data == input_data @pytest.mark.parametrize( "data, expected_output", [ ({}, []), ([], []), ("foo", ["foo"]), (["foo", "bar"], ["foo", "bar"]), ([["foo", "bar"]], ["foo", "bar"]), ([[["foo"], ["bar"]]], ["foo", "bar"]), ([[["foo"], "bar"]], ["foo", "bar"]), ({"a": 1, "b": 2}, [1, 2]), ({"a": [1, 2], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[[3], [4]]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, [4]]}, [1, 2, 3, 4]), ({"a": {"1": 1}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": [2]}, [1, 2]), ], ) def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = NestedDataStructure(__lowerCamelCase ).flatten() assert output == expected_output def lowerCamelCase__ (): _SCREAMING_SNAKE_CASE : Optional[Any] = A(x=1, y="foobar" ) _SCREAMING_SNAKE_CASE : List[str] = {"x": 1, "y": "foobar"} assert asdict(__lowerCamelCase ) == expected_output _SCREAMING_SNAKE_CASE : Dict = {"a": {"b": A(x=10, y="foo" )}, "c": [A(x=20, y="bar" )]} _SCREAMING_SNAKE_CASE : Tuple = {"a": {"b": {"x": 10, "y": "foo"}}, "c": [{"x": 20, "y": "bar"}]} assert asdict(__lowerCamelCase ) == expected_output with pytest.raises(__lowerCamelCase ): asdict([1, A(x=10, y="foo" )] ) def lowerCamelCase__ (__lowerCamelCase ): return text.split() def lowerCamelCase__ (__lowerCamelCase ): yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def lowerCamelCase__ (): with Pool(2 ) as pool: _SCREAMING_SNAKE_CASE : List[str] = list(iflatmap_unordered(__lowerCamelCase, _split_text, kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(__lowerCamelCase ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: _SCREAMING_SNAKE_CASE : str = list(iflatmap_unordered(__lowerCamelCase, _split_text, kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(__lowerCamelCase ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: _SCREAMING_SNAKE_CASE : Tuple = [] for yield_time, content in iflatmap_unordered( __lowerCamelCase, _aseconds_generator_of_aitems_with_timing, kwargs_iterable=[{"content": "a"}, {"content": "b"}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(__lowerCamelCase ) assert out.count("a" ) == 2 assert out.count("b" ) == 2 assert len(__lowerCamelCase ) == 4
703
from __future__ import annotations UpperCamelCase__ =[True] * 100_0001 UpperCamelCase__ =2 while i * i <= 100_0000: if seive[i]: for j in range(i * i, 100_0001, i): UpperCamelCase__ =False i += 1 def lowerCamelCase__ (__lowerCamelCase ): return seive[n] def lowerCamelCase__ (__lowerCamelCase ): return any(digit in "02468" for digit in str(__lowerCamelCase ) ) def lowerCamelCase__ (__lowerCamelCase = 1000000 ): _SCREAMING_SNAKE_CASE : Optional[Any] = [2] # result already includes the number 2. for num in range(3, limit + 1, 2 ): if is_prime(__lowerCamelCase ) and not contains_an_even_digit(__lowerCamelCase ): _SCREAMING_SNAKE_CASE : List[Any] = str(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = [int(str_num[j:] + str_num[:j] ) for j in range(len(__lowerCamelCase ) )] if all(is_prime(__lowerCamelCase ) for i in list_nums ): result.append(__lowerCamelCase ) return result def lowerCamelCase__ (): return len(find_circular_primes() ) if __name__ == "__main__": print(f"{len(find_circular_primes()) = }")
381
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __snake_case = '''▁''' __snake_case = {'''vocab_file''': '''spiece.model'''} __snake_case = { '''vocab_file''': {'''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'''} } __snake_case = { '''google/pegasus-xsum''': 5_1_2, } __snake_case = logging.get_logger(__name__) class __lowerCamelCase (_a ): _lowercase = VOCAB_FILES_NAMES _lowercase = VOCAB_FILES_NAMES _lowercase = PRETRAINED_VOCAB_FILES_MAP _lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase = ["""input_ids""", """attention_mask"""] def __init__( self: List[Any],A_: Dict,A_: Optional[int]="<pad>",A_: Tuple="</s>",A_: int="<unk>",A_: Tuple="<mask_2>",A_: Optional[int]="<mask_1>",A_: str=None,A_: List[Any]=103,A_: Optional[Dict[str, Any]] = None,**A_: Dict,): '''simple docstring''' __UpperCamelCase = offset if additional_special_tokens is not None: if not isinstance(A_,A_ ): raise TypeError( F'''additional_special_tokens should be of type {type(A_ )}, but is''' F''' {type(A_ )}''' ) __UpperCamelCase = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F'''<unk_{i}>''' for i in range(len(A_ ),self.offset - 1 ) ] if len(set(A_ ) ) != len(A_ ): raise ValueError( 'Please make sure that the provided additional_special_tokens do not contain an incorrectly' F''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) __UpperCamelCase = additional_special_tokens_extended else: __UpperCamelCase = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F'''<unk_{i}>''' for i in range(2,self.offset )] __UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=A_,unk_token=A_,mask_token=A_,pad_token=A_,mask_token_sent=A_,offset=A_,additional_special_tokens=A_,sp_model_kwargs=self.sp_model_kwargs,**A_,) __UpperCamelCase = mask_token_sent __UpperCamelCase = vocab_file __UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A_ ) # add special tokens to encoder dict __UpperCamelCase = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1,self.offset - 1 )} ) __UpperCamelCase = {v: k for k, v in self.encoder.items()} @property def snake_case_ ( self: str ): '''simple docstring''' return len(self.sp_model ) + self.offset def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = {self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = self.__dict__.copy() __UpperCamelCase = None return state def __setstate__( self: Dict,A_: Optional[int] ): '''simple docstring''' __UpperCamelCase = d # for backward compatibility if not hasattr(self,'sp_model_kwargs' ): __UpperCamelCase = {} __UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def snake_case_ ( self: Optional[int],A_: str ): '''simple docstring''' return self.sp_model.encode(A_,out_type=A_ ) def snake_case_ ( self: str,A_: str ): '''simple docstring''' if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] __UpperCamelCase = self.sp_model.piece_to_id(A_ ) return sp_id + self.offset def snake_case_ ( self: Union[str, Any],A_: int ): '''simple docstring''' if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: __UpperCamelCase = self.sp_model.IdToPiece(index - self.offset ) return token def snake_case_ ( self: Union[str, Any],A_: List[Any] ): '''simple docstring''' __UpperCamelCase = [] __UpperCamelCase = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A_ ) + token __UpperCamelCase = [] else: current_sub_tokens.append(A_ ) out_string += self.sp_model.decode(A_ ) return out_string.strip() def snake_case_ ( self: Dict,A_: Any=False ): '''simple docstring''' return 1 def snake_case_ ( self: Union[str, Any],A_: Dict ): '''simple docstring''' __UpperCamelCase = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def snake_case_ ( self: Optional[Any],A_: List,A_: Optional[List] = None,A_: bool = False ): '''simple docstring''' if already_has_special_tokens: return self._special_token_mask(A_ ) elif token_ids_a is None: return self._special_token_mask(A_ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def snake_case_ ( self: Optional[Any],A_: Optional[int],A_: Tuple=None ): '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def snake_case_ ( self: List[str],A_: str,A_: Optional[str] = None ): '''simple docstring''' if not os.path.isdir(A_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return __UpperCamelCase = os.path.join( A_,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file,A_ ) elif not os.path.isfile(self.vocab_file ): with open(A_,'wb' ) as fi: __UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(A_ ) return (out_vocab_file,)
1
import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class lowerCAmelCase__ ( __lowercase ): def __init__( self , a=0.01 , a=10_00 ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = p_stop _UpperCamelCase = max_length def __iter__( self ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = 0 _UpperCamelCase = False while not stop and count < self.max_length: yield count count += 1 _UpperCamelCase = random.random() < self.p_stop class lowerCAmelCase__ ( unittest.TestCase ): def A_ ( self , a , a , a=False , a=True ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = [ BatchSamplerShard(a , 2 , a , split_batches=a , even_batches=a ) for i in range(2 ) ] _UpperCamelCase = [list(a ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(a ) for shard in batch_sampler_shards] , [len(a ) for e in expected] ) self.assertListEqual(a , a ) def A_ ( self ) -> Any: '''simple docstring''' _UpperCamelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=a ) _UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(a , a ) _UpperCamelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=a ) # Expected shouldn't change self.check_batch_sampler_shards(a , a ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. _UpperCamelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=a ) _UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(a , a ) _UpperCamelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=a ) _UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a , a ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. _UpperCamelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=a ) _UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(a , a ) _UpperCamelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=a ) _UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a , a ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. _UpperCamelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=a ) _UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(a , a ) _UpperCamelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=a ) _UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a , a ) # Check the shards when the dataset is very small. _UpperCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=a ) _UpperCamelCase = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(a , a ) _UpperCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=a ) _UpperCamelCase = [[], []] self.check_batch_sampler_shards(a , a ) def A_ ( self ) -> Tuple: '''simple docstring''' _UpperCamelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=a ) _UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(a , a , split_batches=a ) _UpperCamelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=a ) # Expected shouldn't change self.check_batch_sampler_shards(a , a , split_batches=a ) # Check the shards when the dataset is not a round multiple of batch size. _UpperCamelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=a ) _UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(a , a , split_batches=a ) _UpperCamelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=a ) _UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(a , a , split_batches=a ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. _UpperCamelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=a ) _UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(a , a , split_batches=a ) _UpperCamelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=a ) _UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(a , a , split_batches=a ) # Check the shards when the dataset is very small. _UpperCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=a ) _UpperCamelCase = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(a , a , split_batches=a ) _UpperCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=a ) _UpperCamelCase = [[], []] self.check_batch_sampler_shards(a , a , split_batches=a ) def A_ ( self ) -> str: '''simple docstring''' _UpperCamelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=a ) _UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(a , a , even_batches=a ) _UpperCamelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=a ) # Expected shouldn't change self.check_batch_sampler_shards(a , a , even_batches=a ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. _UpperCamelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=a ) _UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a , a , even_batches=a ) _UpperCamelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=a ) _UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a , a , even_batches=a ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. _UpperCamelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=a ) _UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(a , a , even_batches=a ) _UpperCamelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=a ) _UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a , a , even_batches=a ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. _UpperCamelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=a ) _UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a , a , even_batches=a ) _UpperCamelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=a ) _UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a , a , even_batches=a ) # Check the shards when the dataset is very small. _UpperCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=a ) _UpperCamelCase = [[[0, 1]], []] self.check_batch_sampler_shards(a , a , even_batches=a ) _UpperCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=a ) _UpperCamelCase = [[], []] self.check_batch_sampler_shards(a , a , even_batches=a ) def A_ ( self ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=a ) _UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(a , a , split_batches=a , even_batches=a ) _UpperCamelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=a ) # Expected shouldn't change self.check_batch_sampler_shards(a , a , split_batches=a , even_batches=a ) # Check the shards when the dataset is not a round multiple of batch size. _UpperCamelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=a ) _UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(a , a , split_batches=a , even_batches=a ) _UpperCamelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=a ) _UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(a , a , split_batches=a , even_batches=a ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. _UpperCamelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=a ) _UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(a , a , split_batches=a , even_batches=a ) _UpperCamelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=a ) _UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(a , a , split_batches=a , even_batches=a ) # Check the shards when the dataset is very small. _UpperCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=a ) _UpperCamelCase = [[[0, 1]], []] self.check_batch_sampler_shards(a , a , split_batches=a , even_batches=a ) _UpperCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=a ) _UpperCamelCase = [[], []] self.check_batch_sampler_shards(a , a , split_batches=a , even_batches=a ) def A_ ( self ) -> List[Any]: '''simple docstring''' _UpperCamelCase = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] _UpperCamelCase = [BatchSamplerShard(a , 2 , a , even_batches=a ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def A_ ( self , a , a , a , a=False , a=2 , a=False ) -> Any: '''simple docstring''' random.seed(a ) _UpperCamelCase = list(a ) _UpperCamelCase = [ IterableDatasetShard( a , batch_size=a , drop_last=a , num_processes=a , process_index=a , split_batches=a , ) for i in range(a ) ] _UpperCamelCase = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(a ) iterable_dataset_lists.append(list(a ) ) _UpperCamelCase = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size _UpperCamelCase = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(a ) , len(a ) ) self.assertTrue(len(a ) % shard_batch_size == 0 ) _UpperCamelCase = [] for idx in range(0 , len(a ) , a ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(a ) < len(a ): reference += reference self.assertListEqual(a , reference[: len(a )] ) def A_ ( self ) -> int: '''simple docstring''' _UpperCamelCase = 42 _UpperCamelCase = RandomIterableDataset() self.check_iterable_dataset_shards(a , a , batch_size=4 , drop_last=a , split_batches=a ) self.check_iterable_dataset_shards(a , a , batch_size=4 , drop_last=a , split_batches=a ) self.check_iterable_dataset_shards(a , a , batch_size=4 , drop_last=a , split_batches=a ) self.check_iterable_dataset_shards(a , a , batch_size=4 , drop_last=a , split_batches=a ) # Edge case with a very small dataset _UpperCamelCase = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(a , a , batch_size=4 , drop_last=a , split_batches=a ) self.check_iterable_dataset_shards(a , a , batch_size=4 , drop_last=a , split_batches=a ) self.check_iterable_dataset_shards(a , a , batch_size=4 , drop_last=a , split_batches=a ) self.check_iterable_dataset_shards(a , a , batch_size=4 , drop_last=a , split_batches=a ) def A_ ( self ) -> Any: '''simple docstring''' _UpperCamelCase = BatchSampler(range(16 ) , batch_size=4 , drop_last=a ) _UpperCamelCase = SkipBatchSampler(a , 2 ) self.assertListEqual(list(a ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def A_ ( self ) -> Dict: '''simple docstring''' _UpperCamelCase = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def A_ ( self ) -> Tuple: '''simple docstring''' _UpperCamelCase = DataLoader(list(range(16 ) ) , batch_size=4 ) _UpperCamelCase = skip_first_batches(a , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def A_ ( self ) -> List[str]: '''simple docstring''' _UpperCamelCase = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(a ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(a ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def A_ ( self ) -> Optional[Any]: '''simple docstring''' Accelerator() _UpperCamelCase = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(a ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(a ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
612
0
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline a = logging.get_logger(__name__) # pylint: disable=invalid-name class SCREAMING_SNAKE_CASE__ ( _a ): def __init__( self : str , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[Any] ): super().__init__() self.register_modules(unet=lowerCAmelCase , scheduler=lowerCAmelCase ) @torch.no_grad() def __call__( self : List[Any] , lowerCAmelCase : int = 1 , lowerCAmelCase : int = 100 , lowerCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCAmelCase : Optional[float] = None , lowerCAmelCase : bool = True , ): if audio_length_in_s is None: lowerCAmelCase = self.unet.config.sample_size / self.unet.config.sample_rate lowerCAmelCase = audio_length_in_s * self.unet.config.sample_rate lowerCAmelCase = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( f'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to''' f''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' ) lowerCAmelCase = int(lowerCAmelCase ) if sample_size % down_scale_factor != 0: lowerCAmelCase = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled''' f''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising''' """ process.""" ) lowerCAmelCase = int(lowerCAmelCase ) lowerCAmelCase = next(iter(self.unet.parameters() ) ).dtype lowerCAmelCase = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(lowerCAmelCase , lowerCAmelCase ) and len(lowerCAmelCase ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(lowerCAmelCase )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowerCAmelCase = randn_tensor(lowerCAmelCase , generator=lowerCAmelCase , device=self.device , dtype=lowerCAmelCase ) # set step values self.scheduler.set_timesteps(lowerCAmelCase , device=audio.device ) lowerCAmelCase = self.scheduler.timesteps.to(lowerCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowerCAmelCase = self.unet(lowerCAmelCase , lowerCAmelCase ).sample # 2. compute previous image: x_t -> t_t-1 lowerCAmelCase = self.scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ).prev_sample lowerCAmelCase = audio.clamp(-1 , 1 ).float().cpu().numpy() lowerCAmelCase = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=lowerCAmelCase )
708
"""simple docstring""" from collections import deque from math import floor from random import random from time import time class SCREAMING_SNAKE_CASE__ : def __init__( self : Union[str, Any] ): lowerCAmelCase = {} def __lowercase ( self : Optional[int] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any]=1 ): if self.graph.get(lowerCAmelCase ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: lowerCAmelCase = [[w, v]] if not self.graph.get(lowerCAmelCase ): lowerCAmelCase = [] def __lowercase ( self : Optional[int] ): return list(self.graph ) def __lowercase ( self : Optional[Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Dict ): if self.graph.get(lowerCAmelCase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowerCAmelCase ) def __lowercase ( self : List[str] , lowerCAmelCase : Tuple=-2 , lowerCAmelCase : List[Any]=-1 ): if s == d: return [] lowerCAmelCase = [] lowerCAmelCase = [] if s == -2: lowerCAmelCase = list(self.graph )[0] stack.append(lowerCAmelCase ) visited.append(lowerCAmelCase ) lowerCAmelCase = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCAmelCase = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowerCAmelCase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) lowerCAmelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowerCAmelCase ) != 0: lowerCAmelCase = stack[len(lowerCAmelCase ) - 1] else: lowerCAmelCase = ss # check if se have reached the starting point if len(lowerCAmelCase ) == 0: return visited def __lowercase ( self : Tuple , lowerCAmelCase : Any=-1 ): if c == -1: lowerCAmelCase = floor(random() * 1_0000 ) + 10 for i in range(lowerCAmelCase ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): lowerCAmelCase = floor(random() * c ) + 1 if n != i: self.add_pair(lowerCAmelCase , lowerCAmelCase , 1 ) def __lowercase ( self : Optional[int] , lowerCAmelCase : List[str]=-2 ): lowerCAmelCase = deque() lowerCAmelCase = [] if s == -2: lowerCAmelCase = list(self.graph )[0] d.append(lowerCAmelCase ) visited.append(lowerCAmelCase ) while d: lowerCAmelCase = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def __lowercase ( self : List[Any] , lowerCAmelCase : Union[str, Any] ): lowerCAmelCase = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def __lowercase ( self : int , lowerCAmelCase : Tuple ): return len(self.graph[u] ) def __lowercase ( self : Optional[int] , lowerCAmelCase : Optional[Any]=-2 ): lowerCAmelCase = [] lowerCAmelCase = [] if s == -2: lowerCAmelCase = list(self.graph )[0] stack.append(lowerCAmelCase ) visited.append(lowerCAmelCase ) lowerCAmelCase = s lowerCAmelCase = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCAmelCase = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowerCAmelCase = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(lowerCAmelCase ) != 0: lowerCAmelCase = stack[len(lowerCAmelCase ) - 1] else: lowerCAmelCase = ss # check if se have reached the starting point if len(lowerCAmelCase ) == 0: return sorted_nodes def __lowercase ( self : Any ): lowerCAmelCase = [] lowerCAmelCase = [] lowerCAmelCase = list(self.graph )[0] stack.append(lowerCAmelCase ) visited.append(lowerCAmelCase ) lowerCAmelCase = -2 lowerCAmelCase = [] lowerCAmelCase = s lowerCAmelCase = False lowerCAmelCase = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCAmelCase = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowerCAmelCase = len(lowerCAmelCase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowerCAmelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() lowerCAmelCase = True if len(lowerCAmelCase ) != 0: lowerCAmelCase = stack[len(lowerCAmelCase ) - 1] else: lowerCAmelCase = False indirect_parents.append(lowerCAmelCase ) lowerCAmelCase = s lowerCAmelCase = ss # check if se have reached the starting point if len(lowerCAmelCase ) == 0: return list(lowerCAmelCase ) def __lowercase ( self : Tuple ): lowerCAmelCase = [] lowerCAmelCase = [] lowerCAmelCase = list(self.graph )[0] stack.append(lowerCAmelCase ) visited.append(lowerCAmelCase ) lowerCAmelCase = -2 lowerCAmelCase = [] lowerCAmelCase = s lowerCAmelCase = False lowerCAmelCase = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCAmelCase = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowerCAmelCase = len(lowerCAmelCase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowerCAmelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() lowerCAmelCase = True if len(lowerCAmelCase ) != 0: lowerCAmelCase = stack[len(lowerCAmelCase ) - 1] else: lowerCAmelCase = False indirect_parents.append(lowerCAmelCase ) lowerCAmelCase = s lowerCAmelCase = ss # check if se have reached the starting point if len(lowerCAmelCase ) == 0: return False def __lowercase ( self : List[Any] , lowerCAmelCase : Any=-2 , lowerCAmelCase : Tuple=-1 ): lowerCAmelCase = time() self.dfs(lowerCAmelCase , lowerCAmelCase ) lowerCAmelCase = time() return end - begin def __lowercase ( self : int , lowerCAmelCase : str=-2 ): lowerCAmelCase = time() self.bfs(lowerCAmelCase ) lowerCAmelCase = time() return end - begin class SCREAMING_SNAKE_CASE__ : def __init__( self : int ): lowerCAmelCase = {} def __lowercase ( self : Optional[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : str , lowerCAmelCase : str=1 ): # check if the u exists if self.graph.get(lowerCAmelCase ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist lowerCAmelCase = [[w, v]] # add the other way if self.graph.get(lowerCAmelCase ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist lowerCAmelCase = [[w, u]] def __lowercase ( self : Dict , lowerCAmelCase : Any , lowerCAmelCase : int ): if self.graph.get(lowerCAmelCase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowerCAmelCase ) # the other way round if self.graph.get(lowerCAmelCase ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(lowerCAmelCase ) def __lowercase ( self : Dict , lowerCAmelCase : Optional[int]=-2 , lowerCAmelCase : Optional[Any]=-1 ): if s == d: return [] lowerCAmelCase = [] lowerCAmelCase = [] if s == -2: lowerCAmelCase = list(self.graph )[0] stack.append(lowerCAmelCase ) visited.append(lowerCAmelCase ) lowerCAmelCase = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCAmelCase = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowerCAmelCase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) lowerCAmelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowerCAmelCase ) != 0: lowerCAmelCase = stack[len(lowerCAmelCase ) - 1] else: lowerCAmelCase = ss # check if se have reached the starting point if len(lowerCAmelCase ) == 0: return visited def __lowercase ( self : Any , lowerCAmelCase : Dict=-1 ): if c == -1: lowerCAmelCase = floor(random() * 1_0000 ) + 10 for i in range(lowerCAmelCase ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): lowerCAmelCase = floor(random() * c ) + 1 if n != i: self.add_pair(lowerCAmelCase , lowerCAmelCase , 1 ) def __lowercase ( self : int , lowerCAmelCase : Tuple=-2 ): lowerCAmelCase = deque() lowerCAmelCase = [] if s == -2: lowerCAmelCase = list(self.graph )[0] d.append(lowerCAmelCase ) visited.append(lowerCAmelCase ) while d: lowerCAmelCase = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def __lowercase ( self : List[str] , lowerCAmelCase : str ): return len(self.graph[u] ) def __lowercase ( self : Optional[Any] ): lowerCAmelCase = [] lowerCAmelCase = [] lowerCAmelCase = list(self.graph )[0] stack.append(lowerCAmelCase ) visited.append(lowerCAmelCase ) lowerCAmelCase = -2 lowerCAmelCase = [] lowerCAmelCase = s lowerCAmelCase = False lowerCAmelCase = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCAmelCase = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowerCAmelCase = len(lowerCAmelCase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowerCAmelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() lowerCAmelCase = True if len(lowerCAmelCase ) != 0: lowerCAmelCase = stack[len(lowerCAmelCase ) - 1] else: lowerCAmelCase = False indirect_parents.append(lowerCAmelCase ) lowerCAmelCase = s lowerCAmelCase = ss # check if se have reached the starting point if len(lowerCAmelCase ) == 0: return list(lowerCAmelCase ) def __lowercase ( self : int ): lowerCAmelCase = [] lowerCAmelCase = [] lowerCAmelCase = list(self.graph )[0] stack.append(lowerCAmelCase ) visited.append(lowerCAmelCase ) lowerCAmelCase = -2 lowerCAmelCase = [] lowerCAmelCase = s lowerCAmelCase = False lowerCAmelCase = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCAmelCase = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowerCAmelCase = len(lowerCAmelCase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowerCAmelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() lowerCAmelCase = True if len(lowerCAmelCase ) != 0: lowerCAmelCase = stack[len(lowerCAmelCase ) - 1] else: lowerCAmelCase = False indirect_parents.append(lowerCAmelCase ) lowerCAmelCase = s lowerCAmelCase = ss # check if se have reached the starting point if len(lowerCAmelCase ) == 0: return False def __lowercase ( self : str ): return list(self.graph ) def __lowercase ( self : Dict , lowerCAmelCase : Dict=-2 , lowerCAmelCase : List[str]=-1 ): lowerCAmelCase = time() self.dfs(lowerCAmelCase , lowerCAmelCase ) lowerCAmelCase = time() return end - begin def __lowercase ( self : str , lowerCAmelCase : Union[str, Any]=-2 ): lowerCAmelCase = time() self.bfs(lowerCAmelCase ) lowerCAmelCase = time() return end - begin
529
0
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class snake_case : """simple docstring""" def __init__( self , UpperCamelCase , UpperCamelCase=13 , UpperCamelCase=7 , UpperCamelCase=True , UpperCamelCase=True , UpperCamelCase=True , UpperCamelCase=True , UpperCamelCase=99 , UpperCamelCase=32 , UpperCamelCase=2 , UpperCamelCase=4 , UpperCamelCase=37 , UpperCamelCase="gelu" , UpperCamelCase=0.1 , UpperCamelCase=0.1 , UpperCamelCase=512 , UpperCamelCase=16 , UpperCamelCase=2 , UpperCamelCase=0.02 , UpperCamelCase=3 , UpperCamelCase=4 , UpperCamelCase=None , ): """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = 13 lowerCamelCase_ = 7 lowerCamelCase_ = True lowerCamelCase_ = True lowerCamelCase_ = True lowerCamelCase_ = True lowerCamelCase_ = 99 lowerCamelCase_ = 384 lowerCamelCase_ = 2 lowerCamelCase_ = 4 lowerCamelCase_ = 37 lowerCamelCase_ = "gelu" lowerCamelCase_ = 0.1 lowerCamelCase_ = 0.1 lowerCamelCase_ = 512 lowerCamelCase_ = 16 lowerCamelCase_ = 2 lowerCamelCase_ = 0.02 lowerCamelCase_ = 3 lowerCamelCase_ = 4 lowerCamelCase_ = 128 lowerCamelCase_ = 2 lowerCamelCase_ = 9 lowerCamelCase_ = 1 lowerCamelCase_ = None def snake_case ( self ): """simple docstring""" lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ = None if self.use_input_mask: lowerCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ = None if self.use_token_type_ids: lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCamelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = TFConvBertModel(config=UpperCamelCase ) lowerCamelCase_ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCamelCase_ = [input_ids, input_mask] lowerCamelCase_ = model(UpperCamelCase ) lowerCamelCase_ = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = TFConvBertForMaskedLM(config=UpperCamelCase ) lowerCamelCase_ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } lowerCamelCase_ = model(UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = self.num_labels lowerCamelCase_ = TFConvBertForSequenceClassification(config=UpperCamelCase ) lowerCamelCase_ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } lowerCamelCase_ = model(UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = self.num_choices lowerCamelCase_ = TFConvBertForMultipleChoice(config=UpperCamelCase ) lowerCamelCase_ = tf.tile(tf.expand_dims(UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) lowerCamelCase_ = tf.tile(tf.expand_dims(UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) lowerCamelCase_ = tf.tile(tf.expand_dims(UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) lowerCamelCase_ = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } lowerCamelCase_ = model(UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = self.num_labels lowerCamelCase_ = TFConvBertForTokenClassification(config=UpperCamelCase ) lowerCamelCase_ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } lowerCamelCase_ = model(UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = TFConvBertForQuestionAnswering(config=UpperCamelCase ) lowerCamelCase_ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } lowerCamelCase_ = model(UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) , ) = config_and_inputs lowerCamelCase_ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class snake_case ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" _lowerCamelCase = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) _lowerCamelCase = ( { "feature-extraction": TFConvBertModel, "fill-mask": TFConvBertForMaskedLM, "question-answering": TFConvBertForQuestionAnswering, "text-classification": TFConvBertForSequenceClassification, "token-classification": TFConvBertForTokenClassification, "zero-shot": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False def snake_case ( self ): """simple docstring""" lowerCamelCase_ = TFConvBertModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=UpperCamelCase , hidden_size=37 ) def snake_case ( self ): """simple docstring""" self.config_tester.run_common_tests() def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCamelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCamelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCamelCase ) @slow def snake_case ( self ): """simple docstring""" lowerCamelCase_ ,lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = True lowerCamelCase_ = True if hasattr(UpperCamelCase , "use_cache" ): lowerCamelCase_ = True lowerCamelCase_ = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) lowerCamelCase_ = getattr(self.model_tester , "key_length" , UpperCamelCase ) for model_class in self.all_model_classes: lowerCamelCase_ = self._prepare_for_class(UpperCamelCase , UpperCamelCase ) lowerCamelCase_ = model_class(UpperCamelCase ) lowerCamelCase_ = len(model(UpperCamelCase ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCamelCase , saved_model=UpperCamelCase ) lowerCamelCase_ = os.path.join(UpperCamelCase , "saved_model" , "1" ) lowerCamelCase_ = tf.keras.models.load_model(UpperCamelCase ) lowerCamelCase_ = model(UpperCamelCase ) if self.is_encoder_decoder: lowerCamelCase_ = outputs["encoder_hidden_states"] lowerCamelCase_ = outputs["encoder_attentions"] else: lowerCamelCase_ = outputs["hidden_states"] lowerCamelCase_ = outputs["attentions"] self.assertEqual(len(UpperCamelCase ) , UpperCamelCase ) lowerCamelCase_ = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(UpperCamelCase ) , UpperCamelCase ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def snake_case ( self ): """simple docstring""" lowerCamelCase_ = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) self.assertIsNotNone(UpperCamelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ ,lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = True lowerCamelCase_ = getattr(self.model_tester , "decoder_seq_length" , self.model_tester.seq_length ) lowerCamelCase_ = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) lowerCamelCase_ = getattr(self.model_tester , "key_length" , UpperCamelCase ) lowerCamelCase_ = getattr(self.model_tester , "key_length" , UpperCamelCase ) def check_decoder_attentions_output(UpperCamelCase ): lowerCamelCase_ = len(UpperCamelCase ) self.assertEqual(out_len % 2 , 0 ) lowerCamelCase_ = outputs.decoder_attentions self.assertEqual(len(UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(UpperCamelCase ): lowerCamelCase_ = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: lowerCamelCase_ = True lowerCamelCase_ = False lowerCamelCase_ = model_class(UpperCamelCase ) lowerCamelCase_ = model(self._prepare_for_class(UpperCamelCase , UpperCamelCase ) ) lowerCamelCase_ = len(UpperCamelCase ) self.assertEqual(config.output_hidden_states , UpperCamelCase ) check_encoder_attentions_output(UpperCamelCase ) if self.is_encoder_decoder: lowerCamelCase_ = model_class(UpperCamelCase ) lowerCamelCase_ = model(self._prepare_for_class(UpperCamelCase , UpperCamelCase ) ) self.assertEqual(config.output_hidden_states , UpperCamelCase ) check_decoder_attentions_output(UpperCamelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] lowerCamelCase_ = True lowerCamelCase_ = model_class(UpperCamelCase ) lowerCamelCase_ = model(self._prepare_for_class(UpperCamelCase , UpperCamelCase ) ) self.assertEqual(config.output_hidden_states , UpperCamelCase ) check_encoder_attentions_output(UpperCamelCase ) # Check attention is always last and order is fine lowerCamelCase_ = True lowerCamelCase_ = True lowerCamelCase_ = model_class(UpperCamelCase ) lowerCamelCase_ = model(self._prepare_for_class(UpperCamelCase , UpperCamelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(UpperCamelCase ) ) self.assertEqual(model.config.output_hidden_states , UpperCamelCase ) check_encoder_attentions_output(UpperCamelCase ) @require_tf class snake_case ( unittest.TestCase ): """simple docstring""" @slow def snake_case ( self ): """simple docstring""" lowerCamelCase_ = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) lowerCamelCase_ = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCamelCase_ = model(UpperCamelCase )[0] lowerCamelCase_ = [1, 6, 768] self.assertEqual(output.shape , UpperCamelCase ) lowerCamelCase_ = tf.constant( [ [ [-0.03_475_493, -0.4_686_034, -0.30_638_832], [0.22_637_248, -0.26_988_646, -0.7_423_424], [0.10_324_868, -0.45_013_508, -0.58_280_784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCamelCase , atol=1e-4 )
675
'''simple docstring''' def __snake_case ( ): lowerCamelCase_ = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] lowerCamelCase_ = 6 lowerCamelCase_ = 1 lowerCamelCase_ = 1901 lowerCamelCase_ = 0 while year < 2001: day += 7 if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 lowerCamelCase_ = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 lowerCamelCase_ = day - 29 else: if day > days_per_month[month - 1]: month += 1 lowerCamelCase_ = day - days_per_month[month - 2] if month > 12: year += 1 lowerCamelCase_ = 1 if year < 2001 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
675
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __magic_name__ : Any = logging.get_logger(__name__) __magic_name__ : str = { 'post_extract_proj': 'feature_projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.upsample.0': 'encoder.upsample.projection', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'layer_norm', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } def lowerCAmelCase ( snake_case__ : List[Any] , snake_case__ : Tuple , snake_case__ : Union[str, Any] , snake_case__ : Dict , snake_case__ : Dict )-> Tuple: for attribute in key.split("." ): A_ = getattr(snake_case__ , snake_case__ ) if weight_type is not None: A_ = getattr(snake_case__ , snake_case__ ).shape else: A_ = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": A_ = value elif weight_type == "weight_g": A_ = value elif weight_type == "weight_v": A_ = value elif weight_type == "bias": A_ = value else: A_ = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def lowerCAmelCase ( snake_case__ : str , snake_case__ : Dict , snake_case__ : Optional[int] )-> List[Any]: A_ = [] A_ = fairseq_model.state_dict() A_ = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): A_ = False if "conv_layers" in name: load_conv_layer( snake_case__ , snake_case__ , snake_case__ , snake_case__ , hf_model.config.feat_extract_norm == "group" , ) A_ = True else: for key, mapped_key in MAPPING.items(): A_ = "sew." + mapped_key if (is_finetuned and mapped_key != "lm_head") else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: A_ = True if "*" in mapped_key: A_ = name.split(snake_case__ )[0].split("." )[-2] A_ = mapped_key.replace("*" , snake_case__ ) if "weight_g" in name: A_ = "weight_g" elif "weight_v" in name: A_ = "weight_v" elif "weight" in name: A_ = "weight" elif "bias" in name: A_ = "bias" else: A_ = None set_recursively(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) continue if not is_used: unused_weights.append(snake_case__ ) logger.warning(f'Unused weights: {unused_weights}' ) def lowerCAmelCase ( snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : Any , snake_case__ : Optional[Any] , snake_case__ : Dict )-> Union[str, Any]: A_ = full_name.split("conv_layers." )[-1] A_ = name.split("." ) A_ = int(items[0] ) A_ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) A_ = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) A_ = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) A_ = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) A_ = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(snake_case__ ) def lowerCAmelCase ( snake_case__ : Dict , snake_case__ : Any )-> Optional[int]: A_ = SEWConfig() if is_finetuned: A_ = model.wav_encoder.wav_model.cfg else: A_ = model.cfg A_ = fs_config.conv_bias A_ = eval(fs_config.conv_feature_layers ) A_ = [x[0] for x in conv_layers] A_ = [x[1] for x in conv_layers] A_ = [x[2] for x in conv_layers] A_ = "gelu" A_ = "layer" if fs_config.extractor_mode == "layer_norm" else "group" A_ = 0.0 A_ = fs_config.activation_fn.name A_ = fs_config.encoder_embed_dim A_ = 0.0_2 A_ = fs_config.encoder_ffn_embed_dim A_ = 1e-5 A_ = fs_config.encoder_layerdrop A_ = fs_config.encoder_attention_heads A_ = fs_config.conv_pos_groups A_ = fs_config.conv_pos A_ = len(snake_case__ ) A_ = fs_config.encoder_layers A_ = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: A_ = model.cfg A_ = fs_config.final_dropout A_ = fs_config.layerdrop A_ = fs_config.activation_dropout A_ = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 A_ = fs_config.attention_dropout A_ = fs_config.dropout_input A_ = fs_config.dropout A_ = fs_config.mask_channel_length A_ = fs_config.mask_channel_prob A_ = fs_config.mask_length A_ = fs_config.mask_prob A_ = "Wav2Vec2FeatureExtractor" A_ = "Wav2Vec2CTCTokenizer" return config @torch.no_grad() def lowerCAmelCase ( snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : List[str]=None , snake_case__ : Any=None , snake_case__ : Any=True )-> Dict: if is_finetuned: A_ , A_ , A_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: A_ , A_ , A_ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: A_ = SEWConfig.from_pretrained(snake_case__ ) else: A_ = convert_config(model[0] , snake_case__ ) A_ = model[0].eval() A_ = True if config.feat_extract_norm == "layer" else False A_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=snake_case__ , return_attention_mask=snake_case__ , ) if is_finetuned: if dict_path: A_ = Dictionary.load(snake_case__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq A_ = target_dict.pad_index A_ = target_dict.bos_index A_ = target_dict.pad_index A_ = target_dict.bos_index A_ = target_dict.eos_index A_ = len(target_dict.symbols ) A_ = os.path.join(snake_case__ , "vocab.json" ) if not os.path.isdir(snake_case__ ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(snake_case__ ) ) return os.makedirs(snake_case__ , exist_ok=snake_case__ ) with open(snake_case__ , "w" , encoding="utf-8" ) as vocab_handle: json.dump(target_dict.indices , snake_case__ ) A_ = WavaVecaCTCTokenizer( snake_case__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=snake_case__ , ) A_ = WavaVecaProcessor(feature_extractor=snake_case__ , tokenizer=snake_case__ ) processor.save_pretrained(snake_case__ ) A_ = SEWForCTC(snake_case__ ) else: A_ = SEWModel(snake_case__ ) feature_extractor.save_pretrained(snake_case__ ) recursively_load_weights(snake_case__ , snake_case__ , snake_case__ ) hf_model.save_pretrained(snake_case__ ) if __name__ == "__main__": __magic_name__ : str = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--is_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) __magic_name__ : str = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
608
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class lowerCamelCase ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self , __UpperCamelCase ): for model_result in results.values(): for batch_size, sequence_length in zip(model_result["bs"] , model_result["ss"] ): A_ = model_result["result"][batch_size][sequence_length] self.assertIsNotNone(__UpperCamelCase ) def lowercase_ ( self ): A_ = "sshleifer/tiny-gpt2" A_ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__UpperCamelCase , multi_process=__UpperCamelCase , ) A_ = TensorFlowBenchmark(__UpperCamelCase ) A_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase_ ( self ): A_ = "sgugger/tiny-distilbert-classification" A_ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCamelCase , only_pretrain_model=__UpperCamelCase , ) A_ = TensorFlowBenchmark(__UpperCamelCase ) A_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase_ ( self ): A_ = "sshleifer/tiny-gpt2" A_ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCamelCase , ) A_ = TensorFlowBenchmark(__UpperCamelCase ) A_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase_ ( self ): A_ = "sshleifer/tiny-gpt2" A_ = AutoConfig.from_pretrained(__UpperCamelCase ) A_ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__UpperCamelCase , multi_process=__UpperCamelCase , ) A_ = TensorFlowBenchmark(__UpperCamelCase , [config] ) A_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase_ ( self ): A_ = "sshleifer/tiny-gpt2" A_ = AutoConfig.from_pretrained(__UpperCamelCase ) A_ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCamelCase , ) A_ = TensorFlowBenchmark(__UpperCamelCase , [config] ) A_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase_ ( self ): A_ = "sshleifer/tiny-gpt2" A_ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCamelCase , ) A_ = TensorFlowBenchmark(__UpperCamelCase ) A_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowercase_ ( self ): A_ = "sshleifer/tiny-gpt2" A_ = AutoConfig.from_pretrained(__UpperCamelCase ) A_ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCamelCase , ) A_ = TensorFlowBenchmark(__UpperCamelCase , [config] ) A_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowercase_ ( self ): A_ = "patrickvonplaten/t5-tiny-random" A_ = AutoConfig.from_pretrained(__UpperCamelCase ) A_ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCamelCase , ) A_ = TensorFlowBenchmark(__UpperCamelCase , configs=[config] ) A_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices("GPU" ) ) == 0 , "Cannot do xla on CPU." ) def lowercase_ ( self ): A_ = "sshleifer/tiny-gpt2" A_ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , use_xla=__UpperCamelCase , multi_process=__UpperCamelCase , ) A_ = TensorFlowBenchmark(__UpperCamelCase ) A_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase_ ( self ): A_ = "sshleifer/tiny-gpt2" with tempfile.TemporaryDirectory() as tmp_dir: A_ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=__UpperCamelCase , save_to_csv=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__UpperCamelCase , "inf_time.csv" ) , inference_memory_csv_file=os.path.join(__UpperCamelCase , "inf_mem.csv" ) , env_info_csv_file=os.path.join(__UpperCamelCase , "env.csv" ) , multi_process=__UpperCamelCase , ) A_ = TensorFlowBenchmark(__UpperCamelCase ) benchmark.run() self.assertTrue(Path(os.path.join(__UpperCamelCase , "inf_time.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCamelCase , "inf_mem.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCamelCase , "env.csv" ) ).exists() ) def lowercase_ ( self ): A_ = "sshleifer/tiny-gpt2" def _check_summary_is_not_empty(__UpperCamelCase ): self.assertTrue(hasattr(__UpperCamelCase , "sequential" ) ) self.assertTrue(hasattr(__UpperCamelCase , "cumulative" ) ) self.assertTrue(hasattr(__UpperCamelCase , "current" ) ) self.assertTrue(hasattr(__UpperCamelCase , "total" ) ) with tempfile.TemporaryDirectory() as tmp_dir: A_ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__UpperCamelCase , "log.txt" ) , log_print=__UpperCamelCase , trace_memory_line_by_line=__UpperCamelCase , eager_mode=__UpperCamelCase , multi_process=__UpperCamelCase , ) A_ = TensorFlowBenchmark(__UpperCamelCase ) A_ = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(__UpperCamelCase , "log.txt" ) ).exists() )
608
1
import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def a ( self : Union[str, Any] ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() def a ( self : str ) -> List[str]: lowerCAmelCase__ , lowerCAmelCase__ = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-canny" , from_pt=SCREAMING_SNAKE_CASE__ , dtype=jnp.bfloataa ) lowerCAmelCase__ , lowerCAmelCase__ = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , controlnet=SCREAMING_SNAKE_CASE__ , from_pt=SCREAMING_SNAKE_CASE__ , dtype=jnp.bfloataa ) lowerCAmelCase__ = controlnet_params lowerCAmelCase__ = "bird" lowerCAmelCase__ = jax.device_count() lowerCAmelCase__ = pipe.prepare_text_inputs([prompts] * num_samples ) lowerCAmelCase__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" ) lowerCAmelCase__ = pipe.prepare_image_inputs([canny_image] * num_samples ) lowerCAmelCase__ = jax.random.PRNGKey(0 ) lowerCAmelCase__ = jax.random.split(SCREAMING_SNAKE_CASE__ , jax.device_count() ) lowerCAmelCase__ = replicate(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = shard(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = shard(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = pipe( prompt_ids=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , params=SCREAMING_SNAKE_CASE__ , prng_seed=SCREAMING_SNAKE_CASE__ , num_inference_steps=50 , jit=SCREAMING_SNAKE_CASE__ , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) lowerCAmelCase__ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCAmelCase__ = images[0, 253:256, 253:256, -1] lowerCAmelCase__ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCAmelCase__ = jnp.array( [0.167_969, 0.116_699, 0.081_543, 0.154_297, 0.132_812, 0.108_887, 0.169_922, 0.169_922, 0.205_078] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def a ( self : List[str] ) -> Any: lowerCAmelCase__ , lowerCAmelCase__ = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-openpose" , from_pt=SCREAMING_SNAKE_CASE__ , dtype=jnp.bfloataa ) lowerCAmelCase__ , lowerCAmelCase__ = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , controlnet=SCREAMING_SNAKE_CASE__ , from_pt=SCREAMING_SNAKE_CASE__ , dtype=jnp.bfloataa ) lowerCAmelCase__ = controlnet_params lowerCAmelCase__ = "Chef in the kitchen" lowerCAmelCase__ = jax.device_count() lowerCAmelCase__ = pipe.prepare_text_inputs([prompts] * num_samples ) lowerCAmelCase__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png" ) lowerCAmelCase__ = pipe.prepare_image_inputs([pose_image] * num_samples ) lowerCAmelCase__ = jax.random.PRNGKey(0 ) lowerCAmelCase__ = jax.random.split(SCREAMING_SNAKE_CASE__ , jax.device_count() ) lowerCAmelCase__ = replicate(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = shard(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = shard(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = pipe( prompt_ids=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , params=SCREAMING_SNAKE_CASE__ , prng_seed=SCREAMING_SNAKE_CASE__ , num_inference_steps=50 , jit=SCREAMING_SNAKE_CASE__ , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) lowerCAmelCase__ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCAmelCase__ = images[0, 253:256, 253:256, -1] lowerCAmelCase__ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCAmelCase__ = jnp.array( [[0.271_484, 0.261_719, 0.275_391, 0.277_344, 0.279_297, 0.291_016, 0.294_922, 0.302_734, 0.302_734]] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
61
import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class UpperCAmelCase: """simple docstring""" def __a ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Optional[Any]: """simple docstring""" return None class UpperCAmelCase: """simple docstring""" def __a ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> List[str]: """simple docstring""" return None class UpperCAmelCase( unittest.TestCase ): """simple docstring""" a : str = [ # (model_name, model_kwargs) ("""bert-base-cased""", {}), ("""gpt2""", {"""use_cache""": False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def __a ( self ) -> Any: """simple docstring""" for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(lowerCamelCase , "tf" , 12 , **lowerCamelCase ) @require_torch @slow def __a ( self ) -> Optional[Any]: """simple docstring""" for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(lowerCamelCase , "pt" , 12 , **lowerCamelCase ) @require_torch @slow def __a ( self ) -> Union[str, Any]: """simple docstring""" from transformers import BertModel lowercase__ : Dict = ["[UNK]", "[SEP]", "[CLS]", "[PAD]", "[MASK]", "some", "other", "words"] with NamedTemporaryFile(mode="w+t" ) as vocab_file: vocab_file.write("\n".join(lowerCamelCase ) ) vocab_file.flush() lowercase__ : Any = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: lowercase__ : int = BertModel(BertConfig(vocab_size=len(lowerCamelCase ) ) ) model.save_pretrained(lowerCamelCase ) self._test_export(lowerCamelCase , "pt" , 12 , lowerCamelCase ) @require_tf @slow def __a ( self ) -> int: """simple docstring""" for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowercase__ : str = self._test_export(lowerCamelCase , "tf" , 12 , **lowerCamelCase ) lowercase__ : Tuple = quantize(Path(lowerCamelCase ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(lowerCamelCase ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) @require_torch @slow def __a ( self ) -> int: """simple docstring""" for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowercase__ : str = self._test_export(lowerCamelCase , "pt" , 12 , **lowerCamelCase ) lowercase__ : Optional[int] = quantize(lowerCamelCase ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(lowerCamelCase ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) def __a ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=None , **lowerCamelCase ) -> Dict: """simple docstring""" try: # Compute path with TemporaryDirectory() as tempdir: lowercase__ : Tuple = Path(lowerCamelCase ).joinpath("model.onnx" ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ) return path except Exception as e: self.fail(lowerCamelCase ) @require_torch @require_tokenizers @slow def __a ( self ) -> str: """simple docstring""" from transformers import BertModel lowercase__ : List[str] = BertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) lowercase__ : Dict = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(lowerCamelCase , lowerCamelCase , "pt" ) @require_tf @require_tokenizers @slow def __a ( self ) -> Optional[Any]: """simple docstring""" from transformers import TFBertModel lowercase__ : Tuple = TFBertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) lowercase__ : str = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(lowerCamelCase , lowerCamelCase , "tf" ) def __a ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> List[Any]: """simple docstring""" lowercase__ : Optional[int] = FeatureExtractionPipeline(lowerCamelCase , lowerCamelCase ) lowercase__ : Optional[Any] = ["input_ids", "token_type_ids", "attention_mask", "output_0", "output_1"] lowercase__ , lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = infer_shapes(lowerCamelCase , lowerCamelCase ) # Assert all variables are present self.assertEqual(len(lowerCamelCase ) , len(lowerCamelCase ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , lowerCamelCase ) self.assertSequenceEqual(variable_names[3:] , lowerCamelCase ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: "batch", 1: "sequence"} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes["output_0"] , {0: "batch", 1: "sequence"} ) self.assertDictEqual(shapes["output_1"] , {0: "batch"} ) def __a ( self ) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[Any] = ["input_ids", "attention_mask", "token_type_ids"] lowercase__ : Optional[int] = {"input_ids": [1, 2, 3, 4], "attention_mask": [0, 0, 0, 0], "token_type_ids": [1, 1, 1, 1]} lowercase__ , lowercase__ : int = ensure_valid_input(FuncContiguousArgs() , lowerCamelCase , lowerCamelCase ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(lowerCamelCase ) , 3 ) # Should have exactly the same input names self.assertEqual(set(lowerCamelCase ) , set(lowerCamelCase ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(lowerCamelCase , (tokens["input_ids"], tokens["token_type_ids"], tokens["attention_mask"]) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) lowercase__ , lowercase__ : int = ensure_valid_input(FuncNonContiguousArgs() , lowerCamelCase , lowerCamelCase ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(lowerCamelCase ) , 1 ) self.assertEqual(len(lowerCamelCase ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens["input_ids"] ) self.assertEqual(ordered_input_names[0] , "input_ids" ) def __a ( self ) -> Dict: """simple docstring""" lowercase__ : Optional[int] = generate_identified_filename(Path("/home/something/my_fake_model.onnx" ) , "-test" ) self.assertEqual("/home/something/my_fake_model-test.onnx" , generated.as_posix() )
397
0
"""simple docstring""" from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING _lowerCAmelCase : Any = logging.get_logger(__name__) @add_end_docstrings(lowercase_ ) class A_ ( lowercase_ ): def __init__( self: Dict ,**__lowerCAmelCase: List[Any] ): '''simple docstring''' super().__init__(**UpperCamelCase__ ) if self.framework == "tf": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""" ) requires_backends(self ,"vision" ) self.check_model_type(UpperCamelCase__ ) def __call__( self: Optional[int] ,__lowerCAmelCase: Union[str, "Image.Image", List[Dict[str, Any]]] ,__lowerCAmelCase: Union[str, List[str]] = None ,**__lowerCAmelCase: str ,): '''simple docstring''' if "text_queries" in kwargs: _lowerCamelCase : Union[str, Any] = kwargs.pop("text_queries" ) if isinstance(UpperCamelCase__ ,(str, Image.Image) ): _lowerCamelCase : Optional[Any] = {"image": image, "candidate_labels": candidate_labels} else: _lowerCamelCase : Dict = image _lowerCamelCase : Dict = super().__call__(UpperCamelCase__ ,**UpperCamelCase__ ) return results def _lowercase ( self: Tuple ,**__lowerCAmelCase: str ): '''simple docstring''' _lowerCamelCase : List[str] = {} if "threshold" in kwargs: _lowerCamelCase : Tuple = kwargs["threshold"] if "top_k" in kwargs: _lowerCamelCase : Optional[int] = kwargs["top_k"] return {}, {}, postprocess_params def _lowercase ( self: int ,__lowerCAmelCase: int ): '''simple docstring''' _lowerCamelCase : str = load_image(inputs["image"] ) _lowerCamelCase : str = inputs["candidate_labels"] if isinstance(UpperCamelCase__ ,UpperCamelCase__ ): _lowerCamelCase : List[Any] = candidate_labels.split("," ) _lowerCamelCase : Optional[int] = torch.tensor([[image.height, image.width]] ,dtype=torch.intaa ) for i, candidate_label in enumerate(UpperCamelCase__ ): _lowerCamelCase : Dict = self.tokenizer(UpperCamelCase__ ,return_tensors=self.framework ) _lowerCamelCase : Any = self.image_processor(UpperCamelCase__ ,return_tensors=self.framework ) yield { "is_last": i == len(UpperCamelCase__ ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def _lowercase ( self: Tuple ,__lowerCAmelCase: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : Tuple = model_inputs.pop("target_size" ) _lowerCamelCase : Union[str, Any] = model_inputs.pop("candidate_label" ) _lowerCamelCase : Dict = model_inputs.pop("is_last" ) _lowerCamelCase : List[str] = self.model(**UpperCamelCase__ ) _lowerCamelCase : Optional[Any] = {"target_size": target_size, "candidate_label": candidate_label, "is_last": is_last, **outputs} return model_outputs def _lowercase ( self: str ,__lowerCAmelCase: Any ,__lowerCAmelCase: List[str]=0.1 ,__lowerCAmelCase: Optional[Any]=None ): '''simple docstring''' _lowerCamelCase : str = [] for model_output in model_outputs: _lowerCamelCase : Union[str, Any] = model_output["candidate_label"] _lowerCamelCase : int = BaseModelOutput(UpperCamelCase__ ) _lowerCamelCase : Optional[int] = self.image_processor.post_process_object_detection( outputs=UpperCamelCase__ ,threshold=UpperCamelCase__ ,target_sizes=model_output["target_size"] )[0] for index in outputs["scores"].nonzero(): _lowerCamelCase : Union[str, Any] = outputs["scores"][index].item() _lowerCamelCase : Union[str, Any] = self._get_bounding_box(outputs["boxes"][index][0] ) _lowerCamelCase : Tuple = {"score": score, "label": label, "box": box} results.append(UpperCamelCase__ ) _lowerCamelCase : List[Any] = sorted(UpperCamelCase__ ,key=lambda __lowerCAmelCase : x["score"] ,reverse=UpperCamelCase__ ) if top_k: _lowerCamelCase : int = results[:top_k] return results def _lowercase ( self: Dict ,__lowerCAmelCase: "torch.Tensor" ): '''simple docstring''' if self.framework != "pt": raise ValueError("The ZeroShotObjectDetectionPipeline is only available in PyTorch." ) _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Union[str, Any] = box.int().tolist() _lowerCamelCase : Union[str, Any] = { "xmin": xmin, "ymin": ymin, "xmax": xmax, "ymax": ymax, } return bbox
711
"""simple docstring""" import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : Tuple = logging.get_logger() @dataclass class A_ : lowerCAmelCase__ = 42 lowerCAmelCase__ = field(default_factory=_a ) lowerCAmelCase__ = field(default_factory=_a ) def _lowercase ( self: int ,__lowerCAmelCase: Dict ,__lowerCAmelCase: Tensor ,__lowerCAmelCase: Tensor ): '''simple docstring''' _lowerCamelCase : Dict = len(list(m.modules() ) ) == 1 or isinstance(__lowerCAmelCase ,nn.Convad ) or isinstance(__lowerCAmelCase ,nn.BatchNormad ) if has_not_submodules: self.traced.append(__lowerCAmelCase ) def __call__( self: Optional[Any] ,__lowerCAmelCase: Tensor ): '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(__lowerCAmelCase ) [x.remove() for x in self.handles] return self @property def _lowercase ( self: str ): '''simple docstring''' return list(filter(lambda __lowerCAmelCase : len(list(x.state_dict().keys() ) ) > 0 ,self.traced ) ) @dataclass class A_ : lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 1 lowerCAmelCase__ = field(default_factory=_a ) lowerCAmelCase__ = field(default_factory=_a ) lowerCAmelCase__ = True def __call__( self: List[Any] ,__lowerCAmelCase: Tensor ): '''simple docstring''' _lowerCamelCase : Dict = Tracker(self.dest )(__lowerCAmelCase ).parametrized _lowerCamelCase : List[Any] = Tracker(self.src )(__lowerCAmelCase ).parametrized _lowerCamelCase : List[str] = list(filter(lambda __lowerCAmelCase : type(__lowerCAmelCase ) not in self.src_skip ,__lowerCAmelCase ) ) _lowerCamelCase : Optional[Any] = list(filter(lambda __lowerCAmelCase : type(__lowerCAmelCase ) not in self.dest_skip ,__lowerCAmelCase ) ) if len(__lowerCAmelCase ) != len(__lowerCAmelCase ) and self.raise_if_mismatch: raise Exception( F"""Numbers of operations are different. Source module has {len(__lowerCAmelCase )} operations while""" F""" destination module has {len(__lowerCAmelCase )}.""" ) for dest_m, src_m in zip(__lowerCAmelCase ,__lowerCAmelCase ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F"""Transfered from={src_m} to={dest_m}""" ) class A_ ( nn.Module ): def __init__( self: int ,__lowerCAmelCase: nn.Module ): '''simple docstring''' super().__init__() _lowerCamelCase : List[Tuple[str, nn.Module]] = [] # - get the stem feature_blocks.append(("conv1", model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith("block" ), F"""Unexpected layer name {k}""" _lowerCamelCase : Dict = len(__lowerCAmelCase ) + 1 feature_blocks.append((F"""res{block_index}""", v) ) _lowerCamelCase : int = nn.ModuleDict(__lowerCAmelCase ) def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: Tensor ): '''simple docstring''' return get_trunk_forward_outputs( __lowerCAmelCase ,out_feat_keys=__lowerCAmelCase ,feature_blocks=self._feature_blocks ,) class A_ ( _a ): def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: str ): '''simple docstring''' _lowerCamelCase : Dict = x.split("-" ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self: Tuple ,__lowerCAmelCase: str ): '''simple docstring''' if x not in self: _lowerCamelCase : Dict = self.convert_name_to_timm(__lowerCAmelCase ) _lowerCamelCase : Tuple = partial(lambda: (timm.create_model(__lowerCAmelCase ,pretrained=__lowerCAmelCase ).eval(), None) ) else: _lowerCamelCase : List[Any] = super().__getitem__(__lowerCAmelCase ) return val class A_ ( _a ): def __getitem__( self: int ,__lowerCAmelCase: str ): '''simple docstring''' if "seer" in x and "in1k" not in x: _lowerCamelCase : List[str] = RegNetModel else: _lowerCamelCase : str = RegNetForImageClassification return val def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]: '''simple docstring''' for from_key, to_key in keys: _lowerCamelCase : Optional[int] = from_state_dict[from_key].clone() print(F"""Copied key={from_key} to={to_key}""" ) return to_state_dict def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = True , ) -> List[str]: '''simple docstring''' print(F"""Converting {name}...""" ) with torch.no_grad(): _lowerCamelCase, _lowerCamelCase : str = from_model_func() _lowerCamelCase : Tuple = our_model_func(_lowerCamelCase ).eval() _lowerCamelCase : List[Any] = ModuleTransfer(src=_lowerCamelCase , dest=_lowerCamelCase , raise_if_mismatch=_lowerCamelCase ) _lowerCamelCase : Optional[Any] = torch.randn((1, 3, 224, 224) ) module_transfer(_lowerCamelCase ) if from_state_dict is not None: _lowerCamelCase : Optional[Any] = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: _lowerCamelCase : str = [("0.clf.0.weight", "classifier.1.weight"), ("0.clf.0.bias", "classifier.1.bias")] _lowerCamelCase : List[str] = manually_copy_vissl_head(_lowerCamelCase , our_model.state_dict() , _lowerCamelCase ) our_model.load_state_dict(_lowerCamelCase ) _lowerCamelCase : str = our_model(_lowerCamelCase , output_hidden_states=_lowerCamelCase ) _lowerCamelCase : Tuple = ( our_outputs.logits if isinstance(_lowerCamelCase , _lowerCamelCase ) else our_outputs.last_hidden_state ) _lowerCamelCase : Dict = from_model(_lowerCamelCase ) _lowerCamelCase : Dict = from_output[-1] if type(_lowerCamelCase ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: _lowerCamelCase : Optional[Any] = our_outputs.hidden_states[-1] assert torch.allclose(_lowerCamelCase , _lowerCamelCase ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message="Add model" , use_temp_dir=_lowerCamelCase , ) _lowerCamelCase : Optional[Any] = 224 if "seer" not in name else 384 # we can use the convnext one _lowerCamelCase : List[str] = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" , size=_lowerCamelCase ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message="Add image processor" , use_temp_dir=_lowerCamelCase , ) print(F"""Pushed {name}""" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = True ) -> str: '''simple docstring''' _lowerCamelCase : Dict = "imagenet-1k-id2label.json" _lowerCamelCase : Optional[Any] = 1000 _lowerCamelCase : Any = (1, num_labels) _lowerCamelCase : Optional[int] = "huggingface/label-files" _lowerCamelCase : List[str] = num_labels _lowerCamelCase : List[Any] = json.load(open(cached_download(hf_hub_url(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) ) , "r" ) ) _lowerCamelCase : List[str] = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCamelCase : Optional[int] = idalabel _lowerCamelCase : Optional[int] = {v: k for k, v in idalabel.items()} _lowerCamelCase : Dict = partial(_lowerCamelCase , num_labels=_lowerCamelCase , idalabel=_lowerCamelCase , labelaid=_lowerCamelCase ) _lowerCamelCase : Any = { "regnet-x-002": ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 , layer_type="x" ), "regnet-x-004": ImageNetPreTrainedConfig( depths=[1, 2, 7, 12] , hidden_sizes=[32, 64, 160, 384] , groups_width=16 , layer_type="x" ), "regnet-x-006": ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[48, 96, 240, 528] , groups_width=24 , layer_type="x" ), "regnet-x-008": ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[64, 128, 288, 672] , groups_width=16 , layer_type="x" ), "regnet-x-016": ImageNetPreTrainedConfig( depths=[2, 4, 10, 2] , hidden_sizes=[72, 168, 408, 912] , groups_width=24 , layer_type="x" ), "regnet-x-032": ImageNetPreTrainedConfig( depths=[2, 6, 15, 2] , hidden_sizes=[96, 192, 432, 1008] , groups_width=48 , layer_type="x" ), "regnet-x-040": ImageNetPreTrainedConfig( depths=[2, 5, 14, 2] , hidden_sizes=[80, 240, 560, 1360] , groups_width=40 , layer_type="x" ), "regnet-x-064": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 392, 784, 1624] , groups_width=56 , layer_type="x" ), "regnet-x-080": ImageNetPreTrainedConfig( depths=[2, 5, 15, 1] , hidden_sizes=[80, 240, 720, 1920] , groups_width=120 , layer_type="x" ), "regnet-x-120": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 , layer_type="x" ), "regnet-x-160": ImageNetPreTrainedConfig( depths=[2, 6, 13, 1] , hidden_sizes=[256, 512, 896, 2048] , groups_width=128 , layer_type="x" ), "regnet-x-320": ImageNetPreTrainedConfig( depths=[2, 7, 13, 1] , hidden_sizes=[336, 672, 1344, 2520] , groups_width=168 , layer_type="x" ), # y variant "regnet-y-002": ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 ), "regnet-y-004": ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[48, 104, 208, 440] , groups_width=8 ), "regnet-y-006": ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[48, 112, 256, 608] , groups_width=16 ), "regnet-y-008": ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[64, 128, 320, 768] , groups_width=16 ), "regnet-y-016": ImageNetPreTrainedConfig( depths=[2, 6, 17, 2] , hidden_sizes=[48, 120, 336, 888] , groups_width=24 ), "regnet-y-032": ImageNetPreTrainedConfig( depths=[2, 5, 13, 1] , hidden_sizes=[72, 216, 576, 1512] , groups_width=24 ), "regnet-y-040": ImageNetPreTrainedConfig( depths=[2, 6, 12, 2] , hidden_sizes=[128, 192, 512, 1088] , groups_width=64 ), "regnet-y-064": ImageNetPreTrainedConfig( depths=[2, 7, 14, 2] , hidden_sizes=[144, 288, 576, 1296] , groups_width=72 ), "regnet-y-080": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 448, 896, 2016] , groups_width=56 ), "regnet-y-120": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 ), "regnet-y-160": ImageNetPreTrainedConfig( depths=[2, 4, 11, 1] , hidden_sizes=[224, 448, 1232, 3024] , groups_width=112 ), "regnet-y-320": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 "regnet-y-320-seer": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), "regnet-y-640-seer": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), "regnet-y-1280-seer": RegNetConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), "regnet-y-2560-seer": RegNetConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), "regnet-y-10b-seer": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 11110, 28280] , groups_width=1010 ), # finetuned on imagenet "regnet-y-320-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), "regnet-y-640-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), "regnet-y-1280-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), "regnet-y-2560-seer-in1k": ImageNetPreTrainedConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), "regnet-y-10b-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 11110, 28280] , groups_width=1010 ), } _lowerCamelCase : Tuple = NameToOurModelFuncMap() _lowerCamelCase : Union[str, Any] = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(_lowerCamelCase , _lowerCamelCase ) -> Tuple[nn.Module, Dict]: _lowerCamelCase : str = torch.hub.load_state_dict_from_url(_lowerCamelCase , model_dir=str(_lowerCamelCase ) , map_location="cpu" ) _lowerCamelCase : Dict = model_func() # check if we have a head, if yes add it _lowerCamelCase : str = files["classy_state_dict"]["base_model"]["model"] _lowerCamelCase : Dict = model_state_dict["trunk"] model.load_state_dict(_lowerCamelCase ) return model.eval(), model_state_dict["heads"] # pretrained _lowerCamelCase : str = partial( _lowerCamelCase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) _lowerCamelCase : List[Any] = partial( _lowerCamelCase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) _lowerCamelCase : int = partial( _lowerCamelCase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) _lowerCamelCase : Optional[Any] = partial( _lowerCamelCase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=6_2_0.8_3 , w_m=2.5_2 ) ) ) , ) # IN1K finetuned _lowerCamelCase : Union[str, Any] = partial( _lowerCamelCase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) _lowerCamelCase : Optional[int] = partial( _lowerCamelCase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) _lowerCamelCase : List[Any] = partial( _lowerCamelCase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) _lowerCamelCase : Optional[int] = partial( _lowerCamelCase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=6_2_0.8_3 , w_m=2.5_2 ) ) ) , ) if model_name: convert_weight_and_push( _lowerCamelCase , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , _lowerCamelCase , _lowerCamelCase , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( _lowerCamelCase , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) return config, expected_shape if __name__ == "__main__": _lowerCAmelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help=( '''The name of the model you wish to convert, it must be one of the supported regnet* architecture,''' ''' currently: regnetx-*, regnety-*. If `None`, all of them will the converted.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=Path, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=True, type=bool, required=False, help='''If True, push model and image processor to the hub.''', ) _lowerCAmelCase : Dict = parser.parse_args() _lowerCAmelCase : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
386
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCamelCase__ (metaclass=a ): '''simple docstring''' _UpperCamelCase = ['torch', 'transformers', 'onnx'] def __init__( self ,*_lowerCAmelCase ,**_lowerCAmelCase ): requires_backends(self ,["""torch""", """transformers""", """onnx"""] ) @classmethod def UpperCamelCase_ ( cls ,*_lowerCAmelCase ,**_lowerCAmelCase ): requires_backends(cls ,["""torch""", """transformers""", """onnx"""] ) @classmethod def UpperCamelCase_ ( cls ,*_lowerCAmelCase ,**_lowerCAmelCase ): requires_backends(cls ,["""torch""", """transformers""", """onnx"""] ) class UpperCamelCase__ (metaclass=a ): '''simple docstring''' _UpperCamelCase = ['torch', 'transformers', 'onnx'] def __init__( self ,*_lowerCAmelCase ,**_lowerCAmelCase ): requires_backends(self ,["""torch""", """transformers""", """onnx"""] ) @classmethod def UpperCamelCase_ ( cls ,*_lowerCAmelCase ,**_lowerCAmelCase ): requires_backends(cls ,["""torch""", """transformers""", """onnx"""] ) @classmethod def UpperCamelCase_ ( cls ,*_lowerCAmelCase ,**_lowerCAmelCase ): requires_backends(cls ,["""torch""", """transformers""", """onnx"""] ) class UpperCamelCase__ (metaclass=a ): '''simple docstring''' _UpperCamelCase = ['torch', 'transformers', 'onnx'] def __init__( self ,*_lowerCAmelCase ,**_lowerCAmelCase ): requires_backends(self ,["""torch""", """transformers""", """onnx"""] ) @classmethod def UpperCamelCase_ ( cls ,*_lowerCAmelCase ,**_lowerCAmelCase ): requires_backends(cls ,["""torch""", """transformers""", """onnx"""] ) @classmethod def UpperCamelCase_ ( cls ,*_lowerCAmelCase ,**_lowerCAmelCase ): requires_backends(cls ,["""torch""", """transformers""", """onnx"""] ) class UpperCamelCase__ (metaclass=a ): '''simple docstring''' _UpperCamelCase = ['torch', 'transformers', 'onnx'] def __init__( self ,*_lowerCAmelCase ,**_lowerCAmelCase ): requires_backends(self ,["""torch""", """transformers""", """onnx"""] ) @classmethod def UpperCamelCase_ ( cls ,*_lowerCAmelCase ,**_lowerCAmelCase ): requires_backends(cls ,["""torch""", """transformers""", """onnx"""] ) @classmethod def UpperCamelCase_ ( cls ,*_lowerCAmelCase ,**_lowerCAmelCase ): requires_backends(cls ,["""torch""", """transformers""", """onnx"""] ) class UpperCamelCase__ (metaclass=a ): '''simple docstring''' _UpperCamelCase = ['torch', 'transformers', 'onnx'] def __init__( self ,*_lowerCAmelCase ,**_lowerCAmelCase ): requires_backends(self ,["""torch""", """transformers""", """onnx"""] ) @classmethod def UpperCamelCase_ ( cls ,*_lowerCAmelCase ,**_lowerCAmelCase ): requires_backends(cls ,["""torch""", """transformers""", """onnx"""] ) @classmethod def UpperCamelCase_ ( cls ,*_lowerCAmelCase ,**_lowerCAmelCase ): requires_backends(cls ,["""torch""", """transformers""", """onnx"""] ) class UpperCamelCase__ (metaclass=a ): '''simple docstring''' _UpperCamelCase = ['torch', 'transformers', 'onnx'] def __init__( self ,*_lowerCAmelCase ,**_lowerCAmelCase ): requires_backends(self ,["""torch""", """transformers""", """onnx"""] ) @classmethod def UpperCamelCase_ ( cls ,*_lowerCAmelCase ,**_lowerCAmelCase ): requires_backends(cls ,["""torch""", """transformers""", """onnx"""] ) @classmethod def UpperCamelCase_ ( cls ,*_lowerCAmelCase ,**_lowerCAmelCase ): requires_backends(cls ,["""torch""", """transformers""", """onnx"""] )
50
from typing import TYPE_CHECKING from ..utils import _LazyModule _snake_case = { "config": [ "EXTERNAL_DATA_FORMAT_SIZE_LIMIT", "OnnxConfig", "OnnxConfigWithPast", "OnnxSeq2SeqConfigWithPast", "PatchingSpec", ], "convert": ["export", "validate_model_outputs"], "features": ["FeaturesManager"], "utils": ["ParameterFormat", "compute_serialized_parameters_size"], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
500
0
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input lowerCamelCase = """Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine""" def _A ( ): """simple docstring""" __lowercase =_ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: __lowercase =get_sagemaker_input() else: __lowercase =get_cluster_input() return config def _A ( _lowerCAmelCase=None ): """simple docstring""" if subparsers is not None: __lowercase =subparsers.add_parser('config' , description=_lowerCAmelCase ) else: __lowercase =argparse.ArgumentParser('Accelerate config command' , description=_lowerCAmelCase ) parser.add_argument( '--config_file' , default=_lowerCAmelCase , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=_lowerCAmelCase ) return parser def _A ( _lowerCAmelCase ): """simple docstring""" __lowercase =get_user_input() if args.config_file is not None: __lowercase =args.config_file else: if not os.path.isdir(_lowerCAmelCase ): os.makedirs(_lowerCAmelCase ) __lowercase =default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(_lowerCAmelCase ) else: config.to_yaml_file(_lowerCAmelCase ) print(f"""accelerate configuration saved at {config_file}""" ) def _A ( ): """simple docstring""" __lowercase =config_command_parser() __lowercase =parser.parse_args() config_command(_lowerCAmelCase ) if __name__ == "__main__": main()
454
'''simple docstring''' def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" if len(_lowerCAmelCase ) != len(_lowerCAmelCase ): raise ValueError('The length of profit and weight must be same.' ) if max_weight <= 0: raise ValueError('max_weight must greater than zero.' ) if any(p < 0 for p in profit ): raise ValueError('Profit can not be negative.' ) if any(w < 0 for w in weight ): raise ValueError('Weight can not be negative.' ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. __lowercase =[p / w for p, w in zip(_lowerCAmelCase , _lowerCAmelCase )] # Creating a copy of the list and sorting profit/weight in ascending order __lowercase =sorted(_lowerCAmelCase ) # declaring useful variables __lowercase =len(_lowerCAmelCase ) __lowercase =0 __lowercase =0 __lowercase =0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight __lowercase =sorted_profit_by_weight[length - i - 1] __lowercase =profit_by_weight.index(_lowerCAmelCase ) __lowercase =-1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( """Input profits, weights, and then max_weight (all positive ints) separated by """ """spaces.""" ) lowerCamelCase = [int(x) for x in input("""Input profits separated by spaces: """).split()] lowerCamelCase = [int(x) for x in input("""Input weights separated by spaces: """).split()] lowerCamelCase = int(input("""Max weight allowed: """)) # Function Call calc_profit(profit, weight, max_weight)
454
1
'''simple docstring''' import cva import numpy as np class __SCREAMING_SNAKE_CASE : def __init__( self , lowerCamelCase , lowerCamelCase ) ->List[str]: '''simple docstring''' if k in (0.04, 0.06): __a = k __a = window_size else: raise ValueError('invalid k value' ) def __str__( self ) ->str: '''simple docstring''' return str(self.k ) def __UpperCamelCase ( self , lowerCamelCase ) ->tuple[cva.Mat, list[list[int]]]: '''simple docstring''' __a = cva.imread(lowerCamelCase , 0 ) __a , __a = img.shape __a = [] __a = img.copy() __a = cva.cvtColor(lowerCamelCase , cva.COLOR_GRAY2RGB ) __a , __a = np.gradient(lowerCamelCase ) __a = dx**2 __a = dy**2 __a = dx * dy __a = 0.04 __a = self.window_size // 2 for y in range(lowerCamelCase , h - offset ): for x in range(lowerCamelCase , w - offset ): __a = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __a = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __a = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __a = (wxx * wyy) - (wxy**2) __a = wxx + wyy __a = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": __UpperCamelCase : List[Any] = HarrisCorner(0.04, 3) __UpperCamelCase , __UpperCamelCase : str = edge_detect.detect("""path_to_image""") cva.imwrite("""detect.png""", color_img)
448
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType __UpperCamelCase : List[str] = logging.get_logger(__name__) __UpperCamelCase : Optional[int] = { """openai/whisper-base""": """https://huggingface.co/openai/whisper-base/resolve/main/config.json""", } # fmt: off __UpperCamelCase : Optional[Any] = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377, 1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211, 4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 10563, 10786, 11420, 11709, 11907, 13163, 13697, 13700, 14808, 15306, 16410, 16791, 17992, 19203, 19510, 20724, 22305, 22935, 27007, 30109, 30420, 33409, 34949, 40283, 40493, 40549, 47282, 49146, 50257, 50359, 50360, 50361 ] __UpperCamelCase : List[str] = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627, 3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647, 7273, 9061, 9383, 10428, 10929, 11938, 12033, 12331, 12562, 13793, 14157, 14635, 15265, 15618, 16553, 16604, 18362, 18956, 20075, 21675, 22520, 26130, 26161, 26435, 28279, 29464, 31650, 32302, 32470, 36865, 42863, 47425, 49870, 50254, 50258, 50360, 50361, 50362 ] class __SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): __a ="whisper" __a =["past_key_values"] __a ={"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , lowerCamelCase=5_1865 , lowerCamelCase=80 , lowerCamelCase=6 , lowerCamelCase=4 , lowerCamelCase=6 , lowerCamelCase=4 , lowerCamelCase=1536 , lowerCamelCase=1536 , lowerCamelCase=0.0 , lowerCamelCase=0.0 , lowerCamelCase=5_0257 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase="gelu" , lowerCamelCase=256 , lowerCamelCase=0.0 , lowerCamelCase=0.0 , lowerCamelCase=0.0 , lowerCamelCase=0.02 , lowerCamelCase=False , lowerCamelCase=1500 , lowerCamelCase=448 , lowerCamelCase=5_0256 , lowerCamelCase=5_0256 , lowerCamelCase=5_0256 , lowerCamelCase=None , lowerCamelCase=[220, 5_0256] , lowerCamelCase=False , lowerCamelCase=256 , lowerCamelCase=False , lowerCamelCase=0.05 , lowerCamelCase=10 , lowerCamelCase=2 , lowerCamelCase=0.0 , lowerCamelCase=10 , lowerCamelCase=0 , lowerCamelCase=7 , **lowerCamelCase , ) ->Any: '''simple docstring''' __a = vocab_size __a = num_mel_bins __a = d_model __a = encoder_layers __a = encoder_attention_heads __a = decoder_layers __a = decoder_attention_heads __a = decoder_ffn_dim __a = encoder_ffn_dim __a = dropout __a = attention_dropout __a = activation_dropout __a = activation_function __a = init_std __a = encoder_layerdrop __a = decoder_layerdrop __a = use_cache __a = encoder_layers __a = scale_embedding # scale factor will be sqrt(d_model) if True __a = max_source_positions __a = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. __a = classifier_proj_size __a = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __a = apply_spec_augment __a = mask_time_prob __a = mask_time_length __a = mask_time_min_masks __a = mask_feature_prob __a = mask_feature_length __a = mask_feature_min_masks __a = median_filter_width super().__init__( pad_token_id=lowerCamelCase , bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase , is_encoder_decoder=lowerCamelCase , decoder_start_token_id=lowerCamelCase , suppress_tokens=lowerCamelCase , begin_suppress_tokens=lowerCamelCase , **lowerCamelCase , ) class __SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): @property def __UpperCamelCase ( self ) ->Mapping[str, Mapping[int, str]]: '''simple docstring''' __a = OrderedDict( [ ('input_features', {0: 'batch', 1: 'feature_size', 2: 'encoder_sequence'}), ] ) if self.use_past: __a = {0: 'batch'} else: __a = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowerCamelCase , direction='inputs' ) return common_inputs def __UpperCamelCase ( self , lowerCamelCase , lowerCamelCase = -1 , lowerCamelCase = -1 , lowerCamelCase = False , lowerCamelCase = None , lowerCamelCase = 2_2050 , lowerCamelCase = 5.0 , lowerCamelCase = 220 , ) ->Mapping[str, Any]: '''simple docstring''' __a = OrderedDict() __a = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=lowerCamelCase , framework=lowerCamelCase , sampling_rate=lowerCamelCase , time_duration=lowerCamelCase , frequency=lowerCamelCase , ) __a = encoder_inputs['input_features'].shape[2] __a = encoder_sequence_length // 2 if self.use_past else seq_length __a = super().generate_dummy_inputs( preprocessor.tokenizer , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) __a = encoder_inputs.pop('input_features' ) __a = decoder_inputs.pop('decoder_input_ids' ) if "past_key_values" in decoder_inputs: __a = decoder_inputs.pop('past_key_values' ) return dummy_inputs @property def __UpperCamelCase ( self ) ->float: '''simple docstring''' return 1e-3
448
1
'''simple docstring''' from __future__ import annotations class UpperCAmelCase : def __init__(self : Dict , A__ : str , A__ : str ) -> str: lowercase , lowercase = text, pattern lowercase , lowercase = len(A__ ), len(A__ ) def UpperCAmelCase__ (self : Any , A__ : str ) -> int: for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def UpperCAmelCase__ (self : List[Any] , A__ : int ) -> int: for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def UpperCAmelCase__ (self : Optional[Any] ) -> list[int]: # searches pattern in text and returns index positions lowercase = [] for i in range(self.textLen - self.patLen + 1 ): lowercase = self.mismatch_in_text(A__ ) if mismatch_index == -1: positions.append(A__ ) else: lowercase = self.match_in_pattern(self.text[mismatch_index] ) lowercase = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions __lowerCamelCase : List[str] = "ABAABA" __lowerCamelCase : List[str] = "AB" __lowerCamelCase : Union[str, Any] = BoyerMooreSearch(text, pattern) __lowerCamelCase : List[str] = bms.bad_character_heuristic() if len(positions) == 0: print("No match found") else: print("Pattern found in following positions: ") print(positions)
459
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy __lowerCamelCase : List[str] = logging.get_logger(__name__) class UpperCAmelCase ( _lowercase ): def __init__(self : Any , A__ : int , A__ : int , A__ : float , **A__ : int ) -> List[str]: lowercase = feature_size lowercase = sampling_rate lowercase = padding_value lowercase = kwargs.pop("padding_side" , "right" ) lowercase = kwargs.pop("return_attention_mask" , A__ ) super().__init__(**A__ ) def UpperCAmelCase__ (self : Tuple , A__ : Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] , A__ : Union[bool, str, PaddingStrategy] = True , A__ : Optional[int] = None , A__ : bool = False , A__ : Optional[int] = None , A__ : Optional[bool] = None , A__ : Optional[Union[str, TensorType]] = None , ) -> BatchFeature: # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(A__ , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): lowercase = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( "You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`" f' to this method that includes {self.model_input_names[0]}, but you provided' f' {list(processed_features.keys() )}' ) lowercase = processed_features[self.model_input_names[0]] lowercase = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(A__ ) == 0: if return_attention_mask: lowercase = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch lowercase = required_input[0] if isinstance(A__ , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. lowercase = 0 while len(required_input[index] ) == 0: index += 1 if index < len(A__ ): lowercase = required_input[index][0] if return_tensors is None: if is_tf_tensor(A__ ): lowercase = "tf" elif is_torch_tensor(A__ ): lowercase = "pt" elif isinstance(A__ , (int, float, list, tuple, np.ndarray) ): lowercase = "np" else: raise ValueError( f'type of {first_element} unknown: {type(A__ )}. ' "Should be one of a python, numpy, pytorch or tensorflow object." ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): lowercase = to_numpy(A__ ) else: lowercase = [to_numpy(A__ ) for v in value] # Convert padding_strategy in PaddingStrategy lowercase = self._get_padding_strategies(padding=A__ , max_length=A__ ) lowercase = processed_features[self.model_input_names[0]] lowercase = len(A__ ) if not all(len(A__ ) == batch_size for v in processed_features.values() ): raise ValueError("Some items in the output dictionary have a different batch size than others." ) lowercase = [] for i in range(A__ ): lowercase = {k: v[i] for k, v in processed_features.items()} # truncation lowercase = self._truncate( A__ , max_length=A__ , pad_to_multiple_of=A__ , truncation=A__ , ) truncated_inputs.append(A__ ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length lowercase = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) lowercase = PaddingStrategy.MAX_LENGTH lowercase = {} for i in range(A__ ): # padding lowercase = self._pad( truncated_inputs[i] , max_length=A__ , padding_strategy=A__ , pad_to_multiple_of=A__ , return_attention_mask=A__ , ) for key, value in outputs.items(): if key not in batch_outputs: lowercase = [] if value.dtype is np.dtype(np.floataa ): lowercase = value.astype(np.floataa ) batch_outputs[key].append(A__ ) return BatchFeature(A__ , tensor_type=A__ ) def UpperCAmelCase__ (self : Union[str, Any] , A__ : Union[Dict[str, np.ndarray], BatchFeature] , A__ : Optional[int] = None , A__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , A__ : Optional[int] = None , A__ : Optional[bool] = None , ) -> dict: lowercase = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: lowercase = len(A__ ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): lowercase = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of lowercase = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(A__ ) < max_length if return_attention_mask and "attention_mask" not in processed_features: lowercase = np.ones(len(A__ ) , dtype=np.intaa ) if needs_to_be_padded: lowercase = max_length - len(A__ ) if self.padding_side == "right": if return_attention_mask: lowercase = np.pad( processed_features["attention_mask"] , (0, difference) ) lowercase = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) lowercase = np.pad( A__ , A__ , "constant" , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: lowercase = np.pad( processed_features["attention_mask"] , (difference, 0) ) lowercase = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) lowercase = np.pad( A__ , A__ , "constant" , constant_values=self.padding_value ) else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return processed_features def UpperCAmelCase__ (self : Dict , A__ : Union[Dict[str, np.ndarray], BatchFeature] , A__ : Optional[int] = None , A__ : Optional[int] = None , A__ : Optional[bool] = None , ) -> str: if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("When setting ``truncation=True``, make sure that ``max_length`` is defined." ) lowercase = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): lowercase = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of lowercase = len(A__ ) > max_length if needs_to_be_truncated: lowercase = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: lowercase = processed_features["attention_mask"][:max_length] return processed_features def UpperCAmelCase__ (self : int , A__ : Optional[Any]=False , A__ : Dict=None ) -> Optional[int]: # Get padding strategy if padding is not False: if padding is True: lowercase = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(A__ , A__ ): lowercase = PaddingStrategy(A__ ) elif isinstance(A__ , A__ ): lowercase = padding else: lowercase = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( f'When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined' ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( "Asking to pad but the feature_extractor does not have a padding value. Please select a value to use" " as `padding_value`. For example: `feature_extractor.padding_value = 0.0`." ) return padding_strategy
459
1
import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : Any = '' A_ : str = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) A_ : str = None # compression type in fsspec. ex: "gzip" A_ : str = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__(self : List[Any] , a__ : str = "" , a__ : Optional[str] = None , a__ : Optional[dict] = None , **a__ : Tuple ): """simple docstring""" super().__init__(self , **a__ ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode __snake_case = fsspec.open( a__ , mode='''rb''' , protocol=a__ , compression=self.compression , client_kwargs={ '''requote_redirect_url''': False, # see https://github.com/huggingface/datasets/pull/5459 '''trust_env''': True, # Enable reading proxy env variables. **(target_options or {}).pop('''client_kwargs''' , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) __snake_case = os.path.basename(self.file.path.split('''::''' )[0] ) __snake_case = ( self.compressed_name[: self.compressed_name.rindex('''.''' )] if '''.''' in self.compressed_name else self.compressed_name ) __snake_case = None @classmethod def a (cls : Tuple , a__ : List[str] ): """simple docstring""" return super()._strip_protocol(a__ ).lstrip('''/''' ) def a (self : int ): """simple docstring""" if self.dir_cache is None: __snake_case = {**self.file.fs.info(self.file.path ), '''name''': self.uncompressed_name} __snake_case = {f['''name''']: f} def a (self : List[Any] , a__ : str ): """simple docstring""" return self.file.open().read() def a (self : Dict , a__ : str , a__ : str = "rb" , a__ : Tuple=None , a__ : Optional[Any]=True , a__ : Any=None , **a__ : Tuple , ): """simple docstring""" __snake_case = self._strip_protocol(a__ ) if mode != "rb": raise ValueError(f"""Tried to read with mode {mode} on file {self.file.path} opened with mode 'rb'""" ) return self.file.open() class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : Union[str, Any] = 'bz2' A_ : Optional[int] = 'bz2' A_ : Dict = '.bz2' class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : int = 'gzip' A_ : Union[str, Any] = 'gzip' A_ : Dict = '.gz' class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : Optional[Any] = 'lz4' A_ : Union[str, Any] = 'lz4' A_ : Tuple = '.lz4' class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : Optional[Any] = 'xz' A_ : List[Any] = 'xz' A_ : List[Any] = '.xz' class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : List[Any] = 'zstd' A_ : Optional[int] = 'zstd' A_ : List[str] = '.zst' def __init__(self : Optional[Any] , a__ : str , a__ : str = "rb" , a__ : Optional[str] = None , a__ : Optional[dict] = None , a__ : int = DEFAULT_BLOCK_SIZE , **a__ : List[Any] , ): """simple docstring""" super().__init__( fo=a__ , mode=a__ , target_protocol=a__ , target_options=a__ , block_size=a__ , **a__ , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 __snake_case = self.file.__enter__ class SCREAMING_SNAKE_CASE__ : def __init__(self : List[str] , a__ : List[Any] ): """simple docstring""" __snake_case = file_ def __enter__(self : Dict ): """simple docstring""" self._file.__enter__() return self def __exit__(self : Optional[int] , *a__ : Tuple , **a__ : str ): """simple docstring""" self._file.__exit__(*a__ , **a__ ) def __iter__(self : str ): """simple docstring""" return iter(self._file ) def a (self : Tuple ): """simple docstring""" return next(self._file ) def __getattr__(self : Tuple , a__ : Any ): """simple docstring""" return getattr(self._file , a__ ) def fixed_enter(*a__ : List[str] , **a__ : Union[str, Any] ): return WrappedFile(_enter(*a__ , **a__ ) ) __snake_case = fixed_enter
592
def lowerCamelCase__ ( snake_case_ : Any ) -> List[Any]: return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def lowerCamelCase__ ( snake_case_ : dict[int, list[int]] ) -> list[tuple[int, int]]: __snake_case = 0 __snake_case = len(snake_case_ ) # No of vertices in graph __snake_case = [0] * n __snake_case = [False] * n def dfs(snake_case_ : Dict , snake_case_ : Optional[int] , snake_case_ : List[str] , snake_case_ : List[Any] ): __snake_case = True __snake_case = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(snake_case_ , snake_case_ , snake_case_ , id_ ) __snake_case = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge __snake_case = min(low[at] , low[to] ) __snake_case = [] for i in range(snake_case_ ): if not visited[i]: dfs(snake_case_ , -1 , snake_case_ , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
592
1
class a : def __init__( self :Optional[Any] ,__lowercase :int ): snake_case__ : List[str] = n snake_case__ : Optional[int] = [None] * self.n snake_case__ : int = 0 # index of the first element snake_case__ : Any = 0 snake_case__ : Union[str, Any] = 0 def __len__( self :Optional[int] ): return self.size def __lowerCamelCase ( self :List[str] ): return self.size == 0 def __lowerCamelCase ( self :List[str] ): return False if self.is_empty() else self.array[self.front] def __lowerCamelCase ( self :List[Any] ,__lowercase :List[Any] ): if self.size >= self.n: raise Exception('''QUEUE IS FULL''' ) snake_case__ : str = data snake_case__ : Union[str, Any] = (self.rear + 1) % self.n self.size += 1 return self def __lowerCamelCase ( self :Dict ): if self.size == 0: raise Exception('''UNDERFLOW''' ) snake_case__ : Union[str, Any] = self.array[self.front] snake_case__ : Any = None snake_case__ : Dict = (self.front + 1) % self.n self.size -= 1 return temp
703
from __future__ import annotations def _lowerCAmelCase ( __lowerCAmelCase ) -> list[int]: """simple docstring""" if len(__lowerCAmelCase ) == 0: return array snake_case__ , snake_case__ : int = min(__lowerCAmelCase ), max(__lowerCAmelCase ) # Compute the variables snake_case__ : Tuple = _max - _min + 1 snake_case__ , snake_case__ : Dict = [0] * holes_range, [0] * holes_range # Make the sorting. for i in array: snake_case__ : Dict = i - _min snake_case__ : List[Any] = i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. snake_case__ : Optional[int] = 0 for i in range(__lowerCAmelCase ): while holes_repeat[i] > 0: snake_case__ : Dict = holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() A__ = input('''Enter numbers separated by comma:\n''') A__ = [int(x) for x in user_input.split(''',''')] print(pigeon_sort(unsorted))
219
0
"""simple docstring""" import operator def __snake_case ( _lowercase ,_lowercase = False ,_lowercase = None ): """simple docstring""" UpperCamelCase = operator.lt if reverse else operator.gt UpperCamelCase = solution or [] if not arr: return solution UpperCamelCase = [arr.pop(0 )] for i, item in enumerate(_lowercase ): if _operator(_lowercase ,sublist[-1] ): sublist.append(_lowercase ) arr.pop(_lowercase ) # merging sublist into solution list if not solution: solution.extend(_lowercase ) else: while sublist: UpperCamelCase = sublist.pop(0 ) for i, xx in enumerate(_lowercase ): if not _operator(_lowercase ,_lowercase ): solution.insert(_lowercase ,_lowercase ) break else: solution.append(_lowercase ) strand_sort(_lowercase ,_lowercase ,_lowercase ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
34
"""simple docstring""" import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration lowerCamelCase = 50_000 lowerCamelCase = 5_000 lowerCamelCase , lowerCamelCase = os.path.split(__file__) lowerCamelCase = os.path.join(RESULTS_BASEPATH, """results""", RESULTS_FILENAME.replace(""".py""", """.json""")) @get_duration def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): for i in range(lowerCAmelCase__ ): UpperCAmelCase_ = dataset[i] @get_duration def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): for i in range(0 , len(lowerCAmelCase__ ) , lowerCAmelCase__ ): UpperCAmelCase_ = dataset[i : i + batch_size] @get_duration def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): with dataset.formatted_as(type=lowerCAmelCase__ ): for i in range(lowerCAmelCase__ ): UpperCAmelCase_ = dataset[i] @get_duration def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): with dataset.formatted_as(type=lowerCAmelCase__ ): for i in range(0 , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = dataset[i : i + batch_size] def a__ ( ): UpperCAmelCase_ = {"num examples": SPEED_TEST_N_EXAMPLES} UpperCAmelCase_ = [ (read, {"length": SMALL_TEST}), (read, {"length": SPEED_TEST_N_EXAMPLES}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 10}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 100}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 1000}), (read_formatted, {"type": "numpy", "length": SMALL_TEST}), (read_formatted, {"type": "pandas", "length": SMALL_TEST}), (read_formatted, {"type": "torch", "length": SMALL_TEST}), (read_formatted, {"type": "tensorflow", "length": SMALL_TEST}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 10}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 1000}), ] UpperCAmelCase_ = [ (read, {"length": SMALL_TEST}), (read, {"length": SPEED_TEST_N_EXAMPLES}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 10}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 100}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 1000}), (read_formatted, {"type": "numpy", "length": SMALL_TEST}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 10}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 1000}), ] with tempfile.TemporaryDirectory() as tmp_dir: print("generating dataset" ) UpperCAmelCase_ = datasets.Features( {"list": datasets.Sequence(datasets.Value("float32" ) ), "numbers": datasets.Value("float32" )} ) UpperCAmelCase_ = generate_example_dataset( os.path.join(lowerCAmelCase__ , "dataset.arrow" ) , lowerCAmelCase__ , num_examples=lowerCAmelCase__ , seq_shapes={"list": (100,)} , ) print("first set of iterations" ) for func, kwargs in functions: print(func.__name__ , str(lowerCAmelCase__ ) ) UpperCAmelCase_ = func(lowerCAmelCase__ , **lowerCAmelCase__ ) print("shuffling dataset" ) UpperCAmelCase_ = dataset.shuffle() print("Second set of iterations (after shuffling" ) for func, kwargs in functions_shuffled: print("shuffled " , func.__name__ , str(lowerCAmelCase__ ) ) UpperCAmelCase_ = func( lowerCAmelCase__ , **lowerCAmelCase__ ) with open(lowerCAmelCase__ , "wb" ) as f: f.write(json.dumps(lowerCAmelCase__ ).encode("utf-8" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
82
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase = logging.get_logger(__name__) lowercase = '''▁''' lowercase = {'''vocab_file''': '''sentencepiece.bpe.model'''} lowercase = { '''vocab_file''': { '''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model''', } } lowercase = { '''facebook/xglm-564M''': 2048, } class A_ ( snake_case_ ): UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = ['''input_ids''', '''attention_mask'''] def __init__( self : Optional[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any]="<s>" , __lowerCamelCase : str="</s>" , __lowerCamelCase : str="</s>" , __lowerCamelCase : Dict="<s>" , __lowerCamelCase : List[Any]="<unk>" , __lowerCamelCase : int="<pad>" , __lowerCamelCase : Optional[Dict[str, Any]] = None , **__lowerCamelCase : Optional[Any] , ) -> None: __magic_name__ = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer __magic_name__ = 7 __magic_name__ = [f'''<madeupword{i}>''' for i in range(self.num_madeup_words )] __magic_name__ = kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCamelCase , ) __magic_name__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__lowerCamelCase ) ) __magic_name__ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __magic_name__ = 1 # Mimic fairseq token-to-id alignment for the first 4 token __magic_name__ = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} __magic_name__ = len(self.sp_model ) __magic_name__ = {f'''<madeupword{i}>''': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(__lowerCamelCase ) __magic_name__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Dict ) -> Optional[int]: __magic_name__ = self.__dict__.copy() __magic_name__ = None __magic_name__ = self.sp_model.serialized_model_proto() return state def __setstate__( self : Optional[int] , __lowerCamelCase : Union[str, Any] ) -> Union[str, Any]: __magic_name__ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __magic_name__ = {} __magic_name__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _snake_case ( self : Dict , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.sep_token_id] + token_ids_a __magic_name__ = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def _snake_case ( self : str , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) def _snake_case ( self : Any , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ) -> List[int]: __magic_name__ = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def _snake_case ( self : List[str] ) -> List[str]: return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def _snake_case ( self : List[Any] ) -> List[str]: __magic_name__ = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _snake_case ( self : List[str] , __lowerCamelCase : str ) -> List[str]: return self.sp_model.encode(__lowerCamelCase , out_type=__lowerCamelCase ) def _snake_case ( self : List[Any] , __lowerCamelCase : List[str] ) -> Optional[Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __magic_name__ = self.sp_model.PieceToId(__lowerCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _snake_case ( self : Optional[int] , __lowerCamelCase : Any ) -> List[str]: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _snake_case ( self : Dict , __lowerCamelCase : Optional[int] ) -> str: __magic_name__ = "".join(__lowerCamelCase ).replace(__lowerCamelCase , " " ).strip() return out_string def _snake_case ( self : Any , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __magic_name__ = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCamelCase , "wb" ) as fi: __magic_name__ = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase ) return (out_vocab_file,)
468
"""simple docstring""" from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class A_ : UpperCAmelCase__ = LEDConfig UpperCAmelCase__ = {} UpperCAmelCase__ = '''gelu''' def __init__( self : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : List[Any]=1_3 , __lowerCamelCase : str=7 , __lowerCamelCase : Any=True , __lowerCamelCase : int=False , __lowerCamelCase : List[Any]=9_9 , __lowerCamelCase : Any=3_2 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : Dict=4 , __lowerCamelCase : int=3_7 , __lowerCamelCase : Tuple=0.1 , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : Optional[Any]=2_0 , __lowerCamelCase : List[str]=2 , __lowerCamelCase : str=1 , __lowerCamelCase : List[Any]=0 , __lowerCamelCase : Dict=4 , ) -> Optional[Any]: __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = seq_length __magic_name__ = is_training __magic_name__ = use_labels __magic_name__ = vocab_size __magic_name__ = hidden_size __magic_name__ = num_hidden_layers __magic_name__ = num_attention_heads __magic_name__ = intermediate_size __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = max_position_embeddings __magic_name__ = eos_token_id __magic_name__ = pad_token_id __magic_name__ = bos_token_id __magic_name__ = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after __magic_name__ = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests __magic_name__ = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def _snake_case ( self : Dict ) -> Optional[Any]: __magic_name__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __magic_name__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __magic_name__ = tf.concat([input_ids, eos_tensor] , axis=1 ) __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) __magic_name__ = prepare_led_inputs_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) __magic_name__ = tf.concat( [tf.zeros_like(__lowerCamelCase )[:, :-1], tf.ones_like(__lowerCamelCase )[:, -1:]] , axis=-1 , ) __magic_name__ = global_attention_mask return config, inputs_dict def _snake_case ( self : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : Any ) -> Union[str, Any]: __magic_name__ = TFLEDModel(config=__lowerCamelCase ).get_decoder() __magic_name__ = inputs_dict["input_ids"] __magic_name__ = input_ids[:1, :] __magic_name__ = inputs_dict["attention_mask"][:1, :] __magic_name__ = 1 # first forward pass __magic_name__ = model(__lowerCamelCase , attention_mask=__lowerCamelCase , use_cache=__lowerCamelCase ) __magic_name__ , __magic_name__ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __magic_name__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) __magic_name__ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __magic_name__ = tf.concat([input_ids, next_tokens] , axis=-1 ) __magic_name__ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __magic_name__ = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0] __magic_name__ = model(__lowerCamelCase , attention_mask=__lowerCamelCase , past_key_values=__lowerCamelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __magic_name__ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __magic_name__ = output_from_no_past[:, -3:, random_slice_idx] __magic_name__ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__lowerCamelCase , __lowerCamelCase , rtol=1e-3 ) def _lowerCAmelCase ( __lowerCamelCase:str , __lowerCamelCase:str , __lowerCamelCase:List[Any] , __lowerCamelCase:Any=None , __lowerCamelCase:Dict=None , __lowerCamelCase:List[Any]=None , __lowerCamelCase:Union[str, Any]=None , ): '''simple docstring''' if attention_mask is None: __magic_name__ = tf.cast(tf.math.not_equal(__lowerCamelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __magic_name__ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __magic_name__ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __magic_name__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class A_ ( snake_case_ , snake_case_ , unittest.TestCase ): UpperCAmelCase__ = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () UpperCAmelCase__ = (TFLEDForConditionalGeneration,) if is_tf_available() else () UpperCAmelCase__ = ( { '''conversational''': TFLEDForConditionalGeneration, '''feature-extraction''': TFLEDModel, '''summarization''': TFLEDForConditionalGeneration, '''text2text-generation''': TFLEDForConditionalGeneration, '''translation''': TFLEDForConditionalGeneration, } if is_tf_available() else {} ) UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False def _snake_case ( self : int ) -> Optional[int]: __magic_name__ = TFLEDModelTester(self ) __magic_name__ = ConfigTester(self , config_class=__lowerCamelCase ) def _snake_case ( self : Optional[Any] ) -> Dict: self.config_tester.run_common_tests() def _snake_case ( self : Optional[int] ) -> List[Any]: __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__lowerCamelCase ) def _snake_case ( self : List[str] ) -> str: __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ = tf.zeros_like(inputs_dict["attention_mask"] ) __magic_name__ = 2 __magic_name__ = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict["global_attention_mask"] , ) __magic_name__ = True __magic_name__ = self.model_tester.seq_length __magic_name__ = self.model_tester.encoder_seq_length def check_decoder_attentions_output(__lowerCamelCase : int ): __magic_name__ = outputs.decoder_attentions self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(__lowerCamelCase : Any ): __magic_name__ = [t.numpy() for t in outputs.encoder_attentions] __magic_name__ = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: __magic_name__ = True __magic_name__ = False __magic_name__ = False __magic_name__ = model_class(__lowerCamelCase ) __magic_name__ = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) __magic_name__ = len(__lowerCamelCase ) self.assertEqual(config.output_hidden_states , __lowerCamelCase ) check_encoder_attentions_output(__lowerCamelCase ) if self.is_encoder_decoder: __magic_name__ = model_class(__lowerCamelCase ) __magic_name__ = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) self.assertEqual(config.output_hidden_states , __lowerCamelCase ) check_decoder_attentions_output(__lowerCamelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __magic_name__ = True __magic_name__ = model_class(__lowerCamelCase ) __magic_name__ = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) self.assertEqual(config.output_hidden_states , __lowerCamelCase ) check_encoder_attentions_output(__lowerCamelCase ) # Check attention is always last and order is fine __magic_name__ = True __magic_name__ = True __magic_name__ = model_class(__lowerCamelCase ) __magic_name__ = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__lowerCamelCase ) ) self.assertEqual(model.config.output_hidden_states , __lowerCamelCase ) check_encoder_attentions_output(__lowerCamelCase ) @unittest.skip("LED keeps using potentially symbolic tensors in conditionals and breaks tracing." ) def _snake_case ( self : Union[str, Any] ) -> List[str]: pass def _snake_case ( self : int ) -> str: # TODO: Head-masking not yet implement pass def _lowerCAmelCase ( __lowerCamelCase:Optional[int] ): '''simple docstring''' return tf.constant(__lowerCamelCase , dtype=tf.intaa ) lowercase = 1e-4 @slow @require_tf class A_ ( unittest.TestCase ): def _snake_case ( self : Optional[Any] ) -> List[str]: __magic_name__ = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ).led # change to intended input here __magic_name__ = _long_tensor([5_1_2 * [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9]] ) __magic_name__ = _long_tensor([1_2_8 * [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9]] ) __magic_name__ = prepare_led_inputs_dict(model.config , __lowerCamelCase , __lowerCamelCase ) __magic_name__ = model(**__lowerCamelCase )[0] __magic_name__ = (1, 1_0_2_4, 7_6_8) self.assertEqual(output.shape , __lowerCamelCase ) # change to expected output here __magic_name__ = tf.convert_to_tensor( [[2.3050, 2.8279, 0.6531], [-1.8457, -0.1455, -3.5661], [-1.0186, 0.4586, -2.2043]] , ) tf.debugging.assert_near(output[:, :3, :3] , __lowerCamelCase , atol=1e-3 ) def _snake_case ( self : Any ) -> Dict: __magic_name__ = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ) # change to intended input here __magic_name__ = _long_tensor([5_1_2 * [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9]] ) __magic_name__ = _long_tensor([1_2_8 * [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9]] ) __magic_name__ = prepare_led_inputs_dict(model.config , __lowerCamelCase , __lowerCamelCase ) __magic_name__ = model(**__lowerCamelCase )[0] __magic_name__ = (1, 1_0_2_4, model.config.vocab_size) self.assertEqual(output.shape , __lowerCamelCase ) # change to expected output here __magic_name__ = tf.convert_to_tensor( [[33.6507, 6.4572, 16.8089], [5.8739, -2.4238, 11.2902], [-3.2139, -4.3149, 4.2783]] , ) tf.debugging.assert_near(output[:, :3, :3] , __lowerCamelCase , atol=1e-3 , rtol=1e-3 )
468
1
'''simple docstring''' import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency lowerCamelCase_ = { 'E': 12.70, 'T': 9.06, 'A': 8.17, 'O': 7.51, 'I': 6.97, 'N': 6.75, 'S': 6.33, 'H': 6.09, 'R': 5.99, 'D': 4.25, 'L': 4.03, 'C': 2.78, 'U': 2.76, 'M': 2.41, 'W': 2.36, 'F': 2.23, 'G': 2.02, 'Y': 1.97, 'P': 1.93, 'B': 1.29, 'V': 0.98, 'K': 0.77, 'J': 0.15, 'X': 0.15, 'Q': 0.10, 'Z': 0.07, } lowerCamelCase_ = 'ETAOINSHRDLCUMWFGYPBVKJXQZ' lowerCamelCase_ = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' def SCREAMING_SNAKE_CASE_ ( __A : str ) -> dict[str, int]: _SCREAMING_SNAKE_CASE = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def SCREAMING_SNAKE_CASE_ ( __A : tuple ) -> str: return x[0] def SCREAMING_SNAKE_CASE_ ( __A : str ) -> str: _SCREAMING_SNAKE_CASE = get_letter_count(__A ) _SCREAMING_SNAKE_CASE = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(__A ) _SCREAMING_SNAKE_CASE = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=__A ) _SCREAMING_SNAKE_CASE = "".join(freq_to_letter[freq] ) _SCREAMING_SNAKE_CASE = list(freq_to_letter_str.items() ) freq_pairs.sort(key=__A , reverse=__A ) _SCREAMING_SNAKE_CASE = [freq_pair[1] for freq_pair in freq_pairs] return "".join(__A ) def SCREAMING_SNAKE_CASE_ ( __A : str ) -> int: _SCREAMING_SNAKE_CASE = get_frequency_order(__A ) _SCREAMING_SNAKE_CASE = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
418
'''simple docstring''' import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class lowercase_ ( unittest.TestCase ): """simple docstring""" def __init__( self : Tuple , __lowerCamelCase : Dict , __lowerCamelCase : bool = True , __lowerCamelCase : Dict[str, int] = None , __lowerCamelCase : int = 3_2 , __lowerCamelCase : bool = True , __lowerCamelCase : Union[int, float] = 1 / 2_5_5 , __lowerCamelCase : bool = True , __lowerCamelCase : bool = True , __lowerCamelCase : Optional[Union[float, List[float]]] = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , __lowerCamelCase : Optional[Union[float, List[float]]] = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , __lowerCamelCase : bool = True , __lowerCamelCase : str=7 , __lowerCamelCase : Union[str, Any]=3_0 , __lowerCamelCase : Tuple=4_0_0 , __lowerCamelCase : List[Any]=3 , ): """simple docstring""" _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = do_resize _SCREAMING_SNAKE_CASE = size if size is not None else {"shortest_edge": 2_8_8} _SCREAMING_SNAKE_CASE = size_divisor _SCREAMING_SNAKE_CASE = do_rescale _SCREAMING_SNAKE_CASE = rescale_factor _SCREAMING_SNAKE_CASE = do_normalize _SCREAMING_SNAKE_CASE = do_center_crop _SCREAMING_SNAKE_CASE = image_mean _SCREAMING_SNAKE_CASE = image_std _SCREAMING_SNAKE_CASE = do_pad _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = num_channels _SCREAMING_SNAKE_CASE = min_resolution _SCREAMING_SNAKE_CASE = max_resolution def lowerCAmelCase_ ( self : Union[str, Any] ): """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def lowerCAmelCase_ ( self : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : int=False ): """simple docstring""" if not batched: _SCREAMING_SNAKE_CASE = self.size["shortest_edge"] _SCREAMING_SNAKE_CASE = image_inputs[0] if isinstance(__lowerCamelCase , Image.Image ): _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = image.size else: _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = image.shape[1], image.shape[2] _SCREAMING_SNAKE_CASE = size / min(__lowerCamelCase , __lowerCamelCase ) if h < w: _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = size, scale * w else: _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = scale * h, size _SCREAMING_SNAKE_CASE = int((1_3_3_3 / 8_0_0) * size ) if max(__lowerCamelCase , __lowerCamelCase ) > max_size: _SCREAMING_SNAKE_CASE = max_size / max(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE = newh * scale _SCREAMING_SNAKE_CASE = neww * scale _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = int(newh + 0.5 ), int(neww + 0.5 ) _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: _SCREAMING_SNAKE_CASE = [] for image in image_inputs: _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _SCREAMING_SNAKE_CASE = max(__lowerCamelCase , key=lambda __lowerCamelCase : item[0] )[0] _SCREAMING_SNAKE_CASE = max(__lowerCamelCase , key=lambda __lowerCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowercase_ ( A , unittest.TestCase ): """simple docstring""" lowerCamelCase_ = BridgeTowerImageProcessor if is_vision_available() else None def lowerCAmelCase_ ( self : Any ): """simple docstring""" _SCREAMING_SNAKE_CASE = BridgeTowerImageProcessingTester(self ) @property def lowerCAmelCase_ ( self : int ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase_ ( self : Optional[int] ): """simple docstring""" _SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCamelCase , "image_mean" ) ) self.assertTrue(hasattr(__lowerCamelCase , "image_std" ) ) self.assertTrue(hasattr(__lowerCamelCase , "do_normalize" ) ) self.assertTrue(hasattr(__lowerCamelCase , "do_resize" ) ) self.assertTrue(hasattr(__lowerCamelCase , "size" ) ) self.assertTrue(hasattr(__lowerCamelCase , "size_divisor" ) ) def lowerCAmelCase_ ( self : Optional[Any] ): """simple docstring""" pass def lowerCAmelCase_ ( self : Optional[int] ): """simple docstring""" # Initialize image processor _SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , Image.Image ) # Test not batched input _SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _SCREAMING_SNAKE_CASE = image_processing(__lowerCamelCase , return_tensors="pt" ).pixel_values _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase_ ( self : str ): """simple docstring""" # Initialize image processor _SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , numpify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , np.ndarray ) # Test not batched input _SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _SCREAMING_SNAKE_CASE = image_processing(__lowerCamelCase , return_tensors="pt" ).pixel_values _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase_ ( self : str ): """simple docstring""" # Initialize image processor _SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , torch.Tensor ) # Test not batched input _SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _SCREAMING_SNAKE_CASE = image_processing(__lowerCamelCase , return_tensors="pt" ).pixel_values _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
418
1
'''simple docstring''' import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def a_ ( self : Any ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights __lowerCamelCase : Optional[Any] = FlaxDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-pipe""" , safety_checker=A__ , cache_dir=A__ ) __lowerCamelCase : str = [t[-1] for t in os.walk(os.path.join(A__ , os.listdir(A__ )[0] , """snapshots""" ) )] __lowerCamelCase : str = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith(""".bin""" ) for f in files ) @slow @require_flax class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def a_ ( self : Union[str, Any] ): """simple docstring""" __lowerCamelCase , __lowerCamelCase : Any = FlaxStableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-pipe""" , safety_checker=A__ ) __lowerCamelCase : Dict = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) __lowerCamelCase : List[Any] = jax.random.PRNGKey(0 ) __lowerCamelCase : List[Any] = 4 __lowerCamelCase : Union[str, Any] = jax.device_count() __lowerCamelCase : Optional[int] = num_samples * [prompt] __lowerCamelCase : List[Any] = pipeline.prepare_inputs(A__ ) # shard inputs and rng __lowerCamelCase : Optional[Any] = replicate(A__ ) __lowerCamelCase : Optional[int] = jax.random.split(A__ , A__ ) __lowerCamelCase : List[Any] = shard(A__ ) __lowerCamelCase : int = pipeline(A__ , A__ , A__ , A__ , jit=A__ ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.151_4745 ) < 1e-3 assert np.abs(np.abs(A__ , dtype=np.floataa ).sum() - 4_9947.875 ) < 5e-1 __lowerCamelCase : str = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(A__ ) == num_samples def a_ ( self : int ): """simple docstring""" __lowerCamelCase , __lowerCamelCase : Optional[Any] = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""flax""" , safety_checker=A__ ) __lowerCamelCase : Dict = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) __lowerCamelCase : str = jax.random.PRNGKey(0 ) __lowerCamelCase : Dict = 50 __lowerCamelCase : List[Any] = jax.device_count() __lowerCamelCase : str = num_samples * [prompt] __lowerCamelCase : Dict = pipeline.prepare_inputs(A__ ) # shard inputs and rng __lowerCamelCase : Tuple = replicate(A__ ) __lowerCamelCase : str = jax.random.split(A__ , A__ ) __lowerCamelCase : Dict = shard(A__ ) __lowerCamelCase : Any = pipeline(A__ , A__ , A__ , A__ , jit=A__ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0565_2401) ) < 1e-3 assert np.abs((np.abs(A__ , dtype=np.floataa ).sum() - 238_3808.2) ) < 5e-1 def a_ ( self : Any ): """simple docstring""" __lowerCamelCase , __lowerCamelCase : Dict = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa , safety_checker=A__ ) __lowerCamelCase : Dict = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) __lowerCamelCase : int = jax.random.PRNGKey(0 ) __lowerCamelCase : Union[str, Any] = 50 __lowerCamelCase : Union[str, Any] = jax.device_count() __lowerCamelCase : int = num_samples * [prompt] __lowerCamelCase : Optional[int] = pipeline.prepare_inputs(A__ ) # shard inputs and rng __lowerCamelCase : Any = replicate(A__ ) __lowerCamelCase : int = jax.random.split(A__ , A__ ) __lowerCamelCase : List[Any] = shard(A__ ) __lowerCamelCase : int = pipeline(A__ , A__ , A__ , A__ , jit=A__ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0400_3906) ) < 1e-3 assert np.abs((np.abs(A__ , dtype=np.floataa ).sum() - 237_3516.75) ) < 5e-1 def a_ ( self : Dict ): """simple docstring""" __lowerCamelCase , __lowerCamelCase : Any = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa ) __lowerCamelCase : str = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) __lowerCamelCase : str = jax.random.PRNGKey(0 ) __lowerCamelCase : Tuple = 50 __lowerCamelCase : Any = jax.device_count() __lowerCamelCase : Tuple = num_samples * [prompt] __lowerCamelCase : List[str] = pipeline.prepare_inputs(A__ ) # shard inputs and rng __lowerCamelCase : Optional[Any] = replicate(A__ ) __lowerCamelCase : str = jax.random.split(A__ , A__ ) __lowerCamelCase : Dict = shard(A__ ) __lowerCamelCase : Any = pipeline(A__ , A__ , A__ , A__ , jit=A__ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0400_3906) ) < 1e-3 assert np.abs((np.abs(A__ , dtype=np.floataa ).sum() - 237_3516.75) ) < 5e-1 def a_ ( self : int ): """simple docstring""" __lowerCamelCase : int = FlaxDDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , set_alpha_to_one=A__ , steps_offset=1 , ) __lowerCamelCase , __lowerCamelCase : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa , scheduler=A__ , safety_checker=A__ , ) __lowerCamelCase : List[str] = scheduler.create_state() __lowerCamelCase : Dict = scheduler_state __lowerCamelCase : int = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) __lowerCamelCase : Any = jax.random.PRNGKey(0 ) __lowerCamelCase : int = 50 __lowerCamelCase : List[Any] = jax.device_count() __lowerCamelCase : Optional[int] = num_samples * [prompt] __lowerCamelCase : str = pipeline.prepare_inputs(A__ ) # shard inputs and rng __lowerCamelCase : List[str] = replicate(A__ ) __lowerCamelCase : int = jax.random.split(A__ , A__ ) __lowerCamelCase : int = shard(A__ ) __lowerCamelCase : int = pipeline(A__ , A__ , A__ , A__ , jit=A__ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4504_3945) ) < 1e-3 assert np.abs((np.abs(A__ , dtype=np.floataa ).sum() - 234_7693.5) ) < 5e-1 def a_ ( self : Optional[int] ): """simple docstring""" __lowerCamelCase : Any = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) __lowerCamelCase : Optional[int] = jax.device_count() __lowerCamelCase : Tuple = num_samples * [prompt] __lowerCamelCase : Optional[Any] = jax.random.split(jax.random.PRNGKey(0 ) , A__ ) __lowerCamelCase , __lowerCamelCase : Dict = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa , safety_checker=A__ , ) __lowerCamelCase : Dict = replicate(A__ ) __lowerCamelCase : str = pipeline.prepare_inputs(A__ ) __lowerCamelCase : Optional[int] = shard(A__ ) __lowerCamelCase : Optional[Any] = pipeline(A__ , A__ , A__ , jit=A__ ).images assert images.shape == (num_samples, 1, 512, 512, 3) __lowerCamelCase : List[Any] = images[2, 0, 256, 10:17, 1] # With memory efficient attention __lowerCamelCase , __lowerCamelCase : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa , safety_checker=A__ , use_memory_efficient_attention=A__ , ) __lowerCamelCase : int = replicate(A__ ) __lowerCamelCase : Optional[int] = pipeline.prepare_inputs(A__ ) __lowerCamelCase : Union[str, Any] = shard(A__ ) __lowerCamelCase : str = pipeline(A__ , A__ , A__ , jit=A__ ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) __lowerCamelCase : List[Any] = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
483
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=lowerCAmelCase_ ) class SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): snake_case__ : str = field(default='automatic-speech-recognition' , metadata={'include_in_asdict_even_if_is_default': True} ) snake_case__ : ClassVar[Features] = Features({'audio': Audio()} ) snake_case__ : ClassVar[Features] = Features({'transcription': Value('string' )} ) snake_case__ : str = "audio" snake_case__ : str = "transcription" def a_ ( self : Any , A__ : Any ): """simple docstring""" if self.audio_column not in features: raise ValueError(f"Column {self.audio_column} is not present in features." ) if not isinstance(features[self.audio_column] , A__ ): raise ValueError(f"Column {self.audio_column} is not an Audio type." ) __lowerCamelCase : Dict = copy.deepcopy(self ) __lowerCamelCase : List[Any] = self.input_schema.copy() __lowerCamelCase : Optional[int] = features[self.audio_column] __lowerCamelCase : Any = input_schema return task_template @property def a_ ( self : Any ): """simple docstring""" return {self.audio_column: "audio", self.transcription_column: "transcription"}
483
1
"""simple docstring""" import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) a : Optional[Any] = logging.getLogger(__name__) @dataclass(frozen=lowercase_ ) class __UpperCamelCase : lowerCamelCase : str lowerCamelCase : str lowerCamelCase : Optional[str] =None lowerCamelCase : Optional[str] =None lowerCamelCase : Optional[str] =None @dataclass(frozen=lowercase_ ) class __UpperCamelCase : lowerCamelCase : List[int] lowerCamelCase : Optional[List[int]] =None lowerCamelCase : Optional[List[int]] =None lowerCamelCase : Optional[Union[int, float]] =None lowerCamelCase : Optional[int] =None if is_torch_available(): import torch from torch.utils.data import Dataset class __UpperCamelCase ( lowercase_ ): lowerCamelCase : List[InputFeatures] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__=False , lowerCAmelCase__ = False , ) -> int: a : Any = hans_processors[task]() a : Tuple = os.path.join( lowerCAmelCase__ , "cached_{}_{}_{}_{}".format( "dev" if evaluate else "train" , tokenizer.__class__.__name__ , str(lowerCAmelCase__ ) , lowerCAmelCase__ , ) , ) a : List[str] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) a, a : int = label_list[2], label_list[1] a : int = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. a : Dict = cached_features_file + ".lock" with FileLock(lowerCAmelCase__ ): if os.path.exists(lowerCAmelCase__ ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) a : Dict = torch.load(lowerCAmelCase__ ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) a : Union[str, Any] = ( processor.get_dev_examples(lowerCAmelCase__ ) if evaluate else processor.get_train_examples(lowerCAmelCase__ ) ) logger.info("Training examples: %s" , len(lowerCAmelCase__ ) ) a : Optional[int] = hans_convert_examples_to_features(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) logger.info("Saving features into cached file %s" , lowerCAmelCase__ ) torch.save(self.features , lowerCAmelCase__ ) def __len__( self ) -> Tuple: return len(self.features ) def __getitem__( self , lowerCAmelCase__ ) -> Any: return self.features[i] def __a ( self ) -> Dict: return self.label_list if is_tf_available(): import tensorflow as tf class __UpperCamelCase : lowerCamelCase : List[InputFeatures] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 128 , lowerCAmelCase__=False , lowerCAmelCase__ = False , ) -> Any: a : str = hans_processors[task]() a : List[Any] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) a, a : List[str] = label_list[2], label_list[1] a : List[Any] = label_list a : List[str] = processor.get_dev_examples(lowerCAmelCase__ ) if evaluate else processor.get_train_examples(lowerCAmelCase__ ) a : Optional[int] = hans_convert_examples_to_features(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc="convert examples to features" ): if ex_index % 1_0000 == 0: logger.info("Writing example %d of %d" % (ex_index, len(lowerCAmelCase__ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) a : Optional[Any] = tf.data.Dataset.from_generator( lowerCAmelCase__ , ( { "example_id": tf.intaa, "input_ids": tf.intaa, "attention_mask": tf.intaa, "token_type_ids": tf.intaa, }, tf.intaa, ) , ( { "example_id": tf.TensorShape([] ), "input_ids": tf.TensorShape([None, None] ), "attention_mask": tf.TensorShape([None, None] ), "token_type_ids": tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def __a ( self ) -> List[Any]: return self.dataset def __len__( self ) -> Tuple: return len(self.features ) def __getitem__( self , lowerCAmelCase__ ) -> List[str]: return self.features[i] def __a ( self ) -> List[Any]: return self.label_list class __UpperCamelCase ( lowercase_ ): def __a ( self , lowerCAmelCase__ ) -> Optional[int]: return self._create_examples(self._read_tsv(os.path.join(lowerCAmelCase__ , "heuristics_train_set.txt" ) ) , "train" ) def __a ( self , lowerCAmelCase__ ) -> List[str]: return self._create_examples(self._read_tsv(os.path.join(lowerCAmelCase__ , "heuristics_evaluation_set.txt" ) ) , "dev" ) def __a ( self ) -> List[str]: return ["contradiction", "entailment", "neutral"] def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: a : Dict = [] for i, line in enumerate(lowerCAmelCase__ ): if i == 0: continue a : Union[str, Any] = "%s-%s" % (set_type, line[0]) a : List[str] = line[5] a : str = line[6] a : Optional[int] = line[7][2:] if line[7].startswith("ex" ) else line[7] a : Optional[int] = line[0] examples.append(InputExample(guid=lowerCAmelCase__ , text_a=lowerCAmelCase__ , text_b=lowerCAmelCase__ , label=lowerCAmelCase__ , pairID=lowerCAmelCase__ ) ) return examples def _SCREAMING_SNAKE_CASE ( _lowercase : List[str] , _lowercase : Any , _lowercase : Any , _lowercase : Any , ) ->List[Any]: '''simple docstring''' a : Optional[Any] = {label: i for i, label in enumerate(_lowercase )} a : Union[str, Any] = [] for ex_index, example in tqdm.tqdm(enumerate(_lowercase ) , desc="convert examples to features" ): if ex_index % 1_0000 == 0: logger.info("Writing example %d" % (ex_index) ) a : Optional[Any] = tokenizer( example.text_a , example.text_b , add_special_tokens=_lowercase , max_length=_lowercase , padding="max_length" , truncation=_lowercase , return_overflowing_tokens=_lowercase , ) a : Optional[Any] = label_map[example.label] if example.label in label_map else 0 a : Dict = int(example.pairID ) features.append(InputFeatures(**_lowercase , label=_lowercase , pairID=_lowercase ) ) for i, example in enumerate(examples[:5] ): logger.info("*** Example ***" ) logger.info(F"""guid: {example}""" ) logger.info(F"""features: {features[i]}""" ) return features a : Dict = { 'hans': 3, } a : str = { 'hans': HansProcessor, }
633
'''simple docstring''' from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def _SCREAMING_SNAKE_CASE (A , A , A=1E-12 ) -> str: """simple docstring""" lowercase__ = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(A , axis=1 ) , a_min=A ) ).T lowercase__ = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(A , axis=1 ) , a_min=A ) ).T return jnp.matmul(A , norm_emb_a.T ) class __lowerCAmelCase (nn.Module ): '''simple docstring''' lowerCAmelCase__ : CLIPConfig lowerCAmelCase__ : jnp.dtype = jnp.floataa def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = FlaxCLIPVisionModule(self.config.vision_config ) lowercase__ = nn.Dense(self.config.projection_dim , use_bias=UpperCamelCase , dtype=self.dtype ) lowercase__ = self.param('''concept_embeds''' , jax.nn.initializers.ones , (17, self.config.projection_dim) ) lowercase__ = self.param( '''special_care_embeds''' , jax.nn.initializers.ones , (3, self.config.projection_dim) ) lowercase__ = self.param('''concept_embeds_weights''' , jax.nn.initializers.ones , (17,) ) lowercase__ = self.param('''special_care_embeds_weights''' , jax.nn.initializers.ones , (3,) ) def __call__(self : Union[str, Any] , UpperCamelCase : Tuple ): '''simple docstring''' lowercase__ = self.vision_model(UpperCamelCase )[1] lowercase__ = self.visual_projection(UpperCamelCase ) lowercase__ = jax_cosine_distance(UpperCamelCase , self.special_care_embeds ) lowercase__ = jax_cosine_distance(UpperCamelCase , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs lowercase__ = 0.0 lowercase__ = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment lowercase__ = jnp.round(UpperCamelCase , 3 ) lowercase__ = jnp.any(special_scores > 0 , axis=1 , keepdims=UpperCamelCase ) # Use a lower threshold if an image has any special care concept lowercase__ = is_special_care * 0.01 lowercase__ = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment lowercase__ = jnp.round(UpperCamelCase , 3 ) lowercase__ = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = CLIPConfig lowerCAmelCase__ : Optional[int] = """clip_input""" lowerCAmelCase__ : Any = FlaxStableDiffusionSafetyCheckerModule def __init__(self : Optional[int] , UpperCamelCase : CLIPConfig , UpperCamelCase : Optional[Tuple] = None , UpperCamelCase : int = 0 , UpperCamelCase : jnp.dtype = jnp.floataa , UpperCamelCase : bool = True , **UpperCamelCase : List[Any] , ): '''simple docstring''' if input_shape is None: lowercase__ = (1, 224, 224, 3) lowercase__ = self.module_class(config=UpperCamelCase , dtype=UpperCamelCase , **UpperCamelCase ) super().__init__(UpperCamelCase , UpperCamelCase , input_shape=UpperCamelCase , seed=UpperCamelCase , dtype=UpperCamelCase , _do_init=_do_init ) def UpperCamelCase__ (self : Any , UpperCamelCase : jax.random.KeyArray , UpperCamelCase : Tuple , UpperCamelCase : FrozenDict = None ): '''simple docstring''' lowercase__ = jax.random.normal(UpperCamelCase , UpperCamelCase ) lowercase__ ,lowercase__ = jax.random.split(UpperCamelCase ) lowercase__ = {'''params''': params_rng, '''dropout''': dropout_rng} lowercase__ = self.module.init(UpperCamelCase , UpperCamelCase )['''params'''] return random_params def __call__(self : Optional[Any] , UpperCamelCase : Tuple , UpperCamelCase : dict = None , ): '''simple docstring''' lowercase__ = jnp.transpose(UpperCamelCase , (0, 2, 3, 1) ) return self.module.apply( {'''params''': params or self.params} , jnp.array(UpperCamelCase , dtype=jnp.floataa ) , rngs={} , )
460
0
"""simple docstring""" from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class UpperCamelCase : """simple docstring""" def __init__( self ,UpperCAmelCase_ = None ): if components is None: _lowercase : Tuple = [] _lowercase : List[str] = list(UpperCAmelCase_ ) def __len__( self ): return len(self.__components ) def __str__( self ): return "(" + ",".join(map(UpperCAmelCase_ ,self.__components ) ) + ")" def __add__( self ,UpperCAmelCase_ ): _lowercase : int = len(self ) if size == len(UpperCAmelCase_ ): _lowercase : List[str] = [self.__components[i] + other.component(UpperCAmelCase_ ) for i in range(UpperCAmelCase_ )] return Vector(UpperCAmelCase_ ) else: raise Exception("""must have the same size""" ) def __sub__( self ,UpperCAmelCase_ ): _lowercase : Tuple = len(self ) if size == len(UpperCAmelCase_ ): _lowercase : Union[str, Any] = [self.__components[i] - other.component(UpperCAmelCase_ ) for i in range(UpperCAmelCase_ )] return Vector(UpperCAmelCase_ ) else: # error case raise Exception("""must have the same size""" ) @overload def __mul__( self ,UpperCAmelCase_ ): ... @overload def __mul__( self ,UpperCAmelCase_ ): ... def __mul__( self ,UpperCAmelCase_ ): if isinstance(UpperCAmelCase_ ,(float, int) ): _lowercase : Tuple = [c * other for c in self.__components] return Vector(UpperCAmelCase_ ) elif isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ) and len(self ) == len(UpperCAmelCase_ ): _lowercase : int = len(self ) _lowercase : Optional[int] = [self.__components[i] * other.component(UpperCAmelCase_ ) for i in range(UpperCAmelCase_ )] return sum(UpperCAmelCase_ ) else: # error case raise Exception("""invalid operand!""" ) def lowerCamelCase__ ( self ): return Vector(self.__components ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): if isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception("""index out of range""" ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ): assert -len(self.__components ) <= pos < len(self.__components ) _lowercase : str = value def lowerCamelCase__ ( self ): if len(self.__components ) == 0: raise Exception("""Vector is empty""" ) _lowercase : Optional[Any] = [c**2 for c in self.__components] return math.sqrt(sum(UpperCAmelCase_ ) ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = False ): _lowercase : Dict = self * other _lowercase : Union[str, Any] = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) return Vector([0] * dimension ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) and (isinstance(__UpperCAmelCase , __UpperCAmelCase )) _lowercase : Union[str, Any] = [0] * dimension _lowercase : int = 1 return Vector(__UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): assert ( isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(__UpperCAmelCase , __UpperCAmelCase ) and (isinstance(__UpperCAmelCase , (int, float) )) ) return x * scalar + y def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): random.seed(__UpperCAmelCase ) _lowercase : Optional[Any] = [random.randint(__UpperCAmelCase , __UpperCAmelCase ) for _ in range(__UpperCAmelCase )] return Vector(__UpperCAmelCase ) class UpperCamelCase : """simple docstring""" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : Dict = matrix _lowercase : Tuple = w _lowercase : Tuple = h def __str__( self ): _lowercase : int = """""" for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self ,UpperCAmelCase_ ): if self.__width == other.width() and self.__height == other.height(): _lowercase : Dict = [] for i in range(self.__height ): _lowercase : Dict = [ self.__matrix[i][j] + other.component(UpperCAmelCase_ ,UpperCAmelCase_ ) for j in range(self.__width ) ] matrix.append(UpperCAmelCase_ ) return Matrix(UpperCAmelCase_ ,self.__width ,self.__height ) else: raise Exception("""matrix must have the same dimension!""" ) def __sub__( self ,UpperCAmelCase_ ): if self.__width == other.width() and self.__height == other.height(): _lowercase : Optional[Any] = [] for i in range(self.__height ): _lowercase : int = [ self.__matrix[i][j] - other.component(UpperCAmelCase_ ,UpperCAmelCase_ ) for j in range(self.__width ) ] matrix.append(UpperCAmelCase_ ) return Matrix(UpperCAmelCase_ ,self.__width ,self.__height ) else: raise Exception("""matrices must have the same dimension!""" ) @overload def __mul__( self ,UpperCAmelCase_ ): ... @overload def __mul__( self ,UpperCAmelCase_ ): ... def __mul__( self ,UpperCAmelCase_ ): if isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ): # matrix-vector if len(UpperCAmelCase_ ) == self.__width: _lowercase : Optional[int] = zero_vector(self.__height ) for i in range(self.__height ): _lowercase : List[Any] = [ self.__matrix[i][j] * other.component(UpperCAmelCase_ ) for j in range(self.__width ) ] ans.change_component(UpperCAmelCase_ ,sum(UpperCAmelCase_ ) ) return ans else: raise Exception( """vector must have the same size as the """ """number of columns of the matrix!""" ) elif isinstance(UpperCAmelCase_ ,(int, float) ): # matrix-scalar _lowercase : Optional[int] = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(UpperCAmelCase_ ,self.__width ,self.__height ) return None def lowerCamelCase__ ( self ): return self.__height def lowerCamelCase__ ( self ): return self.__width def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ): if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("""change_component: indices out of bounds""" ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): if 0 <= x < self.__height and 0 <= y < self.__width: _lowercase : Dict = value else: raise Exception("""change_component: indices out of bounds""" ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ): if self.__height != self.__width: raise Exception("""Matrix is not square""" ) _lowercase : int = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(UpperCAmelCase_ ) ): _lowercase : Optional[Any] = minor[i][:y] + minor[i][y + 1 :] return Matrix(UpperCAmelCase_ ,self.__width - 1 ,self.__height - 1 ).determinant() def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ): if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(UpperCAmelCase_ ,UpperCAmelCase_ ) else: raise Exception("""Indices out of bounds""" ) def lowerCamelCase__ ( self ): if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if self.__height < 1: raise Exception("""Matrix has no element""" ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: _lowercase : Any = [ self.__matrix[0][y] * self.cofactor(0 ,UpperCAmelCase_ ) for y in range(self.__width ) ] return sum(UpperCAmelCase_ ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : list[list[float]] = [[0] * n for _ in range(__UpperCAmelCase )] return Matrix(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): random.seed(__UpperCAmelCase ) _lowercase : list[list[float]] = [ [random.randint(__UpperCAmelCase , __UpperCAmelCase ) for _ in range(__UpperCAmelCase )] for _ in range(__UpperCAmelCase ) ] return Matrix(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
600
"""simple docstring""" import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): # Initialise PyTorch model _lowercase : int = AlbertConfig.from_json_file(__UpperCAmelCase ) print(F"""Building PyTorch model from configuration: {config}""" ) _lowercase : Tuple = AlbertForPreTraining(__UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_albert(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , __UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase: int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--albert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained ALBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) UpperCAmelCase: Dict = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
600
1
from __future__ import annotations from collections.abc import Iterator class lowerCamelCase_ : '''simple docstring''' def __init__( self : Union[str, Any] , _lowerCAmelCase : int ): SCREAMING_SNAKE_CASE_ = value SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None class lowerCamelCase_ : '''simple docstring''' def __init__( self : int , _lowerCAmelCase : Node ): SCREAMING_SNAKE_CASE_ = tree def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : Node | None ): if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self : Dict ): yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
31
import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class lowerCamelCase__ ( UpperCAmelCase ): def __init__( self : Dict , lowercase__ : Dict , lowercase__ : Optional[Any]=13 , lowercase__ : Dict=7 , lowercase__ : Dict=True , lowercase__ : Optional[Any]=True , lowercase__ : Optional[int]=False , lowercase__ : Any=True , lowercase__ : Union[str, Any]=99 , lowercase__ : Optional[int]=32 , lowercase__ : Any=5 , lowercase__ : Any=4 , lowercase__ : List[str]=64 , lowercase__ : Any="gelu" , lowercase__ : Optional[Any]=0.1 , lowercase__ : List[str]=0.1 , lowercase__ : Dict=5_12 , lowercase__ : List[str]=16 , lowercase__ : Union[str, Any]=2 , lowercase__ : str=0.0_2 , lowercase__ : Optional[int]=3 , lowercase__ : Union[str, Any]=4 , lowercase__ : Union[str, Any]=None , lowercase__ : Optional[int]=2 , lowercase__ : Optional[int]=2 , lowercase__ : List[Any]=2 , lowercase__ : Optional[int]=2 , lowercase__ : Union[str, Any]=4 , lowercase__ : Tuple=1 , ): _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_input_mask _lowerCAmelCase = use_token_type_ids _lowerCAmelCase = use_labels _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = type_sequence_label_size _lowerCAmelCase = initializer_range _lowerCAmelCase = num_labels _lowerCAmelCase = num_choices _lowerCAmelCase = scope _lowerCAmelCase = q_groups _lowerCAmelCase = k_groups _lowerCAmelCase = v_groups _lowerCAmelCase = post_attention_groups _lowerCAmelCase = intermediate_groups _lowerCAmelCase = output_groups def SCREAMING_SNAKE_CASE__ ( self : Any ): _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = None if self.use_input_mask: _lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ ( self : int ): return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def SCREAMING_SNAKE_CASE__ ( self : int , lowercase__ : Dict , lowercase__ : Any , lowercase__ : str , lowercase__ : Optional[Any] , lowercase__ : Any , lowercase__ : Tuple ): _lowerCAmelCase = SqueezeBertModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() _lowerCAmelCase = model(lowercase__ , lowercase__ ) _lowerCAmelCase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , lowercase__ : Union[str, Any] , lowercase__ : Union[str, Any] , lowercase__ : int , lowercase__ : List[Any] , lowercase__ : Dict , lowercase__ : Union[str, Any] ): _lowerCAmelCase = SqueezeBertForMaskedLM(config=lowercase__ ) model.to(lowercase__ ) model.eval() _lowerCAmelCase = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self : int , lowercase__ : Tuple , lowercase__ : Dict , lowercase__ : str , lowercase__ : Dict , lowercase__ : Tuple , lowercase__ : int ): _lowerCAmelCase = SqueezeBertForQuestionAnswering(config=lowercase__ ) model.to(lowercase__ ) model.eval() _lowerCAmelCase = model( lowercase__ , attention_mask=lowercase__ , start_positions=lowercase__ , end_positions=lowercase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self : Dict , lowercase__ : Dict , lowercase__ : Tuple , lowercase__ : Any , lowercase__ : List[str] , lowercase__ : List[Any] , lowercase__ : Tuple ): _lowerCAmelCase = self.num_labels _lowerCAmelCase = SqueezeBertForSequenceClassification(lowercase__ ) model.to(lowercase__ ) model.eval() _lowerCAmelCase = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , lowercase__ : Union[str, Any] , lowercase__ : str , lowercase__ : Dict , lowercase__ : Tuple , lowercase__ : Any , lowercase__ : Optional[int] ): _lowerCAmelCase = self.num_labels _lowerCAmelCase = SqueezeBertForTokenClassification(config=lowercase__ ) model.to(lowercase__ ) model.eval() _lowerCAmelCase = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , lowercase__ : Optional[int] , lowercase__ : Tuple , lowercase__ : List[Any] , lowercase__ : Optional[int] , lowercase__ : Tuple , lowercase__ : Any ): _lowerCAmelCase = self.num_choices _lowerCAmelCase = SqueezeBertForMultipleChoice(config=lowercase__ ) model.to(lowercase__ ) model.eval() _lowerCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = model( lowercase__ , attention_mask=lowercase__ , labels=lowercase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): _lowerCAmelCase = self.prepare_config_and_inputs() ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = config_and_inputs _lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCamelCase__ ( UpperCAmelCase ,UpperCAmelCase ,unittest.TestCase ): UpperCamelCase__ =( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) UpperCamelCase__ =( { "feature-extraction": SqueezeBertModel, "fill-mask": SqueezeBertForMaskedLM, "question-answering": SqueezeBertForQuestionAnswering, "text-classification": SqueezeBertForSequenceClassification, "token-classification": SqueezeBertForTokenClassification, "zero-shot": SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase__ =False UpperCamelCase__ =True UpperCamelCase__ =False def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): _lowerCAmelCase = SqueezeBertModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=lowercase__ , dim=37 ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self : Dict ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : Any ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : Any ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*lowercase__ ) @slow def SCREAMING_SNAKE_CASE__ ( self : int ): for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = SqueezeBertModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) @require_sentencepiece @require_tokenizers @require_torch class lowerCamelCase__ ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE__ ( self : Dict ): _lowerCAmelCase = SqueezeBertForSequenceClassification.from_pretrained('squeezebert/squeezebert-mnli' ) _lowerCAmelCase = torch.tensor([[1, 2_94_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 13, 15_88, 2]] ) _lowerCAmelCase = model(lowercase__ )[0] _lowerCAmelCase = torch.Size((1, 3) ) self.assertEqual(output.shape , lowercase__ ) _lowerCAmelCase = torch.tensor([[0.6_4_0_1, -0.0_3_4_9, -0.6_0_4_1]] ) self.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-4 ) )
192
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : int = logging.get_logger(__name__) lowercase : Tuple = { """microsoft/git-base""": """https://huggingface.co/microsoft/git-base/resolve/main/config.json""", } class a__ ( __SCREAMING_SNAKE_CASE ): _A = "git_vision_model" def __init__( self : Optional[Any] , A_ : Tuple=7_68 , A_ : List[str]=30_72 , A_ : Tuple=12 , A_ : str=12 , A_ : List[str]=3 , A_ : str=2_24 , A_ : Optional[Any]=16 , A_ : List[Any]="quick_gelu" , A_ : Union[str, Any]=1e-5 , A_ : List[str]=0.0 , A_ : int=0.02 , **A_ : List[str] , ) -> int: """simple docstring""" super().__init__(**A_ ) lowerCamelCase_: str = hidden_size lowerCamelCase_: Union[str, Any] = intermediate_size lowerCamelCase_: Optional[int] = num_hidden_layers lowerCamelCase_: Tuple = num_attention_heads lowerCamelCase_: int = num_channels lowerCamelCase_: Dict = patch_size lowerCamelCase_: Union[str, Any] = image_size lowerCamelCase_: int = initializer_range lowerCamelCase_: Optional[int] = attention_dropout lowerCamelCase_: Optional[Any] = layer_norm_eps lowerCamelCase_: Tuple = hidden_act @classmethod def lowerCAmelCase ( cls : Optional[int] , A_ : Union[str, os.PathLike] , **A_ : Optional[Any] ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(A_ ) lowerCamelCase_ , lowerCamelCase_: List[Any] = cls.get_config_dict(A_ , **A_ ) # get the vision config dict if we are loading from GITConfig if config_dict.get("""model_type""" ) == "git": lowerCamelCase_: int = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(A_ , **A_ ) class a__ ( __SCREAMING_SNAKE_CASE ): _A = "git" def __init__( self : List[Any] , A_ : int=None , A_ : Tuple=3_05_22 , A_ : str=7_68 , A_ : int=6 , A_ : int=12 , A_ : Tuple=30_72 , A_ : Tuple="gelu" , A_ : Optional[int]=0.1 , A_ : Tuple=0.1 , A_ : Optional[int]=10_24 , A_ : str=0.02 , A_ : List[str]=1e-12 , A_ : List[str]=0 , A_ : List[str]="absolute" , A_ : Any=True , A_ : Tuple=False , A_ : Optional[int]=1_01 , A_ : List[Any]=1_02 , A_ : Optional[int]=None , **A_ : Optional[int] , ) -> Optional[Any]: """simple docstring""" super().__init__(bos_token_id=A_ , eos_token_id=A_ , pad_token_id=A_ , **A_ ) if vision_config is None: lowerCamelCase_: List[str] = {} logger.info("""vision_config is None. initializing the GitVisionConfig with default values.""" ) lowerCamelCase_: Any = GitVisionConfig(**A_ ) lowerCamelCase_: List[str] = vocab_size lowerCamelCase_: Optional[int] = hidden_size lowerCamelCase_: Tuple = num_hidden_layers lowerCamelCase_: int = num_attention_heads lowerCamelCase_: Tuple = hidden_act lowerCamelCase_: Tuple = intermediate_size lowerCamelCase_: Optional[Any] = hidden_dropout_prob lowerCamelCase_: Optional[int] = attention_probs_dropout_prob lowerCamelCase_: Union[str, Any] = max_position_embeddings lowerCamelCase_: Tuple = initializer_range lowerCamelCase_: Optional[Any] = layer_norm_eps lowerCamelCase_: Optional[Any] = position_embedding_type lowerCamelCase_: str = use_cache lowerCamelCase_: int = tie_word_embeddings lowerCamelCase_: Optional[int] = num_image_with_embedding lowerCamelCase_: int = bos_token_id lowerCamelCase_: Tuple = eos_token_id def lowerCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_: Optional[int] = copy.deepcopy(self.__dict__ ) lowerCamelCase_: str = self.vision_config.to_dict() lowerCamelCase_: Any = self.__class__.model_type return output
584
import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class a__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _A = RoFormerTokenizer _A = RoFormerTokenizerFast _A = True _A = True def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" super().setUp() def lowerCAmelCase ( self : List[str] , **A_ : Optional[int] ) -> Tuple: """simple docstring""" return self.tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **A_ ) def lowerCAmelCase ( self : Any , **A_ : Optional[int] ) -> Dict: """simple docstring""" return self.rust_tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **A_ ) def lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" lowerCamelCase_: Optional[Any] = """永和服装饰品有限公司,今天天气非常好""" lowerCamelCase_: int = """永和 服装 饰品 有限公司 , 今 天 天 气 非常 好""" return input_text, output_text def lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" lowerCamelCase_: str = self.get_tokenizer() lowerCamelCase_ , lowerCamelCase_: Union[str, Any] = self.get_chinese_input_output_texts() lowerCamelCase_: Optional[int] = tokenizer.tokenize(A_ ) self.assertListEqual(A_ , output_text.split() ) lowerCamelCase_: int = tokens + [tokenizer.unk_token] lowerCamelCase_: List[str] = [2_29_43, 2_13_32, 3_44_31, 4_59_04, 1_17, 3_06, 12_31, 12_31, 26_53, 3_39_94, 12_66, 1_00] self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , A_ ) def lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" lowerCamelCase_: Any = self.get_rust_tokenizer() lowerCamelCase_ , lowerCamelCase_: Optional[int] = self.get_chinese_input_output_texts() lowerCamelCase_: Optional[int] = tokenizer.tokenize(A_ ) self.assertListEqual(A_ , output_text.split() ) lowerCamelCase_: Dict = tokens + [tokenizer.unk_token] lowerCamelCase_: List[str] = [2_29_43, 2_13_32, 3_44_31, 4_59_04, 1_17, 3_06, 12_31, 12_31, 26_53, 3_39_94, 12_66, 1_00] self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , A_ ) def lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" pass def lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" pass def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" pass
584
1
'''simple docstring''' lowerCAmelCase : dict[str, float] = { "joule": 1.0, "kilojoule": 10_00, "megajoule": 1_00_00_00, "gigajoule": 10_00_00_00_00, "wattsecond": 1.0, "watthour": 36_00, "kilowatthour": 3_60_00_00, "newtonmeter": 1.0, "calorie_nutr": 41_86.8, "kilocalorie_nutr": 4_18_68_00.00, "electronvolt": 1.6_0217_6634e-19, "britishthermalunit_it": 10_55.0_55_85, "footpound": 1.355818, } def A_( A : str , A : str , A : float): if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: UpperCamelCase = ( f'''Incorrect \'from_type\' or \'to_type\' value: {from_type!r}, {to_type!r}\n''' f'''Valid values are: {", ".join(A)}''' ) raise ValueError(A) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
3
"""simple docstring""" from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig a_ : int = logging.get_logger(__name__) # General docstring a_ : Union[str, Any] = '''ResNetConfig''' # Base docstring a_ : int = '''microsoft/resnet-50''' a_ : str = [1, 20_48, 7, 7] # Image classification docstring a_ : Dict = '''microsoft/resnet-50''' a_ : Optional[Any] = '''tiger cat''' a_ : Optional[Any] = [ '''microsoft/resnet-50''', # See all resnet models at https://huggingface.co/models?filter=resnet ] class __lowercase( nn.Module ): '''simple docstring''' def __init__( self , __a , __a , __a = 3 , __a = 1 , __a = "relu" ): super().__init__() __lowerCamelCase : List[Any] = nn.Convad( __a , __a , kernel_size=__a , stride=__a , padding=kernel_size // 2 , bias=__a ) __lowerCamelCase : Union[str, Any] = nn.BatchNormad(__a ) __lowerCamelCase : List[str] = ACTaFN[activation] if activation is not None else nn.Identity() def snake_case_ ( self , __a ): __lowerCamelCase : Dict = self.convolution(__a ) __lowerCamelCase : str = self.normalization(__a ) __lowerCamelCase : str = self.activation(__a ) return hidden_state class __lowercase( nn.Module ): '''simple docstring''' def __init__( self , __a ): super().__init__() __lowerCamelCase : str = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) __lowerCamelCase : Union[str, Any] = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) __lowerCamelCase : Optional[Any] = config.num_channels def snake_case_ ( self , __a ): __lowerCamelCase : int = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) __lowerCamelCase : str = self.embedder(__a ) __lowerCamelCase : List[Any] = self.pooler(__a ) return embedding class __lowercase( nn.Module ): '''simple docstring''' def __init__( self , __a , __a , __a = 2 ): super().__init__() __lowerCamelCase : Dict = nn.Convad(__a , __a , kernel_size=1 , stride=__a , bias=__a ) __lowerCamelCase : int = nn.BatchNormad(__a ) def snake_case_ ( self , __a ): __lowerCamelCase : List[Any] = self.convolution(__a ) __lowerCamelCase : Any = self.normalization(__a ) return hidden_state class __lowercase( nn.Module ): '''simple docstring''' def __init__( self , __a , __a , __a = 1 , __a = "relu" ): super().__init__() __lowerCamelCase : Optional[Any] = in_channels != out_channels or stride != 1 __lowerCamelCase : str = ( ResNetShortCut(__a , __a , stride=__a ) if should_apply_shortcut else nn.Identity() ) __lowerCamelCase : Optional[Any] = nn.Sequential( ResNetConvLayer(__a , __a , stride=__a ) , ResNetConvLayer(__a , __a , activation=__a ) , ) __lowerCamelCase : Dict = ACTaFN[activation] def snake_case_ ( self , __a ): __lowerCamelCase : Optional[int] = hidden_state __lowerCamelCase : Optional[Any] = self.layer(__a ) __lowerCamelCase : str = self.shortcut(__a ) hidden_state += residual __lowerCamelCase : List[str] = self.activation(__a ) return hidden_state class __lowercase( nn.Module ): '''simple docstring''' def __init__( self , __a , __a , __a = 1 , __a = "relu" , __a = 4 ): super().__init__() __lowerCamelCase : str = in_channels != out_channels or stride != 1 __lowerCamelCase : str = out_channels // reduction __lowerCamelCase : Optional[Any] = ( ResNetShortCut(__a , __a , stride=__a ) if should_apply_shortcut else nn.Identity() ) __lowerCamelCase : Union[str, Any] = nn.Sequential( ResNetConvLayer(__a , __a , kernel_size=1 ) , ResNetConvLayer(__a , __a , stride=__a ) , ResNetConvLayer(__a , __a , kernel_size=1 , activation=__a ) , ) __lowerCamelCase : Optional[int] = ACTaFN[activation] def snake_case_ ( self , __a ): __lowerCamelCase : str = hidden_state __lowerCamelCase : Optional[int] = self.layer(__a ) __lowerCamelCase : Optional[Any] = self.shortcut(__a ) hidden_state += residual __lowerCamelCase : Any = self.activation(__a ) return hidden_state class __lowercase( nn.Module ): '''simple docstring''' def __init__( self , __a , __a , __a , __a = 2 , __a = 2 , ): super().__init__() __lowerCamelCase : Optional[Any] = ResNetBottleNeckLayer if config.layer_type == 'bottleneck' else ResNetBasicLayer __lowerCamelCase : List[Any] = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(__a , __a , stride=__a , activation=config.hidden_act ) , *[layer(__a , __a , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def snake_case_ ( self , __a ): __lowerCamelCase : int = input for layer in self.layers: __lowerCamelCase : Union[str, Any] = layer(__a ) return hidden_state class __lowercase( nn.Module ): '''simple docstring''' def __init__( self , __a ): super().__init__() __lowerCamelCase : Any = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( __a , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) __lowerCamelCase : Any = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(__a , config.depths[1:] ): self.stages.append(ResNetStage(__a , __a , __a , depth=__a ) ) def snake_case_ ( self , __a , __a = False , __a = True ): __lowerCamelCase : List[Any] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __lowerCamelCase : Dict = hidden_states + (hidden_state,) __lowerCamelCase : List[str] = stage_module(__a ) if output_hidden_states: __lowerCamelCase : Dict = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=__a , hidden_states=__a , ) class __lowercase( lowercase__ ): '''simple docstring''' __a : int = ResNetConfig __a : str = 'resnet' __a : List[str] = 'pixel_values' __a : List[Any] = True def snake_case_ ( self , __a ): if isinstance(__a , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu' ) elif isinstance(__a , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def snake_case_ ( self , __a , __a=False ): if isinstance(__a , __a ): __lowerCamelCase : Optional[Any] = value a_ : Dict = R''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ResNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' a_ : List[str] = R''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( 'The bare ResNet model outputting raw features without any specific head on top.' , lowercase__ , ) class __lowercase( lowercase__ ): '''simple docstring''' def __init__( self , __a ): super().__init__(__a ) __lowerCamelCase : List[str] = config __lowerCamelCase : int = ResNetEmbeddings(__a ) __lowerCamelCase : Optional[Any] = ResNetEncoder(__a ) __lowerCamelCase : int = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__a ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__a , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def snake_case_ ( self , __a , __a = None , __a = None ): __lowerCamelCase : str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCamelCase : str = return_dict if return_dict is not None else self.config.use_return_dict __lowerCamelCase : int = self.embedder(__a ) __lowerCamelCase : Optional[int] = self.encoder( __a , output_hidden_states=__a , return_dict=__a ) __lowerCamelCase : Any = encoder_outputs[0] __lowerCamelCase : Dict = self.pooler(__a ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__a , pooler_output=__a , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( '\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , lowercase__ , ) class __lowercase( lowercase__ ): '''simple docstring''' def __init__( self , __a ): super().__init__(__a ) __lowerCamelCase : str = config.num_labels __lowerCamelCase : Tuple = ResNetModel(__a ) # classification head __lowerCamelCase : str = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__a ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__a , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def snake_case_ ( self , __a = None , __a = None , __a = None , __a = None , ): __lowerCamelCase : str = return_dict if return_dict is not None else self.config.use_return_dict __lowerCamelCase : Dict = self.resnet(__a , output_hidden_states=__a , return_dict=__a ) __lowerCamelCase : Any = outputs.pooler_output if return_dict else outputs[1] __lowerCamelCase : List[Any] = self.classifier(__a ) __lowerCamelCase : Optional[Any] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: __lowerCamelCase : Any = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): __lowerCamelCase : Optional[int] = 'single_label_classification' else: __lowerCamelCase : Dict = 'multi_label_classification' if self.config.problem_type == "regression": __lowerCamelCase : List[str] = MSELoss() if self.num_labels == 1: __lowerCamelCase : Optional[int] = loss_fct(logits.squeeze() , labels.squeeze() ) else: __lowerCamelCase : Union[str, Any] = loss_fct(__a , __a ) elif self.config.problem_type == "single_label_classification": __lowerCamelCase : List[str] = CrossEntropyLoss() __lowerCamelCase : int = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": __lowerCamelCase : int = BCEWithLogitsLoss() __lowerCamelCase : List[Any] = loss_fct(__a , __a ) if not return_dict: __lowerCamelCase : Dict = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=__a , logits=__a , hidden_states=outputs.hidden_states ) @add_start_docstrings( '\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n ' , lowercase__ , ) class __lowercase( lowercase__ , lowercase__ ): '''simple docstring''' def __init__( self , __a ): super().__init__(__a ) super()._init_backbone(__a ) __lowerCamelCase : Tuple = [config.embedding_size] + config.hidden_sizes __lowerCamelCase : str = ResNetEmbeddings(__a ) __lowerCamelCase : Optional[int] = ResNetEncoder(__a ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__a ) @replace_return_docstrings(output_type=__a , config_class=_CONFIG_FOR_DOC ) def snake_case_ ( self , __a , __a = None , __a = None ): __lowerCamelCase : Any = return_dict if return_dict is not None else self.config.use_return_dict __lowerCamelCase : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCamelCase : List[str] = self.embedder(__a ) __lowerCamelCase : Optional[Any] = self.encoder(__a , output_hidden_states=__a , return_dict=__a ) __lowerCamelCase : int = outputs.hidden_states __lowerCamelCase : List[Any] = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: __lowerCamelCase : List[str] = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=__a , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=__a , )
594
0
"""simple docstring""" from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake lowerCAmelCase_: Optional[Any] = numpy.array([0, 0]) lowerCAmelCase_: Optional[Any] = numpy.array([0.5, 0.8_660_254]) lowerCAmelCase_: List[str] = numpy.array([1, 0]) lowerCAmelCase_: Any = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def __a ( A , A ): '''simple docstring''' lowercase__ = initial_vectors for _ in range(A ): lowercase__ = iteration_step(A ) return vectors def __a ( A ): '''simple docstring''' lowercase__ = [] for i, start_vector in enumerate(vectors[:-1] ): lowercase__ = vectors[i + 1] new_vectors.append(A ) lowercase__ = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def __a ( A , A ): '''simple docstring''' lowercase__ = numpy.radians(A ) lowercase__ , lowercase__ = numpy.cos(A ), numpy.sin(A ) lowercase__ = numpy.array(((c, -s), (s, c)) ) return numpy.dot(A , A ) def __a ( A ): '''simple docstring''' lowercase__ = plt.gca() axes.set_aspect("equal" ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() lowercase__ , lowercase__ = zip(*A ) plt.plot(A , A ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase_: Any = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
718
"""simple docstring""" lowerCAmelCase_: Union[str, Any] = [ 9_9_9, 8_0_0, 7_9_9, 6_0_0, 5_9_9, 5_0_0, 4_0_0, 3_9_9, 3_7_7, 3_5_5, 3_3_3, 3_1_1, 2_8_8, 2_6_6, 2_4_4, 2_2_2, 2_0_0, 1_9_9, 1_7_7, 1_5_5, 1_3_3, 1_1_1, 8_8, 6_6, 4_4, 2_2, 0, ] lowerCAmelCase_: List[str] = [ 9_9_9, 9_7_6, 9_5_2, 9_2_8, 9_0_5, 8_8_2, 8_5_8, 8_5_7, 8_1_0, 7_6_2, 7_1_5, 7_1_4, 5_7_2, 4_2_9, 4_2_8, 2_8_6, 2_8_5, 2_3_8, 1_9_0, 1_4_3, 1_4_2, 1_1_8, 9_5, 7_1, 4_7, 2_4, 0, ] lowerCAmelCase_: List[str] = [ 9_9_9, 9_8_8, 9_7_7, 9_6_6, 9_5_5, 9_4_4, 9_3_3, 9_2_2, 9_1_1, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_5_0, 3_0_0, 2_9_9, 2_6_6, 2_3_3, 2_0_0, 1_9_9, 1_7_9, 1_5_9, 1_4_0, 1_2_0, 1_0_0, 9_9, 8_8, 7_7, 6_6, 5_5, 4_4, 3_3, 2_2, 1_1, 0, ] lowerCAmelCase_: Dict = [ 9_9_9, 9_9_5, 9_9_2, 9_8_9, 9_8_5, 9_8_1, 9_7_8, 9_7_5, 9_7_1, 9_6_7, 9_6_4, 9_6_1, 9_5_7, 9_5_6, 9_5_1, 9_4_7, 9_4_2, 9_3_7, 9_3_3, 9_2_8, 9_2_3, 9_1_9, 9_1_4, 9_1_3, 9_0_8, 9_0_3, 8_9_7, 8_9_2, 8_8_7, 8_8_1, 8_7_6, 8_7_1, 8_7_0, 8_6_4, 8_5_8, 8_5_2, 8_4_6, 8_4_0, 8_3_4, 8_2_8, 8_2_7, 8_2_0, 8_1_3, 8_0_6, 7_9_9, 7_9_2, 7_8_5, 7_8_4, 7_7_7, 7_7_0, 7_6_3, 7_5_6, 7_4_9, 7_4_2, 7_4_1, 7_3_3, 7_2_4, 7_1_6, 7_0_7, 6_9_9, 6_9_8, 6_8_8, 6_7_7, 6_6_6, 6_5_6, 6_5_5, 6_4_5, 6_3_4, 6_2_3, 6_1_3, 6_1_2, 5_9_8, 5_8_4, 5_7_0, 5_6_9, 5_5_5, 5_4_1, 5_2_7, 5_2_6, 5_0_5, 4_8_4, 4_8_3, 4_6_2, 4_4_0, 4_3_9, 3_9_6, 3_9_5, 3_5_2, 3_5_1, 3_0_8, 3_0_7, 2_6_4, 2_6_3, 2_2_0, 2_1_9, 1_7_6, 1_3_2, 8_8, 4_4, 0, ] lowerCAmelCase_: Optional[int] = [ 9_9_9, 9_9_7, 9_9_5, 9_9_2, 9_9_0, 9_8_8, 9_8_6, 9_8_4, 9_8_1, 9_7_9, 9_7_7, 9_7_5, 9_7_2, 9_7_0, 9_6_8, 9_6_6, 9_6_4, 9_6_1, 9_5_9, 9_5_7, 9_5_6, 9_5_4, 9_5_1, 9_4_9, 9_4_6, 9_4_4, 9_4_1, 9_3_9, 9_3_6, 9_3_4, 9_3_1, 9_2_9, 9_2_6, 9_2_4, 9_2_1, 9_1_9, 9_1_6, 9_1_4, 9_1_3, 9_1_0, 9_0_7, 9_0_5, 9_0_2, 8_9_9, 8_9_6, 8_9_3, 8_9_1, 8_8_8, 8_8_5, 8_8_2, 8_7_9, 8_7_7, 8_7_4, 8_7_1, 8_7_0, 8_6_7, 8_6_4, 8_6_1, 8_5_8, 8_5_5, 8_5_2, 8_4_9, 8_4_6, 8_4_3, 8_4_0, 8_3_7, 8_3_4, 8_3_1, 8_2_8, 8_2_7, 8_2_4, 8_2_1, 8_1_7, 8_1_4, 8_1_1, 8_0_8, 8_0_4, 8_0_1, 7_9_8, 7_9_5, 7_9_1, 7_8_8, 7_8_5, 7_8_4, 7_8_0, 7_7_7, 7_7_4, 7_7_0, 7_6_6, 7_6_3, 7_6_0, 7_5_6, 7_5_2, 7_4_9, 7_4_6, 7_4_2, 7_4_1, 7_3_7, 7_3_3, 7_3_0, 7_2_6, 7_2_2, 7_1_8, 7_1_4, 7_1_0, 7_0_7, 7_0_3, 6_9_9, 6_9_8, 6_9_4, 6_9_0, 6_8_5, 6_8_1, 6_7_7, 6_7_3, 6_6_9, 6_6_4, 6_6_0, 6_5_6, 6_5_5, 6_5_0, 6_4_6, 6_4_1, 6_3_6, 6_3_2, 6_2_7, 6_2_2, 6_1_8, 6_1_3, 6_1_2, 6_0_7, 6_0_2, 5_9_6, 5_9_1, 5_8_6, 5_8_0, 5_7_5, 5_7_0, 5_6_9, 5_6_3, 5_5_7, 5_5_1, 5_4_5, 5_3_9, 5_3_3, 5_2_7, 5_2_6, 5_1_9, 5_1_2, 5_0_5, 4_9_8, 4_9_1, 4_8_4, 4_8_3, 4_7_4, 4_6_6, 4_5_7, 4_4_9, 4_4_0, 4_3_9, 4_2_8, 4_1_8, 4_0_7, 3_9_6, 3_9_5, 3_8_1, 3_6_6, 3_5_2, 3_5_1, 3_3_0, 3_0_8, 3_0_7, 2_8_6, 2_6_4, 2_6_3, 2_4_2, 2_2_0, 2_1_9, 1_7_6, 1_7_5, 1_3_2, 1_3_1, 8_8, 4_4, 0, ] lowerCAmelCase_: Tuple = [ 9_9_9, 9_9_1, 9_8_2, 9_7_4, 9_6_6, 9_5_8, 9_5_0, 9_4_1, 9_3_3, 9_2_5, 9_1_6, 9_0_8, 9_0_0, 8_9_9, 8_7_4, 8_5_0, 8_2_5, 8_0_0, 7_9_9, 7_0_0, 6_0_0, 5_0_0, 4_0_0, 3_0_0, 2_0_0, 1_0_0, 0, ] lowerCAmelCase_: str = [ 9_9_9, 9_9_2, 9_8_5, 9_7_8, 9_7_1, 9_6_4, 9_5_7, 9_4_9, 9_4_2, 9_3_5, 9_2_8, 9_2_1, 9_1_4, 9_0_7, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_0_0, 2_9_9, 2_0_0, 1_9_9, 1_0_0, 9_9, 0, ] lowerCAmelCase_: int = [ 9_9_9, 9_9_6, 9_9_2, 9_8_9, 9_8_5, 9_8_2, 9_7_9, 9_7_5, 9_7_2, 9_6_8, 9_6_5, 9_6_1, 9_5_8, 9_5_5, 9_5_1, 9_4_8, 9_4_4, 9_4_1, 9_3_8, 9_3_4, 9_3_1, 9_2_7, 9_2_4, 9_2_0, 9_1_7, 9_1_4, 9_1_0, 9_0_7, 9_0_3, 9_0_0, 8_9_9, 8_9_1, 8_8_4, 8_7_6, 8_6_9, 8_6_1, 8_5_3, 8_4_6, 8_3_8, 8_3_0, 8_2_3, 8_1_5, 8_0_8, 8_0_0, 7_9_9, 7_8_8, 7_7_7, 7_6_6, 7_5_5, 7_4_4, 7_3_3, 7_2_2, 7_1_1, 7_0_0, 6_9_9, 6_8_8, 6_7_7, 6_6_6, 6_5_5, 6_4_4, 6_3_3, 6_2_2, 6_1_1, 6_0_0, 5_9_9, 5_8_5, 5_7_1, 5_5_7, 5_4_2, 5_2_8, 5_1_4, 5_0_0, 4_9_9, 4_8_5, 4_7_1, 4_5_7, 4_4_2, 4_2_8, 4_1_4, 4_0_0, 3_9_9, 3_7_9, 3_5_9, 3_4_0, 3_2_0, 3_0_0, 2_9_9, 2_7_9, 2_5_9, 2_4_0, 2_2_0, 2_0_0, 1_9_9, 1_6_6, 1_3_3, 1_0_0, 9_9, 6_6, 3_3, 0, ]
668
0
import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) SCREAMING_SNAKE_CASE = "\\n Text data.\n Second line of data." SCREAMING_SNAKE_CASE = "file" @pytest.fixture(scope="session" ) def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> Any: UpperCAmelCase_ = tmp_path_factory.mktemp("data" ) / (FILE_PATH + ".zstd") UpperCAmelCase_ = bytes(__SCREAMING_SNAKE_CASE , "utf-8" ) with zstd.open(__SCREAMING_SNAKE_CASE , "wb" ) as f: f.write(__SCREAMING_SNAKE_CASE ) return path @pytest.fixture def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> str: with open(os.path.join(tmpfs.local_root_dir , __SCREAMING_SNAKE_CASE ) , "w" ) as f: f.write(__SCREAMING_SNAKE_CASE ) return FILE_PATH @pytest.mark.parametrize("compression_format" , ["gzip", "xz", "zstd"] ) def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> List[str]: UpperCAmelCase_ = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_path} UpperCAmelCase_ = input_paths[compression_format] UpperCAmelCase_ = tmp_path / "cache" UpperCAmelCase_ = DownloadConfig(cache_dir=__SCREAMING_SNAKE_CASE , extract_compressed_file=__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = cached_path(__SCREAMING_SNAKE_CASE , download_config=__SCREAMING_SNAKE_CASE ) with open(__SCREAMING_SNAKE_CASE ) as f: UpperCAmelCase_ = f.read() with open(__SCREAMING_SNAKE_CASE ) as f: UpperCAmelCase_ = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("default_extracted" , [True, False] ) @pytest.mark.parametrize("default_cache_dir" , [True, False] ) def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> int: UpperCAmelCase_ = "custom_cache" UpperCAmelCase_ = "custom_extracted_dir" UpperCAmelCase_ = tmp_path / "custom_extracted_path" if default_extracted: UpperCAmelCase_ = ("downloads" if default_cache_dir else custom_cache_dir, "extracted") else: monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_DIR" , __SCREAMING_SNAKE_CASE ) monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH" , str(__SCREAMING_SNAKE_CASE ) ) UpperCAmelCase_ = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) UpperCAmelCase_ = xz_file UpperCAmelCase_ = ( DownloadConfig(extract_compressed_file=__SCREAMING_SNAKE_CASE ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=__SCREAMING_SNAKE_CASE ) ) UpperCAmelCase_ = cached_path(__SCREAMING_SNAKE_CASE , download_config=__SCREAMING_SNAKE_CASE ) assert Path(__SCREAMING_SNAKE_CASE ).parent.parts[-2:] == expected def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> int: # absolute path UpperCAmelCase_ = str(Path(__SCREAMING_SNAKE_CASE ).resolve() ) assert cached_path(__SCREAMING_SNAKE_CASE ) == text_file # relative path UpperCAmelCase_ = str(Path(__SCREAMING_SNAKE_CASE ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(__SCREAMING_SNAKE_CASE ) == text_file def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> int: # absolute path UpperCAmelCase_ = str(tmp_path.resolve() / "__missing_file__.txt" ) with pytest.raises(__SCREAMING_SNAKE_CASE ): cached_path(__SCREAMING_SNAKE_CASE ) # relative path UpperCAmelCase_ = "./__missing_file__.txt" with pytest.raises(__SCREAMING_SNAKE_CASE ): cached_path(__SCREAMING_SNAKE_CASE ) def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> Union[str, Any]: UpperCAmelCase_ = get_from_cache(f'''tmp://{tmpfs_file}''' ) with open(__SCREAMING_SNAKE_CASE ) as f: UpperCAmelCase_ = f.read() assert output_file_content == FILE_CONTENT @patch("datasets.config.HF_DATASETS_OFFLINE" , __SCREAMING_SNAKE_CASE ) def snake_case__ ( ) -> List[Any]: with pytest.raises(__SCREAMING_SNAKE_CASE ): cached_path("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , __SCREAMING_SNAKE_CASE ) def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> Union[str, Any]: UpperCAmelCase_ = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(__SCREAMING_SNAKE_CASE ): http_get("https://huggingface.co" , temp_file=__SCREAMING_SNAKE_CASE ) with pytest.raises(__SCREAMING_SNAKE_CASE ): http_head("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , __SCREAMING_SNAKE_CASE ) def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> str: UpperCAmelCase_ = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(__SCREAMING_SNAKE_CASE ): ftp_get("ftp://huggingface.co" , temp_file=__SCREAMING_SNAKE_CASE ) with pytest.raises(__SCREAMING_SNAKE_CASE ): ftp_head("ftp://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , __SCREAMING_SNAKE_CASE ) def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> int: UpperCAmelCase_ = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(__SCREAMING_SNAKE_CASE ): fsspec_get("s3://huggingface.co" , temp_file=__SCREAMING_SNAKE_CASE ) with pytest.raises(__SCREAMING_SNAKE_CASE ): fsspec_head("s3://huggingface.co" )
579
import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py SCREAMING_SNAKE_CASE = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. SCREAMING_SNAKE_CASE = importlib.util.spec_from_file_location( "transformers", os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) SCREAMING_SNAKE_CASE = spec.loader.load_module() SCREAMING_SNAKE_CASE = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` SCREAMING_SNAKE_CASE = re.compile("\[(.+?)\]\((https://huggingface\.co/.+?)\)") SCREAMING_SNAKE_CASE = { "CLIPConfigMixin", "DecisionTransformerConfigMixin", "EncoderDecoderConfigMixin", "RagConfigMixin", "SpeechEncoderDecoderConfigMixin", "VisionEncoderDecoderConfigMixin", "VisionTextDualEncoderConfigMixin", } def snake_case__ ( ) -> Any: UpperCAmelCase_ = [] for config_class in list(CONFIG_MAPPING.values() ): UpperCAmelCase_ = False # source code of `config_class` UpperCAmelCase_ = inspect.getsource(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = _re_checkpoint.findall(__SCREAMING_SNAKE_CASE ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` UpperCAmelCase_ , UpperCAmelCase_ = checkpoint # verify the checkpoint name corresponds to the checkpoint link UpperCAmelCase_ = f'''https://huggingface.co/{ckpt_name}''' if ckpt_link == ckpt_link_from_name: UpperCAmelCase_ = True break UpperCAmelCase_ = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(__SCREAMING_SNAKE_CASE ) if len(__SCREAMING_SNAKE_CASE ) > 0: UpperCAmelCase_ = "\n".join(sorted(__SCREAMING_SNAKE_CASE ) ) raise ValueError(f'''The following configurations don\'t contain any valid checkpoint:\n{message}''' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
579
1
"""simple docstring""" from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar A = TypeVar('T') class UpperCAmelCase__ ( Generic[T] ): lowerCAmelCase_ : deque[T] # Cache store of keys lowerCAmelCase_ : set[T] # References of the keys in cache lowerCAmelCase_ : int = 10 # Maximum capacity of cache def __init__( self : int , snake_case : int ) -> None: '''simple docstring''' A = deque() A = set() if not n: A = sys.maxsize elif n < 0: raise ValueError('n should be an integer greater than 0.' ) else: A = n def A_ ( self : Optional[Any] , snake_case : T ) -> None: '''simple docstring''' if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: A = self.dq_store.pop() self.key_reference.remove(snake_case ) else: self.dq_store.remove(snake_case ) self.dq_store.appendleft(snake_case ) self.key_reference.add(snake_case ) def A_ ( self : Dict ) -> None: '''simple docstring''' for k in self.dq_store: print(snake_case ) def __repr__( self : int ) -> str: '''simple docstring''' return f"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}""" if __name__ == "__main__": import doctest doctest.testmod() A = LRUCache(4) lru_cache.refer('A') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('A') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
109
"""simple docstring""" import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class UpperCAmelCase__ ( UpperCamelCase ,unittest.TestCase ): # TODO: is there an appropriate internal test set? lowerCAmelCase_ : Tuple = """ssube/stable-diffusion-x4-upscaler-onnx""" def A_ ( self : Any , snake_case : Union[str, Any]=0 ) -> Dict: '''simple docstring''' A = floats_tensor((1, 3, 128, 128) , rng=random.Random(snake_case ) ) A = torch.manual_seed(snake_case ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def A_ ( self : str ) -> Optional[Any]: '''simple docstring''' A = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=snake_case ) A = self.get_dummy_inputs() A = pipe(**snake_case ).images A = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 512, 512, 3) A = np.array( [0.6974782, 0.68902093, 0.70135885, 0.7583618, 0.7804545, 0.7854912, 0.78667426, 0.78743863, 0.78070223] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def A_ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' A = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) A = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=snake_case ) pipe.set_progress_bar_config(disable=snake_case ) A = self.get_dummy_inputs() A = pipe(**snake_case ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) A = np.array( [0.6898892, 0.59240556, 0.52499527, 0.58866215, 0.52258235, 0.52572715, 0.62414473, 0.6174387, 0.6214964] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def A_ ( self : List[str] ) -> str: '''simple docstring''' A = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) A = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case ) A = self.get_dummy_inputs() A = pipe(**snake_case ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) A = np.array( [0.7659278, 0.76437664, 0.75579107, 0.7691116, 0.77666986, 0.7727672, 0.7758664, 0.7812226, 0.76942515] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def A_ ( self : int ) -> Optional[int]: '''simple docstring''' A = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) A = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case ) A = self.get_dummy_inputs() A = pipe(**snake_case ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) A = np.array( [0.6974782, 0.68902093, 0.70135885, 0.7583618, 0.7804545, 0.7854912, 0.78667426, 0.78743863, 0.78070223] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def A_ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' A = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) A = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case ) A = self.get_dummy_inputs() A = pipe(**snake_case ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) A = np.array( [0.77424496, 0.773601, 0.7645288, 0.7769598, 0.7772739, 0.7738688, 0.78187233, 0.77879584, 0.767043] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase ): @property def A_ ( self : Tuple ) -> str: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def A_ ( self : Optional[int] ) -> Any: '''simple docstring''' A = ort.SessionOptions() A = False return options def A_ ( self : List[Any] ) -> Any: '''simple docstring''' A = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) A = init_image.resize((128, 128) ) # using the PNDM scheduler by default A = OnnxStableDiffusionUpscalePipeline.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx' , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=snake_case ) A = 'A fantasy landscape, trending on artstation' A = torch.manual_seed(0 ) A = pipe( prompt=snake_case , image=snake_case , guidance_scale=7.5 , num_inference_steps=10 , generator=snake_case , output_type='np' , ) A = output.images A = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) A = np.array([0.4883, 0.4947, 0.4980, 0.4975, 0.4982, 0.4980, 0.5000, 0.5006, 0.4972] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def A_ ( self : str ) -> Union[str, Any]: '''simple docstring''' A = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) A = init_image.resize((128, 128) ) A = LMSDiscreteScheduler.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx' , subfolder='scheduler' ) A = OnnxStableDiffusionUpscalePipeline.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx' , scheduler=snake_case , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=snake_case ) A = 'A fantasy landscape, trending on artstation' A = torch.manual_seed(0 ) A = pipe( prompt=snake_case , image=snake_case , guidance_scale=7.5 , num_inference_steps=20 , generator=snake_case , output_type='np' , ) A = output.images A = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) A = np.array( [0.50173753, 0.50223356, 0.502039, 0.50233036, 0.5023725, 0.5022601, 0.5018758, 0.50234085, 0.50241566] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
109
1
'''simple docstring''' import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'char' lowerCAmelCase_ = 'bpe' lowerCAmelCase_ = 'wp' UpperCAmelCase_ : Optional[int] = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = ['image_processor', 'char_tokenizer'] lowerCAmelCase_ = 'ViTImageProcessor' lowerCAmelCase_ = 'MgpstrTokenizer' def __init__( self : List[str],__A : Union[str, Any]=None,__A : Optional[Any]=None,**__A : int ): _lowerCamelCase : Union[str, Any] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead.",__A,) _lowerCamelCase : Dict = kwargs.pop("feature_extractor" ) _lowerCamelCase : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) _lowerCamelCase : str = tokenizer _lowerCamelCase : Optional[Any] = AutoTokenizer.from_pretrained("gpt2" ) _lowerCamelCase : Optional[Any] = AutoTokenizer.from_pretrained("bert-base-uncased" ) super().__init__(__A,__A ) def __call__( self : Union[str, Any],__A : List[str]=None,__A : Optional[Any]=None,__A : str=None,**__A : Optional[int] ): if images is None and text is None: raise ValueError("You need to specify either an `images` or `text` input to process." ) if images is not None: _lowerCamelCase : List[Any] = self.image_processor(__A,return_tensors=__A,**__A ) if text is not None: _lowerCamelCase : int = self.char_tokenizer(__A,return_tensors=__A,**__A ) if text is None: return inputs elif images is None: return encodings else: _lowerCamelCase : List[str] = encodings["input_ids"] return inputs def lowerCamelCase_ ( self : Tuple,__A : str ): _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Tuple = sequences _lowerCamelCase : List[str] = char_preds.size(0 ) _lowerCamelCase , _lowerCamelCase : Any = self._decode_helper(__A,"char" ) _lowerCamelCase , _lowerCamelCase : Any = self._decode_helper(__A,"bpe" ) _lowerCamelCase , _lowerCamelCase : Optional[int] = self._decode_helper(__A,"wp" ) _lowerCamelCase : Tuple = [] _lowerCamelCase : str = [] for i in range(__A ): _lowerCamelCase : str = [char_scores[i], bpe_scores[i], wp_scores[i]] _lowerCamelCase : Any = [char_strs[i], bpe_strs[i], wp_strs[i]] _lowerCamelCase : Dict = scores.index(max(__A ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) _lowerCamelCase : str = {} _lowerCamelCase : str = final_strs _lowerCamelCase : Any = final_scores _lowerCamelCase : int = char_strs _lowerCamelCase : Any = bpe_strs _lowerCamelCase : Union[str, Any] = wp_strs return out def lowerCamelCase_ ( self : int,__A : Tuple,__A : Optional[Any] ): if format == DecodeType.CHARACTER: _lowerCamelCase : Tuple = self.char_decode _lowerCamelCase : Tuple = 1 _lowerCamelCase : Optional[int] = "[s]" elif format == DecodeType.BPE: _lowerCamelCase : Dict = self.bpe_decode _lowerCamelCase : Dict = 2 _lowerCamelCase : int = "#" elif format == DecodeType.WORDPIECE: _lowerCamelCase : str = self.wp_decode _lowerCamelCase : str = 1_0_2 _lowerCamelCase : Optional[int] = "[SEP]" else: raise ValueError(f'Format {format} is not supported.' ) _lowerCamelCase , _lowerCamelCase : Dict = [], [] _lowerCamelCase : str = pred_logits.size(0 ) _lowerCamelCase : str = pred_logits.size(1 ) _lowerCamelCase , _lowerCamelCase : int = pred_logits.topk(1,dim=-1,largest=__A,sorted=__A ) _lowerCamelCase : str = preds_index.view(-1,__A )[:, 1:] _lowerCamelCase : int = decoder(__A ) _lowerCamelCase , _lowerCamelCase : str = torch.nn.functional.softmax(__A,dim=2 ).max(dim=2 ) _lowerCamelCase : Dict = preds_max_prob[:, 1:] for index in range(__A ): _lowerCamelCase : List[Any] = preds_str[index].find(__A ) _lowerCamelCase : Union[str, Any] = preds_str[index][:pred_eos] _lowerCamelCase : Optional[Any] = preds_index[index].cpu().tolist() _lowerCamelCase : List[str] = pred_index.index(__A ) if eos_token in pred_index else -1 _lowerCamelCase : Tuple = preds_max_prob[index][: pred_eos_index + 1] _lowerCamelCase : str = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(__A ) conf_scores.append(__A ) return dec_strs, conf_scores def lowerCamelCase_ ( self : List[str],__A : List[Any] ): _lowerCamelCase : str = [seq.replace(" ","" ) for seq in self.char_tokenizer.batch_decode(__A )] return decode_strs def lowerCamelCase_ ( self : Optional[Any],__A : str ): return self.bpe_tokenizer.batch_decode(__A ) def lowerCamelCase_ ( self : Dict,__A : List[str] ): _lowerCamelCase : List[Any] = [seq.replace(" ","" ) for seq in self.wp_tokenizer.batch_decode(__A )] return decode_strs
44
'''simple docstring''' import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation A = logging.get_logger(__name__) A = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } A = { '''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''}, '''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''}, '''tokenizer_config_file''': { '''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json''' }, } A = {'''facebook/blenderbot-3B''': 1_28} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: '''simple docstring''' _lowercase : Tuple = ( list(range(ord('!') , ord('~') + 1)) + list(range(ord('¡') , ord('¬') + 1)) + list(range(ord('®') , ord('ÿ') + 1)) ) _lowercase : Optional[int] = bs[:] _lowercase : Optional[Any] = 0 for b in range(2**8): if b not in bs: bs.append(lowerCAmelCase__) cs.append(2**8 + n) n += 1 _lowercase : int = [chr(lowerCAmelCase__) for n in cs] return dict(zip(lowerCAmelCase__ , lowerCAmelCase__)) def SCREAMING_SNAKE_CASE ( lowerCAmelCase__ : Dict) -> List[str]: '''simple docstring''' _lowercase : List[Any] = set() _lowercase : List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char)) _lowercase : List[Any] = char return pairs class __SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ): '''simple docstring''' lowerCAmelCase__ : Dict = VOCAB_FILES_NAMES lowerCAmelCase__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ : Optional[Any] = ["input_ids", "attention_mask"] def __init__( self : Optional[Any] ,UpperCamelCase : List[Any] ,UpperCamelCase : Optional[Any] ,UpperCamelCase : Optional[Any]="replace" ,UpperCamelCase : Optional[Any]="<s>" ,UpperCamelCase : Optional[Any]="</s>" ,UpperCamelCase : Optional[Any]="</s>" ,UpperCamelCase : Union[str, Any]="<s>" ,UpperCamelCase : List[str]="<unk>" ,UpperCamelCase : Optional[int]="<pad>" ,UpperCamelCase : Optional[int]="<mask>" ,UpperCamelCase : List[Any]=False ,**UpperCamelCase : Dict ,) -> int: _lowercase : Tuple = AddedToken(UpperCamelCase ,lstrip=UpperCamelCase ,rstrip=UpperCamelCase ) if isinstance(UpperCamelCase ,UpperCamelCase ) else bos_token _lowercase : Any = AddedToken(UpperCamelCase ,lstrip=UpperCamelCase ,rstrip=UpperCamelCase ) if isinstance(UpperCamelCase ,UpperCamelCase ) else eos_token _lowercase : List[str] = AddedToken(UpperCamelCase ,lstrip=UpperCamelCase ,rstrip=UpperCamelCase ) if isinstance(UpperCamelCase ,UpperCamelCase ) else sep_token _lowercase : Any = AddedToken(UpperCamelCase ,lstrip=UpperCamelCase ,rstrip=UpperCamelCase ) if isinstance(UpperCamelCase ,UpperCamelCase ) else cls_token _lowercase : Tuple = AddedToken(UpperCamelCase ,lstrip=UpperCamelCase ,rstrip=UpperCamelCase ) if isinstance(UpperCamelCase ,UpperCamelCase ) else unk_token _lowercase : int = AddedToken(UpperCamelCase ,lstrip=UpperCamelCase ,rstrip=UpperCamelCase ) if isinstance(UpperCamelCase ,UpperCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _lowercase : int = AddedToken(UpperCamelCase ,lstrip=UpperCamelCase ,rstrip=UpperCamelCase ) if isinstance(UpperCamelCase ,UpperCamelCase ) else mask_token super().__init__( errors=UpperCamelCase ,bos_token=UpperCamelCase ,eos_token=UpperCamelCase ,unk_token=UpperCamelCase ,sep_token=UpperCamelCase ,cls_token=UpperCamelCase ,pad_token=UpperCamelCase ,mask_token=UpperCamelCase ,add_prefix_space=UpperCamelCase ,**UpperCamelCase ,) with open(UpperCamelCase ,encoding='utf-8' ) as vocab_handle: _lowercase : Union[str, Any] = json.load(UpperCamelCase ) _lowercase : str = {v: k for k, v in self.encoder.items()} _lowercase : Tuple = errors # how to handle errors in decoding _lowercase : List[Any] = bytes_to_unicode() _lowercase : Any = {v: k for k, v in self.byte_encoder.items()} with open(UpperCamelCase ,encoding='utf-8' ) as merges_handle: _lowercase : List[str] = merges_handle.read().split('\n' )[1:-1] _lowercase : Dict = [tuple(merge.split() ) for merge in bpe_merges] _lowercase : Optional[Any] = dict(zip(UpperCamelCase ,range(len(UpperCamelCase ) ) ) ) _lowercase : List[str] = {} _lowercase : List[Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _lowercase : int = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def _lowerCamelCase ( self : Optional[Any] ) -> Union[str, Any]: return len(self.encoder ) def _lowerCamelCase ( self : List[Any] ) -> Union[str, Any]: return dict(self.encoder ,**self.added_tokens_encoder ) def _lowerCamelCase ( self : List[Any] ,UpperCamelCase : Optional[int] ) -> Union[str, Any]: if token in self.cache: return self.cache[token] _lowercase : Optional[int] = tuple(UpperCamelCase ) _lowercase : Optional[int] = get_pairs(UpperCamelCase ) if not pairs: return token while True: _lowercase : Optional[int] = min(UpperCamelCase ,key=lambda UpperCamelCase : self.bpe_ranks.get(UpperCamelCase ,float('inf' ) ) ) if bigram not in self.bpe_ranks: break _lowercase , _lowercase : int = bigram _lowercase : Optional[Any] = [] _lowercase : Optional[Any] = 0 while i < len(UpperCamelCase ): try: _lowercase : Union[str, Any] = word.index(UpperCamelCase ,UpperCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _lowercase : Dict = j if word[i] == first and i < len(UpperCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _lowercase : Optional[Any] = tuple(UpperCamelCase ) _lowercase : List[str] = new_word if len(UpperCamelCase ) == 1: break else: _lowercase : int = get_pairs(UpperCamelCase ) _lowercase : Optional[int] = ' '.join(UpperCamelCase ) _lowercase : Any = word return word def _lowerCamelCase ( self : Tuple ,UpperCamelCase : List[Any] ) -> Optional[int]: _lowercase : Optional[int] = [] for token in re.findall(self.pat ,UpperCamelCase ): _lowercase : int = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCamelCase ).split(' ' ) ) return bpe_tokens def _lowerCamelCase ( self : Union[str, Any] ,UpperCamelCase : Optional[Any] ) -> Dict: return self.encoder.get(UpperCamelCase ,self.encoder.get(self.unk_token ) ) def _lowerCamelCase ( self : Dict ,UpperCamelCase : int ) -> str: return self.decoder.get(UpperCamelCase ) def _lowerCamelCase ( self : Tuple ,UpperCamelCase : Union[str, Any] ) -> Any: _lowercase : str = ''.join(UpperCamelCase ) _lowercase : Union[str, Any] = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' ,errors=self.errors ) return text def _lowerCamelCase ( self : Union[str, Any] ,UpperCamelCase : str ,UpperCamelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(UpperCamelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowercase : Dict = os.path.join( UpperCamelCase ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) _lowercase : List[str] = os.path.join( UpperCamelCase ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(UpperCamelCase ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=UpperCamelCase ,ensure_ascii=UpperCamelCase ) + '\n' ) _lowercase : Optional[int] = 0 with open(UpperCamelCase ,'w' ,encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda UpperCamelCase : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!' ) _lowercase : List[Any] = token_index writer.write(' '.join(UpperCamelCase ) + '\n' ) index += 1 return vocab_file, merge_file def _lowerCamelCase ( self : Optional[Any] ,UpperCamelCase : List[int] ,UpperCamelCase : Optional[List[int]] = None ,UpperCamelCase : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase ,token_ids_a=UpperCamelCase ,already_has_special_tokens=UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase )) + [1] return [1] + ([0] * len(UpperCamelCase )) + [1, 1] + ([0] * len(UpperCamelCase )) + [1] def _lowerCamelCase ( self : List[Any] ,UpperCamelCase : List[int] ,UpperCamelCase : Optional[List[int]] = None ) -> List[int]: _lowercase : Union[str, Any] = [self.sep_token_id] _lowercase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowerCamelCase ( self : Optional[int] ,UpperCamelCase : int ,UpperCamelCase : str=False ,**UpperCamelCase : Union[str, Any] ) -> str: _lowercase : List[Any] = kwargs.pop('add_prefix_space' ,self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCamelCase ) > 0 and not text[0].isspace()): _lowercase : Optional[int] = ' ' + text return (text, kwargs) def _lowerCamelCase ( self : Tuple ,UpperCamelCase : List[int] ,UpperCamelCase : Optional[List[int]] = None ) -> List[Any]: return token_ids_a + [self.eos_token_id] def _lowerCamelCase ( self : Union[str, Any] ,UpperCamelCase : "Conversation" ) -> List[int]: _lowercase : Any = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(UpperCamelCase ) _lowercase : Dict = ' '.join(UpperCamelCase ) _lowercase : Optional[Any] = self.encode(UpperCamelCase ) if len(UpperCamelCase ) > self.model_max_length: _lowercase : str = input_ids[-self.model_max_length :] logger.warning(F'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
125
0
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { """huggingface/time-series-transformer-tourism-monthly""": ( """https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json""" ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class lowerCamelCase_ ( lowercase ): __lowercase : List[Any] = "time_series_transformer" __lowercase : Dict = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = "student_t" , lowerCamelCase_ = "nll" , lowerCamelCase_ = 1 , lowerCamelCase_ = [1, 2, 3, 4, 5, 6, 7] , lowerCamelCase_ = "mean" , lowerCamelCase_ = 0 , lowerCamelCase_ = 0 , lowerCamelCase_ = 0 , lowerCamelCase_ = 0 , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = 32 , lowerCamelCase_ = 32 , lowerCamelCase_ = 2 , lowerCamelCase_ = 2 , lowerCamelCase_ = 2 , lowerCamelCase_ = 2 , lowerCamelCase_ = True , lowerCamelCase_ = "gelu" , lowerCamelCase_ = 64 , lowerCamelCase_ = 0.1 , lowerCamelCase_ = 0.1 , lowerCamelCase_ = 0.1 , lowerCamelCase_ = 0.1 , lowerCamelCase_ = 0.1 , lowerCamelCase_ = 1_00 , lowerCamelCase_ = 0.02 , lowerCamelCase_=True , **lowerCamelCase_ , ) -> Optional[int]: """simple docstring""" _UpperCamelCase = prediction_length _UpperCamelCase = context_length or prediction_length _UpperCamelCase = distribution_output _UpperCamelCase = loss _UpperCamelCase = input_size _UpperCamelCase = num_time_features _UpperCamelCase = lags_sequence _UpperCamelCase = scaling _UpperCamelCase = num_dynamic_real_features _UpperCamelCase = num_static_real_features _UpperCamelCase = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(lowerCamelCase_ ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) _UpperCamelCase = cardinality else: _UpperCamelCase = [0] if embedding_dimension and num_static_categorical_features > 0: if len(lowerCamelCase_ ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) _UpperCamelCase = embedding_dimension else: _UpperCamelCase = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] _UpperCamelCase = num_parallel_samples # Transformer architecture configuration _UpperCamelCase = input_size * len(lowerCamelCase_ ) + self._number_of_features _UpperCamelCase = d_model _UpperCamelCase = encoder_attention_heads _UpperCamelCase = decoder_attention_heads _UpperCamelCase = encoder_ffn_dim _UpperCamelCase = decoder_ffn_dim _UpperCamelCase = encoder_layers _UpperCamelCase = decoder_layers _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = encoder_layerdrop _UpperCamelCase = decoder_layerdrop _UpperCamelCase = activation_function _UpperCamelCase = init_std _UpperCamelCase = use_cache super().__init__(is_encoder_decoder=lowerCamelCase_ , **lowerCamelCase_ ) @property def lowercase ( self ) -> int: """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
589
def _lowercase ( a__ : int , a__ : int ) -> float: """simple docstring""" return base * power(a__ , (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print("""Raise base to the power of exponent using recursion...""") __lowerCAmelCase = int(input("""Enter the base: """).strip()) __lowerCAmelCase = int(input("""Enter the exponent: """).strip()) __lowerCAmelCase = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents __lowerCAmelCase = 1 / result print(F'''{base} to the power of {exponent} is {result}''')
589
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase__ : Optional[int] = { '''configuration_roberta_prelayernorm''': [ '''ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RobertaPreLayerNormConfig''', '''RobertaPreLayerNormOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Dict = [ '''ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RobertaPreLayerNormForCausalLM''', '''RobertaPreLayerNormForMaskedLM''', '''RobertaPreLayerNormForMultipleChoice''', '''RobertaPreLayerNormForQuestionAnswering''', '''RobertaPreLayerNormForSequenceClassification''', '''RobertaPreLayerNormForTokenClassification''', '''RobertaPreLayerNormModel''', '''RobertaPreLayerNormPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : str = [ '''TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRobertaPreLayerNormForCausalLM''', '''TFRobertaPreLayerNormForMaskedLM''', '''TFRobertaPreLayerNormForMultipleChoice''', '''TFRobertaPreLayerNormForQuestionAnswering''', '''TFRobertaPreLayerNormForSequenceClassification''', '''TFRobertaPreLayerNormForTokenClassification''', '''TFRobertaPreLayerNormMainLayer''', '''TFRobertaPreLayerNormModel''', '''TFRobertaPreLayerNormPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Any = [ '''FlaxRobertaPreLayerNormForCausalLM''', '''FlaxRobertaPreLayerNormForMaskedLM''', '''FlaxRobertaPreLayerNormForMultipleChoice''', '''FlaxRobertaPreLayerNormForQuestionAnswering''', '''FlaxRobertaPreLayerNormForSequenceClassification''', '''FlaxRobertaPreLayerNormForTokenClassification''', '''FlaxRobertaPreLayerNormModel''', '''FlaxRobertaPreLayerNormPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys lowercase__ : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
8
'''simple docstring''' import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py A_ = "." # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) A_ = [ "Assert", "AssignVariableOp", "EmptyTensorList", "MergeV2Checkpoints", "ReadVariableOp", "ResourceGather", "RestoreV2", "SaveV2", "ShardedFilename", "StatefulPartitionedCall", "StaticRegexFullMatch", "VarHandleOp", ] def UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Union[str, Any]: snake_case__ : str = SavedModel() snake_case__ : Union[str, Any] = [] with open(os.path.join(__SCREAMING_SNAKE_CASE , 'utils' , 'tf_ops' , 'onnx.json' ) ) as f: snake_case__ : Optional[Any] = json.load(__SCREAMING_SNAKE_CASE )['opsets'] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(__SCREAMING_SNAKE_CASE )] ) with open(__SCREAMING_SNAKE_CASE , 'rb' ) as f: saved_model.ParseFromString(f.read() ) snake_case__ : List[str] = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want snake_case__ : Optional[int] = sorted(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(__SCREAMING_SNAKE_CASE ) if strict and len(__SCREAMING_SNAKE_CASE ) > 0: raise Exception(f"Found the following incompatible ops for the opset {opset}:\n" + incompatible_ops ) elif len(__SCREAMING_SNAKE_CASE ) > 0: print(f"Found the following incompatible ops for the opset {opset}:" ) print(*__SCREAMING_SNAKE_CASE , sep='\n' ) else: print(f"The saved model {saved_model_path} can properly be converted with ONNX." ) if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument("--saved_model_path", help="Path of the saved model to check (the .pb file).") parser.add_argument( "--opset", default=12, type=int, help="The ONNX opset against which the model has to be tested." ) parser.add_argument( "--framework", choices=["onnx"], default="onnx", help="Frameworks against which to test the saved model." ) parser.add_argument( "--strict", action="store_true", help="Whether make the checking strict (raise errors) or not (raise warnings)" ) A_ = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
270
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor a :Union[str, Any] = logging.get_logger(__name__) class __a (UpperCamelCase_): '''simple docstring''' def __init__( self , *_a , **_a ) -> None: """simple docstring""" warnings.warn( """The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use OwlViTImageProcessor instead.""" , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_ )
715
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: a :Optional[int] = None a :Optional[Any] = logging.get_logger(__name__) a :Optional[Any] = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} a :Union[str, Any] = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json" ), }, } a :Any = { "facebook/nllb-large-en-ro": 1_024, "facebook/nllb-200-distilled-600M": 1_024, } # fmt: off a :Tuple = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class __a (UpperCamelCase_): '''simple docstring''' _SCREAMING_SNAKE_CASE :Optional[Any] = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE :List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE :str = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE :int = ["""input_ids""", """attention_mask"""] _SCREAMING_SNAKE_CASE :Tuple = NllbTokenizer _SCREAMING_SNAKE_CASE :List[int] = [] _SCREAMING_SNAKE_CASE :List[int] = [] def __init__( self , _a=None , _a=None , _a="<s>" , _a="</s>" , _a="</s>" , _a="<s>" , _a="<unk>" , _a="<pad>" , _a="<mask>" , _a=None , _a=None , _a=None , _a=False , **_a , ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token SCREAMING_SNAKE_CASE__ : Optional[int] = legacy_behaviour super().__init__( vocab_file=_a , tokenizer_file=_a , bos_token=_a , eos_token=_a , sep_token=_a , cls_token=_a , unk_token=_a , pad_token=_a , mask_token=_a , src_lang=_a , tgt_lang=_a , additional_special_tokens=_a , legacy_behaviour=_a , **_a , ) SCREAMING_SNAKE_CASE__ : Optional[int] = vocab_file SCREAMING_SNAKE_CASE__ : str = False if not self.vocab_file else True SCREAMING_SNAKE_CASE__ : Dict = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) SCREAMING_SNAKE_CASE__ : List[str] = { lang_code: self.convert_tokens_to_ids(_a ) for lang_code in FAIRSEQ_LANGUAGE_CODES } SCREAMING_SNAKE_CASE__ : Dict = src_lang if src_lang is not None else """eng_Latn""" SCREAMING_SNAKE_CASE__ : List[str] = self.convert_tokens_to_ids(self._src_lang ) SCREAMING_SNAKE_CASE__ : Dict = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def _a ( self ) -> str: """simple docstring""" return self._src_lang @src_lang.setter def _a ( self , _a ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _a ( self , _a , _a = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _a ( self , _a , _a = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = [self.sep_token_id] SCREAMING_SNAKE_CASE__ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _a ( self , _a , _a , _a , _a , **_a ) -> Tuple: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) SCREAMING_SNAKE_CASE__ : Dict = src_lang SCREAMING_SNAKE_CASE__ : Dict = self(_a , add_special_tokens=_a , return_tensors=_a , **_a ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.convert_tokens_to_ids(_a ) SCREAMING_SNAKE_CASE__ : List[Any] = tgt_lang_id return inputs def _a ( self , _a , _a = "eng_Latn" , _a = None , _a = "fra_Latn" , **_a , ) -> BatchEncoding: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = src_lang SCREAMING_SNAKE_CASE__ : Dict = tgt_lang return super().prepare_seqaseq_batch(_a , _a , **_a ) def _a ( self ) -> Optional[Any]: """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def _a ( self ) -> str: """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _a ( self , _a ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = self.convert_tokens_to_ids(_a ) if self.legacy_behaviour: SCREAMING_SNAKE_CASE__ : str = [] SCREAMING_SNAKE_CASE__ : Dict = [self.eos_token_id, self.cur_lang_code] else: SCREAMING_SNAKE_CASE__ : Dict = [self.cur_lang_code] SCREAMING_SNAKE_CASE__ : Dict = [self.eos_token_id] SCREAMING_SNAKE_CASE__ : Optional[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) SCREAMING_SNAKE_CASE__ : int = self.convert_ids_to_tokens(self.suffix_tokens ) SCREAMING_SNAKE_CASE__ : int = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _a ( self , _a ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.convert_tokens_to_ids(_a ) if self.legacy_behaviour: SCREAMING_SNAKE_CASE__ : List[Any] = [] SCREAMING_SNAKE_CASE__ : Optional[int] = [self.eos_token_id, self.cur_lang_code] else: SCREAMING_SNAKE_CASE__ : Optional[int] = [self.cur_lang_code] SCREAMING_SNAKE_CASE__ : Union[str, Any] = [self.eos_token_id] SCREAMING_SNAKE_CASE__ : Any = self.convert_ids_to_tokens(self.prefix_tokens ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.convert_ids_to_tokens(self.suffix_tokens ) SCREAMING_SNAKE_CASE__ : Tuple = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _a ( self , _a , _a = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(_a ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory.''' ) return SCREAMING_SNAKE_CASE__ : Dict = os.path.join( _a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ): copyfile(self.vocab_file , _a ) return (out_vocab_file,)
12
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging __A : Dict = logging.get_logger(__name__) __A : List[str] = "▁" __A : List[Any] = {"vocab_file": "sentencepiece.bpe.model"} __A : str = { "vocab_file": { "facebook/mbart-large-50-one-to-many-mmt": ( "https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model" ), } } __A : Union[str, Any] = { "facebook/mbart-large-50-one-to-many-mmt": 1024, } # fmt: off __A : int = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN", "af_ZA", "az_AZ", "bn_IN", "fa_IR", "he_IL", "hr_HR", "id_ID", "ka_GE", "km_KH", "mk_MK", "ml_IN", "mn_MN", "mr_IN", "pl_PL", "ps_AF", "pt_XX", "sv_SE", "sw_KE", "ta_IN", "te_IN", "th_TH", "tl_XX", "uk_UA", "ur_PK", "xh_ZA", "gl_ES", "sl_SI"] class __snake_case ( __A): """simple docstring""" lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = ['input_ids', 'attention_mask'] lowercase = [] lowercase = [] def __init__( self : Union[str, Any] , lowerCamelCase : Optional[int] , lowerCamelCase : Optional[Any]=None , lowerCamelCase : Dict=None , lowerCamelCase : Any="</s>" , lowerCamelCase : Dict="</s>" , lowerCamelCase : Optional[Any]="<s>" , lowerCamelCase : Any="<unk>" , lowerCamelCase : List[Any]="<pad>" , lowerCamelCase : Tuple="<mask>" , lowerCamelCase : Optional[Any] = None , **lowerCamelCase : List[str] , ) -> Any: # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase_ : Tuple = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token lowerCAmelCase_ : str = {} if sp_model_kwargs is None else sp_model_kwargs lowerCAmelCase_ : Dict = kwargs.get("""additional_special_tokens""" , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=__UpperCAmelCase , tgt_lang=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , ) lowerCAmelCase_ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__UpperCAmelCase ) ) lowerCAmelCase_ : List[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token lowerCAmelCase_ : Tuple = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowerCAmelCase_ : str = 1 lowerCAmelCase_ : Tuple = len(self.sp_model ) lowerCAmelCase_ : Tuple = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__UpperCAmelCase ) } lowerCAmelCase_ : List[str] = {v: k for k, v in self.lang_code_to_id.items()} lowerCAmelCase_ : int = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) lowerCAmelCase_ : List[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} lowerCAmelCase_ : Optional[Any] = src_lang if src_lang is not None else 'en_XX' lowerCAmelCase_ : Any = self.lang_code_to_id[self._src_lang] lowerCAmelCase_ : List[Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __lowercase ( self : Tuple ) -> List[Any]: return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def __lowercase ( self : int ) -> List[str]: return self._src_lang @src_lang.setter def __lowercase ( self : str , lowerCamelCase : Optional[int] ) -> Dict: lowerCAmelCase_ : Any = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : int ) -> Union[str, Any]: lowerCAmelCase_ : Optional[int] = self.__dict__.copy() lowerCAmelCase_ : Any = None return state def __setstate__( self : str , lowerCamelCase : int ) -> int: lowerCAmelCase_ : Optional[Any] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowerCAmelCase_ : Any = {} lowerCAmelCase_ : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowercase ( self : str ) -> Union[str, Any]: lowerCAmelCase_ : List[str] = {self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __lowercase ( self : Tuple , lowerCamelCase : List[str] ) -> int: return self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase ) def __lowercase ( self : Union[str, Any] , lowerCamelCase : Union[str, Any] ) -> Union[str, Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCAmelCase_ : List[Any] = self.sp_model.PieceToId(__UpperCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __lowercase ( self : Dict , lowerCamelCase : Union[str, Any] ) -> Any: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __lowercase ( self : List[str] , lowerCamelCase : List[str] ) -> Tuple: lowerCAmelCase_ : Any = [] lowerCAmelCase_ : str = '' lowerCAmelCase_ : List[str] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__UpperCAmelCase ) + token lowerCAmelCase_ : Dict = True lowerCAmelCase_ : Dict = [] else: current_sub_tokens.append(__UpperCAmelCase ) lowerCAmelCase_ : str = False out_string += self.sp_model.decode(__UpperCAmelCase ) return out_string.strip() def __lowercase ( self : Optional[int] , lowerCamelCase : Optional[Any] , lowerCamelCase : str = None ) -> Tuple: if not os.path.isdir(__UpperCAmelCase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return lowerCAmelCase_ : str = os.path.join( __UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase , """wb""" ) as fi: lowerCAmelCase_ : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (out_vocab_file,) def __lowercase ( self : Any , lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[Any] = None , lowerCamelCase : Optional[int] = False ) -> Dict: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) lowerCAmelCase_ : Dict = [1] * len(self.prefix_tokens ) lowerCAmelCase_ : List[Any] = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__UpperCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(__UpperCAmelCase )) + ([0] * len(__UpperCAmelCase )) + suffix_ones def __lowercase ( self : int , lowerCamelCase : Any , lowerCamelCase : int = None ) -> Any: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __lowercase ( self : Union[str, Any] , lowerCamelCase : Tuple , lowerCamelCase : Tuple , lowerCamelCase : List[str] , lowerCamelCase : int , **lowerCamelCase : Tuple ) -> Optional[int]: if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) lowerCAmelCase_ : List[str] = src_lang lowerCAmelCase_ : Dict = self(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) lowerCAmelCase_ : int = self.convert_tokens_to_ids(__UpperCAmelCase ) lowerCAmelCase_ : str = tgt_lang_id return inputs def __lowercase ( self : List[Any] , lowerCamelCase : List[str] , lowerCamelCase : int = "en_XX" , lowerCamelCase : List[str] = None , lowerCamelCase : Dict = "ro_RO" , **lowerCamelCase : Optional[Any] , ) -> Tuple: lowerCAmelCase_ : Dict = src_lang lowerCAmelCase_ : List[Any] = tgt_lang return super().prepare_seqaseq_batch(__UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) def __lowercase ( self : Any ) -> List[Any]: return self.set_src_lang_special_tokens(self.src_lang ) def __lowercase ( self : List[str] ) -> Any: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __lowercase ( self : Optional[int] , lowerCamelCase : Any ) -> Optional[Any]: lowerCAmelCase_ : Optional[int] = self.lang_code_to_id[src_lang] lowerCAmelCase_ : List[Any] = [self.cur_lang_code_id] lowerCAmelCase_ : Optional[Any] = [self.eos_token_id] def __lowercase ( self : str , lowerCamelCase : List[Any] ) -> int: lowerCAmelCase_ : Any = self.lang_code_to_id[tgt_lang] lowerCAmelCase_ : int = [self.cur_lang_code_id] lowerCAmelCase_ : Optional[Any] = [self.eos_token_id]
275
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = { 'microsoft/swin-tiny-patch4-window7-224': ( 'https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json' ), # See all Swin models at https://huggingface.co/models?filter=swin } class lowerCAmelCase_ ( __A , __A ): '''simple docstring''' _lowercase = 'swin' _lowercase = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self , __UpperCAmelCase=224 , __UpperCAmelCase=4 , __UpperCAmelCase=3 , __UpperCAmelCase=96 , __UpperCAmelCase=[2, 2, 6, 2] , __UpperCAmelCase=[3, 6, 12, 24] , __UpperCAmelCase=7 , __UpperCAmelCase=4.0 , __UpperCAmelCase=True , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase="gelu" , __UpperCAmelCase=False , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-5 , __UpperCAmelCase=32 , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase , ): super().__init__(**__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] =image_size SCREAMING_SNAKE_CASE_ : Dict =patch_size SCREAMING_SNAKE_CASE_ : int =num_channels SCREAMING_SNAKE_CASE_ : Union[str, Any] =embed_dim SCREAMING_SNAKE_CASE_ : int =depths SCREAMING_SNAKE_CASE_ : Optional[Any] =len(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : Dict =num_heads SCREAMING_SNAKE_CASE_ : Optional[int] =window_size SCREAMING_SNAKE_CASE_ : List[Any] =mlp_ratio SCREAMING_SNAKE_CASE_ : List[str] =qkv_bias SCREAMING_SNAKE_CASE_ : List[Any] =hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Dict =attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : List[Any] =drop_path_rate SCREAMING_SNAKE_CASE_ : str =hidden_act SCREAMING_SNAKE_CASE_ : List[str] =use_absolute_embeddings SCREAMING_SNAKE_CASE_ : int =layer_norm_eps SCREAMING_SNAKE_CASE_ : Dict =initializer_range SCREAMING_SNAKE_CASE_ : List[Any] =encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model SCREAMING_SNAKE_CASE_ : int =int(embed_dim * 2 ** (len(__UpperCAmelCase ) - 1) ) SCREAMING_SNAKE_CASE_ : List[Any] =['stem'] + [F"""stage{idx}""" for idx in range(1 , len(__UpperCAmelCase ) + 1 )] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str =get_aligned_output_features_output_indices( out_features=__UpperCAmelCase , out_indices=__UpperCAmelCase , stage_names=self.stage_names ) class lowerCAmelCase_ ( __A ): '''simple docstring''' _lowercase = version.parse('1.11' ) @property def __lowerCamelCase ( self ): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __lowerCamelCase ( self ): return 1E-4
220
0
from dataclasses import dataclass, field from typing import Optional @dataclass class lowerCAmelCase_ : """simple docstring""" _snake_case : Optional[str] = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be trained."""} ) _snake_case : Optional[str] = field( default="""./""" , metadata={"""help""": """Save dir where model repo is cloned and models updates are saved to."""} ) _snake_case : Optional[str] = field( default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path of training dataset."""} ) _snake_case : Optional[str] = field( default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""} ) _snake_case : Optional[int] = field(default=2 , metadata={"""help""": """Batch size for training."""} ) _snake_case : Optional[int] = field(default=2 , metadata={"""help""": """Batch size for evaluation."""} ) _snake_case : Optional[float] = field(default=0.1 , metadata={"""help""": """Value of weight decay."""} ) _snake_case : Optional[int] = field( default=10_000 , metadata={"""help""": """Size of buffer used to shuffle streaming dataset."""} ) _snake_case : Optional[float] = field(default=2e-4 , metadata={"""help""": """Learning rate fo training."""} ) _snake_case : Optional[str] = field(default="""cosine""" , metadata={"""help""": """Learning rate."""} ) _snake_case : Optional[int] = field( default=750 , metadata={"""help""": """Number of warmup steps in the learning rate schedule."""} ) _snake_case : Optional[int] = field( default=16 , metadata={"""help""": """Number of gradient accumulation steps."""} ) _snake_case : Optional[bool] = field( default=lowercase , metadata={"""help""": """Use gradient checkpointing to reduce memory footprint."""} ) _snake_case : Optional[int] = field(default=50_000 , metadata={"""help""": """Maximum number of training steps."""} ) _snake_case : Optional[int] = field( default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} ) _snake_case : Optional[int] = field(default=1_024 , metadata={"""help""": """Sequence lengths used for training."""} ) _snake_case : Optional[int] = field(default=1 , metadata={"""help""": """Training seed."""} ) _snake_case : Optional[int] = field( default=1_024 , metadata={"""help""": """Interval to save checkpoints. Measured as number of forward passes not training steps."""} , ) _snake_case : Optional[str] = field( default=lowercase , metadata={"""help""": """States path if the training should continue from a checkpoint folder."""} ) _snake_case : Optional[bool] = field(default=lowercase , metadata={"""help""": """If True the data is pretokenized."""} ) @dataclass class lowerCAmelCase_ : """simple docstring""" _snake_case : Optional[str] = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""} ) _snake_case : Optional[str] = field( default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""} ) _snake_case : Optional[int] = field(default=2 , metadata={"""help""": """Batch size used for evaluation."""} ) _snake_case : Optional[int] = field( default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} ) _snake_case : Optional[int] = field(default=1_024 , metadata={"""help""": """Length of sequences to be evaluated."""} ) _snake_case : Optional[int] = field(default=1 , metadata={"""help""": """Random seed used for evaluation."""} ) @dataclass class lowerCAmelCase_ : """simple docstring""" _snake_case : Optional[str] = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""} ) _snake_case : Optional[int] = field(default=lowercase , metadata={"""help""": """Number of workers used for code evaluation."""} ) _snake_case : Optional[int] = field( default=lowercase , metadata={"""help""": """The number of human-eval tasks to run. If not included all tasks are evaluated."""} , ) _snake_case : Optional[bool] = field( default=lowercase , metadata={"""help""": """Sample from the language model's output distribution."""} ) _snake_case : Optional[float] = field(default=0.2 , metadata={"""help""": """Sampling temperature used for generation."""} ) _snake_case : Optional[int] = field(default=256 , metadata={"""help""": """Maximum number of newly generated tokens."""} ) _snake_case : Optional[int] = field(default=0 , metadata={"""help""": """Top-k parameter used for generation."""} ) _snake_case : Optional[float] = field(default=0.95 , metadata={"""help""": """Top-p parameter used for nucleus sampling."""} ) _snake_case : Optional[int] = field(default=10 , metadata={"""help""": """Number of generations to run in parallel."""} ) _snake_case : Optional[int] = field( default=200 , metadata={"""help""": """Number of completions to generate for each sample."""} ) _snake_case : Optional[int] = field(default=1 , metadata={"""help""": """Random seed used for evaluation."""} ) _snake_case : Optional[str] = field( default="""eval_results.json""" , metadata={"""help""": """Random seed used for evaluation."""} ) _snake_case : Optional[str] = field( default="""0""" , metadata={"""help""": """Allow `code_eval` to execute Python code on machine"""} ) _snake_case : Optional[int] = field( default=-1 , metadata={ """help""": ( """Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive""" """ number corresponds to which GPU device id to run on.""" ) } , ) @dataclass class lowerCAmelCase_ : """simple docstring""" _snake_case : Optional[int] = field( default=lowercase , metadata={ """help""": """The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.""" } , ) _snake_case : Optional[str] = field( default="""transformersbook/codeparrot""" , metadata={"""help""": """Folder or name of dataset to process."""} ) _snake_case : Optional[str] = field( default="""codeparrot-clean""" , metadata={"""help""": """Folder to save processed processed dataset."""} ) _snake_case : Optional[int] = field( default=100_000 , metadata={"""help""": """Number of files to save per JSON output file."""} ) _snake_case : Optional[str] = field(default="""content""" , metadata={"""help""": """Column containing text data to process."""} ) _snake_case : Optional[float] = field( default=1_000 , metadata={"""help""": """Maximum line length in file, otherwise file is filtered."""} ) _snake_case : Optional[float] = field( default=100 , metadata={"""help""": """Maximum mean line length in file, otherwise file is filtered."""} ) _snake_case : Optional[float] = field( default=0.25 , metadata={"""help""": """Maximum fraction of non-alphanumeric characters, otherwise file is filtered."""} ) _snake_case : Optional[float] = field( default=1.5 , metadata={"""help""": """Minimum character token ratio for the file, otherwise file is filtered."""} ) _snake_case : Optional[float] = field( default=0.7 , metadata={"""help""": """Probability for filtering config, test and uncommon files."""} ) _snake_case : Optional[str] = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""} , ) _snake_case : Optional[bool] = field( default=lowercase , metadata={"""help""": """If True, near-duplicate samples are removed."""} ) _snake_case : Optional[float] = field( default=0.85 , metadata={"""help""": """Jaccard threshold for near-duplicate samples."""} ) @dataclass class lowerCAmelCase_ : """simple docstring""" _snake_case : Optional[str] = field( default="""gpt2""" , metadata={"""help""": """Base tokenizer to build new tokenizer from."""} ) _snake_case : Optional[str] = field( default="""transformersbook/codeparrot-train""" , metadata={"""help""": """Dataset to train tokenizer on."""} ) _snake_case : Optional[str] = field(default="""content""" , metadata={"""help""": """Column containing text data to process."""} ) _snake_case : Optional[int] = field(default=200_000 , metadata={"""help""": """Number of examples to train tokenizer on."""} ) _snake_case : Optional[int] = field( default=32_768 , metadata={"""help""": """Number of examples to train the tokenizer on."""} ) _snake_case : Optional[str] = field(default="""codeparrot""" , metadata={"""help""": """Name of new tokenizer."""} ) _snake_case : Optional[bool] = field(default=lowercase , metadata={"""help""": """Push saved tokenizer to the hub."""} ) @dataclass class lowerCAmelCase_ : """simple docstring""" _snake_case : Optional[str] = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""} ) _snake_case : Optional[str] = field( default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path to the dataset to pretokenize."""} ) _snake_case : Optional[str] = field( default="""tokenized-codeparrot-train""" , metadata={"""help""": """Repo name of the pretokenized data."""} ) _snake_case : Optional[int] = field(default=lowercase , metadata={"""help""": """Number of workers used for code evaluation."""} ) @dataclass class lowerCAmelCase_ : """simple docstring""" _snake_case : Optional[str] = field( default="""gpt2-large""" , metadata={"""help""": """Configuration to use for model initialization."""} ) _snake_case : Optional[str] = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Tokenizer attached to model."""} ) _snake_case : Optional[str] = field(default="""codeparrot""" , metadata={"""help""": """Name of the created model."""} ) _snake_case : Optional[bool] = field(default=lowercase , metadata={"""help""": """Push saved tokenizer to the hub."""} )
383
import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel UpperCamelCase = "0.12" # assumed parallelism: 8 @require_flax @is_staging_test class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @classmethod def __a ( cls :Optional[int] ): UpperCamelCase__ :Union[str, Any] = TOKEN HfFolder.save_token(lowerCamelCase__ ) @classmethod def __a ( cls :List[str] ): try: delete_repo(token=cls._token , repo_id="""test-model-flax""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-model-flax-org""" ) except HTTPError: pass def __a ( self :Any ): UpperCamelCase__ :Any = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCamelCase__ :int = FlaxBertModel(lowerCamelCase__ ) model.push_to_hub("""test-model-flax""" , use_auth_token=self._token ) UpperCamelCase__ :Optional[Any] = FlaxBertModel.from_pretrained(f"""{USER}/test-model-flax""" ) UpperCamelCase__ :str = flatten_dict(unfreeze(model.params ) ) UpperCamelCase__ :Optional[int] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCamelCase__ :Any = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCamelCase__ , 1e-3 , msg=f"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id="""test-model-flax""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(lowerCamelCase__ , repo_id="""test-model-flax""" , push_to_hub=lowerCamelCase__ , use_auth_token=self._token ) UpperCamelCase__ :Any = FlaxBertModel.from_pretrained(f"""{USER}/test-model-flax""" ) UpperCamelCase__ :List[Any] = flatten_dict(unfreeze(model.params ) ) UpperCamelCase__ :Tuple = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCamelCase__ :Optional[int] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCamelCase__ , 1e-3 , msg=f"""{key} not identical""" ) def __a ( self :List[Any] ): UpperCamelCase__ :Dict = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCamelCase__ :int = FlaxBertModel(lowerCamelCase__ ) model.push_to_hub("""valid_org/test-model-flax-org""" , use_auth_token=self._token ) UpperCamelCase__ :List[str] = FlaxBertModel.from_pretrained("""valid_org/test-model-flax-org""" ) UpperCamelCase__ :int = flatten_dict(unfreeze(model.params ) ) UpperCamelCase__ :Any = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCamelCase__ :int = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCamelCase__ , 1e-3 , msg=f"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-model-flax-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( lowerCamelCase__ , repo_id="""valid_org/test-model-flax-org""" , push_to_hub=lowerCamelCase__ , use_auth_token=self._token ) UpperCamelCase__ :List[str] = FlaxBertModel.from_pretrained("""valid_org/test-model-flax-org""" ) UpperCamelCase__ :Optional[int] = flatten_dict(unfreeze(model.params ) ) UpperCamelCase__ :List[Any] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCamelCase__ :Optional[int] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCamelCase__ , 1e-3 , msg=f"""{key} not identical""" ) def A ( lowercase__ : List[Any] , lowercase__ : Union[str, Any] ) -> Union[str, Any]: UpperCamelCase__ :List[str] = True UpperCamelCase__ :Tuple = flatten_dict(modela.params ) UpperCamelCase__ :int = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1E-4: UpperCamelCase__ :Tuple = False return models_are_equal @require_flax class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __a ( self :List[Any] ): UpperCamelCase__ :Union[str, Any] = BertConfig.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) UpperCamelCase__ :List[str] = FlaxBertModel(lowerCamelCase__ ) UpperCamelCase__ :int = """bert""" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(lowerCamelCase__ , lowerCamelCase__ ) ) with self.assertRaises(lowerCamelCase__ ): UpperCamelCase__ :List[str] = FlaxBertModel.from_pretrained(lowerCamelCase__ ) UpperCamelCase__ :Tuple = FlaxBertModel.from_pretrained(lowerCamelCase__ , subfolder=lowerCamelCase__ ) self.assertTrue(check_models_equal(lowerCamelCase__ , lowerCamelCase__ ) ) def __a ( self :List[str] ): UpperCamelCase__ :List[Any] = BertConfig.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) UpperCamelCase__ :Union[str, Any] = FlaxBertModel(lowerCamelCase__ ) UpperCamelCase__ :Any = """bert""" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(lowerCamelCase__ , lowerCamelCase__ ) , max_shard_size="""10KB""" ) with self.assertRaises(lowerCamelCase__ ): UpperCamelCase__ :Tuple = FlaxBertModel.from_pretrained(lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = FlaxBertModel.from_pretrained(lowerCamelCase__ , subfolder=lowerCamelCase__ ) self.assertTrue(check_models_equal(lowerCamelCase__ , lowerCamelCase__ ) ) def __a ( self :Optional[Any] ): UpperCamelCase__ :Any = """bert""" UpperCamelCase__ :int = """hf-internal-testing/tiny-random-bert-subfolder""" with self.assertRaises(lowerCamelCase__ ): UpperCamelCase__ :str = FlaxBertModel.from_pretrained(lowerCamelCase__ ) UpperCamelCase__ :int = FlaxBertModel.from_pretrained(lowerCamelCase__ , subfolder=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def __a ( self :Union[str, Any] ): UpperCamelCase__ :Dict = """bert""" UpperCamelCase__ :int = """hf-internal-testing/tiny-random-bert-sharded-subfolder""" with self.assertRaises(lowerCamelCase__ ): UpperCamelCase__ :Optional[int] = FlaxBertModel.from_pretrained(lowerCamelCase__ ) UpperCamelCase__ :List[str] = FlaxBertModel.from_pretrained(lowerCamelCase__ , subfolder=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ )
383
1
'''simple docstring''' def SCREAMING_SNAKE_CASE ( a_ : int , a_ : int ): while b: __a , __a = b, a % b return a def SCREAMING_SNAKE_CASE ( a_ : int , a_ : int ): return a if b == 0 else euclidean_gcd_recursive(a_ , a % b ) def SCREAMING_SNAKE_CASE ( ): print(f"euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}" ) print(f"euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}" ) print(f"euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}" ) print(f"euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}" ) print(f"euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}" ) print(f"euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}" ) print(f"euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}" ) print(f"euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}" ) print(f"euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}" ) print(f"euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}" ) if __name__ == "__main__": main()
539
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "openai/imagegpt-small": "", "openai/imagegpt-medium": "", "openai/imagegpt-large": "", } class __lowercase ( __magic_name__ ): _a = """imagegpt""" _a = ["""past_key_values"""] _a = { """hidden_size""": """n_embd""", """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , UpperCamelCase=512 + 1 , UpperCamelCase=32 * 32 , UpperCamelCase=512 , UpperCamelCase=24 , UpperCamelCase=8 , UpperCamelCase=None , UpperCamelCase="quick_gelu" , UpperCamelCase=0.1 , UpperCamelCase=0.1 , UpperCamelCase=0.1 , UpperCamelCase=1e-5 , UpperCamelCase=0.02 , UpperCamelCase=True , UpperCamelCase=True , UpperCamelCase=False , UpperCamelCase=False , UpperCamelCase=False , **UpperCamelCase , ) -> int: __a = vocab_size __a = n_positions __a = n_embd __a = n_layer __a = n_head __a = n_inner __a = activation_function __a = resid_pdrop __a = embd_pdrop __a = attn_pdrop __a = layer_norm_epsilon __a = initializer_range __a = scale_attn_weights __a = use_cache __a = scale_attn_by_inverse_layer_idx __a = reorder_and_upcast_attn __a = tie_word_embeddings super().__init__(tie_word_embeddings=UpperCamelCase , **UpperCamelCase ) class __lowercase ( __magic_name__ ): @property def UpperCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ] ) def UpperCamelCase__ ( self , UpperCamelCase , UpperCamelCase = 1 , UpperCamelCase = -1 , UpperCamelCase = False , UpperCamelCase = None , UpperCamelCase = 3 , UpperCamelCase = 32 , UpperCamelCase = 32 , ) -> Mapping[str, Any]: __a = self._generate_dummy_images(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) __a = dict(preprocessor(images=UpperCamelCase , return_tensors=UpperCamelCase ) ) return inputs
539
1
import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase : """simple docstring""" def __init__( self : List[Any], lowerCamelCase : Optional[int], lowerCamelCase : List[str]=13, lowerCamelCase : Any=[30, 30], lowerCamelCase : Union[str, Any]=2, lowerCamelCase : Tuple=3, lowerCamelCase : int=True, lowerCamelCase : Optional[Any]=True, lowerCamelCase : Tuple=32, lowerCamelCase : Tuple=5, lowerCamelCase : Union[str, Any]=4, lowerCamelCase : Optional[Any]=37, lowerCamelCase : List[str]="gelu", lowerCamelCase : int=0.1, lowerCamelCase : List[Any]=0.1, lowerCamelCase : Dict=10, lowerCamelCase : List[str]=0.02, lowerCamelCase : str=3, lowerCamelCase : List[Any]=None, lowerCamelCase : Tuple=8, lowerCamelCase : str=10, ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = is_training lowercase__ = use_labels lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_labels lowercase__ = scope lowercase__ = n_targets lowercase__ = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens lowercase__ = (image_size[1] // patch_size) * (image_size[0] // patch_size) lowercase__ = num_patches + 1 + self.num_detection_tokens def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) lowercase__ = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) lowercase__ = [] for i in range(self.batch_size ): lowercase__ = {} lowercase__ = torch.randint( high=self.num_labels, size=(self.n_targets,), device=lowerCamelCase ) lowercase__ = torch.rand(self.n_targets, 4, device=lowerCamelCase ) labels.append(lowerCamelCase ) lowercase__ = self.get_config() return config, pixel_values, labels def lowercase__ ( self : Tuple ): '''simple docstring''' return YolosConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=lowerCamelCase, initializer_range=self.initializer_range, num_detection_tokens=self.num_detection_tokens, num_labels=self.num_labels, ) def lowercase__ ( self : Union[str, Any], lowerCamelCase : List[str], lowerCamelCase : Any, lowerCamelCase : Tuple ): '''simple docstring''' lowercase__ = YolosModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ = model(lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.expected_seq_len, self.hidden_size) ) def lowercase__ ( self : Union[str, Any], lowerCamelCase : Dict, lowerCamelCase : Optional[int], lowerCamelCase : Optional[Any] ): '''simple docstring''' lowercase__ = YolosForObjectDetection(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ = model(pixel_values=lowerCamelCase ) lowercase__ = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.num_detection_tokens, 4) ) lowercase__ = model(pixel_values=lowerCamelCase, labels=lowerCamelCase ) self.parent.assertEqual(result.loss.shape, () ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.num_detection_tokens, 4) ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( A__ ,A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = (YolosModel, YolosForObjectDetection) if is_torch_available() else () lowercase__ = ( {"""feature-extraction""": YolosModel, """object-detection""": YolosForObjectDetection} if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def lowercase__ ( self : List[str], lowerCamelCase : str, lowerCamelCase : int, lowerCamelCase : Optional[Any]=False ): '''simple docstring''' lowercase__ = super()._prepare_for_class(lowerCamelCase, lowerCamelCase, return_labels=lowerCamelCase ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": lowercase__ = [] for i in range(self.model_tester.batch_size ): lowercase__ = {} lowercase__ = torch.ones( size=(self.model_tester.n_targets,), device=lowerCamelCase, dtype=torch.long ) lowercase__ = torch.ones( self.model_tester.n_targets, 4, device=lowerCamelCase, dtype=torch.float ) labels.append(lowerCamelCase ) lowercase__ = labels return inputs_dict def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = YolosModelTester(self ) lowercase__ = ConfigTester(self, config_class=lowerCamelCase, has_text_modality=lowerCamelCase, hidden_size=37 ) def lowercase__ ( self : Dict ): '''simple docstring''' self.config_tester.run_common_tests() def lowercase__ ( self : str ): '''simple docstring''' # YOLOS does not use inputs_embeds pass def lowercase__ ( self : int ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) lowercase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase, nn.Linear ) ) def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(lowerCamelCase ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1], lowerCamelCase ) def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = True # in YOLOS, the seq_len is different lowercase__ = self.model_tester.expected_seq_len for model_class in self.all_model_classes: lowercase__ = True lowercase__ = False lowercase__ = True lowercase__ = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(lowerCamelCase, lowerCamelCase ) ) lowercase__ = outputs.attentions self.assertEqual(len(lowerCamelCase ), self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase__ = True lowercase__ = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(lowerCamelCase, lowerCamelCase ) ) lowercase__ = outputs.attentions self.assertEqual(len(lowerCamelCase ), self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads, seq_len, seq_len], ) lowercase__ = len(lowerCamelCase ) # Check attention is always last and order is fine lowercase__ = True lowercase__ = True lowercase__ = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(lowerCamelCase, lowerCamelCase ) ) lowercase__ = 1 self.assertEqual(out_len + added_hidden_states, len(lowerCamelCase ) ) lowercase__ = outputs.attentions self.assertEqual(len(lowerCamelCase ), self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads, seq_len, seq_len], ) def lowercase__ ( self : List[str] ): '''simple docstring''' def check_hidden_states_output(lowerCamelCase : Optional[Any], lowerCamelCase : str, lowerCamelCase : Optional[int] ): lowercase__ = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(lowerCamelCase, lowerCamelCase ) ) lowercase__ = outputs.hidden_states lowercase__ = getattr( self.model_tester, '''expected_num_hidden_layers''', self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(lowerCamelCase ), lowerCamelCase ) # YOLOS has a different seq_length lowercase__ = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ), [seq_length, self.model_tester.hidden_size], ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = True check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ = True check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*lowerCamelCase ) @slow def lowercase__ ( self : Tuple ): '''simple docstring''' for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = YolosModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def a ( ): '''simple docstring''' lowercase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase__ ( self : str ): '''simple docstring''' return AutoImageProcessor.from_pretrained('''hustvl/yolos-small''' ) if is_vision_available() else None @slow def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = YolosForObjectDetection.from_pretrained('''hustvl/yolos-small''' ).to(lowerCamelCase ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=lowerCamelCase, return_tensors='''pt''' ).to(lowerCamelCase ) # forward pass with torch.no_grad(): lowercase__ = model(inputs.pixel_values ) # verify outputs lowercase__ = torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape, lowerCamelCase ) lowercase__ = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]], device=lowerCamelCase, ) lowercase__ = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]], device=lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], lowerCamelCase, atol=1E-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3], lowerCamelCase, atol=1E-4 ) ) # verify postprocessing lowercase__ = image_processor.post_process_object_detection( lowerCamelCase, threshold=0.3, target_sizes=[image.size[::-1]] )[0] lowercase__ = torch.tensor([0.9994, 0.9790, 0.9964, 0.9972, 0.9861] ).to(lowerCamelCase ) lowercase__ = [75, 75, 17, 63, 17] lowercase__ = torch.tensor([335.0609, 79.3848, 375.4216, 187.2495] ).to(lowerCamelCase ) self.assertEqual(len(results['''scores'''] ), 5 ) self.assertTrue(torch.allclose(results['''scores'''], lowerCamelCase, atol=1E-4 ) ) self.assertSequenceEqual(results['''labels'''].tolist(), lowerCamelCase ) self.assertTrue(torch.allclose(results['''boxes'''][0, :], lowerCamelCase ) )
671
from __future__ import annotations def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = 0.00 lowercase__ = 0 for resistor in resistors: if resistor <= 0: lowercase__ = F"""Resistor at index {index} has a negative or zero value!""" raise ValueError(lowerCamelCase_ ) first_sum += 1 / float(lowerCamelCase_ ) index += 1 return 1 / first_sum def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = 0.00 lowercase__ = 0 for resistor in resistors: sum_r += resistor if resistor < 0: lowercase__ = F"""Resistor at index {index} has a negative value!""" raise ValueError(lowerCamelCase_ ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
671
1
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer A : Union[str, Any] = ['bert-base-uncased', 'bert-base-cased'] A : str = 'hf-internal-testing/tiny-bert-tf-only' if is_tf_available(): class A ( tf.keras.Model ): '''simple docstring''' def __init__(self : str , _UpperCAmelCase : List[Any] ) -> Any: """simple docstring""" super().__init__() lowercase__ = tokenizer lowercase__ = AutoConfig.from_pretrained(_UpperCAmelCase ) lowercase__ = TFAutoModel.from_config(_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.tokenizer(_UpperCAmelCase ) lowercase__ = self.bert(**_UpperCAmelCase ) return out["pooler_output"] @require_tf @require_tensorflow_text class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : int ) -> Union[str, Any]: """simple docstring""" super().setUp() lowercase__ = [ BertTokenizer.from_pretrained(_UpperCAmelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false lowercase__ = [TFBertTokenizer.from_pretrained(_UpperCAmelCase ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(_UpperCAmelCase , use_fast_bert_tokenizer=_UpperCAmelCase ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) lowercase__ = [ """This is a straightforward English test sentence.""", """This one has some weird characters\rto\nsee\r\nif those\u00E9break things.""", """Now we're going to add some Chinese: 一 二 三 一二三""", """And some much more rare Chinese: 齉 堃 齉堃""", """Je vais aussi écrire en français pour tester les accents""", """Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ""", ] lowercase__ = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def lowerCamelCase__ (self : List[Any] ) -> Any: """simple docstring""" for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): lowercase__ = tokenizer(_UpperCAmelCase , return_tensors="""tf""" , padding="""longest""" ) lowercase__ = tf_tokenizer(_UpperCAmelCase ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) ) @slow def lowerCamelCase__ (self : List[str] ) -> Tuple: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: lowercase__ = tf_tokenizer(self.paired_sentences ) lowercase__ = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) ) @slow def lowerCamelCase__ (self : Optional[Any] ) -> Optional[Any]: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: lowercase__ = tf.function(_UpperCAmelCase ) for test_inputs in (self.test_sentences, self.paired_sentences): lowercase__ = tf.constant(_UpperCAmelCase ) lowercase__ = compiled_tokenizer(_UpperCAmelCase ) lowercase__ = tf_tokenizer(_UpperCAmelCase ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def lowerCamelCase__ (self : str ) -> Dict: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: lowercase__ = ModelToSave(tokenizer=_UpperCAmelCase ) lowercase__ = tf.convert_to_tensor(self.test_sentences ) lowercase__ = model(_UpperCAmelCase ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: lowercase__ = Path(_UpperCAmelCase ) / """saved.model""" model.save(_UpperCAmelCase ) lowercase__ = tf.keras.models.load_model(_UpperCAmelCase ) lowercase__ = loaded_model(_UpperCAmelCase ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1E-5 )
15
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## A : Optional[Any] = 1_6 A : str = 3_2 def UpperCamelCase ( __magic_name__ : Accelerator , __magic_name__ : int = 16 ) -> List[str]: """simple docstring""" lowercase__ = AutoTokenizer.from_pretrained("""bert-base-cased""" ) lowercase__ = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(__magic_name__ : int ): # max_length=None => use the model max length (it's actually the default) lowercase__ = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__magic_name__ , max_length=__magic_name__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase__ = datasets.map( __magic_name__ , batched=__magic_name__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(__magic_name__ : Optional[int] ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase__ = 16 elif accelerator.mixed_precision != "no": lowercase__ = 8 else: lowercase__ = None return tokenizer.pad( __magic_name__ , padding="""longest""" , max_length=__magic_name__ , pad_to_multiple_of=__magic_name__ , return_tensors="""pt""" , ) # Instantiate dataloaders. lowercase__ = DataLoader( tokenized_datasets["""train"""] , shuffle=__magic_name__ , collate_fn=__magic_name__ , batch_size=__magic_name__ ) lowercase__ = DataLoader( tokenized_datasets["""validation"""] , shuffle=__magic_name__ , collate_fn=__magic_name__ , batch_size=__magic_name__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders A : Union[str, Any] = mocked_dataloaders # noqa: F811 def UpperCamelCase ( __magic_name__ : Optional[Any] , __magic_name__ : List[Any] ) -> Dict: """simple docstring""" if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , __magic_name__ ) == "1": lowercase__ = 2 # New Code # lowercase__ = int(args.gradient_accumulation_steps ) # Initialize accelerator lowercase__ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__magic_name__ ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( """Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`""" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ = config["""lr"""] lowercase__ = int(config["""num_epochs"""] ) lowercase__ = int(config["""seed"""] ) lowercase__ = int(config["""batch_size"""] ) lowercase__ = evaluate.load("""glue""" , """mrpc""" ) set_seed(__magic_name__ ) lowercase__ , lowercase__ = get_dataloaders(__magic_name__ , __magic_name__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=__magic_name__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase__ = model.to(accelerator.device ) # Instantiate optimizer lowercase__ = AdamW(params=model.parameters() , lr=__magic_name__ ) # Instantiate scheduler lowercase__ = get_linear_schedule_with_warmup( optimizer=__magic_name__ , num_warmup_steps=100 , num_training_steps=(len(__magic_name__ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = accelerator.prepare( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # Now we train the model for epoch in range(__magic_name__ ): model.train() for step, batch in enumerate(__magic_name__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__magic_name__ ): lowercase__ = model(**__magic_name__ ) lowercase__ = output.loss accelerator.backward(__magic_name__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__magic_name__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ = model(**__magic_name__ ) lowercase__ = outputs.logits.argmax(dim=-1 ) lowercase__ , lowercase__ = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=__magic_name__ , references=__magic_name__ , ) lowercase__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , __magic_name__ ) def UpperCamelCase ( ) -> Optional[Any]: """simple docstring""" lowercase__ = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=__magic_name__ , default=__magic_name__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) # New Code # parser.add_argument( """--gradient_accumulation_steps""" , type=__magic_name__ , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) lowercase__ = parser.parse_args() lowercase__ = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(__magic_name__ , __magic_name__ ) if __name__ == "__main__": main()
15
1
__a : List[str] = 8.31_44_62 # Unit - J mol-1 K-1 def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) -> float: if moles < 0 or kelvin < 0 or volume < 0: raise ValueError("Invalid inputs. Enter positive value." ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) -> float: if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError("Invalid inputs. Enter positive value." ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
298
from __future__ import annotations def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> list[int]: lowercase__ : List[str] = [True] * limit lowercase__ : Union[str, Any] = False lowercase__ : List[str] = False lowercase__ : List[str] = True for i in range(3 ,int(limit**0.5 + 1 ) ,2 ): lowercase__ : Dict = i * 2 while index < limit: lowercase__ : Union[str, Any] = False lowercase__ : str = index + i lowercase__ : Union[str, Any] = [2] for i in range(3 ,SCREAMING_SNAKE_CASE_ ,2 ): if is_prime[i]: primes.append(SCREAMING_SNAKE_CASE_ ) return primes def snake_case_ ( SCREAMING_SNAKE_CASE_ = 1_00_00_00 ) -> int: lowercase__ : Any = prime_sieve(SCREAMING_SNAKE_CASE_ ) lowercase__ : List[str] = 0 lowercase__ : Dict = 0 for i in range(len(SCREAMING_SNAKE_CASE_ ) ): for j in range(i + length ,len(SCREAMING_SNAKE_CASE_ ) ): lowercase__ : Optional[Any] = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: lowercase__ : Dict = j - i lowercase__ : Any = sol return largest if __name__ == "__main__": print(f'{solution() = }')
298
1
'''simple docstring''' import argparse import logging import pickle from collections import Counter logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) SCREAMING_SNAKE_CASE = logging.getLogger(__name__) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser( description='Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)' ) parser.add_argument( '--data_file', type=str, default='data/dump.bert-base-uncased.pickle', help='The binarized dataset.' ) parser.add_argument( '--token_counts_dump', type=str, default='data/token_counts.bert-base-uncased.pickle', help='The dump file.' ) parser.add_argument('--vocab_size', default=30_522, type=int) SCREAMING_SNAKE_CASE = parser.parse_args() logger.info(f"""Loading data from {args.data_file}""") with open(args.data_file, 'rb') as fp: SCREAMING_SNAKE_CASE = pickle.load(fp) logger.info('Counting occurrences for MLM.') SCREAMING_SNAKE_CASE = Counter() for tk_ids in data: counter.update(tk_ids) SCREAMING_SNAKE_CASE = [0] * args.vocab_size for k, v in counter.items(): SCREAMING_SNAKE_CASE = v logger.info(f"""Dump to {args.token_counts_dump}""") with open(args.token_counts_dump, 'wb') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
94
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
169
0
"""simple docstring""" from math import sqrt def __lowerCAmelCase (_UpperCamelCase ): assert isinstance(_UpperCamelCase , _UpperCamelCase ) and ( number >= 0 ), "'number' must been an int and positive" __lowerCAmelCase = True # 0 and 1 are none primes. if number <= 1: __lowerCAmelCase = False for divisor in range(2 , int(round(sqrt(_UpperCamelCase ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: __lowerCAmelCase = False break # precondition assert isinstance(_UpperCamelCase , _UpperCamelCase ), "'status' must been from type bool" return status def __lowerCAmelCase (_UpperCamelCase ): assert isinstance(_UpperCamelCase , _UpperCamelCase ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N __lowerCAmelCase = list(range(2 , n + 1 ) ) __lowerCAmelCase = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(_UpperCamelCase ) ): for j in range(i + 1 , len(_UpperCamelCase ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): __lowerCAmelCase = 0 # filters actual prime numbers. __lowerCAmelCase = [x for x in begin_list if x != 0] # precondition assert isinstance(_UpperCamelCase , _UpperCamelCase ), "'ans' must been from type list" return ans def __lowerCAmelCase (_UpperCamelCase ): assert isinstance(_UpperCamelCase , _UpperCamelCase ) and (n > 2), "'N' must been an int and > 2" __lowerCAmelCase = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(_UpperCamelCase ): ans.append(_UpperCamelCase ) # precondition assert isinstance(_UpperCamelCase , _UpperCamelCase ), "'ans' must been from type list" return ans def __lowerCAmelCase (_UpperCamelCase ): assert isinstance(_UpperCamelCase , _UpperCamelCase ) and number >= 0, "'number' must been an int and >= 0" __lowerCAmelCase = [] # this list will be returns of the function. # potential prime number factors. __lowerCAmelCase = 2 __lowerCAmelCase = number if number == 0 or number == 1: ans.append(_UpperCamelCase ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(_UpperCamelCase ): while quotient != 1: if is_prime(_UpperCamelCase ) and (quotient % factor == 0): ans.append(_UpperCamelCase ) quotient /= factor else: factor += 1 else: ans.append(_UpperCamelCase ) # precondition assert isinstance(_UpperCamelCase , _UpperCamelCase ), "'ans' must been from type list" return ans def __lowerCAmelCase (_UpperCamelCase ): assert isinstance(_UpperCamelCase , _UpperCamelCase ) and ( number >= 0 ), "'number' bust been an int and >= 0" __lowerCAmelCase = 0 # prime factorization of 'number' __lowerCAmelCase = prime_factorization(_UpperCamelCase ) __lowerCAmelCase = max(_UpperCamelCase ) # precondition assert isinstance(_UpperCamelCase , _UpperCamelCase ), "'ans' must been from type int" return ans def __lowerCAmelCase (_UpperCamelCase ): assert isinstance(_UpperCamelCase , _UpperCamelCase ) and ( number >= 0 ), "'number' bust been an int and >= 0" __lowerCAmelCase = 0 # prime factorization of 'number' __lowerCAmelCase = prime_factorization(_UpperCamelCase ) __lowerCAmelCase = min(_UpperCamelCase ) # precondition assert isinstance(_UpperCamelCase , _UpperCamelCase ), "'ans' must been from type int" return ans def __lowerCAmelCase (_UpperCamelCase ): assert isinstance(_UpperCamelCase , _UpperCamelCase ), "'number' must been an int" assert isinstance(number % 2 == 0 , _UpperCamelCase ), "compare bust been from type bool" return number % 2 == 0 def __lowerCAmelCase (_UpperCamelCase ): assert isinstance(_UpperCamelCase , _UpperCamelCase ), "'number' must been an int" assert isinstance(number % 2 != 0 , _UpperCamelCase ), "compare bust been from type bool" return number % 2 != 0 def __lowerCAmelCase (_UpperCamelCase ): assert ( isinstance(_UpperCamelCase , _UpperCamelCase ) and (number > 2) and is_even(_UpperCamelCase ) ), "'number' must been an int, even and > 2" __lowerCAmelCase = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' __lowerCAmelCase = get_prime_numbers(_UpperCamelCase ) __lowerCAmelCase = len(_UpperCamelCase ) # run variable for while-loops. __lowerCAmelCase = 0 __lowerCAmelCase = None # exit variable. for break up the loops __lowerCAmelCase = True while i < len_pn and loop: __lowerCAmelCase = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: __lowerCAmelCase = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(_UpperCamelCase , _UpperCamelCase ) and (len(_UpperCamelCase ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase ): assert ( isinstance(_UpperCamelCase , _UpperCamelCase ) and isinstance(_UpperCamelCase , _UpperCamelCase ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." __lowerCAmelCase = 0 while numbera != 0: __lowerCAmelCase = numbera % numbera __lowerCAmelCase = numbera __lowerCAmelCase = rest # precondition assert isinstance(_UpperCamelCase , _UpperCamelCase ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase ): assert ( isinstance(_UpperCamelCase , _UpperCamelCase ) and isinstance(_UpperCamelCase , _UpperCamelCase ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." __lowerCAmelCase = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' __lowerCAmelCase = prime_factorization(_UpperCamelCase ) __lowerCAmelCase = prime_factorization(_UpperCamelCase ) elif numbera == 1 or numbera == 1: __lowerCAmelCase = [] __lowerCAmelCase = [] __lowerCAmelCase = max(_UpperCamelCase , _UpperCamelCase ) __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: __lowerCAmelCase = prime_fac_a.count(_UpperCamelCase ) __lowerCAmelCase = prime_fac_a.count(_UpperCamelCase ) for _ in range(max(_UpperCamelCase , _UpperCamelCase ) ): ans *= n else: __lowerCAmelCase = prime_fac_a.count(_UpperCamelCase ) for _ in range(_UpperCamelCase ): ans *= n done.append(_UpperCamelCase ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: __lowerCAmelCase = prime_fac_a.count(_UpperCamelCase ) for _ in range(_UpperCamelCase ): ans *= n done.append(_UpperCamelCase ) # precondition assert isinstance(_UpperCamelCase , _UpperCamelCase ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def __lowerCAmelCase (_UpperCamelCase ): assert isinstance(_UpperCamelCase , _UpperCamelCase ) and (n >= 0), "'number' must been a positive int" __lowerCAmelCase = 0 __lowerCAmelCase = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(_UpperCamelCase ): ans += 1 # precondition assert isinstance(_UpperCamelCase , _UpperCamelCase ) and is_prime( _UpperCamelCase ), "'ans' must been a prime number and from type int" return ans def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase ): assert ( is_prime(_UpperCamelCase ) and is_prime(_UpperCamelCase ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" __lowerCAmelCase = p_number_a + 1 # jump to the next number __lowerCAmelCase = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(_UpperCamelCase ): number += 1 while number < p_number_a: ans.append(_UpperCamelCase ) number += 1 # fetch the next prime number. while not is_prime(_UpperCamelCase ): number += 1 # precondition assert ( isinstance(_UpperCamelCase , _UpperCamelCase ) and ans[0] != p_number_a and ans[len(_UpperCamelCase ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def __lowerCAmelCase (_UpperCamelCase ): assert isinstance(_UpperCamelCase , _UpperCamelCase ) and (n >= 1), "'n' must been int and >= 1" __lowerCAmelCase = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(_UpperCamelCase ) # precondition assert ans[0] == 1 and ans[len(_UpperCamelCase ) - 1] == n, "Error in function getDivisiors(...)" return ans def __lowerCAmelCase (_UpperCamelCase ): assert isinstance(_UpperCamelCase , _UpperCamelCase ) and ( number > 1 ), "'number' must been an int and >= 1" __lowerCAmelCase = get_divisors(_UpperCamelCase ) # precondition assert ( isinstance(_UpperCamelCase , _UpperCamelCase ) and (divisors[0] == 1) and (divisors[len(_UpperCamelCase ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase ): assert ( isinstance(_UpperCamelCase , _UpperCamelCase ) and isinstance(_UpperCamelCase , _UpperCamelCase ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. __lowerCAmelCase = gcd(abs(_UpperCamelCase ) , abs(_UpperCamelCase ) ) # precondition assert ( isinstance(_UpperCamelCase , _UpperCamelCase ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def __lowerCAmelCase (_UpperCamelCase ): assert isinstance(_UpperCamelCase , _UpperCamelCase ) and (n >= 0), "'n' must been a int and >= 0" __lowerCAmelCase = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def __lowerCAmelCase (_UpperCamelCase ): assert isinstance(_UpperCamelCase , _UpperCamelCase ) and (n >= 0), "'n' must been an int and >= 0" __lowerCAmelCase = 0 __lowerCAmelCase = 1 __lowerCAmelCase = 1 # this will be return for _ in range(n - 1 ): __lowerCAmelCase = ans ans += fiba __lowerCAmelCase = tmp return ans
702
"""simple docstring""" import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 lowerCamelCase__ = data_utils.TransfoXLTokenizer lowerCamelCase__ = data_utils.TransfoXLCorpus lowerCamelCase__ = data_utils lowerCamelCase__ = data_utils def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(_UpperCamelCase , 'rb' ) as fp: __lowerCAmelCase : int = pickle.load(_UpperCamelCase , encoding='latin1' ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) __lowerCAmelCase : Any = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['pretrained_vocab_file'] print(F"Save vocabulary to {pytorch_vocab_dump_path}" ) __lowerCAmelCase : Optional[Any] = corpus.vocab.__dict__ torch.save(_UpperCamelCase , _UpperCamelCase ) __lowerCAmelCase : Dict = corpus.__dict__ corpus_dict_no_vocab.pop('vocab' , _UpperCamelCase ) __lowerCAmelCase : List[str] = pytorch_dump_folder_path + '/' + CORPUS_NAME print(F"Save dataset to {pytorch_dataset_dump_path}" ) torch.save(_UpperCamelCase , _UpperCamelCase ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model __lowerCAmelCase : Tuple = os.path.abspath(_UpperCamelCase ) __lowerCAmelCase : List[Any] = os.path.abspath(_UpperCamelCase ) print(F"Converting Transformer XL checkpoint from {tf_path} with config at {config_path}." ) # Initialise PyTorch model if transfo_xl_config_file == "": __lowerCAmelCase : Any = TransfoXLConfig() else: __lowerCAmelCase : str = TransfoXLConfig.from_json_file(_UpperCamelCase ) print(F"Building PyTorch model from configuration: {config}" ) __lowerCAmelCase : Optional[Any] = TransfoXLLMHeadModel(_UpperCamelCase ) __lowerCAmelCase : Dict = load_tf_weights_in_transfo_xl(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save pytorch-model __lowerCAmelCase : str = os.path.join(_UpperCamelCase , _UpperCamelCase ) __lowerCAmelCase : Tuple = os.path.join(_UpperCamelCase , _UpperCamelCase ) print(F"Save PyTorch model to {os.path.abspath(_UpperCamelCase )}" ) torch.save(model.state_dict() , _UpperCamelCase ) print(F"Save configuration file to {os.path.abspath(_UpperCamelCase )}" ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the folder to store the PyTorch model or dataset/vocab.""", ) parser.add_argument( """--tf_checkpoint_path""", default="""""", type=str, help="""An optional path to a TensorFlow checkpoint path to be converted.""", ) parser.add_argument( """--transfo_xl_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--transfo_xl_dataset_file""", default="""""", type=str, help="""An optional dataset file to be converted in a vocabulary.""", ) lowerCamelCase__ = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
549
0
'''simple docstring''' import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __get__( self , _lowercase , _lowercase=None ): """simple docstring""" if obj is None: return self if self.fget is None: raise AttributeError("""unreadable attribute""" ) _lowerCAmelCase = """__cached_""" + self.fget.__name__ _lowerCAmelCase = getattr(_lowercase , _lowercase , _lowercase ) if cached is None: _lowerCAmelCase = self.fget(_lowercase ) setattr(_lowercase , _lowercase , _lowercase ) return cached def A (__lowerCamelCase :int ): _lowerCAmelCase = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(f'invalid truth value {val!r}' ) def A (__lowerCamelCase :Union[str, Any] ): if is_torch_fx_proxy(__lowerCamelCase ): return True if is_torch_available(): import torch if isinstance(__lowerCamelCase , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(__lowerCamelCase , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(__lowerCamelCase , (jnp.ndarray, Tracer) ): return True return isinstance(__lowerCamelCase , np.ndarray ) def A (__lowerCamelCase :List[Any] ): return isinstance(__lowerCamelCase , np.ndarray ) def A (__lowerCamelCase :str ): return _is_numpy(__lowerCamelCase ) def A (__lowerCamelCase :Dict ): import torch return isinstance(__lowerCamelCase , torch.Tensor ) def A (__lowerCamelCase :Union[str, Any] ): return False if not is_torch_available() else _is_torch(__lowerCamelCase ) def A (__lowerCamelCase :Union[str, Any] ): import torch return isinstance(__lowerCamelCase , torch.device ) def A (__lowerCamelCase :List[str] ): return False if not is_torch_available() else _is_torch_device(__lowerCamelCase ) def A (__lowerCamelCase :Dict ): import torch if isinstance(__lowerCamelCase , __lowerCamelCase ): if hasattr(__lowerCamelCase , __lowerCamelCase ): _lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ) else: return False return isinstance(__lowerCamelCase , torch.dtype ) def A (__lowerCamelCase :Dict ): return False if not is_torch_available() else _is_torch_dtype(__lowerCamelCase ) def A (__lowerCamelCase :str ): import tensorflow as tf return isinstance(__lowerCamelCase , tf.Tensor ) def A (__lowerCamelCase :Optional[int] ): return False if not is_tf_available() else _is_tensorflow(__lowerCamelCase ) def A (__lowerCamelCase :Tuple ): import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(__lowerCamelCase , """is_symbolic_tensor""" ): return tf.is_symbolic_tensor(__lowerCamelCase ) return type(__lowerCamelCase ) == tf.Tensor def A (__lowerCamelCase :int ): return False if not is_tf_available() else _is_tf_symbolic_tensor(__lowerCamelCase ) def A (__lowerCamelCase :Optional[int] ): import jax.numpy as jnp # noqa: F811 return isinstance(__lowerCamelCase , jnp.ndarray ) def A (__lowerCamelCase :List[str] ): return False if not is_flax_available() else _is_jax(__lowerCamelCase ) def A (__lowerCamelCase :Dict ): if isinstance(__lowerCamelCase , (dict, UserDict) ): return {k: to_py_obj(__lowerCamelCase ) for k, v in obj.items()} elif isinstance(__lowerCamelCase , (list, tuple) ): return [to_py_obj(__lowerCamelCase ) for o in obj] elif is_tf_tensor(__lowerCamelCase ): return obj.numpy().tolist() elif is_torch_tensor(__lowerCamelCase ): return obj.detach().cpu().tolist() elif is_jax_tensor(__lowerCamelCase ): return np.asarray(__lowerCamelCase ).tolist() elif isinstance(__lowerCamelCase , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def A (__lowerCamelCase :Optional[int] ): if isinstance(__lowerCamelCase , (dict, UserDict) ): return {k: to_numpy(__lowerCamelCase ) for k, v in obj.items()} elif isinstance(__lowerCamelCase , (list, tuple) ): return np.array(__lowerCamelCase ) elif is_tf_tensor(__lowerCamelCase ): return obj.numpy() elif is_torch_tensor(__lowerCamelCase ): return obj.detach().cpu().numpy() elif is_jax_tensor(__lowerCamelCase ): return np.asarray(__lowerCamelCase ) else: return obj class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = fields(self ) # Safety and consistency checks if not len(_lowercase ): raise ValueError(F'{self.__class__.__name__} has no fields.' ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(F'{self.__class__.__name__} should not have more than one required field.' ) _lowerCAmelCase = getattr(self , class_fields[0].name ) _lowerCAmelCase = all(getattr(self , field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(_lowercase ): if isinstance(_lowercase , _lowercase ): _lowerCAmelCase = first_field.items() _lowerCAmelCase = True else: try: _lowerCAmelCase = iter(_lowercase ) _lowerCAmelCase = True except TypeError: _lowerCAmelCase = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(_lowercase ): if ( not isinstance(_lowercase , (list, tuple) ) or not len(_lowercase ) == 2 or not isinstance(element[0] , _lowercase ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute _lowerCAmelCase = first_field else: # If we have a mixed iterator, raise an error raise ValueError( F'Cannot set key/value for {element}. It needs to be a tuple (key, value).' ) break setattr(self , element[0] , element[1] ) if element[1] is not None: _lowerCAmelCase = element[1] elif first_field is not None: _lowerCAmelCase = first_field else: for field in class_fields: _lowerCAmelCase = getattr(self , field.name ) if v is not None: _lowerCAmelCase = v def __delitem__( self , *_lowercase , **_lowercase ): """simple docstring""" raise Exception(F'You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.' ) def _lowercase ( self , *_lowercase , **_lowercase ): """simple docstring""" raise Exception(F'You cannot use ``setdefault`` on a {self.__class__.__name__} instance.' ) def _lowercase ( self , *_lowercase , **_lowercase ): """simple docstring""" raise Exception(F'You cannot use ``pop`` on a {self.__class__.__name__} instance.' ) def _lowercase ( self , *_lowercase , **_lowercase ): """simple docstring""" raise Exception(F'You cannot use ``update`` on a {self.__class__.__name__} instance.' ) def __getitem__( self , _lowercase ): """simple docstring""" if isinstance(_lowercase , _lowercase ): _lowerCAmelCase = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self , _lowercase , _lowercase ): """simple docstring""" if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(_lowercase , _lowercase ) super().__setattr__(_lowercase , _lowercase ) def __setitem__( self , _lowercase , _lowercase ): """simple docstring""" super().__setitem__(_lowercase , _lowercase ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(_lowercase , _lowercase ) def _lowercase ( self ): """simple docstring""" return tuple(self[k] for k in self.keys() ) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): '''simple docstring''' @classmethod def _lowercase ( cls , _lowercase ): """simple docstring""" raise ValueError( F'{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}' ) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : int = '''longest''' _lowercase : str = '''max_length''' _lowercase : List[Any] = '''do_not_pad''' class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : List[Any] = '''pt''' _lowercase : Optional[Any] = '''tf''' _lowercase : List[str] = '''np''' _lowercase : int = '''jax''' class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _lowercase ): """simple docstring""" _lowerCAmelCase = context_managers _lowerCAmelCase = ExitStack() def __enter__( self ): """simple docstring""" for context_manager in self.context_managers: self.stack.enter_context(_lowercase ) def __exit__( self , *_lowercase , **_lowercase ): """simple docstring""" self.stack.__exit__(*_lowercase , **_lowercase ) def A (__lowerCamelCase :str ): _lowerCAmelCase = infer_framework(__lowerCamelCase ) if framework == "tf": _lowerCAmelCase = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": _lowerCAmelCase = inspect.signature(model_class.forward ) # PyTorch models else: _lowerCAmelCase = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def A (__lowerCamelCase :List[str] ): _lowerCAmelCase = model_class.__name__ _lowerCAmelCase = infer_framework(__lowerCamelCase ) if framework == "tf": _lowerCAmelCase = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": _lowerCAmelCase = inspect.signature(model_class.forward ) # PyTorch models else: _lowerCAmelCase = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def A (__lowerCamelCase :MutableMapping , __lowerCamelCase :str = "" , __lowerCamelCase :str = "." ): def _flatten_dict(__lowerCamelCase :Optional[Any] , __lowerCamelCase :Optional[int]="" , __lowerCamelCase :Dict="." ): for k, v in d.items(): _lowerCAmelCase = str(__lowerCamelCase ) + delimiter + str(__lowerCamelCase ) if parent_key else k if v and isinstance(__lowerCamelCase , __lowerCamelCase ): yield from flatten_dict(__lowerCamelCase , __lowerCamelCase , delimiter=__lowerCamelCase ).items() else: yield key, v return dict(_flatten_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) ) @contextmanager def A (__lowerCamelCase :Any , __lowerCamelCase :bool = False ): if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def A (__lowerCamelCase :Dict , __lowerCamelCase :List[str]=None ): if is_numpy_array(__lowerCamelCase ): return np.transpose(__lowerCamelCase , axes=__lowerCamelCase ) elif is_torch_tensor(__lowerCamelCase ): return array.T if axes is None else array.permute(*__lowerCamelCase ) elif is_tf_tensor(__lowerCamelCase ): import tensorflow as tf return tf.transpose(__lowerCamelCase , perm=__lowerCamelCase ) elif is_jax_tensor(__lowerCamelCase ): return jnp.transpose(__lowerCamelCase , axes=__lowerCamelCase ) else: raise ValueError(f'Type not supported for transpose: {type(__lowerCamelCase )}.' ) def A (__lowerCamelCase :Tuple , __lowerCamelCase :List[Any] ): if is_numpy_array(__lowerCamelCase ): return np.reshape(__lowerCamelCase , __lowerCamelCase ) elif is_torch_tensor(__lowerCamelCase ): return array.reshape(*__lowerCamelCase ) elif is_tf_tensor(__lowerCamelCase ): import tensorflow as tf return tf.reshape(__lowerCamelCase , __lowerCamelCase ) elif is_jax_tensor(__lowerCamelCase ): return jnp.reshape(__lowerCamelCase , __lowerCamelCase ) else: raise ValueError(f'Type not supported for reshape: {type(__lowerCamelCase )}.' ) def A (__lowerCamelCase :str , __lowerCamelCase :Any=None ): if is_numpy_array(__lowerCamelCase ): return np.squeeze(__lowerCamelCase , axis=__lowerCamelCase ) elif is_torch_tensor(__lowerCamelCase ): return array.squeeze() if axis is None else array.squeeze(dim=__lowerCamelCase ) elif is_tf_tensor(__lowerCamelCase ): import tensorflow as tf return tf.squeeze(__lowerCamelCase , axis=__lowerCamelCase ) elif is_jax_tensor(__lowerCamelCase ): return jnp.squeeze(__lowerCamelCase , axis=__lowerCamelCase ) else: raise ValueError(f'Type not supported for squeeze: {type(__lowerCamelCase )}.' ) def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Dict ): if is_numpy_array(__lowerCamelCase ): return np.expand_dims(__lowerCamelCase , __lowerCamelCase ) elif is_torch_tensor(__lowerCamelCase ): return array.unsqueeze(dim=__lowerCamelCase ) elif is_tf_tensor(__lowerCamelCase ): import tensorflow as tf return tf.expand_dims(__lowerCamelCase , axis=__lowerCamelCase ) elif is_jax_tensor(__lowerCamelCase ): return jnp.expand_dims(__lowerCamelCase , axis=__lowerCamelCase ) else: raise ValueError(f'Type not supported for expand_dims: {type(__lowerCamelCase )}.' ) def A (__lowerCamelCase :Optional[Any] ): if is_numpy_array(__lowerCamelCase ): return np.size(__lowerCamelCase ) elif is_torch_tensor(__lowerCamelCase ): return array.numel() elif is_tf_tensor(__lowerCamelCase ): import tensorflow as tf return tf.size(__lowerCamelCase ) elif is_jax_tensor(__lowerCamelCase ): return array.size else: raise ValueError(f'Type not supported for expand_dims: {type(__lowerCamelCase )}.' ) def A (__lowerCamelCase :List[Any] , __lowerCamelCase :Optional[int] ): for key, value in auto_map.items(): if isinstance(__lowerCamelCase , (tuple, list) ): _lowerCAmelCase = [f'{repo_id}--{v}' if (v is not None and """--""" not in v) else v for v in value] elif value is not None and "--" not in value: _lowerCAmelCase = f'{repo_id}--{value}' return auto_map def A (__lowerCamelCase :Tuple ): for base_class in inspect.getmro(__lowerCamelCase ): _lowerCAmelCase = base_class.__module__ _lowerCAmelCase = base_class.__name__ if module.startswith("""tensorflow""" ) or module.startswith("""keras""" ) or name == "TFPreTrainedModel": return "tf" elif module.startswith("""torch""" ) or name == "PreTrainedModel": return "pt" elif module.startswith("""flax""" ) or module.startswith("""jax""" ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(f'Could not infer framework from class {model_class}.' )
5
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class A__ ( unittest.TestCase ): UpperCAmelCase = ViTImageProcessor if is_vision_available() else None @property def __UpperCamelCase ( self : str ) -> Union[str, Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __UpperCamelCase ( self : str ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =(3, 32, 128) _SCREAMING_SNAKE_CASE =tempfile.mkdtemp() # fmt: off _SCREAMING_SNAKE_CASE =['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on _SCREAMING_SNAKE_CASE =dict(zip(_a , range(len(_a ) ) ) ) _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_a ) + '''\n''' ) _SCREAMING_SNAKE_CASE ={ '''do_normalize''': False, '''do_resize''': True, '''image_processor_type''': '''ViTImageProcessor''', '''resample''': 3, '''size''': {'''height''': 32, '''width''': 128}, } _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , _a ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_a , _a ) def __UpperCamelCase ( self : Optional[Any] , **_a : str ) -> int: """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_a ) def __UpperCamelCase ( self : Optional[int] , **_a : Tuple ) -> List[Any]: """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname , **_a ) def __UpperCamelCase ( self : Tuple ) -> str: """simple docstring""" shutil.rmtree(self.tmpdirname ) def __UpperCamelCase ( self : List[Any] ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta ) _SCREAMING_SNAKE_CASE =Image.fromarray(np.moveaxis(_a , 0 , -1 ) ) return image_input def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =MgpstrProcessor(tokenizer=_a , image_processor=_a ) processor.save_pretrained(self.tmpdirname ) _SCREAMING_SNAKE_CASE =MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=_a ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , _a ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , _a ) def __UpperCamelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =MgpstrProcessor(tokenizer=_a , image_processor=_a ) processor.save_pretrained(self.tmpdirname ) _SCREAMING_SNAKE_CASE =self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) _SCREAMING_SNAKE_CASE =self.get_image_processor(do_normalize=_a , padding_value=1.0 ) _SCREAMING_SNAKE_CASE =MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_a , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , _a ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _a ) def __UpperCamelCase ( self : Union[str, Any] ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =MgpstrProcessor(tokenizer=_a , image_processor=_a ) _SCREAMING_SNAKE_CASE =self.prepare_image_inputs() _SCREAMING_SNAKE_CASE =image_processor(_a , return_tensors='''np''' ) _SCREAMING_SNAKE_CASE =processor(images=_a , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __UpperCamelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =MgpstrProcessor(tokenizer=_a , image_processor=_a ) _SCREAMING_SNAKE_CASE ='''test''' _SCREAMING_SNAKE_CASE =processor(text=_a ) _SCREAMING_SNAKE_CASE =tokenizer(_a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __UpperCamelCase ( self : List[str] ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =MgpstrProcessor(tokenizer=_a , image_processor=_a ) _SCREAMING_SNAKE_CASE ='''test''' _SCREAMING_SNAKE_CASE =self.prepare_image_inputs() _SCREAMING_SNAKE_CASE =processor(text=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''labels'''] ) # test if it raises when no input is passed with pytest.raises(_a ): processor() def __UpperCamelCase ( self : List[Any] ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =MgpstrProcessor(tokenizer=_a , image_processor=_a ) _SCREAMING_SNAKE_CASE =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] _SCREAMING_SNAKE_CASE =processor.char_decode(_a ) _SCREAMING_SNAKE_CASE =tokenizer.batch_decode(_a ) _SCREAMING_SNAKE_CASE =[seq.replace(''' ''' , '''''' ) for seq in decoded_tok] self.assertListEqual(_a , _a ) def __UpperCamelCase ( self : Any ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =MgpstrProcessor(tokenizer=_a , image_processor=_a ) _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =self.prepare_image_inputs() _SCREAMING_SNAKE_CASE =processor(text=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =MgpstrProcessor(tokenizer=_a , image_processor=_a ) _SCREAMING_SNAKE_CASE =torch.randn(1 , 27 , 38 ) _SCREAMING_SNAKE_CASE =torch.randn(1 , 27 , 5_0257 ) _SCREAMING_SNAKE_CASE =torch.randn(1 , 27 , 3_0522 ) _SCREAMING_SNAKE_CASE =processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ['''generated_text''', '''scores''', '''char_preds''', '''bpe_preds''', '''wp_preds'''] )
691
0
from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> np.ndarray: UpperCAmelCase_ = cva.getAffineTransform(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return cva.warpAffine(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , (rows, cols) ) if __name__ == "__main__": # read original image SCREAMING_SNAKE_CASE = cva.imread( str(Path(__file__).resolve().parent.parent / "image_data" / "lena.jpg") ) # turn image in gray scale value SCREAMING_SNAKE_CASE = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = gray_img.shape # set different points to rotate image SCREAMING_SNAKE_CASE = np.array([[50, 50], [200, 50], [50, 200]], np.floataa) SCREAMING_SNAKE_CASE = np.array([[10, 100], [200, 50], [100, 250]], np.floataa) SCREAMING_SNAKE_CASE = np.array([[50, 50], [150, 50], [120, 200]], np.floataa) SCREAMING_SNAKE_CASE = np.array([[10, 100], [80, 50], [180, 250]], np.floataa) # add all rotated images in a list SCREAMING_SNAKE_CASE = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations SCREAMING_SNAKE_CASE = plt.figure(1) SCREAMING_SNAKE_CASE = ["Original", "Rotation 1", "Rotation 2", "Rotation 3"] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, "gray") plt.title(titles[i]) plt.axis("off") plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
23
def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Union[str, Any]: UpperCAmelCase_ = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Tuple: UpperCAmelCase_ = 0 while b > 0: if b & 1: UpperCAmelCase_ = ((res % c) + (a % c)) % c a += a b >>= 1 return res
23
1
'''simple docstring''' import argparse import datetime def __UpperCamelCase ( UpperCAmelCase ): lowercase__ : Optional[int] = { '''0''': '''Sunday''', '''1''': '''Monday''', '''2''': '''Tuesday''', '''3''': '''Wednesday''', '''4''': '''Thursday''', '''5''': '''Friday''', '''6''': '''Saturday''', } lowercase__ : Dict = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(UpperCAmelCase ) < 11: raise ValueError('''Must be 10 characters long''' ) # Get month lowercase__ : int = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError('''Month must be between 1 - 12''' ) lowercase__ : str = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError('''Date separator must be \'-\' or \'/\'''' ) # Get day lowercase__ : int = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError('''Date must be between 1 - 31''' ) # Get second separator lowercase__ : str = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError('''Date separator must be \'-\' or \'/\'''' ) # Get year lowercase__ : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8500: raise ValueError( '''Year out of range. There has to be some sort of limit...right?''' ) # Get datetime obj for validation lowercase__ : Union[str, Any] = datetime.date(int(UpperCAmelCase ) , int(UpperCAmelCase ) , int(UpperCAmelCase ) ) # Start math if m <= 2: lowercase__ : Optional[Any] = y - 1 lowercase__ : Optional[int] = m + 12 # maths var lowercase__ : int = int(str(UpperCAmelCase )[:2] ) lowercase__ : int = int(str(UpperCAmelCase )[2:] ) lowercase__ : int = int(2.6 * m - 5.3_9 ) lowercase__ : int = int(c / 4 ) lowercase__ : int = int(k / 4 ) lowercase__ : int = int(d + k ) lowercase__ : int = int(t + u + v + x ) lowercase__ : int = int(z - (2 * c) ) lowercase__ : int = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError('''The date was evaluated incorrectly. Contact developer.''' ) # Response lowercase__ : str = F"""Your date {date_input}, is a {days[str(UpperCAmelCase )]}!""" return response if __name__ == "__main__": import doctest doctest.testmod() __a: int = argparse.ArgumentParser( description=( """Find out what day of the week nearly any date is or was. Enter """ """date as a string in the mm-dd-yyyy or mm/dd/yyyy format""" ) ) parser.add_argument( """date_input""", type=str, help="""Date as a string (mm-dd-yyyy or mm/dd/yyyy)""" ) __a: List[Any] = parser.parse_args() zeller(args.date_input)
152
'''simple docstring''' __a: Any = """ # Transformers 설치 방법 ! pip install transformers datasets # 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요. # ! pip install git+https://github.com/huggingface/transformers.git """ __a: List[Any] = [{"""type""": """code""", """content""": INSTALL_CONTENT}] __a: Tuple = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
152
1
"""simple docstring""" from manim import * class __A ( A_ ): '''simple docstring''' def UpperCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" lowercase__ : List[str] = Rectangle(height=0.5 ,width=0.5 ) lowercase__ : int = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0 ) lowercase__ : Union[str, Any] = [mem.copy() for i in range(6 )] lowercase__ : Optional[Any] = [mem.copy() for i in range(6 )] lowercase__ : List[str] = VGroup(*_snake_case ).arrange(_snake_case ,buff=0 ) lowercase__ : Optional[int] = VGroup(*_snake_case ).arrange(_snake_case ,buff=0 ) lowercase__ : List[Any] = VGroup(_snake_case ,_snake_case ).arrange(_snake_case ,buff=0 ) lowercase__ : Union[str, Any] = Text('''CPU''' ,font_size=24 ) lowercase__ : List[Any] = Group(_snake_case ,_snake_case ).arrange(_snake_case ,buff=0.5 ,aligned_edge=_snake_case ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_snake_case ) lowercase__ : Optional[Any] = [mem.copy() for i in range(1 )] lowercase__ : Optional[int] = VGroup(*_snake_case ).arrange(_snake_case ,buff=0 ) lowercase__ : Dict = Text('''GPU''' ,font_size=24 ) lowercase__ : List[Any] = Group(_snake_case ,_snake_case ).arrange(_snake_case ,buff=0.5 ,aligned_edge=_snake_case ) gpu.align_to(_snake_case ,_snake_case ) gpu.set_x(gpu.get_x() - 1 ) self.add(_snake_case ) lowercase__ : List[str] = [mem.copy() for i in range(6 )] lowercase__ : Union[str, Any] = VGroup(*_snake_case ).arrange(_snake_case ,buff=0 ) lowercase__ : List[str] = Text('''Model''' ,font_size=24 ) lowercase__ : Dict = Group(_snake_case ,_snake_case ).arrange(_snake_case ,buff=0.5 ,aligned_edge=_snake_case ) model.move_to([3, -1.0, 0] ) self.play( Create(_snake_case ,run_time=1 ) ,Create(_snake_case ,run_time=1 ) ,Create(_snake_case ,run_time=1 ) ,) lowercase__ : int = MarkupText( f"""First, an empty model skeleton is loaded\ninto <span fgcolor='{YELLOW}'>memory</span> without using much RAM.""" ,font_size=24 ,) lowercase__ : Dict = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowercase__ : str = MarkupText( f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" ,font_size=18 ,) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(_snake_case ,run_time=2.5 ) ,Write(_snake_case ) ,Write(_snake_case ) ) self.add(_snake_case ) lowercase__ : Optional[int] = [] lowercase__ : Optional[int] = [] lowercase__ : Any = [] for i, rect in enumerate(_snake_case ): lowercase__ : Tuple = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0.0 ).set_fill(_snake_case ,opacity=0.7 ) cpu_target.move_to(_snake_case ) cpu_target.generate_target() lowercase__ : Any = 0.46 / 4 lowercase__ : List[Any] = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) ,buff=0.02 ,direction=_snake_case ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target ,direction=_snake_case ,buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target ,direction=_snake_case ,buff=0.0 ) cpu_targs.append(_snake_case ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(_snake_case ) ) second_animations.append(MoveToTarget(_snake_case ,run_time=1.5 ) ) self.play(*_snake_case ) self.play(*_snake_case ) self.wait()
122
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __A ( A_ ,A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Optional[int] = StableDiffusionXLImgaImgPipeline lowerCAmelCase : Tuple = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} lowerCAmelCase : List[str] = PipelineTesterMixin.required_optional_params - {"latents"} lowerCAmelCase : Any = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowerCAmelCase : List[str] = IMAGE_TO_IMAGE_IMAGE_PARAMS lowerCAmelCase : str = IMAGE_TO_IMAGE_IMAGE_PARAMS def UpperCAmelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" torch.manual_seed(0 ) lowercase__ : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') ,up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') ,attention_head_dim=(2, 4) ,use_linear_projection=_snake_case ,addition_embed_type='''text_time''' ,addition_time_embed_dim=8 ,transformer_layers_per_block=(1, 2) ,projection_class_embeddings_input_dim=80 ,cross_attention_dim=64 ,) lowercase__ : Union[str, Any] = EulerDiscreteScheduler( beta_start=0.0_0085 ,beta_end=0.012 ,steps_offset=1 ,beta_schedule='''scaled_linear''' ,timestep_spacing='''leading''' ,) torch.manual_seed(0 ) lowercase__ : str = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=4 ,sample_size=128 ,) torch.manual_seed(0 ) lowercase__ : List[str] = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_000 ,hidden_act='''gelu''' ,projection_dim=32 ,) lowercase__ : Optional[Any] = CLIPTextModel(_snake_case ) lowercase__ : Any = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ,local_files_only=_snake_case ) lowercase__ : Tuple = CLIPTextModelWithProjection(_snake_case ) lowercase__ : Tuple = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ,local_files_only=_snake_case ) lowercase__ : Union[str, Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''text_encoder_2''': text_encoder_a, '''tokenizer_2''': tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def UpperCAmelCase ( self : List[str] ,_snake_case : int ,_snake_case : Any=0 ) -> Optional[Any]: """simple docstring""" lowercase__ : int = floats_tensor((1, 3, 32, 32) ,rng=random.Random(_snake_case ) ).to(_snake_case ) lowercase__ : Tuple = image / 2 + 0.5 if str(_snake_case ).startswith('''mps''' ): lowercase__ : int = torch.manual_seed(_snake_case ) else: lowercase__ : Optional[Any] = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) lowercase__ : int = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 5.0, '''output_type''': '''numpy''', '''strength''': 0.75, } return inputs def UpperCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" lowercase__ : int = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__ : Dict = self.get_dummy_components() lowercase__ : Tuple = StableDiffusionXLImgaImgPipeline(**_snake_case ) lowercase__ : Dict = sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) lowercase__ : Dict = self.get_dummy_inputs(_snake_case ) lowercase__ : Dict = sd_pipe(**_snake_case ).images lowercase__ : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase__ : Optional[int] = np.array([0.4656, 0.4840, 0.4439, 0.6698, 0.5574, 0.4524, 0.5799, 0.5943, 0.5165] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def UpperCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def UpperCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" pass def UpperCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" lowercase__ : int = self.get_dummy_components() lowercase__ : Any = StableDiffusionXLImgaImgPipeline(**_snake_case ) lowercase__ : int = sd_pipe.to(_snake_case ) lowercase__ : List[Any] = sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) # forward without prompt embeds lowercase__ : Tuple = self.get_dummy_inputs(_snake_case ) lowercase__ : List[str] = 3 * ['''this is a negative prompt'''] lowercase__ : List[str] = negative_prompt lowercase__ : Union[str, Any] = 3 * [inputs['''prompt''']] lowercase__ : List[Any] = sd_pipe(**_snake_case ) lowercase__ : Any = output.images[0, -3:, -3:, -1] # forward with prompt embeds lowercase__ : Optional[int] = self.get_dummy_inputs(_snake_case ) lowercase__ : List[str] = 3 * ['''this is a negative prompt'''] lowercase__ : List[str] = 3 * [inputs.pop('''prompt''' )] ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) : Optional[int] = sd_pipe.encode_prompt(_snake_case ,negative_prompt=_snake_case ) lowercase__ : Tuple = sd_pipe( **_snake_case ,prompt_embeds=_snake_case ,negative_prompt_embeds=_snake_case ,pooled_prompt_embeds=_snake_case ,negative_pooled_prompt_embeds=_snake_case ,) lowercase__ : Union[str, Any] = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @slow @require_torch_gpu class __A ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : int ) -> str: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self : Any ,_snake_case : int ,_snake_case : Any="cpu" ,_snake_case : List[str]=torch.floataa ,_snake_case : Union[str, Any]=0 ) -> List[Any]: """simple docstring""" lowercase__ : Optional[Any] = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) lowercase__ : Union[str, Any] = np.random.RandomState(_snake_case ).standard_normal((1, 4, 64, 64) ) lowercase__ : int = torch.from_numpy(_snake_case ).to(device=_snake_case ,dtype=_snake_case ) lowercase__ : List[Any] = { '''prompt''': '''a photograph of an astronaut riding a horse''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def UpperCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" lowercase__ : Dict = DiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-base''' ) pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowercase__ : Tuple = self.get_inputs(_snake_case ) lowercase__ : Union[str, Any] = pipe(**_snake_case ).images lowercase__ : Any = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) lowercase__ : List[str] = np.array([0.4_9493, 0.4_7896, 0.4_0798, 0.5_4214, 0.5_3212, 0.4_8202, 0.4_7656, 0.4_6329, 0.4_8506] ) assert np.abs(image_slice - expected_slice ).max() < 7e-3
122
1
from __future__ import annotations def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if days_between_payments <= 0: raise ValueError('days_between_payments must be > 0' ) if daily_interest_rate < 0: raise ValueError('daily_interest_rate must be >= 0' ) if principal <= 0: raise ValueError('principal must be > 0' ) return principal * daily_interest_rate * days_between_payments def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): if number_of_compounding_periods <= 0: raise ValueError('number_of_compounding_periods must be > 0' ) if nominal_annual_interest_rate_percentage < 0: raise ValueError('nominal_annual_interest_rate_percentage must be >= 0' ) if principal <= 0: raise ValueError('principal must be > 0' ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): if number_of_years <= 0: raise ValueError('number_of_years must be > 0' ) if nominal_annual_percentage_rate < 0: raise ValueError('nominal_annual_percentage_rate must be >= 0' ) if principal <= 0: raise ValueError('principal must be > 0' ) return compound_interest( __lowerCAmelCase , nominal_annual_percentage_rate / 3_65 , number_of_years * 3_65 ) if __name__ == "__main__": import doctest doctest.testmod()
304
import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class lowercase : """simple docstring""" def __init__( self : Union[str, Any] , lowerCamelCase_ : Optional[int]=2 , lowerCamelCase_ : Any=3 , lowerCamelCase_ : int=64 , lowerCamelCase_ : List[str]=None ): '''simple docstring''' _snake_case : Tuple = np.random.default_rng(lowerCamelCase_ ) _snake_case : Dict = length _snake_case : Union[str, Any] = rng.normal(size=(length,) ).astype(np.floataa ) _snake_case : Any = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : List[str] ): '''simple docstring''' return self.length def __getitem__( self : Optional[int] , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' return {"x": self.x[i], "y": self.y[i]} class lowercase ( torch.nn.Module ): """simple docstring""" def __init__( self : int , lowerCamelCase_ : Any=0 , lowerCamelCase_ : Optional[Any]=0 , lowerCamelCase_ : Tuple=False ): '''simple docstring''' super().__init__() _snake_case : List[str] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) _snake_case : Union[str, Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) _snake_case : List[str] = True def __UpperCAmelCase ( self : Any , lowerCamelCase_ : List[str]=None ): '''simple docstring''' if self.first_batch: print(f'''Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}''' ) _snake_case : str = False return x * self.a[0] + self.b[0] class lowercase ( torch.nn.Module ): """simple docstring""" def __init__( self : Any , lowerCamelCase_ : List[Any]=0 , lowerCamelCase_ : Optional[int]=0 , lowerCamelCase_ : int=False ): '''simple docstring''' super().__init__() _snake_case : Optional[Any] = torch.nn.Parameter(torch.tensor(lowerCamelCase_ ).float() ) _snake_case : List[str] = torch.nn.Parameter(torch.tensor(lowerCamelCase_ ).float() ) _snake_case : Dict = True def __UpperCAmelCase ( self : int , lowerCamelCase_ : str=None ): '''simple docstring''' if self.first_batch: print(f'''Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}''' ) _snake_case : Any = False return x * self.a + self.b def A__( __lowerCAmelCase , __lowerCAmelCase = 16 ): from datasets import load_dataset from transformers import AutoTokenizer _snake_case : str = AutoTokenizer.from_pretrained('bert-base-cased' ) _snake_case : List[str] = {'train': 'tests/test_samples/MRPC/train.csv', 'validation': 'tests/test_samples/MRPC/dev.csv'} _snake_case : Tuple = load_dataset('csv' , data_files=__lowerCAmelCase ) _snake_case : Any = datasets['train'].unique('label' ) _snake_case : Union[str, Any] = {v: i for i, v in enumerate(__lowerCAmelCase )} def tokenize_function(__lowerCAmelCase ): # max_length=None => use the model max length (it's actually the default) _snake_case : Optional[Any] = tokenizer( examples['sentence1'] , examples['sentence2'] , truncation=__lowerCAmelCase , max_length=__lowerCAmelCase , padding='max_length' ) if "label" in examples: _snake_case : Optional[int] = [label_to_id[l] for l in examples['label']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _snake_case : Any = datasets.map( __lowerCAmelCase , batched=__lowerCAmelCase , remove_columns=['sentence1', 'sentence2', 'label'] , ) def collate_fn(__lowerCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__lowerCAmelCase , padding='max_length' , max_length=1_28 , return_tensors='pt' ) return tokenizer.pad(__lowerCAmelCase , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. _snake_case : int = DataLoader(tokenized_datasets['train'] , shuffle=__lowerCAmelCase , collate_fn=__lowerCAmelCase , batch_size=2 ) _snake_case : List[Any] = DataLoader(tokenized_datasets['validation'] , shuffle=__lowerCAmelCase , collate_fn=__lowerCAmelCase , batch_size=1 ) return train_dataloader, eval_dataloader
304
1
import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowercase ( lowerCAmelCase__): '''simple docstring''' def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'hidden_sizes' ) ) self.parent.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'neck_hidden_sizes' ) ) self.parent.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'num_attention_heads' ) ) class lowercase : '''simple docstring''' def __init__( self : List[Any] , snake_case : str , snake_case : Dict=13 , snake_case : Any=32 , snake_case : int=2 , snake_case : str=3 , snake_case : str=640 , snake_case : Any=4 , snake_case : List[str]="silu" , snake_case : str=3 , snake_case : Union[str, Any]=32 , snake_case : Union[str, Any]=0.1 , snake_case : Dict=0.1 , snake_case : int=0.1 , snake_case : int=0.02 , snake_case : int=True , snake_case : Any=True , snake_case : int=10 , snake_case : Optional[int]=None , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = parent SCREAMING_SNAKE_CASE : List[str] = batch_size SCREAMING_SNAKE_CASE : int = image_size SCREAMING_SNAKE_CASE : List[Any] = patch_size SCREAMING_SNAKE_CASE : Optional[int] = num_channels SCREAMING_SNAKE_CASE : Tuple = last_hidden_size SCREAMING_SNAKE_CASE : Optional[Any] = num_attention_heads SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_act SCREAMING_SNAKE_CASE : List[Any] = conv_kernel_size SCREAMING_SNAKE_CASE : Any = output_stride SCREAMING_SNAKE_CASE : Optional[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = classifier_dropout_prob SCREAMING_SNAKE_CASE : Tuple = use_labels SCREAMING_SNAKE_CASE : Union[str, Any] = is_training SCREAMING_SNAKE_CASE : Dict = num_labels SCREAMING_SNAKE_CASE : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE : Optional[Any] = scope def lowerCamelCase_ ( self : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Dict = None if self.use_labels: SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) SCREAMING_SNAKE_CASE : Optional[int] = self.get_config() return config, pixel_values, labels, pixel_labels def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowerCamelCase_ ( self : List[str] , snake_case : List[Any] , snake_case : List[Any] , snake_case : Dict , snake_case : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = MobileViTModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() SCREAMING_SNAKE_CASE : Dict = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCamelCase_ ( self : Optional[int] , snake_case : Optional[Any] , snake_case : Optional[int] , snake_case : List[Any] , snake_case : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.num_labels SCREAMING_SNAKE_CASE : Tuple = MobileViTForImageClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self : Any , snake_case : str , snake_case : int , snake_case : Tuple , snake_case : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.num_labels SCREAMING_SNAKE_CASE : Dict = MobileViTForSemanticSegmentation(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() SCREAMING_SNAKE_CASE : Union[str, Any] = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) SCREAMING_SNAKE_CASE : Any = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCamelCase_ ( self : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = config_and_inputs SCREAMING_SNAKE_CASE : Optional[int] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase): '''simple docstring''' UpperCAmelCase : Union[str, Any] = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) UpperCAmelCase : List[Any] = ( { "feature-extraction": MobileViTModel, "image-classification": MobileViTForImageClassification, "image-segmentation": MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) UpperCAmelCase : List[str] = False UpperCAmelCase : Union[str, Any] = False UpperCAmelCase : List[Any] = False UpperCAmelCase : Optional[int] = False def lowerCamelCase_ ( self : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = MobileViTModelTester(self ) SCREAMING_SNAKE_CASE : Dict = MobileViTConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( self : int ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='MobileViT does not use inputs_embeds' ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' pass @unittest.skip(reason='MobileViT does not support input and output embeddings' ) def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' pass @unittest.skip(reason='MobileViT does not output attentions' ) def lowerCamelCase_ ( self : str ): '''simple docstring''' pass def lowerCamelCase_ ( self : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : List[str] = model_class(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : Tuple = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : Tuple = ['pixel_values'] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' pass def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( self : Any ): '''simple docstring''' def check_hidden_states_output(snake_case : str , snake_case : List[Any] , snake_case : Optional[int] ): SCREAMING_SNAKE_CASE : List[Any] = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : Tuple = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = outputs.hidden_states SCREAMING_SNAKE_CASE : Tuple = 5 self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. SCREAMING_SNAKE_CASE : Optional[int] = 2 for i in range(len(_SCREAMING_SNAKE_CASE ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : int = True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : Union[str, Any] = True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( self : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_SCREAMING_SNAKE_CASE ) @slow def lowerCamelCase_ ( self : str ): '''simple docstring''' for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Optional[Any] = MobileViTModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( ) -> int: SCREAMING_SNAKE_CASE : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowercase ( unittest.TestCase): '''simple docstring''' @cached_property def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' return MobileViTImageProcessor.from_pretrained('apple/mobilevit-xx-small' ) if is_vision_available() else None @slow def lowerCamelCase_ ( self : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = MobileViTForImageClassification.from_pretrained('apple/mobilevit-xx-small' ).to(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : int = self.default_image_processor SCREAMING_SNAKE_CASE : Optional[int] = prepare_img() SCREAMING_SNAKE_CASE : Dict = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='pt' ).to(_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[Any] = model(**_SCREAMING_SNAKE_CASE ) # verify the logits SCREAMING_SNAKE_CASE : str = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Tuple = torch.tensor([-1.9364, -1.2327, -0.4653] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) ) @slow def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) SCREAMING_SNAKE_CASE : Optional[int] = model.to(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Tuple = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) SCREAMING_SNAKE_CASE : int = prepare_img() SCREAMING_SNAKE_CASE : Any = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='pt' ).to(_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : List[Any] = model(**_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Union[str, Any] = outputs.logits # verify the logits SCREAMING_SNAKE_CASE : Dict = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : str = torch.tensor( [ [[6.9713, 6.9786, 7.2422], [7.2893, 7.2825, 7.4446], [7.6580, 7.8797, 7.9420]], [[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9868, -9.7132], [-11.0405, -11.0221, -10.7318]], [[-3.3089, -2.8539, -2.6740], [-3.2706, -2.5621, -2.5108], [-3.2534, -2.6615, -2.6651]], ] , device=_SCREAMING_SNAKE_CASE , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) ) @slow def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) SCREAMING_SNAKE_CASE : Optional[Any] = model.to(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Optional[int] = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) SCREAMING_SNAKE_CASE : str = prepare_img() SCREAMING_SNAKE_CASE : str = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='pt' ).to(_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : str = model(**_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Optional[Any] = outputs.logits.detach().cpu() SCREAMING_SNAKE_CASE : Dict = image_processor.post_process_semantic_segmentation(outputs=_SCREAMING_SNAKE_CASE , target_sizes=[(50, 60)] ) SCREAMING_SNAKE_CASE : List[str] = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Any = image_processor.post_process_semantic_segmentation(outputs=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Tuple = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , _SCREAMING_SNAKE_CASE )
709
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class lowercase ( unittest.TestCase): '''simple docstring''' def __init__( self : List[Any] , snake_case : Union[str, Any] , snake_case : Optional[int]=7 , snake_case : Tuple=3 , snake_case : List[Any]=30 , snake_case : Union[str, Any]=400 , snake_case : Optional[int]=True , snake_case : Tuple=None , snake_case : List[Any]=True , snake_case : Dict=[0.5, 0.5, 0.5] , snake_case : List[Any]=[0.5, 0.5, 0.5] , snake_case : str=True , snake_case : Any=1 / 255 , snake_case : Optional[int]=True , ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333} SCREAMING_SNAKE_CASE : Union[str, Any] = parent SCREAMING_SNAKE_CASE : int = batch_size SCREAMING_SNAKE_CASE : str = num_channels SCREAMING_SNAKE_CASE : int = min_resolution SCREAMING_SNAKE_CASE : List[str] = max_resolution SCREAMING_SNAKE_CASE : Any = do_resize SCREAMING_SNAKE_CASE : List[Any] = size SCREAMING_SNAKE_CASE : Optional[Any] = do_normalize SCREAMING_SNAKE_CASE : Dict = image_mean SCREAMING_SNAKE_CASE : Dict = image_std SCREAMING_SNAKE_CASE : Dict = do_rescale SCREAMING_SNAKE_CASE : int = rescale_factor SCREAMING_SNAKE_CASE : Optional[int] = do_pad def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowerCamelCase_ ( self : Optional[int] , snake_case : List[str] , snake_case : Dict=False ): '''simple docstring''' if not batched: SCREAMING_SNAKE_CASE : Optional[int] = image_inputs[0] if isinstance(snake_case , Image.Image ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = image.size else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = image.shape[1], image.shape[2] if w < h: SCREAMING_SNAKE_CASE : int = int(self.size['shortest_edge'] * h / w ) SCREAMING_SNAKE_CASE : int = self.size['shortest_edge'] elif w > h: SCREAMING_SNAKE_CASE : int = self.size['shortest_edge'] SCREAMING_SNAKE_CASE : Optional[int] = int(self.size['shortest_edge'] * w / h ) else: SCREAMING_SNAKE_CASE : Optional[Any] = self.size['shortest_edge'] SCREAMING_SNAKE_CASE : int = self.size['shortest_edge'] else: SCREAMING_SNAKE_CASE : Tuple = [] for image in image_inputs: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) SCREAMING_SNAKE_CASE : int = max(snake_case , key=lambda snake_case : item[0] )[0] SCREAMING_SNAKE_CASE : Optional[int] = max(snake_case , key=lambda snake_case : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowercase ( SCREAMING_SNAKE_CASE_ , unittest.TestCase): '''simple docstring''' UpperCAmelCase : Optional[Any] = DeformableDetrImageProcessor if is_vision_available() else None def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = DeformableDetrImageProcessingTester(self ) @property def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case , 'image_mean' ) ) self.assertTrue(hasattr(snake_case , 'image_std' ) ) self.assertTrue(hasattr(snake_case , 'do_normalize' ) ) self.assertTrue(hasattr(snake_case , 'do_resize' ) ) self.assertTrue(hasattr(snake_case , 'do_rescale' ) ) self.assertTrue(hasattr(snake_case , 'do_pad' ) ) self.assertTrue(hasattr(snake_case , 'size' ) ) def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1333} ) self.assertEqual(image_processor.do_pad , snake_case ) SCREAMING_SNAKE_CASE : Tuple = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=snake_case ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , snake_case ) def lowerCamelCase_ ( self : str ): '''simple docstring''' pass def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE : Optional[int] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.image_processor_tester.get_expected_values(snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.image_processor_tester.get_expected_values(snake_case , batched=snake_case ) SCREAMING_SNAKE_CASE : Any = image_processing(snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case , numpify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE : int = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = self.image_processor_tester.get_expected_values(snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE : List[Any] = image_processing(snake_case , return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = self.image_processor_tester.get_expected_values(snake_case , batched=snake_case ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case , torchify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = self.image_processor_tester.get_expected_values(snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE : Union[str, Any] = image_processing(snake_case , return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.image_processor_tester.get_expected_values(snake_case , batched=snake_case ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: SCREAMING_SNAKE_CASE : str = json.loads(f.read() ) SCREAMING_SNAKE_CASE : Optional[int] = {'image_id': 39769, 'annotations': target} # encode them SCREAMING_SNAKE_CASE : str = DeformableDetrImageProcessor() SCREAMING_SNAKE_CASE : int = image_processing(images=snake_case , annotations=snake_case , return_tensors='pt' ) # verify pixel values SCREAMING_SNAKE_CASE : int = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , snake_case ) SCREAMING_SNAKE_CASE : int = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , snake_case , atol=1E-4 ) ) # verify area SCREAMING_SNAKE_CASE : str = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , snake_case ) ) # verify boxes SCREAMING_SNAKE_CASE : Dict = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , snake_case ) SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , snake_case , atol=1E-3 ) ) # verify image_id SCREAMING_SNAKE_CASE : int = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , snake_case ) ) # verify is_crowd SCREAMING_SNAKE_CASE : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , snake_case ) ) # verify class_labels SCREAMING_SNAKE_CASE : str = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , snake_case ) ) # verify orig_size SCREAMING_SNAKE_CASE : Dict = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , snake_case ) ) # verify size SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , snake_case ) ) @slow def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: SCREAMING_SNAKE_CASE : Optional[int] = json.loads(f.read() ) SCREAMING_SNAKE_CASE : List[str] = {'file_name': '000000039769.png', 'image_id': 39769, 'segments_info': target} SCREAMING_SNAKE_CASE : Optional[Any] = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them SCREAMING_SNAKE_CASE : Union[str, Any] = DeformableDetrImageProcessor(format='coco_panoptic' ) SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(images=snake_case , annotations=snake_case , masks_path=snake_case , return_tensors='pt' ) # verify pixel values SCREAMING_SNAKE_CASE : str = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , snake_case ) SCREAMING_SNAKE_CASE : List[str] = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , snake_case , atol=1E-4 ) ) # verify area SCREAMING_SNAKE_CASE : Any = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , snake_case ) ) # verify boxes SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , snake_case ) SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , snake_case , atol=1E-3 ) ) # verify image_id SCREAMING_SNAKE_CASE : int = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , snake_case ) ) # verify is_crowd SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , snake_case ) ) # verify class_labels SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , snake_case ) ) # verify masks SCREAMING_SNAKE_CASE : Tuple = 822873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , snake_case ) # verify orig_size SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , snake_case ) ) # verify size SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , snake_case ) )
308
0
'''simple docstring''' def UpperCamelCase_ ( snake_case_ : Optional[Any] , snake_case_ : Tuple , snake_case_ : Optional[Any] , snake_case_ : Tuple , snake_case_ : Any , snake_case_ : Union[str, Any] ) -> List[str]: '''simple docstring''' if index == r: for j in range(snake_case_ ): print(data[j] , end=""" """ ) print(""" """ ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location __lowerCAmelCase = arr[i] combination_util(snake_case_ , snake_case_ , snake_case_ , index + 1 , snake_case_ , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def UpperCamelCase_ ( snake_case_ : List[str] , snake_case_ : Optional[Any] , snake_case_ : Union[str, Any] ) -> Any: '''simple docstring''' __lowerCAmelCase = [0] * r # Print all combination using temporary array 'data[]' combination_util(snake_case_ , snake_case_ , snake_case_ , 0 , snake_case_ , 0 ) if __name__ == "__main__": # Driver code to check the function above _A : int = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
427
'''simple docstring''' class _lowercase : '''simple docstring''' def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : int=None ) -> Dict: __lowerCAmelCase = data __lowerCAmelCase = previous __lowerCAmelCase = next_node def __str__( self : List[Any] ) -> str: return f"""{self.data}""" def a ( self : List[Any] ) -> int: return self.data def a ( self : Tuple ) -> Dict: return self.next def a ( self : Optional[int] ) -> Tuple: return self.previous class _lowercase : '''simple docstring''' def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Dict ) -> Optional[int]: __lowerCAmelCase = head def __iter__( self : Tuple ) -> int: return self def a ( self : List[str] ) -> Optional[int]: if not self.current: raise StopIteration else: __lowerCAmelCase = self.current.get_data() __lowerCAmelCase = self.current.get_next() return value class _lowercase : '''simple docstring''' def __init__( self : str ) -> str: __lowerCAmelCase = None # First node in list __lowerCAmelCase = None # Last node in list def __str__( self : Any ) -> Union[str, Any]: __lowerCAmelCase = self.head __lowerCAmelCase = [] while current is not None: nodes.append(current.get_data() ) __lowerCAmelCase = current.get_next() return " ".join(str(SCREAMING_SNAKE_CASE__ ) for node in nodes ) def __contains__( self : Any , SCREAMING_SNAKE_CASE__ : int ) -> Optional[int]: __lowerCAmelCase = self.head while current: if current.get_data() == value: return True __lowerCAmelCase = current.get_next() return False def __iter__( self : List[Any] ) -> Dict: return LinkedListIterator(self.head ) def a ( self : List[str] ) -> Optional[Any]: if self.head: return self.head.get_data() return None def a ( self : List[str] ) -> int: if self.tail: return self.tail.get_data() return None def a ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Node ) -> None: if self.head is None: __lowerCAmelCase = node __lowerCAmelCase = node else: self.insert_before_node(self.head , SCREAMING_SNAKE_CASE__ ) def a ( self : str , SCREAMING_SNAKE_CASE__ : Node ) -> None: if self.head is None: self.set_head(SCREAMING_SNAKE_CASE__ ) else: self.insert_after_node(self.tail , SCREAMING_SNAKE_CASE__ ) def a ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int ) -> None: __lowerCAmelCase = Node(SCREAMING_SNAKE_CASE__ ) if self.head is None: self.set_head(SCREAMING_SNAKE_CASE__ ) else: self.set_tail(SCREAMING_SNAKE_CASE__ ) def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Node , SCREAMING_SNAKE_CASE__ : Node ) -> None: __lowerCAmelCase = node __lowerCAmelCase = node.previous if node.get_previous() is None: __lowerCAmelCase = node_to_insert else: __lowerCAmelCase = node_to_insert __lowerCAmelCase = node_to_insert def a ( self : Dict , SCREAMING_SNAKE_CASE__ : Node , SCREAMING_SNAKE_CASE__ : Node ) -> None: __lowerCAmelCase = node __lowerCAmelCase = node.next if node.get_next() is None: __lowerCAmelCase = node_to_insert else: __lowerCAmelCase = node_to_insert __lowerCAmelCase = node_to_insert def a ( self : Dict , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> None: __lowerCAmelCase = 1 __lowerCAmelCase = Node(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = self.head while node: if current_position == position: self.insert_before_node(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return current_position += 1 __lowerCAmelCase = node.next self.insert_after_node(self.tail , SCREAMING_SNAKE_CASE__ ) def a ( self : Any , SCREAMING_SNAKE_CASE__ : int ) -> Node: __lowerCAmelCase = self.head while node: if node.get_data() == item: return node __lowerCAmelCase = node.get_next() raise Exception("""Node not found""" ) def a ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> Any: if (node := self.get_node(SCREAMING_SNAKE_CASE__ )) is not None: if node == self.head: __lowerCAmelCase = self.head.get_next() if node == self.tail: __lowerCAmelCase = self.tail.get_previous() self.remove_node_pointers(SCREAMING_SNAKE_CASE__ ) @staticmethod def a ( SCREAMING_SNAKE_CASE__ : Node ) -> None: if node.get_next(): __lowerCAmelCase = node.previous if node.get_previous(): __lowerCAmelCase = node.next __lowerCAmelCase = None __lowerCAmelCase = None def a ( self : Optional[int] ) -> str: return self.head is None def UpperCamelCase_ ( ) -> None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
427
1
'''simple docstring''' from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract snake_case_ = logging.get_logger(__name__) def __lowercase (_SCREAMING_SNAKE_CASE :List[str] , _SCREAMING_SNAKE_CASE :Dict , _SCREAMING_SNAKE_CASE :Optional[int] ): return [ int(10_00 * (box[0] / width) ), int(10_00 * (box[1] / height) ), int(10_00 * (box[2] / width) ), int(10_00 * (box[3] / height) ), ] def __lowercase (_SCREAMING_SNAKE_CASE :np.ndarray , _SCREAMING_SNAKE_CASE :Optional[str] , _SCREAMING_SNAKE_CASE :Optional[str] ): SCREAMING_SNAKE_CASE : str = to_pil_image(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : List[Any] = pil_image.size SCREAMING_SNAKE_CASE : int = pytesseract.image_to_data(_SCREAMING_SNAKE_CASE , lang=_SCREAMING_SNAKE_CASE , output_type='''dict''' , config=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : List[Any] = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates SCREAMING_SNAKE_CASE : Optional[int] = [idx for idx, word in enumerate(_SCREAMING_SNAKE_CASE ) if not word.strip()] SCREAMING_SNAKE_CASE : Any = [word for idx, word in enumerate(_SCREAMING_SNAKE_CASE ) if idx not in irrelevant_indices] SCREAMING_SNAKE_CASE : Any = [coord for idx, coord in enumerate(_SCREAMING_SNAKE_CASE ) if idx not in irrelevant_indices] SCREAMING_SNAKE_CASE : Union[str, Any] = [coord for idx, coord in enumerate(_SCREAMING_SNAKE_CASE ) if idx not in irrelevant_indices] SCREAMING_SNAKE_CASE : int = [coord for idx, coord in enumerate(_SCREAMING_SNAKE_CASE ) if idx not in irrelevant_indices] SCREAMING_SNAKE_CASE : Optional[Any] = [coord for idx, coord in enumerate(_SCREAMING_SNAKE_CASE ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format SCREAMING_SNAKE_CASE : int = [] for x, y, w, h in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE : int = [x, y, x + w, y + h] actual_boxes.append(_SCREAMING_SNAKE_CASE ) # finally, normalize the bounding boxes SCREAMING_SNAKE_CASE : List[str] = [] for box in actual_boxes: normalized_boxes.append(normalize_box(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) assert len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE ), "Not as many words as there are bounding boxes" return words, normalized_boxes class a__ ( _lowercase ): __magic_name__ : Any = ["pixel_values"] def __init__(self : Dict, __UpperCAmelCase : bool = True, __UpperCAmelCase : Dict[str, int] = None, __UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR, __UpperCAmelCase : bool = True, __UpperCAmelCase : float = 1 / 255, __UpperCAmelCase : bool = True, __UpperCAmelCase : Union[float, Iterable[float]] = None, __UpperCAmelCase : Union[float, Iterable[float]] = None, __UpperCAmelCase : bool = True, __UpperCAmelCase : Optional[str] = None, __UpperCAmelCase : Optional[str] = "", **__UpperCAmelCase : List[str], ) -> None: """simple docstring""" super().__init__(**__UpperCAmelCase ) SCREAMING_SNAKE_CASE : List[Any] = size if size is not None else {'''height''': 224, '''width''': 224} SCREAMING_SNAKE_CASE : List[str] = get_size_dict(__UpperCAmelCase ) SCREAMING_SNAKE_CASE : Any = do_resize SCREAMING_SNAKE_CASE : List[Any] = size SCREAMING_SNAKE_CASE : List[str] = resample SCREAMING_SNAKE_CASE : List[Any] = do_rescale SCREAMING_SNAKE_CASE : List[Any] = rescale_value SCREAMING_SNAKE_CASE : Dict = do_normalize SCREAMING_SNAKE_CASE : List[str] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN SCREAMING_SNAKE_CASE : Dict = image_std if image_std is not None else IMAGENET_STANDARD_STD SCREAMING_SNAKE_CASE : Optional[Any] = apply_ocr SCREAMING_SNAKE_CASE : Optional[int] = ocr_lang SCREAMING_SNAKE_CASE : str = tesseract_config def lowercase__ (self : Any, __UpperCAmelCase : np.ndarray, __UpperCAmelCase : Dict[str, int], __UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR, __UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None, **__UpperCAmelCase : Optional[int], ) -> np.ndarray: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = get_size_dict(__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) SCREAMING_SNAKE_CASE : int = (size['''height'''], size['''width''']) return resize(__UpperCAmelCase, size=__UpperCAmelCase, resample=__UpperCAmelCase, data_format=__UpperCAmelCase, **__UpperCAmelCase ) def lowercase__ (self : Union[str, Any], __UpperCAmelCase : np.ndarray, __UpperCAmelCase : Union[int, float], __UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None, **__UpperCAmelCase : Dict, ) -> np.ndarray: """simple docstring""" return rescale(__UpperCAmelCase, scale=__UpperCAmelCase, data_format=__UpperCAmelCase, **__UpperCAmelCase ) def lowercase__ (self : List[str], __UpperCAmelCase : np.ndarray, __UpperCAmelCase : Union[float, Iterable[float]], __UpperCAmelCase : Union[float, Iterable[float]], __UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None, **__UpperCAmelCase : List[Any], ) -> np.ndarray: """simple docstring""" return normalize(__UpperCAmelCase, mean=__UpperCAmelCase, std=__UpperCAmelCase, data_format=__UpperCAmelCase, **__UpperCAmelCase ) def lowercase__ (self : Tuple, __UpperCAmelCase : ImageInput, __UpperCAmelCase : bool = None, __UpperCAmelCase : Dict[str, int] = None, __UpperCAmelCase : Dict=None, __UpperCAmelCase : bool = None, __UpperCAmelCase : float = None, __UpperCAmelCase : bool = None, __UpperCAmelCase : Union[float, Iterable[float]] = None, __UpperCAmelCase : Union[float, Iterable[float]] = None, __UpperCAmelCase : bool = None, __UpperCAmelCase : Optional[str] = None, __UpperCAmelCase : Optional[str] = None, __UpperCAmelCase : Optional[Union[str, TensorType]] = None, __UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST, **__UpperCAmelCase : Optional[int], ) -> PIL.Image.Image: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE : Dict = size if size is not None else self.size SCREAMING_SNAKE_CASE : Union[str, Any] = get_size_dict(__UpperCAmelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE : str = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE : Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE : Dict = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE : Union[str, Any] = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE : Tuple = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE : int = apply_ocr if apply_ocr is not None else self.apply_ocr SCREAMING_SNAKE_CASE : List[Any] = ocr_lang if ocr_lang is not None else self.ocr_lang SCREAMING_SNAKE_CASE : Optional[Any] = tesseract_config if tesseract_config is not None else self.tesseract_config SCREAMING_SNAKE_CASE : Dict = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''' ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE : List[str] = [to_numpy_array(__UpperCAmelCase ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self, '''pytesseract''' ) SCREAMING_SNAKE_CASE : str = [] SCREAMING_SNAKE_CASE : List[str] = [] for image in images: SCREAMING_SNAKE_CASE : Any = apply_tesseract(__UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) words_batch.append(__UpperCAmelCase ) boxes_batch.append(__UpperCAmelCase ) if do_resize: SCREAMING_SNAKE_CASE : Optional[Any] = [self.resize(image=__UpperCAmelCase, size=__UpperCAmelCase, resample=__UpperCAmelCase ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE : str = [self.rescale(image=__UpperCAmelCase, scale=__UpperCAmelCase ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE : Optional[int] = [self.normalize(image=__UpperCAmelCase, mean=__UpperCAmelCase, std=__UpperCAmelCase ) for image in images] SCREAMING_SNAKE_CASE : Dict = [to_channel_dimension_format(__UpperCAmelCase, __UpperCAmelCase ) for image in images] SCREAMING_SNAKE_CASE : Union[str, Any] = BatchFeature(data={'''pixel_values''': images}, tensor_type=__UpperCAmelCase ) if apply_ocr: SCREAMING_SNAKE_CASE : str = words_batch SCREAMING_SNAKE_CASE : Union[str, Any] = boxes_batch return data
708
'''simple docstring''' from __future__ import annotations snake_case_ = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def __lowercase (_SCREAMING_SNAKE_CASE :list[list[int]] , _SCREAMING_SNAKE_CASE :list[int] , _SCREAMING_SNAKE_CASE :list[int] , _SCREAMING_SNAKE_CASE :int , _SCREAMING_SNAKE_CASE :list[list[int]] , ): SCREAMING_SNAKE_CASE : Optional[Any] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_SCREAMING_SNAKE_CASE ) ) ] # the reference grid SCREAMING_SNAKE_CASE : Dict = 1 SCREAMING_SNAKE_CASE : Optional[Any] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_SCREAMING_SNAKE_CASE ) ) ] # the action grid SCREAMING_SNAKE_CASE : Union[str, Any] = init[0] SCREAMING_SNAKE_CASE : Optional[Any] = init[1] SCREAMING_SNAKE_CASE : Any = 0 SCREAMING_SNAKE_CASE : List[Any] = g + heuristic[x][y] # cost from starting cell to destination cell SCREAMING_SNAKE_CASE : Union[str, Any] = [[f, g, x, y]] SCREAMING_SNAKE_CASE : List[str] = False # flag that is set when search is complete SCREAMING_SNAKE_CASE : Any = False # flag set if we can't find expand while not found and not resign: if len(_SCREAMING_SNAKE_CASE ) == 0: raise ValueError('''Algorithm is unable to find solution''' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() SCREAMING_SNAKE_CASE : List[str] = cell.pop() SCREAMING_SNAKE_CASE : List[str] = next_cell[2] SCREAMING_SNAKE_CASE : Dict = next_cell[3] SCREAMING_SNAKE_CASE : str = next_cell[1] if x == goal[0] and y == goal[1]: SCREAMING_SNAKE_CASE : Dict = True else: for i in range(len(_SCREAMING_SNAKE_CASE ) ): # to try out different valid actions SCREAMING_SNAKE_CASE : Optional[Any] = x + DIRECTIONS[i][0] SCREAMING_SNAKE_CASE : Tuple = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(_SCREAMING_SNAKE_CASE ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: SCREAMING_SNAKE_CASE : Optional[Any] = g + cost SCREAMING_SNAKE_CASE : Any = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) SCREAMING_SNAKE_CASE : List[Any] = 1 SCREAMING_SNAKE_CASE : Optional[int] = i SCREAMING_SNAKE_CASE : Dict = [] SCREAMING_SNAKE_CASE : List[Any] = goal[0] SCREAMING_SNAKE_CASE : Optional[int] = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: SCREAMING_SNAKE_CASE : str = x - DIRECTIONS[action[x][y]][0] SCREAMING_SNAKE_CASE : str = y - DIRECTIONS[action[x][y]][1] SCREAMING_SNAKE_CASE : Tuple = xa SCREAMING_SNAKE_CASE : Dict = ya invpath.append([x, y] ) SCREAMING_SNAKE_CASE : Union[str, Any] = [] for i in range(len(_SCREAMING_SNAKE_CASE ) ): path.append(invpath[len(_SCREAMING_SNAKE_CASE ) - 1 - i] ) return path, action if __name__ == "__main__": snake_case_ = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] snake_case_ = [0, 0] # all coordinates are given in format [y,x] snake_case_ = [len(grid) - 1, len(grid[0]) - 1] snake_case_ = 1 # the cost map which pushes the path closer to the goal snake_case_ = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): snake_case_ = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map snake_case_ = 99 snake_case_ , snake_case_ = search(grid, init, goal, cost, heuristic) print("""ACTION MAP""") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
355
0
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging A : Tuple = logging.get_logger(__name__) class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = ['''pixel_values'''] def __init__(self : Optional[int] , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 255 , _UpperCAmelCase : bool = True , _UpperCAmelCase : int = 8 , **_UpperCAmelCase : int , ) -> None: """simple docstring""" super().__init__(**_UpperCAmelCase ) lowercase__ = do_rescale lowercase__ = rescale_factor lowercase__ = do_pad lowercase__ = pad_size def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : float , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Tuple ) -> np.ndarray: """simple docstring""" return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None ) -> int: """simple docstring""" lowercase__ , lowercase__ = get_image_size(_UpperCAmelCase ) lowercase__ = (old_height // size + 1) * size - old_height lowercase__ = (old_width // size + 1) * size - old_width return pad(_UpperCAmelCase , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=_UpperCAmelCase ) def lowerCamelCase__ (self : int , _UpperCAmelCase : ImageInput , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[float] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **_UpperCAmelCase : List[str] , ) -> int: """simple docstring""" lowercase__ = do_rescale if do_rescale is not None else self.do_rescale lowercase__ = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ = do_pad if do_pad is not None else self.do_pad lowercase__ = pad_size if pad_size is not None else self.pad_size lowercase__ = make_list_of_images(_UpperCAmelCase ) if not valid_images(_UpperCAmelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) # All transformations expect numpy arrays. lowercase__ = [to_numpy_array(_UpperCAmelCase ) for image in images] if do_rescale: lowercase__ = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images] if do_pad: lowercase__ = [self.pad(_UpperCAmelCase , size=_UpperCAmelCase ) for image in images] lowercase__ = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images] lowercase__ = {"""pixel_values""": images} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
15
'''simple docstring''' import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer lowerCAmelCase :Optional[int] = logging.getLogger(__name__) def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Dict = argparse.ArgumentParser( description='Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.' ) parser.add_argument( '--dataset_name' , type=lowerCAmelCase , default='wikitext' , help='Name of the training. Explore datasets at: hf.co/datasets.' , ) parser.add_argument( '--dataset_config' , type=lowerCAmelCase , default='wikitext-103-raw-v1' , help='Configuration name of the dataset.' ) parser.add_argument( '--tokenizer_name_or_path' , type=lowerCAmelCase , default='sayakpaul/unigram-tokenizer-wikitext' , help='Tokenizer identifier. Can be a local filepath or a Hub identifier.' , ) parser.add_argument( '--shard_size' , type=lowerCAmelCase , default=1000 , help='Number of entries to go in a single shard.' , ) parser.add_argument('--split' , type=lowerCAmelCase , default='train' , choices=['train', 'test', 'validation'] ) parser.add_argument( '--limit' , default=lowerCAmelCase , type=lowerCAmelCase , help='Limit the number of shards (used for debugging).' , ) parser.add_argument( '--max_length' , type=lowerCAmelCase , default=512 , help='Maximum sequence length. For training on TPUs, it helps to have a maximum' ' sequence length that is a multiple of 8.' , ) parser.add_argument( '--output_dir' , default='tf-tpu' , type=lowerCAmelCase , help='Output directory where the TFRecord shards will be saved. If the' ' path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord' ' shards will be directly saved to a Google Cloud Storage bucket.' , ) __magic_name__ : Tuple = parser.parse_args() return args def lowerCamelCase ( lowerCAmelCase : List[str] ): """simple docstring""" def fn(lowerCAmelCase : List[Any] ): return tokenizer(examples['text'] ) return fn def lowerCamelCase ( lowerCAmelCase : Optional[int] ): """simple docstring""" __magic_name__ : Dict = [] for i in range(len(tokenized_data['input_ids'] ) ): __magic_name__ : int = { 'input_ids': tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data['input_ids'][i] ) ), 'attention_mask': tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data['attention_mask'][i] ) ), } __magic_name__ : Optional[Any] = tf.train.Features(feature=lowerCAmelCase ) __magic_name__ : Tuple = tf.train.Example(features=lowerCAmelCase ) __magic_name__ : Optional[int] = example.SerializeToString() records.append(lowerCAmelCase ) return records def lowerCamelCase ( lowerCAmelCase : List[Any] ): """simple docstring""" __magic_name__ : Dict = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: __magic_name__ : int = min(len(lowerCAmelCase ) , args.limit ) __magic_name__ : List[str] = dataset.select(range(lowerCAmelCase ) ) print(f'Limiting the dataset to {args.limit} entries.' ) __magic_name__ : List[str] = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) __magic_name__ : Tuple = os.path.join(args.output_dir , args.split ) if not os.path.exists(lowerCAmelCase ): os.makedirs(lowerCAmelCase ) else: __magic_name__ : Union[str, Any] = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. __magic_name__ : Union[str, Any] = tokenize_function(lowerCAmelCase ) __magic_name__ : int = dataset.map(lowerCAmelCase , batched=lowerCAmelCase , num_proc=4 , remove_columns=['text'] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(lowerCAmelCase : int ): # Concatenate all texts. __magic_name__ : Optional[int] = {k: sum(examples[k] , [] ) for k in examples.keys()} __magic_name__ : Optional[int] = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 __magic_name__ : Tuple = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. __magic_name__ : Optional[Any] = { k: [t[i : i + args.max_length] for i in range(0 , lowerCAmelCase , args.max_length )] for k, t in concatenated_examples.items() } return result __magic_name__ : int = dataset_tokenized.map(lowerCAmelCase , batched=lowerCAmelCase , batch_size=1000 , num_proc=4 ) __magic_name__ : str = 0 __magic_name__ : Tuple = 0 for shard in range(0 , len(lowerCAmelCase ) , args.shard_size ): __magic_name__ : Optional[Any] = grouped_dataset[shard : shard + args.shard_size] __magic_name__ : int = len(dataset_snapshot['input_ids'] ) __magic_name__ : Union[str, Any] = os.path.join(lowerCAmelCase , f'dataset-{shard_count}-{records_containing}.tfrecord' ) __magic_name__ : int = get_serialized_examples(lowerCAmelCase ) with tf.io.TFRecordWriter(lowerCAmelCase ) as out_file: for i in range(len(lowerCAmelCase ) ): __magic_name__ : Optional[Any] = serialized_examples[i] out_file.write(lowerCAmelCase ) print('Wrote file {} containing {} records'.format(lowerCAmelCase , lowerCAmelCase ) ) shard_count += 1 total_records += records_containing with open(f'split-{args.split}-records-count.txt' , 'w' ) as f: print(f'Total {args.split} records: {total_records}' , file=lowerCAmelCase ) if __name__ == "__main__": lowerCAmelCase :Optional[int] = parse_args() main(args)
561
0
"""simple docstring""" from __future__ import annotations def lowercase ( lowerCAmelCase__ : list , lowerCAmelCase__ : int ) -> str: # Checks if the entire collection has been sorted if len(lowerCAmelCase__ ) <= 1 or n <= 1: return insert_next(lowerCAmelCase__ , n - 1 ) rec_insertion_sort(lowerCAmelCase__ , n - 1 ) def lowercase ( lowerCAmelCase__ : list , lowerCAmelCase__ : int ) -> Optional[Any]: # Checks order between adjacent elements if index >= len(lowerCAmelCase__ ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order __a , __a = ( collection[index], collection[index - 1], ) insert_next(lowerCAmelCase__ , index + 1 ) if __name__ == "__main__": lowercase_ = input("Enter integers separated by spaces: ") lowercase_ = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
65
"""simple docstring""" import itertools import math def lowercase ( lowerCAmelCase__ : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowercase ( ) -> int: __a = 2 while True: if is_prime(lowerCAmelCase__ ): yield num num += 1 def lowercase ( lowerCAmelCase__ : int = 10001 ) -> int: return next(itertools.islice(prime_generator() , nth - 1 , lowerCAmelCase__ ) ) if __name__ == "__main__": print(F'''{solution() = }''')
65
1
import math def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> list[int]: SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = int(math.sqrt(__UpperCAmelCase ) ) # Size of every segment SCREAMING_SNAKE_CASE_ = [True] * (end + 1) SCREAMING_SNAKE_CASE_ = [] while start <= end: if temp[start] is True: in_prime.append(__UpperCAmelCase ) for i in range(start * start , end + 1 , __UpperCAmelCase ): SCREAMING_SNAKE_CASE_ = False start += 1 prime += in_prime SCREAMING_SNAKE_CASE_ = end + 1 SCREAMING_SNAKE_CASE_ = min(2 * end , __UpperCAmelCase ) while low <= n: SCREAMING_SNAKE_CASE_ = [True] * (high - low + 1) for each in in_prime: SCREAMING_SNAKE_CASE_ = math.floor(low / each ) * each if t < low: t += each for j in range(__UpperCAmelCase , high + 1 , __UpperCAmelCase ): SCREAMING_SNAKE_CASE_ = False for j in range(len(__UpperCAmelCase ) ): if temp[j] is True: prime.append(j + low ) SCREAMING_SNAKE_CASE_ = high + 1 SCREAMING_SNAKE_CASE_ = min(high + end , __UpperCAmelCase ) return prime print(sieve(10**6))
31
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __a = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['NllbTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['NllbTokenizerFast'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
30
0
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case__(_UpperCamelCase ): """simple docstring""" def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Tuple=13 , SCREAMING_SNAKE_CASE : str=7 , SCREAMING_SNAKE_CASE : Optional[int]=True , SCREAMING_SNAKE_CASE : int=True , SCREAMING_SNAKE_CASE : Optional[int]=True , SCREAMING_SNAKE_CASE : Union[str, Any]=True , SCREAMING_SNAKE_CASE : Optional[Any]=True , SCREAMING_SNAKE_CASE : Dict=False , SCREAMING_SNAKE_CASE : Dict=False , SCREAMING_SNAKE_CASE : Optional[int]=False , SCREAMING_SNAKE_CASE : Tuple=2 , SCREAMING_SNAKE_CASE : Optional[Any]=99 , SCREAMING_SNAKE_CASE : List[Any]=0 , SCREAMING_SNAKE_CASE : List[str]=32 , SCREAMING_SNAKE_CASE : Tuple=5 , SCREAMING_SNAKE_CASE : Union[str, Any]=4 , SCREAMING_SNAKE_CASE : Optional[int]=0.1 , SCREAMING_SNAKE_CASE : List[str]=0.1 , SCREAMING_SNAKE_CASE : Optional[int]=512 , SCREAMING_SNAKE_CASE : int=12 , SCREAMING_SNAKE_CASE : Any=2 , SCREAMING_SNAKE_CASE : Optional[int]=0.02 , SCREAMING_SNAKE_CASE : Union[str, Any]=3 , SCREAMING_SNAKE_CASE : List[Any]=4 , SCREAMING_SNAKE_CASE : List[str]="last" , SCREAMING_SNAKE_CASE : Tuple=None , SCREAMING_SNAKE_CASE : Optional[int]=None , ): lowercase__ : List[Any] = parent lowercase__ : Tuple = batch_size lowercase__ : List[Any] = seq_length lowercase__ : int = is_training lowercase__ : Dict = use_input_lengths lowercase__ : Any = use_token_type_ids lowercase__ : str = use_labels lowercase__ : Tuple = gelu_activation lowercase__ : List[Any] = sinusoidal_embeddings lowercase__ : Tuple = causal lowercase__ : Dict = asm lowercase__ : int = n_langs lowercase__ : Tuple = vocab_size lowercase__ : Dict = n_special lowercase__ : int = hidden_size lowercase__ : Optional[Any] = num_hidden_layers lowercase__ : Dict = num_attention_heads lowercase__ : Tuple = hidden_dropout_prob lowercase__ : Optional[Any] = attention_probs_dropout_prob lowercase__ : Any = max_position_embeddings lowercase__ : int = type_vocab_size lowercase__ : Any = type_sequence_label_size lowercase__ : Optional[int] = initializer_range lowercase__ : Tuple = num_labels lowercase__ : Dict = num_choices lowercase__ : Tuple = summary_type lowercase__ : List[Any] = use_proj lowercase__ : List[str] = scope def snake_case ( self : Optional[Any] ): lowercase__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ : int = None if self.use_input_lengths: lowercase__ : str = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowercase__ : str = None if self.use_token_type_ids: lowercase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) lowercase__ : Any = None lowercase__ : List[str] = None lowercase__ : Any = None if self.use_labels: lowercase__ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__ : Tuple = ids_tensor([self.batch_size] , 2 ).float() lowercase__ : Dict = ids_tensor([self.batch_size] , self.num_choices ) lowercase__ : Tuple = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def snake_case ( self : Optional[int] ): return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def snake_case ( self : Tuple , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Tuple , ): lowercase__ : str = FlaubertModel(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() lowercase__ : str = model(SCREAMING_SNAKE_CASE , lengths=SCREAMING_SNAKE_CASE , langs=SCREAMING_SNAKE_CASE ) lowercase__ : Optional[int] = model(SCREAMING_SNAKE_CASE , langs=SCREAMING_SNAKE_CASE ) lowercase__ : int = model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Any , ): lowercase__ : int = FlaubertWithLMHeadModel(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() lowercase__ : Tuple = model(SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self : str , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : List[Any] , ): lowercase__ : Union[str, Any] = FlaubertForQuestionAnsweringSimple(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() lowercase__ : Union[str, Any] = model(SCREAMING_SNAKE_CASE ) lowercase__ : List[Any] = model(SCREAMING_SNAKE_CASE , start_positions=SCREAMING_SNAKE_CASE , end_positions=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Dict , ): lowercase__ : List[str] = FlaubertForQuestionAnswering(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() lowercase__ : Optional[int] = model(SCREAMING_SNAKE_CASE ) lowercase__ : int = model( SCREAMING_SNAKE_CASE , start_positions=SCREAMING_SNAKE_CASE , end_positions=SCREAMING_SNAKE_CASE , cls_index=SCREAMING_SNAKE_CASE , is_impossible=SCREAMING_SNAKE_CASE , p_mask=SCREAMING_SNAKE_CASE , ) lowercase__ : int = model( SCREAMING_SNAKE_CASE , start_positions=SCREAMING_SNAKE_CASE , end_positions=SCREAMING_SNAKE_CASE , cls_index=SCREAMING_SNAKE_CASE , is_impossible=SCREAMING_SNAKE_CASE , ) ((lowercase__) , ) : str = result_with_labels.to_tuple() lowercase__ : Optional[int] = model(SCREAMING_SNAKE_CASE , start_positions=SCREAMING_SNAKE_CASE , end_positions=SCREAMING_SNAKE_CASE ) ((lowercase__) , ) : List[Any] = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Any , ): lowercase__ : Optional[Any] = FlaubertForSequenceClassification(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() lowercase__ : int = model(SCREAMING_SNAKE_CASE ) lowercase__ : str = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def snake_case ( self : Any , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Tuple , ): lowercase__ : Tuple = self.num_labels lowercase__ : Optional[Any] = FlaubertForTokenClassification(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() lowercase__ : Union[str, Any] = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case ( self : Any , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : List[Any] , ): lowercase__ : Any = self.num_choices lowercase__ : List[Any] = FlaubertForMultipleChoice(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() lowercase__ : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ : Tuple = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ : Any = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ : Dict = model( SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case ( self : str ): lowercase__ : Dict = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) : Union[str, Any] = config_and_inputs lowercase__ : Union[str, Any] = { "input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths, "attention_mask": input_mask, } return config, inputs_dict @require_torch class snake_case__(_UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" lowercase_ = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) lowercase_ = ( { """feature-extraction""": FlaubertModel, """fill-mask""": FlaubertWithLMHeadModel, """question-answering""": FlaubertForQuestionAnsweringSimple, """text-classification""": FlaubertForSequenceClassification, """token-classification""": FlaubertForTokenClassification, """zero-shot""": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : int ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def snake_case ( self : List[str] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any]=False ): lowercase__ : Optional[Any] = super()._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_labels=SCREAMING_SNAKE_CASE ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": lowercase__ : Optional[int] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE ) lowercase__ : List[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE ) return inputs_dict def snake_case ( self : List[Any] ): lowercase__ : Any = FlaubertModelTester(self ) lowercase__ : Union[str, Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , emb_dim=37 ) def snake_case ( self : int ): self.config_tester.run_common_tests() def snake_case ( self : Any ): lowercase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*SCREAMING_SNAKE_CASE ) def snake_case ( self : Union[str, Any] ): lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*SCREAMING_SNAKE_CASE ) def snake_case ( self : str ): lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*SCREAMING_SNAKE_CASE ) def snake_case ( self : Optional[Any] ): lowercase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*SCREAMING_SNAKE_CASE ) def snake_case ( self : Union[str, Any] ): lowercase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*SCREAMING_SNAKE_CASE ) def snake_case ( self : Optional[Any] ): lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*SCREAMING_SNAKE_CASE ) def snake_case ( self : str ): lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*SCREAMING_SNAKE_CASE ) @slow def snake_case ( self : str ): for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : str = FlaubertModel.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) @slow @require_torch_gpu def snake_case ( self : Tuple ): lowercase__ , lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return lowercase__ : Optional[Any] = True lowercase__ : str = model_class(config=SCREAMING_SNAKE_CASE ) lowercase__ : Optional[int] = self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ : Tuple = torch.jit.trace( SCREAMING_SNAKE_CASE , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(SCREAMING_SNAKE_CASE , os.path.join(SCREAMING_SNAKE_CASE , "traced_model.pt" ) ) lowercase__ : List[Any] = torch.jit.load(os.path.join(SCREAMING_SNAKE_CASE , "traced_model.pt" ) , map_location=SCREAMING_SNAKE_CASE ) loaded(inputs_dict["input_ids"].to(SCREAMING_SNAKE_CASE ) , inputs_dict["attention_mask"].to(SCREAMING_SNAKE_CASE ) ) @require_torch class snake_case__(unittest.TestCase ): """simple docstring""" @slow def snake_case ( self : str ): lowercase__ : Tuple = FlaubertModel.from_pretrained("flaubert/flaubert_base_cased" ) lowercase__ : int = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) with torch.no_grad(): lowercase__ : Tuple = model(SCREAMING_SNAKE_CASE )[0] lowercase__ : Union[str, Any] = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE ) lowercase__ : Dict = torch.tensor( [[[-2.6_251, -1.4_298, -0.0_227], [-2.8_510, -1.6_387, 0.2_258], [-2.8_114, -1.1_832, -0.3_066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) )
81
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging lowerCAmelCase__ = logging.get_logger(__name__) class snake_case__(_UpperCamelCase ): """simple docstring""" lowercase_ = ["""pixel_values"""] def __init__( self : List[Any] , SCREAMING_SNAKE_CASE : bool = True , SCREAMING_SNAKE_CASE : Union[int, float] = 1 / 255 , SCREAMING_SNAKE_CASE : bool = True , SCREAMING_SNAKE_CASE : int = 8 , **SCREAMING_SNAKE_CASE : Dict , ): super().__init__(**SCREAMING_SNAKE_CASE ) lowercase__ : str = do_rescale lowercase__ : Optional[Any] = rescale_factor lowercase__ : Any = do_pad lowercase__ : Optional[Any] = pad_size def snake_case ( self : str , SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE : Optional[int] ): return rescale(SCREAMING_SNAKE_CASE , scale=SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def snake_case ( self : Dict , SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None ): lowercase__ , lowercase__ : str = get_image_size(SCREAMING_SNAKE_CASE ) lowercase__ : Union[str, Any] = (old_height // size + 1) * size - old_height lowercase__ : List[Any] = (old_width // size + 1) * size - old_width return pad(SCREAMING_SNAKE_CASE , ((0, pad_height), (0, pad_width)) , mode="symmetric" , data_format=SCREAMING_SNAKE_CASE ) def snake_case ( self : List[str] , SCREAMING_SNAKE_CASE : ImageInput , SCREAMING_SNAKE_CASE : Optional[bool] = None , SCREAMING_SNAKE_CASE : Optional[float] = None , SCREAMING_SNAKE_CASE : Optional[bool] = None , SCREAMING_SNAKE_CASE : Optional[int] = None , SCREAMING_SNAKE_CASE : Optional[Union[str, TensorType]] = None , SCREAMING_SNAKE_CASE : Union[str, ChannelDimension] = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE : Dict , ): lowercase__ : int = do_rescale if do_rescale is not None else self.do_rescale lowercase__ : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ : str = do_pad if do_pad is not None else self.do_pad lowercase__ : Optional[int] = pad_size if pad_size is not None else self.pad_size lowercase__ : Tuple = make_list_of_images(SCREAMING_SNAKE_CASE ) if not valid_images(SCREAMING_SNAKE_CASE ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) # All transformations expect numpy arrays. lowercase__ : Any = [to_numpy_array(SCREAMING_SNAKE_CASE ) for image in images] if do_rescale: lowercase__ : Any = [self.rescale(image=SCREAMING_SNAKE_CASE , scale=SCREAMING_SNAKE_CASE ) for image in images] if do_pad: lowercase__ : Tuple = [self.pad(SCREAMING_SNAKE_CASE , size=SCREAMING_SNAKE_CASE ) for image in images] lowercase__ : Union[str, Any] = [to_channel_dimension_format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for image in images] lowercase__ : Optional[Any] = {"pixel_values": images} return BatchFeature(data=SCREAMING_SNAKE_CASE , tensor_type=SCREAMING_SNAKE_CASE )
81
1
"""simple docstring""" import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Tuple: """simple docstring""" __UpperCAmelCase : int = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value") __UpperCAmelCase : Optional[int] = ( ("layer.", "layer_"), ("word_embeddings.weight", "word_embeddings"), ("position_embeddings.weight", "position_embeddings"), ("token_type_embeddings.weight", "token_type_embeddings"), (".", "/"), ("LayerNorm/weight", "LayerNorm/gamma"), ("LayerNorm/bias", "LayerNorm/beta"), ("weight", "kernel"), ) if not os.path.isdir(UpperCamelCase ): os.makedirs(UpperCamelCase ) __UpperCAmelCase : Optional[Any] = model.state_dict() def to_tf_var_name(UpperCamelCase ): for patt, repl in iter(UpperCamelCase ): __UpperCAmelCase : Any = name.replace(UpperCamelCase , UpperCamelCase ) return f"bert/{name}" def create_tf_var(UpperCamelCase , UpperCamelCase , UpperCamelCase ): __UpperCAmelCase : str = tf.dtypes.as_dtype(tensor.dtype ) __UpperCAmelCase : Tuple = tf.get_variable(dtype=UpperCamelCase , shape=tensor.shape , name=UpperCamelCase , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(UpperCamelCase ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: __UpperCAmelCase : Union[str, Any] = to_tf_var_name(UpperCamelCase ) __UpperCAmelCase : List[str] = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): __UpperCAmelCase : Tuple = torch_tensor.T __UpperCAmelCase : str = create_tf_var(tensor=UpperCamelCase , name=UpperCamelCase , session=UpperCamelCase ) tf.keras.backend.set_value(UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : Dict = session.run(UpperCamelCase ) print(f"Successfully created {tf_name}: {np.allclose(UpperCamelCase , UpperCamelCase )}" ) __UpperCAmelCase : Optional[int] = tf.train.Saver(tf.trainable_variables() ) saver.save(UpperCamelCase , os.path.join(UpperCamelCase , model_name.replace("-" , "_" ) + ".ckpt" ) ) def _UpperCamelCase ( UpperCamelCase=None ) -> int: """simple docstring""" __UpperCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument("--model_name" , type=UpperCamelCase , required=UpperCamelCase , help="model name e.g. bert-base-uncased" ) parser.add_argument( "--cache_dir" , type=UpperCamelCase , default=UpperCamelCase , required=UpperCamelCase , help="Directory containing pytorch model" ) parser.add_argument("--pytorch_model_path" , type=UpperCamelCase , required=UpperCamelCase , help="/path/to/<pytorch-model-name>.bin" ) parser.add_argument("--tf_cache_dir" , type=UpperCamelCase , required=UpperCamelCase , help="Directory in which to save tensorflow model" ) __UpperCAmelCase : List[Any] = parser.parse_args(UpperCamelCase ) __UpperCAmelCase : List[str] = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=UpperCamelCase , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
77
'''simple docstring''' from math import factorial def _a ( __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : float ): """simple docstring""" if successes > trials: raise ValueError('''successes must be lower or equal to trials''' ) if trials < 0 or successes < 0: raise ValueError('''the function is defined for non-negative integers''' ) if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError('''the function is defined for non-negative integers''' ) if not 0 < prob < 1: raise ValueError('''prob has to be in range of 1 - 0''' ) snake_case__ : Dict = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! snake_case__ : str = float(factorial(__lowerCAmelCase ) ) coefficient /= factorial(__lowerCAmelCase ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print("""Probability of 2 successes out of 4 trails""") print("""with probability of 0.75 is:""", end=""" """) print(binomial_distribution(2, 4, 0.75))
347
0
"""simple docstring""" from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def _snake_case ( ) -> Union[str, Any]: lowerCamelCase_ : Tuple =ArgumentParser("Transformers CLI tool" , usage="transformers-cli <command> [<args>]" ) lowerCamelCase_ : List[Any] =parser.add_subparsers(help="transformers-cli command helpers" ) # Register commands ConvertCommand.register_subcommand(lowerCamelCase__ ) DownloadCommand.register_subcommand(lowerCamelCase__ ) EnvironmentCommand.register_subcommand(lowerCamelCase__ ) RunCommand.register_subcommand(lowerCamelCase__ ) ServeCommand.register_subcommand(lowerCamelCase__ ) UserCommands.register_subcommand(lowerCamelCase__ ) AddNewModelCommand.register_subcommand(lowerCamelCase__ ) AddNewModelLikeCommand.register_subcommand(lowerCamelCase__ ) LfsCommands.register_subcommand(lowerCamelCase__ ) PTtoTFCommand.register_subcommand(lowerCamelCase__ ) # Let's go lowerCamelCase_ : int =parser.parse_args() if not hasattr(lowerCamelCase__ , "func" ): parser.print_help() exit(1 ) # Run lowerCamelCase_ : Dict =args.func(lowerCamelCase__ ) service.run() if __name__ == "__main__": main()
718
"""simple docstring""" from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class lowercase__ : _UpperCAmelCase :Dict = XGLMConfig _UpperCAmelCase :List[Any] = {} _UpperCAmelCase :str = "gelu" def __init__( self : Tuple , snake_case__ : Any , snake_case__ : int=14 , snake_case__ : Union[str, Any]=7 , snake_case__ : Tuple=True , snake_case__ : List[Any]=True , snake_case__ : Optional[int]=True , snake_case__ : int=99 , snake_case__ : Optional[Any]=32 , snake_case__ : int=2 , snake_case__ : Union[str, Any]=4 , snake_case__ : Any=37 , snake_case__ : Optional[int]="gelu" , snake_case__ : Any=0.1 , snake_case__ : Union[str, Any]=0.1 , snake_case__ : Union[str, Any]=512 , snake_case__ : Tuple=0.02 , ): lowerCamelCase_ : Optional[Any] =parent lowerCamelCase_ : Dict =batch_size lowerCamelCase_ : str =seq_length lowerCamelCase_ : Union[str, Any] =is_training lowerCamelCase_ : int =use_input_mask lowerCamelCase_ : List[Any] =use_labels lowerCamelCase_ : List[Any] =vocab_size lowerCamelCase_ : Tuple =d_model lowerCamelCase_ : List[Any] =num_hidden_layers lowerCamelCase_ : Optional[int] =num_attention_heads lowerCamelCase_ : Any =ffn_dim lowerCamelCase_ : int =activation_function lowerCamelCase_ : List[str] =activation_dropout lowerCamelCase_ : List[Any] =attention_dropout lowerCamelCase_ : Union[str, Any] =max_position_embeddings lowerCamelCase_ : Any =initializer_range lowerCamelCase_ : Optional[Any] =None lowerCamelCase_ : Any =0 lowerCamelCase_ : int =2 lowerCamelCase_ : Optional[Any] =1 def UpperCAmelCase__ ( self : int ): return XGLMConfig.from_pretrained("facebook/xglm-564M" ) def UpperCAmelCase__ ( self : str ): lowerCamelCase_ : List[str] =tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) lowerCamelCase_ : Any =None if self.use_input_mask: lowerCamelCase_ : Optional[Any] =random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ : Any =self.get_config() lowerCamelCase_ : Optional[Any] =floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def UpperCAmelCase__ ( self : Union[str, Any] ): return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=snake_case__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=snake_case__ , ) def UpperCAmelCase__ ( self : int ): lowerCamelCase_ : Tuple =self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) : Tuple =config_and_inputs lowerCamelCase_ : Optional[int] ={ "input_ids": input_ids, "head_mask": head_mask, } return config, inputs_dict @require_tf class lowercase__ ( snake_case__, snake_case__, unittest.TestCase ): _UpperCAmelCase :Any = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () _UpperCAmelCase :str = (TFXGLMForCausalLM,) if is_tf_available() else () _UpperCAmelCase :int = ( {"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {} ) _UpperCAmelCase :Tuple = False _UpperCAmelCase :Tuple = False _UpperCAmelCase :List[Any] = False def UpperCAmelCase__ ( self : Optional[Any] ): lowerCamelCase_ : Dict =TFXGLMModelTester(self ) lowerCamelCase_ : List[str] =ConfigTester(self , config_class=snake_case__ , n_embd=37 ) def UpperCAmelCase__ ( self : str ): self.config_tester.run_common_tests() @slow def UpperCAmelCase__ ( self : Optional[Any] ): for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ : List[Any] =TFXGLMModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) @unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." ) def UpperCAmelCase__ ( self : Optional[int] ): super().test_resize_token_embeddings() @require_tf class lowercase__ ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self : Tuple , snake_case__ : Tuple=True ): lowerCamelCase_ : int =TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) lowerCamelCase_ : Optional[int] =tf.convert_to_tensor([[2, 268, 9865]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off lowerCamelCase_ : List[Any] =[2, 268, 9865, 67, 11, 1988, 5_7252, 9865, 5, 984, 67, 1988, 21_3838, 1658, 53, 7_0446, 33, 6657, 278, 1581] # fmt: on lowerCamelCase_ : Optional[int] =model.generate(snake_case__ , do_sample=snake_case__ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , snake_case__ ) @slow def UpperCAmelCase__ ( self : Dict ): lowerCamelCase_ : int =XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) lowerCamelCase_ : str =TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) tf.random.set_seed(0 ) lowerCamelCase_ : Tuple =tokenizer("Today is a nice day and" , return_tensors="tf" ) lowerCamelCase_ : Dict =tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(":/CPU:0" ): lowerCamelCase_ : Optional[int] =model.generate(snake_case__ , do_sample=snake_case__ , seed=[7, 0] ) lowerCamelCase_ : Any =tokenizer.decode(output_ids[0] , skip_special_tokens=snake_case__ ) lowerCamelCase_ : int =( "Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due" ) self.assertEqual(snake_case__ , snake_case__ ) @slow def UpperCAmelCase__ ( self : str ): lowerCamelCase_ : Any =TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) lowerCamelCase_ : Union[str, Any] =XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) lowerCamelCase_ : Tuple ="left" # use different length sentences to test batching lowerCamelCase_ : Union[str, Any] =[ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When", "Hello, my dog is a little", ] lowerCamelCase_ : Dict =tokenizer(snake_case__ , return_tensors="tf" , padding=snake_case__ ) lowerCamelCase_ : str =inputs["input_ids"] lowerCamelCase_ : List[Any] =model.generate(input_ids=snake_case__ , attention_mask=inputs["attention_mask"] , max_new_tokens=12 ) lowerCamelCase_ : Any =tokenizer(sentences[0] , return_tensors="tf" ).input_ids lowerCamelCase_ : int =model.generate(input_ids=snake_case__ , max_new_tokens=12 ) lowerCamelCase_ : int =tokenizer(sentences[1] , return_tensors="tf" ).input_ids lowerCamelCase_ : List[str] =model.generate(input_ids=snake_case__ , max_new_tokens=12 ) lowerCamelCase_ : Optional[Any] =tokenizer.batch_decode(snake_case__ , skip_special_tokens=snake_case__ ) lowerCamelCase_ : Optional[Any] =tokenizer.decode(output_non_padded[0] , skip_special_tokens=snake_case__ ) lowerCamelCase_ : int =tokenizer.decode(output_padded[0] , skip_special_tokens=snake_case__ ) lowerCamelCase_ : Optional[Any] =[ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When left padding is applied, the sequence will be " "a single", "Hello, my dog is a little bit of a shy one, but he is very friendly", ] self.assertListEqual(snake_case__ , snake_case__ ) self.assertListEqual(snake_case__ , [non_padded_sentence, padded_sentence] )
244
0
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class A ( unittest.TestCase ): @slow def __lowerCAmelCase ( self ) -> Optional[int]: _a = AutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" , return_dict=snake_case_ ).to(snake_case_ ) _a = AutoTokenizer.from_pretrained("google/mt5-small" ) _a = tokenizer("Hello there" , return_tensors="pt" ).input_ids _a = tokenizer("Hi I am" , return_tensors="pt" ).input_ids _a = model(input_ids.to(snake_case_ ) , labels=labels.to(snake_case_ ) ).loss _a = -(labels.shape[-1] * loss.item()) _a = -84.9_127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
131
'''simple docstring''' from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) __snake_case : Union[str, Any] = _symbol_database.Default() __snake_case : Union[str, Any] = _descriptor_pool.Default().AddSerializedFile( b"\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03" ) __snake_case : Optional[Any] = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, "sentencepiece_model_pb2", _globals) if _descriptor._USE_C_DESCRIPTORS is False: __snake_case : Optional[int] = None __snake_case : List[Any] = b"H\003" # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" __snake_case : int = 45 __snake_case : Any = 1581 __snake_case : str = 1517 __snake_case : Tuple = 1570 __snake_case : List[Any] = 1584 __snake_case : List[str] = 1793 __snake_case : Optional[Any] = 1795 __snake_case : Tuple = 1916 __snake_case : str = 1864 __snake_case : Dict = 1905 __snake_case : str = 1919 __snake_case : int = 2429 __snake_case : str = 2208 __snake_case : Tuple = 2418 __snake_case : List[Any] = 2323 __snake_case : str = 2407 # @@protoc_insertion_point(module_scope)
131
1
import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def lowerCamelCase__ ( _lowercase ): '''simple docstring''' def wrapper(*_lowercase , **_lowercase ): UpperCAmelCase_ : Optional[Any] = timeit.default_timer() UpperCAmelCase_ : Union[str, Any] = func(*_lowercase , **_lowercase ) UpperCAmelCase_ : Optional[int] = timeit.default_timer() - starttime return delta UpperCAmelCase_ : List[str] = func.__name__ return wrapper def lowerCamelCase__ ( _lowercase , _lowercase=100 , _lowercase=None ): '''simple docstring''' UpperCAmelCase_ : int = [] UpperCAmelCase_ : str = seq_shapes or {} for i in range(_lowercase ): UpperCAmelCase_ : Union[str, Any] = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(_lowercase , _ArrayXD ): UpperCAmelCase_ : Optional[int] = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(_lowercase , datasets.Value ): if v.dtype == "string": UpperCAmelCase_ : List[Any] = '''The small grey turtle was surprisingly fast when challenged.''' else: UpperCAmelCase_ : int = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(_lowercase , datasets.Sequence ): while isinstance(_lowercase , datasets.Sequence ): UpperCAmelCase_ : List[Any] = v.feature UpperCAmelCase_ : Any = seq_shapes[k] UpperCAmelCase_ : List[Any] = np.random.rand(*_lowercase ).astype(v.dtype ) UpperCAmelCase_ : Union[str, Any] = data dummy_data.append((i, example) ) return dummy_data def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase=100 , _lowercase=None ): '''simple docstring''' UpperCAmelCase_ : str = generate_examples(_lowercase , num_examples=_lowercase , seq_shapes=_lowercase ) with ArrowWriter(features=_lowercase , path=_lowercase ) as writer: for key, record in dummy_data: UpperCAmelCase_ : Union[str, Any] = features.encode_example(_lowercase ) writer.write(_lowercase ) UpperCAmelCase_, UpperCAmelCase_ : int = writer.finalize() if not num_final_examples == num_examples: raise ValueError( f'''Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.''' ) UpperCAmelCase_ : Tuple = datasets.Dataset.from_file(filename=_lowercase , info=datasets.DatasetInfo(features=_lowercase ) ) return dataset
300
import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): __a = yaml.safe_load( '\\nname: ""\nallow_empty: false\nallow_empty_text: true\nsubsections:\n - name: "Dataset Card for X" # First-level markdown heading\n allow_empty: false\n allow_empty_text: true\n subsections:\n - name: "Table of Contents"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: "Dataset Description"\n allow_empty: false\n allow_empty_text: false\n subsections:\n - name: "Dataset Summary"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: "Supported Tasks and Leaderboards"\n allow_empty: true\n allow_empty_text: true\n subsections: null\n - name: Languages\n allow_empty: false\n allow_empty_text: true\n subsections: null\n' ) __a = { 'name': 'root', 'text': '', 'is_empty_text': True, 'subsections': [ { 'name': 'Dataset Card for My Dataset', 'text': '', 'is_empty_text': True, 'subsections': [ {'name': 'Table of Contents', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': []}, { 'name': 'Dataset Description', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [ { 'name': 'Dataset Summary', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [], }, { 'name': 'Supported Tasks and Leaderboards', 'text': '', 'is_empty_text': True, 'subsections': [], }, {'name': 'Languages', 'text': 'Language Text', 'is_empty_text': False, 'subsections': []}, ], }, ], } ], } __a = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __a = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n#### Extra Ignored Subsection\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __a = { 'name': 'root', 'text': '', 'is_empty_text': True, 'subsections': [ { 'name': 'Dataset Card for My Dataset', 'text': '', 'is_empty_text': True, 'subsections': [ {'name': 'Table of Contents', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': []}, { 'name': 'Dataset Description', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [ { 'name': 'Dataset Summary', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [ { 'name': 'Extra Ignored Subsection', 'text': '', 'is_empty_text': True, 'subsections': [], } ], }, { 'name': 'Supported Tasks and Leaderboards', 'text': '', 'is_empty_text': True, 'subsections': [], }, {'name': 'Languages', 'text': 'Language Text', 'is_empty_text': False, 'subsections': []}, ], }, ], } ], } __a = '\\n---\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __a = ( 'The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.' ) __a = '\\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __a = ( 'The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.' ) __a = '\\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __a = 'The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.' __a = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __a = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).' __a = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n' __a = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.' __a = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Languages\nLanguage Text\n' __a = 'The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.' __a = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\n' __a = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.' __a = '\\n---\nlanguage:\n- zh\n- en\n---\n\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __a = 'The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.' __a = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n# Dataset Card My Dataset\n' __a = 'The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.' __a = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __a = 'The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.' __a = '' __a = 'The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.' __a = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __a = 'The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.' @pytest.mark.parametrize( '''readme_md, expected_dict''' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' assert ReadMe.from_string(_lowercase , _lowercase ).to_dict() == expected_dict @pytest.mark.parametrize( '''readme_md, expected_error''' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' with pytest.raises(_lowercase , match=re.escape(expected_error.format(path='''root''' ) ) ): UpperCAmelCase_ : Union[str, Any] = ReadMe.from_string(_lowercase , _lowercase ) readme.validate() @pytest.mark.parametrize( '''readme_md, expected_error''' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' with pytest.raises(_lowercase , match=re.escape(expected_error.format(path='''root''' ) ) ): ReadMe.from_string(_lowercase , _lowercase ) @pytest.mark.parametrize( '''readme_md,''' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase__ ( _lowercase ): '''simple docstring''' ReadMe.from_string(_lowercase , _lowercase , suppress_parsing_errors=_lowercase ) @pytest.mark.parametrize( '''readme_md, expected_dict''' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ : Dict = Path(_lowercase ) / '''README.md''' with open(_lowercase , '''w+''' ) as readme_file: readme_file.write(_lowercase ) UpperCAmelCase_ : Optional[int] = ReadMe.from_readme(_lowercase , _lowercase ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( '''readme_md, expected_error''' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ : Optional[int] = Path(_lowercase ) / '''README.md''' with open(_lowercase , '''w+''' ) as readme_file: readme_file.write(_lowercase ) UpperCAmelCase_ : List[Any] = expected_error.format(path=_lowercase ) with pytest.raises(_lowercase , match=re.escape(_lowercase ) ): UpperCAmelCase_ : Any = ReadMe.from_readme(_lowercase , _lowercase ) readme.validate() @pytest.mark.parametrize( '''readme_md, expected_error''' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ : List[Any] = Path(_lowercase ) / '''README.md''' with open(_lowercase , '''w+''' ) as readme_file: readme_file.write(_lowercase ) UpperCAmelCase_ : List[str] = expected_error.format(path=_lowercase ) with pytest.raises(_lowercase , match=re.escape(_lowercase ) ): ReadMe.from_readme(_lowercase , _lowercase ) @pytest.mark.parametrize( '''readme_md,''' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase__ ( _lowercase ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ : Dict = Path(_lowercase ) / '''README.md''' with open(_lowercase , '''w+''' ) as readme_file: readme_file.write(_lowercase ) ReadMe.from_readme(_lowercase , _lowercase , suppress_parsing_errors=_lowercase )
300
1
"""simple docstring""" import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class UpperCAmelCase_ ( unittest.TestCase): def __init__( self : Tuple , __UpperCamelCase : Optional[Any] , __UpperCamelCase : List[Any]=7 , __UpperCamelCase : Tuple=3 , __UpperCamelCase : Union[str, Any]=18 , __UpperCamelCase : Dict=30 , __UpperCamelCase : str=400 , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : Union[str, Any]=None , __UpperCamelCase : Tuple=True , ) -> List[str]: _UpperCamelCase = size if size is not None else {'''height''': 18, '''width''': 18} _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = num_channels _UpperCamelCase = image_size _UpperCamelCase = min_resolution _UpperCamelCase = max_resolution _UpperCamelCase = do_resize _UpperCamelCase = size _UpperCamelCase = do_normalize def _UpperCamelCase ( self : str ) -> Tuple: return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8_8_6_6_4_4_3_6_3_4_0_3_3_2_0_3, 0.6_6_1_8_8_2_9_3_6_9_5_4_4_9_8_3, 0.3_8_9_1_7_4_6_4_0_1_7_8_6_8_0_4], [-0.6_0_4_2_5_5_9_1_4_6_8_8_1_1_0_4, -0.0_2_2_9_5_0_0_8_8_6_0_5_2_8_4_6_9, 0.5_4_2_3_7_9_7_3_6_9_0_0_3_2_9_6], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class UpperCAmelCase_ ( _lowercase , unittest.TestCase): snake_case__ = ImageGPTImageProcessor if is_vision_available() else None def _UpperCamelCase ( self : Any ) -> Union[str, Any]: _UpperCamelCase = ImageGPTImageProcessingTester(self ) @property def _UpperCamelCase ( self : List[str] ) -> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def _UpperCamelCase ( self : str ) -> int: _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCamelCase , '''clusters''' ) ) self.assertTrue(hasattr(__UpperCamelCase , '''do_resize''' ) ) self.assertTrue(hasattr(__UpperCamelCase , '''size''' ) ) self.assertTrue(hasattr(__UpperCamelCase , '''do_normalize''' ) ) def _UpperCamelCase ( self : Tuple ) -> Tuple: _UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} ) _UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) def _UpperCamelCase ( self : Dict ) -> Tuple: _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) _UpperCamelCase = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(__UpperCamelCase , obj[key] ) ) else: self.assertEqual(obj[key] , __UpperCamelCase ) def _UpperCamelCase ( self : List[Any] ) -> Tuple: _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCamelCase = os.path.join(__UpperCamelCase , '''image_processor.json''' ) image_processor_first.to_json_file(__UpperCamelCase ) _UpperCamelCase = self.image_processing_class.from_json_file(__UpperCamelCase ).to_dict() _UpperCamelCase = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(__UpperCamelCase , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , __UpperCamelCase ) def _UpperCamelCase ( self : List[str] ) -> Tuple: _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(__UpperCamelCase ) _UpperCamelCase = self.image_processing_class.from_pretrained(__UpperCamelCase ).to_dict() _UpperCamelCase = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(__UpperCamelCase , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , __UpperCamelCase ) @unittest.skip('''ImageGPT requires clusters at initialization''' ) def _UpperCamelCase ( self : Tuple ) -> Dict: pass def lowercase ( ) -> List[Any]: _UpperCamelCase = load_dataset('''hf-internal-testing/fixtures_image_utils''' , split='''test''' ) _UpperCamelCase = Image.open(dataset[4]['''file'''] ) _UpperCamelCase = Image.open(dataset[5]['''file'''] ) _UpperCamelCase = [imagea, imagea] return images @require_vision @require_torch class UpperCAmelCase_ ( unittest.TestCase): @slow def _UpperCamelCase ( self : Dict ) -> List[Any]: _UpperCamelCase = ImageGPTImageProcessor.from_pretrained('''openai/imagegpt-small''' ) _UpperCamelCase = prepare_images() # test non-batched _UpperCamelCase = image_processing(images[0] , return_tensors='''pt''' ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1024) ) _UpperCamelCase = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() , __UpperCamelCase ) # test batched _UpperCamelCase = image_processing(__UpperCamelCase , return_tensors='''pt''' ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1024) ) _UpperCamelCase = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , __UpperCamelCase )
420
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { """EleutherAI/gpt-neox-20b""": """https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json""", # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class UpperCAmelCase_ ( _lowercase): snake_case__ = '''gpt_neox''' def __init__( self : Dict , __UpperCamelCase : int=5_0432 , __UpperCamelCase : List[Any]=6144 , __UpperCamelCase : str=44 , __UpperCamelCase : List[str]=64 , __UpperCamelCase : int=2_4576 , __UpperCamelCase : Tuple="gelu" , __UpperCamelCase : Dict=0.2_5 , __UpperCamelCase : int=1_0000 , __UpperCamelCase : Optional[Any]=0.0 , __UpperCamelCase : List[Any]=0.0 , __UpperCamelCase : Tuple=0.1 , __UpperCamelCase : Dict=2048 , __UpperCamelCase : Optional[Any]=0.0_2 , __UpperCamelCase : Optional[Any]=1E-5 , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : Optional[int]=0 , __UpperCamelCase : Union[str, Any]=2 , __UpperCamelCase : List[Any]=False , __UpperCamelCase : List[str]=True , __UpperCamelCase : Optional[Any]=None , **__UpperCamelCase : Union[str, Any] , ) -> Union[str, Any]: super().__init__(bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase ) _UpperCamelCase = vocab_size _UpperCamelCase = max_position_embeddings _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = rotary_pct _UpperCamelCase = rotary_emb_base _UpperCamelCase = attention_dropout _UpperCamelCase = hidden_dropout _UpperCamelCase = classifier_dropout _UpperCamelCase = initializer_range _UpperCamelCase = layer_norm_eps _UpperCamelCase = use_cache _UpperCamelCase = tie_word_embeddings _UpperCamelCase = use_parallel_residual _UpperCamelCase = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( '''The hidden size is not divisble by the number of attention heads! Make sure to update them!''' ) def _UpperCamelCase ( self : Optional[int] ) -> Tuple: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __UpperCamelCase ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' F'''got {self.rope_scaling}''' ) _UpperCamelCase = self.rope_scaling.get('''type''' , __UpperCamelCase ) _UpperCamelCase = self.rope_scaling.get('''factor''' , __UpperCamelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(__UpperCamelCase , __UpperCamelCase ) or rope_scaling_factor <= 1.0: raise ValueError(F'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
420
1
'''simple docstring''' import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class A ( a ): __UpperCAmelCase : int = """Wav2Vec2FeatureExtractor""" __UpperCAmelCase : str = """AutoTokenizer""" def __init__( self , snake_case_ , snake_case_ ) -> Union[str, Any]: super().__init__(snake_case_ , snake_case_ ) _a = self.feature_extractor _a = False @classmethod def __lowerCAmelCase ( cls , snake_case_ , **snake_case_ ) -> List[str]: try: return super().from_pretrained(snake_case_ , **snake_case_ ) except OSError: warnings.warn( F'''Loading a tokenizer inside {cls.__name__} from a config that does not''' " include a `tokenizer_class` attribute is deprecated and will be " "removed in v5. Please add `'tokenizer_class': 'Wav2Vec2CTCTokenizer'`" " attribute to either your `config.json` or `tokenizer_config.json` " "file to suppress this warning: " , snake_case_ , ) _a = WavaVecaFeatureExtractor.from_pretrained(snake_case_ , **snake_case_ ) _a = WavaVecaCTCTokenizer.from_pretrained(snake_case_ , **snake_case_ ) return cls(feature_extractor=snake_case_ , tokenizer=snake_case_ ) def __call__( self , *snake_case_ , **snake_case_ ) -> List[Any]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*snake_case_ , **snake_case_ ) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." ) _a = kwargs.pop("raw_speech" ) else: _a = kwargs.pop("audio" , snake_case_ ) _a = kwargs.pop("sampling_rate" , snake_case_ ) _a = kwargs.pop("text" , snake_case_ ) if len(snake_case_ ) > 0: _a = args[0] _a = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: _a = self.feature_extractor(snake_case_ , *snake_case_ , sampling_rate=snake_case_ , **snake_case_ ) if text is not None: _a = self.tokenizer(snake_case_ , **snake_case_ ) if text is None: return inputs elif audio is None: return encodings else: _a = encodings["input_ids"] return inputs def __lowerCAmelCase ( self , *snake_case_ , **snake_case_ ) -> List[str]: # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*snake_case_ , **snake_case_ ) _a = kwargs.pop("input_features" , snake_case_ ) _a = kwargs.pop("labels" , snake_case_ ) if len(snake_case_ ) > 0: _a = args[0] _a = args[1:] if input_features is not None: _a = self.feature_extractor.pad(snake_case_ , *snake_case_ , **snake_case_ ) if labels is not None: _a = self.tokenizer.pad(snake_case_ , **snake_case_ ) if labels is None: return input_features elif input_features is None: return labels else: _a = labels["input_ids"] return input_features def __lowerCAmelCase ( self , *snake_case_ , **snake_case_ ) -> str: return self.tokenizer.batch_decode(*snake_case_ , **snake_case_ ) def __lowerCAmelCase ( self , *snake_case_ , **snake_case_ ) -> Tuple: return self.tokenizer.decode(*snake_case_ , **snake_case_ ) @contextmanager def __lowerCAmelCase ( self ) -> Dict: warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) _a = True _a = self.tokenizer yield _a = self.feature_extractor _a = False
691
'''simple docstring''' def _lowercase ( lowerCamelCase__ : list[int], lowerCamelCase__ : list[int], lowerCamelCase__ : int ): return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(lowerCamelCase__ ) ) def _lowercase ( lowerCamelCase__ : list[list[int]], lowerCamelCase__ : int, lowerCamelCase__ : list[int], lowerCamelCase__ : int ): # Base Case if index == len(lowerCamelCase__ ): return True # Recursive Step for i in range(lowerCamelCase__ ): if valid_coloring(graph[index], lowerCamelCase__, lowerCamelCase__ ): # Color current vertex _a = i # Validate coloring if util_color(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, index + 1 ): return True # Backtrack _a = -1 return False def _lowercase ( lowerCamelCase__ : list[list[int]], lowerCamelCase__ : int ): _a = [-1] * len(lowerCamelCase__ ) if util_color(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, 0 ): return colored_vertices return []
691
1
import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class lowerCamelCase (SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = MobileBertTokenizer lowerCamelCase__ = MobileBertTokenizerFast lowerCamelCase__ = True lowerCamelCase__ = True lowerCamelCase__ = filter_non_english lowerCamelCase__ = '''google/mobilebert-uncased''' def __A ( self : Optional[int] ) -> Any: super().setUp() SCREAMING_SNAKE_CASE_ = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] SCREAMING_SNAKE_CASE_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) SCREAMING_SNAKE_CASE_ = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def __A ( self : Optional[int] , __magic_name__ : Dict ) -> int: SCREAMING_SNAKE_CASE_ = "UNwant\u00E9d,running" SCREAMING_SNAKE_CASE_ = "unwanted, running" return input_text, output_text def __A ( self : List[Any] ) -> Any: SCREAMING_SNAKE_CASE_ = self.tokenizer_class(self.vocab_file ) SCREAMING_SNAKE_CASE_ = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(__magic_name__ , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , [9, 6, 7, 12, 10, 11] ) def __A ( self : List[Any] ) -> Union[str, Any]: if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_ = "UNwant\u00E9d,running" SCREAMING_SNAKE_CASE_ = tokenizer.tokenize(__magic_name__ ) SCREAMING_SNAKE_CASE_ = rust_tokenizer.tokenize(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) SCREAMING_SNAKE_CASE_ = rust_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_ = tokenizer.encode(__magic_name__ ) SCREAMING_SNAKE_CASE_ = rust_tokenizer.encode(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) # With lower casing SCREAMING_SNAKE_CASE_ = self.get_tokenizer(do_lower_case=__magic_name__ ) SCREAMING_SNAKE_CASE_ = self.get_rust_tokenizer(do_lower_case=__magic_name__ ) SCREAMING_SNAKE_CASE_ = "UNwant\u00E9d,running" SCREAMING_SNAKE_CASE_ = tokenizer.tokenize(__magic_name__ ) SCREAMING_SNAKE_CASE_ = rust_tokenizer.tokenize(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) SCREAMING_SNAKE_CASE_ = rust_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_ = tokenizer.encode(__magic_name__ ) SCREAMING_SNAKE_CASE_ = rust_tokenizer.encode(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) def __A ( self : str ) -> Tuple: SCREAMING_SNAKE_CASE_ = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def __A ( self : Dict ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = BasicTokenizer(do_lower_case=__magic_name__ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __A ( self : int ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = BasicTokenizer(do_lower_case=__magic_name__ , strip_accents=__magic_name__ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def __A ( self : List[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE_ = BasicTokenizer(do_lower_case=__magic_name__ , strip_accents=__magic_name__ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __A ( self : Any ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = BasicTokenizer(do_lower_case=__magic_name__ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __A ( self : Dict ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = BasicTokenizer(do_lower_case=__magic_name__ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def __A ( self : str ) -> List[Any]: SCREAMING_SNAKE_CASE_ = BasicTokenizer(do_lower_case=__magic_name__ , strip_accents=__magic_name__ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def __A ( self : Optional[int] ) -> Tuple: SCREAMING_SNAKE_CASE_ = BasicTokenizer(do_lower_case=__magic_name__ , strip_accents=__magic_name__ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def __A ( self : Dict ) -> Tuple: SCREAMING_SNAKE_CASE_ = BasicTokenizer(do_lower_case=__magic_name__ , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def __A ( self : int ) -> List[Any]: SCREAMING_SNAKE_CASE_ = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] SCREAMING_SNAKE_CASE_ = {} for i, token in enumerate(__magic_name__ ): SCREAMING_SNAKE_CASE_ = i SCREAMING_SNAKE_CASE_ = WordpieceTokenizer(vocab=__magic_name__ , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) def __A ( self : List[str] ) -> int: self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def __A ( self : Any ) -> Tuple: self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def __A ( self : Dict ) -> int: self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) def __A ( self : Optional[int] ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(__magic_name__ ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) self.assertListEqual( [rust_tokenizer.tokenize(__magic_name__ ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) @slow def __A ( self : Optional[Any] ) -> Dict: SCREAMING_SNAKE_CASE_ = self.tokenizer_class.from_pretrained("google/mobilebert-uncased" ) SCREAMING_SNAKE_CASE_ = tokenizer.encode("sequence builders" , add_special_tokens=__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer.encode("multi-sequence build" , add_special_tokens=__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer.build_inputs_with_special_tokens(__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer.build_inputs_with_special_tokens(__magic_name__ , __magic_name__ ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def __A ( self : str ) -> Any: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): SCREAMING_SNAKE_CASE_ = self.rust_tokenizer_class.from_pretrained(__magic_name__ , **__magic_name__ ) SCREAMING_SNAKE_CASE_ = F'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' SCREAMING_SNAKE_CASE_ = tokenizer_r.encode_plus( __magic_name__ , return_attention_mask=__magic_name__ , return_token_type_ids=__magic_name__ , return_offsets_mapping=__magic_name__ , add_special_tokens=__magic_name__ , ) SCREAMING_SNAKE_CASE_ = tokenizer_r.do_lower_case if hasattr(__magic_name__ , "do_lower_case" ) else False SCREAMING_SNAKE_CASE_ = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"] ) def __A ( self : Any ) -> List[str]: SCREAMING_SNAKE_CASE_ = ["的", "人", "有"] SCREAMING_SNAKE_CASE_ = "".join(__magic_name__ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = self.tokenizer_class.from_pretrained(__magic_name__ , **__magic_name__ ) SCREAMING_SNAKE_CASE_ = self.rust_tokenizer_class.from_pretrained(__magic_name__ , **__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer_p.encode(__magic_name__ , add_special_tokens=__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer_r.encode(__magic_name__ , add_special_tokens=__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer_r.convert_ids_to_tokens(__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer_p.convert_ids_to_tokens(__magic_name__ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(__magic_name__ , __magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = self.rust_tokenizer_class.from_pretrained(__magic_name__ , **__magic_name__ ) SCREAMING_SNAKE_CASE_ = self.tokenizer_class.from_pretrained(__magic_name__ , **__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer_r.encode(__magic_name__ , add_special_tokens=__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer_p.encode(__magic_name__ , add_special_tokens=__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer_r.convert_ids_to_tokens(__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer_p.convert_ids_to_tokens(__magic_name__ ) # it is expected that only the first Chinese character is not preceded by "##". SCREAMING_SNAKE_CASE_ = [ F'''##{token}''' if idx != 0 else token for idx, token in enumerate(__magic_name__ ) ] self.assertListEqual(__magic_name__ , __magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ )
140
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) A : Dict = { "configuration_speecht5": [ "SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP", "SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP", "SpeechT5Config", "SpeechT5HifiGanConfig", ], "feature_extraction_speecht5": ["SpeechT5FeatureExtractor"], "processing_speecht5": ["SpeechT5Processor"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[int] = ["SpeechT5Tokenizer"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = [ "SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST", "SpeechT5ForSpeechToText", "SpeechT5ForSpeechToSpeech", "SpeechT5ForTextToSpeech", "SpeechT5Model", "SpeechT5PreTrainedModel", "SpeechT5HifiGan", ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys A : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
140
1
import os import sys import unittest A : List[str] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) A : List[Any] = os.path.join("tests", "models", "bert", "test_modeling_bert.py") A : str = os.path.join("tests", "models", "blip", "test_modeling_blip.py") class _lowercase ( unittest.TestCase): """simple docstring""" def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = get_test_to_tester_mapping(__lowerCamelCase ) lowerCamelCase__ : Optional[Any] = get_test_to_tester_mapping(__lowerCamelCase ) lowerCamelCase__ : int = {"BertModelTest": "BertModelTester"} lowerCamelCase__ : Dict = { "BlipModelTest": "BlipModelTester", "BlipTextImageModelTest": "BlipTextImageModelsModelTester", "BlipTextModelTest": "BlipTextModelTester", "BlipTextRetrievalModelTest": "BlipTextRetrievalModelTester", "BlipVQAModelTest": "BlipVQAModelTester", "BlipVisionModelTest": "BlipVisionModelTester", } self.assertEqual(get_test_info.to_json(__lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(get_test_info.to_json(__lowerCamelCase ) , __lowerCamelCase ) def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' lowerCamelCase__ : str = get_model_to_test_mapping(__lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = get_model_to_test_mapping(__lowerCamelCase ) lowerCamelCase__ : List[Any] = { "BertForMaskedLM": ["BertModelTest"], "BertForMultipleChoice": ["BertModelTest"], "BertForNextSentencePrediction": ["BertModelTest"], "BertForPreTraining": ["BertModelTest"], "BertForQuestionAnswering": ["BertModelTest"], "BertForSequenceClassification": ["BertModelTest"], "BertForTokenClassification": ["BertModelTest"], "BertLMHeadModel": ["BertModelTest"], "BertModel": ["BertModelTest"], } lowerCamelCase__ : Dict = { "BlipForConditionalGeneration": ["BlipTextImageModelTest"], "BlipForImageTextRetrieval": ["BlipTextRetrievalModelTest"], "BlipForQuestionAnswering": ["BlipVQAModelTest"], "BlipModel": ["BlipModelTest"], "BlipTextModel": ["BlipTextModelTest"], "BlipVisionModel": ["BlipVisionModelTest"], } self.assertEqual(get_test_info.to_json(__lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(get_test_info.to_json(__lowerCamelCase ) , __lowerCamelCase ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : Optional[int] = get_model_to_tester_mapping(__lowerCamelCase ) lowerCamelCase__ : List[str] = get_model_to_tester_mapping(__lowerCamelCase ) lowerCamelCase__ : List[Any] = { "BertForMaskedLM": ["BertModelTester"], "BertForMultipleChoice": ["BertModelTester"], "BertForNextSentencePrediction": ["BertModelTester"], "BertForPreTraining": ["BertModelTester"], "BertForQuestionAnswering": ["BertModelTester"], "BertForSequenceClassification": ["BertModelTester"], "BertForTokenClassification": ["BertModelTester"], "BertLMHeadModel": ["BertModelTester"], "BertModel": ["BertModelTester"], } lowerCamelCase__ : Optional[Any] = { "BlipForConditionalGeneration": ["BlipTextImageModelsModelTester"], "BlipForImageTextRetrieval": ["BlipTextRetrievalModelTester"], "BlipForQuestionAnswering": ["BlipVQAModelTester"], "BlipModel": ["BlipModelTester"], "BlipTextModel": ["BlipTextModelTester"], "BlipVisionModel": ["BlipVisionModelTester"], } self.assertEqual(get_test_info.to_json(__lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(get_test_info.to_json(__lowerCamelCase ) , __lowerCamelCase )
5
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class _lowercase ( lowercase__ , unittest.TestCase): """simple docstring""" A__ = BarthezTokenizer A__ = BarthezTokenizerFast A__ = True A__ = True def lowerCAmelCase ( self : int ): '''simple docstring''' super().setUp() lowerCamelCase__ : List[str] = BarthezTokenizerFast.from_pretrained("moussaKam/mbarthez" ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=__lowerCamelCase ) lowerCamelCase__ : Tuple = tokenizer def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : Any = "<pad>" lowerCamelCase__ : Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCamelCase ) , __lowerCamelCase ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(__lowerCamelCase ) , 101122 ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 101122 ) @require_torch def lowerCAmelCase ( self : int ): '''simple docstring''' lowerCamelCase__ : int = ["A long paragraph for summarization.", "Another paragraph for summarization."] lowerCamelCase__ : str = [0, 57, 3018, 70307, 91, 2] lowerCamelCase__ : Tuple = self.tokenizer( __lowerCamelCase , max_length=len(__lowerCamelCase ) , padding=__lowerCamelCase , truncation=__lowerCamelCase , return_tensors="pt" ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) lowerCamelCase__ : Any = batch.input_ids.tolist()[0] self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def lowerCAmelCase ( self : Any ): '''simple docstring''' if not self.test_rust_tokenizer: return lowerCamelCase__ : Any = self.get_tokenizer() lowerCamelCase__ : Tuple = self.get_rust_tokenizer() lowerCamelCase__ : Union[str, Any] = "I was born in 92000, and this is falsé." lowerCamelCase__ : Dict = tokenizer.tokenize(__lowerCamelCase ) lowerCamelCase__ : Optional[int] = rust_tokenizer.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : Tuple = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) lowerCamelCase__ : List[Any] = rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : List[str] = self.get_rust_tokenizer() lowerCamelCase__ : Optional[Any] = tokenizer.encode(__lowerCamelCase ) lowerCamelCase__ : List[Any] = rust_tokenizer.encode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) @slow def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : int = {"input_ids": [[0, 490, 14328, 4507, 354, 47, 43669, 95, 25, 78117, 20215, 19779, 190, 22, 400, 4, 35343, 80310, 603, 86, 24937, 105, 33438, 94762, 196, 39642, 7, 15, 15933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10534, 87, 25, 66, 3358, 196, 55289, 8, 82961, 81, 2204, 75203, 7, 15, 763, 12956, 216, 178, 14328, 9595, 1377, 69693, 7, 448, 71021, 196, 18106, 1437, 13974, 108, 9083, 4, 49315, 7, 39, 86, 1326, 2793, 46333, 4, 448, 196, 74588, 7, 49315, 7, 39, 21, 822, 38470, 74, 21, 66723, 62480, 8, 22050, 5, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. lowerCamelCase__ : List[str] = [ "Le transformeur est un modèle d'apprentissage profond introduit en 2017, " "utilisé principalement dans le domaine du traitement automatique des langues (TAL).", "À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus " "pour gérer des données séquentielles, telles que le langage naturel, pour des tâches " "telles que la traduction et la synthèse de texte.", ] self.tokenizer_integration_test_util( expected_encoding=__lowerCamelCase , model_name="moussaKam/mbarthez" , revision="c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6" , sequences=__lowerCamelCase , )
5
1
UpperCamelCase__ : Optional[Any] = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def __UpperCAmelCase ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : str , lowerCamelCase_ : str ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = [False] * len(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = [s] SCREAMING_SNAKE_CASE_ : List[Any] = True while queue: SCREAMING_SNAKE_CASE_ : List[str] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Dict = True SCREAMING_SNAKE_CASE_ : Optional[Any] = u return visited[t] def __UpperCAmelCase ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : int , lowerCamelCase_ : Any ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = [-1] * (len(lowerCamelCase_ )) SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0 SCREAMING_SNAKE_CASE_ : Any = [] SCREAMING_SNAKE_CASE_ : Optional[int] = [i[:] for i in graph] # Record original cut, copy. while bfs(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Optional[int] = float('Inf' ) SCREAMING_SNAKE_CASE_ : Dict = sink while s != source: # Find the minimum value in select path SCREAMING_SNAKE_CASE_ : int = min(lowerCamelCase_ , graph[parent[s]][s] ) SCREAMING_SNAKE_CASE_ : Tuple = parent[s] max_flow += path_flow SCREAMING_SNAKE_CASE_ : Any = sink while v != source: SCREAMING_SNAKE_CASE_ : Union[str, Any] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow SCREAMING_SNAKE_CASE_ : Union[str, Any] = parent[v] for i in range(len(lowerCamelCase_ ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
105
import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed SCREAMING_SNAKE_CASE : str = { "distilbert": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), "roberta": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), "bert": (BertConfig, BertForMaskedLM, BertTokenizer), "gpt2": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def UpperCamelCase ( _a ) -> int: '''simple docstring''' assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def UpperCamelCase ( _a , _a ) -> Any: '''simple docstring''' if args.student_type == "roberta": lowercase_ :List[str] = False elif args.student_type == "gpt2": lowercase_ :Optional[int] = False def UpperCamelCase ( _a , _a ) -> str: '''simple docstring''' if args.student_type == "roberta": lowercase_ :int = False def UpperCamelCase ( ) -> int: '''simple docstring''' lowercase_ :Optional[int] = argparse.ArgumentParser(description='''Training''' ) parser.add_argument('''--force''' , action='''store_true''' , help='''Overwrite dump_path if it already exists.''' ) parser.add_argument( '''--dump_path''' , type=_a , required=_a , help='''The output directory (log, checkpoints, parameters, etc.)''' ) parser.add_argument( '''--data_file''' , type=_a , required=_a , help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''' , ) parser.add_argument( '''--student_type''' , type=_a , choices=['''distilbert''', '''roberta''', '''gpt2'''] , required=_a , help='''The student type (DistilBERT, RoBERTa).''' , ) parser.add_argument('''--student_config''' , type=_a , required=_a , help='''Path to the student configuration.''' ) parser.add_argument( '''--student_pretrained_weights''' , default=_a , type=_a , help='''Load student initialization checkpoint.''' ) parser.add_argument( '''--teacher_type''' , choices=['''bert''', '''roberta''', '''gpt2'''] , required=_a , help='''Teacher type (BERT, RoBERTa).''' ) parser.add_argument('''--teacher_name''' , type=_a , required=_a , help='''The teacher model.''' ) parser.add_argument('''--temperature''' , default=2.0 , type=_a , help='''Temperature for the softmax temperature.''' ) parser.add_argument( '''--alpha_ce''' , default=0.5 , type=_a , help='''Linear weight for the distillation loss. Must be >=0.''' ) parser.add_argument( '''--alpha_mlm''' , default=0.0 , type=_a , help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''' , ) parser.add_argument('''--alpha_clm''' , default=0.5 , type=_a , help='''Linear weight for the CLM loss. Must be >=0.''' ) parser.add_argument('''--alpha_mse''' , default=0.0 , type=_a , help='''Linear weight of the MSE loss. Must be >=0.''' ) parser.add_argument( '''--alpha_cos''' , default=0.0 , type=_a , help='''Linear weight of the cosine embedding loss. Must be >=0.''' ) parser.add_argument( '''--mlm''' , action='''store_true''' , help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' ) parser.add_argument( '''--mlm_mask_prop''' , default=0.15 , type=_a , help='''Proportion of tokens for which we need to make a prediction.''' , ) parser.add_argument('''--word_mask''' , default=0.8 , type=_a , help='''Proportion of tokens to mask out.''' ) parser.add_argument('''--word_keep''' , default=0.1 , type=_a , help='''Proportion of tokens to keep.''' ) parser.add_argument('''--word_rand''' , default=0.1 , type=_a , help='''Proportion of tokens to randomly replace.''' ) parser.add_argument( '''--mlm_smoothing''' , default=0.7 , type=_a , help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''' , ) parser.add_argument('''--token_counts''' , type=_a , help='''The token counts in the data_file for MLM.''' ) parser.add_argument( '''--restrict_ce_to_mask''' , action='''store_true''' , help='''If true, compute the distillation loss only the [MLM] prediction distribution.''' , ) parser.add_argument( '''--freeze_pos_embs''' , action='''store_true''' , help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''' , ) parser.add_argument( '''--freeze_token_type_embds''' , action='''store_true''' , help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''' , ) parser.add_argument('''--n_epoch''' , type=_a , default=3 , help='''Number of pass on the whole dataset.''' ) parser.add_argument('''--batch_size''' , type=_a , default=5 , help='''Batch size (for each process).''' ) parser.add_argument( '''--group_by_size''' , action='''store_false''' , help='''If true, group sequences that have similar length into the same batch. Default is true.''' , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=_a , default=5_0 , help='''Gradient accumulation for larger training batches.''' , ) parser.add_argument('''--warmup_prop''' , default=0.05 , type=_a , help='''Linear warmup proportion.''' ) parser.add_argument('''--weight_decay''' , default=0.0 , type=_a , help='''Weight decay if we apply some.''' ) parser.add_argument('''--learning_rate''' , default=5E-4 , type=_a , help='''The initial learning rate for Adam.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-6 , type=_a , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , default=5.0 , type=_a , help='''Max gradient norm.''' ) parser.add_argument('''--initializer_range''' , default=0.02 , type=_a , help='''Random initialization range.''' ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=_a , default='''O1''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_gpu''' , type=_a , default=1 , help='''Number of GPUs in the node.''' ) parser.add_argument('''--local_rank''' , type=_a , default=-1 , help='''Distributed training - Local rank''' ) parser.add_argument('''--seed''' , type=_a , default=5_6 , help='''Random seed''' ) parser.add_argument('''--log_interval''' , type=_a , default=5_0_0 , help='''Tensorboard logging interval.''' ) parser.add_argument('''--checkpoint_interval''' , type=_a , default=4_0_0_0 , help='''Checkpoint interval.''' ) lowercase_ :Union[str, Any] = parser.parse_args() sanity_checks(_a ) # ARGS # init_gpu_params(_a ) set_seed(_a ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( f"Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite" ''' itUse `--force` if you want to overwrite it''' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(f"Experiment will be dumped and logged in {args.dump_path}" ) # SAVE PARAMS # logger.info(f"Param: {args}" ) with open(os.path.join(args.dump_path , '''parameters.json''' ) , '''w''' ) as f: json.dump(vars(_a ) , _a , indent=4 ) git_log(args.dump_path ) lowercase_ , lowercase_ , lowercase_ :Dict = MODEL_CLASSES[args.student_type] lowercase_ , lowercase_ , lowercase_ :Dict = MODEL_CLASSES[args.teacher_type] # TOKENIZER # lowercase_ :Union[str, Any] = teacher_tokenizer_class.from_pretrained(args.teacher_name ) lowercase_ :Optional[Any] = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): lowercase_ :List[str] = tokenizer.all_special_tokens.index(_a ) lowercase_ :Union[str, Any] = tokenizer.all_special_ids[idx] logger.info(f"Special tokens {special_tok_ids}" ) lowercase_ :Dict = special_tok_ids lowercase_ :List[str] = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(f"Loading data from {args.data_file}" ) with open(args.data_file , '''rb''' ) as fp: lowercase_ :Tuple = pickle.load(_a ) if args.mlm: logger.info(f"Loading token counts from {args.token_counts} (already pre-computed)" ) with open(args.token_counts , '''rb''' ) as fp: lowercase_ :List[Any] = pickle.load(_a ) lowercase_ :Tuple = np.maximum(_a , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): lowercase_ :List[Any] = 0.0 # do not predict special tokens lowercase_ :Dict = torch.from_numpy(_a ) else: lowercase_ :Tuple = None lowercase_ :List[Any] = LmSeqsDataset(params=_a , data=_a ) logger.info('''Data loader created.''' ) # STUDENT # logger.info(f"Loading student config from {args.student_config}" ) lowercase_ :Union[str, Any] = student_config_class.from_pretrained(args.student_config ) lowercase_ :int = True if args.student_pretrained_weights is not None: logger.info(f"Loading pretrained weights from {args.student_pretrained_weights}" ) lowercase_ :List[Any] = student_model_class.from_pretrained(args.student_pretrained_weights , config=_a ) else: lowercase_ :Dict = student_model_class(_a ) if args.n_gpu > 0: student.to(f"cuda:{args.local_rank}" ) logger.info('''Student loaded.''' ) # TEACHER # lowercase_ :int = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=_a ) if args.n_gpu > 0: teacher.to(f"cuda:{args.local_rank}" ) logger.info(f"Teacher loaded from {args.teacher_name}." ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(_a , _a ) if args.freeze_token_type_embds: freeze_token_type_embeddings(_a , _a ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() lowercase_ :Tuple = Distiller( params=_a , dataset=_a , token_probs=_a , student=_a , teacher=_a ) distiller.train() logger.info('''Let\'s go get some drinks.''' ) if __name__ == "__main__": main()
257
0
"""simple docstring""" import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration SCREAMING_SNAKE_CASE_ = { '''tiny.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt''', '''tiny''': '''https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt''', '''base.en''': '''https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt''', '''base''': '''https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt''', '''small.en''': '''https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt''', '''small''': '''https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt''', '''medium.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt''', '''medium''': '''https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt''', '''large''': '''https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt''', '''large-v2''': '''https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt''', } def A__ ( A__ ) -> Tuple: '''simple docstring''' _UpperCAmelCase = ["""layers""", """blocks"""] for k in ignore_keys: state_dict.pop(__UpperCamelCase , __UpperCamelCase ) SCREAMING_SNAKE_CASE_ = { '''blocks''': '''layers''', '''mlp.0''': '''fc1''', '''mlp.2''': '''fc2''', '''mlp_ln''': '''final_layer_norm''', '''.attn.query''': '''.self_attn.q_proj''', '''.attn.key''': '''.self_attn.k_proj''', '''.attn.value''': '''.self_attn.v_proj''', '''.attn_ln''': '''.self_attn_layer_norm''', '''.attn.out''': '''.self_attn.out_proj''', '''.cross_attn.query''': '''.encoder_attn.q_proj''', '''.cross_attn.key''': '''.encoder_attn.k_proj''', '''.cross_attn.value''': '''.encoder_attn.v_proj''', '''.cross_attn_ln''': '''.encoder_attn_layer_norm''', '''.cross_attn.out''': '''.encoder_attn.out_proj''', '''decoder.ln.''': '''decoder.layer_norm.''', '''encoder.ln.''': '''encoder.layer_norm.''', '''token_embedding''': '''embed_tokens''', '''encoder.positional_embedding''': '''encoder.embed_positions.weight''', '''decoder.positional_embedding''': '''decoder.embed_positions.weight''', '''ln_post''': '''layer_norm''', } def A__ ( A__ ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = list(s_dict.keys() ) for key in keys: _UpperCAmelCase = key for k, v in WHISPER_MAPPING.items(): if k in key: _UpperCAmelCase = new_key.replace(__UpperCamelCase , __UpperCamelCase ) print(F"""{key} -> {new_key}""" ) _UpperCAmelCase = s_dict.pop(__UpperCamelCase ) return s_dict def A__ ( A__ ) -> Dict: '''simple docstring''' _UpperCAmelCase = emb.weight.shape _UpperCAmelCase = nn.Linear(__UpperCamelCase , __UpperCamelCase , bias=__UpperCamelCase ) _UpperCAmelCase = emb.weight.data return lin_layer def A__ ( A__ , A__ ) -> str: '''simple docstring''' os.makedirs(__UpperCamelCase , exist_ok=__UpperCamelCase ) _UpperCAmelCase = os.path.basename(__UpperCamelCase ) _UpperCAmelCase = url.split("/" )[-2] _UpperCAmelCase = os.path.join(__UpperCamelCase , __UpperCamelCase ) if os.path.exists(__UpperCamelCase ) and not os.path.isfile(__UpperCamelCase ): raise RuntimeError(F"""{download_target} exists and is not a regular file""" ) if os.path.isfile(__UpperCamelCase ): _UpperCAmelCase = open(__UpperCamelCase , "rb" ).read() if hashlib.shaaaa(__UpperCamelCase ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(F"""{download_target} exists, but the SHA256 checksum does not match; re-downloading the file""" ) with urllib.request.urlopen(__UpperCamelCase ) as source, open(__UpperCamelCase , "wb" ) as output: with tqdm( total=int(source.info().get("Content-Length" ) ) , ncols=80 , unit="iB" , unit_scale=__UpperCamelCase , unit_divisor=1024 ) as loop: while True: _UpperCAmelCase = source.read(8192 ) if not buffer: break output.write(__UpperCamelCase ) loop.update(len(__UpperCamelCase ) ) _UpperCAmelCase = open(__UpperCamelCase , "rb" ).read() if hashlib.shaaaa(__UpperCamelCase ).hexdigest() != expected_shaaaa: raise RuntimeError( "Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model." ) return model_bytes def A__ ( A__ , A__ ) -> int: '''simple docstring''' if ".pt" not in checkpoint_path: _UpperCAmelCase = _download(_MODELS[checkpoint_path] ) else: _UpperCAmelCase = torch.load(__UpperCamelCase , map_location="cpu" ) _UpperCAmelCase = original_checkpoint["""dims"""] _UpperCAmelCase = original_checkpoint["""model_state_dict"""] _UpperCAmelCase = state_dict["""decoder.token_embedding.weight"""] remove_ignore_keys_(__UpperCamelCase ) rename_keys(__UpperCamelCase ) _UpperCAmelCase = True _UpperCAmelCase = state_dict["""decoder.layers.0.fc1.weight"""].shape[0] _UpperCAmelCase = WhisperConfig( vocab_size=dimensions["n_vocab"] , encoder_ffn_dim=__UpperCamelCase , decoder_ffn_dim=__UpperCamelCase , num_mel_bins=dimensions["n_mels"] , d_model=dimensions["n_audio_state"] , max_target_positions=dimensions["n_text_ctx"] , encoder_layers=dimensions["n_audio_layer"] , encoder_attention_heads=dimensions["n_audio_head"] , decoder_layers=dimensions["n_text_layer"] , decoder_attention_heads=dimensions["n_text_state"] , max_source_positions=dimensions["n_audio_ctx"] , ) _UpperCAmelCase = WhisperForConditionalGeneration(__UpperCamelCase ) _UpperCAmelCase = model.model.load_state_dict(__UpperCamelCase , strict=__UpperCamelCase ) if len(__UpperCamelCase ) > 0 and not set(__UpperCamelCase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( "Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing," F""" but all the following weights are missing {missing}""" ) if tie_embeds: _UpperCAmelCase = make_linear_from_emb(model.model.decoder.embed_tokens ) else: _UpperCAmelCase = proj_out_weights model.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Patht to the downloaded checkpoints''') parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
721
"""simple docstring""" import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class a : """simple docstring""" def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=24 , snake_case_=2 , snake_case_=6 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=3 , snake_case_=None , snake_case_=1000 , ) -> Optional[int]: _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = scope _UpperCAmelCase = range_bbox def __A ( self ) -> Dict: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _UpperCAmelCase = bbox[i, j, 3] _UpperCAmelCase = bbox[i, j, 1] _UpperCAmelCase = t if bbox[i, j, 2] < bbox[i, j, 0]: _UpperCAmelCase = bbox[i, j, 2] _UpperCAmelCase = bbox[i, j, 0] _UpperCAmelCase = t _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def __A ( self ) -> Dict: return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def __A ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) -> Any: _UpperCAmelCase = LiltModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() _UpperCAmelCase = model(snake_case_ , bbox=snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ ) _UpperCAmelCase = model(snake_case_ , bbox=snake_case_ , token_type_ids=snake_case_ ) _UpperCAmelCase = model(snake_case_ , bbox=snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __A ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) -> Optional[Any]: _UpperCAmelCase = self.num_labels _UpperCAmelCase = LiltForTokenClassification(config=snake_case_ ) model.to(snake_case_ ) model.eval() _UpperCAmelCase = model( snake_case_ , bbox=snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) -> str: _UpperCAmelCase = LiltForQuestionAnswering(config=snake_case_ ) model.to(snake_case_ ) model.eval() _UpperCAmelCase = model( snake_case_ , bbox=snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self ) -> Optional[int]: _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class a ( _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, unittest.TestCase ): """simple docstring""" A__ : List[Any] = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) A__ : List[str] = ( { "feature-extraction": LiltModel, "question-answering": LiltForQuestionAnswering, "text-classification": LiltForSequenceClassification, "token-classification": LiltForTokenClassification, "zero-shot": LiltForSequenceClassification, } if is_torch_available() else {} ) A__ : int = False A__ : Tuple = False def __A ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Tuple: return True def __A ( self ) -> str: _UpperCAmelCase = LiltModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def __A ( self ) -> Tuple: self.config_tester.run_common_tests() def __A ( self ) -> List[Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def __A ( self ) -> str: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _UpperCAmelCase = type self.model_tester.create_and_check_model(*snake_case_ ) def __A ( self ) -> Any: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) def __A ( self ) -> List[Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case_ ) @slow def __A ( self ) -> Optional[Any]: for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = LiltModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @require_torch @slow class a ( unittest.TestCase ): """simple docstring""" def __A ( self ) -> Optional[Any]: _UpperCAmelCase = LiltModel.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base" ).to(snake_case_ ) _UpperCAmelCase = torch.tensor([[1, 2]] , device=snake_case_ ) _UpperCAmelCase = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=snake_case_ ) # forward pass with torch.no_grad(): _UpperCAmelCase = model(input_ids=snake_case_ , bbox=snake_case_ ) _UpperCAmelCase = torch.Size([1, 2, 768] ) _UpperCAmelCase = torch.tensor( [[-0.06_53, 0.09_50, -0.00_61], [-0.05_45, 0.09_26, -0.03_24]] , device=snake_case_ , ) self.assertTrue(outputs.last_hidden_state.shape , snake_case_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , snake_case_ , atol=1e-3 ) )
579
0
from __future__ import annotations from collections.abc import MutableSequence class _SCREAMING_SNAKE_CASE : def __init__( self , A_ , A_ ): if len(A_ ) != degree + 1: raise ValueError( """The number of coefficients should be equal to the degree + 1.""" ) _UpperCAmelCase : list[float] = list(A_ ) _UpperCAmelCase : str = degree def __add__( self , A_ ): if self.degree > polynomial_a.degree: _UpperCAmelCase : Union[str, Any] = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , A_ ) else: _UpperCAmelCase : List[Any] = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , A_ ) def __sub__( self , A_ ): return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self ): return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self , A_ ): _UpperCAmelCase : list[float] = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , A_ ) def __snake_case( self , A_ ): _UpperCAmelCase : int | float = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self ): _UpperCAmelCase : Dict = """""" for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(A_ ) return polynomial def __repr__( self ): return self.__str__() def __snake_case( self ): _UpperCAmelCase : list[float] = [0] * self.degree for i in range(self.degree ): _UpperCAmelCase : Optional[Any] = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , A_ ) def __snake_case( self , A_ = 0 ): _UpperCAmelCase : list[float] = [0] * (self.degree + 2) _UpperCAmelCase : Tuple = constant for i in range(self.degree + 1 ): _UpperCAmelCase : Any = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , A_ ) def __eq__( self , A_ ): if not isinstance(A_ , A_ ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self , A_ ): return not self.__eq__(A_ )
643
import collections import importlib.util import os import re from pathlib import Path SCREAMING_SNAKE_CASE__ : List[Any] = 'src/transformers' # Matches is_xxx_available() SCREAMING_SNAKE_CASE__ : List[Any] = re.compile(R'is\_([a-z_]*)_available()') # Catches a one-line _import_struct = {xxx} SCREAMING_SNAKE_CASE__ : str = re.compile(R'^_import_structure\s+=\s+\{([^\}]+)\}') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] SCREAMING_SNAKE_CASE__ : Tuple = re.compile(R'\s+"\S*":\s+\[([^\]]*)\]') # Catches a line if not is_foo_available SCREAMING_SNAKE_CASE__ : Dict = re.compile(R'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)') # Catches a line _import_struct["bla"].append("foo") SCREAMING_SNAKE_CASE__ : Union[str, Any] = re.compile(R'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] SCREAMING_SNAKE_CASE__ : Optional[Any] = re.compile(R'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]') # Catches a line with an object between quotes and a comma: "MyModel", SCREAMING_SNAKE_CASE__ : Optional[int] = re.compile('^\s+"([^"]+)",') # Catches a line with objects between brackets only: ["foo", "bar"], SCREAMING_SNAKE_CASE__ : Union[str, Any] = re.compile('^\s+\[([^\]]+)\]') # Catches a line with from foo import bar, bla, boo SCREAMING_SNAKE_CASE__ : List[Any] = re.compile(R'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') # Catches a line with try: SCREAMING_SNAKE_CASE__ : Optional[Any] = re.compile(R'^\s*try:') # Catches a line with else: SCREAMING_SNAKE_CASE__ : Union[str, Any] = re.compile(R'^\s*else:') def a__ ( snake_case__ : Union[str, Any] ): if _re_test_backend.search(snake_case__ ) is None: return None _UpperCAmelCase : str = [b[0] for b in _re_backend.findall(snake_case__ )] backends.sort() return "_and_".join(snake_case__ ) def a__ ( snake_case__ : Optional[int] ): with open(snake_case__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: _UpperCAmelCase : Optional[Any] = f.readlines() _UpperCAmelCase : int = 0 while line_index < len(snake_case__ ) and not lines[line_index].startswith("""_import_structure = {""" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(snake_case__ ): return None # First grab the objects without a specific backend in _import_structure _UpperCAmelCase : int = [] while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None: _UpperCAmelCase : int = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(snake_case__ ): _UpperCAmelCase : Optional[Any] = _re_one_line_import_struct.search(snake_case__ ).groups()[0] _UpperCAmelCase : str = re.findall("""\[([^\]]+)\]""" , snake_case__ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(""", """ )] ) line_index += 1 continue _UpperCAmelCase : int = _re_import_struct_key_value.search(snake_case__ ) if single_line_import_search is not None: _UpperCAmelCase : Dict = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(snake_case__ ) > 0] objects.extend(snake_case__ ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) line_index += 1 _UpperCAmelCase : str = {"""none""": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("""if TYPE_CHECKING""" ): # If the line is an if not is_backend_available, we grab all objects associated. _UpperCAmelCase : Tuple = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _UpperCAmelCase : List[Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _UpperCAmelCase : List[Any] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ): _UpperCAmelCase : Optional[int] = lines[line_index] if _re_import_struct_add_one.search(snake_case__ ) is not None: objects.append(_re_import_struct_add_one.search(snake_case__ ).groups()[0] ) elif _re_import_struct_add_many.search(snake_case__ ) is not None: _UpperCAmelCase : str = _re_import_struct_add_many.search(snake_case__ ).groups()[0].split(""", """ ) _UpperCAmelCase : Optional[Any] = [obj[1:-1] for obj in imports if len(snake_case__ ) > 0] objects.extend(snake_case__ ) elif _re_between_brackets.search(snake_case__ ) is not None: _UpperCAmelCase : str = _re_between_brackets.search(snake_case__ ).groups()[0].split(""", """ ) _UpperCAmelCase : List[str] = [obj[1:-1] for obj in imports if len(snake_case__ ) > 0] objects.extend(snake_case__ ) elif _re_quote_object.search(snake_case__ ) is not None: objects.append(_re_quote_object.search(snake_case__ ).groups()[0] ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) elif line.startswith(""" """ * 12 + """\"""" ): objects.append(line[13:-3] ) line_index += 1 _UpperCAmelCase : str = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend _UpperCAmelCase : Optional[Any] = [] while ( line_index < len(snake_case__ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("""else""" ) ): _UpperCAmelCase : Union[str, Any] = lines[line_index] _UpperCAmelCase : str = _re_import.search(snake_case__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 _UpperCAmelCase : int = {"""none""": objects} # Let's continue with backend-specific objects while line_index < len(snake_case__ ): # If the line is an if is_backend_available, we grab all objects associated. _UpperCAmelCase : str = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _UpperCAmelCase : Optional[int] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _UpperCAmelCase : Dict = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ): _UpperCAmelCase : Union[str, Any] = lines[line_index] _UpperCAmelCase : Any = _re_import.search(snake_case__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 12 ): objects.append(line[12:-2] ) line_index += 1 _UpperCAmelCase : str = objects else: line_index += 1 return import_dict_objects, type_hint_objects def a__ ( snake_case__ : Any , snake_case__ : Optional[int] ): def find_duplicates(snake_case__ : Dict ): return [k for k, v in collections.Counter(snake_case__ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] _UpperCAmelCase : int = [] for key in import_dict_objects.keys(): _UpperCAmelCase : Any = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) _UpperCAmelCase : Optional[int] = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): _UpperCAmelCase : Optional[int] = """base imports""" if key == """none""" else f'''{key} backend''' errors.append(f'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def a__ ( ): _UpperCAmelCase : Any = [] for root, _, files in os.walk(snake_case__ ): if "__init__.py" in files: _UpperCAmelCase : Optional[Any] = os.path.join(snake_case__ , """__init__.py""" ) _UpperCAmelCase : List[str] = parse_init(snake_case__ ) if objects is not None: _UpperCAmelCase : int = analyze_results(*snake_case__ ) if len(snake_case__ ) > 0: _UpperCAmelCase : Union[str, Any] = f'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append("""\n""".join(snake_case__ ) ) if len(snake_case__ ) > 0: raise ValueError("""\n\n""".join(snake_case__ ) ) def a__ ( ): _UpperCAmelCase : Tuple = [] for path, directories, files in os.walk(snake_case__ ): for folder in directories: # Ignore private modules if folder.startswith("""_""" ): directories.remove(snake_case__ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(snake_case__ ) / folder).glob("""*.py""" ) ) ) == 0: continue _UpperCAmelCase : Dict = str((Path(snake_case__ ) / folder).relative_to(snake_case__ ) ) _UpperCAmelCase : Union[str, Any] = short_path.replace(os.path.sep , """.""" ) submodules.append(snake_case__ ) for fname in files: if fname == "__init__.py": continue _UpperCAmelCase : Optional[Any] = str((Path(snake_case__ ) / fname).relative_to(snake_case__ ) ) _UpperCAmelCase : Optional[Any] = short_path.replace(""".py""" , """""" ).replace(os.path.sep , """.""" ) if len(submodule.split(""".""" ) ) == 1: submodules.append(snake_case__ ) return submodules SCREAMING_SNAKE_CASE__ : List[Any] = [ 'convert_pytorch_checkpoint_to_tf2', 'modeling_flax_pytorch_utils', ] def a__ ( ): # This is to make sure the transformers module imported is the one in the repo. _UpperCAmelCase : int = importlib.util.spec_from_file_location( """transformers""" , os.path.join(snake_case__ , """__init__.py""" ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) _UpperCAmelCase : Optional[int] = spec.loader.load_module() _UpperCAmelCase : int = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(snake_case__ ) > 0: _UpperCAmelCase : Dict = """\n""".join(f'''- {module}''' for module in module_not_registered ) raise ValueError( """The following submodules are not properly registered in the main init of Transformers:\n""" f'''{list_of_modules}\n''' """Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" ) if __name__ == "__main__": check_all_inits() check_submodules()
643
1
from __future__ import annotations def lowercase_ ( _A : list ): """simple docstring""" if len(_A ) == 0: return [] lowerCamelCase__ , lowerCamelCase__ : Dict = min(_A ), max(_A ) lowerCamelCase__ : Any = int(max_value - min_value ) + 1 lowerCamelCase__ : list[list] = [[] for _ in range(_A )] for i in my_list: buckets[int(i - min_value )].append(_A ) return [v for bucket in buckets for v in sorted(_A )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
5
from __future__ import annotations import time import numpy as np A : Dict = [8, 5, 9, 7] A : Optional[Any] = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] A : Any = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class _lowercase : """simple docstring""" def __init__( self : str , __lowerCamelCase : list[int] , __lowerCamelCase : list[list[int]] , __lowerCamelCase : list[list[int]] , ): '''simple docstring''' lowerCamelCase__ : int = claim_vector lowerCamelCase__ : str = allocated_resources_table lowerCamelCase__ : int = maximum_claim_table def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def lowerCAmelCase ( self : List[str] ): '''simple docstring''' return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(__lowerCamelCase ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def lowerCAmelCase ( self : Tuple ): '''simple docstring''' return {self.__need().index(__lowerCamelCase ): i for i in self.__need()} def lowerCAmelCase ( self : List[str] , **__lowerCamelCase : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.__need() lowerCamelCase__ : str = self.__allocated_resources_table lowerCamelCase__ : List[Any] = self.__available_resources() lowerCamelCase__ : str = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print("_" * 50 + "\n" ) while need_list: lowerCamelCase__ : int = False for each_need in need_list: lowerCamelCase__ : Dict = True for index, need in enumerate(__lowerCamelCase ): if need > available_resources[index]: lowerCamelCase__ : str = False break if execution: lowerCamelCase__ : Tuple = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: lowerCamelCase__ : Any = original_need_index print(f"Process {process_number + 1} is executing." ) # remove the process run from stack need_list.remove(__lowerCamelCase ) # update available/freed resources stack lowerCamelCase__ : Union[str, Any] = np.array(__lowerCamelCase ) + np.array( alloc_resources_table[process_number] ) print( "Updated available resource stack for processes: " + " ".join([str(__lowerCamelCase ) for x in available_resources] ) ) break if safe: print("The process is in a safe state.\n" ) else: print("System in unsafe state. Aborting...\n" ) break def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' print(" " * 9 + "Allocated Resource Table" ) for item in self.__allocated_resources_table: print( f"P{self.__allocated_resources_table.index(__lowerCamelCase ) + 1}" + " ".join(f"{it:>8}" for it in item ) + "\n" ) print(" " * 9 + "System Resource Table" ) for item in self.__maximum_claim_table: print( f"P{self.__maximum_claim_table.index(__lowerCamelCase ) + 1}" + " ".join(f"{it:>8}" for it in item ) + "\n" ) print( "Current Usage by Active Processes: " + " ".join(str(__lowerCamelCase ) for x in self.__claim_vector ) ) print( "Initial Available Resources: " + " ".join(str(__lowerCamelCase ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
5
1
"""simple docstring""" import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration __A : List[str] = pytest.mark.integration __A : Dict = {'''comet'''} __A : Tuple = importlib.util.find_spec("fairseq") is not None __A : List[Any] = {'''code_eval'''} __A : List[str] = os.name == '''nt''' __A : str = {'''bertscore''', '''frugalscore''', '''perplexity'''} __A : str = importlib.util.find_spec("transformers") is not None def lowercase ( _SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' @wraps(_SCREAMING_SNAKE_CASE ) def wrapper(self : Union[str, Any] , _SCREAMING_SNAKE_CASE : int ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest('''"test requires Fairseq"''' ) else: test_case(self , _SCREAMING_SNAKE_CASE ) return wrapper def lowercase ( _SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' @wraps(_SCREAMING_SNAKE_CASE ) def wrapper(self : str , _SCREAMING_SNAKE_CASE : List[str] ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest('''"test requires transformers"''' ) else: test_case(self , _SCREAMING_SNAKE_CASE ) return wrapper def lowercase ( _SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' @wraps(_SCREAMING_SNAKE_CASE ) def wrapper(self : Optional[int] , _SCREAMING_SNAKE_CASE : List[Any] ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest('''"test not supported on Windows"''' ) else: test_case(self , _SCREAMING_SNAKE_CASE ) return wrapper def lowercase ( ): '''simple docstring''' _UpperCAmelCase = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob('''./metrics/*/''' )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names()) @for_all_test_methods( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) @local class _a ( parameterized.TestCase): """simple docstring""" UpperCamelCase__ = {} UpperCamelCase__ = None @pytest.mark.filterwarnings('''ignore:metric_module_factory is deprecated:FutureWarning''' ) @pytest.mark.filterwarnings('''ignore:load_metric is deprecated:FutureWarning''' ) def lowercase__ ( self : str , __UpperCamelCase : List[Any] )->Optional[Any]: _UpperCAmelCase = '[...]' _UpperCAmelCase = importlib.import_module( datasets.load.metric_module_factory(os.path.join('''metrics''' , SCREAMING_SNAKE_CASE__ ) ).module_path ) _UpperCAmelCase = datasets.load.import_main_class(metric_module.__name__ , dataset=SCREAMING_SNAKE_CASE__ ) # check parameters _UpperCAmelCase = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(SCREAMING_SNAKE_CASE__ , metric_module.__name__ ): with self.use_local_metrics(): try: _UpperCAmelCase = doctest.testmod(SCREAMING_SNAKE_CASE__ , verbose=SCREAMING_SNAKE_CASE__ , raise_on_error=SCREAMING_SNAKE_CASE__ ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : str )->Any: _UpperCAmelCase = '[...]' _UpperCAmelCase = importlib.import_module( datasets.load.metric_module_factory(os.path.join('''metrics''' , SCREAMING_SNAKE_CASE__ ) ).module_path ) # run doctest with self.use_local_metrics(): _UpperCAmelCase = doctest.testmod(SCREAMING_SNAKE_CASE__ , verbose=SCREAMING_SNAKE_CASE__ , raise_on_error=SCREAMING_SNAKE_CASE__ ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def lowercase__ ( self : Optional[Any] , __UpperCamelCase : Any , __UpperCamelCase : List[Any] )->Dict: if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](SCREAMING_SNAKE_CASE__ ): yield else: yield @contextmanager def lowercase__ ( self : Any )->Dict: def load_local_metric(__UpperCamelCase : List[str] , *__UpperCamelCase : Union[str, Any] , **__UpperCamelCase : Union[str, Any] ): return load_metric(os.path.join('''metrics''' , SCREAMING_SNAKE_CASE__ ) , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) with patch('''datasets.load_metric''' ) as mock_load_metric: _UpperCAmelCase = load_local_metric yield @classmethod def lowercase__ ( cls : Optional[int] , __UpperCamelCase : Optional[int] )->str: def wrapper(__UpperCamelCase : Optional[int] ): _UpperCAmelCase = contextmanager(SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher('''bleurt''' ) def lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string('''sv''' , '''''' , '''''' ) # handle pytest cli flags class _a ( lowerCAmelCase_): """simple docstring""" def lowercase__ ( self : str , __UpperCamelCase : Optional[int] )->Any: assert len(input_dict['''input_ids'''] ) == 2 return np.array([1.0_3, 1.0_4] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch('''bleurt.score._create_predictor''' ) as mock_create_predictor: _UpperCAmelCase = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher('''bertscore''' ) def lowercase ( _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' import torch def bert_cos_score_idf(_SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Dict , *_SCREAMING_SNAKE_CASE : int , **_SCREAMING_SNAKE_CASE : Tuple ): return torch.tensor([[1.0, 1.0, 1.0]] * len(_SCREAMING_SNAKE_CASE ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch('''bert_score.scorer.get_model''' ), patch( '''bert_score.scorer.bert_cos_score_idf''' ) as mock_bert_cos_score_idf: _UpperCAmelCase = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher('''comet''' ) def lowercase ( _SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' def load_from_checkpoint(_SCREAMING_SNAKE_CASE : List[Any] ): class _a : """simple docstring""" def lowercase__ ( self : Optional[Any] , __UpperCamelCase : List[str] , *__UpperCamelCase : List[str] , **__UpperCamelCase : str )->Any: assert len(SCREAMING_SNAKE_CASE__ ) == 2 _UpperCAmelCase = [0.1_9, 0.9_2] return scores, sum(SCREAMING_SNAKE_CASE__ ) / len(SCREAMING_SNAKE_CASE__ ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch('''comet.download_model''' ) as mock_download_model: _UpperCAmelCase = None with patch('''comet.load_from_checkpoint''' ) as mock_load_from_checkpoint: _UpperCAmelCase = load_from_checkpoint yield def lowercase ( ): '''simple docstring''' _UpperCAmelCase = load_metric(os.path.join('''metrics''' , '''seqeval''' ) ) _UpperCAmelCase = 'ERROR' _UpperCAmelCase = f'Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}' with pytest.raises(_SCREAMING_SNAKE_CASE , match=re.escape(_SCREAMING_SNAKE_CASE ) ): metric.compute(predictions=[] , references=[] , scheme=_SCREAMING_SNAKE_CASE )
602
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch _lowercase : Optional[Any] =logging.get_logger(__name__) class SCREAMING_SNAKE_CASE_ : '''simple docstring''' def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : str = None , SCREAMING_SNAKE_CASE__ : uuid.UUID = None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None ) -> Any: if not conversation_id: A : int =uuid.uuida() if past_user_inputs is None: A : Tuple =[] if generated_responses is None: A : Any =[] A : uuid.UUID =conversation_id A : List[str] =past_user_inputs A : List[str] =generated_responses A : Optional[str] =text def __eq__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> int: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : bool = False ) -> Any: if self.new_user_input: if overwrite: logger.warning( f'User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten ' f'with: "{text}".' ) A : Union[str, Any] =text else: logger.warning( f'User input added while unprocessed input was existing: "{self.new_user_input}" new input ' f'ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input' ) else: A : List[str] =text def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Optional[int]: if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) A : List[str] =None def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : str ) -> List[Any]: self.generated_responses.append(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Any: for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self : Optional[Any] ) -> List[str]: A : int =f'Conversation id: {self.uuid} \n' for is_user, text in self.iter_texts(): A : List[str] ='user' if is_user else 'bot' output += f'{name} >> {text} \n' return output @add_end_docstrings( lowerCAmelCase_ , r"\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n " , ) class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ): '''simple docstring''' def __init__( self : Optional[Any] , *SCREAMING_SNAKE_CASE__ : Any , **SCREAMING_SNAKE_CASE__ : int ) -> Any: super().__init__(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) if self.tokenizer.pad_token_id is None: A : Optional[int] =self.tokenizer.eos_token def SCREAMING_SNAKE_CASE_ ( self : int , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : List[str]=None , **SCREAMING_SNAKE_CASE__ : str ) -> int: A : List[Any] ={} A : str ={} A : Any ={} if min_length_for_response is not None: A : Dict =min_length_for_response if minimum_tokens is not None: A : Union[str, Any] =minimum_tokens if "max_length" in generate_kwargs: A : str =generate_kwargs['max_length'] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: A : Dict =clean_up_tokenization_spaces if generate_kwargs: forward_params.update(SCREAMING_SNAKE_CASE__ ) return preprocess_params, forward_params, postprocess_params def __call__( self : int , SCREAMING_SNAKE_CASE__ : Union[Conversation, List[Conversation]] , SCREAMING_SNAKE_CASE__ : Tuple=0 , **SCREAMING_SNAKE_CASE__ : str ) -> Optional[Any]: A : int =super().__call__(SCREAMING_SNAKE_CASE__ , num_workers=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and len(SCREAMING_SNAKE_CASE__ ) == 1: return outputs[0] return outputs def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : Conversation , SCREAMING_SNAKE_CASE__ : Optional[int]=32 ) -> Dict[str, Any]: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise ValueError('ConversationalPipeline, expects Conversation as inputs' ) if conversation.new_user_input is None: raise ValueError( f'Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. ' 'Add user inputs with the conversation\'s `add_user_input` method' ) if hasattr(self.tokenizer , '_build_conversation_input_ids' ): A : str =self.tokenizer._build_conversation_input_ids(SCREAMING_SNAKE_CASE__ ) else: # If the tokenizer cannot handle conversations, we default to only the old version A : Any =self._legacy_parse_and_tokenize(SCREAMING_SNAKE_CASE__ ) if self.framework == "pt": A : str =torch.LongTensor([input_ids] ) elif self.framework == "tf": A : List[Any] =tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int=10 , **SCREAMING_SNAKE_CASE__ : int ) -> Union[str, Any]: A : List[Any] =generate_kwargs.get('max_length' , self.model.config.max_length ) A : Any =model_inputs['input_ids'].shape[1] if max_length - minimum_tokens < n: logger.warning(f'Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})' ) A : Dict =max_length - minimum_tokens A : Dict =model_inputs['input_ids'][:, -trim:] if "attention_mask" in model_inputs: A : int =model_inputs['attention_mask'][:, -trim:] A : Union[str, Any] =model_inputs.pop('conversation' ) A : Optional[int] =max_length A : str =self.model.generate(**SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) if self.model.config.is_encoder_decoder: A : str =1 else: A : Any =n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : str=True ) -> Optional[Any]: A : Any =model_outputs['output_ids'] A : Dict =self.tokenizer.decode( output_ids[0] , skip_special_tokens=SCREAMING_SNAKE_CASE__ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ , ) A : int =model_outputs['conversation'] conversation.mark_processed() conversation.append_response(SCREAMING_SNAKE_CASE__ ) return conversation def SCREAMING_SNAKE_CASE_ ( self : Dict , SCREAMING_SNAKE_CASE__ : Conversation ) -> Dict: A : List[str] =self.tokenizer.eos_token_id A : str =[] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) ) if len(SCREAMING_SNAKE_CASE__ ) > self.tokenizer.model_max_length: A : Dict =input_ids[-self.tokenizer.model_max_length :] return input_ids
305
0
'''simple docstring''' import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def lowerCamelCase ( *UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[Union[Dict, Any]] = None , UpperCAmelCase__ : str=True , UpperCAmelCase__ : Any=2 ) -> int: '''simple docstring''' from .. import __version__ SCREAMING_SNAKE_CASE__ :Union[str, Any] = take_from SCREAMING_SNAKE_CASE__ :str = () if not isinstance(args[0] , UpperCAmelCase__ ): SCREAMING_SNAKE_CASE__ :Union[str, Any] = (args,) for attribute, version_name, message in args: if version.parse(version.parse(UpperCAmelCase__ ).base_version ) >= version.parse(UpperCAmelCase__ ): raise ValueError( F'''The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\'''' F''' version {__version__} is >= {version_name}''' ) SCREAMING_SNAKE_CASE__ :Any = None if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(UpperCAmelCase__ ),) SCREAMING_SNAKE_CASE__ :str = F'''The `{attribute}` argument is deprecated and will be removed in version {version_name}.''' elif hasattr(UpperCAmelCase__ , UpperCAmelCase__ ): values += (getattr(UpperCAmelCase__ , UpperCAmelCase__ ),) SCREAMING_SNAKE_CASE__ :int = F'''The `{attribute}` attribute is deprecated and will be removed in version {version_name}.''' elif deprecated_kwargs is None: SCREAMING_SNAKE_CASE__ :Optional[int] = F'''`{attribute}` is deprecated and will be removed in version {version_name}.''' if warning is not None: SCREAMING_SNAKE_CASE__ :List[Any] = warning + ' ' if standard_warn else '' warnings.warn(warning + message , UpperCAmelCase__ , stacklevel=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and len(UpperCAmelCase__ ) > 0: SCREAMING_SNAKE_CASE__ :List[str] = inspect.getouterframes(inspect.currentframe() )[1] SCREAMING_SNAKE_CASE__ :Optional[Any] = call_frame.filename SCREAMING_SNAKE_CASE__ :List[str] = call_frame.lineno SCREAMING_SNAKE_CASE__ :Dict = call_frame.function SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ :List[Any] = next(iter(deprecated_kwargs.items() ) ) raise TypeError(F'''{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`''' ) if len(UpperCAmelCase__ ) == 0: return elif len(UpperCAmelCase__ ) == 1: return values[0] return values
702
'''simple docstring''' import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE( _SCREAMING_SNAKE_CASE ): def __init__( self : Any , UpperCamelCase_ : Union[List[ControlNetModel], Tuple[ControlNetModel]] ) -> Optional[Any]: super().__init__() SCREAMING_SNAKE_CASE__ :Any = nn.ModuleList(UpperCamelCase_ ) def __lowerCamelCase ( self : Union[str, Any] , UpperCamelCase_ : torch.FloatTensor , UpperCamelCase_ : Union[torch.Tensor, float, int] , UpperCamelCase_ : torch.Tensor , UpperCamelCase_ : List[torch.tensor] , UpperCamelCase_ : List[float] , UpperCamelCase_ : Optional[torch.Tensor] = None , UpperCamelCase_ : Optional[torch.Tensor] = None , UpperCamelCase_ : Optional[torch.Tensor] = None , UpperCamelCase_ : Optional[Dict[str, Any]] = None , UpperCamelCase_ : bool = False , UpperCamelCase_ : bool = True , ) -> Union[ControlNetOutput, Tuple]: for i, (image, scale, controlnet) in enumerate(zip(UpperCamelCase_ , UpperCamelCase_ , self.nets ) ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ :Any = controlnet( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ) # merge samples if i == 0: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ :Dict = down_samples, mid_sample else: SCREAMING_SNAKE_CASE__ :int = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(UpperCamelCase_ , UpperCamelCase_ ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def __lowerCamelCase ( self : List[str] , UpperCamelCase_ : Union[str, os.PathLike] , UpperCamelCase_ : bool = True , UpperCamelCase_ : Callable = None , UpperCamelCase_ : bool = False , UpperCamelCase_ : Optional[str] = None , ) -> List[Any]: SCREAMING_SNAKE_CASE__ :Any = 0 SCREAMING_SNAKE_CASE__ :List[str] = save_directory for controlnet in self.nets: controlnet.save_pretrained( UpperCamelCase_ , is_main_process=UpperCamelCase_ , save_function=UpperCamelCase_ , safe_serialization=UpperCamelCase_ , variant=UpperCamelCase_ , ) idx += 1 SCREAMING_SNAKE_CASE__ :str = model_path_to_save + f'''_{idx}''' @classmethod def __lowerCamelCase ( cls : str , UpperCamelCase_ : Optional[Union[str, os.PathLike]] , **UpperCamelCase_ : Dict ) -> Dict: SCREAMING_SNAKE_CASE__ :Optional[int] = 0 SCREAMING_SNAKE_CASE__ :Tuple = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... SCREAMING_SNAKE_CASE__ :Dict = pretrained_model_path while os.path.isdir(UpperCamelCase_ ): SCREAMING_SNAKE_CASE__ :Optional[Any] = ControlNetModel.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) controlnets.append(UpperCamelCase_ ) idx += 1 SCREAMING_SNAKE_CASE__ :List[Any] = pretrained_model_path + f'''_{idx}''' logger.info(f'''{len(UpperCamelCase_ )} controlnets loaded from {pretrained_model_path}.''' ) if len(UpperCamelCase_ ) == 0: raise ValueError( f'''No ControlNets found under {os.path.dirname(UpperCamelCase_ )}. Expected at least {pretrained_model_path + "_0"}.''' ) return cls(UpperCamelCase_ )
320
0
import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor __A : Optional[Any] = logging.get_logger(__name__) class lowerCamelCase( __snake_case ): '''simple docstring''' def __init__( self , *snake_case_ , **snake_case_ ): warnings.warn( 'The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use DPTImageProcessor instead.' , snake_case_ , ) super().__init__(*snake_case_ , **snake_case_ )
27
"""simple docstring""" import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Tuple =(KDPMaDiscreteScheduler,) __UpperCAmelCase : Optional[Any] =1_0 def snake_case ( self , **__a ): __lowerCAmelCase = { "num_train_timesteps": 11_00, "beta_start": 0.0_0_0_1, "beta_end": 0.0_2, "beta_schedule": "linear", } config.update(**__a ) return config def snake_case ( self ): for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__a ) def snake_case ( self ): for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=__a , beta_end=__a ) def snake_case ( self ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__a ) def snake_case ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__a ) def snake_case ( self ): __lowerCAmelCase = self.scheduler_classes[0] __lowerCAmelCase = self.get_scheduler_config(prediction_type="v_prediction" ) __lowerCAmelCase = scheduler_class(**__a ) scheduler.set_timesteps(self.num_inference_steps ) __lowerCAmelCase = self.dummy_model() __lowerCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma __lowerCAmelCase = sample.to(__a ) for i, t in enumerate(scheduler.timesteps ): __lowerCAmelCase = scheduler.scale_model_input(__a , __a ) __lowerCAmelCase = model(__a , __a ) __lowerCAmelCase = scheduler.step(__a , __a , __a ) __lowerCAmelCase = output.prev_sample __lowerCAmelCase = torch.sum(torch.abs(__a ) ) __lowerCAmelCase = torch.mean(torch.abs(__a ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6_9_3_4e-0_7 ) < 1e-2 assert abs(result_mean.item() - 6.1_1_1_2e-1_0 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 4.6_9_3_4_2_8_6_5_0_1_7_0_9_7_2e-0_7 ) < 1e-2 assert abs(result_mean.item() - 0.0_0_0_2 ) < 1e-3 def snake_case ( self ): if torch_device == "mps": return __lowerCAmelCase = self.scheduler_classes[0] __lowerCAmelCase = self.get_scheduler_config() __lowerCAmelCase = scheduler_class(**__a ) scheduler.set_timesteps(self.num_inference_steps ) __lowerCAmelCase = self.dummy_model() __lowerCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma __lowerCAmelCase = sample.to(__a ) for i, t in enumerate(scheduler.timesteps ): __lowerCAmelCase = scheduler.scale_model_input(__a , __a ) __lowerCAmelCase = model(__a , __a ) __lowerCAmelCase = scheduler.step(__a , __a , __a ) __lowerCAmelCase = output.prev_sample __lowerCAmelCase = torch.sum(torch.abs(__a ) ) __lowerCAmelCase = torch.mean(torch.abs(__a ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1e-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1e-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1e-3 def snake_case ( self ): if torch_device == "mps": return __lowerCAmelCase = self.scheduler_classes[0] __lowerCAmelCase = self.get_scheduler_config() __lowerCAmelCase = scheduler_class(**__a ) scheduler.set_timesteps(self.num_inference_steps , device=__a ) __lowerCAmelCase = self.dummy_model() __lowerCAmelCase = self.dummy_sample_deter.to(__a ) * scheduler.init_noise_sigma for t in scheduler.timesteps: __lowerCAmelCase = scheduler.scale_model_input(__a , __a ) __lowerCAmelCase = model(__a , __a ) __lowerCAmelCase = scheduler.step(__a , __a , __a ) __lowerCAmelCase = output.prev_sample __lowerCAmelCase = torch.sum(torch.abs(__a ) ) __lowerCAmelCase = torch.mean(torch.abs(__a ) ) if str(__a ).startswith("cpu" ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1e-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1e-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1e-3
636
0
"""simple docstring""" import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device __UpperCAmelCase = False class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): pass @nightly @require_torch_gpu class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) -> str: lowerCAmelCase_ :Union[str, Any] = VersatileDiffusionPipeline.from_pretrained("""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) lowerCAmelCase_ :int = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) lowerCAmelCase_ :Tuple = torch.manual_seed(0 ) lowerCAmelCase_ :Optional[int] = pipe.dual_guided( prompt="""first prompt""" , image=__A , text_to_image_strength=0.7_5 , generator=__A , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__A ) lowerCAmelCase_ :Any = VersatileDiffusionPipeline.from_pretrained(__A , torch_dtype=torch.floataa ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) lowerCAmelCase_ :str = generator.manual_seed(0 ) lowerCAmelCase_ :Union[str, Any] = pipe.dual_guided( prompt="""first prompt""" , image=__A , text_to_image_strength=0.7_5 , generator=__A , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" , ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def __lowerCAmelCase ( self ) -> Union[str, Any]: lowerCAmelCase_ :Dict = VersatileDiffusionPipeline.from_pretrained("""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) lowerCAmelCase_ :str = """cyberpunk 2077""" lowerCAmelCase_ :Tuple = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) lowerCAmelCase_ :List[str] = torch.manual_seed(0 ) lowerCAmelCase_ :Tuple = pipe.dual_guided( prompt=__A , image=__A , text_to_image_strength=0.7_5 , generator=__A , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images lowerCAmelCase_ :int = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowerCAmelCase_ :List[str] = np.array([0.1_4_4_8, 0.1_6_1_9, 0.1_7_4_1, 0.1_0_8_6, 0.1_1_4_7, 0.1_1_2_8, 0.1_1_9_9, 0.1_1_6_5, 0.1_0_0_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 lowerCAmelCase_ :List[str] = """A painting of a squirrel eating a burger """ lowerCAmelCase_ :Union[str, Any] = torch.manual_seed(0 ) lowerCAmelCase_ :Dict = pipe.text_to_image( prompt=__A , generator=__A , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" ).images lowerCAmelCase_ :List[str] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowerCAmelCase_ :str = np.array([0.3_3_6_7, 0.3_1_6_9, 0.2_6_5_6, 0.3_8_7_0, 0.4_7_9_0, 0.3_7_9_6, 0.4_0_0_9, 0.4_8_7_8, 0.4_7_7_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 lowerCAmelCase_ :Any = pipe.image_variation(__A , generator=__A , output_type="""numpy""" ).images lowerCAmelCase_ :Dict = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowerCAmelCase_ :Union[str, Any] = np.array([0.3_0_7_6, 0.3_1_2_3, 0.3_2_8_4, 0.3_7_8_2, 0.3_7_7_0, 0.3_8_9_4, 0.4_2_9_7, 0.4_3_3_1, 0.4_4_5_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
256
"""simple docstring""" import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device __UpperCAmelCase = False class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): pass @nightly @require_torch_gpu class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) -> str: lowerCAmelCase_ :Union[str, Any] = VersatileDiffusionPipeline.from_pretrained("""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) lowerCAmelCase_ :int = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) lowerCAmelCase_ :Tuple = torch.manual_seed(0 ) lowerCAmelCase_ :Optional[int] = pipe.dual_guided( prompt="""first prompt""" , image=__A , text_to_image_strength=0.7_5 , generator=__A , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__A ) lowerCAmelCase_ :Any = VersatileDiffusionPipeline.from_pretrained(__A , torch_dtype=torch.floataa ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) lowerCAmelCase_ :str = generator.manual_seed(0 ) lowerCAmelCase_ :Union[str, Any] = pipe.dual_guided( prompt="""first prompt""" , image=__A , text_to_image_strength=0.7_5 , generator=__A , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" , ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def __lowerCAmelCase ( self ) -> Union[str, Any]: lowerCAmelCase_ :Dict = VersatileDiffusionPipeline.from_pretrained("""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) lowerCAmelCase_ :str = """cyberpunk 2077""" lowerCAmelCase_ :Tuple = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) lowerCAmelCase_ :List[str] = torch.manual_seed(0 ) lowerCAmelCase_ :Tuple = pipe.dual_guided( prompt=__A , image=__A , text_to_image_strength=0.7_5 , generator=__A , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images lowerCAmelCase_ :int = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowerCAmelCase_ :List[str] = np.array([0.1_4_4_8, 0.1_6_1_9, 0.1_7_4_1, 0.1_0_8_6, 0.1_1_4_7, 0.1_1_2_8, 0.1_1_9_9, 0.1_1_6_5, 0.1_0_0_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 lowerCAmelCase_ :List[str] = """A painting of a squirrel eating a burger """ lowerCAmelCase_ :Union[str, Any] = torch.manual_seed(0 ) lowerCAmelCase_ :Dict = pipe.text_to_image( prompt=__A , generator=__A , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" ).images lowerCAmelCase_ :List[str] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowerCAmelCase_ :str = np.array([0.3_3_6_7, 0.3_1_6_9, 0.2_6_5_6, 0.3_8_7_0, 0.4_7_9_0, 0.3_7_9_6, 0.4_0_0_9, 0.4_8_7_8, 0.4_7_7_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 lowerCAmelCase_ :Any = pipe.image_variation(__A , generator=__A , output_type="""numpy""" ).images lowerCAmelCase_ :Dict = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowerCAmelCase_ :Union[str, Any] = np.array([0.3_0_7_6, 0.3_1_2_3, 0.3_2_8_4, 0.3_7_8_2, 0.3_7_7_0, 0.3_8_9_4, 0.4_2_9_7, 0.4_3_3_1, 0.4_4_5_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
256
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE__ = { '''configuration_mvp''': ['''MVP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MvpConfig''', '''MvpOnnxConfig'''], '''tokenization_mvp''': ['''MvpTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ['''MvpTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ '''MVP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MvpForCausalLM''', '''MvpForConditionalGeneration''', '''MvpForQuestionAnswering''', '''MvpForSequenceClassification''', '''MvpModel''', '''MvpPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
47
import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError("At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training") # TF training parameters _snake_case : Any = False _snake_case : int = False def __snake_case ( __magic_name__ ): '''simple docstring''' return TrainCommand(__magic_name__ ) class UpperCamelCase_ ( __a ): '''simple docstring''' @staticmethod def SCREAMING_SNAKE_CASE( lowerCAmelCase__ :ArgumentParser ) ->str: lowercase = parser.add_parser("train" , help="CLI tool to train a model on a task." ) train_parser.add_argument( "--train_data" , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences." , ) train_parser.add_argument( "--column_label" , type=lowerCAmelCase__ , default=0 , help="Column of the dataset csv file with example labels." ) train_parser.add_argument( "--column_text" , type=lowerCAmelCase__ , default=1 , help="Column of the dataset csv file with example texts." ) train_parser.add_argument( "--column_id" , type=lowerCAmelCase__ , default=2 , help="Column of the dataset csv file with example ids." ) train_parser.add_argument( "--skip_first_row" , action="store_true" , help="Skip the first row of the csv file (headers)." ) train_parser.add_argument("--validation_data" , type=lowerCAmelCase__ , default="" , help="path to validation dataset." ) train_parser.add_argument( "--validation_split" , type=lowerCAmelCase__ , default=0.1 , help="if validation dataset is not provided, fraction of train dataset to use as validation dataset." , ) train_parser.add_argument("--output" , type=lowerCAmelCase__ , default="./" , help="path to saved the trained model." ) train_parser.add_argument( "--task" , type=lowerCAmelCase__ , default="text_classification" , help="Task to train the model on." ) train_parser.add_argument( "--model" , type=lowerCAmelCase__ , default="bert-base-uncased" , help="Model's name or path to stored model." ) train_parser.add_argument("--train_batch_size" , type=lowerCAmelCase__ , default=32 , help="Batch size for training." ) train_parser.add_argument("--valid_batch_size" , type=lowerCAmelCase__ , default=64 , help="Batch size for validation." ) train_parser.add_argument("--learning_rate" , type=lowerCAmelCase__ , default=3E-5 , help="Learning rate." ) train_parser.add_argument("--adam_epsilon" , type=lowerCAmelCase__ , default=1E-0_8 , help="Epsilon for Adam optimizer." ) train_parser.set_defaults(func=lowerCAmelCase__ ) def __init__( self :Optional[int] , lowerCAmelCase__ :Namespace ) ->str: lowercase = logging.get_logger("transformers-cli/training" ) lowercase = "tf" if is_tf_available() else "torch" os.makedirs(args.output , exist_ok=lowerCAmelCase__ ) lowercase = args.output lowercase = args.column_label lowercase = args.column_text lowercase = args.column_id self.logger.info(F'''Loading {args.task} pipeline for {args.model}''' ) if args.task == "text_classification": lowercase = TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(F'''Loading dataset from {args.train_data}''' ) lowercase = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) lowercase = None if args.validation_data: self.logger.info(F'''Loading validation dataset from {args.validation_data}''' ) lowercase = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) lowercase = args.validation_split lowercase = args.train_batch_size lowercase = args.valid_batch_size lowercase = args.learning_rate lowercase = args.adam_epsilon def SCREAMING_SNAKE_CASE( self :List[str] ) ->List[str]: if self.framework == "tf": return self.run_tf() return self.run_torch() def SCREAMING_SNAKE_CASE( self :List[Any] ) ->Dict: raise NotImplementedError def SCREAMING_SNAKE_CASE( self :Any ) ->str: self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
441
0
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging _A = logging.get_logger(__name__) _A = { 'CarlCochet/trajectory-transformer-halfcheetah-medium-v2': ( 'https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json' ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class lowerCamelCase (_SCREAMING_SNAKE_CASE ): '''simple docstring''' a = "trajectory_transformer" a = ["past_key_values"] a = { "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : List[str] , _snake_case : Tuple=100 , _snake_case : List[str]=5 , _snake_case : Optional[int]=1 , _snake_case : Optional[int]=1 , _snake_case : Optional[int]=249 , _snake_case : Optional[Any]=6 , _snake_case : Optional[int]=17 , _snake_case : str=25 , _snake_case : Union[str, Any]=4 , _snake_case : Union[str, Any]=4 , _snake_case : Optional[Any]=128 , _snake_case : Any=0.1 , _snake_case : Any=0.1 , _snake_case : Optional[Any]=0.1 , _snake_case : Tuple=0.0006 , _snake_case : List[Any]=512 , _snake_case : Union[str, Any]=0.02 , _snake_case : str=1e-12 , _snake_case : Tuple=1 , _snake_case : Tuple=True , _snake_case : str=1 , _snake_case : Any=50256 , _snake_case : str=50256 , **_snake_case : Dict , ) -> Tuple: SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = action_weight SCREAMING_SNAKE_CASE__ = reward_weight SCREAMING_SNAKE_CASE__ = value_weight SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = block_size SCREAMING_SNAKE_CASE__ = action_dim SCREAMING_SNAKE_CASE__ = observation_dim SCREAMING_SNAKE_CASE__ = transition_dim SCREAMING_SNAKE_CASE__ = learning_rate SCREAMING_SNAKE_CASE__ = n_layer SCREAMING_SNAKE_CASE__ = n_head SCREAMING_SNAKE_CASE__ = n_embd SCREAMING_SNAKE_CASE__ = embd_pdrop SCREAMING_SNAKE_CASE__ = attn_pdrop SCREAMING_SNAKE_CASE__ = resid_pdrop SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = kaiming_initializer_range SCREAMING_SNAKE_CASE__ = use_cache super().__init__(pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case , **_snake_case )
702
"""simple docstring""" from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class lowerCamelCase (_SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : List[str] , _snake_case : Callable , _snake_case : Optional[Features] = None , _snake_case : str = None , _snake_case : bool = False , _snake_case : bool = False , _snake_case : Optional[dict] = None , _snake_case : Optional[int] = None , **_snake_case : Dict , ) -> Any: super().__init__( features=_snake_case , cache_dir=_snake_case , keep_in_memory=_snake_case , streaming=_snake_case , num_proc=_snake_case , **_snake_case , ) SCREAMING_SNAKE_CASE__ = Generator( cache_dir=_snake_case , features=_snake_case , generator=_snake_case , gen_kwargs=_snake_case , **_snake_case , ) def lowerCAmelCase_ ( self : List[str] ) -> Optional[Any]: # Build iterable dataset if self.streaming: SCREAMING_SNAKE_CASE__ = self.builder.as_streaming_dataset(split="train" ) # Build regular (map-style) dataset else: SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None self.builder.download_and_prepare( download_config=_snake_case , download_mode=_snake_case , verification_mode=_snake_case , base_path=_snake_case , num_proc=self.num_proc , ) SCREAMING_SNAKE_CASE__ = self.builder.as_dataset( split="train" , verification_mode=_snake_case , in_memory=self.keep_in_memory ) return dataset
538
0
def __snake_case ( __UpperCamelCase : int ,__UpperCamelCase : int ): """simple docstring""" return int((input_a, input_a).count(0 ) != 0 ) def __snake_case ( ): """simple docstring""" assert nand_gate(0 ,0 ) == 1 assert nand_gate(0 ,1 ) == 1 assert nand_gate(1 ,0 ) == 1 assert nand_gate(1 ,1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
86
"""simple docstring""" from __future__ import annotations def __lowercase ( _a , _a , _a , ): if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif electron_conc < 0: raise ValueError('''Electron concentration cannot be negative in a semiconductor''' ) elif hole_conc < 0: raise ValueError('''Hole concentration cannot be negative in a semiconductor''' ) elif intrinsic_conc < 0: raise ValueError( '''Intrinsic concentration cannot be negative in a semiconductor''' ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
123
0
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class snake_case_ ( __A , __A , unittest.TestCase ): '''simple docstring''' lowerCamelCase = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) lowerCamelCase = ( { "feature-extraction": TFMobileBertModel, "fill-mask": TFMobileBertForMaskedLM, "question-answering": TFMobileBertForQuestionAnswering, "text-classification": TFMobileBertForSequenceClassification, "token-classification": TFMobileBertForTokenClassification, "zero-shot": TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) lowerCamelCase = False lowerCamelCase = False def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int]=False ) -> int: lowerCamelCase_ : str = super()._prepare_for_class(__magic_name__ , __magic_name__ , return_labels=__magic_name__ ) if return_labels: if model_class in get_values(__magic_name__ ): lowerCamelCase_ : str = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class snake_case_ ( __A ): '''simple docstring''' def __init__( self : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : int=13 , __magic_name__ : Tuple=7 , __magic_name__ : Union[str, Any]=True , __magic_name__ : int=True , __magic_name__ : str=True , __magic_name__ : str=True , __magic_name__ : Tuple=99 , __magic_name__ : Dict=32 , __magic_name__ : List[str]=32 , __magic_name__ : Optional[int]=2 , __magic_name__ : Optional[Any]=4 , __magic_name__ : Tuple=37 , __magic_name__ : str="gelu" , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : List[Any]=0.1 , __magic_name__ : Optional[int]=512 , __magic_name__ : List[Any]=16 , __magic_name__ : List[str]=2 , __magic_name__ : str=0.02 , __magic_name__ : int=3 , __magic_name__ : Tuple=4 , __magic_name__ : Optional[int]=None , ) -> Any: lowerCamelCase_ : List[Any] = parent lowerCamelCase_ : Any = batch_size lowerCamelCase_ : Optional[Any] = seq_length lowerCamelCase_ : List[Any] = is_training lowerCamelCase_ : str = use_input_mask lowerCamelCase_ : List[str] = use_token_type_ids lowerCamelCase_ : int = use_labels lowerCamelCase_ : List[Any] = vocab_size lowerCamelCase_ : Optional[Any] = hidden_size lowerCamelCase_ : List[Any] = num_hidden_layers lowerCamelCase_ : List[Any] = num_attention_heads lowerCamelCase_ : Tuple = intermediate_size lowerCamelCase_ : int = hidden_act lowerCamelCase_ : Any = hidden_dropout_prob lowerCamelCase_ : List[str] = attention_probs_dropout_prob lowerCamelCase_ : List[str] = max_position_embeddings lowerCamelCase_ : Union[str, Any] = type_vocab_size lowerCamelCase_ : Tuple = type_sequence_label_size lowerCamelCase_ : Tuple = initializer_range lowerCamelCase_ : Tuple = num_labels lowerCamelCase_ : Any = num_choices lowerCamelCase_ : int = scope lowerCamelCase_ : Any = embedding_size def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: lowerCamelCase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ : int = None if self.use_input_mask: lowerCamelCase_ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ : Optional[Any] = None if self.use_token_type_ids: lowerCamelCase_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase_ : str = None lowerCamelCase_ : str = None lowerCamelCase_ : Optional[int] = None if self.use_labels: lowerCamelCase_ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ : str = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ : Tuple = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : Tuple , __magic_name__ : Any , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : Union[str, Any] ) -> Optional[Any]: lowerCamelCase_ : int = TFMobileBertModel(config=__magic_name__ ) lowerCamelCase_ : Tuple = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCamelCase_ : Tuple = model(__magic_name__ ) lowerCamelCase_ : Optional[int] = [input_ids, input_mask] lowerCamelCase_ : Any = model(__magic_name__ ) lowerCamelCase_ : Optional[Any] = model(__magic_name__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : Dict , __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : Any ) -> Dict: lowerCamelCase_ : Union[str, Any] = TFMobileBertForMaskedLM(config=__magic_name__ ) lowerCamelCase_ : Union[str, Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCamelCase_ : Any = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : int , __magic_name__ : int , __magic_name__ : List[str] , __magic_name__ : Any , __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : str ) -> Any: lowerCamelCase_ : Optional[int] = TFMobileBertForNextSentencePrediction(config=__magic_name__ ) lowerCamelCase_ : Union[str, Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCamelCase_ : List[Any] = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : Tuple , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int] ) -> List[Any]: lowerCamelCase_ : Tuple = TFMobileBertForPreTraining(config=__magic_name__ ) lowerCamelCase_ : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCamelCase_ : int = model(__magic_name__ ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : Any , __magic_name__ : Optional[Any] , __magic_name__ : Tuple , __magic_name__ : Optional[Any] , __magic_name__ : int , __magic_name__ : Dict , __magic_name__ : Union[str, Any] ) -> Optional[Any]: lowerCamelCase_ : Optional[Any] = self.num_labels lowerCamelCase_ : Optional[int] = TFMobileBertForSequenceClassification(config=__magic_name__ ) lowerCamelCase_ : Any = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCamelCase_ : Dict = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : str , __magic_name__ : Tuple , __magic_name__ : str , __magic_name__ : int , __magic_name__ : List[Any] , __magic_name__ : int , __magic_name__ : Union[str, Any] ) -> List[Any]: lowerCamelCase_ : str = self.num_choices lowerCamelCase_ : List[str] = TFMobileBertForMultipleChoice(config=__magic_name__ ) lowerCamelCase_ : Union[str, Any] = tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.num_choices, 1) ) lowerCamelCase_ : int = tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.num_choices, 1) ) lowerCamelCase_ : int = tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.num_choices, 1) ) lowerCamelCase_ : Optional[Any] = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } lowerCamelCase_ : Tuple = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : Any , __magic_name__ : Dict , __magic_name__ : Union[str, Any] , __magic_name__ : Tuple , __magic_name__ : Dict , __magic_name__ : Dict ) -> Tuple: lowerCamelCase_ : str = self.num_labels lowerCamelCase_ : Optional[int] = TFMobileBertForTokenClassification(config=__magic_name__ ) lowerCamelCase_ : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCamelCase_ : Any = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __magic_name__ : Any , __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int , __magic_name__ : Any ) -> List[Any]: lowerCamelCase_ : Optional[Any] = TFMobileBertForQuestionAnswering(config=__magic_name__ ) lowerCamelCase_ : List[str] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCamelCase_ : int = model(__magic_name__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: lowerCamelCase_ : Optional[int] = self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) : str = config_and_inputs lowerCamelCase_ : str = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: lowerCamelCase_ : Optional[int] = TFMobileBertModelTest.TFMobileBertModelTester(self ) lowerCamelCase_ : Optional[Any] = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> Any: self.config_tester.run_common_tests() def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: lowerCamelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: lowerCamelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: lowerCamelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: lowerCamelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict: lowerCamelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: lowerCamelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: lowerCamelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : int ) -> Tuple: lowerCamelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__magic_name__ ) @slow def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: lowerCamelCase_ : List[Any] = TFMobileBertModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) @require_tf class snake_case_ ( unittest.TestCase ): '''simple docstring''' @slow def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[Any]: lowerCamelCase_ : Union[str, Any] = TFMobileBertForPreTraining.from_pretrained("google/mobilebert-uncased" ) lowerCamelCase_ : List[str] = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCamelCase_ : str = model(__magic_name__ )[0] lowerCamelCase_ : Optional[Any] = [1, 6, 3_0522] self.assertEqual(output.shape , __magic_name__ ) lowerCamelCase_ : str = tf.constant( [ [ [-4.591_9547, -9.24_8295, -9.64_5256], [-6.730_6175, -6.44_0284, -6.605_2837], [-7.274_3506, -6.784_7915, -6.02_4673], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __magic_name__ , atol=1e-4 )
253
import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse("3.8"): import importlib_metadata else: import importlib.metadata as importlib_metadata def __a ( __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[str]=False ) -> Any: """simple docstring""" try: lowerCamelCase_ : Any = os.environ[key] except KeyError: # KEY isn't set, default to `default`. lowerCamelCase_ : Dict = default else: # KEY is set, convert it to True or False. try: lowerCamelCase_ : Any = strtobool(__UpperCAmelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f"If set, {key} must be yes or no." ) return _value snake_case_ : Dict = parse_flag_from_env("RUN_SLOW", default=False) snake_case_ : int = parse_flag_from_env("RUN_REMOTE", default=False) snake_case_ : List[str] = parse_flag_from_env("RUN_LOCAL", default=True) snake_case_ : int = parse_flag_from_env("RUN_PACKAGED", default=True) # Compression snake_case_ : List[Any] = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason="test requires lz4") snake_case_ : Tuple = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason="test requires py7zr") snake_case_ : List[Any] = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason="test requires zstandard") # Audio snake_case_ : Dict = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec("soundfile") is None or version.parse(importlib_metadata.version("soundfile")) < version.parse("0.12.0"), reason="test requires sndfile>=0.12.1: 'pip install \"soundfile>=0.12.1\"'; ", ) # Beam snake_case_ : List[Any] = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse("0.3.2"), reason="test requires apache-beam and a compatible dill version", ) # Dill-cloudpickle compatibility snake_case_ : Dict = pytest.mark.skipif( config.DILL_VERSION <= version.parse("0.3.2"), reason="test requires dill>0.3.2 for cloudpickle compatibility", ) # Windows snake_case_ : int = pytest.mark.skipif( sys.platform == "win32", reason="test should not be run on Windows", ) def __a ( __UpperCAmelCase : List[Any] ) -> Optional[Any]: """simple docstring""" try: import faiss # noqa except ImportError: lowerCamelCase_ : Dict = unittest.skip("test requires faiss" )(__UpperCAmelCase ) return test_case def __a ( __UpperCAmelCase : Tuple ) -> Optional[int]: """simple docstring""" try: import regex # noqa except ImportError: lowerCamelCase_ : Union[str, Any] = unittest.skip("test requires regex" )(__UpperCAmelCase ) return test_case def __a ( __UpperCAmelCase : List[Any] ) -> Dict: """simple docstring""" try: import elasticsearch # noqa except ImportError: lowerCamelCase_ : Dict = unittest.skip("test requires elasticsearch" )(__UpperCAmelCase ) return test_case def __a ( __UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" try: import sqlalchemy # noqa except ImportError: lowerCamelCase_ : Optional[int] = unittest.skip("test requires sqlalchemy" )(__UpperCAmelCase ) return test_case def __a ( __UpperCAmelCase : Union[str, Any] ) -> Tuple: """simple docstring""" if not config.TORCH_AVAILABLE: lowerCamelCase_ : Dict = unittest.skip("test requires PyTorch" )(__UpperCAmelCase ) return test_case def __a ( __UpperCAmelCase : Optional[Any] ) -> Dict: """simple docstring""" if not config.TF_AVAILABLE: lowerCamelCase_ : Optional[Any] = unittest.skip("test requires TensorFlow" )(__UpperCAmelCase ) return test_case def __a ( __UpperCAmelCase : int ) -> Any: """simple docstring""" if not config.JAX_AVAILABLE: lowerCamelCase_ : Tuple = unittest.skip("test requires JAX" )(__UpperCAmelCase ) return test_case def __a ( __UpperCAmelCase : Any ) -> Union[str, Any]: """simple docstring""" if not config.PIL_AVAILABLE: lowerCamelCase_ : int = unittest.skip("test requires Pillow" )(__UpperCAmelCase ) return test_case def __a ( __UpperCAmelCase : Dict ) -> List[Any]: """simple docstring""" try: import transformers # noqa F401 except ImportError: return unittest.skip("test requires transformers" )(__UpperCAmelCase ) else: return test_case def __a ( __UpperCAmelCase : List[Any] ) -> List[str]: """simple docstring""" try: import tiktoken # noqa F401 except ImportError: return unittest.skip("test requires tiktoken" )(__UpperCAmelCase ) else: return test_case def __a ( __UpperCAmelCase : str ) -> Optional[Any]: """simple docstring""" try: import spacy # noqa F401 except ImportError: return unittest.skip("test requires spacy" )(__UpperCAmelCase ) else: return test_case def __a ( __UpperCAmelCase : Tuple ) -> Tuple: """simple docstring""" def _require_spacy_model(__UpperCAmelCase : Tuple ): try: import spacy # noqa F401 spacy.load(__UpperCAmelCase ) except ImportError: return unittest.skip("test requires spacy" )(__UpperCAmelCase ) except OSError: return unittest.skip("test requires spacy model '{}'".format(__UpperCAmelCase ) )(__UpperCAmelCase ) else: return test_case return _require_spacy_model def __a ( __UpperCAmelCase : Optional[int] ) -> int: """simple docstring""" try: import pyspark # noqa F401 except ImportError: return unittest.skip("test requires pyspark" )(__UpperCAmelCase ) else: return test_case def __a ( __UpperCAmelCase : Union[str, Any] ) -> List[Any]: """simple docstring""" try: import joblibspark # noqa F401 except ImportError: return unittest.skip("test requires joblibspark" )(__UpperCAmelCase ) else: return test_case def __a ( __UpperCAmelCase : Optional[Any] ) -> int: """simple docstring""" if not _run_slow_tests or _run_slow_tests == 0: lowerCamelCase_ : Any = unittest.skip("test is slow" )(__UpperCAmelCase ) return test_case def __a ( __UpperCAmelCase : Union[str, Any] ) -> Dict: """simple docstring""" if not _run_local_tests or _run_local_tests == 0: lowerCamelCase_ : List[Any] = unittest.skip("test is local" )(__UpperCAmelCase ) return test_case def __a ( __UpperCAmelCase : List[str] ) -> Optional[int]: """simple docstring""" if not _run_packaged_tests or _run_packaged_tests == 0: lowerCamelCase_ : Union[str, Any] = unittest.skip("test is packaged" )(__UpperCAmelCase ) return test_case def __a ( __UpperCAmelCase : Dict ) -> str: """simple docstring""" if not _run_remote_tests or _run_remote_tests == 0: lowerCamelCase_ : Any = unittest.skip("test requires remote" )(__UpperCAmelCase ) return test_case def __a ( *__UpperCAmelCase : List[str] ) -> List[str]: """simple docstring""" def decorate(cls : int ): for name, fn in cls.__dict__.items(): if callable(__UpperCAmelCase ) and name.startswith("test" ): for decorator in decorators: lowerCamelCase_ : int = decorator(__UpperCAmelCase ) setattr(cls , __UpperCAmelCase , __UpperCAmelCase ) return cls return decorate class snake_case_ ( __A ): '''simple docstring''' pass class snake_case_ ( __A ): '''simple docstring''' lowerCamelCase = 0 lowerCamelCase = 1 lowerCamelCase = 2 @contextmanager def __a ( __UpperCAmelCase : Tuple=OfflineSimulationMode.CONNECTION_FAILS , __UpperCAmelCase : Any=1e-16 ) -> Dict: """simple docstring""" lowerCamelCase_ : Optional[Any] = requests.Session().request def timeout_request(__UpperCAmelCase : List[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Tuple , **__UpperCAmelCase : Optional[int] ): # Change the url to an invalid url so that the connection hangs lowerCamelCase_ : str = "https://10.255.255.1" if kwargs.get("timeout" ) is None: raise RequestWouldHangIndefinitelyError( f"Tried a call to {url} in offline mode with no timeout set. Please set a timeout." ) lowerCamelCase_ : List[Any] = timeout try: return online_request(__UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier lowerCamelCase_ : Any = url lowerCamelCase_ : Tuple = e.args[0] lowerCamelCase_ : Union[str, Any] = (max_retry_error.args[0].replace("10.255.255.1" , f"OfflineMock[{url}]" ),) lowerCamelCase_ : str = (max_retry_error,) raise def raise_connection_error(__UpperCAmelCase : Optional[Any] , __UpperCAmelCase : int , **__UpperCAmelCase : Dict ): raise requests.ConnectionError("Offline mode is enabled." , request=__UpperCAmelCase ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch("requests.Session.send" , __UpperCAmelCase ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch("requests.Session.request" , __UpperCAmelCase ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch("datasets.config.HF_DATASETS_OFFLINE" , __UpperCAmelCase ): yield else: raise ValueError("Please use a value from the OfflineSimulationMode enum." ) @contextmanager def __a ( *__UpperCAmelCase : int , **__UpperCAmelCase : Dict ) -> Tuple: """simple docstring""" lowerCamelCase_ : int = str(Path().resolve() ) with tempfile.TemporaryDirectory(*__UpperCAmelCase , **__UpperCAmelCase ) as tmp_dir: try: os.chdir(__UpperCAmelCase ) yield finally: os.chdir(__UpperCAmelCase ) @contextmanager def __a ( ) -> Union[str, Any]: """simple docstring""" import gc gc.collect() lowerCamelCase_ : Tuple = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def __a ( ) -> int: """simple docstring""" import gc gc.collect() lowerCamelCase_ : Optional[Any] = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def __a ( __UpperCAmelCase : Any , __UpperCAmelCase : Optional[Any] ) -> Any: """simple docstring""" return deepcopy(__UpperCAmelCase ).integers(0 , 100 , 10 ).tolist() == deepcopy(__UpperCAmelCase ).integers(0 , 100 , 10 ).tolist() def __a ( __UpperCAmelCase : Tuple ) -> Union[str, Any]: """simple docstring""" import decorator from requests.exceptions import HTTPError def _wrapper(__UpperCAmelCase : Any , *__UpperCAmelCase : Dict , **__UpperCAmelCase : str ): try: return func(*__UpperCAmelCase , **__UpperCAmelCase ) except HTTPError as err: if str(__UpperCAmelCase ).startswith("500" ) or str(__UpperCAmelCase ).startswith("502" ): pytest.xfail(str(__UpperCAmelCase ) ) raise err return decorator.decorator(_wrapper , __UpperCAmelCase ) class snake_case_ : '''simple docstring''' def __init__( self : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Optional[Any] , __magic_name__ : List[str] ) -> Any: lowerCamelCase_ : int = returncode lowerCamelCase_ : int = stdout lowerCamelCase_ : Union[str, Any] = stderr async def __a ( __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Dict ) -> Union[str, Any]: """simple docstring""" while True: lowerCamelCase_ : List[str] = await stream.readline() if line: callback(__UpperCAmelCase ) else: break async def __a ( __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Any=None , __UpperCAmelCase : List[Any]=False , __UpperCAmelCase : Optional[int]=False ) -> _RunOutput: """simple docstring""" if echo: print("\nRunning: " , " ".join(__UpperCAmelCase ) ) lowerCamelCase_ : Dict = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__UpperCAmelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__UpperCAmelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) lowerCamelCase_ : Optional[Any] = [] lowerCamelCase_ : Optional[Any] = [] def tee(__UpperCAmelCase : Tuple , __UpperCAmelCase : str , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[Any]="" ): lowerCamelCase_ : Optional[int] = line.decode("utf-8" ).rstrip() sink.append(__UpperCAmelCase ) if not quiet: print(__UpperCAmelCase , __UpperCAmelCase , file=__UpperCAmelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda __UpperCAmelCase : tee(__UpperCAmelCase , __UpperCAmelCase , sys.stdout , label="stdout:" ) ), _read_stream(p.stderr , lambda __UpperCAmelCase : tee(__UpperCAmelCase , __UpperCAmelCase , sys.stderr , label="stderr:" ) ), ] , timeout=__UpperCAmelCase , ) return _RunOutput(await p.wait() , __UpperCAmelCase , __UpperCAmelCase ) def __a ( __UpperCAmelCase : int , __UpperCAmelCase : Tuple=None , __UpperCAmelCase : Tuple=None , __UpperCAmelCase : List[Any]=180 , __UpperCAmelCase : Tuple=False , __UpperCAmelCase : Dict=True ) -> _RunOutput: """simple docstring""" lowerCamelCase_ : List[str] = asyncio.get_event_loop() lowerCamelCase_ : Tuple = loop.run_until_complete( _stream_subprocess(__UpperCAmelCase , env=__UpperCAmelCase , stdin=__UpperCAmelCase , timeout=__UpperCAmelCase , quiet=__UpperCAmelCase , echo=__UpperCAmelCase ) ) lowerCamelCase_ : Tuple = " ".join(__UpperCAmelCase ) if result.returncode > 0: lowerCamelCase_ : int = "\n".join(result.stderr ) raise RuntimeError( f"'{cmd_str}' failed with returncode {result.returncode}\n\n" f"The combined stderr from workers follows:\n{stderr}" ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(f"'{cmd_str}' produced no output." ) return result def __a ( ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ : Optional[Any] = os.environ.get("PYTEST_XDIST_WORKER" , "gw0" ) lowerCamelCase_ : Optional[Any] = re.sub(R"^gw" , "" , __UpperCAmelCase , 0 , re.M ) return int(__UpperCAmelCase ) def __a ( ) -> int: """simple docstring""" lowerCamelCase_ : int = 29500 lowerCamelCase_ : int = pytest_xdist_worker_id() return port + uniq_delta
253
1
import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class _lowerCamelCase ( unittest.TestCase ): @property def UpperCamelCase_ ( self ) -> List[str]: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCamelCase_ ( self ) -> List[Any]: SCREAMING_SNAKE_CASE__: Dict= ort.SessionOptions() SCREAMING_SNAKE_CASE__: List[str]= False return options def UpperCamelCase_ ( self ) -> int: SCREAMING_SNAKE_CASE__: Dict= load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) SCREAMING_SNAKE_CASE__: int= load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) SCREAMING_SNAKE_CASE__: Tuple= load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy''' ) # using the PNDM scheduler by default SCREAMING_SNAKE_CASE__: Tuple= OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''onnx''' , safety_checker=lowerCAmelCase , feature_extractor=lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Dict= '''A red cat sitting on a park bench''' SCREAMING_SNAKE_CASE__: Optional[Any]= np.random.RandomState(0 ) SCREAMING_SNAKE_CASE__: Any= pipe( prompt=lowerCAmelCase , image=lowerCAmelCase , mask_image=lowerCAmelCase , strength=0.75 , guidance_scale=7.5 , num_inference_steps=15 , generator=lowerCAmelCase , output_type='''np''' , ) SCREAMING_SNAKE_CASE__: Any= output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1e-2
64
import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: __UpperCamelCase : Tuple = None __UpperCamelCase : Tuple = logging.get_logger(__name__) __UpperCamelCase : Optional[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} __UpperCamelCase : Dict = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', }, 'tokenizer_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/tokenizer.json', 't5-base': 'https://huggingface.co/t5-base/resolve/main/tokenizer.json', 't5-large': 'https://huggingface.co/t5-large/resolve/main/tokenizer.json', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/tokenizer.json', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/tokenizer.json', }, } # TODO(PVP) - this should be removed in Transformers v5 __UpperCamelCase : Any = { 't5-small': 512, 't5-base': 512, 't5-large': 512, 't5-3b': 512, 't5-11b': 512, } class lowercase__ ( UpperCamelCase_): UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = ["""input_ids""", """attention_mask"""] UpperCamelCase_ = TaTokenizer UpperCamelCase_ = [] def __init__( self : List[str] , UpperCamelCase__ : Any=None , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : Dict="</s>" , UpperCamelCase__ : str="<unk>" , UpperCamelCase__ : List[str]="<pad>" , UpperCamelCase__ : Dict=100 , UpperCamelCase__ : List[Any]=None , **UpperCamelCase__ : Union[str, Any] , ): '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: SCREAMING_SNAKE_CASE : str = [f"""<extra_id_{i}>""" for i in range(UpperCamelCase__ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens SCREAMING_SNAKE_CASE : List[Any] = len(set(filter(lambda UpperCamelCase__ : bool('''extra_id_''' in str(UpperCamelCase__ ) ) , UpperCamelCase__ ) ) ) if extra_tokens != extra_ids: raise ValueError( f"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are""" ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) super().__init__( UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , extra_ids=UpperCamelCase__ , additional_special_tokens=UpperCamelCase__ , **UpperCamelCase__ , ) SCREAMING_SNAKE_CASE : Any = vocab_file SCREAMING_SNAKE_CASE : Dict = False if not self.vocab_file else True SCREAMING_SNAKE_CASE : Optional[int] = extra_ids @staticmethod def __A ( UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : str ): '''simple docstring''' if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: SCREAMING_SNAKE_CASE : int = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' f""" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this""" ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' f""" {pretrained_model_name_or_path} automatically truncating your input to""" f""" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences""" f""" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with""" ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , UpperCamelCase__ , ) return max_model_length def __A ( self : Union[str, Any] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(UpperCamelCase__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return SCREAMING_SNAKE_CASE : Optional[Any] = os.path.join( UpperCamelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ): copyfile(self.vocab_file , UpperCamelCase__ ) logger.info(f"""Copy vocab file to {out_vocab_file}""" ) return (out_vocab_file,) def __A ( self : Optional[int] , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: SCREAMING_SNAKE_CASE : Any = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def __A ( self : Tuple , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def __A ( self : Dict ): '''simple docstring''' return list( set(filter(lambda UpperCamelCase__ : bool(re.search(r'''<extra_id_\d+>''' , UpperCamelCase__ ) ) is not None , self.additional_special_tokens ) ) ) def __A ( self : List[Any] ): '''simple docstring''' return [self.convert_tokens_to_ids(UpperCamelCase__ ) for token in self.get_sentinel_tokens()]
248
0
'''simple docstring''' from __future__ import annotations import math def UpperCAmelCase ( A : Dict , A : Optional[Any] , A : Optional[int] , A : Tuple , A : Tuple ): '''simple docstring''' if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if len(SCREAMING_SNAKE_CASE_ ) == 0: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , minimax(depth + 1 , node_index * 2 + 1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , ) return min( minimax(depth + 1 , node_index * 2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , minimax(depth + 1 , node_index * 2 + 1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , ) def UpperCAmelCase ( ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = [90, 23, 6, 33, 21, 65, 123, 34423] SCREAMING_SNAKE_CASE : Optional[Any] = math.log(len(SCREAMING_SNAKE_CASE_ ) , 2 ) print('''Optimal value : ''' , end='''''' ) print(minimax(0 , 0 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
715
'''simple docstring''' import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py lowerCAmelCase_ : Optional[Any] = '.' if __name__ == "__main__": lowerCAmelCase_ : Optional[Any] = os.path.join(REPO_PATH, 'utils/documentation_tests.txt') lowerCAmelCase_ : Dict = [] lowerCAmelCase_ : Any = [] with open(doctest_file_path) as fp: for line in fp: lowerCAmelCase_ : List[str] = line.strip() lowerCAmelCase_ : Optional[Any] = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: lowerCAmelCase_ : Dict = '\n'.join(non_existent_paths) raise ValueError(f'`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}') if all_paths != sorted(all_paths): raise ValueError('Files in `utils/documentation_tests.txt` are not in alphabetical order.')
464
0
from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig lowercase_ = logging.get_logger(__name__) lowercase_ = 'T5Config' class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' _A = "mt5" _A = MTaConfig class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' _A = "mt5" _A = MTaConfig class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' _A = "mt5" _A = MTaConfig
562
from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging lowercase_ = logging.get_logger(__name__) class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' _A = ["input_features", "attention_mask"] def __init__( self : int , SCREAMING_SNAKE_CASE_ : int=8_0 , SCREAMING_SNAKE_CASE_ : Optional[Any]=1_6_0_0_0 , SCREAMING_SNAKE_CASE_ : Optional[Any]=8_0 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.0 , SCREAMING_SNAKE_CASE_ : Dict=True , SCREAMING_SNAKE_CASE_ : Dict=True , SCREAMING_SNAKE_CASE_ : Any=True , **SCREAMING_SNAKE_CASE_ : str , ): super().__init__(feature_size=SCREAMING_SNAKE_CASE_ , sampling_rate=SCREAMING_SNAKE_CASE_ , padding_value=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) _a = num_mel_bins _a = do_ceptral_normalize _a = normalize_means _a = normalize_vars _a = True def _UpperCAmelCase ( self : Dict , SCREAMING_SNAKE_CASE_ : np.ndarray , ): _a = waveform * (2**1_5) # Kaldi compliance: 16-bit signed integers _a = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).unsqueeze(0 ) _a = ta_kaldi.fbank(SCREAMING_SNAKE_CASE_ , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def _UpperCAmelCase ( SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[bool] = True , SCREAMING_SNAKE_CASE_ : Optional[bool] = True , SCREAMING_SNAKE_CASE_ : float = 0.0 , ): # make sure we normalize float32 arrays if normalize_means: _a = x[:input_length].mean(axis=0 ) _a = np.subtract(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if normalize_vars: _a = x[:input_length].std(axis=0 ) _a = np.divide(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if input_length < x.shape[0]: _a = padding_value # make sure array is in float32 _a = x.astype(np.floataa ) return x def _UpperCAmelCase ( self : Dict , SCREAMING_SNAKE_CASE_ : List[np.ndarray] , SCREAMING_SNAKE_CASE_ : Optional[np.ndarray] = None ): _a = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ] def __call__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , SCREAMING_SNAKE_CASE_ : Union[bool, str, PaddingStrategy] = False , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : Optional[Union[str, TensorType]] = None , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , **SCREAMING_SNAKE_CASE_ : int , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" f""" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with""" f""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) _a = isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) _a = is_batched_numpy or ( isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _a = [np.asarray(SCREAMING_SNAKE_CASE_ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray ): _a = np.asarray(SCREAMING_SNAKE_CASE_ , dtype=np.floataa ) elif isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _a = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _a = [raw_speech] # extract fbank features _a = [self._extract_fbank_features(SCREAMING_SNAKE_CASE_ ) for waveform in raw_speech] # convert into correct format for padding _a = BatchFeature({'input_features': features} ) _a = self.pad( SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , pad_to_multiple_of=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) # make sure list is in array format _a = padded_inputs.get('input_features' ) if isinstance(input_features[0] , SCREAMING_SNAKE_CASE_ ): _a = [np.asarray(SCREAMING_SNAKE_CASE_ , dtype=np.floataa ) for feature in input_features] _a = padded_inputs.get('attention_mask' ) if attention_mask is not None: _a = [np.asarray(SCREAMING_SNAKE_CASE_ , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: _a = ( np.array(SCREAMING_SNAKE_CASE_ , dtype=np.intaa ) if self._get_padding_strategies(SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ ) is not PaddingStrategy.DO_NOT_PAD else None ) _a = self.normalize( padded_inputs['input_features'] , attention_mask=SCREAMING_SNAKE_CASE_ ) if return_tensors is not None: _a = padded_inputs.convert_to_tensors(SCREAMING_SNAKE_CASE_ ) return padded_inputs
562
1
def UpperCAmelCase__( __UpperCAmelCase : list[list[int]] , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : list[int] ): # 1. Validate that path exists between current and next vertices if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path ) def UpperCAmelCase__( __UpperCAmelCase : list[list[int]] , __UpperCAmelCase : list[int] , __UpperCAmelCase : int ): # Base Case if curr_ind == len(__UpperCAmelCase ): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 , len(__UpperCAmelCase ) ): if valid_connection(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): # Insert current vertex into path as next transition __snake_case : Optional[int] = next_ver # Validate created path if util_hamilton_cycle(__UpperCAmelCase , __UpperCAmelCase , curr_ind + 1 ): return True # Backtrack __snake_case : Dict = -1 return False def UpperCAmelCase__( __UpperCAmelCase : list[list[int]] , __UpperCAmelCase : int = 0 ): __snake_case : int = [-1] * (len(__UpperCAmelCase ) + 1) # initialize start and end of path with starting index __snake_case : Union[str, Any] = start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(__UpperCAmelCase , __UpperCAmelCase , 1 ) else []
679
from __future__ import annotations __magic_name__ = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def UpperCAmelCase__( __UpperCAmelCase : list[list[int]] , __UpperCAmelCase : list[int] , __UpperCAmelCase : list[int] , __UpperCAmelCase : int , __UpperCAmelCase : list[list[int]] , ): __snake_case : Optional[int] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__UpperCAmelCase ) ) ] # the reference grid __snake_case : List[str] = 1 __snake_case : str = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__UpperCAmelCase ) ) ] # the action grid __snake_case : Dict = init[0] __snake_case : List[str] = init[1] __snake_case : Optional[Any] = 0 __snake_case : Union[str, Any] = g + heuristic[x][y] # cost from starting cell to destination cell __snake_case : Any = [[f, g, x, y]] __snake_case : List[str] = False # flag that is set when search is complete __snake_case : str = False # flag set if we can't find expand while not found and not resign: if len(__UpperCAmelCase ) == 0: raise ValueError('Algorithm is unable to find solution' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() __snake_case : List[Any] = cell.pop() __snake_case : Optional[int] = next_cell[2] __snake_case : int = next_cell[3] __snake_case : Optional[Any] = next_cell[1] if x == goal[0] and y == goal[1]: __snake_case : Union[str, Any] = True else: for i in range(len(__UpperCAmelCase ) ): # to try out different valid actions __snake_case : Tuple = x + DIRECTIONS[i][0] __snake_case : Tuple = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(__UpperCAmelCase ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: __snake_case : List[str] = g + cost __snake_case : Optional[Any] = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) __snake_case : Dict = 1 __snake_case : Any = i __snake_case : Tuple = [] __snake_case : Dict = goal[0] __snake_case : Optional[int] = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: __snake_case : Tuple = x - DIRECTIONS[action[x][y]][0] __snake_case : Optional[Any] = y - DIRECTIONS[action[x][y]][1] __snake_case : Tuple = xa __snake_case : List[str] = ya invpath.append([x, y] ) __snake_case : Dict = [] for i in range(len(__UpperCAmelCase ) ): path.append(invpath[len(__UpperCAmelCase ) - 1 - i] ) return path, action if __name__ == "__main__": __magic_name__ = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] __magic_name__ = [0, 0] # all coordinates are given in format [y,x] __magic_name__ = [len(grid) - 1, len(grid[0]) - 1] __magic_name__ = 1 # the cost map which pushes the path closer to the goal __magic_name__ = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): __magic_name__ = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map __magic_name__ = 99 __magic_name__ , __magic_name__ = search(grid, init, goal, cost, heuristic) print('''ACTION MAP''') for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
679
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ = { "configuration_git": ["GIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GitConfig", "GitVisionConfig"], "processing_git": ["GitProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ "GIT_PRETRAINED_MODEL_ARCHIVE_LIST", "GitForCausalLM", "GitModel", "GitPreTrainedModel", "GitVisionModel", ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys A_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
143
'''simple docstring''' import numpy class a_ : def __init__( self : Any , __lowerCAmelCase : numpy.ndarray , __lowerCAmelCase : numpy.ndarray ): __snake_case = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. __snake_case = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. __snake_case = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. __snake_case = numpy.random.rand(3 , 1 ) # Real output values provided. __snake_case = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. __snake_case = numpy.zeros(output_array.shape ) def lowercase__ ( self : Optional[Any] ): __snake_case = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. __snake_case = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. __snake_case = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def lowercase__ ( self : List[str] ): __snake_case = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) __snake_case = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) __snake_case = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def lowercase__ ( self : Optional[Any] , __lowerCAmelCase : numpy.ndarray , __lowerCAmelCase : int , __lowerCAmelCase : bool ): for iteration in range(1 , iterations + 1 ): __snake_case = self.feedforward() self.back_propagation() if give_loss: __snake_case = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F'Iteration {iteration} Loss: {loss}' ) def lowercase__ ( self : Optional[Any] , __lowerCAmelCase : numpy.ndarray ): __snake_case = input_arr __snake_case = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) __snake_case = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) __snake_case = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def lowerCamelCase__ ( a ): return 1 / (1 + numpy.exp(-value )) def lowerCamelCase__ ( a ): return (value) * (1 - (value)) def lowerCamelCase__ ( ): __snake_case = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. __snake_case = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. __snake_case = TwoHiddenLayerNeuralNetwork( input_array=a , output_array=a ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=a , iterations=10 , give_loss=a ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
356
0
import torch def __a ( ): """simple docstring""" if torch.cuda.is_available(): lowerCamelCase__ : Union[str, Any] = torch.cuda.device_count() else: lowerCamelCase__ : Union[str, Any] = 0 print(f"""Successfully ran on {num_gpus} GPUs""" ) if __name__ == "__main__": main()
717
"""simple docstring""" import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class __SCREAMING_SNAKE_CASE : def __init__( self :Tuple ,__UpperCAmelCase :str ,__UpperCAmelCase :Tuple=3 ,__UpperCAmelCase :Optional[int]=32 ,__UpperCAmelCase :Optional[int]=3 ,__UpperCAmelCase :Any=10 ,__UpperCAmelCase :str=[8, 16, 32, 64] ,__UpperCAmelCase :str=[1, 1, 2, 1] ,__UpperCAmelCase :List[Any]=True ,__UpperCAmelCase :List[Any]=True ,__UpperCAmelCase :Optional[Any]="relu" ,__UpperCAmelCase :Any=3 ,__UpperCAmelCase :str=None ,__UpperCAmelCase :Union[str, Any]=["stage2", "stage3", "stage4"] ,__UpperCAmelCase :Union[str, Any]=[2, 3, 4] ,__UpperCAmelCase :Union[str, Any]=1 ,) -> List[str]: """simple docstring""" lowerCamelCase__ : List[str] = parent lowerCamelCase__ : List[Any] = batch_size lowerCamelCase__ : Optional[int] = image_size lowerCamelCase__ : Any = num_channels lowerCamelCase__ : Any = embeddings_size lowerCamelCase__ : Tuple = hidden_sizes lowerCamelCase__ : Optional[int] = depths lowerCamelCase__ : List[str] = is_training lowerCamelCase__ : Tuple = use_labels lowerCamelCase__ : Dict = hidden_act lowerCamelCase__ : List[str] = num_labels lowerCamelCase__ : Tuple = scope lowerCamelCase__ : List[Any] = len(__UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = out_features lowerCamelCase__ : List[str] = out_indices lowerCamelCase__ : List[Any] = num_groups def lowercase_ ( self :Optional[Any] ) -> Tuple: """simple docstring""" lowerCamelCase__ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ : Optional[Any] = None if self.use_labels: lowerCamelCase__ : Dict = ids_tensor([self.batch_size] ,self.num_labels ) lowerCamelCase__ : List[str] = self.get_config() return config, pixel_values, labels def lowercase_ ( self :str ) -> Any: """simple docstring""" return BitConfig( num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,out_features=self.out_features ,out_indices=self.out_indices ,num_groups=self.num_groups ,) def lowercase_ ( self :List[Any] ,__UpperCAmelCase :Optional[int] ,__UpperCAmelCase :Tuple ,__UpperCAmelCase :Tuple ) -> List[Any]: """simple docstring""" lowerCamelCase__ : str = BitModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCamelCase__ : Optional[Any] = model(__UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def lowercase_ ( self :int ,__UpperCAmelCase :int ,__UpperCAmelCase :int ,__UpperCAmelCase :Optional[int] ) -> Optional[int]: """simple docstring""" lowerCamelCase__ : List[Any] = self.num_labels lowerCamelCase__ : Union[str, Any] = BitForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCamelCase__ : str = model(__UpperCAmelCase ,labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def lowercase_ ( self :Any ,__UpperCAmelCase :Dict ,__UpperCAmelCase :Optional[int] ,__UpperCAmelCase :str ) -> str: """simple docstring""" lowerCamelCase__ : int = BitBackbone(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCamelCase__ : List[str] = model(__UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) ,len(config.out_features ) ) self.parent.assertListEqual(model.channels ,config.hidden_sizes[1:] ) # verify backbone works with out_features=None lowerCamelCase__ : str = None lowerCamelCase__ : Optional[int] = BitBackbone(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCamelCase__ : List[Any] = model(__UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) ,1 ) self.parent.assertListEqual(model.channels ,[config.hidden_sizes[-1]] ) def lowercase_ ( self :int ) -> Optional[int]: """simple docstring""" lowerCamelCase__ : Optional[int] = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str = config_and_inputs lowerCamelCase__ : Union[str, Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): UpperCAmelCase = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () UpperCAmelCase = ( {'''feature-extraction''': BitModel, '''image-classification''': BitForImageClassification} if is_torch_available() else {} ) UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False def lowercase_ ( self :List[str] ) -> Any: """simple docstring""" lowerCamelCase__ : Any = BitModelTester(self ) lowerCamelCase__ : Any = ConfigTester(self ,config_class=__UpperCAmelCase ,has_text_modality=__UpperCAmelCase ) def lowercase_ ( self :Optional[Any] ) -> Dict: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase_ ( self :List[Any] ) -> Dict: """simple docstring""" return @unittest.skip(reason='''Bit does not output attentions''' ) def lowercase_ ( self :List[Any] ) -> str: """simple docstring""" pass @unittest.skip(reason='''Bit does not use inputs_embeds''' ) def lowercase_ ( self :List[Any] ) -> Optional[int]: """simple docstring""" pass @unittest.skip(reason='''Bit does not support input and output embeddings''' ) def lowercase_ ( self :Tuple ) -> List[Any]: """simple docstring""" pass def lowercase_ ( self :Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase__ , lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Optional[int] = model_class(__UpperCAmelCase ) lowerCamelCase__ : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ : int = [*signature.parameters.keys()] lowerCamelCase__ : Tuple = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,__UpperCAmelCase ) def lowercase_ ( self :str ) -> List[str]: """simple docstring""" lowerCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def lowercase_ ( self :Optional[int] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__UpperCAmelCase ) def lowercase_ ( self :List[str] ) -> List[str]: """simple docstring""" lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Any = model_class(config=__UpperCAmelCase ) for name, module in model.named_modules(): if isinstance(__UpperCAmelCase ,(nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) ,msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" ,) self.assertTrue( torch.all(module.bias == 0 ) ,msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" ,) def lowercase_ ( self :List[str] ) -> Dict: """simple docstring""" def check_hidden_states_output(__UpperCAmelCase :Tuple ,__UpperCAmelCase :str ,__UpperCAmelCase :Tuple ): lowerCamelCase__ : List[str] = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): lowerCamelCase__ : Optional[Any] = model(**self._prepare_for_class(__UpperCAmelCase ,__UpperCAmelCase ) ) lowerCamelCase__ : Optional[int] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCamelCase__ : Union[str, Any] = self.model_tester.num_stages self.assertEqual(len(__UpperCAmelCase ) ,expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) lowerCamelCase__ , lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : Any = ['''preactivation''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: lowerCamelCase__ : List[Any] = layer_type lowerCamelCase__ : Tuple = True check_hidden_states_output(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase__ : Optional[Any] = True check_hidden_states_output(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) @unittest.skip(reason='''Bit does not use feedforward chunking''' ) def lowercase_ ( self :Optional[int] ) -> Optional[int]: """simple docstring""" pass def lowercase_ ( self :Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) @slow def lowercase_ ( self :Union[str, Any] ) -> Optional[Any]: """simple docstring""" for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : Optional[int] = BitModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def __a ( ): """simple docstring""" lowerCamelCase__ : Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @cached_property def lowercase_ ( self :Tuple ) -> Dict: """simple docstring""" return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowercase_ ( self :List[Any] ) -> int: """simple docstring""" lowerCamelCase__ : Optional[int] = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(__UpperCAmelCase ) lowerCamelCase__ : Any = self.default_image_processor lowerCamelCase__ : Optional[int] = prepare_img() lowerCamelCase__ : List[Any] = image_processor(images=__UpperCAmelCase ,return_tensors='''pt''' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): lowerCamelCase__ : Union[str, Any] = model(**__UpperCAmelCase ) # verify the logits lowerCamelCase__ : int = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape ,__UpperCAmelCase ) lowerCamelCase__ : int = torch.tensor([[-0.6_526, -0.5_263, -1.4_398]] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,__UpperCAmelCase ,atol=1E-4 ) ) @require_torch class __SCREAMING_SNAKE_CASE ( _lowerCAmelCase , unittest.TestCase ): UpperCAmelCase = (BitBackbone,) if is_torch_available() else () UpperCAmelCase = BitConfig UpperCAmelCase = False def lowercase_ ( self :List[str] ) -> int: """simple docstring""" lowerCamelCase__ : Any = BitModelTester(self )
121
0
'''simple docstring''' import math import qiskit def snake_case_ (UpperCamelCase : int = 1 , UpperCamelCase : int = 1 , UpperCamelCase : int = 1 ): '''simple docstring''' if ( isinstance(UpperCamelCase , UpperCamelCase ) or isinstance(UpperCamelCase , UpperCamelCase ) or isinstance(UpperCamelCase , UpperCamelCase ) ): raise TypeError('''inputs must be integers.''' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('''inputs must be positive.''' ) if ( (math.floor(UpperCamelCase ) != input_a) or (math.floor(UpperCamelCase ) != input_a) or (math.floor(UpperCamelCase ) != carry_in) ): raise ValueError('''inputs must be exact integers.''' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('''inputs must be less or equal to 2.''' ) # build registers _a = qiskit.QuantumRegister(4 , '''qr''' ) _a = qiskit.ClassicalRegister(2 , '''cr''' ) # list the entries _a = [input_a, input_a, carry_in] _a = qiskit.QuantumCircuit(UpperCamelCase , UpperCamelCase ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(UpperCamelCase ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(UpperCamelCase ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(UpperCamelCase ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , UpperCamelCase ) # measure the last two qbits _a = qiskit.Aer.get_backend('''aer_simulator''' ) _a = qiskit.execute(UpperCamelCase , UpperCamelCase , shots=1000 ) return job.result().get_counts(UpperCamelCase ) if __name__ == "__main__": print(F'''Total sum count for state is: {quantum_full_adder(1, 1, 1)}''')
22
'''simple docstring''' import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class UpperCamelCase_ ( unittest.TestCase ): """simple docstring""" def __init__( self : str , _lowerCamelCase : str , _lowerCamelCase : Optional[Any]=7 , _lowerCamelCase : Optional[int]=3 , _lowerCamelCase : List[Any]=18 , _lowerCamelCase : Union[str, Any]=30 , _lowerCamelCase : Tuple=4_00 , _lowerCamelCase : Union[str, Any]=True , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : int=True , _lowerCamelCase : Dict=[0.5, 0.5, 0.5] , _lowerCamelCase : Dict=[0.5, 0.5, 0.5] , ) -> Dict: __magic_name__ = size if size is not None else {"height": 18, "width": 18} __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = num_channels __magic_name__ = image_size __magic_name__ = min_resolution __magic_name__ = max_resolution __magic_name__ = do_resize __magic_name__ = size __magic_name__ = do_normalize __magic_name__ = image_mean __magic_name__ = image_std def __A ( self : int ) -> List[str]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class UpperCamelCase_ ( A , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = DPTImageProcessor if is_vision_available() else None def __A ( self : Dict ) -> Any: __magic_name__ = DPTImageProcessingTester(self ) @property def __A ( self : str ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def __A ( self : Tuple ) -> List[str]: __magic_name__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase , "image_mean" ) ) self.assertTrue(hasattr(_lowerCamelCase , "image_std" ) ) self.assertTrue(hasattr(_lowerCamelCase , "do_normalize" ) ) self.assertTrue(hasattr(_lowerCamelCase , "do_resize" ) ) self.assertTrue(hasattr(_lowerCamelCase , "size" ) ) def __A ( self : List[str] ) -> List[Any]: __magic_name__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 18, "width": 18} ) __magic_name__ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) def __A ( self : Union[str, Any] ) -> List[str]: # Initialize image_processing __magic_name__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __magic_name__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , Image.Image ) # Test not batched input __magic_name__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched __magic_name__ = image_processing(_lowerCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def __A ( self : Dict ) -> Optional[Any]: # Initialize image_processing __magic_name__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __magic_name__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , np.ndarray ) # Test not batched input __magic_name__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched __magic_name__ = image_processing(_lowerCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def __A ( self : Optional[int] ) -> Dict: # Initialize image_processing __magic_name__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __magic_name__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) # Test not batched input __magic_name__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched __magic_name__ = image_processing(_lowerCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , )
664
0
import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class _UpperCAmelCase : """simple docstring""" def __init__( self : Optional[int], lowerCamelCase : Optional[int], lowerCamelCase : Tuple=100, lowerCamelCase : Any=13, lowerCamelCase : Union[str, Any]=30, lowerCamelCase : Dict=2, lowerCamelCase : Optional[int]=3, lowerCamelCase : int=True, lowerCamelCase : Tuple=True, lowerCamelCase : Optional[int]=32, lowerCamelCase : Any=4, lowerCamelCase : int=4, lowerCamelCase : int=37, lowerCamelCase : Tuple="gelu", lowerCamelCase : List[str]=0.1, lowerCamelCase : Optional[int]=0.1, lowerCamelCase : Dict=10, lowerCamelCase : int=0.02, lowerCamelCase : List[str]=3, lowerCamelCase : List[Any]=None, lowerCamelCase : List[str]=[0, 1, 2, 3], ): '''simple docstring''' lowercase__ = parent lowercase__ = 100 lowercase__ = batch_size lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = is_training lowercase__ = use_labels lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = scope lowercase__ = out_indices lowercase__ = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowercase__ = (image_size // patch_size) ** 2 lowercase__ = num_patches + 1 def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowercase__ = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels ) lowercase__ = self.get_config() return config, pixel_values, labels, pixel_labels def lowercase__ ( self : List[Any] ): '''simple docstring''' return BeitConfig( vocab_size=self.vocab_size, image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=lowerCamelCase, initializer_range=self.initializer_range, out_indices=self.out_indices, ) def lowercase__ ( self : Any, lowerCamelCase : Union[str, Any], lowerCamelCase : Tuple, lowerCamelCase : Any, lowerCamelCase : Any ): '''simple docstring''' lowercase__ = BeitModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Tuple, lowerCamelCase : Optional[int], lowerCamelCase : List[Any], lowerCamelCase : Optional[Any], lowerCamelCase : Union[str, Any] ): '''simple docstring''' lowercase__ = BeitForMaskedImageModeling(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length - 1, self.vocab_size) ) def lowercase__ ( self : List[Any], lowerCamelCase : Union[str, Any], lowerCamelCase : Optional[Any], lowerCamelCase : Tuple, lowerCamelCase : List[str] ): '''simple docstring''' lowercase__ = self.type_sequence_label_size lowercase__ = BeitForImageClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ = model(lowerCamelCase, labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase__ = 1 lowercase__ = BeitForImageClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ = model(lowerCamelCase, labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def lowercase__ ( self : Tuple, lowerCamelCase : Optional[Any], lowerCamelCase : Union[str, Any], lowerCamelCase : List[str], lowerCamelCase : int ): '''simple docstring''' lowercase__ = self.num_labels lowercase__ = BeitForSemanticSegmentation(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ = model(lowerCamelCase ) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) lowercase__ = model(lowerCamelCase, labels=lowerCamelCase ) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( A__ ,A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) lowercase__ = ( { """feature-extraction""": BeitModel, """image-classification""": BeitForImageClassification, """image-segmentation""": BeitForSemanticSegmentation, } if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = BeitModelTester(self ) lowercase__ = ConfigTester(self, config_class=lowerCamelCase, has_text_modality=lowerCamelCase, hidden_size=37 ) def lowercase__ ( self : List[Any] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''BEiT does not use inputs_embeds''' ) def lowercase__ ( self : Any ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='''BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def lowercase__ ( self : str ): '''simple docstring''' pass def lowercase__ ( self : str ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) lowercase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase, nn.Linear ) ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(lowerCamelCase ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1], lowerCamelCase ) def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase ) def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase ) def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCamelCase ) def lowercase__ ( self : Dict ): '''simple docstring''' if not self.model_tester.is_training: return lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(lowerCamelCase ), BeitForMaskedImageModeling]: continue lowercase__ = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.train() lowercase__ = self._prepare_for_class(lowerCamelCase, lowerCamelCase, return_labels=lowerCamelCase ) lowercase__ = model(**lowerCamelCase ).loss loss.backward() def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return lowercase__ = False lowercase__ = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(lowerCamelCase ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue lowercase__ = model_class(lowerCamelCase ) model.gradient_checkpointing_enable() model.to(lowerCamelCase ) model.train() lowercase__ = self._prepare_for_class(lowerCamelCase, lowerCamelCase, return_labels=lowerCamelCase ) lowercase__ = model(**lowerCamelCase ).loss loss.backward() def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = _config_zero_init(lowerCamelCase ) for model_class in self.all_model_classes: lowercase__ = model_class(config=lowerCamelCase ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item(), [0.0, 1.0], msg=F"""Parameter {name} of model {model_class} seems not properly initialized""", ) @slow def lowercase__ ( self : List[Any] ): '''simple docstring''' for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = BeitModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def a ( ): '''simple docstring''' lowercase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase__ ( self : Tuple ): '''simple docstring''' return BeitImageProcessor.from_pretrained('''microsoft/beit-base-patch16-224''' ) if is_vision_available() else None @slow def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = BeitForMaskedImageModeling.from_pretrained('''microsoft/beit-base-patch16-224-pt22k''' ).to(lowerCamelCase ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=lowerCamelCase, return_tensors='''pt''' ).pixel_values.to(lowerCamelCase ) # prepare bool_masked_pos lowercase__ = torch.ones((1, 196), dtype=torch.bool ).to(lowerCamelCase ) # forward pass with torch.no_grad(): lowercase__ = model(pixel_values=lowerCamelCase, bool_masked_pos=lowerCamelCase ) lowercase__ = outputs.logits # verify the logits lowercase__ = torch.Size((1, 196, 8_192) ) self.assertEqual(logits.shape, lowerCamelCase ) lowercase__ = torch.tensor( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ).to(lowerCamelCase ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3], lowerCamelCase, atol=1E-2 ) ) @slow def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = BeitForImageClassification.from_pretrained('''microsoft/beit-base-patch16-224''' ).to(lowerCamelCase ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=lowerCamelCase, return_tensors='''pt''' ).to(lowerCamelCase ) # forward pass with torch.no_grad(): lowercase__ = model(**lowerCamelCase ) lowercase__ = outputs.logits # verify the logits lowercase__ = torch.Size((1, 1_000) ) self.assertEqual(logits.shape, lowerCamelCase ) lowercase__ = torch.tensor([-1.2385, -1.0987, -1.0108] ).to(lowerCamelCase ) self.assertTrue(torch.allclose(logits[0, :3], lowerCamelCase, atol=1E-4 ) ) lowercase__ = 281 self.assertEqual(logits.argmax(-1 ).item(), lowerCamelCase ) @slow def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = BeitForImageClassification.from_pretrained('''microsoft/beit-large-patch16-224-pt22k-ft22k''' ).to( lowerCamelCase ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=lowerCamelCase, return_tensors='''pt''' ).to(lowerCamelCase ) # forward pass with torch.no_grad(): lowercase__ = model(**lowerCamelCase ) lowercase__ = outputs.logits # verify the logits lowercase__ = torch.Size((1, 21_841) ) self.assertEqual(logits.shape, lowerCamelCase ) lowercase__ = torch.tensor([1.6881, -0.2787, 0.5901] ).to(lowerCamelCase ) self.assertTrue(torch.allclose(logits[0, :3], lowerCamelCase, atol=1E-4 ) ) lowercase__ = 2_396 self.assertEqual(logits.argmax(-1 ).item(), lowerCamelCase ) @slow def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = BeitForSemanticSegmentation.from_pretrained('''microsoft/beit-base-finetuned-ade-640-640''' ) lowercase__ = model.to(lowerCamelCase ) lowercase__ = BeitImageProcessor(do_resize=lowerCamelCase, size=640, do_center_crop=lowerCamelCase ) lowercase__ = load_dataset('''hf-internal-testing/fixtures_ade20k''', split='''test''' ) lowercase__ = Image.open(ds[0]['''file'''] ) lowercase__ = image_processor(images=lowerCamelCase, return_tensors='''pt''' ).to(lowerCamelCase ) # forward pass with torch.no_grad(): lowercase__ = model(**lowerCamelCase ) lowercase__ = outputs.logits # verify the logits lowercase__ = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape, lowerCamelCase ) lowercase__ = version.parse(PIL.__version__ ) < version.parse('''9.0.0''' ) if is_pillow_less_than_a: lowercase__ = torch.tensor( [ [[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]], [[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]], [[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]], ], device=lowerCamelCase, ) else: lowercase__ = torch.tensor( [ [[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]], [[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]], [[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]], ], device=lowerCamelCase, ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3], lowerCamelCase, atol=1E-4 ) ) @slow def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = BeitForSemanticSegmentation.from_pretrained('''microsoft/beit-base-finetuned-ade-640-640''' ) lowercase__ = model.to(lowerCamelCase ) lowercase__ = BeitImageProcessor(do_resize=lowerCamelCase, size=640, do_center_crop=lowerCamelCase ) lowercase__ = load_dataset('''hf-internal-testing/fixtures_ade20k''', split='''test''' ) lowercase__ = Image.open(ds[0]['''file'''] ) lowercase__ = image_processor(images=lowerCamelCase, return_tensors='''pt''' ).to(lowerCamelCase ) # forward pass with torch.no_grad(): lowercase__ = model(**lowerCamelCase ) lowercase__ = outputs.logits.detach().cpu() lowercase__ = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase, target_sizes=[(500, 300)] ) lowercase__ = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape, lowerCamelCase ) lowercase__ = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase ) lowercase__ = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape, lowerCamelCase )
671
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration A__ : Dict = 50_00_00 A__ , A__ : str = os.path.split(__file__) A__ : Optional[Any] = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json')) @get_duration def a ( lowerCamelCase_ , **lowerCamelCase_ ): '''simple docstring''' lowercase__ = dataset.map(**lowerCamelCase_ ) @get_duration def a ( lowerCamelCase_ , **lowerCamelCase_ ): '''simple docstring''' lowercase__ = dataset.filter(**lowerCamelCase_ ) def a ( ): '''simple docstring''' lowercase__ = {'''num examples''': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ = datasets.Features({'''text''': datasets.Value('''string''' ), '''numbers''': datasets.Value('''float32''' )} ) lowercase__ = generate_example_dataset( os.path.join(lowerCamelCase_ , '''dataset.arrow''' ) , lowerCamelCase_ , num_examples=lowerCamelCase_ ) lowercase__ = transformers.AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=lowerCamelCase_ ) def tokenize(lowerCamelCase_ ): return tokenizer(examples['''text'''] ) lowercase__ = map(lowerCamelCase_ ) lowercase__ = map(lowerCamelCase_ , batched=lowerCamelCase_ ) lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''numpy''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''pandas''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''torch''' , columns='''numbers''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''tensorflow''' , columns='''numbers''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) lowercase__ = map(lowerCamelCase_ , function=lowerCamelCase_ , batched=lowerCamelCase_ ) lowercase__ = filter(lowerCamelCase_ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(lowerCamelCase_ , '''wb''' ) as f: f.write(json.dumps(lowerCamelCase_ ).encode('''utf-8''' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
671
1
'''simple docstring''' import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class _lowercase ( lowerCAmelCase ,unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = ProphetNetTokenizer UpperCAmelCase_ : Tuple = False def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' super().setUp() UpperCAmelCase__ : List[str] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] UpperCAmelCase__ : List[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def lowerCAmelCase__ ( self ,lowerCamelCase_ ) -> Dict: '''simple docstring''' UpperCAmelCase__ : Any = '''UNwant\u00E9d,running''' UpperCAmelCase__ : Union[str, Any] = '''unwanted, running''' return input_text, output_text def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' UpperCAmelCase__ : str = self.tokenizer_class(self.vocab_file ) UpperCAmelCase__ : str = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(lowerCamelCase_ ,['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) ,[9, 6, 7, 12, 10, 11] ) def lowerCAmelCase__ ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase__ : str = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) ,['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def lowerCAmelCase__ ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = BasicTokenizer(do_lower_case=lowerCamelCase_ ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) ,['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) ,['''hello'''] ) def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase__ : Any = BasicTokenizer(do_lower_case=lowerCamelCase_ ,strip_accents=lowerCamelCase_ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) ,['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) ,['''h\u00E9llo'''] ) def lowerCAmelCase__ ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = BasicTokenizer(do_lower_case=lowerCamelCase_ ,strip_accents=lowerCamelCase_ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) ,['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) ,['''hello'''] ) def lowerCAmelCase__ ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase__ : int = BasicTokenizer(do_lower_case=lowerCamelCase_ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) ,['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) ,['''hello'''] ) def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase__ : List[str] = BasicTokenizer(do_lower_case=lowerCamelCase_ ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) ,['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' UpperCAmelCase__ : List[Any] = BasicTokenizer(do_lower_case=lowerCamelCase_ ,strip_accents=lowerCamelCase_ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) ,['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase__ : Any = BasicTokenizer(do_lower_case=lowerCamelCase_ ,strip_accents=lowerCamelCase_ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) ,['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase__ : str = BasicTokenizer(do_lower_case=lowerCamelCase_ ,never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) ,['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] UpperCAmelCase__ : int = {} for i, token in enumerate(lowerCamelCase_ ): UpperCAmelCase__ : int = i UpperCAmelCase__ : List[str] = WordpieceTokenizer(vocab=lowerCamelCase_ ,unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) ,[] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) ,['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) ,['''[UNK]''', '''runn''', '''##ing'''] ) @require_torch def lowerCAmelCase__ ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.tokenizer_class.from_pretrained('''microsoft/prophetnet-large-uncased''' ) UpperCAmelCase__ : int = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] UpperCAmelCase__ : str = [1037, 2146, 20423, 2005, 7680, 7849, 3989, 1012, 102] UpperCAmelCase__ : List[str] = tokenizer(lowerCamelCase_ ,padding=lowerCamelCase_ ,return_tensors='''pt''' ) self.assertIsInstance(lowerCamelCase_ ,lowerCamelCase_ ) UpperCAmelCase__ : Optional[int] = list(batch.input_ids.numpy()[0] ) self.assertListEqual(lowerCamelCase_ ,lowerCamelCase_ ) self.assertEqual((2, 9) ,batch.input_ids.shape ) self.assertEqual((2, 9) ,batch.attention_mask.shape ) def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) @slow def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.tokenizer_class.from_pretrained('''microsoft/prophetnet-large-uncased''' ) UpperCAmelCase__ : List[str] = tokenizer.encode('''sequence builders''' ,add_special_tokens=lowerCamelCase_ ) UpperCAmelCase__ : Dict = tokenizer.encode('''multi-sequence build''' ,add_special_tokens=lowerCamelCase_ ) UpperCAmelCase__ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(lowerCamelCase_ ) UpperCAmelCase__ : Dict = tokenizer.build_inputs_with_special_tokens(lowerCamelCase_ ,lowerCamelCase_ ) assert encoded_sentence == text + [102] assert encoded_pair == text + [102] + text_a + [102]
614
'''simple docstring''' from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class _lowercase : '''simple docstring''' def __init__( self ,lowerCamelCase_ ,lowerCamelCase_=13 ,lowerCamelCase_=7 ,lowerCamelCase_=True ,lowerCamelCase_=True ,lowerCamelCase_=True ,lowerCamelCase_=True ,lowerCamelCase_=99 ,lowerCamelCase_=32 ,lowerCamelCase_=2 ,lowerCamelCase_=4 ,lowerCamelCase_=37 ,lowerCamelCase_="gelu" ,lowerCamelCase_=0.1 ,lowerCamelCase_=0.1 ,lowerCamelCase_=512 ,lowerCamelCase_=16 ,lowerCamelCase_=2 ,lowerCamelCase_=0.02 ,lowerCamelCase_=3 ,lowerCamelCase_=4 ,lowerCamelCase_=None ,) -> str: '''simple docstring''' UpperCAmelCase__ : Any = parent UpperCAmelCase__ : str = 13 UpperCAmelCase__ : Any = 7 UpperCAmelCase__ : str = True UpperCAmelCase__ : List[Any] = True UpperCAmelCase__ : Tuple = True UpperCAmelCase__ : List[str] = True UpperCAmelCase__ : List[Any] = 99 UpperCAmelCase__ : str = 32 UpperCAmelCase__ : Dict = 2 UpperCAmelCase__ : Union[str, Any] = 4 UpperCAmelCase__ : Dict = 37 UpperCAmelCase__ : Dict = '''gelu''' UpperCAmelCase__ : List[str] = 0.1 UpperCAmelCase__ : List[str] = 0.1 UpperCAmelCase__ : Optional[int] = 512 UpperCAmelCase__ : Any = 16 UpperCAmelCase__ : List[Any] = 2 UpperCAmelCase__ : Optional[Any] = 0.02 UpperCAmelCase__ : Optional[int] = 3 UpperCAmelCase__ : Optional[int] = 4 UpperCAmelCase__ : Optional[int] = None def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) UpperCAmelCase__ : List[str] = None if self.use_input_mask: UpperCAmelCase__ : int = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ : str = None if self.use_token_type_ids: UpperCAmelCase__ : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) UpperCAmelCase__ : List[str] = None UpperCAmelCase__ : Any = None UpperCAmelCase__ : Dict = None if self.use_labels: UpperCAmelCase__ : Optional[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase__ : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) UpperCAmelCase__ : List[str] = ids_tensor([self.batch_size] ,self.num_choices ) UpperCAmelCase__ : Union[str, Any] = RoFormerConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,return_dict=lowerCamelCase_ ,) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> int: '''simple docstring''' UpperCAmelCase__ : List[str] = TFRoFormerModel(config=lowerCamelCase_ ) UpperCAmelCase__ : str = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} UpperCAmelCase__ : str = [input_ids, input_mask] UpperCAmelCase__ : Any = model(lowerCamelCase_ ) UpperCAmelCase__ : List[Any] = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> Tuple: '''simple docstring''' UpperCAmelCase__ : Optional[int] = True UpperCAmelCase__ : Any = TFRoFormerForCausalLM(config=lowerCamelCase_ ) UpperCAmelCase__ : List[str] = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCAmelCase__ : int = model(lowerCamelCase_ )['''logits'''] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) ,[self.batch_size, self.seq_length, self.vocab_size] ) def lowerCAmelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> List[str]: '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = TFRoFormerForMaskedLM(config=lowerCamelCase_ ) UpperCAmelCase__ : Dict = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCAmelCase__ : Dict = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.num_labels UpperCAmelCase__ : List[Any] = TFRoFormerForSequenceClassification(config=lowerCamelCase_ ) UpperCAmelCase__ : List[Any] = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCAmelCase__ : Union[str, Any] = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def lowerCAmelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> Dict: '''simple docstring''' UpperCAmelCase__ : int = self.num_choices UpperCAmelCase__ : Optional[int] = TFRoFormerForMultipleChoice(config=lowerCamelCase_ ) UpperCAmelCase__ : Tuple = tf.tile(tf.expand_dims(lowerCamelCase_ ,1 ) ,(1, self.num_choices, 1) ) UpperCAmelCase__ : Optional[Any] = tf.tile(tf.expand_dims(lowerCamelCase_ ,1 ) ,(1, self.num_choices, 1) ) UpperCAmelCase__ : Dict = tf.tile(tf.expand_dims(lowerCamelCase_ ,1 ) ,(1, self.num_choices, 1) ) UpperCAmelCase__ : Optional[int] = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } UpperCAmelCase__ : str = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def lowerCAmelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> Any: '''simple docstring''' UpperCAmelCase__ : Dict = self.num_labels UpperCAmelCase__ : Optional[Any] = TFRoFormerForTokenClassification(config=lowerCamelCase_ ) UpperCAmelCase__ : Dict = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCAmelCase__ : Optional[int] = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> Optional[int]: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = TFRoFormerForQuestionAnswering(config=lowerCamelCase_ ) UpperCAmelCase__ : Any = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCAmelCase__ : int = model(lowerCamelCase_ ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) : List[Any] = config_and_inputs UpperCAmelCase__ : Optional[int] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class _lowercase ( lowerCAmelCase ,lowerCAmelCase ,unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : List[str] = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) UpperCAmelCase_ : int = ( { '''feature-extraction''': TFRoFormerModel, '''fill-mask''': TFRoFormerForMaskedLM, '''question-answering''': TFRoFormerForQuestionAnswering, '''text-classification''': TFRoFormerForSequenceClassification, '''text-generation''': TFRoFormerForCausalLM, '''token-classification''': TFRoFormerForTokenClassification, '''zero-shot''': TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) UpperCAmelCase_ : Optional[int] = False UpperCAmelCase_ : Optional[int] = False def lowerCAmelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> Any: '''simple docstring''' if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase__ : List[Any] = TFRoFormerModelTester(self ) UpperCAmelCase__ : int = ConfigTester(self ,config_class=lowerCamelCase_ ,hidden_size=37 ) def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase_ ) def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*lowerCamelCase_ ) def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCamelCase_ ) def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' UpperCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase_ ) def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase_ ) def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase_ ) @slow def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase__ : List[str] = TFRoFormerModel.from_pretrained('''junnyu/roformer_chinese_base''' ) self.assertIsNotNone(lowerCamelCase_ ) @require_tf class _lowercase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' UpperCAmelCase__ : List[Any] = TFRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' ) UpperCAmelCase__ : Dict = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCAmelCase__ : Union[str, Any] = model(lowerCamelCase_ )[0] # TODO Replace vocab size UpperCAmelCase__ : List[str] = 50000 UpperCAmelCase__ : int = [1, 6, vocab_size] self.assertEqual(output.shape ,lowerCamelCase_ ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. UpperCAmelCase__ : Tuple = tf.constant( [ [ [-0.1205_3341, -1.026_4901, 0.2922_1946], [-1.513_3783, 0.19_7433, 0.1519_0607], [-5.013_5403, -3.90_0256, -0.8403_8764], ] ] ) tf.debugging.assert_near(output[:, :3, :3] ,lowerCamelCase_ ,atol=1e-4 ) @require_tf class _lowercase ( unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : int = 1E-4 def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = tf.constant([[4, 10]] ) UpperCAmelCase__ : List[str] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 ,embedding_dim=6 ) UpperCAmelCase__ : Optional[Any] = emba(input_ids.shape ) UpperCAmelCase__ : List[str] = tf.constant( [[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]] ) tf.debugging.assert_near(lowerCamelCase_ ,lowerCamelCase_ ,atol=self.tolerance ) def lowerCAmelCase__ ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase__ : Any = tf.constant( [ [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.8415, 0.8219, 0.8020, 0.7819, 0.7617], [0.9093, 0.9364, 0.9581, 0.9749, 0.9870], ] ) UpperCAmelCase__ : Dict = TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 ,embedding_dim=512 ) emba([2, 16, 512] ) UpperCAmelCase__ : Optional[int] = emba.weight[:3, :5] tf.debugging.assert_near(lowerCamelCase_ ,lowerCamelCase_ ,atol=self.tolerance ) @require_tf class _lowercase ( unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = 1E-4 def lowerCAmelCase__ ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase__ : Optional[int] = tf.reshape(tf.range(2 * 12 * 16 * 64 ,dtype=tf.floataa ) ,shape=(2, 12, 16, 64) ) / 100 UpperCAmelCase__ : int = -tf.reshape(tf.range(2 * 12 * 16 * 64 ,dtype=tf.floataa ) ,shape=(2, 12, 16, 64) ) / 100 UpperCAmelCase__ : Optional[Any] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 ,embedding_dim=64 ) UpperCAmelCase__ : int = embed_positions([2, 16, 768] )[None, None, :, :] UpperCAmelCase__ , UpperCAmelCase__ : Dict = TFRoFormerSelfAttention.apply_rotary_position_embeddings( lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) UpperCAmelCase__ : Any = tf.constant( [ [0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700], [-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343], [-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985], [-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871], [0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980], [3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253], ] ) UpperCAmelCase__ : List[str] = tf.constant( [ [0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700], [0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343], [1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985], [2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871], [-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980], [-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] ,lowerCamelCase_ ,atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] ,lowerCamelCase_ ,atol=self.tolerance )
614
1
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ('audio-spectrogram-transformer', 'ASTFeatureExtractor'), ('beit', 'BeitFeatureExtractor'), ('chinese_clip', 'ChineseCLIPFeatureExtractor'), ('clap', 'ClapFeatureExtractor'), ('clip', 'CLIPFeatureExtractor'), ('clipseg', 'ViTFeatureExtractor'), ('conditional_detr', 'ConditionalDetrFeatureExtractor'), ('convnext', 'ConvNextFeatureExtractor'), ('cvt', 'ConvNextFeatureExtractor'), ('data2vec-audio', 'Wav2Vec2FeatureExtractor'), ('data2vec-vision', 'BeitFeatureExtractor'), ('deformable_detr', 'DeformableDetrFeatureExtractor'), ('deit', 'DeiTFeatureExtractor'), ('detr', 'DetrFeatureExtractor'), ('dinat', 'ViTFeatureExtractor'), ('donut-swin', 'DonutFeatureExtractor'), ('dpt', 'DPTFeatureExtractor'), ('encodec', 'EncodecFeatureExtractor'), ('flava', 'FlavaFeatureExtractor'), ('glpn', 'GLPNFeatureExtractor'), ('groupvit', 'CLIPFeatureExtractor'), ('hubert', 'Wav2Vec2FeatureExtractor'), ('imagegpt', 'ImageGPTFeatureExtractor'), ('layoutlmv2', 'LayoutLMv2FeatureExtractor'), ('layoutlmv3', 'LayoutLMv3FeatureExtractor'), ('levit', 'LevitFeatureExtractor'), ('maskformer', 'MaskFormerFeatureExtractor'), ('mctct', 'MCTCTFeatureExtractor'), ('mobilenet_v1', 'MobileNetV1FeatureExtractor'), ('mobilenet_v2', 'MobileNetV2FeatureExtractor'), ('mobilevit', 'MobileViTFeatureExtractor'), ('nat', 'ViTFeatureExtractor'), ('owlvit', 'OwlViTFeatureExtractor'), ('perceiver', 'PerceiverFeatureExtractor'), ('poolformer', 'PoolFormerFeatureExtractor'), ('regnet', 'ConvNextFeatureExtractor'), ('resnet', 'ConvNextFeatureExtractor'), ('segformer', 'SegformerFeatureExtractor'), ('sew', 'Wav2Vec2FeatureExtractor'), ('sew-d', 'Wav2Vec2FeatureExtractor'), ('speech_to_text', 'Speech2TextFeatureExtractor'), ('speecht5', 'SpeechT5FeatureExtractor'), ('swiftformer', 'ViTFeatureExtractor'), ('swin', 'ViTFeatureExtractor'), ('swinv2', 'ViTFeatureExtractor'), ('table-transformer', 'DetrFeatureExtractor'), ('timesformer', 'VideoMAEFeatureExtractor'), ('tvlt', 'TvltFeatureExtractor'), ('unispeech', 'Wav2Vec2FeatureExtractor'), ('unispeech-sat', 'Wav2Vec2FeatureExtractor'), ('van', 'ConvNextFeatureExtractor'), ('videomae', 'VideoMAEFeatureExtractor'), ('vilt', 'ViltFeatureExtractor'), ('vit', 'ViTFeatureExtractor'), ('vit_mae', 'ViTFeatureExtractor'), ('vit_msn', 'ViTFeatureExtractor'), ('wav2vec2', 'Wav2Vec2FeatureExtractor'), ('wav2vec2-conformer', 'Wav2Vec2FeatureExtractor'), ('wavlm', 'Wav2Vec2FeatureExtractor'), ('whisper', 'WhisperFeatureExtractor'), ('xclip', 'CLIPFeatureExtractor'), ('yolos', 'YolosFeatureExtractor'), ] ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: str ) -> Any: for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: _UpperCAmelCase : Union[str, Any] = model_type_to_module_name(lowerCAmelCase ) _UpperCAmelCase : List[str] = importlib.import_module(F'.{module_name}' , "transformers.models" ) try: return getattr(lowerCAmelCase , lowerCAmelCase ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(lowerCAmelCase , "__name__" , lowerCAmelCase ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. _UpperCAmelCase : Union[str, Any] = importlib.import_module("transformers" ) if hasattr(lowerCAmelCase , lowerCAmelCase ): return getattr(lowerCAmelCase , lowerCAmelCase ) return None def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Union[str, os.PathLike] , lowerCAmelCase: Optional[Union[str, os.PathLike]] = None , lowerCAmelCase: bool = False , lowerCAmelCase: bool = False , lowerCAmelCase: Optional[Dict[str, str]] = None , lowerCAmelCase: Optional[Union[bool, str]] = None , lowerCAmelCase: Optional[str] = None , lowerCAmelCase: bool = False , **lowerCAmelCase: Optional[Any] , ) -> Dict: _UpperCAmelCase : Any = get_file_from_repo( lowerCAmelCase , lowerCAmelCase , cache_dir=lowerCAmelCase , force_download=lowerCAmelCase , resume_download=lowerCAmelCase , proxies=lowerCAmelCase , use_auth_token=lowerCAmelCase , revision=lowerCAmelCase , local_files_only=lowerCAmelCase , ) if resolved_config_file is None: logger.info( "Could not locate the feature extractor configuration file, will try to use the model config instead." ) return {} with open(lowerCAmelCase , encoding="utf-8" ) as reader: return json.load(lowerCAmelCase ) class a : def __init__( self ): '''simple docstring''' raise EnvironmentError( "AutoFeatureExtractor is designed to be instantiated " "using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method." ) @classmethod @replace_list_option_in_docstrings(A_ ) def _UpperCAmelCase ( cls , A_ , **A_ ): '''simple docstring''' _UpperCAmelCase : int = kwargs.pop("config" , A_ ) _UpperCAmelCase : Dict = kwargs.pop("trust_remote_code" , A_ ) _UpperCAmelCase : Any = True _UpperCAmelCase , _UpperCAmelCase : Any = FeatureExtractionMixin.get_feature_extractor_dict(A_ , **A_ ) _UpperCAmelCase : Tuple = config_dict.get("feature_extractor_type" , A_ ) _UpperCAmelCase : Union[str, Any] = None if "AutoFeatureExtractor" in config_dict.get("auto_map" , {} ): _UpperCAmelCase : str = config_dict["auto_map"]["AutoFeatureExtractor"] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(A_ , A_ ): _UpperCAmelCase : int = AutoConfig.from_pretrained(A_ , **A_ ) # It could be in `config.feature_extractor_type`` _UpperCAmelCase : Optional[int] = getattr(A_ , "feature_extractor_type" , A_ ) if hasattr(A_ , "auto_map" ) and "AutoFeatureExtractor" in config.auto_map: _UpperCAmelCase : List[str] = config.auto_map["AutoFeatureExtractor"] if feature_extractor_class is not None: _UpperCAmelCase : str = feature_extractor_class_from_name(A_ ) _UpperCAmelCase : Dict = feature_extractor_auto_map is not None _UpperCAmelCase : int = feature_extractor_class is not None or type(A_ ) in FEATURE_EXTRACTOR_MAPPING _UpperCAmelCase : List[Any] = resolve_trust_remote_code( A_ , A_ , A_ , A_ ) if has_remote_code and trust_remote_code: _UpperCAmelCase : Tuple = get_class_from_dynamic_module( A_ , A_ , **A_ ) _UpperCAmelCase : Optional[Any] = kwargs.pop("code_revision" , A_ ) if os.path.isdir(A_ ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(A_ , **A_ ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(A_ , **A_ ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(A_ ) in FEATURE_EXTRACTOR_MAPPING: _UpperCAmelCase : Union[str, Any] = FEATURE_EXTRACTOR_MAPPING[type(A_ )] return feature_extractor_class.from_dict(A_ , **A_ ) raise ValueError( f'Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a ' f'`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following ' f'`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}' ) @staticmethod def _UpperCAmelCase ( A_ , A_ ): '''simple docstring''' FEATURE_EXTRACTOR_MAPPING.register(A_ , A_ )
467
import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class a : def __init__( self , A_ , A_=100 , A_=13 , A_=30 , A_=2 , A_=3 , A_=True , A_=True , A_=32 , A_=4 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=10 , A_=0.02 , A_=3 , A_=None , A_=[0, 1, 2, 3] , ): '''simple docstring''' _UpperCAmelCase : Tuple = parent _UpperCAmelCase : Any = 100 _UpperCAmelCase : Optional[Any] = batch_size _UpperCAmelCase : Any = image_size _UpperCAmelCase : int = patch_size _UpperCAmelCase : Dict = num_channels _UpperCAmelCase : int = is_training _UpperCAmelCase : Union[str, Any] = use_labels _UpperCAmelCase : Optional[Any] = hidden_size _UpperCAmelCase : str = num_hidden_layers _UpperCAmelCase : Tuple = num_attention_heads _UpperCAmelCase : List[str] = intermediate_size _UpperCAmelCase : List[str] = hidden_act _UpperCAmelCase : List[Any] = hidden_dropout_prob _UpperCAmelCase : Any = attention_probs_dropout_prob _UpperCAmelCase : Dict = type_sequence_label_size _UpperCAmelCase : Optional[Any] = initializer_range _UpperCAmelCase : Optional[int] = scope _UpperCAmelCase : Any = out_indices _UpperCAmelCase : List[str] = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _UpperCAmelCase : Any = (image_size // patch_size) ** 2 _UpperCAmelCase : str = num_patches + 1 def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase : Optional[Any] = None _UpperCAmelCase : str = None if self.use_labels: _UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _UpperCAmelCase : Tuple = self.get_config() return config, pixel_values, labels, pixel_labels def _UpperCAmelCase ( self ): '''simple docstring''' return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A_ , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def _UpperCAmelCase ( self , A_ , A_ , A_ , A_ ): '''simple docstring''' _UpperCAmelCase : Any = BeitModel(config=A_ ) model.to(A_ ) model.eval() _UpperCAmelCase : int = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self , A_ , A_ , A_ , A_ ): '''simple docstring''' _UpperCAmelCase : Dict = BeitForMaskedImageModeling(config=A_ ) model.to(A_ ) model.eval() _UpperCAmelCase : Any = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def _UpperCAmelCase ( self , A_ , A_ , A_ , A_ ): '''simple docstring''' _UpperCAmelCase : int = self.type_sequence_label_size _UpperCAmelCase : Optional[int] = BeitForImageClassification(A_ ) model.to(A_ ) model.eval() _UpperCAmelCase : List[str] = model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _UpperCAmelCase : Optional[Any] = 1 _UpperCAmelCase : Tuple = BeitForImageClassification(A_ ) model.to(A_ ) model.eval() _UpperCAmelCase : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCAmelCase : Dict = model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _UpperCAmelCase ( self , A_ , A_ , A_ , A_ ): '''simple docstring''' _UpperCAmelCase : Dict = self.num_labels _UpperCAmelCase : Dict = BeitForSemanticSegmentation(A_ ) model.to(A_ ) model.eval() _UpperCAmelCase : str = model(A_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) _UpperCAmelCase : List[Any] = model(A_ , labels=A_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Tuple = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = config_and_inputs _UpperCAmelCase : int = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class a ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): _lowercase = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) _lowercase = ( { "feature-extraction": BeitModel, "image-classification": BeitForImageClassification, "image-segmentation": BeitForSemanticSegmentation, } if is_torch_available() else {} ) _lowercase = False _lowercase = False _lowercase = False def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = BeitModelTester(self ) _UpperCAmelCase : List[Any] = ConfigTester(self , config_class=A_ , has_text_modality=A_ , hidden_size=37 ) def _UpperCAmelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="BEiT does not use inputs_embeds" ) def _UpperCAmelCase ( self ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def _UpperCAmelCase ( self ): '''simple docstring''' pass def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : Union[str, Any] = model_class(A_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _UpperCAmelCase : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A_ , nn.Linear ) ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : List[str] = model_class(A_ ) _UpperCAmelCase : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase : int = [*signature.parameters.keys()] _UpperCAmelCase : int = ["pixel_values"] self.assertListEqual(arg_names[:1] , A_ ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A_ ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*A_ ) def _UpperCAmelCase ( self ): '''simple docstring''' if not self.model_tester.is_training: return _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : str = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(A_ ), BeitForMaskedImageModeling]: continue _UpperCAmelCase : Union[str, Any] = model_class(A_ ) model.to(A_ ) model.train() _UpperCAmelCase : str = self._prepare_for_class(A_ , A_ , return_labels=A_ ) _UpperCAmelCase : Optional[Any] = model(**A_ ).loss loss.backward() def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return _UpperCAmelCase : Tuple = False _UpperCAmelCase : Any = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(A_ ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue _UpperCAmelCase : Optional[Any] = model_class(A_ ) model.gradient_checkpointing_enable() model.to(A_ ) model.train() _UpperCAmelCase : Union[str, Any] = self._prepare_for_class(A_ , A_ , return_labels=A_ ) _UpperCAmelCase : Optional[Any] = model(**A_ ).loss loss.backward() def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : Optional[Any] = _config_zero_init(A_ ) for model_class in self.all_model_classes: _UpperCAmelCase : Tuple = model_class(config=A_ ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def _UpperCAmelCase ( self ): '''simple docstring''' for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : Dict = BeitModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def __SCREAMING_SNAKE_CASE ( ) -> Any: _UpperCAmelCase : Optional[int] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class a ( unittest.TestCase ): @cached_property def _UpperCAmelCase ( self ): '''simple docstring''' return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ).to(A_ ) _UpperCAmelCase : Dict = self.default_image_processor _UpperCAmelCase : Optional[Any] = prepare_img() _UpperCAmelCase : Any = image_processor(images=A_ , return_tensors="pt" ).pixel_values.to(A_ ) # prepare bool_masked_pos _UpperCAmelCase : Dict = torch.ones((1, 196) , dtype=torch.bool ).to(A_ ) # forward pass with torch.no_grad(): _UpperCAmelCase : List[str] = model(pixel_values=A_ , bool_masked_pos=A_ ) _UpperCAmelCase : Optional[int] = outputs.logits # verify the logits _UpperCAmelCase : Optional[int] = torch.Size((1, 196, 8192) ) self.assertEqual(logits.shape , A_ ) _UpperCAmelCase : Tuple = torch.tensor( [[-3.24_37, 0.50_72, -13.91_74], [-3.24_56, 0.49_48, -13.94_01], [-3.20_33, 0.51_21, -13.85_50]] ).to(A_ ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , A_ , atol=1e-2 ) ) @slow def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : List[str] = BeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ).to(A_ ) _UpperCAmelCase : str = self.default_image_processor _UpperCAmelCase : Union[str, Any] = prepare_img() _UpperCAmelCase : List[Any] = image_processor(images=A_ , return_tensors="pt" ).to(A_ ) # forward pass with torch.no_grad(): _UpperCAmelCase : Tuple = model(**A_ ) _UpperCAmelCase : Dict = outputs.logits # verify the logits _UpperCAmelCase : List[str] = torch.Size((1, 1000) ) self.assertEqual(logits.shape , A_ ) _UpperCAmelCase : int = torch.tensor([-1.23_85, -1.09_87, -1.01_08] ).to(A_ ) self.assertTrue(torch.allclose(logits[0, :3] , A_ , atol=1e-4 ) ) _UpperCAmelCase : List[Any] = 281 self.assertEqual(logits.argmax(-1 ).item() , A_ ) @slow def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Optional[int] = BeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ).to( A_ ) _UpperCAmelCase : str = self.default_image_processor _UpperCAmelCase : List[str] = prepare_img() _UpperCAmelCase : List[Any] = image_processor(images=A_ , return_tensors="pt" ).to(A_ ) # forward pass with torch.no_grad(): _UpperCAmelCase : Any = model(**A_ ) _UpperCAmelCase : List[Any] = outputs.logits # verify the logits _UpperCAmelCase : List[str] = torch.Size((1, 21841) ) self.assertEqual(logits.shape , A_ ) _UpperCAmelCase : Union[str, Any] = torch.tensor([1.68_81, -0.27_87, 0.59_01] ).to(A_ ) self.assertTrue(torch.allclose(logits[0, :3] , A_ , atol=1e-4 ) ) _UpperCAmelCase : List[str] = 2396 self.assertEqual(logits.argmax(-1 ).item() , A_ ) @slow def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Any = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) _UpperCAmelCase : str = model.to(A_ ) _UpperCAmelCase : int = BeitImageProcessor(do_resize=A_ , size=640 , do_center_crop=A_ ) _UpperCAmelCase : Union[str, Any] = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) _UpperCAmelCase : Any = Image.open(ds[0]["file"] ) _UpperCAmelCase : int = image_processor(images=A_ , return_tensors="pt" ).to(A_ ) # forward pass with torch.no_grad(): _UpperCAmelCase : Dict = model(**A_ ) _UpperCAmelCase : Optional[int] = outputs.logits # verify the logits _UpperCAmelCase : str = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , A_ ) _UpperCAmelCase : str = version.parse(PIL.__version__ ) < version.parse("9.0.0" ) if is_pillow_less_than_a: _UpperCAmelCase : int = torch.tensor( [ [[-4.92_25, -2.39_54, -3.05_22], [-2.88_22, -1.00_46, -1.75_61], [-2.95_49, -1.32_28, -2.13_47]], [[-5.81_68, -3.41_29, -4.07_78], [-3.86_51, -2.22_14, -3.02_77], [-3.83_56, -2.46_43, -3.35_35]], [[-0.00_78, 3.99_52, 4.07_54], [2.98_56, 4.69_44, 5.00_35], [3.24_13, 4.78_13, 4.99_69]], ] , device=A_ , ) else: _UpperCAmelCase : Any = torch.tensor( [ [[-4.89_60, -2.36_88, -3.03_55], [-2.84_78, -0.98_36, -1.74_18], [-2.94_49, -1.33_32, -2.14_56]], [[-5.80_81, -3.41_24, -4.10_06], [-3.85_61, -2.20_81, -3.03_23], [-3.83_65, -2.46_01, -3.36_69]], [[-0.03_09, 3.98_68, 4.05_40], [2.96_40, 4.68_77, 4.99_76], [3.20_81, 4.76_90, 4.99_42]], ] , device=A_ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , A_ , atol=1e-4 ) ) @slow def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Optional[int] = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) _UpperCAmelCase : Dict = model.to(A_ ) _UpperCAmelCase : Dict = BeitImageProcessor(do_resize=A_ , size=640 , do_center_crop=A_ ) _UpperCAmelCase : Optional[Any] = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) _UpperCAmelCase : List[str] = Image.open(ds[0]["file"] ) _UpperCAmelCase : Union[str, Any] = image_processor(images=A_ , return_tensors="pt" ).to(A_ ) # forward pass with torch.no_grad(): _UpperCAmelCase : List[Any] = model(**A_ ) _UpperCAmelCase : Tuple = outputs.logits.detach().cpu() _UpperCAmelCase : str = image_processor.post_process_semantic_segmentation(outputs=A_ , target_sizes=[(500, 300)] ) _UpperCAmelCase : Dict = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , A_ ) _UpperCAmelCase : Union[str, Any] = image_processor.post_process_semantic_segmentation(outputs=A_ ) _UpperCAmelCase : Union[str, Any] = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , A_ )
467
1
"""simple docstring""" import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( "The `inpainting.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionInpaintPipeline` instead." )
586
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging lowerCAmelCase = logging.get_logger(__name__) def _lowerCamelCase( lowercase__ , lowercase__ ) -> Tuple: '''simple docstring''' __lowercase= set() __lowercase= [] def parse_line(lowercase__ ): for line in fp: if isinstance(lowercase__ , lowercase__ ): __lowercase= line.decode('UTF-8' ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(' ' ): # process a single warning and move it to `selected_warnings`. if len(lowercase__ ) > 0: __lowercase= '\n'.join(lowercase__ ) # Only keep the warnings specified in `targets` if any(F': {x}: ' in warning for x in targets ): selected_warnings.add(lowercase__ ) buffer.clear() continue else: __lowercase= line.strip() buffer.append(lowercase__ ) if from_gh: for filename in os.listdir(lowercase__ ): __lowercase= os.path.join(lowercase__ , lowercase__ ) if not os.path.isdir(lowercase__ ): # read the file if filename != "warnings.txt": continue with open(lowercase__ ) as fp: parse_line(lowercase__ ) else: try: with zipfile.ZipFile(lowercase__ ) as z: for filename in z.namelist(): if not os.path.isdir(lowercase__ ): # read the file if filename != "warnings.txt": continue with z.open(lowercase__ ) as fp: parse_line(lowercase__ ) except Exception: logger.warning( F'{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.' ) return selected_warnings def _lowerCamelCase( lowercase__ , lowercase__ ) -> List[Any]: '''simple docstring''' __lowercase= set() __lowercase= [os.path.join(lowercase__ , lowercase__ ) for p in os.listdir(lowercase__ ) if (p.endswith('.zip' ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(lowercase__ , lowercase__ ) ) return selected_warnings if __name__ == "__main__": def _lowerCamelCase( lowercase__ ) -> List[str]: '''simple docstring''' return values.split(',' ) lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') parser.add_argument( '''--output_dir''', type=str, required=True, help='''Where to store the downloaded artifacts and other result files.''', ) parser.add_argument('''--token''', default=None, type=str, help='''A token that has actions:read permission.''') # optional parameters parser.add_argument( '''--targets''', default='''DeprecationWarning,UserWarning,FutureWarning''', type=list_str, help='''Comma-separated list of target warning(s) which we want to extract.''', ) parser.add_argument( '''--from_gh''', action='''store_true''', help='''If running from a GitHub action workflow and collecting warnings from its artifacts.''', ) lowerCAmelCase = parser.parse_args() lowerCAmelCase = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links lowerCAmelCase = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, '''artifacts.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print('''=''' * 8_0) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts lowerCAmelCase = extract_warnings(args.output_dir, args.targets) lowerCAmelCase = sorted(selected_warnings) with open(os.path.join(args.output_dir, '''selected_warnings.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
230
0
from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def UpperCamelCase (lowercase_: Any ) -> int: if isinstance(_lowerCAmelCase , collections.abc.Iterable ): return x return (x, x) @require_tf class _a : '''simple docstring''' def __A ( self , A__ , A__ ): pass def __A ( self ): pass def __A ( self ): pass def __A ( self , A__ , A__ , A__ , A__ , A__=None , **A__ ): A__ : Dict = VisionTextDualEncoderConfig.from_vision_text_configs(__A , __A ) A__ : Optional[int] = TFVisionTextDualEncoderModel(__A ) A__ : Union[str, Any] = model(input_ids=__A , pixel_values=__A , attention_mask=__A ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def __A ( self , A__ , A__ , A__ , A__ , A__=None , **A__ ): A__ : Optional[int] = self.get_vision_text_model(__A , __A ) A__ : Optional[int] = TFVisionTextDualEncoderModel(vision_model=__A , text_model=__A ) A__ : Any = model(input_ids=__A , pixel_values=__A , attention_mask=__A ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def __A ( self , A__ , A__ , A__ , A__ , A__=None , **A__ ): A__ : Union[str, Any] = self.get_vision_text_model(__A , __A ) A__ : Dict = {"vision_model": vision_model, "text_model": text_model} A__ : List[Any] = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**__A ) A__ : List[str] = model(input_ids=__A , pixel_values=__A , attention_mask=__A ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def __A ( self , A__ , A__ , A__ , A__ , A__=None , **A__ ): A__ : List[str] = self.get_vision_text_model(__A , __A ) A__ : List[Any] = TFVisionTextDualEncoderModel(vision_model=__A , text_model=__A ) A__ : Optional[int] = model(input_ids=__A , pixel_values=__A , attention_mask=__A ) A__ : List[str] = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__A ) A__ : Union[str, Any] = TFVisionTextDualEncoderModel.from_pretrained(__A ) A__ : Any = model(input_ids=__A , pixel_values=__A , attention_mask=__A ) A__ : Optional[int] = after_output[0].numpy() A__ : Optional[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__A , 1e-5 ) def __A ( self , A__ , A__ , A__ , A__ , A__=None , **A__ ): A__ : int = self.get_vision_text_model(__A , __A ) A__ : Any = TFVisionTextDualEncoderModel(vision_model=__A , text_model=__A ) A__ : str = model( input_ids=__A , pixel_values=__A , attention_mask=__A , output_attentions=__A ) A__ : Any = output.vision_model_output.attentions self.assertEqual(len(__A ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) A__ : Any = to_atuple(vision_model.config.image_size ) A__ : Any = to_atuple(vision_model.config.patch_size ) A__ : Optional[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) A__ : Dict = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) A__ : List[Any] = output.text_model_output.attentions self.assertEqual(len(__A ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def __A ( self , A__ , A__ , A__ ): A__ : List[Any] = np.abs((a - b) ).max() self.assertLessEqual(__A , __A , F"""Difference between torch and flax is {diff} (>= {tol}).""" ) def __A ( self ): A__ : Any = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**__A ) def __A ( self ): A__ : str = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**__A ) def __A ( self ): A__ : Optional[int] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**__A ) def __A ( self ): A__ : Optional[Any] = self.prepare_config_and_inputs() self.check_save_load(**__A ) def __A ( self ): A__ : Union[str, Any] = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**__A ) @slow def __A ( self ): A__ : Any = self.get_pretrained_model_and_inputs() A__ : Tuple = model_a(**__A ) A__ : int = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(__A ) A__ : int = TFVisionTextDualEncoderModel.from_pretrained(__A ) A__ : List[str] = model_a(**__A ) A__ : Any = after_outputs[0].numpy() A__ : str = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__A , 1e-5 ) @require_tf class _a (__magic_name__ , unittest.TestCase ): '''simple docstring''' def __A ( self ): A__ : Any = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-random-bert""" ) A__ : List[str] = 13 A__ : List[str] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) A__ : Optional[Any] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) A__ : Tuple = random_attention_mask([batch_size, 4] ) A__ : Optional[Any] = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def __A ( self , A__ , A__ ): A__ : List[Any] = TFViTModel(__A , name="""vision_model""" ) A__ : str = TFBertModel(__A , name="""text_model""" ) return vision_model, text_model def __A ( self ): A__ : Dict = TFViTModelTester(self ) A__ : int = TFBertModelTester(self ) A__ : Tuple = vit_model_tester.prepare_config_and_inputs() A__ : Optional[Any] = bert_model_tester.prepare_config_and_inputs() A__ : str = vision_config_and_inputs ( A__ ) : Optional[int] = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class _a (__magic_name__ , unittest.TestCase ): '''simple docstring''' def __A ( self ): # DeiT repo doesn't have TF weights, but we don't actually use the weights at all so let's # just reinitialize it. A__ : List[str] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-deit-tf""" , """hf-internal-testing/tiny-random-roberta""" ) A__ : int = 13 A__ : Tuple = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) A__ : Optional[int] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) A__ : Optional[int] = random_attention_mask([batch_size, 4] ) A__ : str = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def __A ( self , A__ , A__ , A__ , A__ , A__=None , **A__ ): A__ : Dict = self.get_vision_text_model(__A , __A ) A__ : int = TFVisionTextDualEncoderModel(vision_model=__A , text_model=__A ) A__ : List[Any] = model( input_ids=__A , pixel_values=__A , attention_mask=__A , output_attentions=__A ) A__ : int = output.vision_model_output.attentions self.assertEqual(len(__A ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) A__ : Union[str, Any] = to_atuple(vision_model.config.image_size ) A__ : Tuple = to_atuple(vision_model.config.patch_size ) A__ : Optional[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) A__ : Dict = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) A__ : Any = output.text_model_output.attentions self.assertEqual(len(__A ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def __A ( self , A__ , A__ ): A__ : Union[str, Any] = TFDeiTModel(__A , name="""vision_model""" ) A__ : str = TFRobertaModel(__A , name="""text_model""" ) return vision_model, text_model def __A ( self ): A__ : Tuple = TFDeiTModelTester(self ) A__ : Union[str, Any] = TFRobertaModelTester(self ) A__ : str = vit_model_tester.prepare_config_and_inputs() A__ : Any = bert_model_tester.prepare_config_and_inputs() A__ : List[Any] = vision_config_and_inputs ( A__ ) : Dict = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class _a (__magic_name__ , unittest.TestCase ): '''simple docstring''' def __A ( self ): A__ : Any = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-clip-tf""" , """hf-internal-testing/tiny-random-bert""" ) A__ : List[Any] = 13 A__ : List[Any] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) A__ : List[str] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) A__ : List[Any] = random_attention_mask([batch_size, 4] ) A__ : str = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def __A ( self , A__ , A__ ): A__ : Tuple = TFCLIPVisionModel(__A , name="""vision_model""" ) A__ : int = TFBertModel(__A , name="""text_model""" ) return vision_model, text_model def __A ( self ): A__ : Union[str, Any] = TFCLIPVisionModelTester(self ) A__ : Dict = TFBertModelTester(self ) A__ : List[str] = clip_model_tester.prepare_config_and_inputs() A__ : List[Any] = bert_model_tester.prepare_config_and_inputs() A__ : Optional[Any] = vision_config_and_inputs ( A__ ) : int = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class _a (unittest.TestCase ): '''simple docstring''' @slow def __A ( self ): A__ : Dict = TFVisionTextDualEncoderModel.from_pretrained( """clip-italian/clip-italian""" , logit_scale_init_value=1.0 , from_pt=__A ) A__ : List[Any] = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) A__ : Any = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) A__ : str = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=__A , padding=__A , return_tensors="""np""" ) A__ : int = model(**__A ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) A__ : Dict = np.array([[1.2_2_8_4_7_2_7, 0.3_1_0_4_1_2_2]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , __A , atol=1e-3 ) )
711
class _a : '''simple docstring''' def __init__( self ): A__ : str = """""" A__ : Any = """""" A__ : List[Any] = [] def __A ( self , A__ , A__ ): if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: A__ : Optional[Any] = self.__min_dist_top_down_dp(m - 1 , n - 1 ) else: A__ : Union[str, Any] = self.__min_dist_top_down_dp(A__ , n - 1 ) A__ : Union[str, Any] = self.__min_dist_top_down_dp(m - 1 , A__ ) A__ : Union[str, Any] = self.__min_dist_top_down_dp(m - 1 , n - 1 ) A__ : List[Any] = 1 + min(A__ , A__ , A__ ) return self.dp[m][n] def __A ( self , A__ , A__ ): A__ : Tuple = worda A__ : Dict = worda A__ : Optional[Any] = [[-1 for _ in range(len(A__ ) )] for _ in range(len(A__ ) )] return self.__min_dist_top_down_dp(len(A__ ) - 1 , len(A__ ) - 1 ) def __A ( self , A__ , A__ ): A__ : Optional[Any] = worda A__ : Dict = worda A__ : Union[str, Any] = len(A__ ) A__ : List[str] = len(A__ ) A__ : int = [[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty A__ : Tuple = j elif j == 0: # second string is empty A__ : Dict = i elif worda[i - 1] == worda[j - 1]: # last characters are equal A__ : str = self.dp[i - 1][j - 1] else: A__ : Union[str, Any] = self.dp[i][j - 1] A__ : str = self.dp[i - 1][j] A__ : Union[str, Any] = self.dp[i - 1][j - 1] A__ : Tuple = 1 + min(A__ , A__ , A__ ) return self.dp[m][n] if __name__ == "__main__": A_ : Union[str, Any] = EditDistance() print('****************** Testing Edit Distance DP Algorithm ******************') print() A_ : int = input('Enter the first string: ').strip() A_ : List[str] = input('Enter the second string: ').strip() print() print(f'''The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}''') print(f'''The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}''') print() print('*************** End of Testing Edit Distance DP Algorithm ***************')
64
0
import math from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { 'facebook/data2vec-base-960h': 'https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json', # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class _A ( UpperCAmelCase_ ): lowercase_ : Optional[int] = '''data2vec-audio''' def __init__( self : List[Any] , lowerCamelCase__ : List[Any]=32 , lowerCamelCase__ : List[str]=7_68 , lowerCamelCase__ : Union[str, Any]=12 , lowerCamelCase__ : Dict=12 , lowerCamelCase__ : List[Any]=30_72 , lowerCamelCase__ : int="gelu" , lowerCamelCase__ : Optional[Any]=0.1 , lowerCamelCase__ : int=0.1 , lowerCamelCase__ : Optional[int]=0.1 , lowerCamelCase__ : List[Any]=0.0 , lowerCamelCase__ : Dict=0.1 , lowerCamelCase__ : List[str]=0.1 , lowerCamelCase__ : List[Any]=0.02 , lowerCamelCase__ : List[str]=1e-5 , lowerCamelCase__ : Tuple="gelu" , lowerCamelCase__ : Any=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , lowerCamelCase__ : Optional[Any]=(5, 2, 2, 2, 2, 2, 2) , lowerCamelCase__ : Optional[int]=(10, 3, 3, 3, 3, 2, 2) , lowerCamelCase__ : List[str]=False , lowerCamelCase__ : Dict=16 , lowerCamelCase__ : str=19 , lowerCamelCase__ : Union[str, Any]=5 , lowerCamelCase__ : int=0.05 , lowerCamelCase__ : Any=10 , lowerCamelCase__ : str=2 , lowerCamelCase__ : Optional[int]=0.0 , lowerCamelCase__ : Optional[Any]=10 , lowerCamelCase__ : List[Any]=0 , lowerCamelCase__ : List[Any]="sum" , lowerCamelCase__ : List[Any]=False , lowerCamelCase__ : str=False , lowerCamelCase__ : Dict=2_56 , lowerCamelCase__ : Any=(5_12, 5_12, 5_12, 5_12, 15_00) , lowerCamelCase__ : str=(5, 3, 3, 1, 1) , lowerCamelCase__ : List[str]=(1, 2, 3, 1, 1) , lowerCamelCase__ : str=5_12 , lowerCamelCase__ : Optional[int]=0 , lowerCamelCase__ : Tuple=1 , lowerCamelCase__ : Dict=2 , lowerCamelCase__ : int=False , lowerCamelCase__ : Tuple=3 , lowerCamelCase__ : List[str]=2 , lowerCamelCase__ : Union[str, Any]=3 , lowerCamelCase__ : List[str]=None , **lowerCamelCase__ : str , ): """simple docstring""" super().__init__(**lowerCamelCase__ , pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ ) __UpperCamelCase : int = hidden_size __UpperCamelCase : Any = feat_extract_activation __UpperCamelCase : str = list(lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] = list(lowerCamelCase__ ) __UpperCamelCase : List[Any] = list(lowerCamelCase__ ) __UpperCamelCase : Tuple = conv_bias __UpperCamelCase : Tuple = num_conv_pos_embeddings __UpperCamelCase : Dict = num_conv_pos_embedding_groups __UpperCamelCase : int = conv_pos_kernel_size __UpperCamelCase : int = len(self.conv_dim ) __UpperCamelCase : List[str] = num_hidden_layers __UpperCamelCase : List[Any] = intermediate_size __UpperCamelCase : Any = hidden_act __UpperCamelCase : List[Any] = num_attention_heads __UpperCamelCase : Dict = hidden_dropout __UpperCamelCase : List[str] = attention_dropout __UpperCamelCase : Tuple = activation_dropout __UpperCamelCase : Dict = feat_proj_dropout __UpperCamelCase : Dict = final_dropout __UpperCamelCase : int = layerdrop __UpperCamelCase : str = layer_norm_eps __UpperCamelCase : List[str] = initializer_range __UpperCamelCase : Optional[Any] = vocab_size __UpperCamelCase : Dict = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" f' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,' f' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __UpperCamelCase : int = mask_time_prob __UpperCamelCase : str = mask_time_length __UpperCamelCase : Union[str, Any] = mask_time_min_masks __UpperCamelCase : str = mask_feature_prob __UpperCamelCase : Optional[int] = mask_feature_length __UpperCamelCase : Tuple = mask_feature_min_masks # ctc loss __UpperCamelCase : str = ctc_loss_reduction __UpperCamelCase : Any = ctc_zero_infinity # adapter __UpperCamelCase : Optional[int] = add_adapter __UpperCamelCase : Optional[Any] = adapter_kernel_size __UpperCamelCase : Dict = adapter_stride __UpperCamelCase : List[str] = num_adapter_layers __UpperCamelCase : List[Any] = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. __UpperCamelCase : Optional[Any] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __UpperCamelCase : List[Any] = list(lowerCamelCase__ ) __UpperCamelCase : Any = list(lowerCamelCase__ ) __UpperCamelCase : Optional[int] = list(lowerCamelCase__ ) __UpperCamelCase : List[str] = xvector_output_dim @property def a ( self : str ): """simple docstring""" return math.prod(self.conv_stride )
269
from __future__ import annotations from typing import Any class _A : def __init__( self : List[Any] , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : float = 0 ): """simple docstring""" __UpperCamelCase , __UpperCamelCase : Tuple = row, column __UpperCamelCase : Tuple = [[default_value for c in range(lowerCamelCase__ )] for r in range(lowerCamelCase__ )] def __str__( self : List[Any] ): """simple docstring""" __UpperCamelCase : Dict = f'Matrix consist of {self.row} rows and {self.column} columns\n' # Make string identifier __UpperCamelCase : Optional[int] = 0 for row_vector in self.array: for obj in row_vector: __UpperCamelCase : int = max(lowerCamelCase__ , len(str(lowerCamelCase__ ) ) ) __UpperCamelCase : Union[str, Any] = f'%{max_element_length}s' # Make string and return def single_line(lowerCamelCase__ : list[float] ) -> str: nonlocal string_format_identifier __UpperCamelCase : List[Any] = """[""" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(lowerCamelCase__ ) for row_vector in self.array ) return s def __repr__( self : Any ): """simple docstring""" return str(self ) def a ( self : str , lowerCamelCase__ : tuple[int, int] ): """simple docstring""" if not (isinstance(lowerCamelCase__ , (list, tuple) ) and len(lowerCamelCase__ ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self : Union[str, Any] , lowerCamelCase__ : tuple[int, int] ): """simple docstring""" assert self.validate_indicies(lowerCamelCase__ ) return self.array[loc[0]][loc[1]] def __setitem__( self : Union[str, Any] , lowerCamelCase__ : tuple[int, int] , lowerCamelCase__ : float ): """simple docstring""" assert self.validate_indicies(lowerCamelCase__ ) __UpperCamelCase : str = value def __add__( self : int , lowerCamelCase__ : Matrix ): """simple docstring""" assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) assert self.row == another.row and self.column == another.column # Add __UpperCamelCase : Tuple = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __UpperCamelCase : Optional[int] = self[r, c] + another[r, c] return result def __neg__( self : Optional[int] ): """simple docstring""" __UpperCamelCase : str = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __UpperCamelCase : Any = -self[r, c] return result def __sub__( self : Tuple , lowerCamelCase__ : Matrix ): """simple docstring""" return self + (-another) def __mul__( self : Tuple , lowerCamelCase__ : int | float | Matrix ): """simple docstring""" if isinstance(lowerCamelCase__ , (int, float) ): # Scalar multiplication __UpperCamelCase : List[str] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __UpperCamelCase : Tuple = self[r, c] * another return result elif isinstance(lowerCamelCase__ , lowerCamelCase__ ): # Matrix multiplication assert self.column == another.row __UpperCamelCase : List[Any] = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: __UpperCamelCase : Any = f'Unsupported type given for another ({type(lowerCamelCase__ )})' raise TypeError(lowerCamelCase__ ) def a ( self : Union[str, Any] ): """simple docstring""" __UpperCamelCase : Dict = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): __UpperCamelCase : str = self[r, c] return result def a ( self : Any , lowerCamelCase__ : Matrix , lowerCamelCase__ : Matrix ): """simple docstring""" assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate __UpperCamelCase : Optional[int] = v.transpose() __UpperCamelCase : Tuple = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def __lowerCamelCase ( ) -> None: # a^(-1) __UpperCamelCase : str = Matrix(3 , 3 , 0 ) for i in range(3 ): __UpperCamelCase : List[str] = 1 print(f'a^(-1) is {ainv}' ) # u, v __UpperCamelCase : Any = Matrix(3 , 1 , 0 ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Any = 1, 2, -3 __UpperCamelCase : int = Matrix(3 , 1 , 0 ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Dict = 4, -2, 5 print(f'u is {u}' ) print(f'v is {v}' ) print(f'uv^T is {u * v.transpose()}' ) # Sherman Morrison print(f'(a + uv^T)^(-1) is {ainv.sherman_morrison(__lowerCAmelCase , __lowerCAmelCase )}' ) def __lowerCamelCase ( ) -> None: import doctest doctest.testmod() testa()
269
1
from __future__ import annotations def lowerCamelCase_ ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int: # noqa: E741 while r - l > 1: __A : int = (l + r) // 2 if v[m] >= key: __A : List[Any] = m else: __A : List[str] = m # noqa: E741 return r def lowerCamelCase_ ( _lowercase ) -> int: if len(_lowercase ) == 0: return 0 __A : Union[str, Any] = [0] * len(_lowercase ) __A : str = 1 __A : List[str] = v[0] for i in range(1 , len(_lowercase ) ): if v[i] < tail[0]: __A : List[Any] = v[i] elif v[i] > tail[length - 1]: __A : Any = v[i] length += 1 else: __A : List[Any] = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
387
from collections import Counter from timeit import timeit def lowerCamelCase_ ( _lowercase = "" , ) -> bool: return sum(c % 2 for c in Counter(input_str.replace(" " , "" ).lower() ).values() ) < 2 def lowerCamelCase_ ( _lowercase = "" ) -> bool: if len(_lowercase ) == 0: return True __A : List[Any] = input_str.replace(" " , "" ).lower() # character_freq_dict: Stores the frequency of every character in the input string __A : dict[str, int] = {} for character in lower_case_input_str: __A : str = character_freq_dict.get(_lowercase , 0 ) + 1 __A : Any = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def lowerCamelCase_ ( _lowercase = "" ) -> None: print("\nFor string = " , _lowercase , ":" ) print( "> can_string_be_rearranged_as_palindrome_counter()" , "\tans =" , can_string_be_rearranged_as_palindrome_counter(_lowercase ) , "\ttime =" , timeit( "z.can_string_be_rearranged_as_palindrome_counter(z.check_str)" , setup="import __main__ as z" , ) , "seconds" , ) print( "> can_string_be_rearranged_as_palindrome()" , "\tans =" , can_string_be_rearranged_as_palindrome(_lowercase ) , "\ttime =" , timeit( "z.can_string_be_rearranged_as_palindrome(z.check_str)" , setup="import __main__ as z" , ) , "seconds" , ) if __name__ == "__main__": UpperCamelCase = input( 'Enter string to determine if it can be rearranged as a palindrome or not: ' ).strip() benchmark(check_str) UpperCamelCase = can_string_be_rearranged_as_palindrome_counter(check_str) print(F'''{check_str} can {"" if status else "not "}be rearranged as a palindrome''')
387
1