code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def __UpperCamelCase ( SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" if "model" in orig_key: __snake_case = orig_key.replace("model." , "" ) if "norm1" in orig_key: __snake_case = orig_key.replace("norm1" , "attention.output.LayerNorm" ) if "norm2" in orig_key: __snake_case = orig_key.replace("norm2" , "output.LayerNorm" ) if "norm" in orig_key: __snake_case = orig_key.replace("norm" , "LayerNorm" ) if "transformer" in orig_key: __snake_case = orig_key.split("." )[0].split("_" )[-1] __snake_case = orig_key.replace(F'''transformer_{layer_num}''' , F'''encoder.layer.{layer_num}''' ) if "mha.attn" in orig_key: __snake_case = orig_key.replace("mha.attn" , "attention.self" ) if "mha" in orig_key: __snake_case = orig_key.replace("mha" , "attention" ) if "W_q" in orig_key: __snake_case = orig_key.replace("W_q" , "self.query" ) if "W_k" in orig_key: __snake_case = orig_key.replace("W_k" , "self.key" ) if "W_v" in orig_key: __snake_case = orig_key.replace("W_v" , "self.value" ) if "ff1" in orig_key: __snake_case = orig_key.replace("ff1" , "intermediate.dense" ) if "ff2" in orig_key: __snake_case = orig_key.replace("ff2" , "output.dense" ) if "ff" in orig_key: __snake_case = orig_key.replace("ff" , "output.dense" ) if "mlm_class" in orig_key: __snake_case = orig_key.replace("mlm.mlm_class" , "cls.predictions.decoder" ) if "mlm" in orig_key: __snake_case = orig_key.replace("mlm" , "cls.predictions.transform" ) if "cls" not in orig_key: __snake_case = "yoso." + orig_key return orig_key def __UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" for key in orig_state_dict.copy().keys(): __snake_case = orig_state_dict.pop(__snake_case ) if ("pooler" in key) or ("sen_class" in key): continue else: __snake_case = val __snake_case = orig_state_dict["cls.predictions.decoder.bias"] __snake_case = torch.arange(__snake_case ).expand((1, -1) ) + 2 return orig_state_dict def __UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" __snake_case = torch.load(__snake_case , map_location="cpu" )["model_state_dict"] __snake_case = YosoConfig.from_json_file(__snake_case ) __snake_case = YosoForMaskedLM(__snake_case ) __snake_case = convert_checkpoint_helper(config.max_position_embeddings , __snake_case ) print(model.load_state_dict(__snake_case ) ) model.eval() model.save_pretrained(__snake_case ) print(F'''Checkpoint successfuly converted. Model saved at {pytorch_dump_path}''' ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( """--pytorch_model_path""", default=None, type=str, required=True, help="""Path to YOSO pytorch checkpoint.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The json file for YOSO model config.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
163
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class _snake_case ( _A ): _A = 'Speech2TextFeatureExtractor' _A = 'Speech2TextTokenizer' def __init__( self ,UpperCamelCase ,UpperCamelCase ) -> int: super().__init__(UpperCamelCase ,UpperCamelCase ) snake_case__ :int = self.feature_extractor snake_case__ :Any = False def __call__( self ,*UpperCamelCase ,**UpperCamelCase ) -> Optional[Any]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*UpperCamelCase ,**UpperCamelCase ) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." ) snake_case__ :int = kwargs.pop("raw_speech" ) else: snake_case__ :Tuple = kwargs.pop("audio" ,UpperCamelCase ) snake_case__ :List[Any] = kwargs.pop("sampling_rate" ,UpperCamelCase ) snake_case__ :Tuple = kwargs.pop("text" ,UpperCamelCase ) if len(UpperCamelCase ) > 0: snake_case__ :str = args[0] snake_case__ :Tuple = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: snake_case__ :List[Any] = self.feature_extractor(UpperCamelCase ,*UpperCamelCase ,sampling_rate=UpperCamelCase ,**UpperCamelCase ) if text is not None: snake_case__ :List[Any] = self.tokenizer(UpperCamelCase ,**UpperCamelCase ) if text is None: return inputs elif audio is None: return encodings else: snake_case__ :Optional[Any] = encodings["input_ids"] return inputs def lowerCAmelCase_ ( self ,*UpperCamelCase ,**UpperCamelCase ) -> Any: return self.tokenizer.batch_decode(*UpperCamelCase ,**UpperCamelCase ) def lowerCAmelCase_ ( self ,*UpperCamelCase ,**UpperCamelCase ) -> Optional[Any]: return self.tokenizer.decode(*UpperCamelCase ,**UpperCamelCase ) @contextmanager def lowerCAmelCase_ ( self ) -> Union[str, Any]: warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) snake_case__ :Optional[int] = True snake_case__ :str = self.tokenizer yield snake_case__ :Optional[Any] = self.feature_extractor snake_case__ :Tuple = False
241
0
from __future__ import annotations __A =[ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def a ( _UpperCAmelCase : list[list[int]] , _UpperCAmelCase : list[int] , _UpperCAmelCase : list[int] , _UpperCAmelCase : int , _UpperCAmelCase : list[list[int]] , ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_UpperCAmelCase ) ) ] # the reference grid __UpperCAmelCase : Optional[int] = 1 __UpperCAmelCase : str = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_UpperCAmelCase ) ) ] # the action grid __UpperCAmelCase : int = init[0] __UpperCAmelCase : List[Any] = init[1] __UpperCAmelCase : List[Any] = 0 __UpperCAmelCase : Optional[int] = g + heuristic[x][y] # cost from starting cell to destination cell __UpperCAmelCase : Union[str, Any] = [[f, g, x, y]] __UpperCAmelCase : Optional[Any] = False # flag that is set when search is complete __UpperCAmelCase : List[Any] = False # flag set if we can't find expand while not found and not resign: if len(_UpperCAmelCase ) == 0: raise ValueError('''Algorithm is unable to find solution''' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() __UpperCAmelCase : Union[str, Any] = cell.pop() __UpperCAmelCase : int = next_cell[2] __UpperCAmelCase : Optional[Any] = next_cell[3] __UpperCAmelCase : Dict = next_cell[1] if x == goal[0] and y == goal[1]: __UpperCAmelCase : Tuple = True else: for i in range(len(_UpperCAmelCase ) ): # to try out different valid actions __UpperCAmelCase : List[Any] = x + DIRECTIONS[i][0] __UpperCAmelCase : Any = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(_UpperCAmelCase ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: __UpperCAmelCase : Tuple = g + cost __UpperCAmelCase : Optional[Any] = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) __UpperCAmelCase : Union[str, Any] = 1 __UpperCAmelCase : Optional[Any] = i __UpperCAmelCase : Dict = [] __UpperCAmelCase : Union[str, Any] = goal[0] __UpperCAmelCase : Tuple = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: __UpperCAmelCase : Tuple = x - DIRECTIONS[action[x][y]][0] __UpperCAmelCase : Any = y - DIRECTIONS[action[x][y]][1] __UpperCAmelCase : Dict = xa __UpperCAmelCase : Dict = ya invpath.append([x, y] ) __UpperCAmelCase : Optional[int] = [] for i in range(len(_UpperCAmelCase ) ): path.append(invpath[len(_UpperCAmelCase ) - 1 - i] ) return path, action if __name__ == "__main__": __A =[ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] __A =[0, 0] # all coordinates are given in format [y,x] __A =[len(grid) - 1, len(grid[0]) - 1] __A =1 # the cost map which pushes the path closer to the goal __A =[[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): __A =abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map __A =9_9 __A , __A =search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
241
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny model through reduction of a normal pre-trained model, but keeping the # full vocab, merges file, and thus also resulting in a larger model due to a large vocab size. # This gives ~3MB in total for all files. # # If you want a 50 times smaller than this see `fsmt-make-super-tiny-model.py`, which is slightly more complicated # # # It will be used then as "stas/tiny-wmt19-en-de" # Build from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration __A ="facebook/wmt19-en-de" __A =FSMTTokenizer.from_pretrained(mname) # get the correct vocab sizes, etc. from the master model __A =FSMTConfig.from_pretrained(mname) config.update( dict( d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) ) __A =FSMTForConditionalGeneration(config) print(f'''num of params {tiny_model.num_parameters()}''') # Test __A =tokenizer(["Making tiny model"], return_tensors="pt") __A =tiny_model(**batch) print("test output:", len(outputs.logits[0])) # Save __A ="tiny-wmt19-en-de" tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(f'''Generated {mname_tiny}''') # Upload # transformers-cli upload tiny-wmt19-en-de
241
1
import string from math import logaa def A__ ( snake_case_ : str , snake_case_ : str ): SCREAMING_SNAKE_CASE__: Optional[int]= document.translate( str.maketrans('''''' , '''''' , string.punctuation ) ).replace('''\n''' , '''''' ) SCREAMING_SNAKE_CASE__: Tuple= document_without_punctuation.split(''' ''' ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def A__ ( snake_case_ : str , snake_case_ : str ): SCREAMING_SNAKE_CASE__: str= corpus.lower().translate( str.maketrans('''''' , '''''' , string.punctuation ) ) # strip all punctuation and replace it with '' SCREAMING_SNAKE_CASE__: Optional[Any]= corpus_without_punctuation.split('''\n''' ) SCREAMING_SNAKE_CASE__: List[Any]= term.lower() return (len([doc for doc in docs if term in doc] ), len(snake_case_ )) def A__ ( snake_case_ : int , snake_case_ : int , snake_case_ : Tuple=False ): if smoothing: if n == 0: raise ValueError('''log10(0) is undefined.''' ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError('''df must be > 0''' ) elif n == 0: raise ValueError('''log10(0) is undefined.''' ) return round(logaa(n / df ) , 3 ) def A__ ( snake_case_ : int , snake_case_ : int ): return round(tf * idf , 3 )
64
from math import factorial def A__ ( snake_case_ : int , snake_case_ : int ): # If either of the conditions are true, the function is being asked # to calculate a factorial of a negative number, which is not possible if n < k or k < 0: raise ValueError('''Please enter positive integers for n and k where n >= k''' ) return factorial(snake_case_ ) // (factorial(snake_case_ ) * factorial(n - k )) if __name__ == "__main__": print( 'The number of five-card hands possible from a standard', f'''fifty-two card deck is: {combinations(5_2, 5)}\n''', ) print( 'If a class of 40 students must be arranged into groups of', f'''4 for group projects, there are {combinations(4_0, 4)} ways''', 'to arrange them.\n', ) print( 'If 10 teams are competing in a Formula One race, there', f'''are {combinations(1_0, 3)} ways that first, second and''', 'third place can be awarded.', )
64
1
"""simple docstring""" def A__ ( _UpperCAmelCase : int = 50 ) -> int: '''simple docstring''' snake_case__ : Tuple = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(f"{solution() = }")
150
"""simple docstring""" from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def A__ ( _UpperCAmelCase : str ) -> str: '''simple docstring''' if not is_accelerate_available(): return method snake_case__ : Tuple = version.parse(accelerate.__version__ ).base_version if version.parse(_UpperCAmelCase ) < version.parse("0.17.0" ): return method def wrapper(self : List[str] , *_UpperCAmelCase : Tuple , **_UpperCAmelCase : Dict ): if hasattr(self , "_hf_hook" ) and hasattr(self._hf_hook , "pre_forward" ): self._hf_hook.pre_forward(self ) return method(self , *_UpperCAmelCase , **_UpperCAmelCase ) return wrapper
150
1
from __future__ import annotations import string from itertools import cycle, product from pathlib import Path _lowercase = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) _lowercase = [ord(letter) for letter in string.ascii_lowercase] _lowercase = {ord(char) for char in VALID_CHARS} _lowercase = ["the", "be", "to", "of", "and", "in", "that", "have"] def lowerCAmelCase__ ( UpperCamelCase_ : list[int] , UpperCamelCase_ : tuple[int, ...] )-> str | None: A__ = "" A__ = 42 A__ = 42 A__ = 42 for keychar, cipherchar in zip(cycle(UpperCamelCase_ ) , UpperCamelCase_ ): A__ = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(UpperCamelCase_ ) return decoded def lowerCAmelCase__ ( UpperCamelCase_ : list[int] )-> list[str]: A__ = [] for key in product(UpperCamelCase_ , repeat=3 ): A__ = try_key(UpperCamelCase_ , UpperCamelCase_ ) if encoded is not None: possibles.append(UpperCamelCase_ ) return possibles def lowerCAmelCase__ ( UpperCamelCase_ : list[str] , UpperCamelCase_ : str )-> list[str]: return [possible for possible in possibles if common_word in possible.lower()] def lowerCAmelCase__ ( UpperCamelCase_ : str = "p059_cipher.txt" )-> int: A__ = 42 A__ = 42 A__ = 42 A__ = 42 A__ = Path(UpperCamelCase_ ).parent.joinpath(UpperCamelCase_ ).read_text(encoding='''utf-8''' ) A__ = [int(UpperCamelCase_ ) for number in data.strip().split(''',''' )] A__ = filter_valid_chars(UpperCamelCase_ ) for common_word in COMMON_WORDS: A__ = filter_common_word(UpperCamelCase_ , UpperCamelCase_ ) if len(UpperCamelCase_ ) == 1: break A__ = possibles[0] return sum(ord(UpperCamelCase_ ) for char in decoded_text ) if __name__ == "__main__": print(F"{solution() = }")
632
def lowerCAmelCase__ ( UpperCamelCase_ : int )-> int: A__ = 1 for i in range(1 , num + 1 ): fact *= i return fact def lowerCAmelCase__ ( UpperCamelCase_ : int )-> int: A__ = 0 while number > 0: A__ = number % 1_0 sum_of_digits += last_digit A__ = number // 1_0 # Removing the last_digit from the given number return sum_of_digits def lowerCAmelCase__ ( UpperCamelCase_ : int = 1_0_0 )-> int: A__ = factorial(UpperCamelCase_ ) A__ = split_and_add(UpperCamelCase_ ) return result if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
632
1
import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' lowercase = FunnelConfig.from_json_file(a_ ) print(f'Building PyTorch model from configuration: {config}' ) lowercase = FunnelBaseModel(a_ ) if base_model else FunnelModel(a_ ) # Load weights from tf checkpoint load_tf_weights_in_funnel(a_ , a_ , a_ ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , a_ ) if __name__ == "__main__": lowercase__ :Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--base_model", action="store_true", help="Whether you want just the base model (no decoder) or not." ) lowercase__ :Any = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
718
import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging lowercase__ :Union[str, Any] = logging.get_logger(__name__) class lowercase ( SCREAMING_SNAKE_CASE__ ): lowercase_ : Union[str, Any] =CLIPConfig lowercase_ : str =['''CLIPEncoderLayer'''] def __init__( self ,A__): super().__init__(A__) lowercase = CLIPVisionModelWithProjection(config.vision_config) lowercase = nn.Linear(config.vision_config.projection_dim ,1) lowercase = nn.Linear(config.vision_config.projection_dim ,1) @torch.no_grad() def A__ ( self ,A__ ,A__ ,A__=0.5 ,A__=0.5): lowercase = self.vision_model(A__)[0] lowercase = self.p_head(A__) lowercase = nsfw_detected.flatten() lowercase = nsfw_detected > p_threshold lowercase = nsfw_detected.tolist() if any(A__): logger.warning( '''Potential NSFW content was detected in one or more images. A black image will be returned instead.''' ''' Try again with a different prompt and/or seed.''') for idx, nsfw_detected_ in enumerate(A__): if nsfw_detected_: lowercase = np.zeros(images[idx].shape) lowercase = self.w_head(A__) lowercase = watermark_detected.flatten() lowercase = watermark_detected > w_threshold lowercase = watermark_detected.tolist() if any(A__): logger.warning( '''Potential watermarked content was detected in one or more images. A black image will be returned instead.''' ''' Try again with a different prompt and/or seed.''') for idx, watermark_detected_ in enumerate(A__): if watermark_detected_: lowercase = np.zeros(images[idx].shape) return images, nsfw_detected, watermark_detected
633
0
import datasets from .evaluate import evaluate UpperCamelCase__ : Union[str, Any] = '''\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } ''' UpperCamelCase__ : int = ''' This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. ''' UpperCamelCase__ : Optional[Any] = ''' Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair as given in the references (see below) - \'prediction_text\': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair (see above), - \'answers\': a Dict in the CUAD dataset format { \'text\': list of possible texts for the answer, as a list of strings \'answer_start\': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: \'exact_match\': Exact match (the normalized answer exactly match the gold answer) \'f1\': The F-score of predicted tokens versus the gold answer \'aupr\': Area Under the Precision-Recall curve \'prec_at_80_recall\': Precision at 80% recall \'prec_at_90_recall\': Precision at 90% recall Examples: >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> cuad_metric = datasets.load_metric("cuad") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): def snake_case ( self ): return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': { 'id': datasets.Value('string' ), 'prediction_text': datasets.features.Sequence(datasets.Value('string' ) ), }, 'references': { 'id': datasets.Value('string' ), 'answers': datasets.features.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), }, } ) ,codebase_urls=['https://www.atticusprojectai.org/cuad'] ,reference_urls=['https://www.atticusprojectai.org/cuad'] ,) def snake_case ( self ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : str = {prediction['id']: prediction['prediction_text'] for prediction in predictions} SCREAMING_SNAKE_CASE_ : int = [ { 'paragraphs': [ { 'qas': [ { 'answers': [{'text': answer_text} for answer_text in ref['answers']['text']], 'id': ref['id'], } for ref in references ] } ] } ] SCREAMING_SNAKE_CASE_ : Optional[int] = evaluate(dataset=snake_case__ ,predictions=snake_case__ ) return score
105
'''simple docstring''' def a_ ( UpperCamelCase_ ): if length <= 0 or not isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise ValueError("Length must be a positive integer." ) return [n * (2 * n - 1) for n in range(UpperCamelCase_ )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
452
0
'''simple docstring''' from __future__ import annotations _a : Tuple = 1.60_21e-19 # units = C def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) -> tuple[str, float]: """simple docstring""" if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif conductivity < 0: raise ValueError("Conductivity cannot be negative" ) elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative" ) elif mobility < 0: raise ValueError("mobility cannot be negative" ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
721
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return number | (1 << position) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return number & ~(1 << position) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return number ^ (1 << position) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> bool: """simple docstring""" return ((number >> position) & 1) == 1 def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
10
0
'''simple docstring''' class a__: def __init__( self ) -> Union[str, Any]: snake_case__ ='' snake_case__ ='' snake_case__ =[] def _lowercase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> int: if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: snake_case__ =self.__min_dist_top_down_dp(m - 1 , n - 1 ) else: snake_case__ =self.__min_dist_top_down_dp(_UpperCAmelCase , n - 1 ) snake_case__ =self.__min_dist_top_down_dp(m - 1 , _UpperCAmelCase ) snake_case__ =self.__min_dist_top_down_dp(m - 1 , n - 1 ) snake_case__ =1 + min(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return self.dp[m][n] def _lowercase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> int: snake_case__ =worda snake_case__ =worda snake_case__ =[[-1 for _ in range(len(_UpperCAmelCase ) )] for _ in range(len(_UpperCAmelCase ) )] return self.__min_dist_top_down_dp(len(_UpperCAmelCase ) - 1 , len(_UpperCAmelCase ) - 1 ) def _lowercase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> int: snake_case__ =worda snake_case__ =worda snake_case__ =len(_UpperCAmelCase ) snake_case__ =len(_UpperCAmelCase ) snake_case__ =[[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty snake_case__ =j elif j == 0: # second string is empty snake_case__ =i elif worda[i - 1] == worda[j - 1]: # last characters are equal snake_case__ =self.dp[i - 1][j - 1] else: snake_case__ =self.dp[i][j - 1] snake_case__ =self.dp[i - 1][j] snake_case__ =self.dp[i - 1][j - 1] snake_case__ =1 + min(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return self.dp[m][n] if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Any = EditDistance() print('''****************** Testing Edit Distance DP Algorithm ******************''') print() SCREAMING_SNAKE_CASE__ : int = input('''Enter the first string: ''').strip() SCREAMING_SNAKE_CASE__ : Any = input('''Enter the second string: ''').strip() print() print(f"""The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}""") print(f"""The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}""") print() print('''*************** End of Testing Edit Distance DP Algorithm ***************''')
538
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: SCREAMING_SNAKE_CASE__ : Optional[Any] = None SCREAMING_SNAKE_CASE__ : Tuple = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : List[Any] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} SCREAMING_SNAKE_CASE__ : Union[str, Any] = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/tokenizer.json''', }, } SCREAMING_SNAKE_CASE__ : List[Any] = { '''camembert-base''': 5_1_2, } SCREAMING_SNAKE_CASE__ : Any = '''▁''' class a__( snake_case__ ): a_ : Tuple = VOCAB_FILES_NAMES a_ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP a_ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : str = ['''input_ids''', '''attention_mask'''] a_ : Union[str, Any] = CamembertTokenizer def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<s>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<mask>" , _UpperCAmelCase=["<s>NOTUSED", "</s>NOTUSED"] , **_UpperCAmelCase , ) -> str: # Mask token behave like a normal word, i.e. include the space before it snake_case__ =AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) snake_case__ =vocab_file snake_case__ =False if not self.vocab_file else True def _lowercase ( self , _UpperCAmelCase , _UpperCAmelCase = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case__ =[self.cls_token_id] snake_case__ =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase ( self , _UpperCAmelCase , _UpperCAmelCase = None ) -> List[int]: snake_case__ =[self.sep_token_id] snake_case__ =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase ( self , _UpperCAmelCase , _UpperCAmelCase = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(_UpperCAmelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case__ =os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ): copyfile(self.vocab_file , _UpperCAmelCase ) return (out_vocab_file,)
538
1
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : Union[str, Any] = { 'configuration_informer': [ 'INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = [ 'INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'InformerForPrediction', 'InformerModel', 'InformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
126
'''simple docstring''' from __future__ import annotations __A : Optional[int] = list[list[int]] # assigning initial values to the grid __A : Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution __A : Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def lowerCAmelCase_ ( a : Matrix , a : int , a : int , a : int ): for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def lowerCAmelCase_ ( a : Matrix ): for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def lowerCAmelCase_ ( a : Matrix ): if location := find_empty_location(a ): a__ , a__ = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(a , a , a , a ): a__ = digit if sudoku(a ) is not None: return grid a__ = 0 return None def lowerCAmelCase_ ( a : Matrix ): for row in grid: for cell in row: print(a , end=' ' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print('\nExample grid:\n' + '=' * 20) print_solution(example_grid) print('\nExample grid solution:') __A : Optional[int] = sudoku(example_grid) if solution is not None: print_solution(solution) else: print('Cannot find a solution.')
126
1
"""simple docstring""" from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __lowerCamelCase : a__: List[str] a__: Optional[str] = None # Automatically constructed a__: ClassVar[str] = "dict" a__: ClassVar[Any] = None a__: str = field(default='Translation' , init=lowerCAmelCase , repr=lowerCAmelCase ) def __call__( self ): return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def UpperCAmelCase__ ( self ): from .features import Value return {k: Value('''string''' ) for k in sorted(self.languages )} @dataclass class __lowerCamelCase : a__: Optional[List] = None a__: Optional[int] = None a__: Optional[str] = None # Automatically constructed a__: ClassVar[str] = "dict" a__: ClassVar[Any] = None a__: str = field(default='TranslationVariableLanguages' , init=lowerCAmelCase , repr=lowerCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = sorted(set(self.languages ) ) if self.languages else None lowerCamelCase_ = len(self.languages ) if self.languages else None def __call__( self ): return pa.struct({'''language''': pa.list_(pa.string() ), '''translation''': pa.list_(pa.string() )} ) def UpperCAmelCase__ ( self , UpperCAmelCase ): lowerCamelCase_ = set(self.languages ) if self.languages and set(UpperCAmelCase ) - lang_set: raise ValueError( f"Some languages in example ({', '.join(sorted(set(UpperCAmelCase ) - lang_set ) )}) are not in valid set ({', '.join(UpperCAmelCase )})." ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. lowerCamelCase_ = [] for lang, text in translation_dict.items(): if isinstance(UpperCAmelCase , UpperCAmelCase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. lowerCamelCase_ , lowerCamelCase_ = zip(*sorted(UpperCAmelCase ) ) return {"language": languages, "translation": translations} def UpperCAmelCase__ ( self ): from .features import Sequence, Value return { "language": Sequence(Value('''string''' ) ), "translation": Sequence(Value('''string''' ) ), }
29
"""simple docstring""" import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class _UpperCAmelCase ( a_ ): """simple docstring""" def a__ ( self ) -> str: _lowerCamelCase : Any = tempfile.mkdtemp() _lowerCamelCase : List[Any] = 5 # Realm tok _lowerCamelCase : List[str] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''test''', '''question''', '''this''', '''is''', '''the''', '''first''', '''second''', '''third''', '''fourth''', '''fifth''', '''record''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _lowerCamelCase : int = os.path.join(self.tmpdirname , '''realm_tokenizer''' ) os.makedirs(_lowercase , exist_ok=_lowercase ) _lowerCamelCase : Any = os.path.join(_lowercase , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) _lowerCamelCase : Optional[int] = os.path.join(self.tmpdirname , '''realm_block_records''' ) os.makedirs(_lowercase , exist_ok=_lowercase ) def a__ ( self ) -> RealmTokenizer: return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''realm_tokenizer''' ) ) def a__ ( self ) -> int: shutil.rmtree(self.tmpdirname ) def a__ ( self ) -> str: _lowerCamelCase : Optional[Any] = RealmConfig(num_block_records=self.num_block_records ) return config def a__ ( self ) -> Optional[int]: _lowerCamelCase : Tuple = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''question''': ['''foo''', '''bar'''], '''answers''': [['''Foo''', '''Bar'''], ['''Bar''']], } ) return dataset def a__ ( self ) -> int: _lowerCamelCase : Dict = np.array( [ b'''This is the first record''', b'''This is the second record''', b'''This is the third record''', b'''This is the fourth record''', b'''This is the fifth record''', b'''This is a longer longer longer record''', ] , dtype=_lowercase , ) return block_records def a__ ( self ) -> Dict: _lowerCamelCase : Union[str, Any] = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def a__ ( self ) -> int: _lowerCamelCase : int = self.get_config() _lowerCamelCase : Optional[Any] = self.get_dummy_retriever() _lowerCamelCase : Union[str, Any] = retriever.tokenizer _lowerCamelCase : Any = np.array([0, 3] , dtype='''long''' ) _lowerCamelCase : Any = tokenizer(['''Test question'''] ).input_ids _lowerCamelCase : str = tokenizer( ['''the fourth'''] , add_special_tokens=_lowercase , return_token_type_ids=_lowercase , return_attention_mask=_lowercase , ).input_ids _lowerCamelCase : List[str] = config.reader_seq_len _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Union[str, Any] = retriever( _lowercase , _lowercase , answer_ids=_lowercase , max_length=_lowercase , return_tensors='''np''' ) self.assertEqual(len(_lowercase ) , 2 ) self.assertEqual(len(_lowercase ) , 2 ) self.assertEqual(len(_lowercase ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ['''[CLS]''', '''test''', '''question''', '''[SEP]''', '''this''', '''is''', '''the''', '''first''', '''record''', '''[SEP]'''] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ['''[CLS]''', '''test''', '''question''', '''[SEP]''', '''this''', '''is''', '''the''', '''fourth''', '''record''', '''[SEP]'''] , ) def a__ ( self ) -> int: _lowerCamelCase : str = self.get_config() _lowerCamelCase : Union[str, Any] = self.get_dummy_retriever() _lowerCamelCase : str = retriever.tokenizer _lowerCamelCase : List[str] = np.array([0, 3, 5] , dtype='''long''' ) _lowerCamelCase : List[Any] = tokenizer(['''Test question'''] ).input_ids _lowerCamelCase : List[str] = tokenizer( ['''the fourth''', '''longer longer'''] , add_special_tokens=_lowercase , return_token_type_ids=_lowercase , return_attention_mask=_lowercase , ).input_ids _lowerCamelCase : Optional[Any] = config.reader_seq_len _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[Any] = retriever( _lowercase , _lowercase , answer_ids=_lowercase , max_length=_lowercase , return_tensors='''np''' ) self.assertEqual([False, True, True] , _lowercase ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , _lowercase ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , _lowercase ) def a__ ( self ) -> int: _lowerCamelCase : Optional[int] = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , '''realm_block_records''' ) ) # Test local path _lowerCamelCase : Dict = retriever.from_pretrained(os.path.join(self.tmpdirname , '''realm_block_records''' ) ) self.assertEqual(retriever.block_records[0] , b'''This is the first record''' ) # Test mocked remote path with patch('''transformers.models.realm.retrieval_realm.hf_hub_download''' ) as mock_hf_hub_download: _lowerCamelCase : Optional[Any] = os.path.join( os.path.join(self.tmpdirname , '''realm_block_records''' ) , _REALM_BLOCK_RECORDS_FILENAME ) _lowerCamelCase : List[Any] = RealmRetriever.from_pretrained('''google/realm-cc-news-pretrained-openqa''' ) self.assertEqual(retriever.block_records[0] , b'''This is the first record''' )
434
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( __snake_case , unittest.TestCase ): _lowerCAmelCase = KandinskyImgaImgPipeline _lowerCAmelCase = ["prompt", "image_embeds", "negative_image_embeds", "image"] _lowerCAmelCase = [ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", ] _lowerCAmelCase = [ "generator", "height", "width", "strength", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] _lowerCAmelCase = False @property def lowerCAmelCase__(self ): '''simple docstring''' return 32 @property def lowerCAmelCase__(self ): '''simple docstring''' return 32 @property def lowerCAmelCase__(self ): '''simple docstring''' return self.time_input_dim @property def lowerCAmelCase__(self ): '''simple docstring''' return self.time_input_dim * 4 @property def lowerCAmelCase__(self ): '''simple docstring''' return 100 @property def lowerCAmelCase__(self ): '''simple docstring''' __a : List[Any] = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def lowerCAmelCase__(self ): '''simple docstring''' torch.manual_seed(0 ) __a : str = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) __a : int = MultilingualCLIP(_lowercase ) __a : Union[str, Any] = text_encoder.eval() return text_encoder @property def lowerCAmelCase__(self ): '''simple docstring''' torch.manual_seed(0 ) __a : str = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } __a : Dict = UNetaDConditionModel(**_lowercase ) return model @property def lowerCAmelCase__(self ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCAmelCase__(self ): '''simple docstring''' torch.manual_seed(0 ) __a : Union[str, Any] = VQModel(**self.dummy_movq_kwargs ) return model def lowerCAmelCase__(self ): '''simple docstring''' __a : Tuple = self.dummy_text_encoder __a : str = self.dummy_tokenizer __a : Union[str, Any] = self.dummy_unet __a : Union[str, Any] = self.dummy_movq __a : int = { """num_train_timesteps""": 1000, """beta_schedule""": """linear""", """beta_start""": 0.0_0085, """beta_end""": 0.012, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } __a : Tuple = DDIMScheduler(**_lowercase ) __a : Optional[int] = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowerCAmelCase__(self , _lowercase , _lowercase=0 ): '''simple docstring''' __a : Tuple = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(_lowercase ) ).to(_lowercase ) __a : int = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(_lowercase ) # create init_image __a : Dict = floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowercase ) ).to(_lowercase ) __a : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] __a : Tuple = Image.fromarray(np.uinta(_lowercase ) ).convert("""RGB""" ).resize((256, 256) ) if str(_lowercase ).startswith("""mps""" ): __a : Union[str, Any] = torch.manual_seed(_lowercase ) else: __a : str = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) __a : str = { """prompt""": """horse""", """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def lowerCAmelCase__(self ): '''simple docstring''' __a : Dict = """cpu""" __a : Any = self.get_dummy_components() __a : Optional[Any] = self.pipeline_class(**_lowercase ) __a : Any = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) __a : Tuple = pipe(**self.get_dummy_inputs(_lowercase ) ) __a : Optional[Any] = output.images __a : Union[str, Any] = pipe( **self.get_dummy_inputs(_lowercase ) , return_dict=_lowercase , )[0] __a : List[str] = image[0, -3:, -3:, -1] __a : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __a : List[str] = np.array( [0.6147_4943, 0.607_3539, 0.4330_8544, 0.592_8269, 0.4749_3595, 0.4675_5973, 0.461_3838, 0.4536_8797, 0.5011_9233] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def lowerCAmelCase__(self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__(self ): '''simple docstring''' __a : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_img2img_frog.npy""" ) __a : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) __a : List[Any] = """A red cartoon frog, 4k""" __a : Optional[Any] = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(_lowercase ) __a : Any = KandinskyImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1""" , torch_dtype=torch.floataa ) __a : str = pipeline.to(_lowercase ) pipeline.set_progress_bar_config(disable=_lowercase ) __a : Optional[Any] = torch.Generator(device="""cpu""" ).manual_seed(0 ) __a , __a : str = pipe_prior( _lowercase , generator=_lowercase , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() __a : Union[str, Any] = pipeline( _lowercase , image=_lowercase , image_embeds=_lowercase , negative_image_embeds=_lowercase , generator=_lowercase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="""np""" , ) __a : List[Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowercase , _lowercase )
63
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "microsoft/unispeech-large-1500h-cv": ( "https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class SCREAMING_SNAKE_CASE__ ( __snake_case ): _lowerCAmelCase = "unispeech" def __init__(self , _lowercase=32 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3072 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.02 , _lowercase=1e-5 , _lowercase="group" , _lowercase="gelu" , _lowercase=(512, 512, 512, 512, 512, 512, 512) , _lowercase=(5, 2, 2, 2, 2, 2, 2) , _lowercase=(10, 3, 3, 3, 3, 2, 2) , _lowercase=False , _lowercase=128 , _lowercase=16 , _lowercase=False , _lowercase=True , _lowercase=0.05 , _lowercase=10 , _lowercase=2 , _lowercase=0.0 , _lowercase=10 , _lowercase=0 , _lowercase=320 , _lowercase=2 , _lowercase=0.1 , _lowercase=100 , _lowercase=256 , _lowercase=256 , _lowercase=0.1 , _lowercase="mean" , _lowercase=False , _lowercase=False , _lowercase=256 , _lowercase=80 , _lowercase=0 , _lowercase=1 , _lowercase=2 , _lowercase=0.5 , **_lowercase , ): '''simple docstring''' super().__init__(**_lowercase , pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase ) __a : Union[str, Any] = hidden_size __a : Any = feat_extract_norm __a : Union[str, Any] = feat_extract_activation __a : Tuple = list(_lowercase ) __a : Dict = list(_lowercase ) __a : List[Any] = list(_lowercase ) __a : List[Any] = conv_bias __a : Optional[Any] = num_conv_pos_embeddings __a : Union[str, Any] = num_conv_pos_embedding_groups __a : Dict = len(self.conv_dim ) __a : Dict = num_hidden_layers __a : Union[str, Any] = intermediate_size __a : List[str] = hidden_act __a : int = num_attention_heads __a : int = hidden_dropout __a : Any = attention_dropout __a : List[Any] = activation_dropout __a : List[Any] = feat_proj_dropout __a : Union[str, Any] = final_dropout __a : str = layerdrop __a : Dict = layer_norm_eps __a : Dict = initializer_range __a : Union[str, Any] = num_ctc_classes __a : List[Any] = vocab_size __a : Any = do_stable_layer_norm __a : List[str] = use_weighted_layer_sum __a : List[str] = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __a : Dict = apply_spec_augment __a : Union[str, Any] = mask_time_prob __a : List[str] = mask_time_length __a : Dict = mask_time_min_masks __a : List[Any] = mask_feature_prob __a : Tuple = mask_feature_length __a : int = mask_feature_min_masks # parameters for pretraining with codevector quantized representations __a : List[Any] = num_codevectors_per_group __a : Union[str, Any] = num_codevector_groups __a : List[Any] = contrastive_logits_temperature __a : Any = feat_quantizer_dropout __a : Optional[int] = num_negatives __a : List[str] = codevector_dim __a : List[Any] = proj_codevector_dim __a : Tuple = diversity_loss_weight # ctc loss __a : Any = ctc_loss_reduction __a : List[str] = ctc_zero_infinity # pretraining loss __a : Tuple = replace_prob @property def lowerCAmelCase__(self ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
63
1
'''simple docstring''' import math import flax.linen as nn import jax.numpy as jnp def _lowerCAmelCase ( __magic_name__ : jnp.ndarray , __magic_name__ : int , __magic_name__ : float = 1 , __magic_name__ : float = 1 , __magic_name__ : float = 1.0E4 , __magic_name__ : bool = False , __magic_name__ : float = 1.0 , ) -> jnp.ndarray: assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, f'''Embedding dimension {embedding_dim} should be even''' lowercase : int =float(embedding_dim // 2 ) lowercase : Optional[int] =math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) lowercase : Any =min_timescale * jnp.exp(jnp.arange(__magic_name__ , dtype=jnp.floataa ) * -log_timescale_increment ) lowercase : List[Any] =jnp.expand_dims(__magic_name__ , 1 ) * jnp.expand_dims(__magic_name__ , 0 ) # scale embeddings lowercase : Tuple =scale * emb if flip_sin_to_cos: lowercase : Dict =jnp.concatenate([jnp.cos(__magic_name__ ), jnp.sin(__magic_name__ )] , axis=1 ) else: lowercase : Any =jnp.concatenate([jnp.sin(__magic_name__ ), jnp.cos(__magic_name__ )] , axis=1 ) lowercase : List[str] =jnp.reshape(__magic_name__ , [jnp.shape(__magic_name__ )[0], embedding_dim] ) return signal class __SCREAMING_SNAKE_CASE ( nn.Module ): lowerCamelCase_ = 32 lowerCamelCase_ = jnp.floataa @nn.compact def __call__( self : Tuple , UpperCAmelCase__ : int ): '''simple docstring''' lowercase : List[Any] =nn.Dense(self.time_embed_dim , dtype=self.dtype , name='''linear_1''' )(UpperCAmelCase__ ) lowercase : Any =nn.silu(UpperCAmelCase__ ) lowercase : int =nn.Dense(self.time_embed_dim , dtype=self.dtype , name='''linear_2''' )(UpperCAmelCase__ ) return temb class __SCREAMING_SNAKE_CASE ( nn.Module ): lowerCamelCase_ = 32 lowerCamelCase_ = False lowerCamelCase_ = 1 @nn.compact def __call__( self : int , UpperCAmelCase__ : str ): '''simple docstring''' return get_sinusoidal_embeddings( UpperCAmelCase__ , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
92
from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline lowercase_ = logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE ) class __lowerCAmelCase ( SCREAMING_SNAKE_CASE ): def __init__( self , **lowerCAmelCase ) -> Tuple: '''simple docstring''' super().__init__(**lowerCAmelCase ) if self.framework != "pt": raise ValueError(F'''The {self.__class__} is only available in PyTorch.''' ) # No specific FOR_XXX available yet def __call__( self , lowerCAmelCase , **lowerCAmelCase ) -> int: '''simple docstring''' return super().__call__(lowerCAmelCase , **lowerCAmelCase ) def A__ ( self , **lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' _lowercase ={} if "candidate_labels" in kwargs: _lowercase =kwargs['candidate_labels'] if "hypothesis_template" in kwargs: _lowercase =kwargs['hypothesis_template'] return preprocess_params, {}, {} def A__ ( self , lowerCAmelCase , lowerCAmelCase=None , lowerCAmelCase="This is a sound of {}." ) -> Tuple: '''simple docstring''' if isinstance(lowerCAmelCase , lowerCAmelCase ): if audio.startswith('http://' ) or audio.startswith('https://' ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png _lowercase =requests.get(lowerCAmelCase ).content else: with open(lowerCAmelCase , 'rb' ) as f: _lowercase =f.read() if isinstance(lowerCAmelCase , lowerCAmelCase ): _lowercase =ffmpeg_read(lowerCAmelCase , self.feature_extractor.sampling_rate ) if not isinstance(lowerCAmelCase , np.ndarray ): raise ValueError('We expect a numpy ndarray as input' ) if len(audio.shape ) != 1: raise ValueError('We expect a single channel audio input for ZeroShotAudioClassificationPipeline' ) _lowercase =self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors='pt' ) _lowercase =candidate_labels _lowercase =[hypothesis_template.format(lowerCAmelCase ) for x in candidate_labels] _lowercase =self.tokenizer(lowerCAmelCase , return_tensors=self.framework , padding=lowerCAmelCase ) _lowercase =[text_inputs] return inputs def A__ ( self , lowerCAmelCase ) -> Dict: '''simple docstring''' _lowercase =model_inputs.pop('candidate_labels' ) _lowercase =model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0] , lowerCAmelCase ): _lowercase =text_inputs[0] else: # Batching case. _lowercase =text_inputs[0][0] _lowercase =self.model(**lowerCAmelCase , **lowerCAmelCase ) _lowercase ={ 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_audio, } return model_outputs def A__ ( self , lowerCAmelCase ) -> Tuple: '''simple docstring''' _lowercase =model_outputs.pop('candidate_labels' ) _lowercase =model_outputs['logits'][0] if self.framework == "pt": _lowercase =logits.softmax(dim=0 ) _lowercase =probs.tolist() else: raise ValueError('`tf` framework not supported.' ) _lowercase =[ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(lowerCAmelCase , lowerCAmelCase ) , key=lambda lowerCAmelCase : -x[0] ) ] return result
291
0
def lowerCamelCase__ ( a : list ) -> list: """simple docstring""" if len(a ) <= 1: return lst a__ :int = 1 while i < len(a ): if lst[i - 1] <= lst[i]: i += 1 else: a__ , a__ :List[Any] = lst[i], lst[i - 1] i -= 1 if i == 0: a__ :str = 1 return lst if __name__ == "__main__": snake_case__ = input('''Enter numbers separated by a comma:\n''').strip() snake_case__ = [int(item) for item in user_input.split(''',''')] print(gnome_sort(unsorted))
373
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device snake_case__ = False class lowerCAmelCase_ ( unittest.TestCase): pass @nightly @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase): def _snake_case ( self : Tuple ) ->Optional[int]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self : Dict ) ->Any: """simple docstring""" a__ :Union[str, Any] = VersatileDiffusionTextToImagePipeline.from_pretrained("shi-labs/versatile-diffusion" ) # remove text_unet pipe.remove_unused_weights() pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) a__ :List[Any] = "A painting of a squirrel eating a burger " a__ :Optional[Any] = torch.manual_seed(0 ) a__ :List[Any] = pipe( prompt=__A , generator=__A , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__A ) a__ :List[Any] = VersatileDiffusionTextToImagePipeline.from_pretrained(__A ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) a__ :Optional[int] = generator.manual_seed(0 ) a__ :List[Any] = pipe( prompt=__A , generator=__A , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def _snake_case ( self : Optional[Any] ) ->List[Any]: """simple docstring""" a__ :Tuple = VersatileDiffusionTextToImagePipeline.from_pretrained( "shi-labs/versatile-diffusion" , torch_dtype=torch.floataa ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) a__ :Tuple = "A painting of a squirrel eating a burger " a__ :Tuple = torch.manual_seed(0 ) a__ :Optional[Any] = pipe( prompt=__A , generator=__A , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" ).images a__ :Tuple = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) a__ :Tuple = np.array([0.3_367, 0.3_169, 0.2_656, 0.3_870, 0.4_790, 0.3_796, 0.4_009, 0.4_878, 0.4_778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
373
1
'''simple docstring''' from __future__ import annotations from collections.abc import MutableSequence class _snake_case : def __init__( self , a__ , a__ ) -> None: '''simple docstring''' if len(a__ ) != degree + 1: raise ValueError( "The number of coefficients should be equal to the degree + 1." ) snake_case_ = list(a__ ) snake_case_ = degree def __add__( self , a__ ) -> Polynomial: '''simple docstring''' if self.degree > polynomial_a.degree: snake_case_ = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , a__ ) else: snake_case_ = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , a__ ) def __sub__( self , a__ ) -> Polynomial: '''simple docstring''' return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self ) -> Polynomial: '''simple docstring''' return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self , a__ ) -> Polynomial: '''simple docstring''' snake_case_ = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , a__ ) def lowerCAmelCase__ ( self , a__ ) -> int | float: '''simple docstring''' snake_case_ = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self ) -> str: '''simple docstring''' snake_case_ = "" for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(a__ ) return polynomial def __repr__( self ) -> str: '''simple docstring''' return self.__str__() def lowerCAmelCase__ ( self ) -> Polynomial: '''simple docstring''' snake_case_ = [0] * self.degree for i in range(self.degree ): snake_case_ = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , a__ ) def lowerCAmelCase__ ( self , a__ = 0 ) -> Polynomial: '''simple docstring''' snake_case_ = [0] * (self.degree + 2) snake_case_ = constant for i in range(self.degree + 1 ): snake_case_ = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , a__ ) def __eq__( self , a__ ) -> bool: '''simple docstring''' if not isinstance(a__ , a__ ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self , a__ ) -> bool: '''simple docstring''' return not self.__eq__(a__ )
400
'''simple docstring''' import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : List[str] = {"vocab_file": "vocab.txt", "emoji_file": "emoji.json"} _SCREAMING_SNAKE_CASE : Tuple = { "vocab_file": { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt", }, "emoji_file": { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json", }, } _SCREAMING_SNAKE_CASE : int = { "abeja/gpt-neox-japanese-2.7b": 2048, } def UpperCamelCase_( snake_case : List[Any] , snake_case : List[str] ): '''simple docstring''' with open(snake_case , "r" , encoding="utf-8" ) as f: snake_case_ = json.loads(f.read() ) snake_case_ = collections.OrderedDict() snake_case_ = collections.OrderedDict() snake_case_ = collections.OrderedDict() with open(snake_case , "r" , encoding="utf-8" ) as f: snake_case_ = f.readlines() snake_case_ = [[t.rstrip("\n" )] if (t == "," or "," not in t) else t.rstrip("\n" ).split("," ) for t in token] for idx, b in enumerate(snake_case ): snake_case_ = b snake_case_ = idx for wd in b: snake_case_ = idx return vocab, raw_vocab, ids_to_tokens, emoji class _snake_case ( lowercase_ ): lowerCAmelCase_ : Union[str, Any] = VOCAB_FILES_NAMES lowerCAmelCase_ : List[Any] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ : int = ["input_ids", "attention_mask"] def __init__( self , a__ , a__ , a__="<|endoftext|>" , a__="<|endoftext|>" , a__="<|startoftext|>" , a__="<|endoftext|>" , a__=False , **a__ , ) -> Optional[int]: '''simple docstring''' super().__init__( unk_token=a__ , pad_token=a__ , bos_token=a__ , eos_token=a__ , do_clean_text=a__ , **a__ , ) if not os.path.isfile(a__ ): raise ValueError( F'Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained' " model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) if not os.path.isfile(a__ ): raise ValueError( F'Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google' " pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) snake_case_ = do_clean_text snake_case_ , snake_case_ , snake_case_ , snake_case_ = load_vocab_and_emoji(a__ , a__ ) snake_case_ = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' return len(self.raw_vocab ) def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' return dict(self.raw_vocab , **self.added_tokens_encoder ) def lowerCAmelCase__ ( self , a__ ) -> Any: '''simple docstring''' return self.subword_tokenizer.tokenize(a__ , clean=self.do_clean_text ) def lowerCAmelCase__ ( self , a__ ) -> List[Any]: '''simple docstring''' return self.vocab.get(a__ , self.vocab.get(self.unk_token ) ) def lowerCAmelCase__ ( self , a__ ) -> List[Any]: '''simple docstring''' return self.subword_tokenizer.convert_id_to_token(a__ ) def lowerCAmelCase__ ( self , a__ ) -> Any: '''simple docstring''' snake_case_ = "".join(a__ ).strip() return out_string def lowerCAmelCase__ ( self , a__ ) -> List[int]: '''simple docstring''' snake_case_ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(a__ , add_special_tokens=a__ ) + [self.eos_token_id] ) if len(a__ ) > self.model_max_length: snake_case_ = input_ids[-self.model_max_length :] return input_ids def lowerCAmelCase__ ( self , a__ , a__ = None ) -> Tuple[str]: '''simple docstring''' snake_case_ = 0 if os.path.isdir(a__ ): snake_case_ = os.path.join( a__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) snake_case_ = os.path.join( a__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["emoji_file"] ) else: snake_case_ = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["vocab_file"] ) snake_case_ = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["emoji_file"] ) with open(a__ , "w" , encoding="utf-8" ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' " Please check that the vocabulary is not corrupted!" ) snake_case_ = token_index writer.write(",".join(a__ ) + "\n" ) index += 1 with open(a__ , "w" , encoding="utf-8" ) as writer: json.dump(self.emoji , a__ ) return vocab_file, emoji_file class _snake_case ( lowercase_ ): def __init__( self , a__ , a__ , a__ ) -> Any: '''simple docstring''' snake_case_ = vocab # same as swe snake_case_ = ids_to_tokens # same as bpe snake_case_ = emoji snake_case_ = np.max([len(a__ ) for w in self.vocab.keys()] ) snake_case_ = re.compile(r"(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)" ) snake_case_ = re.compile(r"[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*" ) snake_case_ = re.compile(r"[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}" ) snake_case_ = re.compile( r"([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" ) snake_case_ = re.compile( r"(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" ) snake_case_ = re.compile( r"((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*" ) snake_case_ = "─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿" snake_case_ = "▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟" snake_case_ = str.maketrans({k: "<BLOCK>" for k in keisen + blocks} ) def __len__( self ) -> List[Any]: '''simple docstring''' return len(self.ids_to_tokens ) def lowerCAmelCase__ ( self , a__ ) -> str: '''simple docstring''' snake_case_ = self.content_repattera.sub("<URL>" , a__ ) snake_case_ = self.content_repattera.sub("<EMAIL>" , a__ ) snake_case_ = self.content_repattera.sub("<TEL>" , a__ ) snake_case_ = self.content_repattera.sub("<DATE>" , a__ ) snake_case_ = self.content_repattera.sub("<DATE>" , a__ ) snake_case_ = self.content_repattera.sub("<PRICE>" , a__ ) snake_case_ = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: snake_case_ = content.replace("<BLOCK><BLOCK>" , "<BLOCK>" ) return content def lowerCAmelCase__ ( self , a__ , a__=False ) -> Optional[Any]: '''simple docstring''' snake_case_ = text.replace(" " , "<SP>" ) snake_case_ = text.replace(" " , "<SP>" ) snake_case_ = text.replace("\r\n" , "<BR>" ) snake_case_ = text.replace("\n" , "<BR>" ) snake_case_ = text.replace("\r" , "<BR>" ) snake_case_ = text.replace("\t" , "<TAB>" ) snake_case_ = text.replace("—" , "ー" ) snake_case_ = text.replace("−" , "ー" ) for k, v in self.emoji["emoji"].items(): if k in text: snake_case_ = text.replace(a__ , a__ ) if clean: snake_case_ = self.clean_text(a__ ) def check_simbol(a__ ): snake_case_ = x.encode() if len(a__ ) == 1 and len(a__ ) == 2: snake_case_ = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0XC_2_A_1 and c <= 0XC_2_B_F) or (c >= 0XC_7_8_0 and c <= 0XC_7_8_3) or (c >= 0XC_A_B_9 and c <= 0XC_B_B_F) or (c >= 0XC_C_8_0 and c <= 0XC_D_A_2) ): return True return False def checkuae(a__ ): snake_case_ = x.encode() if len(a__ ) == 1 and len(a__ ) == 3: snake_case_ = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0XE_2_8_0_8_0 and c <= 0XE_2_B_0_7_F: return True return False snake_case_ = 0 snake_case_ = [] while pos < len(a__ ): snake_case_ = min(len(a__ ) , pos + self.maxlen + 1 ) if text[pos] == "<" else pos + 3 snake_case_ = [] # (token_id, token, pos) for e in range(a__ , a__ , -1 ): snake_case_ = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(a__ ) > 2: snake_case_ = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(a__ ) > 0: # the smallest token_id is adopted snake_case_ , snake_case_ , snake_case_ = sorted(a__ , key=lambda a__ : x[0] )[0] result.append(a__ ) snake_case_ = e else: snake_case_ = pos + 1 snake_case_ = text[pos:end] if check_simbol(a__ ): result.append("<KIGOU>" ) elif checkuae(a__ ): result.append("<U2000U2BFF>" ) else: for i in wd.encode("utf-8" ): result.append("<|byte%d|>" % i ) snake_case_ = end return result def lowerCAmelCase__ ( self , a__ , a__="\n" ) -> Union[str, Any]: '''simple docstring''' snake_case_ = [] snake_case_ = [] snake_case_ = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(a__ ) > 0: words.append(bytearray(a__ ).decode("utf-8" , errors="replace" ) ) snake_case_ = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji["emoji_inv"][word] ) elif word == "<SP>": words.append(" " ) elif word == "<BR>": words.append(a__ ) elif word == "<TAB>": words.append("\t" ) elif word == "<BLOCK>": words.append("▀" ) elif word == "<KIGOU>": words.append("ǀ" ) elif word == "<U2000U2BFF>": words.append("‖" ) else: words.append(a__ ) if len(a__ ) > 0: words.append(bytearray(a__ ).decode("utf-8" , errors="replace" ) ) snake_case_ = "".join(a__ ) return text
400
1
"""simple docstring""" import argparse import datetime def a__ ( snake_case__ ) -> str: lowerCamelCase = { """0""": """Sunday""", """1""": """Monday""", """2""": """Tuesday""", """3""": """Wednesday""", """4""": """Thursday""", """5""": """Friday""", """6""": """Saturday""", } lowerCamelCase = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(snake_case__ ) < 11: raise ValueError("""Must be 10 characters long""" ) # Get month lowerCamelCase = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError("""Month must be between 1 - 12""" ) lowerCamelCase = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be '-' or '/'""" ) # Get day lowerCamelCase = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError("""Date must be between 1 - 31""" ) # Get second separator lowerCamelCase = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be '-' or '/'""" ) # Get year lowerCamelCase = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 85_00: raise ValueError( """Year out of range. There has to be some sort of limit...right?""" ) # Get datetime obj for validation lowerCamelCase = datetime.date(int(snake_case__ ) , int(snake_case__ ) , int(snake_case__ ) ) # Start math if m <= 2: lowerCamelCase = y - 1 lowerCamelCase = m + 12 # maths var lowerCamelCase = int(str(snake_case__ )[:2] ) lowerCamelCase = int(str(snake_case__ )[2:] ) lowerCamelCase = int(2.6 * m - 5.39 ) lowerCamelCase = int(c / 4 ) lowerCamelCase = int(k / 4 ) lowerCamelCase = int(d + k ) lowerCamelCase = int(t + u + v + x ) lowerCamelCase = int(z - (2 * c) ) lowerCamelCase = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("""The date was evaluated incorrectly. Contact developer.""" ) # Response lowerCamelCase = F'Your date {date_input}, is a {days[str(snake_case__ )]}!' return response if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase : str = argparse.ArgumentParser( description=( """Find out what day of the week nearly any date is or was. Enter """ """date as a string in the mm-dd-yyyy or mm/dd/yyyy format""" ) ) parser.add_argument( """date_input""", type=str, help="""Date as a string (mm-dd-yyyy or mm/dd/yyyy)""" ) lowerCAmelCase : Dict = parser.parse_args() zeller(args.date_input)
705
"""simple docstring""" def a__ ( snake_case__ = 1_00_00_00 ) -> int: lowerCamelCase = 1 lowerCamelCase = 1 lowerCamelCase = {1: 1} for inputa in range(2 , snake_case__ ): lowerCamelCase = 0 lowerCamelCase = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: lowerCamelCase = (3 * number) + 1 counter += 1 if inputa not in counters: lowerCamelCase = counter if counter > pre_counter: lowerCamelCase = inputa lowerCamelCase = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
533
0
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase = { """configuration_cpmant""": ["""CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CpmAntConfig"""], """tokenization_cpmant""": ["""CpmAntTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ """CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST""", """CpmAntForCausalLM""", """CpmAntModel""", """CpmAntPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
84
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' snake_case_ = BertConfig.from_json_file(UpperCamelCase__ ) print(F'''Building PyTorch model from configuration: {config}''' ) snake_case_ = BertForPreTraining(UpperCamelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_bert(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , UpperCamelCase__ ) if __name__ == "__main__": _UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--bert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) _UpperCAmelCase : Any = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
362
0
'''simple docstring''' from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def lowerCAmelCase_ ( _lowerCamelCase: float , _lowerCamelCase: float , _lowerCamelCase: bool = False ): if radian_mode: return [magnitude * cos(_lowerCamelCase ), magnitude * sin(_lowerCamelCase )] return [magnitude * cos(radians(_lowerCamelCase ) ), magnitude * sin(radians(_lowerCamelCase ) )] def lowerCAmelCase_ ( _lowerCamelCase: NDArray[floataa] , _lowerCamelCase: NDArray[floataa] , _lowerCamelCase: float = 10**-1 ): __SCREAMING_SNAKE_CASE : NDArray[floataa] = cross(_lowerCamelCase , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : float = sum(_lowerCamelCase ) return abs(_lowerCamelCase ) < eps if __name__ == "__main__": # Test to check if it works UpperCamelCase__ : List[str] = array( [ polar_force(7_1_8.4, 1_80 - 30), polar_force(8_7_9.5_4, 45), polar_force(1_00, -90), ] ) UpperCamelCase__ : NDArray[floataa] = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg UpperCamelCase__ : List[Any] = array( [ polar_force(30 * 9.8_1, 15), polar_force(2_15, 1_80 - 45), polar_force(2_64, 90 - 30), ] ) UpperCamelCase__ : Union[str, Any] = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg UpperCamelCase__ : int = array([[0, -20_00], [0, -12_00], [0, 1_56_00], [0, -1_24_00]]) UpperCamelCase__ : Optional[Any] = array([[0, 0], [6, 0], [10, 0], [12, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
178
'''simple docstring''' import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig UpperCamelCase__ : Optional[int] = { '''facebook/maskformer-swin-base-ade''': ( '''https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json''' ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } UpperCamelCase__ : Union[str, Any] = logging.get_logger(__name__) class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' _A : Optional[Any] = '''maskformer''' _A : Optional[int] = {'''hidden_size''': '''mask_feature_size'''} _A : int = ['''resnet''', '''swin'''] _A : Any = ['''detr'''] def __init__( self : Any , lowerCAmelCase__ : int = 2_5_6 , lowerCAmelCase__ : int = 2_5_6 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : Optional[Dict] = None , lowerCAmelCase__ : Optional[Dict] = None , lowerCAmelCase__ : float = 0.02 , lowerCAmelCase__ : float = 1.0 , lowerCAmelCase__ : float = 1.0 , lowerCAmelCase__ : float = 1.0 , lowerCAmelCase__ : float = 20.0 , lowerCAmelCase__ : Optional[bool] = None , **lowerCAmelCase__ : Any , ): """simple docstring""" if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k __SCREAMING_SNAKE_CASE : Any = SwinConfig( image_size=3_8_4 , in_channels=3 , patch_size=4 , embed_dim=1_2_8 , depths=[2, 2, 1_8, 2] , num_heads=[4, 8, 1_6, 3_2] , window_size=1_2 , drop_path_rate=0.3 , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : Dict = backbone_config.pop("""model_type""" ) __SCREAMING_SNAKE_CASE : List[str] = CONFIG_MAPPING[backbone_model_type] __SCREAMING_SNAKE_CASE : Union[str, Any] = config_class.from_dict(lowerCAmelCase__ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F"Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. " F"Supported model types: {','.join(self.backbones_supported )}" ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 __SCREAMING_SNAKE_CASE : List[str] = DetrConfig() else: # verify that the decoder is supported __SCREAMING_SNAKE_CASE : List[Any] = ( decoder_config.pop("""model_type""" ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( F"Transformer Decoder {decoder_type} not supported, please use one of" F" {','.join(self.decoders_supported )}" ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : int = CONFIG_MAPPING[decoder_type] __SCREAMING_SNAKE_CASE : Dict = config_class.from_dict(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = backbone_config __SCREAMING_SNAKE_CASE : Optional[int] = decoder_config # main feature dimension for the model __SCREAMING_SNAKE_CASE : List[str] = fpn_feature_size __SCREAMING_SNAKE_CASE : int = mask_feature_size # initializer __SCREAMING_SNAKE_CASE : str = init_std __SCREAMING_SNAKE_CASE : Optional[Any] = init_xavier_std # Hungarian matcher && loss __SCREAMING_SNAKE_CASE : Tuple = cross_entropy_weight __SCREAMING_SNAKE_CASE : Dict = dice_weight __SCREAMING_SNAKE_CASE : Union[str, Any] = mask_weight __SCREAMING_SNAKE_CASE : Optional[Any] = use_auxiliary_loss __SCREAMING_SNAKE_CASE : Union[str, Any] = no_object_weight __SCREAMING_SNAKE_CASE : Dict = output_auxiliary_logits __SCREAMING_SNAKE_CASE : Any = self.decoder_config.encoder_attention_heads __SCREAMING_SNAKE_CASE : int = self.decoder_config.num_hidden_layers super().__init__(**lowerCAmelCase__ ) @classmethod def UpperCamelCase__ ( cls : List[Any] , lowerCAmelCase__ : PretrainedConfig , lowerCAmelCase__ : PretrainedConfig , **lowerCAmelCase__ : Optional[int] ): """simple docstring""" return cls( backbone_config=lowerCAmelCase__ , decoder_config=lowerCAmelCase__ , **lowerCAmelCase__ , ) def UpperCamelCase__ ( self : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = copy.deepcopy(self.__dict__ ) __SCREAMING_SNAKE_CASE : Dict = self.backbone_config.to_dict() __SCREAMING_SNAKE_CASE : str = self.decoder_config.to_dict() __SCREAMING_SNAKE_CASE : List[str] = self.__class__.model_type return output
178
1
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { '''studio-ousia/luke-base''': '''https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json''', '''studio-ousia/luke-large''': '''https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE__ (__snake_case ): __lowerCamelCase : Dict = """luke""" def __init__( self , a=5_0267 , a=50_0000 , a=768 , a=256 , a=12 , a=12 , a=3072 , a="gelu" , a=0.1 , a=0.1 , a=512 , a=2 , a=0.02 , a=1e-12 , a=True , a=None , a=1 , a=0 , a=2 , **a , ): super().__init__(pad_token_id=a , bos_token_id=a , eos_token_id=a , **a) lowercase__ : Tuple = vocab_size lowercase__ : Optional[Any] = entity_vocab_size lowercase__ : Optional[int] = hidden_size lowercase__ : List[str] = entity_emb_size lowercase__ : Union[str, Any] = num_hidden_layers lowercase__ : Any = num_attention_heads lowercase__ : List[str] = hidden_act lowercase__ : Any = intermediate_size lowercase__ : str = hidden_dropout_prob lowercase__ : List[Any] = attention_probs_dropout_prob lowercase__ : List[Any] = max_position_embeddings lowercase__ : Dict = type_vocab_size lowercase__ : Tuple = initializer_range lowercase__ : Any = layer_norm_eps lowercase__ : Optional[Any] = use_entity_aware_attention lowercase__ : Union[str, Any] = classifier_dropout
164
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class SCREAMING_SNAKE_CASE__ (unittest.TestCase ): def snake_case_ ( self): lowercase__ : int = inspect.getfile(accelerate.test_utils) lowercase__ : Dict = os.path.sep.join( mod_file.split(os.path.sep)[:-1] + ['scripts', 'external_deps', 'test_metrics.py']) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 lowercase__ : Optional[Any] = test_metrics @require_cpu def snake_case_ ( self): debug_launcher(self.test_metrics.main , num_processes=1) @require_cpu def snake_case_ ( self): debug_launcher(self.test_metrics.main) @require_single_gpu def snake_case_ ( self): self.test_metrics.main() @require_multi_gpu def snake_case_ ( self): print(f"""Found {torch.cuda.device_count()} devices.""") lowercase__ : int = ['torchrun', f"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path] with patch_environment(omp_num_threads=1): execute_subprocess_async(a , env=os.environ.copy())
164
1
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def lowercase_ ( SCREAMING_SNAKE_CASE : int ): """simple docstring""" snake_case__ : int =int(number**0.5 ) return number == sq * sq def lowercase_ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ): """simple docstring""" snake_case__ : int =x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den snake_case__ : int =x_den * y_den * z_den snake_case__ : int =gcd(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) top //= hcf bottom //= hcf return top, bottom def lowercase_ ( SCREAMING_SNAKE_CASE : int = 35 ): """simple docstring""" snake_case__ : set =set() snake_case__ : int snake_case__ : Fraction =Fraction(0 ) snake_case__ : tuple[int, int] for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 snake_case__ : List[str] =x_num * y_den + x_den * y_num snake_case__ : Any =x_den * y_den snake_case__ : Dict =gcd(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: snake_case__ : Optional[int] =add_three( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) unique_s.add(SCREAMING_SNAKE_CASE ) # n=2 snake_case__ : Optional[Any] =( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) snake_case__ : Optional[int] =x_den * x_den * y_den * y_den if is_sq(SCREAMING_SNAKE_CASE ) and is_sq(SCREAMING_SNAKE_CASE ): snake_case__ : Any =int(sqrt(SCREAMING_SNAKE_CASE ) ) snake_case__ : Tuple =int(sqrt(SCREAMING_SNAKE_CASE ) ) snake_case__ : Optional[int] =gcd(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: snake_case__ : str =add_three( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) unique_s.add(SCREAMING_SNAKE_CASE ) # n=-1 snake_case__ : str =x_num * y_num snake_case__ : str =x_den * y_num + x_num * y_den snake_case__ : int =gcd(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: snake_case__ : List[Any] =add_three( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) unique_s.add(SCREAMING_SNAKE_CASE ) # n=2 snake_case__ : Dict =x_num * x_num * y_num * y_num snake_case__ : str =( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(SCREAMING_SNAKE_CASE ) and is_sq(SCREAMING_SNAKE_CASE ): snake_case__ : Dict =int(sqrt(SCREAMING_SNAKE_CASE ) ) snake_case__ : Optional[Any] =int(sqrt(SCREAMING_SNAKE_CASE ) ) snake_case__ : int =gcd(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: snake_case__ : Dict =add_three( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) unique_s.add(SCREAMING_SNAKE_CASE ) for num, den in unique_s: total += Fraction(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return total.denominator + total.numerator if __name__ == "__main__": print(F"""{solution() = }""")
701
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) def lowercase_ ( SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" snake_case__ : Optional[int] =DPTConfig() if "large" in checkpoint_url: snake_case__ : Any =10_24 snake_case__ : Tuple =40_96 snake_case__ : List[Any] =24 snake_case__ : Tuple =16 snake_case__ : List[Any] =[5, 11, 17, 23] snake_case__ : int =[2_56, 5_12, 10_24, 10_24] snake_case__ : str =(1, 3_84, 3_84) if "ade" in checkpoint_url: snake_case__ : Optional[Any] =True snake_case__ : Optional[Any] =1_50 snake_case__ : int ='''huggingface/label-files''' snake_case__ : Union[str, Any] ='''ade20k-id2label.json''' snake_case__ : int =json.load(open(cached_download(hf_hub_url(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='''dataset''' ) ) , '''r''' ) ) snake_case__ : int ={int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} snake_case__ : List[str] =idalabel snake_case__ : List[str] ={v: k for k, v in idalabel.items()} snake_case__ : List[Any] =[1, 1_50, 4_80, 4_80] return config, expected_shape def lowercase_ ( SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" snake_case__ : List[Any] =['''pretrained.model.head.weight''', '''pretrained.model.head.bias'''] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def lowercase_ ( SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): snake_case__ : Optional[Any] =name.replace('''pretrained.model''' , '''dpt.encoder''' ) if "pretrained.model" in name: snake_case__ : Dict =name.replace('''pretrained.model''' , '''dpt.embeddings''' ) if "patch_embed" in name: snake_case__ : str =name.replace('''patch_embed''' , '''patch_embeddings''' ) if "pos_embed" in name: snake_case__ : Dict =name.replace('''pos_embed''' , '''position_embeddings''' ) if "attn.proj" in name: snake_case__ : int =name.replace('''attn.proj''' , '''attention.output.dense''' ) if "proj" in name and "project" not in name: snake_case__ : List[Any] =name.replace('''proj''' , '''projection''' ) if "blocks" in name: snake_case__ : List[Any] =name.replace('''blocks''' , '''layer''' ) if "mlp.fc1" in name: snake_case__ : Optional[int] =name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: snake_case__ : List[str] =name.replace('''mlp.fc2''' , '''output.dense''' ) if "norm1" in name: snake_case__ : Any =name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: snake_case__ : Any =name.replace('''norm2''' , '''layernorm_after''' ) if "scratch.output_conv" in name: snake_case__ : str =name.replace('''scratch.output_conv''' , '''head''' ) if "scratch" in name: snake_case__ : Any =name.replace('''scratch''' , '''neck''' ) if "layer1_rn" in name: snake_case__ : int =name.replace('''layer1_rn''' , '''convs.0''' ) if "layer2_rn" in name: snake_case__ : List[str] =name.replace('''layer2_rn''' , '''convs.1''' ) if "layer3_rn" in name: snake_case__ : Union[str, Any] =name.replace('''layer3_rn''' , '''convs.2''' ) if "layer4_rn" in name: snake_case__ : Dict =name.replace('''layer4_rn''' , '''convs.3''' ) if "refinenet" in name: snake_case__ : List[str] =int(name[len('''neck.refinenet''' ) : len('''neck.refinenet''' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 snake_case__ : Optional[int] =name.replace(F'''refinenet{layer_idx}''' , F'''fusion_stage.layers.{abs(layer_idx-4 )}''' ) if "out_conv" in name: snake_case__ : Tuple =name.replace('''out_conv''' , '''projection''' ) if "resConfUnit1" in name: snake_case__ : Any =name.replace('''resConfUnit1''' , '''residual_layer1''' ) if "resConfUnit2" in name: snake_case__ : Dict =name.replace('''resConfUnit2''' , '''residual_layer2''' ) if "conv1" in name: snake_case__ : Dict =name.replace('''conv1''' , '''convolution1''' ) if "conv2" in name: snake_case__ : List[str] =name.replace('''conv2''' , '''convolution2''' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: snake_case__ : List[Any] =name.replace('''pretrained.act_postprocess1.0.project.0''' , '''neck.reassemble_stage.readout_projects.0.0''' ) if "pretrained.act_postprocess2.0.project.0" in name: snake_case__ : int =name.replace('''pretrained.act_postprocess2.0.project.0''' , '''neck.reassemble_stage.readout_projects.1.0''' ) if "pretrained.act_postprocess3.0.project.0" in name: snake_case__ : Dict =name.replace('''pretrained.act_postprocess3.0.project.0''' , '''neck.reassemble_stage.readout_projects.2.0''' ) if "pretrained.act_postprocess4.0.project.0" in name: snake_case__ : Union[str, Any] =name.replace('''pretrained.act_postprocess4.0.project.0''' , '''neck.reassemble_stage.readout_projects.3.0''' ) # resize blocks if "pretrained.act_postprocess1.3" in name: snake_case__ : int =name.replace('''pretrained.act_postprocess1.3''' , '''neck.reassemble_stage.layers.0.projection''' ) if "pretrained.act_postprocess1.4" in name: snake_case__ : Union[str, Any] =name.replace('''pretrained.act_postprocess1.4''' , '''neck.reassemble_stage.layers.0.resize''' ) if "pretrained.act_postprocess2.3" in name: snake_case__ : Tuple =name.replace('''pretrained.act_postprocess2.3''' , '''neck.reassemble_stage.layers.1.projection''' ) if "pretrained.act_postprocess2.4" in name: snake_case__ : Any =name.replace('''pretrained.act_postprocess2.4''' , '''neck.reassemble_stage.layers.1.resize''' ) if "pretrained.act_postprocess3.3" in name: snake_case__ : Tuple =name.replace('''pretrained.act_postprocess3.3''' , '''neck.reassemble_stage.layers.2.projection''' ) if "pretrained.act_postprocess4.3" in name: snake_case__ : Any =name.replace('''pretrained.act_postprocess4.3''' , '''neck.reassemble_stage.layers.3.projection''' ) if "pretrained.act_postprocess4.4" in name: snake_case__ : Dict =name.replace('''pretrained.act_postprocess4.4''' , '''neck.reassemble_stage.layers.3.resize''' ) if "pretrained" in name: snake_case__ : Union[str, Any] =name.replace('''pretrained''' , '''dpt''' ) if "bn" in name: snake_case__ : Any =name.replace('''bn''' , '''batch_norm''' ) if "head" in name: snake_case__ : Optional[int] =name.replace('''head''' , '''head.head''' ) if "encoder.norm" in name: snake_case__ : Optional[Any] =name.replace('''encoder.norm''' , '''layernorm''' ) if "auxlayer" in name: snake_case__ : List[str] =name.replace('''auxlayer''' , '''auxiliary_head.head''' ) return name def lowercase_ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case__ : Union[str, Any] =state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.weight''' ) snake_case__ : List[Any] =state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict snake_case__ : Union[str, Any] =in_proj_weight[: config.hidden_size, :] snake_case__ : List[Any] =in_proj_bias[: config.hidden_size] snake_case__ : List[str] =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case__ : int =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case__ : List[Any] =in_proj_weight[ -config.hidden_size :, : ] snake_case__ : Any =in_proj_bias[-config.hidden_size :] def lowercase_ ( ): """simple docstring""" snake_case__ : Optional[Any] ='''http://images.cocodataset.org/val2017/000000039769.jpg''' snake_case__ : str =Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def lowercase_ ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[Any] ): """simple docstring""" snake_case__, snake_case__ : int =get_dpt_config(SCREAMING_SNAKE_CASE ) # load original state_dict from URL snake_case__ : List[str] =torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE , map_location='''cpu''' ) # remove certain keys remove_ignore_keys_(SCREAMING_SNAKE_CASE ) # rename keys for key in state_dict.copy().keys(): snake_case__ : List[Any] =state_dict.pop(SCREAMING_SNAKE_CASE ) snake_case__ : Any =val # read in qkv matrices read_in_q_k_v(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # load HuggingFace model snake_case__ : Dict =DPTForSemanticSegmentation(SCREAMING_SNAKE_CASE ) if '''ade''' in checkpoint_url else DPTForDepthEstimation(SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE ) model.eval() # Check outputs on an image snake_case__ : Tuple =4_80 if '''ade''' in checkpoint_url else 3_84 snake_case__ : str =DPTImageProcessor(size=SCREAMING_SNAKE_CASE ) snake_case__ : List[str] =prepare_img() snake_case__ : Dict =image_processor(SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) # forward pass snake_case__ : Optional[int] =model(**SCREAMING_SNAKE_CASE ).logits if '''ade''' in checkpoint_url else model(**SCREAMING_SNAKE_CASE ).predicted_depth # Assert logits snake_case__ : Tuple =torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]] ) if "ade" in checkpoint_url: snake_case__ : Optional[int] =torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]] ) assert outputs.shape == torch.Size(SCREAMING_SNAKE_CASE ) assert ( torch.allclose(outputs[0, 0, :3, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , SCREAMING_SNAKE_CASE ) ) Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE ) if push_to_hub: print('''Pushing model to hub...''' ) model.push_to_hub( repo_path_or_name=Path(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=SCREAMING_SNAKE_CASE , ) image_processor.push_to_hub( repo_path_or_name=Path(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=SCREAMING_SNAKE_CASE , ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''', type=str, help='''URL of the original DPT checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) parser.add_argument( '''--model_name''', default='''dpt-large''', type=str, help='''Name of the model, in case you\'re pushing to the hub.''', ) lowerCamelCase__ = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
408
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class __magic_name__ ( unittest.TestCase ): @slow def lowerCAmelCase ( self) -> Optional[Any]: '''simple docstring''' # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: _UpperCAmelCase : Dict =AutoConfig.from_pretrained(snake_case) self.assertIsNotNone(snake_case) self.assertIsInstance(snake_case , snake_case) _UpperCAmelCase : Any =TFAutoModel.from_pretrained(snake_case , from_pt=snake_case) self.assertIsNotNone(snake_case) self.assertIsInstance(snake_case , snake_case) _UpperCAmelCase : Optional[int] =AutoModel.from_pretrained(snake_case , from_tf=snake_case) self.assertIsNotNone(snake_case) self.assertIsInstance(snake_case , snake_case) @slow def lowerCAmelCase ( self) -> str: '''simple docstring''' # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: _UpperCAmelCase : int =AutoConfig.from_pretrained(snake_case) self.assertIsNotNone(snake_case) self.assertIsInstance(snake_case , snake_case) _UpperCAmelCase : Dict =TFAutoModelForPreTraining.from_pretrained(snake_case , from_pt=snake_case) self.assertIsNotNone(snake_case) self.assertIsInstance(snake_case , snake_case) _UpperCAmelCase : List[str] =AutoModelForPreTraining.from_pretrained(snake_case , from_tf=snake_case) self.assertIsNotNone(snake_case) self.assertIsInstance(snake_case , snake_case) @slow def lowerCAmelCase ( self) -> Optional[int]: '''simple docstring''' for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : Optional[Any] =AutoConfig.from_pretrained(snake_case) self.assertIsNotNone(snake_case) self.assertIsInstance(snake_case , snake_case) _UpperCAmelCase : List[Any] =TFAutoModelForCausalLM.from_pretrained(snake_case , from_pt=snake_case) _UpperCAmelCase , _UpperCAmelCase : str =TFAutoModelForCausalLM.from_pretrained( snake_case , output_loading_info=snake_case , from_pt=snake_case) self.assertIsNotNone(snake_case) self.assertIsInstance(snake_case , snake_case) _UpperCAmelCase : List[str] =AutoModelForCausalLM.from_pretrained(snake_case , from_tf=snake_case) _UpperCAmelCase , _UpperCAmelCase : List[Any] =AutoModelForCausalLM.from_pretrained( snake_case , output_loading_info=snake_case , from_tf=snake_case) self.assertIsNotNone(snake_case) self.assertIsInstance(snake_case , snake_case) @slow def lowerCAmelCase ( self) -> List[str]: '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : str =AutoConfig.from_pretrained(snake_case) self.assertIsNotNone(snake_case) self.assertIsInstance(snake_case , snake_case) _UpperCAmelCase : Any =TFAutoModelWithLMHead.from_pretrained(snake_case , from_pt=snake_case) self.assertIsNotNone(snake_case) self.assertIsInstance(snake_case , snake_case) _UpperCAmelCase : List[str] =AutoModelWithLMHead.from_pretrained(snake_case , from_tf=snake_case) self.assertIsNotNone(snake_case) self.assertIsInstance(snake_case , snake_case) @slow def lowerCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : Optional[int] =AutoConfig.from_pretrained(snake_case) self.assertIsNotNone(snake_case) self.assertIsInstance(snake_case , snake_case) _UpperCAmelCase : Union[str, Any] =TFAutoModelForMaskedLM.from_pretrained(snake_case , from_pt=snake_case) _UpperCAmelCase , _UpperCAmelCase : Tuple =TFAutoModelForMaskedLM.from_pretrained( snake_case , output_loading_info=snake_case , from_pt=snake_case) self.assertIsNotNone(snake_case) self.assertIsInstance(snake_case , snake_case) _UpperCAmelCase : Optional[Any] =AutoModelForMaskedLM.from_pretrained(snake_case , from_tf=snake_case) _UpperCAmelCase , _UpperCAmelCase : Optional[int] =AutoModelForMaskedLM.from_pretrained( snake_case , output_loading_info=snake_case , from_tf=snake_case) self.assertIsNotNone(snake_case) self.assertIsInstance(snake_case , snake_case) @slow def lowerCAmelCase ( self) -> List[str]: '''simple docstring''' for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : str =AutoConfig.from_pretrained(snake_case) self.assertIsNotNone(snake_case) self.assertIsInstance(snake_case , snake_case) _UpperCAmelCase : int =TFAutoModelForSeqaSeqLM.from_pretrained(snake_case , from_pt=snake_case) _UpperCAmelCase , _UpperCAmelCase : Optional[Any] =TFAutoModelForSeqaSeqLM.from_pretrained( snake_case , output_loading_info=snake_case , from_pt=snake_case) self.assertIsNotNone(snake_case) self.assertIsInstance(snake_case , snake_case) _UpperCAmelCase : Dict =AutoModelForSeqaSeqLM.from_pretrained(snake_case , from_tf=snake_case) _UpperCAmelCase , _UpperCAmelCase : int =AutoModelForSeqaSeqLM.from_pretrained( snake_case , output_loading_info=snake_case , from_tf=snake_case) self.assertIsNotNone(snake_case) self.assertIsInstance(snake_case , snake_case) @slow def lowerCAmelCase ( self) -> List[Any]: '''simple docstring''' # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: _UpperCAmelCase : List[str] =AutoConfig.from_pretrained(snake_case) self.assertIsNotNone(snake_case) self.assertIsInstance(snake_case , snake_case) _UpperCAmelCase : Dict =TFAutoModelForSequenceClassification.from_pretrained(snake_case , from_pt=snake_case) self.assertIsNotNone(snake_case) self.assertIsInstance(snake_case , snake_case) _UpperCAmelCase : str =AutoModelForSequenceClassification.from_pretrained(snake_case , from_tf=snake_case) self.assertIsNotNone(snake_case) self.assertIsInstance(snake_case , snake_case) @slow def lowerCAmelCase ( self) -> Dict: '''simple docstring''' # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: _UpperCAmelCase : str =AutoConfig.from_pretrained(snake_case) self.assertIsNotNone(snake_case) self.assertIsInstance(snake_case , snake_case) _UpperCAmelCase : Union[str, Any] =TFAutoModelForQuestionAnswering.from_pretrained(snake_case , from_pt=snake_case) self.assertIsNotNone(snake_case) self.assertIsInstance(snake_case , snake_case) _UpperCAmelCase : Optional[Any] =AutoModelForQuestionAnswering.from_pretrained(snake_case , from_tf=snake_case) self.assertIsNotNone(snake_case) self.assertIsInstance(snake_case , snake_case) def lowerCAmelCase ( self) -> Any: '''simple docstring''' _UpperCAmelCase : Dict =TFAutoModelWithLMHead.from_pretrained(snake_case , from_pt=snake_case) self.assertIsInstance(snake_case , snake_case) self.assertEqual(model.num_parameters() , 1_4_4_1_0) self.assertEqual(model.num_parameters(only_trainable=snake_case) , 1_4_4_1_0) _UpperCAmelCase : List[str] =AutoModelWithLMHead.from_pretrained(snake_case , from_tf=snake_case) self.assertIsInstance(snake_case , snake_case) self.assertEqual(model.num_parameters() , 1_4_4_1_0) self.assertEqual(model.num_parameters(only_trainable=snake_case) , 1_4_4_1_0) def lowerCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] =TFAutoModelWithLMHead.from_pretrained(snake_case , from_pt=snake_case) self.assertIsInstance(snake_case , snake_case) self.assertEqual(model.num_parameters() , 1_4_4_1_0) self.assertEqual(model.num_parameters(only_trainable=snake_case) , 1_4_4_1_0) _UpperCAmelCase : Optional[Any] =AutoModelWithLMHead.from_pretrained(snake_case , from_tf=snake_case) self.assertIsInstance(snake_case , snake_case) self.assertEqual(model.num_parameters() , 1_4_4_1_0) self.assertEqual(model.num_parameters(only_trainable=snake_case) , 1_4_4_1_0)
446
'''simple docstring''' import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class __magic_name__ : def __init__( self , snake_case , snake_case=2 , snake_case=True , snake_case=False , snake_case=1_0 , snake_case=3 , snake_case=3_2 * 8 , snake_case=3_2 * 8 , snake_case=4 , snake_case=6_4 , ) -> List[str]: '''simple docstring''' _UpperCAmelCase : List[Any] =parent _UpperCAmelCase : Optional[int] =batch_size _UpperCAmelCase : List[str] =is_training _UpperCAmelCase : Union[str, Any] =use_auxiliary_loss _UpperCAmelCase : Dict =num_queries _UpperCAmelCase : Tuple =num_channels _UpperCAmelCase : Optional[Any] =min_size _UpperCAmelCase : Any =max_size _UpperCAmelCase : Optional[int] =num_labels _UpperCAmelCase : Optional[int] =hidden_dim _UpperCAmelCase : Dict =hidden_dim def lowerCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCAmelCase : List[str] =floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size]).to( snake_case) _UpperCAmelCase : List[str] =torch.ones([self.batch_size, self.min_size, self.max_size] , device=snake_case) _UpperCAmelCase : int =( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=snake_case) > 0.5 ).float() _UpperCAmelCase : Union[str, Any] =(torch.rand((self.batch_size, self.num_labels) , device=snake_case) > 0.5).long() _UpperCAmelCase : Tuple =self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowerCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCAmelCase : Optional[Any] =MaskaFormerConfig( hidden_size=self.hidden_dim , ) _UpperCAmelCase : int =self.num_queries _UpperCAmelCase : int =self.num_labels _UpperCAmelCase : List[Any] =[1, 1, 1, 1] _UpperCAmelCase : int =self.num_channels _UpperCAmelCase : List[Any] =6_4 _UpperCAmelCase : Optional[Any] =1_2_8 _UpperCAmelCase : List[Any] =self.hidden_dim _UpperCAmelCase : Dict =self.hidden_dim _UpperCAmelCase : int =self.hidden_dim return config def lowerCAmelCase ( self) -> Any: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[Any] =self.prepare_config_and_inputs() _UpperCAmelCase : Union[str, Any] ={'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def lowerCAmelCase ( self , snake_case , snake_case) -> str: '''simple docstring''' _UpperCAmelCase : int =output.encoder_hidden_states _UpperCAmelCase : Dict =output.pixel_decoder_hidden_states _UpperCAmelCase : List[Any] =output.transformer_decoder_hidden_states self.parent.assertTrue(len(snake_case) , len(config.backbone_config.depths)) self.parent.assertTrue(len(snake_case) , len(config.backbone_config.depths)) self.parent.assertTrue(len(snake_case) , config.decoder_layers) def lowerCAmelCase ( self , snake_case , snake_case , snake_case , snake_case=False) -> Any: '''simple docstring''' with torch.no_grad(): _UpperCAmelCase : Tuple =MaskaFormerModel(config=snake_case) model.to(snake_case) model.eval() _UpperCAmelCase : List[Any] =model(pixel_values=snake_case , pixel_mask=snake_case) _UpperCAmelCase : Union[str, Any] =model(snake_case , output_hidden_states=snake_case) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None) self.parent.assertTrue(output.encoder_last_hidden_state is not None) if output_hidden_states: self.check_output_hidden_state(snake_case , snake_case) def lowerCAmelCase ( self , snake_case , snake_case , snake_case , snake_case , snake_case) -> Tuple: '''simple docstring''' _UpperCAmelCase : Dict =MaskaFormerForUniversalSegmentation(config=snake_case) model.to(snake_case) model.eval() def comm_check_on_output(snake_case): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None) self.parent.assertTrue(result.encoder_last_hidden_state is not None) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1)) with torch.no_grad(): _UpperCAmelCase : Optional[Any] =model(pixel_values=snake_case , pixel_mask=snake_case) _UpperCAmelCase : Optional[Any] =model(snake_case) comm_check_on_output(snake_case) _UpperCAmelCase : str =model( pixel_values=snake_case , pixel_mask=snake_case , mask_labels=snake_case , class_labels=snake_case) comm_check_on_output(snake_case) self.parent.assertTrue(result.loss is not None) self.parent.assertEqual(result.loss.shape , torch.Size([1])) @require_torch class __magic_name__ ( lowerCAmelCase ,lowerCAmelCase ,unittest.TestCase ): UpperCAmelCase =(MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () UpperCAmelCase ={"feature-extraction": MaskaFormerModel} if is_torch_available() else {} UpperCAmelCase =False UpperCAmelCase =False UpperCAmelCase =False UpperCAmelCase =False def lowerCAmelCase ( self) -> int: '''simple docstring''' _UpperCAmelCase : Optional[Any] =MaskaFormerModelTester(self) _UpperCAmelCase : Dict =ConfigTester(self , config_class=snake_case , has_text_modality=snake_case) def lowerCAmelCase ( self) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : int =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(snake_case , **snake_case , output_hidden_states=snake_case) def lowerCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*snake_case) @unittest.skip(reason='Mask2Former does not use inputs_embeds') def lowerCAmelCase ( self) -> Tuple: '''simple docstring''' pass @unittest.skip(reason='Mask2Former does not have a get_input_embeddings method') def lowerCAmelCase ( self) -> List[str]: '''simple docstring''' pass @unittest.skip(reason='Mask2Former is not a generative model') def lowerCAmelCase ( self) -> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason='Mask2Former does not use token embeddings') def lowerCAmelCase ( self) -> Optional[int]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`') def lowerCAmelCase ( self) -> List[str]: '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def lowerCAmelCase ( self) -> str: '''simple docstring''' pass def lowerCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Optional[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : List[Any] =model_class(snake_case) _UpperCAmelCase : Optional[int] =inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase : str =[*signature.parameters.keys()] _UpperCAmelCase : Tuple =['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case) @slow def lowerCAmelCase ( self) -> int: '''simple docstring''' for model_name in ["facebook/mask2former-swin-small-coco-instance"]: _UpperCAmelCase : Dict =MaskaFormerModel.from_pretrained(snake_case) self.assertIsNotNone(snake_case) def lowerCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : Any =(self.model_tester.min_size,) * 2 _UpperCAmelCase : Optional[Any] ={ 'pixel_values': torch.randn((2, 3, *size) , device=snake_case), 'mask_labels': torch.randn((2, 1_0, *size) , device=snake_case), 'class_labels': torch.zeros(2 , 1_0 , device=snake_case).long(), } _UpperCAmelCase : List[str] =self.model_tester.get_config() _UpperCAmelCase : Tuple =MaskaFormerForUniversalSegmentation(snake_case).to(snake_case) _UpperCAmelCase : Any =model(**snake_case) self.assertTrue(outputs.loss is not None) def lowerCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Optional[int] =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(snake_case , **snake_case , output_hidden_states=snake_case) def lowerCAmelCase ( self) -> str: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Any =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : Union[str, Any] =model_class(snake_case).to(snake_case) _UpperCAmelCase : Dict =model(**snake_case , output_attentions=snake_case) self.assertTrue(outputs.attentions is not None) def lowerCAmelCase ( self) -> Any: '''simple docstring''' if not self.model_tester.is_training: return _UpperCAmelCase : List[str] =self.all_model_classes[1] _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict =self.model_tester.prepare_config_and_inputs() _UpperCAmelCase : List[str] =model_class(snake_case) model.to(snake_case) model.train() _UpperCAmelCase : Tuple =model(snake_case , mask_labels=snake_case , class_labels=snake_case).loss loss.backward() def lowerCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCAmelCase : Tuple =self.all_model_classes[1] _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : str =self.model_tester.prepare_config_and_inputs() _UpperCAmelCase : Tuple =True _UpperCAmelCase : str =True _UpperCAmelCase : Union[str, Any] =model_class(snake_case).to(snake_case) model.train() _UpperCAmelCase : Union[str, Any] =model(snake_case , mask_labels=snake_case , class_labels=snake_case) _UpperCAmelCase : Any =outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() _UpperCAmelCase : Any =outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() _UpperCAmelCase : int =outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() _UpperCAmelCase : List[str] =outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=snake_case) self.assertIsNotNone(encoder_hidden_states.grad) self.assertIsNotNone(pixel_decoder_hidden_states.grad) self.assertIsNotNone(transformer_decoder_hidden_states.grad) self.assertIsNotNone(attentions.grad) lowercase =1e-4 def lowerCamelCase__ ( ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class __magic_name__ ( unittest.TestCase ): @cached_property def lowerCAmelCase ( self) -> Dict: '''simple docstring''' return "facebook/mask2former-swin-small-coco-instance" @cached_property def lowerCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints) if is_vision_available() else None def lowerCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCAmelCase : Tuple =MaskaFormerModel.from_pretrained(self.model_checkpoints).to(snake_case) _UpperCAmelCase : List[str] =self.default_image_processor _UpperCAmelCase : int =prepare_img() _UpperCAmelCase : Any =image_processor(snake_case , return_tensors='pt').to(snake_case) _UpperCAmelCase : Dict =inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0) # check size self.assertEqual(snake_case , (1, 3, 3_8_4, 3_8_4)) with torch.no_grad(): _UpperCAmelCase : int =model(**snake_case) _UpperCAmelCase : List[Any] =torch.tensor( [[-0.27_90, -1.07_17, -1.16_68], [-0.51_28, -0.31_28, -0.49_87], [-0.58_32, 0.19_71, -0.01_97]]).to(snake_case) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , snake_case , atol=snake_case)) _UpperCAmelCase : Dict =torch.tensor( [[0.89_73, 1.18_47, 1.17_76], [1.19_34, 1.50_40, 1.51_28], [1.11_53, 1.44_86, 1.49_51]]).to(snake_case) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , snake_case , atol=snake_case)) _UpperCAmelCase : Optional[int] =torch.tensor( [[2.11_52, 1.70_00, -0.86_03], [1.58_08, 1.80_04, -0.93_53], [1.60_43, 1.74_95, -0.59_99]]).to(snake_case) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , snake_case , atol=snake_case)) def lowerCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Tuple =MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints).to(snake_case).eval() _UpperCAmelCase : str =self.default_image_processor _UpperCAmelCase : Any =prepare_img() _UpperCAmelCase : Dict =image_processor(snake_case , return_tensors='pt').to(snake_case) _UpperCAmelCase : List[Any] =inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0) # check size self.assertEqual(snake_case , (1, 3, 3_8_4, 3_8_4)) with torch.no_grad(): _UpperCAmelCase : Dict =model(**snake_case) # masks_queries_logits _UpperCAmelCase : Union[str, Any] =outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4)) _UpperCAmelCase : str =[ [-8.78_39, -9.00_56, -8.81_21], [-7.41_04, -7.03_13, -6.54_01], [-6.61_05, -6.34_27, -6.46_75], ] _UpperCAmelCase : Union[str, Any] =torch.tensor(snake_case).to(snake_case) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , snake_case , atol=snake_case)) # class_queries_logits _UpperCAmelCase : Any =outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1)) _UpperCAmelCase : Optional[Any] =torch.tensor( [ [1.83_24, -8.08_35, -4.19_22], [0.84_50, -9.00_50, -3.60_53], [0.30_45, -7.72_93, -3.02_75], ]).to(snake_case) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , snake_case , atol=snake_case)) def lowerCAmelCase ( self) -> int: '''simple docstring''' _UpperCAmelCase : Tuple =MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints).to(snake_case).eval() _UpperCAmelCase : Optional[Any] =self.default_image_processor _UpperCAmelCase : List[Any] =image_processor( [np.zeros((3, 8_0_0, 1_3_3_3)), np.zeros((3, 8_0_0, 1_3_3_3))] , segmentation_maps=[np.zeros((3_8_4, 3_8_4)).astype(np.floataa), np.zeros((3_8_4, 3_8_4)).astype(np.floataa)] , return_tensors='pt' , ) _UpperCAmelCase : int =inputs['pixel_values'].to(snake_case) _UpperCAmelCase : Union[str, Any] =[el.to(snake_case) for el in inputs['mask_labels']] _UpperCAmelCase : Tuple =[el.to(snake_case) for el in inputs['class_labels']] with torch.no_grad(): _UpperCAmelCase : List[str] =model(**snake_case) self.assertTrue(outputs.loss is not None)
446
1
"""simple docstring""" import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class _lowerCAmelCase ( unittest.TestCase ): def __init__( self : Tuple , a : Optional[Any] , a : Tuple=7 , a : int=3 , a : List[str]=18 , a : Union[str, Any]=30 , a : List[str]=400 , a : Optional[int]=True , a : Optional[int]=None , a : Dict=True , a : Tuple=None , a : List[Any]=True , a : int=[0.5, 0.5, 0.5] , a : List[Any]=[0.5, 0.5, 0.5] , a : Tuple=False , ) -> int: """simple docstring""" lowercase = size if size is not None else {'''height''': 20, '''width''': 20} lowercase = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} lowercase = parent lowercase = batch_size lowercase = num_channels lowercase = image_size lowercase = min_resolution lowercase = max_resolution lowercase = do_resize lowercase = size lowercase = do_center_crop lowercase = crop_size lowercase = do_normalize lowercase = image_mean lowercase = image_std lowercase = do_reduce_labels def _lowerCAmelCase ( self : Tuple ) -> List[str]: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def A_ ( ): lowercase = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) lowercase = Image.open(dataset[0]['''file'''] ) lowercase = Image.open(dataset[1]['''file'''] ) return image, map def A_ ( ): lowercase = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) lowercase = Image.open(ds[0]['''file'''] ) lowercase = Image.open(ds[1]['''file'''] ) lowercase = Image.open(ds[2]['''file'''] ) lowercase = Image.open(ds[3]['''file'''] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class _lowerCAmelCase ( __snake_case , unittest.TestCase ): __lowerCAmelCase : Tuple = BeitImageProcessor if is_vision_available() else None def _lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" lowercase = BeitImageProcessingTester(self ) @property def _lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _lowerCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a , '''do_resize''' ) ) self.assertTrue(hasattr(a , '''size''' ) ) self.assertTrue(hasattr(a , '''do_center_crop''' ) ) self.assertTrue(hasattr(a , '''center_crop''' ) ) self.assertTrue(hasattr(a , '''do_normalize''' ) ) self.assertTrue(hasattr(a , '''image_mean''' ) ) self.assertTrue(hasattr(a , '''image_std''' ) ) def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" lowercase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 20, '''width''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) self.assertEqual(image_processor.do_reduce_labels , a ) lowercase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=a ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) self.assertEqual(image_processor.do_reduce_labels , a ) def _lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" pass def _lowerCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=a ) for image in image_inputs: self.assertIsInstance(a , Image.Image ) # Test not batched input lowercase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched lowercase = image_processing(a , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def _lowerCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , numpify=a ) for image in image_inputs: self.assertIsInstance(a , np.ndarray ) # Test not batched input lowercase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched lowercase = image_processing(a , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def _lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , torchify=a ) for image in image_inputs: self.assertIsInstance(a , torch.Tensor ) # Test not batched input lowercase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched lowercase = image_processing(a , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def _lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , torchify=a ) lowercase = [] for image in image_inputs: self.assertIsInstance(a , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input lowercase = image_processing(image_inputs[0] , maps[0] , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 ) # Test batched lowercase = image_processing(a , a , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 ) # Test not batched input (PIL images) lowercase , lowercase = prepare_semantic_single_inputs() lowercase = image_processing(a , a , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 ) # Test batched input (PIL images) lowercase , lowercase = prepare_semantic_batch_inputs() lowercase = image_processing(a , a , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 2, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 ) def _lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" lowercase = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 lowercase , lowercase = prepare_semantic_single_inputs() lowercase = image_processing(a , a , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 150 ) lowercase = True lowercase = image_processing(a , a , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 )
717
"""simple docstring""" import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename __lowerCAmelCase = '''http://www.mocksite.com/file1.txt''' __lowerCAmelCase = '''"text": ["foo", "foo"]''' __lowerCAmelCase = '''6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8''' class _lowerCAmelCase : __lowerCAmelCase : List[Any] = 2_00 __lowerCAmelCase : Dict = {'''Content-Length''': '''100'''} __lowerCAmelCase : Dict = {} def _lowerCAmelCase ( self : Any , **a : Dict ) -> Dict: """simple docstring""" return [bytes(a , '''utf-8''' )] def A_ ( *__UpperCamelCase : int , **__UpperCamelCase : Any ): return MockResponse() @pytest.mark.parametrize('''urls_type''' , [str, list, dict] ) def A_ ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : str , __UpperCamelCase : Tuple ): import requests monkeypatch.setattr(__UpperCamelCase , '''request''' , __UpperCamelCase ) lowercase = URL if issubclass(__UpperCamelCase , __UpperCamelCase ): lowercase = url elif issubclass(__UpperCamelCase , __UpperCamelCase ): lowercase = [url] elif issubclass(__UpperCamelCase , __UpperCamelCase ): lowercase = {'''train''': url} lowercase = '''dummy''' lowercase = '''downloads''' lowercase = tmp_path lowercase = DownloadConfig( cache_dir=os.path.join(__UpperCamelCase , __UpperCamelCase ) , use_etag=__UpperCamelCase , ) lowercase = DownloadManager(dataset_name=__UpperCamelCase , download_config=__UpperCamelCase ) lowercase = dl_manager.download(__UpperCamelCase ) lowercase = urls for downloaded_paths in [downloaded_paths]: if isinstance(__UpperCamelCase , __UpperCamelCase ): lowercase = [downloaded_paths] lowercase = [urls] elif isinstance(__UpperCamelCase , __UpperCamelCase ): assert "train" in downloaded_paths.keys() lowercase = downloaded_paths.values() lowercase = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(__UpperCamelCase , __UpperCamelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] lowercase = Path(__UpperCamelCase ) lowercase = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() lowercase = downloaded_path.read_text() assert content == CONTENT lowercase = downloaded_path.with_suffix('''.json''' ) assert metadata_downloaded_path.exists() lowercase = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('''paths_type''' , [str, list, dict] ) def A_ ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : str ): lowercase = str(__UpperCamelCase ) if issubclass(__UpperCamelCase , __UpperCamelCase ): lowercase = filename elif issubclass(__UpperCamelCase , __UpperCamelCase ): lowercase = [filename] elif issubclass(__UpperCamelCase , __UpperCamelCase ): lowercase = {'''train''': filename} lowercase = '''dummy''' lowercase = xz_file.parent lowercase = '''extracted''' lowercase = DownloadConfig( cache_dir=__UpperCamelCase , use_etag=__UpperCamelCase , ) lowercase = DownloadManager(dataset_name=__UpperCamelCase , download_config=__UpperCamelCase ) lowercase = dl_manager.extract(__UpperCamelCase ) lowercase = paths for extracted_paths in [extracted_paths]: if isinstance(__UpperCamelCase , __UpperCamelCase ): lowercase = [extracted_paths] lowercase = [paths] elif isinstance(__UpperCamelCase , __UpperCamelCase ): assert "train" in extracted_paths.keys() lowercase = extracted_paths.values() lowercase = paths.values() assert extracted_paths for extracted_path, input_path in zip(__UpperCamelCase , __UpperCamelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] lowercase = Path(__UpperCamelCase ) lowercase = extracted_path.parts assert parts[-1] == hash_url_to_filename(__UpperCamelCase , etag=__UpperCamelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() lowercase = extracted_path.read_text() lowercase = text_file.read_text() assert extracted_file_content == expected_file_content def A_ ( __UpperCamelCase : List[str] , __UpperCamelCase : Union[str, Any] ): assert path.endswith('''.jsonl''' ) for num_items, line in enumerate(__UpperCamelCase , start=1 ): lowercase = json.loads(line.decode('''utf-8''' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('''archive_jsonl''' , ['''tar_jsonl_path''', '''zip_jsonl_path'''] ) def A_ ( __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str] ): lowercase = request.getfixturevalue(__UpperCamelCase ) lowercase = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(__UpperCamelCase ) , start=1 ): _test_jsonl(__UpperCamelCase , __UpperCamelCase ) assert num_jsonl == 2 @pytest.mark.parametrize('''archive_nested_jsonl''' , ['''tar_nested_jsonl_path''', '''zip_nested_jsonl_path'''] ) def A_ ( __UpperCamelCase : List[Any] , __UpperCamelCase : Union[str, Any] ): lowercase = request.getfixturevalue(__UpperCamelCase ) lowercase = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(__UpperCamelCase ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(__UpperCamelCase ) , start=1 ): _test_jsonl(__UpperCamelCase , __UpperCamelCase ) assert num_tar == 1 assert num_jsonl == 2 def A_ ( __UpperCamelCase : Union[str, Any] ): lowercase = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(__UpperCamelCase ) , start=1 ): assert os.path.basename(__UpperCamelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
396
0
'''simple docstring''' import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class _lowerCamelCase ( snake_case_ ): '''simple docstring''' __lowercase : Optional[Any] = ComputeEnvironment.AMAZON_SAGEMAKER __lowercase : List[Any] = True __lowercase : List[str] = '''ml.p3.2xlarge''' __lowercase : Tuple = '''accelerate_sagemaker_execution_role''' __lowercase : Any = '''hf-sm''' __lowercase : Union[str, Any] = '''us-east-1''' __lowercase : Optional[int] = 1 __lowercase : int = '''accelerate-sagemaker-1''' __lowercase : Optional[Any] = '''1.6''' __lowercase : int = '''4.4''' __lowercase : Optional[int] = '''train.py''' __lowercase : Any = [ '''--model_name_or_path''', '''bert''', '''--do_train''', '''False''', '''--epochs''', '''3''', '''--learning_rate''', '''5e-5''', '''--max_steps''', '''50.5''', ] __lowercase : Tuple = [ '''--model_name_or_path''', '''bert''', '''--do_train''', '''--do_test''', '''False''', '''--do_predict''', '''--epochs''', '''3''', '''--learning_rate''', '''5e-5''', '''--max_steps''', '''50.5''', ] class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self ): """simple docstring""" __A : Union[str, Any] = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args ) assert isinstance(converted_args['model_name_or_path'] , __lowercase ) assert isinstance(converted_args['do_train'] , __lowercase ) assert isinstance(converted_args['epochs'] , __lowercase ) assert isinstance(converted_args['learning_rate'] , __lowercase ) assert isinstance(converted_args['max_steps'] , __lowercase ) with pytest.raises(__lowercase ): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
365
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def _lowercase ( ): __A : Dict = ArgumentParser('Accelerate CLI tool', usage='accelerate <command> [<args>]', allow_abbrev=UpperCamelCase__ ) __A : Any = parser.add_subparsers(help='accelerate command helpers' ) # Register commands get_config_parser(subparsers=UpperCamelCase__ ) env_command_parser(subparsers=UpperCamelCase__ ) launch_command_parser(subparsers=UpperCamelCase__ ) tpu_command_parser(subparsers=UpperCamelCase__ ) test_command_parser(subparsers=UpperCamelCase__ ) # Let's go __A : Optional[Any] = parser.parse_args() if not hasattr(UpperCamelCase__, 'func' ): parser.print_help() exit(1 ) # Run args.func(UpperCamelCase__ ) if __name__ == "__main__": main()
365
1
_SCREAMING_SNAKE_CASE = 9.8_0665 def __a(SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float = g ): '''simple docstring''' if fluid_density <= 0: raise ValueError("Impossible fluid density" ) if volume < 0: raise ValueError("Impossible Object volume" ) if gravity <= 0: raise ValueError("Impossible Gravity" ) return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
714
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. _SCREAMING_SNAKE_CASE = {"LayoutLMv2Config", "LayoutLMv3Config"} @is_pipeline_test class lowerCAmelCase_ ( unittest.TestCase ): __lowerCamelCase : Optional[Any] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING __lowerCamelCase : str = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: __lowerCamelCase : Optional[int] = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: __lowerCamelCase : List[Any] = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def _snake_case ( self ) -> str: _lowerCAmelCase = pipeline( task="text-classification" , model="hf-internal-testing/tiny-random-distilbert" , framework="pt" ) _lowerCAmelCase = text_classifier("This is great !" ) self.assertEqual(nested_simplify(_lowerCAmelCase ) , [{"label": "LABEL_0", "score": 0.504}] ) _lowerCAmelCase = text_classifier("This is great !" , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}] ) _lowerCAmelCase = text_classifier(["This is great !", "This is bad"] , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [ [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}], [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}], ] , ) _lowerCAmelCase = text_classifier("This is great !" , top_k=1 ) self.assertEqual(nested_simplify(_lowerCAmelCase ) , [{"label": "LABEL_0", "score": 0.504}] ) # Legacy behavior _lowerCAmelCase = text_classifier("This is great !" , return_all_scores=_lowerCAmelCase ) self.assertEqual(nested_simplify(_lowerCAmelCase ) , [{"label": "LABEL_0", "score": 0.504}] ) _lowerCAmelCase = text_classifier("This is great !" , return_all_scores=_lowerCAmelCase ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [[{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}]] ) _lowerCAmelCase = text_classifier(["This is great !", "Something else"] , return_all_scores=_lowerCAmelCase ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [ [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}], [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}], ] , ) _lowerCAmelCase = text_classifier(["This is great !", "Something else"] , return_all_scores=_lowerCAmelCase ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [ {"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_0", "score": 0.504}, ] , ) @require_torch def _snake_case ( self ) -> Tuple: import torch _lowerCAmelCase = pipeline( task="text-classification" , model="hf-internal-testing/tiny-random-distilbert" , framework="pt" , device=torch.device("cpu" ) , ) _lowerCAmelCase = text_classifier("This is great !" ) self.assertEqual(nested_simplify(_lowerCAmelCase ) , [{"label": "LABEL_0", "score": 0.504}] ) @require_tf def _snake_case ( self ) -> Any: _lowerCAmelCase = pipeline( task="text-classification" , model="hf-internal-testing/tiny-random-distilbert" , framework="tf" ) _lowerCAmelCase = text_classifier("This is great !" ) self.assertEqual(nested_simplify(_lowerCAmelCase ) , [{"label": "LABEL_0", "score": 0.504}] ) @slow @require_torch def _snake_case ( self ) -> Dict: _lowerCAmelCase = pipeline("text-classification" ) _lowerCAmelCase = text_classifier("This is great !" ) self.assertEqual(nested_simplify(_lowerCAmelCase ) , [{"label": "POSITIVE", "score": 1.0}] ) _lowerCAmelCase = text_classifier("This is bad !" ) self.assertEqual(nested_simplify(_lowerCAmelCase ) , [{"label": "NEGATIVE", "score": 1.0}] ) _lowerCAmelCase = text_classifier("Birds are a type of animal" ) self.assertEqual(nested_simplify(_lowerCAmelCase ) , [{"label": "POSITIVE", "score": 0.988}] ) @slow @require_tf def _snake_case ( self ) -> Any: _lowerCAmelCase = pipeline("text-classification" , framework="tf" ) _lowerCAmelCase = text_classifier("This is great !" ) self.assertEqual(nested_simplify(_lowerCAmelCase ) , [{"label": "POSITIVE", "score": 1.0}] ) _lowerCAmelCase = text_classifier("This is bad !" ) self.assertEqual(nested_simplify(_lowerCAmelCase ) , [{"label": "NEGATIVE", "score": 1.0}] ) _lowerCAmelCase = text_classifier("Birds are a type of animal" ) self.assertEqual(nested_simplify(_lowerCAmelCase ) , [{"label": "POSITIVE", "score": 0.988}] ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> str: _lowerCAmelCase = TextClassificationPipeline(model=_lowerCAmelCase , tokenizer=_lowerCAmelCase ) return text_classifier, ["HuggingFace is in", "This is another test"] def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]: _lowerCAmelCase = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 _lowerCAmelCase = "HuggingFace is in" _lowerCAmelCase = text_classifier(_lowerCAmelCase ) self.assertEqual(nested_simplify(_lowerCAmelCase ) , [{"label": ANY(_lowerCAmelCase ), "score": ANY(_lowerCAmelCase )}] ) self.assertTrue(outputs[0]["label"] in model.config.idalabel.values() ) _lowerCAmelCase = ["HuggingFace is in ", "Paris is in France"] _lowerCAmelCase = text_classifier(_lowerCAmelCase ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [{"label": ANY(_lowerCAmelCase ), "score": ANY(_lowerCAmelCase )}, {"label": ANY(_lowerCAmelCase ), "score": ANY(_lowerCAmelCase )}] , ) self.assertTrue(outputs[0]["label"] in model.config.idalabel.values() ) self.assertTrue(outputs[1]["label"] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format _lowerCAmelCase = text_classifier(_lowerCAmelCase , top_k=_lowerCAmelCase ) _lowerCAmelCase = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [[{"label": ANY(_lowerCAmelCase ), "score": ANY(_lowerCAmelCase )}] * N, [{"label": ANY(_lowerCAmelCase ), "score": ANY(_lowerCAmelCase )}] * N] , ) _lowerCAmelCase = {"text": "HuggingFace is in ", "text_pair": "Paris is in France"} _lowerCAmelCase = text_classifier(_lowerCAmelCase ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , {"label": ANY(_lowerCAmelCase ), "score": ANY(_lowerCAmelCase )} , ) self.assertTrue(outputs["label"] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. _lowerCAmelCase = [["HuggingFace is in ", "Paris is in France"]] with self.assertRaises(_lowerCAmelCase ): text_classifier(_lowerCAmelCase ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility _lowerCAmelCase = text_classifier([[["HuggingFace is in ", "Paris is in France"]]] ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [{"label": ANY(_lowerCAmelCase ), "score": ANY(_lowerCAmelCase )}] , ) self.assertTrue(outputs[0]["label"] in model.config.idalabel.values() )
489
0
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float: return price * (1 + tax_rate) if __name__ == "__main__": print(f'''{price_plus_tax(100, 0.25) = }''') print(f'''{price_plus_tax(1_25.50, 0.05) = }''')
66
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase = { "configuration_poolformer": [ "POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "PoolFormerConfig", "PoolFormerOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["PoolFormerFeatureExtractor"] UpperCamelCase = ["PoolFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "PoolFormerForImageClassification", "PoolFormerModel", "PoolFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure)
66
1
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase( self ): lowercase = StableDiffusionKDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" ) lowercase = sd_pipe.to(lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase ) sd_pipe.set_scheduler("sample_euler" ) lowercase = "A painting of a squirrel eating a burger" lowercase = torch.manual_seed(0 ) lowercase = sd_pipe([prompt] , generator=lowerCamelCase , guidance_scale=9.0 , num_inference_steps=20 , output_type="np" ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase = np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase( self ): lowercase = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) lowercase = sd_pipe.to(lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase ) sd_pipe.set_scheduler("sample_euler" ) lowercase = "A painting of a squirrel eating a burger" lowercase = torch.manual_seed(0 ) lowercase = sd_pipe([prompt] , generator=lowerCamelCase , guidance_scale=9.0 , num_inference_steps=20 , output_type="np" ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase = np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1 def UpperCamelCase( self ): lowercase = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) lowercase = sd_pipe.to(lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase ) sd_pipe.set_scheduler("sample_dpmpp_2m" ) lowercase = "A painting of a squirrel eating a burger" lowercase = torch.manual_seed(0 ) lowercase = sd_pipe( [prompt] , generator=lowerCamelCase , guidance_scale=7.5 , num_inference_steps=15 , output_type="np" , use_karras_sigmas=lowerCamelCase , ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase = np.array( [0.11381689, 0.12112921, 0.1389457, 0.12549606, 0.1244964, 0.10831517, 0.11562866, 0.10867816, 0.10499048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
706
'''simple docstring''' import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated __magic_name__ : Union[str, Any] = collections.namedtuple("""_Datasets""", ["""train""", """validation""", """test"""]) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ __magic_name__ : int = """https://storage.googleapis.com/cvdf-datasets/mnist/""" def snake_case_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' _snake_case = numpy.dtype(numpy.uintaa ).newbyteorder(">" ) return numpy.frombuffer(bytestream.read(4 ) , dtype=SCREAMING_SNAKE_CASE__ )[0] @deprecated(SCREAMING_SNAKE_CASE__ , "Please use tf.data to implement this functionality." ) def snake_case_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' print("Extracting" , f.name ) with gzip.GzipFile(fileobj=SCREAMING_SNAKE_CASE__ ) as bytestream: _snake_case = _readaa(SCREAMING_SNAKE_CASE__ ) if magic != 20_51: raise ValueError( "Invalid magic number %d in MNIST image file: %s" % (magic, f.name) ) _snake_case = _readaa(SCREAMING_SNAKE_CASE__ ) _snake_case = _readaa(SCREAMING_SNAKE_CASE__ ) _snake_case = _readaa(SCREAMING_SNAKE_CASE__ ) _snake_case = bytestream.read(rows * cols * num_images ) _snake_case = numpy.frombuffer(SCREAMING_SNAKE_CASE__ , dtype=numpy.uinta ) _snake_case = data.reshape(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 1 ) return data @deprecated(SCREAMING_SNAKE_CASE__ , "Please use tf.one_hot on tensors." ) def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' _snake_case = labels_dense.shape[0] _snake_case = numpy.arange(SCREAMING_SNAKE_CASE__ ) * num_classes _snake_case = numpy.zeros((num_labels, num_classes) ) _snake_case = 1 return labels_one_hot @deprecated(SCREAMING_SNAKE_CASE__ , "Please use tf.data to implement this functionality." ) def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=10 ): '''simple docstring''' print("Extracting" , f.name ) with gzip.GzipFile(fileobj=SCREAMING_SNAKE_CASE__ ) as bytestream: _snake_case = _readaa(SCREAMING_SNAKE_CASE__ ) if magic != 20_49: raise ValueError( "Invalid magic number %d in MNIST label file: %s" % (magic, f.name) ) _snake_case = _readaa(SCREAMING_SNAKE_CASE__ ) _snake_case = bytestream.read(SCREAMING_SNAKE_CASE__ ) _snake_case = numpy.frombuffer(SCREAMING_SNAKE_CASE__ , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return labels class __SCREAMING_SNAKE_CASE : '''simple docstring''' @deprecated( lowerCamelCase , "Please use alternatives such as official/mnist/_DataSet.py" " from tensorflow/models." , ) def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase=False , lowerCamelCase=False , lowerCamelCase=dtypes.floataa , lowerCamelCase=True , lowerCamelCase=None , ): _snake_case , _snake_case = random_seed.get_seed(lowerCamelCase ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) _snake_case = dtypes.as_dtype(lowerCamelCase ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError("Invalid image dtype %r, expected uint8 or float32" % dtype ) if fake_data: _snake_case = 10_000 _snake_case = one_hot else: assert ( images.shape[0] == labels.shape[0] ), F'''images.shape: {images.shape} labels.shape: {labels.shape}''' _snake_case = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 _snake_case = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. _snake_case = images.astype(numpy.floataa ) _snake_case = numpy.multiply(lowerCamelCase , 1.0 / 255.0 ) _snake_case = images _snake_case = labels _snake_case = 0 _snake_case = 0 @property def UpperCamelCase( self ): return self._images @property def UpperCamelCase( self ): return self._labels @property def UpperCamelCase( self ): return self._num_examples @property def UpperCamelCase( self ): return self._epochs_completed def UpperCamelCase( self , lowerCamelCase , lowerCamelCase=False , lowerCamelCase=True ): if fake_data: _snake_case = [1] * 784 _snake_case = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(lowerCamelCase )], [fake_label for _ in range(lowerCamelCase )], ) _snake_case = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: _snake_case = numpy.arange(self._num_examples ) numpy.random.shuffle(lowerCamelCase ) _snake_case = self.images[perma] _snake_case = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch _snake_case = self._num_examples - start _snake_case = self._images[start : self._num_examples] _snake_case = self._labels[start : self._num_examples] # Shuffle the data if shuffle: _snake_case = numpy.arange(self._num_examples ) numpy.random.shuffle(lowerCamelCase ) _snake_case = self.images[perm] _snake_case = self.labels[perm] # Start next epoch _snake_case = 0 _snake_case = batch_size - rest_num_examples _snake_case = self._index_in_epoch _snake_case = self._images[start:end] _snake_case = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size _snake_case = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(SCREAMING_SNAKE_CASE__ , "Please write your own downloading logic." ) def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if not gfile.Exists(SCREAMING_SNAKE_CASE__ ): gfile.MakeDirs(SCREAMING_SNAKE_CASE__ ) _snake_case = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if not gfile.Exists(SCREAMING_SNAKE_CASE__ ): urllib.request.urlretrieve(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # noqa: S310 with gfile.GFile(SCREAMING_SNAKE_CASE__ ) as f: _snake_case = f.size() print("Successfully downloaded" , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , "bytes." ) return filepath @deprecated( SCREAMING_SNAKE_CASE__ , "Please use alternatives such as:" " tensorflow_datasets.load('mnist')" ) def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=dtypes.floataa , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=50_00 , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=DEFAULT_SOURCE_URL , ): '''simple docstring''' if fake_data: def fake(): return _DataSet( [] , [] , fake_data=SCREAMING_SNAKE_CASE__ , one_hot=SCREAMING_SNAKE_CASE__ , dtype=SCREAMING_SNAKE_CASE__ , seed=SCREAMING_SNAKE_CASE__ ) _snake_case = fake() _snake_case = fake() _snake_case = fake() return _Datasets(train=SCREAMING_SNAKE_CASE__ , validation=SCREAMING_SNAKE_CASE__ , test=SCREAMING_SNAKE_CASE__ ) if not source_url: # empty string check _snake_case = DEFAULT_SOURCE_URL _snake_case = "train-images-idx3-ubyte.gz" _snake_case = "train-labels-idx1-ubyte.gz" _snake_case = "t10k-images-idx3-ubyte.gz" _snake_case = "t10k-labels-idx1-ubyte.gz" _snake_case = _maybe_download( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , source_url + train_images_file ) with gfile.Open(SCREAMING_SNAKE_CASE__ , "rb" ) as f: _snake_case = _extract_images(SCREAMING_SNAKE_CASE__ ) _snake_case = _maybe_download( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , source_url + train_labels_file ) with gfile.Open(SCREAMING_SNAKE_CASE__ , "rb" ) as f: _snake_case = _extract_labels(SCREAMING_SNAKE_CASE__ , one_hot=SCREAMING_SNAKE_CASE__ ) _snake_case = _maybe_download( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , source_url + test_images_file ) with gfile.Open(SCREAMING_SNAKE_CASE__ , "rb" ) as f: _snake_case = _extract_images(SCREAMING_SNAKE_CASE__ ) _snake_case = _maybe_download( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , source_url + test_labels_file ) with gfile.Open(SCREAMING_SNAKE_CASE__ , "rb" ) as f: _snake_case = _extract_labels(SCREAMING_SNAKE_CASE__ , one_hot=SCREAMING_SNAKE_CASE__ ) if not 0 <= validation_size <= len(SCREAMING_SNAKE_CASE__ ): _snake_case = ( "Validation size should be between 0 and " f'''{len(SCREAMING_SNAKE_CASE__ )}. Received: {validation_size}.''' ) raise ValueError(SCREAMING_SNAKE_CASE__ ) _snake_case = train_images[:validation_size] _snake_case = train_labels[:validation_size] _snake_case = train_images[validation_size:] _snake_case = train_labels[validation_size:] _snake_case = {"dtype": dtype, "reshape": reshape, "seed": seed} _snake_case = _DataSet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) _snake_case = _DataSet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) _snake_case = _DataSet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) return _Datasets(train=SCREAMING_SNAKE_CASE__ , validation=SCREAMING_SNAKE_CASE__ , test=SCREAMING_SNAKE_CASE__ )
368
0
'''simple docstring''' import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def lowercase_ ( __A : Tuple , __A : Union[str, Any] , __A : Optional[int] ) -> str: """simple docstring""" lowercase : Union[str, Any] =BertConfig.from_json_file(__A ) print(F'Building PyTorch model from configuration: {config}' ) lowercase : Optional[int] =BertForPreTraining(__A ) # Load weights from tf checkpoint load_tf_weights_in_bert(__A , __A , __A ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , __A ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--bert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) SCREAMING_SNAKE_CASE = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
94
'''simple docstring''' import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {name: getattr(transformers, name + """Fast""") for name in SLOW_TO_FAST_CONVERTERS} def _lowercase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(f"Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}." ) if tokenizer_name is None: __A : Tuple = TOKENIZER_CLASSES else: __A : Dict = {tokenizer_name: getattr(SCREAMING_SNAKE_CASE , tokenizer_name + "Fast" )} logger.info(f"Loading tokenizer classes: {tokenizer_names}" ) for tokenizer_name in tokenizer_names: __A : int = TOKENIZER_CLASSES[tokenizer_name] __A : Union[str, Any] = True if checkpoint_name is None: __A : Dict = list(tokenizer_class.max_model_input_sizes.keys() ) else: __A : str = [checkpoint_name] logger.info(f"For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}" ) for checkpoint in checkpoint_names: logger.info(f"Loading {tokenizer_class.__class__.__name__} {checkpoint}" ) # Load tokenizer __A : List[str] = tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE , force_download=SCREAMING_SNAKE_CASE ) # Save fast tokenizer logger.info(f"Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}" ) # For organization names we create sub-directories if "/" in checkpoint: __A ,__A : Optional[Any] = checkpoint.split("/" ) __A : str = os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) elif add_prefix: __A : Optional[int] = checkpoint __A : Any = dump_path else: __A : int = None __A : Optional[int] = dump_path logger.info(f"=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: __A : Any = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] __A : Optional[int] = file_path.split(SCREAMING_SNAKE_CASE )[-1][0] if next_char == "/": __A : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __A : Union[str, Any] = None logger.info(f"=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}" ) __A : Tuple = tokenizer.save_pretrained( SCREAMING_SNAKE_CASE , legacy_format=SCREAMING_SNAKE_CASE , filename_prefix=SCREAMING_SNAKE_CASE ) logger.info(f"=> File names {file_names}" ) for file_name in file_names: if not file_name.endswith("tokenizer.json" ): os.remove(SCREAMING_SNAKE_CASE ) logger.info(f"=> removing {file_name}" ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output generated fast tokenizer files.""" ) parser.add_argument( """--tokenizer_name""", default=None, type=str, help=( F"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ """download and convert all the checkpoints from AWS.""" ), ) parser.add_argument( """--checkpoint_name""", default=None, type=str, help="""Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.""", ) parser.add_argument( """--force_download""", action="""store_true""", help="""Re-download checkpoints.""", ) _UpperCamelCase = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
111
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: A__: List[Any] = None A__: List[str] = logging.get_logger(__name__) A__: Union[str, Any] = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} A__: Any = { '''vocab_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json''', }, } A__: str = { '''xlnet-base-cased''': None, '''xlnet-large-cased''': None, } A__: Tuple = '''▁''' # Segments (not really needed) A__: int = 0 A__: Tuple = 1 A__: int = 2 A__: Dict = 3 A__: Union[str, Any] = 4 class A__ ( UpperCAmelCase__ ): __UpperCamelCase : str = VOCAB_FILES_NAMES __UpperCamelCase : int = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Dict = "left" __UpperCamelCase : Union[str, Any] = XLNetTokenizer def __init__( self :Any , SCREAMING_SNAKE_CASE :List[Any]=None , SCREAMING_SNAKE_CASE :Union[str, Any]=None , SCREAMING_SNAKE_CASE :Tuple=False , SCREAMING_SNAKE_CASE :Optional[Any]=True , SCREAMING_SNAKE_CASE :Optional[int]=False , SCREAMING_SNAKE_CASE :List[Any]="<s>" , SCREAMING_SNAKE_CASE :int="</s>" , SCREAMING_SNAKE_CASE :Union[str, Any]="<unk>" , SCREAMING_SNAKE_CASE :Optional[int]="<sep>" , SCREAMING_SNAKE_CASE :Any="<pad>" , SCREAMING_SNAKE_CASE :List[str]="<cls>" , SCREAMING_SNAKE_CASE :Optional[Any]="<mask>" , SCREAMING_SNAKE_CASE :Union[str, Any]=["<eop>", "<eod>"] , **SCREAMING_SNAKE_CASE :List[Any] , ) -> List[Any]: '''simple docstring''' _a : List[str] =AddedToken(SCREAMING_SNAKE_CASE , lstrip=SCREAMING_SNAKE_CASE , rstrip=SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else mask_token super().__init__( vocab_file=SCREAMING_SNAKE_CASE , tokenizer_file=SCREAMING_SNAKE_CASE , do_lower_case=SCREAMING_SNAKE_CASE , remove_space=SCREAMING_SNAKE_CASE , keep_accents=SCREAMING_SNAKE_CASE , bos_token=SCREAMING_SNAKE_CASE , eos_token=SCREAMING_SNAKE_CASE , unk_token=SCREAMING_SNAKE_CASE , sep_token=SCREAMING_SNAKE_CASE , pad_token=SCREAMING_SNAKE_CASE , cls_token=SCREAMING_SNAKE_CASE , mask_token=SCREAMING_SNAKE_CASE , additional_special_tokens=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) _a : Optional[int] =3 _a : Dict =do_lower_case _a : str =remove_space _a : List[Any] =keep_accents _a : List[Any] =vocab_file _a : Optional[Any] =False if not self.vocab_file else True def __UpperCAmelCase ( self :Union[str, Any] , SCREAMING_SNAKE_CASE :List[int] , SCREAMING_SNAKE_CASE :Optional[List[int]] = None ) -> List[int]: '''simple docstring''' _a : List[Any] =[self.sep_token_id] _a : Dict =[self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __UpperCAmelCase ( self :List[Any] , SCREAMING_SNAKE_CASE :List[int] , SCREAMING_SNAKE_CASE :Optional[List[int]] = None ) -> List[int]: '''simple docstring''' _a : str =[self.sep_token_id] _a : Any =[2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __UpperCAmelCase ( self :List[str] , SCREAMING_SNAKE_CASE :str , SCREAMING_SNAKE_CASE :Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(SCREAMING_SNAKE_CASE ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return _a : Tuple =os.path.join( SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
710
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging A__: Any = logging.get_logger(__name__) class A__ ( UpperCAmelCase__ ): __UpperCamelCase : Dict = ["pixel_values"] def __init__( self :List[Any] , SCREAMING_SNAKE_CASE :bool = True , SCREAMING_SNAKE_CASE :Optional[Dict[str, int]] = None , SCREAMING_SNAKE_CASE :PILImageResampling = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE :bool = True , SCREAMING_SNAKE_CASE :Dict[str, int] = None , SCREAMING_SNAKE_CASE :bool = True , SCREAMING_SNAKE_CASE :Union[int, float] = 1 / 2_5_5 , SCREAMING_SNAKE_CASE :bool = True , SCREAMING_SNAKE_CASE :Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE :Optional[Union[float, List[float]]] = None , **SCREAMING_SNAKE_CASE :Optional[int] , ) -> None: '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE ) _a : Any =size if size is not None else {"""shortest_edge""": 2_5_6} _a : int =get_size_dict(SCREAMING_SNAKE_CASE , default_to_square=SCREAMING_SNAKE_CASE ) _a : Union[str, Any] =crop_size if crop_size is not None else {"""height""": 2_2_4, """width""": 2_2_4} _a : Union[str, Any] =get_size_dict(SCREAMING_SNAKE_CASE ) _a : List[Any] =do_resize _a : Optional[int] =size _a : Union[str, Any] =resample _a : List[Any] =do_center_crop _a : Optional[Any] =crop_size _a : List[Any] =do_rescale _a : Optional[int] =rescale_factor _a : int =do_normalize _a : Tuple =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _a : Any =image_std if image_std is not None else IMAGENET_STANDARD_STD def __UpperCAmelCase ( self :Union[str, Any] , SCREAMING_SNAKE_CASE :np.ndarray , SCREAMING_SNAKE_CASE :Dict[str, int] , SCREAMING_SNAKE_CASE :PILImageResampling = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE :Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE :Any , ) -> np.ndarray: '''simple docstring''' _a : Any =get_size_dict(SCREAMING_SNAKE_CASE , default_to_square=SCREAMING_SNAKE_CASE ) if "shortest_edge" not in size: raise ValueError(f"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) _a : Union[str, Any] =get_resize_output_image_size(SCREAMING_SNAKE_CASE , size=size["""shortest_edge"""] , default_to_square=SCREAMING_SNAKE_CASE ) return resize(SCREAMING_SNAKE_CASE , size=SCREAMING_SNAKE_CASE , resample=SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :Dict , SCREAMING_SNAKE_CASE :np.ndarray , SCREAMING_SNAKE_CASE :Dict[str, int] , SCREAMING_SNAKE_CASE :Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE :Union[str, Any] , ) -> np.ndarray: '''simple docstring''' _a : List[str] =get_size_dict(SCREAMING_SNAKE_CASE ) return center_crop(SCREAMING_SNAKE_CASE , size=(size["""height"""], size["""width"""]) , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :List[str] , SCREAMING_SNAKE_CASE :np.ndarray , SCREAMING_SNAKE_CASE :float , SCREAMING_SNAKE_CASE :Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE :Optional[Any] ) -> np.ndarray: '''simple docstring''' return rescale(SCREAMING_SNAKE_CASE , scale=SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :List[str] , SCREAMING_SNAKE_CASE :np.ndarray , SCREAMING_SNAKE_CASE :Union[float, List[float]] , SCREAMING_SNAKE_CASE :Union[float, List[float]] , SCREAMING_SNAKE_CASE :Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE :List[Any] , ) -> np.ndarray: '''simple docstring''' return normalize(SCREAMING_SNAKE_CASE , mean=SCREAMING_SNAKE_CASE , std=SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :str , SCREAMING_SNAKE_CASE :ImageInput , SCREAMING_SNAKE_CASE :Optional[bool] = None , SCREAMING_SNAKE_CASE :Dict[str, int] = None , SCREAMING_SNAKE_CASE :PILImageResampling = None , SCREAMING_SNAKE_CASE :bool = None , SCREAMING_SNAKE_CASE :Dict[str, int] = None , SCREAMING_SNAKE_CASE :Optional[bool] = None , SCREAMING_SNAKE_CASE :Optional[float] = None , SCREAMING_SNAKE_CASE :Optional[bool] = None , SCREAMING_SNAKE_CASE :Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE :Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE :Optional[Union[str, TensorType]] = None , SCREAMING_SNAKE_CASE :Union[str, ChannelDimension] = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE :Optional[Any] , ) -> Optional[Any]: '''simple docstring''' _a : Optional[Any] =do_resize if do_resize is not None else self.do_resize _a : int =size if size is not None else self.size _a : str =get_size_dict(SCREAMING_SNAKE_CASE , default_to_square=SCREAMING_SNAKE_CASE ) _a : int =resample if resample is not None else self.resample _a : Optional[int] =do_center_crop if do_center_crop is not None else self.do_center_crop _a : Union[str, Any] =crop_size if crop_size is not None else self.crop_size _a : Any =get_size_dict(SCREAMING_SNAKE_CASE ) _a : Any =do_rescale if do_rescale is not None else self.do_rescale _a : List[Any] =rescale_factor if rescale_factor is not None else self.rescale_factor _a : str =do_normalize if do_normalize is not None else self.do_normalize _a : Union[str, Any] =image_mean if image_mean is not None else self.image_mean _a : Optional[Any] =image_std if image_std is not None else self.image_std _a : List[Any] =make_list_of_images(SCREAMING_SNAKE_CASE ) if not valid_images(SCREAMING_SNAKE_CASE ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. _a : int =[to_numpy_array(SCREAMING_SNAKE_CASE ) for image in images] if do_resize: _a : Tuple =[self.resize(image=SCREAMING_SNAKE_CASE , size=SCREAMING_SNAKE_CASE , resample=SCREAMING_SNAKE_CASE ) for image in images] if do_center_crop: _a : Union[str, Any] =[self.center_crop(image=SCREAMING_SNAKE_CASE , size=SCREAMING_SNAKE_CASE ) for image in images] if do_rescale: _a : int =[self.rescale(image=SCREAMING_SNAKE_CASE , scale=SCREAMING_SNAKE_CASE ) for image in images] if do_normalize: _a : Any =[self.normalize(image=SCREAMING_SNAKE_CASE , mean=SCREAMING_SNAKE_CASE , std=SCREAMING_SNAKE_CASE ) for image in images] _a : Tuple =[to_channel_dimension_format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for image in images] _a : Any ={"""pixel_values""": images} return BatchFeature(data=SCREAMING_SNAKE_CASE , tensor_type=SCREAMING_SNAKE_CASE )
506
0
from itertools import permutations def lowercase__ ( A_: tuple ) -> bool: """simple docstring""" if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False __UpperCAmelCase =[7, 11, 13, 17] for i, test in enumerate(A_ ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def lowercase__ ( A_: int = 10 ) -> int: """simple docstring""" return sum( int("""""".join(map(A_ , A_ ) ) ) for num in permutations(range(A_ ) ) if is_substring_divisible(A_ ) ) if __name__ == "__main__": print(F"""{solution() = }""")
68
"""simple docstring""" from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = int(number**0.5 ) return number == sq * sq def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den UpperCAmelCase_ = x_den * y_den * z_den UpperCAmelCase_ = gcd(lowerCAmelCase__ , lowerCAmelCase__ ) top //= hcf bottom //= hcf return top, bottom def a__ ( lowerCAmelCase__ = 35 ): UpperCAmelCase_ = set() UpperCAmelCase_ = 42 UpperCAmelCase_ = Fraction(0 ) UpperCAmelCase_ = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 UpperCAmelCase_ = x_num * y_den + x_den * y_num UpperCAmelCase_ = x_den * y_den UpperCAmelCase_ = gcd(lowerCAmelCase__ , lowerCAmelCase__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCAmelCase_ = add_three( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) unique_s.add(lowerCAmelCase__ ) # n=2 UpperCAmelCase_ = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) UpperCAmelCase_ = x_den * x_den * y_den * y_den if is_sq(lowerCAmelCase__ ) and is_sq(lowerCAmelCase__ ): UpperCAmelCase_ = int(sqrt(lowerCAmelCase__ ) ) UpperCAmelCase_ = int(sqrt(lowerCAmelCase__ ) ) UpperCAmelCase_ = gcd(lowerCAmelCase__ , lowerCAmelCase__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCAmelCase_ = add_three( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) unique_s.add(lowerCAmelCase__ ) # n=-1 UpperCAmelCase_ = x_num * y_num UpperCAmelCase_ = x_den * y_num + x_num * y_den UpperCAmelCase_ = gcd(lowerCAmelCase__ , lowerCAmelCase__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCAmelCase_ = add_three( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) unique_s.add(lowerCAmelCase__ ) # n=2 UpperCAmelCase_ = x_num * x_num * y_num * y_num UpperCAmelCase_ = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(lowerCAmelCase__ ) and is_sq(lowerCAmelCase__ ): UpperCAmelCase_ = int(sqrt(lowerCAmelCase__ ) ) UpperCAmelCase_ = int(sqrt(lowerCAmelCase__ ) ) UpperCAmelCase_ = gcd(lowerCAmelCase__ , lowerCAmelCase__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCAmelCase_ = add_three( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) unique_s.add(lowerCAmelCase__ ) for num, den in unique_s: total += Fraction(lowerCAmelCase__ , lowerCAmelCase__ ) return total.denominator + total.numerator if __name__ == "__main__": print(F"{solution() = }")
82
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available A = { 'configuration_audio_spectrogram_transformer': [ 'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ASTConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ 'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'ASTForAudioClassification', 'ASTModel', 'ASTPreTrainedModel', ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = ['ASTFeatureExtractor'] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
704
A = 'Alexander Joslin' import operator as op from .stack import Stack def lowerCamelCase ( UpperCamelCase : str ) -> int: _lowerCamelCase = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub} _lowerCamelCase = Stack() _lowerCamelCase = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(UpperCamelCase ) ) elif i in operators: # RULE 2 operator_stack.push(UpperCamelCase ) elif i == ")": # RULE 4 _lowerCamelCase = operator_stack.peek() operator_stack.pop() _lowerCamelCase = operand_stack.peek() operand_stack.pop() _lowerCamelCase = operand_stack.peek() operand_stack.pop() _lowerCamelCase = operators[opr](UpperCamelCase , UpperCamelCase ) operand_stack.push(UpperCamelCase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": A = '(5 + ((4 * 2) * (2 + 3)))' # answer = 45 print(F'''{equation} = {dijkstras_two_stack_algorithm(equation)}''')
234
0
"""simple docstring""" import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class _UpperCAmelCase( __snake_case , unittest.TestCase ): lowercase__ = DebertaTokenizer lowercase__ = True lowercase__ = DebertaTokenizerFast def UpperCAmelCase ( self) -> Dict: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _UpperCamelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] _UpperCamelCase = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE)))) _UpperCamelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] _UpperCamelCase = {'''unk_token''': '''[UNK]'''} _UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) _UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE) + '''\n''') with open(self.merges_file , '''w''' , encoding='''utf-8''') as fp: fp.write('''\n'''.join(__SCREAMING_SNAKE_CASE)) def UpperCAmelCase ( self , **__a) -> List[Any]: '''simple docstring''' kwargs.update(self.special_tokens_map) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE) def UpperCAmelCase ( self , __a) -> Dict: '''simple docstring''' _UpperCamelCase = '''lower newer''' _UpperCamelCase = '''lower newer''' return input_text, output_text def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.get_tokenizer() _UpperCamelCase = '''lower newer''' _UpperCamelCase = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] _UpperCamelCase = tokenizer.tokenize(__SCREAMING_SNAKE_CASE) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) _UpperCamelCase = tokens + [tokenizer.unk_token] _UpperCamelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE) , __SCREAMING_SNAKE_CASE) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = self.get_tokenizer() _UpperCamelCase = tokenizer('''Hello''' , '''World''') _UpperCamelCase = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , __SCREAMING_SNAKE_CASE) @slow def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''') _UpperCamelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=__SCREAMING_SNAKE_CASE) _UpperCamelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__SCREAMING_SNAKE_CASE) _UpperCamelCase = tokenizer.encode( '''sequence builders''' , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE) _UpperCamelCase = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE) _UpperCamelCase = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE) _UpperCamelCase = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class) for tokenizer_class in tokenizer_classes: _UpperCamelCase = tokenizer_class.from_pretrained('''microsoft/deberta-base''') _UpperCamelCase = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] _UpperCamelCase = tokenizer(__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE) _UpperCamelCase = [tokenizer.decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE) for seq in encoding['''input_ids''']] # fmt: off _UpperCamelCase = { '''input_ids''': [ [1, 21_18, 1_11_26, 5_65, 35, 83, 2_51_91, 1_63, 1_88_54, 13, 1_21_56, 12, 1_61_01, 2_53_76, 1_38_07, 9, 2_22_05, 2_78_93, 16_35, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 21_18, 1_11_26, 5_65, 2_45_36, 80, 4_37_97, 48_78, 73_73, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1_33, 78, 65, 16, 10, 37_24, 15_38, 3_31_83, 1_13_03, 4_37_97, 19_38, 4, 8_70, 2_41_65, 2_91_05, 5, 7_39, 3_26_44, 3_31_83, 1_13_03, 3_61_73, 88, 80, 6_50, 78_21, 4_59_40, 6, 52, 25_59, 5, 18_36, 9, 5, 73_97, 1_31_71, 31, 5, 18_36, 9, 3_26_44, 3_31_83, 1_13_03, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on _UpperCamelCase = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , __SCREAMING_SNAKE_CASE) for expected, decoded in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)
19
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE : List[Any] = {'''configuration_plbart''': ['''PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PLBartConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Union[str, Any] = ['''PLBartTokenizer'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : List[str] = [ '''PLBART_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PLBartForCausalLM''', '''PLBartForConditionalGeneration''', '''PLBartForSequenceClassification''', '''PLBartModel''', '''PLBartPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
549
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor _UpperCAmelCase : Any = logging.get_logger(__name__) class lowercase ( lowercase_ ): def __init__( self , *snake_case , **snake_case ): warnings.warn( 'The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use DeformableDetrImageProcessor instead.' , snake_case , ) super().__init__(*snake_case , **snake_case )
711
_UpperCAmelCase : str = [0, 2, 4, 6, 8] _UpperCAmelCase : Any = [1, 3, 5, 7, 9] def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 snake_case_ = 0 for digit in range(10 ): snake_case_ = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 10 , UpperCamelCase__ , UpperCamelCase__ ) return result snake_case_ = 0 for digita in range(10 ): snake_case_ = digita if (remainder + digita) % 2 == 0: snake_case_ = ODD_DIGITS else: snake_case_ = EVEN_DIGITS for digita in other_parity_digits: snake_case_ = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 10 , UpperCamelCase__ , UpperCamelCase__ , ) return result def __lowerCamelCase ( UpperCamelCase__ = 9 ): '''simple docstring''' snake_case_ = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(UpperCamelCase__ , 0 , [0] * length , UpperCamelCase__ ) return result if __name__ == "__main__": print(F'''{solution() = }''')
108
0
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCamelCase : Any = 16 UpperCamelCase : Any = 32 def A__ ( __lowerCAmelCase : Accelerator , __lowerCAmelCase : int = 16 ): lowerCamelCase__ = AutoTokenizer.from_pretrained("""bert-base-cased""" ) lowerCamelCase__ = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(__lowerCAmelCase : Union[str, Any] ): # max_length=None => use the model max length (it's actually the default) lowerCamelCase__ = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__lowerCAmelCase , max_length=__lowerCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCamelCase__ = datasets.map( __lowerCAmelCase , batched=__lowerCAmelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCamelCase__ = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(__lowerCAmelCase : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCamelCase__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCamelCase__ = 16 elif accelerator.mixed_precision != "no": lowerCamelCase__ = 8 else: lowerCamelCase__ = None return tokenizer.pad( __lowerCAmelCase , padding="""longest""" , max_length=__lowerCAmelCase , pad_to_multiple_of=__lowerCAmelCase , return_tensors="""pt""" , ) # Instantiate dataloaders. lowerCamelCase__ = DataLoader( tokenized_datasets["""train"""] , shuffle=__lowerCAmelCase , collate_fn=__lowerCAmelCase , batch_size=__lowerCAmelCase ) lowerCamelCase__ = DataLoader( tokenized_datasets["""validation"""] , shuffle=__lowerCAmelCase , collate_fn=__lowerCAmelCase , batch_size=__lowerCAmelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders UpperCamelCase : int = mocked_dataloaders # noqa: F811 def A__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] ): # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , __lowerCAmelCase ) == "1": lowerCamelCase__ = 2 # Initialize accelerator lowerCamelCase__ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCamelCase__ = config["""lr"""] lowerCamelCase__ = int(config["""num_epochs"""] ) lowerCamelCase__ = int(config["""seed"""] ) lowerCamelCase__ = int(config["""batch_size"""] ) lowerCamelCase__ = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation lowerCamelCase__ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: lowerCamelCase__ = batch_size // MAX_GPU_BATCH_SIZE lowerCamelCase__ = MAX_GPU_BATCH_SIZE set_seed(__lowerCAmelCase ) lowerCamelCase__ , lowerCamelCase__ = get_dataloaders(__lowerCAmelCase , __lowerCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCamelCase__ = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=__lowerCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCamelCase__ = model.to(accelerator.device ) # Instantiate optimizer lowerCamelCase__ = AdamW(params=model.parameters() , lr=__lowerCAmelCase ) # Instantiate scheduler lowerCamelCase__ = get_linear_schedule_with_warmup( optimizer=__lowerCAmelCase , num_warmup_steps=100 , num_training_steps=(len(__lowerCAmelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = accelerator.prepare( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Now we train the model for epoch in range(__lowerCAmelCase ): model.train() for step, batch in enumerate(__lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowerCamelCase__ = model(**__lowerCAmelCase ) lowerCamelCase__ = outputs.loss lowerCamelCase__ = loss / gradient_accumulation_steps accelerator.backward(__lowerCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() lowerCamelCase__ = 0 for step, batch in enumerate(__lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCamelCase__ = model(**__lowerCAmelCase ) lowerCamelCase__ = outputs.logits.argmax(dim=-1 ) lowerCamelCase__ , lowerCamelCase__ = accelerator.gather((predictions, batch["""labels"""]) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(__lowerCAmelCase ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples lowerCamelCase__ = predictions[: len(eval_dataloader.dataset ) - samples_seen] lowerCamelCase__ = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=__lowerCAmelCase , references=__lowerCAmelCase , ) lowerCamelCase__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , __lowerCAmelCase ) def A__ ( ): lowerCamelCase__ = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=__lowerCAmelCase , default=__lowerCAmelCase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) lowerCamelCase__ = parser.parse_args() lowerCamelCase__ = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(__lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": main()
50
'''simple docstring''' from PIL import Image def A__ ( __lowerCAmelCase : Image , __lowerCAmelCase : float ): def brightness(__lowerCAmelCase : int ) -> float: return 128 + level + (c - 128) if not -255.0 <= level <= 255.0: raise ValueError("""level must be between -255.0 (black) and 255.0 (white)""" ) return img.point(__lowerCAmelCase ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change brightness to 100 UpperCamelCase : Union[str, Any] = change_brightness(img, 1_00) brigt_img.save('image_data/lena_brightness.png', format='png')
50
1
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING A_ = logging.get_logger(__name__) A_ = { 'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json', # See all DETR models at https://huggingface.co/models?filter=detr } class SCREAMING_SNAKE_CASE_ ( UpperCamelCase_ ): """simple docstring""" A__ = "detr" A__ = ["past_key_values"] A__ = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , _lowerCAmelCase=True , _lowerCAmelCase=None , _lowerCAmelCase=3 , _lowerCAmelCase=100 , _lowerCAmelCase=6 , _lowerCAmelCase=2048 , _lowerCAmelCase=8 , _lowerCAmelCase=6 , _lowerCAmelCase=2048 , _lowerCAmelCase=8 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=True , _lowerCAmelCase="relu" , _lowerCAmelCase=256 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1.0 , _lowerCAmelCase=False , _lowerCAmelCase="sine" , _lowerCAmelCase="resnet50" , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase=1 , _lowerCAmelCase=5 , _lowerCAmelCase=2 , _lowerCAmelCase=1 , _lowerCAmelCase=1 , _lowerCAmelCase=5 , _lowerCAmelCase=2 , _lowerCAmelCase=0.1 , **_lowerCAmelCase , ): if backbone_config is not None and use_timm_backbone: raise ValueError("You can\'t specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) lowerCamelCase__ = CONFIG_MAPPING['''resnet'''](out_features=["stage4"] ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): lowerCamelCase__ = backbone_config.get("model_type" ) lowerCamelCase__ = CONFIG_MAPPING[backbone_model_type] lowerCamelCase__ = config_class.from_dict(UpperCamelCase__ ) # set timm attributes to None lowerCamelCase__ = None, None, None lowerCamelCase__ = use_timm_backbone lowerCamelCase__ = backbone_config lowerCamelCase__ = num_channels lowerCamelCase__ = num_queries lowerCamelCase__ = d_model lowerCamelCase__ = encoder_ffn_dim lowerCamelCase__ = encoder_layers lowerCamelCase__ = encoder_attention_heads lowerCamelCase__ = decoder_ffn_dim lowerCamelCase__ = decoder_layers lowerCamelCase__ = decoder_attention_heads lowerCamelCase__ = dropout lowerCamelCase__ = attention_dropout lowerCamelCase__ = activation_dropout lowerCamelCase__ = activation_function lowerCamelCase__ = init_std lowerCamelCase__ = init_xavier_std lowerCamelCase__ = encoder_layerdrop lowerCamelCase__ = decoder_layerdrop lowerCamelCase__ = encoder_layers lowerCamelCase__ = auxiliary_loss lowerCamelCase__ = position_embedding_type lowerCamelCase__ = backbone lowerCamelCase__ = use_pretrained_backbone lowerCamelCase__ = dilation # Hungarian matcher lowerCamelCase__ = class_cost lowerCamelCase__ = bbox_cost lowerCamelCase__ = giou_cost # Loss coefficients lowerCamelCase__ = mask_loss_coefficient lowerCamelCase__ = dice_loss_coefficient lowerCamelCase__ = bbox_loss_coefficient lowerCamelCase__ = giou_loss_coefficient lowerCamelCase__ = eos_coefficient super().__init__(is_encoder_decoder=UpperCamelCase__ , **UpperCamelCase__ ) @property def __magic_name__ ( self ): return self.encoder_attention_heads @property def __magic_name__ ( self ): return self.d_model @classmethod def __magic_name__ ( cls , _lowerCAmelCase , **_lowerCAmelCase ): return cls(backbone_config=UpperCamelCase__ , **UpperCamelCase__ ) def __magic_name__ ( self ): lowerCamelCase__ = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: lowerCamelCase__ = self.backbone_config.to_dict() lowerCamelCase__ = self.__class__.model_type return output class SCREAMING_SNAKE_CASE_ ( UpperCamelCase_ ): """simple docstring""" A__ = version.parse("1.11" ) @property def __magic_name__ ( self ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def __magic_name__ ( self ): return 1E-5 @property def __magic_name__ ( self ): return 12
712
from __future__ import annotations class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): lowerCamelCase__ , lowerCamelCase__ = text, pattern lowerCamelCase__ , lowerCamelCase__ = len(_lowerCAmelCase ), len(_lowerCAmelCase ) def __magic_name__ ( self , _lowerCAmelCase ): for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def __magic_name__ ( self , _lowerCAmelCase ): for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def __magic_name__ ( self ): # searches pattern in text and returns index positions lowerCamelCase__ = [] for i in range(self.textLen - self.patLen + 1 ): lowerCamelCase__ = self.mismatch_in_text(_lowerCAmelCase ) if mismatch_index == -1: positions.append(_lowerCAmelCase ) else: lowerCamelCase__ = self.match_in_pattern(self.text[mismatch_index] ) lowerCamelCase__ = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions A_ = "ABAABA" A_ = "AB" A_ = BoyerMooreSearch(text, pattern) A_ = bms.bad_character_heuristic() if len(positions) == 0: print("No match found") else: print("Pattern found in following positions: ") print(positions)
360
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { 'uw-madison/mra-base-512-4': 'https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json', } class _a ( UpperCamelCase__ ): _lowercase : Any = '''mra''' def __init__( self: Tuple , UpperCamelCase_: Optional[Any]=50_265 , UpperCamelCase_: Union[str, Any]=768 , UpperCamelCase_: Optional[Any]=12 , UpperCamelCase_: Tuple=12 , UpperCamelCase_: Dict=3_072 , UpperCamelCase_: Optional[int]="gelu" , UpperCamelCase_: Any=0.1 , UpperCamelCase_: List[str]=0.1 , UpperCamelCase_: List[Any]=512 , UpperCamelCase_: Union[str, Any]=1 , UpperCamelCase_: Dict=0.02 , UpperCamelCase_: Any=1E-5 , UpperCamelCase_: List[str]="absolute" , UpperCamelCase_: Dict=4 , UpperCamelCase_: Union[str, Any]="full" , UpperCamelCase_: List[str]=0 , UpperCamelCase_: Union[str, Any]=0 , UpperCamelCase_: str=1 , UpperCamelCase_: int=0 , UpperCamelCase_: Tuple=2 , **UpperCamelCase_: Optional[int] , ) -> Union[str, Any]: """simple docstring""" super().__init__(pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ ) lowercase__ = vocab_size lowercase__ = max_position_embeddings lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = initializer_range lowercase__ = type_vocab_size lowercase__ = layer_norm_eps lowercase__ = position_embedding_type lowercase__ = block_per_row lowercase__ = approx_mode lowercase__ = initial_prior_first_n_blocks lowercase__ = initial_prior_diagonal_n_blocks
43
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCAmelCase = '\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")\n\n >>> repo = "openai/shap-e-img2img"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png"\n >>> image = load_image(image_url).convert("RGB")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], "corgi_3d.gif")\n ```\n' @dataclass class _a ( UpperCamelCase__ ): _lowercase : Union[PIL.Image.Image, np.ndarray] class _a ( UpperCamelCase__ ): def __init__( self: Dict , UpperCamelCase_: PriorTransformer , UpperCamelCase_: CLIPVisionModel , UpperCamelCase_: CLIPImageProcessor , UpperCamelCase_: HeunDiscreteScheduler , UpperCamelCase_: ShapERenderer , ) -> List[str]: """simple docstring""" super().__init__() self.register_modules( prior=UpperCamelCase_ , image_encoder=UpperCamelCase_ , image_processor=UpperCamelCase_ , scheduler=UpperCamelCase_ , renderer=UpperCamelCase_ , ) def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: Tuple , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: int , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Tuple ) -> List[Any]: """simple docstring""" if latents is None: lowercase__ = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=UpperCamelCase_ , dtype=UpperCamelCase_ ) else: if latents.shape != shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}' ) lowercase__ = latents.to(UpperCamelCase_ ) lowercase__ = latents * scheduler.init_noise_sigma return latents def lowerCamelCase_ ( self: str , UpperCamelCase_: Tuple=0 ) -> int: """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) lowercase__ = torch.device(f'cuda:{gpu_id}' ) lowercase__ = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(UpperCamelCase_ , UpperCamelCase_ ) @property def lowerCamelCase_ ( self: List[Any] ) -> Dict: """simple docstring""" if self.device != torch.device('''meta''' ) or not hasattr(self.image_encoder , '''_hf_hook''' ): return self.device for module in self.image_encoder.modules(): if ( hasattr(UpperCamelCase_ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def lowerCamelCase_ ( self: Dict , UpperCamelCase_: Any , UpperCamelCase_: int , UpperCamelCase_: Tuple , UpperCamelCase_: str , ) -> Any: """simple docstring""" if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and isinstance(image[0] , torch.Tensor ): lowercase__ = torch.cat(UpperCamelCase_ , axis=0 ) if image[0].ndim == 4 else torch.stack(UpperCamelCase_ , axis=0 ) if not isinstance(UpperCamelCase_ , torch.Tensor ): lowercase__ = self.image_processor(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values[0].unsqueeze(0 ) lowercase__ = image.to(dtype=self.image_encoder.dtype , device=UpperCamelCase_ ) lowercase__ = self.image_encoder(UpperCamelCase_ )['''last_hidden_state'''] lowercase__ = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 lowercase__ = image_embeds.repeat_interleave(UpperCamelCase_ , dim=0 ) if do_classifier_free_guidance: lowercase__ = torch.zeros_like(UpperCamelCase_ ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase__ = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(UpperCamelCase_ ) def __call__( self: Tuple , UpperCamelCase_: Union[PIL.Image.Image, List[PIL.Image.Image]] , UpperCamelCase_: int = 1 , UpperCamelCase_: int = 25 , UpperCamelCase_: Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_: Optional[torch.FloatTensor] = None , UpperCamelCase_: float = 4.0 , UpperCamelCase_: int = 64 , UpperCamelCase_: Optional[str] = "pil" , UpperCamelCase_: bool = True , ) -> Union[str, Any]: """simple docstring""" if isinstance(UpperCamelCase_ , PIL.Image.Image ): lowercase__ = 1 elif isinstance(UpperCamelCase_ , torch.Tensor ): lowercase__ = image.shape[0] elif isinstance(UpperCamelCase_ , UpperCamelCase_ ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): lowercase__ = len(UpperCamelCase_ ) else: raise ValueError( f'`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(UpperCamelCase_ )}' ) lowercase__ = self._execution_device lowercase__ = batch_size * num_images_per_prompt lowercase__ = guidance_scale > 1.0 lowercase__ = self._encode_image(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # prior self.scheduler.set_timesteps(UpperCamelCase_ , device=UpperCamelCase_ ) lowercase__ = self.scheduler.timesteps lowercase__ = self.prior.config.num_embeddings lowercase__ = self.prior.config.embedding_dim lowercase__ = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim lowercase__ = latents.reshape(latents.shape[0] , UpperCamelCase_ , UpperCamelCase_ ) for i, t in enumerate(self.progress_bar(UpperCamelCase_ ) ): # expand the latents if we are doing classifier free guidance lowercase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase__ = self.scheduler.scale_model_input(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = self.prior( UpperCamelCase_ , timestep=UpperCamelCase_ , proj_embedding=UpperCamelCase_ , ).predicted_image_embedding # remove the variance lowercase__ , lowercase__ = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: lowercase__ , lowercase__ = noise_pred.chunk(2 ) lowercase__ = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) lowercase__ = self.scheduler.step( UpperCamelCase_ , timestep=UpperCamelCase_ , sample=UpperCamelCase_ , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=UpperCamelCase_ ) lowercase__ = [] for i, latent in enumerate(UpperCamelCase_ ): print() lowercase__ = self.renderer.decode( latent[None, :] , UpperCamelCase_ , size=UpperCamelCase_ , ray_batch_size=4_096 , n_coarse_samples=64 , n_fine_samples=128 , ) images.append(UpperCamelCase_ ) lowercase__ = torch.stack(UpperCamelCase_ ) if output_type not in ["np", "pil"]: raise ValueError(f'Only the output types `pil` and `np` are supported not output_type={output_type}' ) lowercase__ = images.cpu().numpy() if output_type == "pil": lowercase__ = [self.numpy_to_pil(UpperCamelCase_ ) for image in images] # Offload last model to CPU if hasattr(self , '''final_offload_hook''' ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=UpperCamelCase_ )
43
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def _UpperCamelCase ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE : str = TFCamembertModel.from_pretrained('jplu/tf-camembert-base' ) SCREAMING_SNAKE_CASE : int = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 25_543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" SCREAMING_SNAKE_CASE : Union[str, Any] = model(lowercase__ )['last_hidden_state'] SCREAMING_SNAKE_CASE : Union[str, Any] = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , lowercase__ ) # compare the actual values for a slice. SCREAMING_SNAKE_CASE : str = tf.convert_to_tensor( [[[-0.0_2_5_4, 0.0_2_3_5, 0.1_0_2_7], [0.0_6_0_6, -0.1_8_1_1, -0.0_4_1_8], [-0.1_5_6_1, -0.1_1_2_7, 0.2_6_8_7]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
179
'''simple docstring''' from __future__ import annotations def __lowerCAmelCase ( a_ , a_ = None ) -> list[list[str]]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = word_bank or [] # create a table SCREAMING_SNAKE_CASE : int = len(a_ ) + 1 SCREAMING_SNAKE_CASE : list[list[list[str]]] = [] for _ in range(a_ ): table.append([] ) # seed value SCREAMING_SNAKE_CASE : List[Any] = [[]] # because empty string has empty combination # iterate through the indices for i in range(a_ ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(a_ )] == word: SCREAMING_SNAKE_CASE : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(a_ )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(a_ )]: combination.reverse() return table[len(a_ )] if __name__ == "__main__": print(all_construct("""jwajalapa""", ["""jwa""", """j""", """w""", """a""", """la""", """lapa"""])) print(all_construct("""rajamati""", ["""s""", """raj""", """amat""", """raja""", """ma""", """i""", """t"""])) print( all_construct( """hexagonosaurus""", ["""h""", """ex""", """hex""", """ag""", """ago""", """ru""", """auru""", """rus""", """go""", """no""", """o""", """s"""], ) )
179
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _UpperCAmelCase : List[str] = logging.get_logger(__name__) _UpperCAmelCase : Any = { 'microsoft/table-transformer-detection': ( 'https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json' ), } class lowerCAmelCase ( UpperCAmelCase_ ): UpperCAmelCase__ = """table-transformer""" UpperCAmelCase__ = ["""past_key_values"""] UpperCAmelCase__ = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self : str , UpperCAmelCase : Any=True , UpperCAmelCase : str=None , UpperCAmelCase : Union[str, Any]=3 , UpperCAmelCase : Optional[Any]=100 , UpperCAmelCase : Optional[int]=6 , UpperCAmelCase : List[Any]=2048 , UpperCAmelCase : Optional[Any]=8 , UpperCAmelCase : Dict=6 , UpperCAmelCase : Any=2048 , UpperCAmelCase : List[Any]=8 , UpperCAmelCase : Dict=0.0 , UpperCAmelCase : Dict=0.0 , UpperCAmelCase : List[Any]=True , UpperCAmelCase : int="relu" , UpperCAmelCase : str=256 , UpperCAmelCase : Dict=0.1 , UpperCAmelCase : str=0.0 , UpperCAmelCase : List[Any]=0.0 , UpperCAmelCase : Dict=0.0_2 , UpperCAmelCase : Union[str, Any]=1.0 , UpperCAmelCase : Tuple=False , UpperCAmelCase : Any="sine" , UpperCAmelCase : Optional[int]="resnet50" , UpperCAmelCase : Dict=True , UpperCAmelCase : Dict=False , UpperCAmelCase : str=1 , UpperCAmelCase : List[str]=5 , UpperCAmelCase : Union[str, Any]=2 , UpperCAmelCase : Optional[int]=1 , UpperCAmelCase : Dict=1 , UpperCAmelCase : str=5 , UpperCAmelCase : List[Any]=2 , UpperCAmelCase : Optional[Any]=0.1 , **UpperCAmelCase : Optional[int] , ) -> str: if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) lowerCamelCase__ : str = CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(a__ , a__ ): lowerCamelCase__ : Optional[int] = backbone_config.get('model_type' ) lowerCamelCase__ : Any = CONFIG_MAPPING[backbone_model_type] lowerCamelCase__ : Union[str, Any] = config_class.from_dict(a__ ) # set timm attributes to None lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Optional[int] = None, None, None lowerCamelCase__ : List[Any] = use_timm_backbone lowerCamelCase__ : Union[str, Any] = backbone_config lowerCamelCase__ : int = num_channels lowerCamelCase__ : List[Any] = num_queries lowerCamelCase__ : List[str] = d_model lowerCamelCase__ : Union[str, Any] = encoder_ffn_dim lowerCamelCase__ : List[Any] = encoder_layers lowerCamelCase__ : str = encoder_attention_heads lowerCamelCase__ : Optional[int] = decoder_ffn_dim lowerCamelCase__ : List[str] = decoder_layers lowerCamelCase__ : int = decoder_attention_heads lowerCamelCase__ : List[str] = dropout lowerCamelCase__ : Optional[int] = attention_dropout lowerCamelCase__ : Tuple = activation_dropout lowerCamelCase__ : List[Any] = activation_function lowerCamelCase__ : Tuple = init_std lowerCamelCase__ : str = init_xavier_std lowerCamelCase__ : int = encoder_layerdrop lowerCamelCase__ : Union[str, Any] = decoder_layerdrop lowerCamelCase__ : Union[str, Any] = encoder_layers lowerCamelCase__ : List[str] = auxiliary_loss lowerCamelCase__ : List[Any] = position_embedding_type lowerCamelCase__ : List[str] = backbone lowerCamelCase__ : Union[str, Any] = use_pretrained_backbone lowerCamelCase__ : str = dilation # Hungarian matcher lowerCamelCase__ : Dict = class_cost lowerCamelCase__ : Optional[int] = bbox_cost lowerCamelCase__ : str = giou_cost # Loss coefficients lowerCamelCase__ : List[Any] = mask_loss_coefficient lowerCamelCase__ : Tuple = dice_loss_coefficient lowerCamelCase__ : Dict = bbox_loss_coefficient lowerCamelCase__ : Optional[int] = giou_loss_coefficient lowerCamelCase__ : Optional[int] = eos_coefficient super().__init__(is_encoder_decoder=a__ , **a__ ) @property def A_ ( self : Dict ) -> str: return self.encoder_attention_heads @property def A_ ( self : Any ) -> Optional[int]: return self.d_model class lowerCAmelCase ( UpperCAmelCase_ ): UpperCAmelCase__ = version.parse("""1.11""" ) @property def A_ ( self : Tuple ) -> int: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('pixel_mask', {0: 'batch'}), ] ) @property def A_ ( self : int ) -> Optional[int]: return 1e-5 @property def A_ ( self : Tuple ) -> Union[str, Any]: return 12
295
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
51
0
from __future__ import annotations def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(_SCREAMING_SNAKE_CASE ) if n > 1: factors.append(_SCREAMING_SNAKE_CASE ) return factors if __name__ == "__main__": import doctest doctest.testmod()
620
def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : int = 200 ): """simple docstring""" SCREAMING_SNAKE_CASE_ = [1, 2, 5, 10, 20, 50, 100, 200] SCREAMING_SNAKE_CASE_ = [0] * (pence + 1) SCREAMING_SNAKE_CASE_ = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(_SCREAMING_SNAKE_CASE , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 73_682
620
1
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu __lowerCAmelCase = False class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def _a ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _a ( self ): """simple docstring""" return 12 @property def _a ( self ): """simple docstring""" return 12 @property def _a ( self ): """simple docstring""" return 32 @property def _a ( self ): """simple docstring""" torch.manual_seed(0 ) a_ = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def _a ( self ): """simple docstring""" a_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def _a ( self ): """simple docstring""" torch.manual_seed(0 ) a_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(_lowercase ) @property def _a ( self ): """simple docstring""" torch.manual_seed(0 ) a_ = 12 a_ = 12 a_ = { "attention_bias": True, "cross_attention_dim": 32, "attention_head_dim": height * width, "num_attention_heads": 1, "num_vector_embeds": self.num_embed, "num_embeds_ada_norm": self.num_embeds_ada_norm, "norm_num_groups": 32, "sample_size": width, "activation_fn": "geglu-approximate", } a_ = TransformeraDModel(**_lowercase ) return model def _a ( self ): """simple docstring""" a_ = "cpu" a_ = self.dummy_vqvae a_ = self.dummy_text_encoder a_ = self.dummy_tokenizer a_ = self.dummy_transformer a_ = VQDiffusionScheduler(self.num_embed ) a_ = LearnedClassifierFreeSamplingEmbeddings(learnable=_lowercase ) a_ = VQDiffusionPipeline( vqvae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , transformer=_lowercase , scheduler=_lowercase , learned_classifier_free_sampling_embeddings=_lowercase , ) a_ = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) a_ = "teddy bear playing in the pool" a_ = torch.Generator(device=_lowercase ).manual_seed(0 ) a_ = pipe([prompt] , generator=_lowercase , num_inference_steps=2 , output_type='np' ) a_ = output.images a_ = torch.Generator(device=_lowercase ).manual_seed(0 ) a_ = pipe( [prompt] , generator=_lowercase , output_type='np' , return_dict=_lowercase , num_inference_steps=2 )[0] a_ = image[0, -3:, -3:, -1] a_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) a_ = np.array([0.6_551, 0.6_168, 0.5_008, 0.5_676, 0.5_659, 0.4_295, 0.6_073, 0.5_599, 0.4_992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self ): """simple docstring""" a_ = "cpu" a_ = self.dummy_vqvae a_ = self.dummy_text_encoder a_ = self.dummy_tokenizer a_ = self.dummy_transformer a_ = VQDiffusionScheduler(self.num_embed ) a_ = LearnedClassifierFreeSamplingEmbeddings( learnable=_lowercase , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) a_ = VQDiffusionPipeline( vqvae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , transformer=_lowercase , scheduler=_lowercase , learned_classifier_free_sampling_embeddings=_lowercase , ) a_ = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) a_ = "teddy bear playing in the pool" a_ = torch.Generator(device=_lowercase ).manual_seed(0 ) a_ = pipe([prompt] , generator=_lowercase , num_inference_steps=2 , output_type='np' ) a_ = output.images a_ = torch.Generator(device=_lowercase ).manual_seed(0 ) a_ = pipe( [prompt] , generator=_lowercase , output_type='np' , return_dict=_lowercase , num_inference_steps=2 )[0] a_ = image[0, -3:, -3:, -1] a_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) a_ = np.array([0.6_693, 0.6_075, 0.4_959, 0.5_701, 0.5_583, 0.4_333, 0.6_171, 0.5_684, 0.4_988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def _a ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self ): """simple docstring""" a_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy' ) a_ = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq' ) a_ = pipeline.to(_lowercase ) pipeline.set_progress_bar_config(disable=_lowercase ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though a_ = torch.Generator(device=_lowercase ).manual_seed(0 ) a_ = pipeline( 'teddy bear playing in the pool' , num_images_per_prompt=1 , generator=_lowercase , output_type='np' , ) a_ = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
536
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging A = logging.get_logger(__name__) A = { 'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/resolve/main/config.json', 'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/config.json', 'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json', 'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json', 'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/config.json', 'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json', } class _a ( SCREAMING_SNAKE_CASE__): __magic_name__ = """bloom""" __magic_name__ = ["""past_key_values"""] __magic_name__ = { """num_hidden_layers""": """n_layer""", """num_attention_heads""": """n_head""", } def __init__( self : Tuple , _lowercase : List[Any]=250880 , _lowercase : int=64 , _lowercase : Optional[Any]=2 , _lowercase : Dict=8 , _lowercase : List[str]=1E-5 , _lowercase : List[Any]=0.02 , _lowercase : Optional[Any]=True , _lowercase : Dict=1 , _lowercase : Union[str, Any]=2 , _lowercase : str=False , _lowercase : List[Any]=0.0 , _lowercase : Tuple=0.0 , _lowercase : Dict=1 , _lowercase : int=False , **_lowercase : int , ) -> List[str]: snake_case : Any = vocab_size # Backward compatibility with n_embed kwarg snake_case : Any = kwargs.pop("n_embed" , _lowercase ) snake_case : Tuple = hidden_size if n_embed is None else n_embed snake_case : Optional[Any] = n_layer snake_case : Optional[Any] = n_head snake_case : Union[str, Any] = layer_norm_epsilon snake_case : int = initializer_range snake_case : int = use_cache snake_case : int = pretraining_tp snake_case : Tuple = apply_residual_connection_post_layernorm snake_case : Union[str, Any] = hidden_dropout snake_case : Optional[Any] = attention_dropout snake_case : List[Any] = bos_token_id snake_case : Any = eos_token_id snake_case : Optional[Any] = slow_but_exact super().__init__(bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) class _a ( SCREAMING_SNAKE_CASE__): __magic_name__ = version.parse("""1.12""") def __init__( self : int , _lowercase : PretrainedConfig , _lowercase : str = "default" , _lowercase : List[PatchingSpec] = None , _lowercase : bool = False , ) -> Dict: super().__init__(_lowercase , task=_lowercase , patching_specs=_lowercase , use_past=_lowercase ) if not getattr(self._config , "pad_token_id" , _lowercase ): # TODO: how to do that better? snake_case : int = 0 @property def __lowercase ( self : str ) -> Mapping[str, Mapping[int, str]]: snake_case : int = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(_lowercase , direction="inputs" , inverted_values_shape=_lowercase ) snake_case : Optional[int] = {0: "batch", 1: "past_sequence + sequence"} else: snake_case : Dict = {0: "batch", 1: "sequence"} return common_inputs @property def __lowercase ( self : int ) -> int: return self._config.n_layer @property def __lowercase ( self : Dict ) -> int: return self._config.n_head @property def __lowercase ( self : Union[str, Any] ) -> float: return 1E-3 def __lowercase ( self : List[str] , _lowercase : "PreTrainedTokenizer" , _lowercase : int = -1 , _lowercase : int = -1 , _lowercase : bool = False , _lowercase : Optional["TensorType"] = None , ) -> Mapping[str, Any]: snake_case : int = super(_lowercase , self ).generate_dummy_inputs( _lowercase , batch_size=_lowercase , seq_length=_lowercase , is_pair=_lowercase , framework=_lowercase ) # We need to order the input in the way they appears in the forward() snake_case : Any = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch snake_case , snake_case : List[str] = common_inputs["input_ids"].shape # Not using the same length for past_key_values snake_case : Optional[Any] = seqlen + 2 snake_case : Optional[int] = self._config.hidden_size // self.num_attention_heads snake_case : List[str] = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) snake_case : Any = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) snake_case : Dict = [ (torch.zeros(_lowercase ), torch.zeros(_lowercase )) for _ in range(self.num_layers ) ] snake_case : Tuple = common_inputs["attention_mask"] if self.use_past: snake_case : Any = ordered_inputs["attention_mask"].dtype snake_case : List[str] = torch.cat( [ordered_inputs["attention_mask"], torch.ones(_lowercase , _lowercase , dtype=_lowercase )] , dim=1 ) return ordered_inputs @property def __lowercase ( self : str ) -> int: return 13
449
0
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase : List[Any] = { 'configuration_mctct': ['MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MCTCTConfig'], 'feature_extraction_mctct': ['MCTCTFeatureExtractor'], 'processing_mctct': ['MCTCTProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Tuple = [ 'MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MCTCTForCTC', 'MCTCTModel', 'MCTCTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys __lowerCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
721
import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def __magic_name__ ( A : Union[str, Any] ): '''simple docstring''' a = fname.split(os.path.sep )[-1] return re.search(R"^(.*)_\d+\.jpg$", A ).groups()[0] class snake_case__ (_UpperCamelCase ): """simple docstring""" def __init__( self : str , __lowerCamelCase : Dict , __lowerCamelCase : Dict=None , __lowerCamelCase : Union[str, Any]=None ) -> Tuple: a = file_names a = image_transform a = label_to_id def __len__( self : Any ) -> Tuple: return len(self.file_names ) def __getitem__( self : List[Any] , __lowerCamelCase : List[Any] ) -> int: a = self.file_names[idx] a = PIL.Image.open(__lowerCamelCase ) a = raw_image.convert("RGB" ) if self.image_transform is not None: a = self.image_transform(__lowerCamelCase ) a = extract_label(__lowerCamelCase ) if self.label_to_id is not None: a = self.label_to_id[label] return {"image": image, "label": label} def __magic_name__ ( A : str, A : int ): '''simple docstring''' if args.with_tracking: a = Accelerator( cpu=args.cpu, mixed_precision=args.mixed_precision, log_with="all", project_dir=args.project_dir ) else: a = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs a = config["lr"] a = int(config["num_epochs"] ) a = int(config["seed"] ) a = int(config["batch_size"] ) a = config["image_size"] if not isinstance(A, (list, tuple) ): a = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps, "isdigit" ): if args.checkpointing_steps == "epoch": a = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): a = int(args.checkpointing_steps ) else: raise ValueError( F"""Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.""" ) else: a = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: a = os.path.split(A )[-1].split("." )[0] accelerator.init_trackers(A, A ) # Grab all the image filenames a = [os.path.join(args.data_dir, A ) for fname in os.listdir(args.data_dir ) if fname.endswith(".jpg" )] # Build the label correspondences a = [extract_label(A ) for fname in file_names] a = list(set(A ) ) id_to_label.sort() a = {lbl: i for i, lbl in enumerate(A )} # Set the seed before splitting the data. np.random.seed(A ) torch.manual_seed(A ) torch.cuda.manual_seed_all(A ) # Split our filenames between train and validation a = np.random.permutation(len(A ) ) a = int(0.8 * len(A ) ) a = random_perm[:cut] a = random_perm[cut:] # For training we use a simple RandomResizedCrop a = Compose([RandomResizedCrop(A, scale=(0.5, 1.0) ), ToTensor()] ) a = PetsDataset( [file_names[i] for i in train_split], image_transform=A, label_to_id=A ) # For evaluation, we use a deterministic Resize a = Compose([Resize(A ), ToTensor()] ) a = PetsDataset([file_names[i] for i in eval_split], image_transform=A, label_to_id=A ) # Instantiate dataloaders. a = DataLoader(A, shuffle=A, batch_size=A, num_workers=4 ) a = DataLoader(A, shuffle=A, batch_size=A, num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) a = create_model("resnet50d", pretrained=A, num_classes=len(A ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). a = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): a = False for param in model.get_classifier().parameters(): a = True # We normalize the batches of images to be a bit faster. a = torch.tensor(model.default_cfg["mean"] )[None, :, None, None].to(accelerator.device ) a = torch.tensor(model.default_cfg["std"] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer a = torch.optim.Adam(params=model.parameters(), lr=lr / 25 ) # Instantiate learning rate scheduler a = OneCycleLR(optimizer=A, max_lr=A, epochs=A, steps_per_epoch=len(A ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. a , a , a , a , a = accelerator.prepare( A, A, A, A, A ) # We need to keep track of how many total steps we have iterated over a = 0 # We also need to keep track of the starting epoch so files are named properly a = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(F"""Resumed from checkpoint: {args.resume_from_checkpoint}""" ) accelerator.load_state(args.resume_from_checkpoint ) a = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint a = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) a = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` a = os.path.splitext(A )[0] if "epoch" in training_difference: a = int(training_difference.replace("epoch_", "" ) ) + 1 a = None else: a = int(training_difference.replace("step_", "" ) ) a = resume_step // len(A ) resume_step -= starting_epoch * len(A ) # Now we train the model for epoch in range(A, A ): model.train() if args.with_tracking: a = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step a = accelerator.skip_first_batches(A, A ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader a = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. a = {k: v.to(accelerator.device ) for k, v in batch.items()} a = (batch["image"] - mean) / std a = model(A ) a = torch.nn.functional.cross_entropy(A, batch["label"] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(A ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(A, A ): a = F"""step_{overall_step}""" if overall_step % checkpointing_steps == 0: if args.output_dir is not None: a = os.path.join(args.output_dir, A ) accelerator.save_state(A ) model.eval() a = 0 a = 0 for step, batch in enumerate(A ): # We could avoid this line since we set the accelerator with `device_placement=True`. a = {k: v.to(accelerator.device ) for k, v in batch.items()} a = (batch["image"] - mean) / std with torch.no_grad(): a = model(A ) a = outputs.argmax(dim=-1 ) a , a = accelerator.gather_for_metrics((predictions, batch["label"]) ) a = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() a = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}: {100 * eval_metric:.2f}""" ) if args.with_tracking: accelerator.log( { "accuracy": 100 * eval_metric, "train_loss": total_loss.item() / len(A ), "epoch": epoch, }, step=A, ) if checkpointing_steps == "epoch": a = F"""epoch_{epoch}""" if args.output_dir is not None: a = os.path.join(args.output_dir, A ) accelerator.save_state(A ) if args.with_tracking: accelerator.end_training() def __magic_name__ ( ): '''simple docstring''' a = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument("--data_dir", required=A, help="The data folder on disk." ) parser.add_argument("--fp16", action="store_true", help="If passed, will use FP16 training." ) parser.add_argument( "--mixed_precision", type=A, default=A, choices=["no", "fp16", "bf16", "fp8"], help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU.", ) parser.add_argument("--cpu", action="store_true", help="If passed, will train on the CPU." ) parser.add_argument( "--checkpointing_steps", type=A, default=A, help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.", ) parser.add_argument( "--output_dir", type=A, default=".", help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory.", ) parser.add_argument( "--resume_from_checkpoint", type=A, default=A, help="If the training should continue from a checkpoint folder.", ) parser.add_argument( "--with_tracking", action="store_true", help="Whether to load in all available experiment trackers from the environment and use them for logging.", ) parser.add_argument( "--project_dir", type=A, default="logs", help="Location on where to store experiment tracking logs` and relevent project information", ) a = parser.parse_args() a = {"lr": 3E-2, "num_epochs": 3, "seed": 42, "batch_size": 64, "image_size": 224} training_function(A, A ) if __name__ == "__main__": main()
662
0
from sklearn.metrics import fa_score import datasets lowercase__ : Optional[Any] = "\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n" lowercase__ : Union[str, Any] = "\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `'binary'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n\n - 'binary': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - 'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {'f1': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results['f1'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results['f1'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"macro\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"micro\")\n >>> print(round(results['f1'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"weighted\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'f1': array([0.8, 0. , 0. ])}\n" lowercase__ : Union[str, Any] = "\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): def lowerCAmelCase_ ( self ) -> Optional[Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("int32" ) ), "references": datasets.Sequence(datasets.Value("int32" ) ), } if self.config_name == "multilabel" else { "predictions": datasets.Value("int32" ), "references": datasets.Value("int32" ), } ) , reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html"] , ) def lowerCAmelCase_ ( self , A , A , A=None , A=1 , A="binary" , A=None ) -> str: '''simple docstring''' a = fa_score( A , A , labels=A , pos_label=A , average=A , sample_weight=A ) return {"f1": float(A ) if score.size == 1 else score}
515
lowercase__ : Optional[int] = 9.8_0665 def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = g) -> float: if fluid_density <= 0: raise ValueError("Impossible fluid density") if volume < 0: raise ValueError("Impossible Object volume") if gravity <= 0: raise ValueError("Impossible Gravity") return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
515
1
'''simple docstring''' def UpperCAmelCase ( lowerCamelCase_ :List[str] ): '''simple docstring''' snake_case_ : Tuple = len(__lowerCAmelCase ) snake_case_ : str = len(matrix[0] ) snake_case_ : Any = min(__lowerCAmelCase , __lowerCAmelCase ) for row in range(__lowerCAmelCase ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , __lowerCAmelCase ): snake_case_ : Union[str, Any] = matrix[col][row] / matrix[row][row] for i in range(__lowerCAmelCase , __lowerCAmelCase ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows snake_case_ : Union[str, Any] = True for i in range(row + 1 , __lowerCAmelCase ): if matrix[i][row] != 0: snake_case_ : Optional[int] = matrix[i], matrix[row] snake_case_ : Any = False break if reduce: rank -= 1 for i in range(__lowerCAmelCase ): snake_case_ : Dict = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
718
'''simple docstring''' from abc import ABC, abstractmethod from argparse import ArgumentParser class __UpperCamelCase ( lowercase__ ): @staticmethod @abstractmethod def a__ ( _UpperCamelCase :ArgumentParser ): raise NotImplementedError() @abstractmethod def a__ ( self :Optional[Any] ): raise NotImplementedError()
267
0
"""simple docstring""" from __future__ import annotations _lowercase : Union[str, Any] = 1.6_0_2_1e-1_9 # units = C def lowercase__ ( snake_case_ :List[str] , snake_case_ :int , snake_case_ :List[str] , ): if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif conductivity < 0: raise ValueError('''Conductivity cannot be negative''' ) elif electron_conc < 0: raise ValueError('''Electron concentration cannot be negative''' ) elif mobility < 0: raise ValueError('''mobility cannot be negative''' ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
49
'''simple docstring''' import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() __A =2 class _snake_case : def __init__( self , *, # begin keyword-only arguments _lowerCamelCase="<s>" , _lowerCamelCase="<pad>" , _lowerCamelCase="</s>" , _lowerCamelCase="<unk>" , _lowerCamelCase=None , ): UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : List[str] = bos, unk, pad, eos UpperCAmelCase__ : Any = [] UpperCAmelCase__ : List[str] = [] UpperCAmelCase__ : Union[str, Any] = {} UpperCAmelCase__ : Union[str, Any] = self.add_symbol(_lowerCamelCase) UpperCAmelCase__ : Any = self.add_symbol(_lowerCamelCase) UpperCAmelCase__ : List[str] = self.add_symbol(_lowerCamelCase) UpperCAmelCase__ : str = self.add_symbol(_lowerCamelCase) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(_lowerCamelCase) UpperCAmelCase__ : Optional[Any] = len(self.symbols) def __eq__( self , _lowerCamelCase): return self.indices == other.indices def __getitem__( self , _lowerCamelCase): if idx < len(self.symbols): return self.symbols[idx] return self.unk_word def __len__( self): return len(self.symbols) def __contains__( self , _lowerCamelCase): return sym in self.indices @classmethod def snake_case__ ( cls , _lowerCamelCase): UpperCAmelCase__ : Dict = cls() d.add_from_file(_lowerCamelCase) return d def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase=1 , _lowerCamelCase=False): if word in self.indices and not overwrite: UpperCAmelCase__ : Tuple = self.indices[word] UpperCAmelCase__ : Optional[int] = self.count[idx] + n return idx else: UpperCAmelCase__ : Union[str, Any] = len(self.symbols) UpperCAmelCase__ : Optional[int] = idx self.symbols.append(_lowerCamelCase) self.count.append(_lowerCamelCase) return idx def snake_case__ ( self , _lowerCamelCase): return 0 def snake_case__ ( self , _lowerCamelCase): if isinstance(_lowerCamelCase , _lowerCamelCase): try: with open(_lowerCamelCase , """r""" , encoding="""utf-8""") as fd: self.add_from_file(_lowerCamelCase) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception("""Incorrect encoding detected in {}, please rebuild the dataset""".format(_lowerCamelCase)) return UpperCAmelCase__ : Optional[int] = f.readlines() UpperCAmelCase__ : List[Any] = self._load_meta(_lowerCamelCase) for line in lines[indices_start_line:]: try: UpperCAmelCase__ , UpperCAmelCase__ : int = line.rstrip().rsplit(""" """ , 1) if field == "#fairseq:overwrite": UpperCAmelCase__ : Optional[Any] = True UpperCAmelCase__ , UpperCAmelCase__ : int = line.rsplit(""" """ , 1) else: UpperCAmelCase__ : List[Any] = False UpperCAmelCase__ : int = int(_lowerCamelCase) UpperCAmelCase__ : Any = line if word in self and not overwrite: raise RuntimeError( """Duplicate word found when loading Dictionary: '{}'. """ """Duplicate words can overwrite earlier ones by adding the """ """#fairseq:overwrite flag at the end of the corresponding row """ """in the dictionary file. If using the Camembert model, please """ """download an updated copy of the model file.""".format(_lowerCamelCase)) self.add_symbol(_lowerCamelCase , n=_lowerCamelCase , overwrite=_lowerCamelCase) except ValueError: raise ValueError("""Incorrect dictionary format, expected '<token> <cnt> [flags]'""") def _UpperCamelCase ( UpperCamelCase__ ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} UpperCAmelCase__ : Optional[Any] = dict((re.sub(R"""@@$""" , """""" , UpperCamelCase__ ), v) if k.endswith("""@@""" ) else (re.sub(R"""$""" , """</w>""" , UpperCamelCase__ ), v) for k, v in d.items() ) UpperCAmelCase__ : int = """<s> <pad> </s> <unk>""".split() # restore the special tokens for k in keep_keys: del da[f'''{k}</w>'''] UpperCAmelCase__ : str = d[k] # restore return da def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): # prep if not os.path.exists(UpperCamelCase__ ): raise ValueError(f'''path {biogpt_checkpoint_path} does not exist!''' ) os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) print(f'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models UpperCAmelCase__ : str = os.path.join(UpperCamelCase__ , """checkpoint.pt""" ) if not os.path.isfile(UpperCamelCase__ ): raise ValueError(f'''path to the file {checkpoint_file} does not exist!''' ) UpperCAmelCase__ : Any = torch.load(UpperCamelCase__ , map_location="""cpu""" ) UpperCAmelCase__ : Union[str, Any] = chkpt["""cfg"""]["""model"""] # dicts UpperCAmelCase__ : str = os.path.join(UpperCamelCase__ , """dict.txt""" ) if not os.path.isfile(UpperCamelCase__ ): raise ValueError(f'''path to the file {dict_file} does not exist!''' ) UpperCAmelCase__ : Tuple = Dictionary.load(UpperCamelCase__ ) UpperCAmelCase__ : Union[str, Any] = rewrite_dict_keys(src_dict.indices ) UpperCAmelCase__ : Union[str, Any] = len(UpperCamelCase__ ) UpperCAmelCase__ : int = os.path.join(UpperCamelCase__ , VOCAB_FILES_NAMES["""vocab_file"""] ) print(f'''Generating {src_vocab_file} of {src_vocab_size} records''' ) with open(UpperCamelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(UpperCamelCase__ , ensure_ascii=UpperCamelCase__ , indent=UpperCamelCase__ ) ) # merges_file (bpecodes) UpperCAmelCase__ : Optional[int] = os.path.join(UpperCamelCase__ , """bpecodes""" ) if not os.path.isfile(UpperCamelCase__ ): raise ValueError(f'''path to the file {bpecodes_file} does not exist!''' ) UpperCAmelCase__ : Dict = os.path.join(UpperCamelCase__ , VOCAB_FILES_NAMES["""merges_file"""] ) shutil.copyfile(UpperCamelCase__ , UpperCamelCase__ ) # model config UpperCAmelCase__ : str = os.path.join(UpperCamelCase__ , """config.json""" ) UpperCAmelCase__ : Any = { """activation_dropout""": args["""activation_dropout"""], """architectures""": ["""BioGptForCausalLM"""], """attention_probs_dropout_prob""": args["""attention_dropout"""], """bos_token_id""": 0, """eos_token_id""": 2, """hidden_act""": args["""activation_fn"""], """hidden_dropout_prob""": args["""dropout"""], """hidden_size""": args["""decoder_embed_dim"""], """initializer_range""": 0.02, """intermediate_size""": args["""decoder_ffn_embed_dim"""], """layer_norm_eps""": 1e-12, """layerdrop""": args["""decoder_layerdrop"""], """max_position_embeddings""": args["""max_target_positions"""], """model_type""": """biogpt""", """num_attention_heads""": args["""decoder_attention_heads"""], """num_hidden_layers""": args["""decoder_layers"""], """pad_token_id""": 1, """scale_embedding""": not args["""no_scale_embedding"""], """tie_word_embeddings""": args["""share_decoder_input_output_embed"""], """vocab_size""": src_vocab_size, } # good hparam defaults to start with print(f'''Generating {biogpt_model_config_file}''' ) with open(UpperCamelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(UpperCamelCase__ , ensure_ascii=UpperCamelCase__ , indent=UpperCamelCase__ ) ) # tokenizer config UpperCAmelCase__ : Any = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase__ : str = { """bos_token""": """<s>""", """eos_token""": """</s>""", """model_max_length""": 1_0_2_4, """pad_token""": """<pad>""", """special_tokens_map_file""": None, """tokenizer_class""": """BioGptTokenizer""", """unk_token""": """<unk>""", } print(f'''Generating {biogpt_tokenizer_config_file}''' ) with open(UpperCamelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(UpperCamelCase__ , ensure_ascii=UpperCamelCase__ , indent=UpperCamelCase__ ) ) # model UpperCAmelCase__ : List[str] = chkpt["""model"""] # remove unneeded keys UpperCAmelCase__ : Dict = [ """decoder.version""", ] for k in ignore_keys: model_state_dict.pop(UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase__ : Tuple = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith("""output_projection.weight""" ): UpperCAmelCase__ : Union[str, Any] = model_state_dict.pop(UpperCamelCase__ ) else: UpperCAmelCase__ : List[Any] = model_state_dict.pop(UpperCamelCase__ ) UpperCAmelCase__ : str = BioGptConfig.from_pretrained(UpperCamelCase__ ) UpperCAmelCase__ : Tuple = BioGptForCausalLM(UpperCamelCase__ ) # check that it loads ok model_new.load_state_dict(UpperCamelCase__ ) # save UpperCAmelCase__ : Any = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) print(f'''Generating {pytorch_weights_dump_path}''' ) torch.save(UpperCamelCase__ , UpperCamelCase__ ) print("""Conversion is done!""" ) if __name__ == "__main__": __A =argparse.ArgumentParser() # Required parameters parser.add_argument( '--biogpt_checkpoint_path', default=None, type=str, required=True, help=( 'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,' ' bpecodes, etc.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __A =parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
407
0
'''simple docstring''' from math import sqrt def _lowerCAmelCase ( lowerCamelCase_ : int ): assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' must been an int and positive" __lowercase = True # 0 and 1 are none primes. if number <= 1: __lowercase = False for divisor in range(2 , int(round(sqrt(lowerCamelCase_ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: __lowercase = False break # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'status' must been from type bool" return status def _lowerCAmelCase ( lowerCamelCase_ : Optional[Any] ): assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N __lowercase = list(range(2 , n + 1 ) ) __lowercase = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(lowerCamelCase_ ) ): for j in range(i + 1 , len(lowerCamelCase_ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): __lowercase = 0 # filters actual prime numbers. __lowercase = [x for x in begin_list if x != 0] # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type list" return ans def _lowerCAmelCase ( lowerCamelCase_ : Any ): assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n > 2), "'N' must been an int and > 2" __lowercase = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(lowerCamelCase_ ): ans.append(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type list" return ans def _lowerCAmelCase ( lowerCamelCase_ : List[str] ): assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and number >= 0, "'number' must been an int and >= 0" __lowercase = [] # this list will be returns of the function. # potential prime number factors. __lowercase = 2 __lowercase = number if number == 0 or number == 1: ans.append(lowerCamelCase_ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(lowerCamelCase_ ): while quotient != 1: if is_prime(lowerCamelCase_ ) and (quotient % factor == 0): ans.append(lowerCamelCase_ ) quotient /= factor else: factor += 1 else: ans.append(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type list" return ans def _lowerCAmelCase ( lowerCamelCase_ : Any ): assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" __lowercase = 0 # prime factorization of 'number' __lowercase = prime_factorization(lowerCamelCase_ ) __lowercase = max(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type int" return ans def _lowerCAmelCase ( lowerCamelCase_ : List[Any] ): assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" __lowercase = 0 # prime factorization of 'number' __lowercase = prime_factorization(lowerCamelCase_ ) __lowercase = min(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type int" return ans def _lowerCAmelCase ( lowerCamelCase_ : Tuple ): assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'number' must been an int" assert isinstance(number % 2 == 0 , lowerCamelCase_ ), "compare bust been from type bool" return number % 2 == 0 def _lowerCAmelCase ( lowerCamelCase_ : Optional[Any] ): assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'number' must been an int" assert isinstance(number % 2 != 0 , lowerCamelCase_ ), "compare bust been from type bool" return number % 2 != 0 def _lowerCAmelCase ( lowerCamelCase_ : int ): assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (number > 2) and is_even(lowerCamelCase_ ) ), "'number' must been an int, even and > 2" __lowercase = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' __lowercase = get_prime_numbers(lowerCamelCase_ ) __lowercase = len(lowerCamelCase_ ) # run variable for while-loops. __lowercase = 0 __lowercase = None # exit variable. for break up the loops __lowercase = True while i < len_pn and loop: __lowercase = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: __lowercase = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (len(lowerCamelCase_ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def _lowerCAmelCase ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Union[str, Any] ): assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." __lowercase = 0 while numbera != 0: __lowercase = numbera % numbera __lowercase = numbera __lowercase = rest # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def _lowerCAmelCase ( lowerCamelCase_ : Optional[int] , lowerCamelCase_ : List[Any] ): assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." __lowercase = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' __lowercase = prime_factorization(lowerCamelCase_ ) __lowercase = prime_factorization(lowerCamelCase_ ) elif numbera == 1 or numbera == 1: __lowercase = [] __lowercase = [] __lowercase = max(lowerCamelCase_ , lowerCamelCase_ ) __lowercase = 0 __lowercase = 0 __lowercase = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: __lowercase = prime_fac_a.count(lowerCamelCase_ ) __lowercase = prime_fac_a.count(lowerCamelCase_ ) for _ in range(max(lowerCamelCase_ , lowerCamelCase_ ) ): ans *= n else: __lowercase = prime_fac_a.count(lowerCamelCase_ ) for _ in range(lowerCamelCase_ ): ans *= n done.append(lowerCamelCase_ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: __lowercase = prime_fac_a.count(lowerCamelCase_ ) for _ in range(lowerCamelCase_ ): ans *= n done.append(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def _lowerCAmelCase ( lowerCamelCase_ : str ): assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 0), "'number' must been a positive int" __lowercase = 0 __lowercase = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(lowerCamelCase_ ): ans += 1 # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and is_prime( lowerCamelCase_ ), "'ans' must been a prime number and from type int" return ans def _lowerCAmelCase ( lowerCamelCase_ : Any , lowerCamelCase_ : List[Any] ): assert ( is_prime(lowerCamelCase_ ) and is_prime(lowerCamelCase_ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" __lowercase = p_number_a + 1 # jump to the next number __lowercase = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(lowerCamelCase_ ): number += 1 while number < p_number_a: ans.append(lowerCamelCase_ ) number += 1 # fetch the next prime number. while not is_prime(lowerCamelCase_ ): number += 1 # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ans[0] != p_number_a and ans[len(lowerCamelCase_ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def _lowerCAmelCase ( lowerCamelCase_ : Any ): assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 1), "'n' must been int and >= 1" __lowercase = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(lowerCamelCase_ ) # precondition assert ans[0] == 1 and ans[len(lowerCamelCase_ ) - 1] == n, "Error in function getDivisiors(...)" return ans def _lowerCAmelCase ( lowerCamelCase_ : Tuple ): assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number > 1 ), "'number' must been an int and >= 1" __lowercase = get_divisors(lowerCamelCase_ ) # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (divisors[0] == 1) and (divisors[len(lowerCamelCase_ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def _lowerCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : List[str] ): assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. __lowercase = gcd(abs(lowerCamelCase_ ) , abs(lowerCamelCase_ ) ) # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def _lowerCAmelCase ( lowerCamelCase_ : List[Any] ): assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 0), "'n' must been a int and >= 0" __lowercase = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def _lowerCAmelCase ( lowerCamelCase_ : Optional[Any] ): assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 0), "'n' must been an int and >= 0" __lowercase = 0 __lowercase = 1 __lowercase = 1 # this will be return for _ in range(n - 1 ): __lowercase = ans ans += fiba __lowercase = tmp return ans
56
'''simple docstring''' import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split() __lowercase = dict(zip(_lowerCamelCase ,range(len(_lowerCamelCase ) ) ) ) __lowercase = { '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', } __lowercase = { '''feature_size''': 1, '''padding_value''': 0.0, '''sampling_rate''': 16000, '''return_attention_mask''': False, '''do_normalize''': True, } __lowercase = tempfile.mkdtemp() __lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) __lowercase = os.path.join(self.tmpdirname ,_lowerCamelCase ) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''' ) as fp: fp.write(json.dumps(_lowerCamelCase ) + '''\n''' ) with open(self.feature_extraction_file ,'''w''' ,encoding='''utf-8''' ) as fp: fp.write(json.dumps(_lowerCamelCase ) + '''\n''' ) # load decoder from hub __lowercase = '''hf-internal-testing/ngram-beam-search-decoder''' def _UpperCAmelCase (self ,**_lowerCamelCase ) -> List[str]: '''simple docstring''' __lowercase = self.add_kwargs_tokens_map.copy() kwargs.update(_lowerCamelCase ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname ,**_lowerCamelCase ) def _UpperCAmelCase (self ,**_lowerCamelCase ) -> List[Any]: '''simple docstring''' return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname ,**_lowerCamelCase ) def _UpperCAmelCase (self ,**_lowerCamelCase ) -> Dict: '''simple docstring''' return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name ,**_lowerCamelCase ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = self.get_tokenizer() __lowercase = self.get_feature_extractor() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) __lowercase = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer ,_lowerCamelCase ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() ,feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor ,_lowerCamelCase ) # decoder self.assertEqual(processor.decoder._alphabet.labels ,decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set ,decoder.model_container[decoder._model_key]._unigram_set ,) self.assertIsInstance(processor.decoder ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() ,feature_extractor=self.get_feature_extractor() ,decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __lowercase = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname ,alpha=5.0 ,beta=3.0 ,score_boundary=-7.0 ,unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha ,5.0 ) self.assertEqual(processor.language_model.beta ,3.0 ) self.assertEqual(processor.language_model.score_boundary ,-7.0 ) self.assertEqual(processor.language_model.unk_score_offset ,3 ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['''xx'''] ) with self.assertRaisesRegex(_lowerCamelCase ,'''include''' ): WavaVecaProcessorWithLM( tokenizer=_lowerCamelCase ,feature_extractor=self.get_feature_extractor() ,decoder=self.get_decoder() ) def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = floats_list((3, 1000) ) __lowercase = feature_extractor(_lowerCamelCase ,return_tensors='''np''' ) __lowercase = processor(_lowerCamelCase ,return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = '''This is a test string''' __lowercase = processor(text=_lowerCamelCase ) __lowercase = tokenizer(_lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def _UpperCAmelCase (self ,_lowerCamelCase=(2, 10, 16) ,_lowerCamelCase=77 ) -> Optional[int]: '''simple docstring''' np.random.seed(_lowerCamelCase ) return np.random.rand(*_lowerCamelCase ) def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = self._get_dummy_logits(shape=(10, 16) ,seed=13 ) __lowercase = processor.decode(_lowerCamelCase ) __lowercase = decoder.decode_beams(_lowerCamelCase )[0] self.assertEqual(decoded_decoder[0] ,decoded_processor.text ) self.assertEqual('''</s> <s> </s>''' ,decoded_processor.text ) self.assertEqual(decoded_decoder[-2] ,decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] ,decoded_processor.lm_score ) @parameterized.expand([[None], ['''fork'''], ['''spawn''']] ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __lowercase = processor.batch_decode(_lowerCamelCase ) else: with get_context(_lowerCamelCase ).Pool() as pool: __lowercase = processor.batch_decode(_lowerCamelCase ,_lowerCamelCase ) __lowercase = list(_lowerCamelCase ) with get_context('''fork''' ).Pool() as p: __lowercase = decoder.decode_beams_batch(_lowerCamelCase ,_lowerCamelCase ) __lowercase , __lowercase , __lowercase = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(_lowerCamelCase ,decoded_processor.text ) self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] ,decoded_processor.text ) self.assertListEqual(_lowerCamelCase ,decoded_processor.logit_score ) self.assertListEqual(_lowerCamelCase ,decoded_processor.lm_score ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = self._get_dummy_logits() __lowercase = 15 __lowercase = -2_0.0 __lowercase = -4.0 __lowercase = processor.batch_decode( _lowerCamelCase ,beam_width=_lowerCamelCase ,beam_prune_logp=_lowerCamelCase ,token_min_logp=_lowerCamelCase ,) __lowercase = decoded_processor_out.text __lowercase = list(_lowerCamelCase ) with get_context('''fork''' ).Pool() as pool: __lowercase = decoder.decode_beams_batch( _lowerCamelCase ,_lowerCamelCase ,beam_width=_lowerCamelCase ,beam_prune_logp=_lowerCamelCase ,token_min_logp=_lowerCamelCase ,) __lowercase = [d[0][0] for d in decoded_decoder_out] __lowercase = [d[0][2] for d in decoded_decoder_out] __lowercase = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] ,_lowerCamelCase ) self.assertTrue(np.array_equal(_lowerCamelCase ,decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-2_0.0_5_4, -1_8.4_4_7] ,_lowerCamelCase ,atol=1E-3 ) ) self.assertTrue(np.array_equal(_lowerCamelCase ,decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-1_5.5_5_4, -1_3.9_4_7_4] ,_lowerCamelCase ,atol=1E-3 ) ) def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = self._get_dummy_logits() __lowercase = 2.0 __lowercase = 5.0 __lowercase = -2_0.0 __lowercase = True __lowercase = processor.batch_decode( _lowerCamelCase ,alpha=_lowerCamelCase ,beta=_lowerCamelCase ,unk_score_offset=_lowerCamelCase ,lm_score_boundary=_lowerCamelCase ,) __lowercase = decoded_processor_out.text __lowercase = list(_lowerCamelCase ) decoder.reset_params( alpha=_lowerCamelCase ,beta=_lowerCamelCase ,unk_score_offset=_lowerCamelCase ,lm_score_boundary=_lowerCamelCase ,) with get_context('''fork''' ).Pool() as pool: __lowercase = decoder.decode_beams_batch( _lowerCamelCase ,_lowerCamelCase ,) __lowercase = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] ,_lowerCamelCase ) __lowercase = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha ,2.0 ) self.assertEqual(lm_model.beta ,5.0 ) self.assertEqual(lm_model.unk_score_offset ,-2_0.0 ) self.assertEqual(lm_model.score_boundary ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = processor.decoder.model_container[processor.decoder._model_key] __lowercase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() __lowercase = os.listdir(_lowerCamelCase ) __lowercase = ['''alphabet.json''', '''language_model'''] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = snapshot_download('''hf-internal-testing/processor_with_lm''' ) __lowercase = WavaVecaProcessorWithLM.from_pretrained(_lowerCamelCase ) __lowercase = processor.decoder.model_container[processor.decoder._model_key] __lowercase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() __lowercase = os.listdir(_lowerCamelCase ) __lowercase = os.listdir(_lowerCamelCase ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = floats_list((3, 1000) ) __lowercase = processor_wavaveca(_lowerCamelCase ,return_tensors='''np''' ) __lowercase = processor_auto(_lowerCamelCase ,return_tensors='''np''' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() ,input_auto[key].sum() ,delta=1E-2 ) __lowercase = self._get_dummy_logits() __lowercase = processor_wavaveca.batch_decode(_lowerCamelCase ) __lowercase = processor_auto.batch_decode(_lowerCamelCase ) self.assertListEqual(decoded_wavaveca.text ,decoded_auto.text ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) self.assertListEqual( processor.model_input_names ,feature_extractor.model_input_names ,msg='''`processor` and `feature_extractor` model input names do not match''' ,) @staticmethod def _UpperCAmelCase (_lowerCamelCase ,_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' __lowercase = [d[key] for d in offsets] return retrieved_list def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = self._get_dummy_logits()[0] __lowercase = processor.decode(_lowerCamelCase ,output_word_offsets=_lowerCamelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) ,4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_lowerCamelCase ,_lowerCamelCase ) ) self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] ,'''word''' ) ) ,outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] ,'''word''' ) ,['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] ,'''start_offset''' ) ,[0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] ,'''end_offset''' ) ,[1, 3, 5] ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = self._get_dummy_logits() __lowercase = processor.batch_decode(_lowerCamelCase ,output_word_offsets=_lowerCamelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) ,4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_lowerCamelCase ,_lowerCamelCase ) ) self.assertListEqual( [''' '''.join(self.get_from_offsets(_lowerCamelCase ,'''word''' ) ) for o in outputs['''word_offsets''']] ,outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] ,'''word''' ) ,['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] ,'''start_offset''' ) ,[0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] ,'''end_offset''' ) ,[1, 3, 5] ) @slow @require_torch @require_torchaudio def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' import torch __lowercase = load_dataset('''common_voice''' ,'''en''' ,split='''train''' ,streaming=_lowerCamelCase ) __lowercase = ds.cast_column('''audio''' ,datasets.Audio(sampling_rate=16000 ) ) __lowercase = iter(_lowerCamelCase ) __lowercase = next(_lowerCamelCase ) __lowercase = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) __lowercase = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __lowercase = processor(sample['''audio''']['''array'''] ,return_tensors='''pt''' ).input_values with torch.no_grad(): __lowercase = model(_lowerCamelCase ).logits.cpu().numpy() __lowercase = processor.decode(logits[0] ,output_word_offsets=_lowerCamelCase ) __lowercase = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __lowercase = [ { '''start_time''': d['''start_offset'''] * time_offset, '''end_time''': d['''end_offset'''] * time_offset, '''word''': d['''word'''], } for d in output['''word_offsets'''] ] __lowercase = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL''' # output words self.assertEqual(''' '''.join(self.get_from_offsets(_lowerCamelCase ,'''word''' ) ) ,_lowerCamelCase ) self.assertEqual(''' '''.join(self.get_from_offsets(_lowerCamelCase ,'''word''' ) ) ,output.text ) # output times __lowercase = torch.tensor(self.get_from_offsets(_lowerCamelCase ,'''start_time''' ) ) __lowercase = torch.tensor(self.get_from_offsets(_lowerCamelCase ,'''end_time''' ) ) # fmt: off __lowercase = torch.tensor([1.4_1_9_9, 1.6_5_9_9, 2.2_5_9_9, 3.0, 3.2_4, 3.5_9_9_9, 3.7_9_9_9, 4.0_9_9_9, 4.2_6, 4.9_4, 5.2_8, 5.6_5_9_9, 5.7_8, 5.9_4, 6.3_2, 6.5_3_9_9, 6.6_5_9_9] ) __lowercase = torch.tensor([1.5_3_9_9, 1.8_9_9_9, 2.9, 3.1_6, 3.5_3_9_9, 3.7_2, 4.0_1_9_9, 4.1_7_9_9, 4.7_6, 5.1_5_9_9, 5.5_5_9_9, 5.6_9_9_9, 5.8_6, 6.1_9_9_9, 6.3_8, 6.6_1_9_9, 6.9_4] ) # fmt: on self.assertTrue(torch.allclose(_lowerCamelCase ,_lowerCamelCase ,atol=0.0_1 ) ) self.assertTrue(torch.allclose(_lowerCamelCase ,_lowerCamelCase ,atol=0.0_1 ) )
56
1
from __future__ import annotations import math def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: if depth < 0: raise ValueError("""Depth cannot be less than 0""" ) if not scores: raise ValueError("""Scores cannot be empty""" ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , minimax(depth + 1 , node_index * 2 + 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , minimax(depth + 1 , node_index * 2 + 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , ) ) def _snake_case( ) -> None: lowercase : int = [90, 23, 6, 33, 21, 65, 123, 34_423] lowercase : List[str] = math.log(len(SCREAMING_SNAKE_CASE__ ) , 2 ) print(f"Optimal value : {minimax(0 , 0 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}" ) if __name__ == "__main__": import doctest doctest.testmod() main()
336
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase : str = { """configuration_blenderbot_small""": [ """BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlenderbotSmallConfig""", """BlenderbotSmallOnnxConfig""", ], """tokenization_blenderbot_small""": ["""BlenderbotSmallTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Any = ["""BlenderbotSmallTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : str = [ """BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlenderbotSmallForCausalLM""", """BlenderbotSmallForConditionalGeneration""", """BlenderbotSmallModel""", """BlenderbotSmallPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : str = [ """TFBlenderbotSmallForConditionalGeneration""", """TFBlenderbotSmallModel""", """TFBlenderbotSmallPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Dict = [ """FlaxBlenderbotSmallForConditionalGeneration""", """FlaxBlenderbotSmallModel""", """FlaxBlenderbotSmallPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys lowercase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
336
1
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class __UpperCAmelCase( unittest.TestCase ): """simple docstring""" def __init__( self , __magic_name__ , __magic_name__=7 , __magic_name__=3 , __magic_name__=30 , __magic_name__=400 , __magic_name__=True , __magic_name__=None , __magic_name__=True , __magic_name__=[0.5, 0.5, 0.5] , __magic_name__=[0.5, 0.5, 0.5] , __magic_name__=True , __magic_name__=1 / 255 , __magic_name__=True , ): """simple docstring""" A_ : Any = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333} A_ : Tuple = parent A_ : List[Any] = batch_size A_ : str = num_channels A_ : int = min_resolution A_ : Tuple = max_resolution A_ : int = do_resize A_ : Optional[Any] = size A_ : int = do_normalize A_ : List[str] = image_mean A_ : Optional[int] = image_std A_ : List[str] = do_rescale A_ : Dict = rescale_factor A_ : Optional[int] = do_pad def UpperCAmelCase ( self ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCAmelCase ( self , __magic_name__ , __magic_name__=False ): """simple docstring""" if not batched: A_ : List[Any] = image_inputs[0] if isinstance(__magic_name__ , Image.Image ): A_ , A_ : List[Any] = image.size else: A_ , A_ : Any = image.shape[1], image.shape[2] if w < h: A_ : Tuple = int(self.size['''shortest_edge'''] * h / w ) A_ : int = self.size['''shortest_edge'''] elif w > h: A_ : Union[str, Any] = self.size['''shortest_edge'''] A_ : List[str] = int(self.size['''shortest_edge'''] * w / h ) else: A_ : Any = self.size['''shortest_edge'''] A_ : Tuple = self.size['''shortest_edge'''] else: A_ : Dict = [] for image in image_inputs: A_ , A_ : Any = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) A_ : Optional[int] = max(__magic_name__ , key=lambda __magic_name__ : item[0] )[0] A_ : int = max(__magic_name__ , key=lambda __magic_name__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __UpperCAmelCase( __UpperCAmelCase , unittest.TestCase ): """simple docstring""" __magic_name__ = DetaImageProcessor if is_vision_available() else None def UpperCAmelCase ( self ): """simple docstring""" A_ : str = DetaImageProcessingTester(self ) @property def UpperCAmelCase ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase ( self ): """simple docstring""" A_ : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__magic_name__ , '''image_mean''' ) ) self.assertTrue(hasattr(__magic_name__ , '''image_std''' ) ) self.assertTrue(hasattr(__magic_name__ , '''do_normalize''' ) ) self.assertTrue(hasattr(__magic_name__ , '''do_resize''' ) ) self.assertTrue(hasattr(__magic_name__ , '''do_rescale''' ) ) self.assertTrue(hasattr(__magic_name__ , '''do_pad''' ) ) self.assertTrue(hasattr(__magic_name__ , '''size''' ) ) def UpperCAmelCase ( self ): """simple docstring""" A_ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} ) self.assertEqual(image_processor.do_pad , __magic_name__ ) def UpperCAmelCase ( self ): """simple docstring""" pass def UpperCAmelCase ( self ): """simple docstring""" A_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , Image.Image ) # Test not batched input A_ : List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values A_ , A_ : int = self.image_processor_tester.get_expected_values(__magic_name__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ , A_ : Dict = self.image_processor_tester.get_expected_values(__magic_name__ , batched=__magic_name__ ) A_ : str = image_processing(__magic_name__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase ( self ): """simple docstring""" A_ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ , numpify=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , np.ndarray ) # Test not batched input A_ : Tuple = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values A_ , A_ : Optional[int] = self.image_processor_tester.get_expected_values(__magic_name__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ : Union[str, Any] = image_processing(__magic_name__ , return_tensors='''pt''' ).pixel_values A_ , A_ : Dict = self.image_processor_tester.get_expected_values(__magic_name__ , batched=__magic_name__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase ( self ): """simple docstring""" A_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ , torchify=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , torch.Tensor ) # Test not batched input A_ : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values A_ , A_ : List[str] = self.image_processor_tester.get_expected_values(__magic_name__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ : int = image_processing(__magic_name__ , return_tensors='''pt''' ).pixel_values A_ , A_ : Optional[int] = self.image_processor_tester.get_expected_values(__magic_name__ , batched=__magic_name__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def UpperCAmelCase ( self ): """simple docstring""" A_ : Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: A_ : Dict = json.loads(f.read() ) A_ : Optional[Any] = {'''image_id''': 3_9769, '''annotations''': target} # encode them A_ : List[str] = DetaImageProcessor() A_ : List[str] = image_processing(images=__magic_name__ , annotations=__magic_name__ , return_tensors='''pt''' ) # verify pixel values A_ : Optional[Any] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , __magic_name__ ) A_ : Any = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __magic_name__ , atol=1e-4 ) ) # verify area A_ : List[str] = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __magic_name__ ) ) # verify boxes A_ : Optional[Any] = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __magic_name__ ) A_ : List[str] = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __magic_name__ , atol=1e-3 ) ) # verify image_id A_ : Optional[Any] = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __magic_name__ ) ) # verify is_crowd A_ : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __magic_name__ ) ) # verify class_labels A_ : Union[str, Any] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __magic_name__ ) ) # verify orig_size A_ : Dict = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __magic_name__ ) ) # verify size A_ : str = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __magic_name__ ) ) @slow def UpperCAmelCase ( self ): """simple docstring""" A_ : Union[str, Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: A_ : Dict = json.loads(f.read() ) A_ : int = {'''file_name''': '''000000039769.png''', '''image_id''': 3_9769, '''segments_info''': target} A_ : Any = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them A_ : List[str] = DetaImageProcessor(format='''coco_panoptic''' ) A_ : Optional[Any] = image_processing(images=__magic_name__ , annotations=__magic_name__ , masks_path=__magic_name__ , return_tensors='''pt''' ) # verify pixel values A_ : Tuple = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , __magic_name__ ) A_ : Any = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __magic_name__ , atol=1e-4 ) ) # verify area A_ : Any = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __magic_name__ ) ) # verify boxes A_ : List[Any] = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __magic_name__ ) A_ : Union[str, Any] = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __magic_name__ , atol=1e-3 ) ) # verify image_id A_ : Union[str, Any] = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __magic_name__ ) ) # verify is_crowd A_ : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __magic_name__ ) ) # verify class_labels A_ : Any = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __magic_name__ ) ) # verify masks A_ : Optional[int] = 82_2873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , __magic_name__ ) # verify orig_size A_ : Dict = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __magic_name__ ) ) # verify size A_ : List[str] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __magic_name__ ) )
717
from math import loga def a__ ( a ) -> int: if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(a , a ): raise TypeError('''Input value must be a \'int\' type''' ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
236
0
'''simple docstring''' from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = { """t5-small""": """https://huggingface.co/t5-small/resolve/main/config.json""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/config.json""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/config.json""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/config.json""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/config.json""", } class _snake_case (__SCREAMING_SNAKE_CASE): __A : List[Any] ="t5" __A : List[Any] =["past_key_values"] __A : int ={"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self ,_snake_case=3_21_28 ,_snake_case=5_12 ,_snake_case=64 ,_snake_case=20_48 ,_snake_case=6 ,_snake_case=None ,_snake_case=8 ,_snake_case=32 ,_snake_case=1_28 ,_snake_case=0.1 ,_snake_case=1E-6 ,_snake_case=1.0 ,_snake_case="relu" ,_snake_case=True ,_snake_case=True ,_snake_case=0 ,_snake_case=1 ,**_snake_case ,): UpperCAmelCase_ : int = vocab_size UpperCAmelCase_ : str = d_model UpperCAmelCase_ : Any = d_kv UpperCAmelCase_ : Any = d_ff UpperCAmelCase_ : str = num_layers UpperCAmelCase_ : List[Any] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry UpperCAmelCase_ : Optional[int] = num_heads UpperCAmelCase_ : List[str] = relative_attention_num_buckets UpperCAmelCase_ : int = relative_attention_max_distance UpperCAmelCase_ : Union[str, Any] = dropout_rate UpperCAmelCase_ : Optional[Any] = layer_norm_epsilon UpperCAmelCase_ : Any = initializer_factor UpperCAmelCase_ : List[Any] = feed_forward_proj UpperCAmelCase_ : List[str] = use_cache UpperCAmelCase_ : Any = self.feed_forward_proj.split("-" ) UpperCAmelCase_ : Union[str, Any] = act_info[-1] UpperCAmelCase_ : str = act_info[0] == "gated" if len(_snake_case ) > 1 and act_info[0] != "gated" or len(_snake_case ) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' "Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. " "'gated-gelu' or 'relu'" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": UpperCAmelCase_ : Any = "gelu_new" super().__init__( pad_token_id=_snake_case ,eos_token_id=_snake_case ,is_encoder_decoder=_snake_case ,**_snake_case ,) class _snake_case (__SCREAMING_SNAKE_CASE): @property def UpperCamelCase__ ( self ): UpperCAmelCase_ : Tuple = { "input_ids": {0: "batch", 1: "encoder_sequence"}, "attention_mask": {0: "batch", 1: "encoder_sequence"}, } if self.use_past: UpperCAmelCase_ : Union[str, Any] = "past_encoder_sequence + sequence" UpperCAmelCase_ : Any = {0: "batch"} UpperCAmelCase_ : Dict = {0: "batch", 1: "past_decoder_sequence + sequence"} else: UpperCAmelCase_ : List[Any] = {0: "batch", 1: "decoder_sequence"} UpperCAmelCase_ : List[Any] = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(_snake_case ,direction="inputs" ) return common_inputs @property def UpperCamelCase__ ( self ): return 13
71
from collections.abc import Generator from math import sin def _A ( _lowercase ) -> bytes: """simple docstring""" if len(_lowercase ) != 32: raise ValueError('Input must be of length 32' ) __UpperCamelCase = B'' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def _A ( _lowercase ) -> bytes: """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) __UpperCamelCase = format(_lowercase , '08x' )[-8:] __UpperCamelCase = B'' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('utf-8' ) return little_endian_hex def _A ( _lowercase ) -> bytes: """simple docstring""" __UpperCamelCase = B'' for char in message: bit_string += format(_lowercase , '08b' ).encode('utf-8' ) __UpperCamelCase = format(len(_lowercase ) , '064b' ).encode('utf-8' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(_lowercase ) % 5_12 != 4_48: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def _A ( _lowercase ) -> Generator[list[int], None, None]: """simple docstring""" if len(_lowercase ) % 5_12 != 0: raise ValueError('Input must have length that\'s a multiple of 512' ) for pos in range(0 , len(_lowercase ) , 5_12 ): __UpperCamelCase = bit_string[pos : pos + 5_12] __UpperCamelCase = [] for i in range(0 , 5_12 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def _A ( _lowercase ) -> int: """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) __UpperCamelCase = format(_lowercase , '032b' ) __UpperCamelCase = '' for c in i_str: new_str += "1" if c == "0" else "0" return int(_lowercase , 2 ) def _A ( _lowercase , _lowercase ) -> int: """simple docstring""" return (a + b) % 2**32 def _A ( _lowercase , _lowercase ) -> int: """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) if shift < 0: raise ValueError('Shift must be non-negative' ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def _A ( _lowercase ) -> bytes: """simple docstring""" __UpperCamelCase = preprocess(_lowercase ) __UpperCamelCase = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states __UpperCamelCase = 0X67_45_23_01 __UpperCamelCase = 0Xef_cd_ab_89 __UpperCamelCase = 0X98_ba_dc_fe __UpperCamelCase = 0X10_32_54_76 __UpperCamelCase = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(_lowercase ): __UpperCamelCase = aa __UpperCamelCase = ba __UpperCamelCase = ca __UpperCamelCase = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f __UpperCamelCase = d ^ (b & (c ^ d)) __UpperCamelCase = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f __UpperCamelCase = c ^ (d & (b ^ c)) __UpperCamelCase = (5 * i + 1) % 16 elif i <= 47: __UpperCamelCase = b ^ c ^ d __UpperCamelCase = (3 * i + 5) % 16 else: __UpperCamelCase = c ^ (b | not_aa(_lowercase )) __UpperCamelCase = (7 * i) % 16 __UpperCamelCase = (f + a + added_consts[i] + block_words[g]) % 2**32 __UpperCamelCase = d __UpperCamelCase = c __UpperCamelCase = b __UpperCamelCase = sum_aa(_lowercase , left_rotate_aa(_lowercase , shift_amounts[i] ) ) # Add hashed chunk to running total __UpperCamelCase = sum_aa(_lowercase , _lowercase ) __UpperCamelCase = sum_aa(_lowercase , _lowercase ) __UpperCamelCase = sum_aa(_lowercase , _lowercase ) __UpperCamelCase = sum_aa(_lowercase , _lowercase ) __UpperCamelCase = reformat_hex(_lowercase ) + reformat_hex(_lowercase ) + reformat_hex(_lowercase ) + reformat_hex(_lowercase ) return digest if __name__ == "__main__": import doctest doctest.testmod()
1
0
"""simple docstring""" import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def A_ ( ): """simple docstring""" _a = ArgumentParser( description=( '''PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes''' ) ) # Optional arguments for the launch helper parser.add_argument('''--num_cores''', type=_lowerCAmelCase, default=1, help='''Number of TPU cores to use (1 or 8).''' ) # positional parser.add_argument( '''training_script''', type=_lowerCAmelCase, help=( '''The full path to the single TPU training ''' '''program/script to be launched in parallel, ''' '''followed by all the arguments for the ''' '''training script''' ), ) # rest from the training program parser.add_argument('''training_script_args''', nargs=_lowerCAmelCase ) return parser.parse_args() def A_ ( ): """simple docstring""" _a = parse_args() # Import training_script as a module. _a = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) _a = script_fpath.stem _a = importlib.import_module(_lowerCAmelCase ) # Patch sys.argv _a = [args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores )] xmp.spawn(mod._mp_fn, args=(), nprocs=args.num_cores ) if __name__ == "__main__": main()
709
"""simple docstring""" def A_ ( _lowerCAmelCase : int = 10_00 ): """simple docstring""" _a , _a = 1, 1 _a = 2 while True: _a = 0 _a = fa + fa _a , _a = fa, f index += 1 for _ in str(_lowerCAmelCase ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
285
0
import torch from transformers import AutoModel class UpperCAmelCase ( torch.nn.Module ): def __init__( self: Optional[int] , __UpperCamelCase: Tuple="sayef/fsner-bert-base-uncased" ): super(__UpperCamelCase , self ).__init__() _a = AutoModel.from_pretrained(__UpperCamelCase , return_dict=__UpperCamelCase ) _a = torch.nn.CosineSimilarity(3 , 1E-08 ) _a = torch.nn.Softmax(dim=1 ) def _A ( self: str , **__UpperCamelCase: Optional[Any] ): return self.bert(**__UpperCamelCase ).last_hidden_state def _A ( self: List[Any] , __UpperCamelCase: int ): return token_embeddings.sum(2 , keepdim=__UpperCamelCase ) def _A ( self: Union[str, Any] , __UpperCamelCase: List[Any] , __UpperCamelCase: Union[str, Any] , __UpperCamelCase: List[str]=1 ): return self.softmax(T * self.cos(__UpperCamelCase , __UpperCamelCase ) ) def _A ( self: Optional[Any] , __UpperCamelCase: Union[str, Any] , __UpperCamelCase: Tuple ): _a = W_supports['''sizes'''].tolist() _a = W_supports['''start_token_id'''].item() _a = W_supports['''end_token_id'''].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] _a = self.BERT(**__UpperCamelCase ) _a = self.BERT(**__UpperCamelCase ) _a = None _a = None _a = W_supports['''input_ids'''] == start_token_id _a = W_supports['''input_ids'''] == end_token_id for i, size in enumerate(__UpperCamelCase ): if i == 0: _a = 0 else: _a = support_sizes[i - 1] _a = S[s : s + size][start_token_masks[s : s + size]] _a = S[s : s + size][end_token_masks[s : s + size]] _a = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) _a = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: _a = torch.vstack((p_starts, p_start) ) _a = torch.vstack((p_ends, p_end) ) else: _a = p_start _a = p_end return p_starts, p_ends
487
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class UpperCAmelCase : def __init__( self: List[str] , __UpperCamelCase: Optional[int] , ): _a = parent _a = 13 _a = 7 _a = True _a = True _a = True _a = True _a = True _a = False _a = False _a = False _a = 2 _a = 99 _a = 0 _a = 32 _a = 2 _a = 4 _a = 0.1 _a = 0.1 _a = 512 _a = 16 _a = 2 _a = 0.0_2 _a = 3 _a = 4 _a = '''last''' _a = True _a = None _a = 0 def _A ( self: Any ): _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) _a = None if self.use_input_lengths: _a = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length _a = None if self.use_token_type_ids: _a = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) _a = None _a = None _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) _a = ids_tensor([self.batch_size] , self.num_choices ) _a = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _A ( self: List[str] , __UpperCamelCase: Any , __UpperCamelCase: List[Any] , __UpperCamelCase: List[str] , __UpperCamelCase: Optional[int] , __UpperCamelCase: Any , __UpperCamelCase: Optional[Any] , __UpperCamelCase: Optional[int] , __UpperCamelCase: Optional[Any] , __UpperCamelCase: Tuple , ): _a = TFFlaubertModel(config=__UpperCamelCase ) _a = {'''input_ids''': input_ids, '''lengths''': input_lengths, '''langs''': token_type_ids} _a = model(__UpperCamelCase ) _a = [input_ids, input_mask] _a = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _A ( self: Dict , __UpperCamelCase: Any , __UpperCamelCase: Any , __UpperCamelCase: str , __UpperCamelCase: List[str] , __UpperCamelCase: Any , __UpperCamelCase: Union[str, Any] , __UpperCamelCase: int , __UpperCamelCase: List[Any] , __UpperCamelCase: Dict , ): _a = TFFlaubertWithLMHeadModel(__UpperCamelCase ) _a = {'''input_ids''': input_ids, '''lengths''': input_lengths, '''langs''': token_type_ids} _a = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _A ( self: Tuple , __UpperCamelCase: Optional[int] , __UpperCamelCase: int , __UpperCamelCase: Optional[Any] , __UpperCamelCase: str , __UpperCamelCase: int , __UpperCamelCase: str , __UpperCamelCase: Dict , __UpperCamelCase: Union[str, Any] , __UpperCamelCase: List[Any] , ): _a = TFFlaubertForQuestionAnsweringSimple(__UpperCamelCase ) _a = {'''input_ids''': input_ids, '''lengths''': input_lengths} _a = model(__UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _A ( self: Dict , __UpperCamelCase: Optional[Any] , __UpperCamelCase: Any , __UpperCamelCase: Any , __UpperCamelCase: Any , __UpperCamelCase: Dict , __UpperCamelCase: Dict , __UpperCamelCase: str , __UpperCamelCase: Any , __UpperCamelCase: str , ): _a = TFFlaubertForSequenceClassification(__UpperCamelCase ) _a = {'''input_ids''': input_ids, '''lengths''': input_lengths} _a = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _A ( self: Optional[Any] , __UpperCamelCase: List[Any] , __UpperCamelCase: Tuple , __UpperCamelCase: Optional[Any] , __UpperCamelCase: int , __UpperCamelCase: Tuple , __UpperCamelCase: Dict , __UpperCamelCase: str , __UpperCamelCase: Optional[Any] , __UpperCamelCase: Union[str, Any] , ): _a = self.num_labels _a = TFFlaubertForTokenClassification(config=__UpperCamelCase ) _a = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _a = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _A ( self: Optional[int] , __UpperCamelCase: Any , __UpperCamelCase: Optional[int] , __UpperCamelCase: List[Any] , __UpperCamelCase: Optional[Any] , __UpperCamelCase: Dict , __UpperCamelCase: List[str] , __UpperCamelCase: Tuple , __UpperCamelCase: str , __UpperCamelCase: str , ): _a = self.num_choices _a = TFFlaubertForMultipleChoice(config=__UpperCamelCase ) _a = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) _a = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) _a = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) _a = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } _a = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _A ( self: Dict ): _a = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = config_and_inputs _a = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''langs''': token_type_ids, '''lengths''': input_lengths, } return config, inputs_dict @require_tf class UpperCAmelCase ( __snake_case , __snake_case , unittest.TestCase ): a: List[str] = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) a: List[Any] = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable a: List[Any] = ( { "feature-extraction": TFFlaubertModel, "fill-mask": TFFlaubertWithLMHeadModel, "question-answering": TFFlaubertForQuestionAnsweringSimple, "text-classification": TFFlaubertForSequenceClassification, "token-classification": TFFlaubertForTokenClassification, "zero-shot": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) a: List[Any] = False a: Dict = False def _A ( self: List[str] , __UpperCamelCase: Optional[int] , __UpperCamelCase: Optional[int] , __UpperCamelCase: Optional[int] , __UpperCamelCase: List[str] , __UpperCamelCase: int ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _A ( self: Union[str, Any] ): _a = TFFlaubertModelTester(self ) _a = ConfigTester(self , config_class=__UpperCamelCase , emb_dim=37 ) def _A ( self: str ): self.config_tester.run_common_tests() def _A ( self: Optional[int] ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*__UpperCamelCase ) def _A ( self: Optional[int] ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*__UpperCamelCase ) def _A ( self: int ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*__UpperCamelCase ) def _A ( self: str ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*__UpperCamelCase ) def _A ( self: int ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*__UpperCamelCase ) def _A ( self: str ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*__UpperCamelCase ) @slow def _A ( self: List[Any] ): for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = TFFlaubertModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) @require_tf @require_sentencepiece @require_tokenizers class UpperCAmelCase ( unittest.TestCase ): @slow def _A ( self: Any ): _a = TFFlaubertModel.from_pretrained('''jplu/tf-flaubert-small-cased''' ) _a = tf.convert_to_tensor( [[0, 158, 735, 2592, 1424, 6727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" _a = model(__UpperCamelCase )[0] _a = tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape , __UpperCamelCase ) # compare the actual values for a slice. _a = tf.convert_to_tensor( [ [ [-1.8_7_6_8_7_7_3, -1.5_6_6_5_5_5, 0.2_7_0_7_2_4_1_8], [-1.6_9_2_0_0_3_8, -0.5_8_7_3_5_0_5, 1.9_3_2_9_5_9_9], [-2.9_5_6_3_9_8_5, -1.6_9_9_3_8_3_5, 1.7_9_7_2_0_5_2], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
487
1
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. UpperCamelCase = abspath(join(dirname(dirname(dirname(__file__))), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def __lowerCamelCase ( snake_case__ ) -> Tuple: """simple docstring""" from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(snake_case__ ) def __lowerCamelCase ( snake_case__ ) -> Dict: """simple docstring""" from transformers.testing_utils import pytest_terminal_summary_main _SCREAMING_SNAKE_CASE = terminalreporter.config.getoption("""--make-reports""" ) if make_reports: pytest_terminal_summary_main(snake_case__ ,id=snake_case__ )
715
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=_UpperCAmelCase ) class __UpperCAmelCase (_UpperCAmelCase ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization __snake_case : str = field(default="text-classification" ,metadata={"include_in_asdict_even_if_is_default": True} ) __snake_case : ClassVar[Features] = Features({"text": Value("string" )} ) __snake_case : ClassVar[Features] = Features({"labels": ClassLabel} ) __snake_case : str = "text" __snake_case : str = "labels" def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: Optional[int] ): '''simple docstring''' if self.label_column not in features: raise ValueError(F'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column] , UpperCAmelCase_ ): raise ValueError(F'Column {self.label_column} is not a ClassLabel.' ) _SCREAMING_SNAKE_CASE = copy.deepcopy(self ) _SCREAMING_SNAKE_CASE = self.label_schema.copy() _SCREAMING_SNAKE_CASE = features[self.label_column] _SCREAMING_SNAKE_CASE = label_schema return task_template @property def UpperCamelCase ( self: Dict ): '''simple docstring''' return { self.text_column: "text", self.label_column: "labels", }
569
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { "xlm-mlm-en-2048": "https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json", "xlm-mlm-ende-1024": "https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json", "xlm-mlm-enfr-1024": "https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json", "xlm-mlm-enro-1024": "https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json", "xlm-mlm-tlm-xnli15-1024": "https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json", "xlm-mlm-xnli15-1024": "https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json", "xlm-clm-enfr-1024": "https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json", "xlm-clm-ende-1024": "https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json", "xlm-mlm-17-1280": "https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json", "xlm-mlm-100-1280": "https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json", } class _A ( __lowercase ): lowercase__: int = '''xlm''' lowercase__: Dict = { '''hidden_size''': '''emb_dim''', '''num_attention_heads''': '''n_heads''', '''num_hidden_layers''': '''n_layers''', '''n_words''': '''vocab_size''', # For backward compatibility } def __init__( self : str , __magic_name__ : str=3_01_45 , __magic_name__ : str=20_48 , __magic_name__ : Dict=12 , __magic_name__ : List[Any]=16 , __magic_name__ : Optional[int]=0.1 , __magic_name__ : List[Any]=0.1 , __magic_name__ : Optional[Any]=True , __magic_name__ : Tuple=False , __magic_name__ : List[Any]=False , __magic_name__ : List[str]=False , __magic_name__ : List[Any]=1 , __magic_name__ : int=True , __magic_name__ : List[Any]=5_12 , __magic_name__ : List[Any]=20_48**-0.5 , __magic_name__ : Tuple=1E-12 , __magic_name__ : List[str]=0.02 , __magic_name__ : List[str]=0 , __magic_name__ : str=1 , __magic_name__ : Union[str, Any]=2 , __magic_name__ : List[Any]=3 , __magic_name__ : Union[str, Any]=5 , __magic_name__ : List[str]=True , __magic_name__ : Dict="first" , __magic_name__ : str=True , __magic_name__ : Optional[Any]=None , __magic_name__ : Optional[Any]=True , __magic_name__ : List[str]=0.1 , __magic_name__ : List[str]=5 , __magic_name__ : List[Any]=5 , __magic_name__ : int=0 , __magic_name__ : int=0 , __magic_name__ : List[str]=2 , __magic_name__ : int=0 , **__magic_name__ : Any , ) -> List[Any]: """simple docstring""" __snake_case : List[Any] = vocab_size __snake_case : List[Any] = emb_dim __snake_case : Tuple = n_layers __snake_case : Union[str, Any] = n_heads __snake_case : Optional[int] = dropout __snake_case : Dict = attention_dropout __snake_case : Tuple = gelu_activation __snake_case : Any = sinusoidal_embeddings __snake_case : List[Any] = causal __snake_case : Dict = asm __snake_case : Optional[Any] = n_langs __snake_case : Any = use_lang_emb __snake_case : int = layer_norm_eps __snake_case : List[Any] = bos_index __snake_case : Any = eos_index __snake_case : Union[str, Any] = pad_index __snake_case : Optional[Any] = unk_index __snake_case : List[Any] = mask_index __snake_case : Union[str, Any] = is_encoder __snake_case : Optional[int] = max_position_embeddings __snake_case : int = embed_init_std __snake_case : Dict = init_std __snake_case : Any = summary_type __snake_case : int = summary_use_proj __snake_case : Any = summary_activation __snake_case : Any = summary_proj_to_labels __snake_case : List[str] = summary_first_dropout __snake_case : List[Any] = start_n_top __snake_case : List[Any] = end_n_top __snake_case : str = mask_token_id __snake_case : List[Any] = lang_id if "n_words" in kwargs: __snake_case : int = kwargs["""n_words"""] super().__init__(pad_token_id=__magic_name__ , bos_token_id=__magic_name__ , **__magic_name__ ) class _A ( __lowercase ): @property def lowercase__ ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": __snake_case : str = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __snake_case : Dict = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
26
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { '''tanreinama/GPTSAN-2.8B-spout_is_uniform''': ( '''https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json''' ), } class _SCREAMING_SNAKE_CASE ( UpperCAmelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_: List[Any] = "gptsan-japanese" SCREAMING_SNAKE_CASE_: Any = [ "past_key_values", ] SCREAMING_SNAKE_CASE_: List[Any] = { "hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : int , UpperCAmelCase_ : Dict=36_000 , UpperCAmelCase_ : Any=1_280 , UpperCAmelCase_ : Optional[int]=1_024 , UpperCAmelCase_ : str=8_192 , UpperCAmelCase_ : int=4_096 , UpperCAmelCase_ : Optional[int]=128 , UpperCAmelCase_ : int=10 , UpperCAmelCase_ : List[Any]=0 , UpperCAmelCase_ : Any=16 , UpperCAmelCase_ : int=16 , UpperCAmelCase_ : str=128 , UpperCAmelCase_ : List[str]=0.0 , UpperCAmelCase_ : Tuple=1E-5 , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : List[str]=0.0 , UpperCAmelCase_ : Union[str, Any]="float32" , UpperCAmelCase_ : str=False , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : Tuple=False , UpperCAmelCase_ : Dict=0.002 , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : str=35_998 , UpperCAmelCase_ : str=35_995 , UpperCAmelCase_ : Optional[int]=35_999 , **UpperCAmelCase_ : int , ) -> int: """simple docstring""" _lowerCAmelCase = vocab_size _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = d_model _lowerCAmelCase = d_ff _lowerCAmelCase = d_ext _lowerCAmelCase = d_spout _lowerCAmelCase = num_switch_layers _lowerCAmelCase = num_ext_layers _lowerCAmelCase = num_switch_layers + num_ext_layers _lowerCAmelCase = num_heads _lowerCAmelCase = num_experts _lowerCAmelCase = expert_capacity _lowerCAmelCase = dropout_rate _lowerCAmelCase = layer_norm_epsilon _lowerCAmelCase = router_bias _lowerCAmelCase = router_jitter_noise _lowerCAmelCase = router_dtype _lowerCAmelCase = router_ignore_padding_tokens _lowerCAmelCase = output_hidden_states _lowerCAmelCase = output_attentions _lowerCAmelCase = initializer_factor _lowerCAmelCase = output_router_logits _lowerCAmelCase = use_cache super().__init__( separator_token_id=UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_ , )
580
0
"""simple docstring""" import mpmath # for roots of unity import numpy as np class a__ : def __init__( self, _UpperCAmelCase=None, _UpperCAmelCase=None ): '''simple docstring''' lowercase__ = list(poly_a or [0] )[:] lowercase__ = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() lowercase__ = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() lowercase__ = len(self.polyB ) # Add 0 to make lengths equal a power of 2 lowercase__ = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform lowercase__ = complex(mpmath.root(x=1, n=self.c_max_length, k=1 ) ) # The product lowercase__ = self.__multiply() def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = [[x] for x in self.polyA] if which == "A" else [[x] for x in self.polyB] # Corner case if len(_UpperCAmelCase ) <= 1: return dft[0] # lowercase__ = self.c_max_length // 2 while next_ncol > 0: lowercase__ = [[] for i in range(_UpperCAmelCase )] lowercase__ = self.root**next_ncol # First half of next step lowercase__ = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(_UpperCAmelCase ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step lowercase__ = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(_UpperCAmelCase ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update lowercase__ = new_dft lowercase__ = next_ncol // 2 return dft[0] def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.__dft("A" ) lowercase__ = self.__dft("B" ) lowercase__ = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT lowercase__ = 2 while next_ncol <= self.c_max_length: lowercase__ = [[] for i in range(_UpperCAmelCase )] lowercase__ = self.root ** (next_ncol // 2) lowercase__ = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update lowercase__ = new_inverse_c next_ncol *= 2 # Unpack lowercase__ = [round(x[0].real, 8 ) + round(x[0].imag, 8 ) * 1J for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self ): '''simple docstring''' lowercase__ = "A = " + " + ".join( F'''{coef}*x^{i}''' for coef, i in enumerate(self.polyA[: self.len_A] ) ) lowercase__ = "B = " + " + ".join( F'''{coef}*x^{i}''' for coef, i in enumerate(self.polyB[: self.len_B] ) ) lowercase__ = "A*B = " + " + ".join( F'''{coef}*x^{i}''' for coef, i in enumerate(self.product ) ) return F'''{a}\n{b}\n{c}''' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
668
"""simple docstring""" import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowerCAmelCase_: List[str] = 1_6 lowerCAmelCase_: Optional[Any] = 3_2 def __a ( A , A = 16 , A = "bert-base-cased" ): '''simple docstring''' lowercase__ = AutoTokenizer.from_pretrained(A ) lowercase__ = load_dataset("glue" , "mrpc" ) def tokenize_function(A ): # max_length=None => use the model max length (it's actually the default) lowercase__ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=A , max_length=A ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowercase__ = datasets.map( A , batched=A , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=A ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(A ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(A , padding="max_length" , max_length=1_28 , return_tensors="pt" ) return tokenizer.pad(A , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. lowercase__ = DataLoader( tokenized_datasets["train"] , shuffle=A , collate_fn=A , batch_size=A ) lowercase__ = DataLoader( tokenized_datasets["validation"] , shuffle=A , collate_fn=A , batch_size=A ) return train_dataloader, eval_dataloader def __a ( A , A ): '''simple docstring''' lowercase__ = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ = config["lr"] lowercase__ = int(config["num_epochs"] ) lowercase__ = int(config["seed"] ) lowercase__ = int(config["batch_size"] ) lowercase__ = args.model_name_or_path set_seed(A ) lowercase__ , lowercase__ = get_dataloaders(A , A , A ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ = AutoModelForSequenceClassification.from_pretrained(A , return_dict=A ) # Instantiate optimizer lowercase__ = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowercase__ = optimizer_cls(params=model.parameters() , lr=A ) if accelerator.state.deepspeed_plugin is not None: lowercase__ = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: lowercase__ = 1 lowercase__ = (len(A ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowercase__ = get_linear_schedule_with_warmup( optimizer=A , num_warmup_steps=0 , num_training_steps=A , ) else: lowercase__ = DummyScheduler(A , total_num_steps=A , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = accelerator.prepare( A , A , A , A , A ) # We need to keep track of how many total steps we have iterated over lowercase__ = 0 # We also need to keep track of the stating epoch so files are named properly lowercase__ = 0 # Now we train the model lowercase__ = evaluate.load("glue" , "mrpc" ) lowercase__ = 0 lowercase__ = {} for epoch in range(A , A ): model.train() for step, batch in enumerate(A ): lowercase__ = model(**A ) lowercase__ = outputs.loss lowercase__ = loss / gradient_accumulation_steps accelerator.backward(A ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() lowercase__ = 0 for step, batch in enumerate(A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ = model(**A ) lowercase__ = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times lowercase__ , lowercase__ = accelerator.gather( (predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(A ) - 1: lowercase__ = predictions[: len(eval_dataloader.dataset ) - samples_seen] lowercase__ = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=A , references=A , ) lowercase__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , A ) lowercase__ = eval_metric["accuracy"] if best_performance < eval_metric["accuracy"]: lowercase__ = eval_metric["accuracy"] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}''' accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , "all_results.json" ) , "w" ) as f: json.dump(A , A ) def __a ( ): '''simple docstring''' lowercase__ = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path" , type=A , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=A , ) parser.add_argument( "--output_dir" , type=A , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--performance_lower_bound" , type=A , default=A , help="Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value." , ) parser.add_argument( "--num_epochs" , type=A , default=3 , help="Number of train epochs." , ) lowercase__ = parser.parse_args() lowercase__ = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(A , A ) if __name__ == "__main__": main()
668
1
def UpperCamelCase ( snake_case__ : Optional[Any] ): '''simple docstring''' def merge(snake_case__ : Optional[int] ,snake_case__ : Optional[Any] ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(snake_case__ ) <= 1: return collection __snake_case :Tuple = len(snake_case__ ) // 2 return merge(merge_sort(collection[:mid] ) ,merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase__ = input("""Enter numbers separated by a comma:\n""").strip() lowerCamelCase__ = [int(item) for item in user_input.split(""",""")] print(*merge_sort(unsorted), sep=""",""")
455
def __magic_name__ ( lowercase = 1000 ) -> int: """simple docstring""" lowercase_ , lowercase_ : Optional[Any] = 1, 1 lowercase_ : Tuple = 2 while True: lowercase_ : Dict = 0 lowercase_ : List[Any] = fa + fa lowercase_ , lowercase_ : List[str] = fa, f index += 1 for _ in str(lowercase ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
458
0
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class lowercase_ ( lowerCAmelCase__ ): __UpperCamelCase = "Speech2TextFeatureExtractor" __UpperCamelCase = "Speech2TextTokenizer" def __init__( self: Any, _lowercase: Dict, _lowercase: Any): '''simple docstring''' super().__init__(_lowercase, _lowercase) __lowerCAmelCase = self.feature_extractor __lowerCAmelCase = False def __call__( self: Union[str, Any], *_lowercase: Optional[Any], **_lowercase: Dict): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*_lowercase, **_lowercase) if "raw_speech" in kwargs: warnings.warn("""Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.""") __lowerCAmelCase = kwargs.pop("""raw_speech""") else: __lowerCAmelCase = kwargs.pop("""audio""", _lowercase) __lowerCAmelCase = kwargs.pop("""sampling_rate""", _lowercase) __lowerCAmelCase = kwargs.pop("""text""", _lowercase) if len(_lowercase) > 0: __lowerCAmelCase = args[0] __lowerCAmelCase = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""") if audio is not None: __lowerCAmelCase = self.feature_extractor(_lowercase, *_lowercase, sampling_rate=_lowercase, **_lowercase) if text is not None: __lowerCAmelCase = self.tokenizer(_lowercase, **_lowercase) if text is None: return inputs elif audio is None: return encodings else: __lowerCAmelCase = encodings["""input_ids"""] return inputs def _lowercase ( self: Union[str, Any], *_lowercase: Any, **_lowercase: Optional[Any]): '''simple docstring''' return self.tokenizer.batch_decode(*_lowercase, **_lowercase) def _lowercase ( self: Tuple, *_lowercase: List[str], **_lowercase: Union[str, Any]): '''simple docstring''' return self.tokenizer.decode(*_lowercase, **_lowercase) @contextmanager def _lowercase ( self: Tuple): '''simple docstring''' warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your audio inputs, or in a separate call.""") __lowerCAmelCase = True __lowerCAmelCase = self.tokenizer yield __lowerCAmelCase = self.feature_extractor __lowerCAmelCase = False
334
import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 __A : Any = data_utils.TransfoXLTokenizer __A : Union[str, Any] = data_utils.TransfoXLCorpus __A : Optional[int] = data_utils __A : Optional[int] = data_utils def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Any: '''simple docstring''' if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(UpperCamelCase__ , """rb""" ) as fp: __lowerCAmelCase = pickle.load(UpperCamelCase__ , encoding="""latin1""" ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) __lowerCAmelCase = pytorch_dump_folder_path + """/""" + VOCAB_FILES_NAMES["""pretrained_vocab_file"""] print(F'''Save vocabulary to {pytorch_vocab_dump_path}''' ) __lowerCAmelCase = corpus.vocab.__dict__ torch.save(UpperCamelCase__ , UpperCamelCase__ ) __lowerCAmelCase = corpus.__dict__ corpus_dict_no_vocab.pop("""vocab""" , UpperCamelCase__ ) __lowerCAmelCase = pytorch_dump_folder_path + """/""" + CORPUS_NAME print(F'''Save dataset to {pytorch_dataset_dump_path}''' ) torch.save(UpperCamelCase__ , UpperCamelCase__ ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model __lowerCAmelCase = os.path.abspath(UpperCamelCase__ ) __lowerCAmelCase = os.path.abspath(UpperCamelCase__ ) print(F'''Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.''' ) # Initialise PyTorch model if transfo_xl_config_file == "": __lowerCAmelCase = TransfoXLConfig() else: __lowerCAmelCase = TransfoXLConfig.from_json_file(UpperCamelCase__ ) print(F'''Building PyTorch model from configuration: {config}''' ) __lowerCAmelCase = TransfoXLLMHeadModel(UpperCamelCase__ ) __lowerCAmelCase = load_tf_weights_in_transfo_xl(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Save pytorch-model __lowerCAmelCase = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) __lowerCAmelCase = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) print(F'''Save PyTorch model to {os.path.abspath(UpperCamelCase__ )}''' ) torch.save(model.state_dict() , UpperCamelCase__ ) print(F'''Save configuration file to {os.path.abspath(UpperCamelCase__ )}''' ) with open(UpperCamelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __A : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--tf_checkpoint_path", default="", type=str, help="An optional path to a TensorFlow checkpoint path to be converted.", ) parser.add_argument( "--transfo_xl_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--transfo_xl_dataset_file", default="", type=str, help="An optional dataset file to be converted in a vocabulary.", ) __A : Tuple = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
334
1
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class A_(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" a_ : str = IFInpaintingSuperResolutionPipeline a_ : str = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""} a_ : int = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"""original_image"""} ) a_ : List[Any] = PipelineTesterMixin.required_optional_params - {"""latents"""} def _lowerCAmelCase ( self ): return self._get_superresolution_dummy_components() def _lowerCAmelCase ( self , A , A=0 ): if str(A ).startswith('mps' ): _lowerCamelCase : List[Any] = torch.manual_seed(A ) else: _lowerCamelCase : Dict = torch.Generator(device=A ).manual_seed(A ) _lowerCamelCase : List[str] = floats_tensor((1, 3, 16, 16) , rng=random.Random(A ) ).to(A ) _lowerCamelCase : List[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(A ) ).to(A ) _lowerCamelCase : str = floats_tensor((1, 3, 32, 32) , rng=random.Random(A ) ).to(A ) _lowerCamelCase : Optional[int] = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'original_image': original_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _lowerCAmelCase ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def _lowerCAmelCase ( self ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def _lowerCAmelCase ( self ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def _lowerCAmelCase ( self ): self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def _lowerCAmelCase ( self ): self._test_save_load_local() def _lowerCAmelCase ( self ): self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
437
"""simple docstring""" import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor a_ = logging.get_logger(__name__) class A_(SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self , *A , **A ): warnings.warn( 'The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use SegformerImageProcessor instead.' , A , ) super().__init__(*A , **A )
437
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase : List[str] = { "configuration_xmod": [ "XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP", "XmodConfig", "XmodOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[Any] = [ "XMOD_PRETRAINED_MODEL_ARCHIVE_LIST", "XmodForCausalLM", "XmodForMaskedLM", "XmodForMultipleChoice", "XmodForQuestionAnswering", "XmodForSequenceClassification", "XmodForTokenClassification", "XmodModel", "XmodPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys _lowerCAmelCase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
716
import inspect import unittest from transformers import RegNetConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import RegNetForImageClassification, RegNetModel from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCamelCase : def __init__( self :List[Any] , lowerCamelCase :Optional[Any] , lowerCamelCase :Any=3 , lowerCamelCase :List[str]=32 , lowerCamelCase :List[str]=3 , lowerCamelCase :List[str]=10 , lowerCamelCase :List[Any]=[10, 20, 30, 40] , lowerCamelCase :Optional[Any]=[1, 1, 2, 1] , lowerCamelCase :List[str]=True , lowerCamelCase :List[Any]=True , lowerCamelCase :str="relu" , lowerCamelCase :Optional[Any]=3 , lowerCamelCase :List[str]=None , ) -> Union[str, Any]: UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = image_size UpperCAmelCase__ = num_channels UpperCAmelCase__ = embeddings_size UpperCAmelCase__ = hidden_sizes UpperCAmelCase__ = depths UpperCAmelCase__ = is_training UpperCAmelCase__ = use_labels UpperCAmelCase__ = hidden_act UpperCAmelCase__ = num_labels UpperCAmelCase__ = scope UpperCAmelCase__ = len(lowerCamelCase ) def UpperCAmelCase_ ( self :Union[str, Any] ) -> List[str]: UpperCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ = None if self.use_labels: UpperCAmelCase__ = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase__ = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self :Tuple ) -> Optional[int]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def UpperCAmelCase_ ( self :str , lowerCamelCase :Dict , lowerCamelCase :Optional[int] , lowerCamelCase :Union[str, Any] ) -> Dict: UpperCAmelCase__ = RegNetModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() UpperCAmelCase__ = model(lowerCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCAmelCase_ ( self :Union[str, Any] , lowerCamelCase :Union[str, Any] , lowerCamelCase :Tuple , lowerCamelCase :List[str] ) -> Union[str, Any]: UpperCAmelCase__ = self.num_labels UpperCAmelCase__ = RegNetForImageClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() UpperCAmelCase__ = model(lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self :Any ) -> Optional[Any]: UpperCAmelCase__ = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs UpperCAmelCase__ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _UpperCamelCase ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): UpperCAmelCase_ = (RegNetModel, RegNetForImageClassification) if is_torch_available() else () UpperCAmelCase_ = ( {"""feature-extraction""": RegNetModel, """image-classification""": RegNetForImageClassification} if is_torch_available() else {} ) UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False def UpperCAmelCase_ ( self :int ) -> Dict: UpperCAmelCase__ = RegNetModelTester(self ) UpperCAmelCase__ = ConfigTester(self , config_class=lowerCamelCase , has_text_modality=lowerCamelCase ) def UpperCAmelCase_ ( self :str ) -> Tuple: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase_ ( self :Any ) -> List[str]: return @unittest.skip(reason="RegNet does not use inputs_embeds" ) def UpperCAmelCase_ ( self :Optional[Any] ) -> Any: pass @unittest.skip(reason="RegNet does not support input and output embeddings" ) def UpperCAmelCase_ ( self :Tuple ) -> Union[str, Any]: pass def UpperCAmelCase_ ( self :List[str] ) -> Tuple: UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(lowerCamelCase ) UpperCAmelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ = [*signature.parameters.keys()] UpperCAmelCase__ = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase ) def UpperCAmelCase_ ( self :Dict ) -> List[Any]: UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def UpperCAmelCase_ ( self :Optional[Any] ) -> int: UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(config=lowerCamelCase ) for name, module in model.named_modules(): if isinstance(lowerCamelCase , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) def UpperCAmelCase_ ( self :Optional[int] ) -> List[Any]: def check_hidden_states_output(lowerCamelCase :Optional[int] , lowerCamelCase :int , lowerCamelCase :Optional[int] ): UpperCAmelCase__ = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): UpperCAmelCase__ = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) UpperCAmelCase__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase__ = self.model_tester.num_stages self.assertEqual(len(lowerCamelCase ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = ["basic", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: UpperCAmelCase__ = layer_type UpperCAmelCase__ = True check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase__ = True check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def UpperCAmelCase_ ( self :Dict ) -> Union[str, Any]: UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase ) @slow def UpperCAmelCase_ ( self :Tuple ) -> Tuple: for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ = RegNetModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def lowerCAmelCase ( ): """simple docstring""" UpperCAmelCase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _UpperCamelCase ( unittest.TestCase ): @cached_property def UpperCAmelCase_ ( self :Any ) -> Optional[Any]: return ( AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCAmelCase_ ( self :Tuple ) -> Union[str, Any]: UpperCAmelCase__ = RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(lowerCamelCase ) UpperCAmelCase__ = self.default_image_processor UpperCAmelCase__ = prepare_img() UpperCAmelCase__ = image_processor(images=lowerCamelCase , return_tensors="pt" ).to(lowerCamelCase ) # forward pass with torch.no_grad(): UpperCAmelCase__ = model(**lowerCamelCase ) # verify the logits UpperCAmelCase__ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCamelCase ) UpperCAmelCase__ = torch.tensor([-0.41_80, -1.50_51, -3.48_36] ).to(lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase , atol=1e-4 ) )
364
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _A : Any = logging.get_logger(__name__) _A : int = { """microsoft/swin-tiny-patch4-window7-224""": ( """https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json""" ), # See all Swin models at https://huggingface.co/models?filter=swin } class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ : Optional[int] = """swin""" lowerCamelCase__ : List[Any] = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self , A_=2_24 , A_=4 , A_=3 , A_=96 , A_=[2, 2, 6, 2] , A_=[3, 6, 12, 24] , A_=7 , A_=4.0 , A_=True , A_=0.0 , A_=0.0 , A_=0.1 , A_="gelu" , A_=False , A_=0.02 , A_=1E-5 , A_=32 , A_=None , A_=None , **A_ , ): '''simple docstring''' super().__init__(**A_ ) SCREAMING_SNAKE_CASE__ = image_size SCREAMING_SNAKE_CASE__ = patch_size SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = embed_dim SCREAMING_SNAKE_CASE__ = depths SCREAMING_SNAKE_CASE__ = len(A_ ) SCREAMING_SNAKE_CASE__ = num_heads SCREAMING_SNAKE_CASE__ = window_size SCREAMING_SNAKE_CASE__ = mlp_ratio SCREAMING_SNAKE_CASE__ = qkv_bias SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = drop_path_rate SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = use_absolute_embeddings SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model SCREAMING_SNAKE_CASE__ = int(embed_dim * 2 ** (len(A_ ) - 1) ) SCREAMING_SNAKE_CASE__ = ['''stem'''] + [f'''stage{idx}''' for idx in range(1 , len(A_ ) + 1 )] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_aligned_output_features_output_indices( out_features=A_ , out_indices=A_ , stage_names=self.stage_names ) class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ : int = version.parse("""1.11""" ) @property def lowercase_ ( self ): '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def lowercase_ ( self ): '''simple docstring''' return 1E-4
100
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class __lowerCamelCase : """simple docstring""" def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple=13 , SCREAMING_SNAKE_CASE__ : Optional[Any]=10 , SCREAMING_SNAKE_CASE__ : Optional[int]=3 , SCREAMING_SNAKE_CASE__ : List[str]=2 , SCREAMING_SNAKE_CASE__ : List[Any]=2 , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : Any=32 , SCREAMING_SNAKE_CASE__ : Optional[int]=5 , SCREAMING_SNAKE_CASE__ : List[Any]=4 , SCREAMING_SNAKE_CASE__ : List[Any]=37 , SCREAMING_SNAKE_CASE__ : int="gelu" , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : Any=10 , SCREAMING_SNAKE_CASE__ : int=0.02 , SCREAMING_SNAKE_CASE__ : Tuple="divided_space_time" , SCREAMING_SNAKE_CASE__ : Optional[int]=None , ) -> List[str]: lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = image_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = patch_size lowerCAmelCase__ = num_frames lowerCAmelCase__ = is_training lowerCAmelCase__ = use_labels lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = attention_type lowerCAmelCase__ = initializer_range lowerCAmelCase__ = scope lowerCAmelCase__ = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token lowerCAmelCase__ = (image_size // patch_size) ** 2 lowerCAmelCase__ = (num_frames) * self.num_patches_per_frame + 1 def a ( self : int ) -> Tuple: lowerCAmelCase__ = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase__ = self.get_config() return config, pixel_values, labels def a ( self : List[Any] ) -> Any: lowerCAmelCase__ = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) lowerCAmelCase__ = self.num_labels return config def a ( self : str , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Tuple: lowerCAmelCase__ = TimesformerModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Tuple ) -> Tuple: lowerCAmelCase__ = TimesformerForVideoClassification(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ ) # verify the logits shape lowerCAmelCase__ = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , SCREAMING_SNAKE_CASE__ ) def a ( self : Tuple ) -> Dict: lowerCAmelCase__ = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = config_and_inputs lowerCAmelCase__ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): """simple docstring""" snake_case__ = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () snake_case__ = ( {"feature-extraction": TimesformerModel, "video-classification": TimesformerForVideoClassification} if is_torch_available() else {} ) snake_case__ = False snake_case__ = False snake_case__ = False snake_case__ = False def a ( self : List[str] ) -> List[Any]: lowerCAmelCase__ = TimesformerModelTester(self ) lowerCAmelCase__ = ConfigTester( self , config_class=SCREAMING_SNAKE_CASE__ , has_text_modality=SCREAMING_SNAKE_CASE__ , hidden_size=37 ) def a ( self : Dict , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Tuple=False ) -> str: lowerCAmelCase__ = copy.deepcopy(SCREAMING_SNAKE_CASE__ ) if return_labels: if model_class in get_values(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE__ ) return inputs_dict def a ( self : Optional[Any] ) -> List[str]: self.config_tester.run_common_tests() @unittest.skip(reason="TimeSformer does not use inputs_embeds" ) def a ( self : Union[str, Any] ) -> Tuple: pass def a ( self : Dict ) -> List[str]: lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE__ , nn.Linear ) ) def a ( self : int ) -> Optional[Any]: lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ = [*signature.parameters.keys()] lowerCAmelCase__ = ["pixel_values"] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE__ ) def a ( self : int ) -> Optional[Any]: lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ ) def a ( self : Optional[Any] ) -> Tuple: lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*SCREAMING_SNAKE_CASE__ ) @slow def a ( self : str ) -> Tuple: for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = TimesformerModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) def a ( self : int ) -> Dict: if not self.has_attentions: pass else: lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ = True for model_class in self.all_model_classes: lowerCAmelCase__ = self.model_tester.seq_length lowerCAmelCase__ = self.model_tester.num_frames lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = True lowerCAmelCase__ = model_class(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() with torch.no_grad(): lowerCAmelCase__ = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) lowerCAmelCase__ = outputs.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCAmelCase__ = True lowerCAmelCase__ = model_class(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() with torch.no_grad(): lowerCAmelCase__ = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) lowerCAmelCase__ = outputs.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) lowerCAmelCase__ = len(SCREAMING_SNAKE_CASE__ ) # Check attention is always last and order is fine lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = model_class(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() with torch.no_grad(): lowerCAmelCase__ = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) self.assertEqual(out_len + 1 , len(SCREAMING_SNAKE_CASE__ ) ) lowerCAmelCase__ = outputs.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def a ( self : List[str] ) -> Any: def check_hidden_states_output(SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] ): lowerCAmelCase__ = model_class(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() with torch.no_grad(): lowerCAmelCase__ = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) lowerCAmelCase__ = outputs.hidden_states lowerCAmelCase__ = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = True check_hidden_states_output(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase__ = True check_hidden_states_output(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _A ( ): """simple docstring""" lowerCAmelCase__ = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" , filename="eating_spaghetti.npy" , repo_type="dataset" ) lowerCAmelCase__ = np.load(lowerCAmelCase_ ) return list(lowerCAmelCase_ ) @require_torch @require_vision class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def a ( self : Optional[Any] ) -> Union[str, Any]: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def a ( self : Optional[Any] ) -> str: lowerCAmelCase__ = TimesformerForVideoClassification.from_pretrained("facebook/timesformer-base-finetuned-k400" ).to( SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.default_image_processor lowerCAmelCase__ = prepare_video() lowerCAmelCase__ = image_processor(video[:8] , return_tensors="pt" ).to(SCREAMING_SNAKE_CASE__ ) # forward pass with torch.no_grad(): lowerCAmelCase__ = model(**SCREAMING_SNAKE_CASE__ ) # verify the logits lowerCAmelCase__ = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = torch.tensor([-0.3_016, -0.7_713, -0.4_205] ).to(SCREAMING_SNAKE_CASE__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) )
61
0
import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset _UpperCAmelCase = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class __magic_name__ ( nn.Module ): """simple docstring""" def __init__( self , a__ ): super().__init__() _lowerCamelCase = torchvision.models.resnetaaa(pretrained=a__ ) _lowerCamelCase = list(model.children() )[:-2] _lowerCamelCase = nn.Sequential(*a__ ) _lowerCamelCase = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def _UpperCAmelCase ( self , a__ ): # Bx3x224x224 -> Bx2048x7x7 -> Bx2048xN -> BxNx2048 _lowerCamelCase = self.pool(self.model(a__ ) ) _lowerCamelCase = torch.flatten(a__ , start_dim=2 ) _lowerCamelCase = out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class __magic_name__ ( lowercase_ ): """simple docstring""" def __init__( self , a__ , a__ , a__ , a__ , a__ ): _lowerCamelCase = [json.loads(a__ ) for l in open(a__ )] _lowerCamelCase = os.path.dirname(a__ ) _lowerCamelCase = tokenizer _lowerCamelCase = labels _lowerCamelCase = len(a__ ) _lowerCamelCase = max_seq_length _lowerCamelCase = transforms def __len__( self ): return len(self.data ) def __getitem__( self , a__ ): _lowerCamelCase = torch.LongTensor(self.tokenizer.encode(self.data[index]['''text'''] , add_special_tokens=a__ ) ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = sentence[0], sentence[1:-1], sentence[-1] _lowerCamelCase = sentence[: self.max_seq_length] _lowerCamelCase = torch.zeros(self.n_classes ) _lowerCamelCase = 1 _lowerCamelCase = Image.open(os.path.join(self.data_dir , self.data[index]['''img'''] ) ).convert('''RGB''' ) _lowerCamelCase = self.transforms(a__ ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def _UpperCAmelCase ( self ): _lowerCamelCase = Counter() for row in self.data: label_freqs.update(row['''label'''] ) return label_freqs def _lowerCamelCase ( _a ): """simple docstring""" _lowerCamelCase = [len(row['''sentence'''] ) for row in batch] _lowerCamelCase , _lowerCamelCase = len(_a ), max(_a ) _lowerCamelCase = torch.zeros(_a , _a , dtype=torch.long ) _lowerCamelCase = torch.zeros(_a , _a , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(_a , _a ) ): _lowerCamelCase = input_row['''sentence'''] _lowerCamelCase = 1 _lowerCamelCase = torch.stack([row['''image'''] for row in batch] ) _lowerCamelCase = torch.stack([row['''label'''] for row in batch] ) _lowerCamelCase = torch.stack([row['''image_start_token'''] for row in batch] ) _lowerCamelCase = torch.stack([row['''image_end_token'''] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def _lowerCamelCase ( ): """simple docstring""" return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def _lowerCamelCase ( ): """simple docstring""" return transforms.Compose( [ transforms.Resize(2_5_6 ), transforms.CenterCrop(2_2_4 ), transforms.ToTensor(), transforms.Normalize( mean=[0.4677_7044, 0.4453_1429, 0.4066_1017] , std=[0.1222_1994, 0.1214_5835, 0.1438_0469] , ), ] )
297
import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def _lowerCamelCase ( _a ): """simple docstring""" _lowerCamelCase = FileLock(str(tmpdir / '''foo.lock''' ) ) _lowerCamelCase = FileLock(str(tmpdir / '''foo.lock''' ) ) _lowerCamelCase = 0.01 with locka.acquire(): with pytest.raises(_a ): _lowerCamelCase = time.time() locka.acquire(_a ) assert time.time() - _start > timeout def _lowerCamelCase ( _a ): """simple docstring""" _lowerCamelCase = '''a''' * 1_0_0_0 + '''.lock''' _lowerCamelCase = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('''.lock''' ) assert not locka._lock_file.endswith(_a ) assert len(os.path.basename(locka._lock_file ) ) <= 2_5_5 _lowerCamelCase = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(_a ): locka.acquire(0 )
297
1
from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class __lowercase ( __lowercase ): """simple docstring""" UpperCamelCase : int = "dandelin/vilt-b32-finetuned-vqa" UpperCamelCase : Union[str, Any] = ( "This is a tool that answers a question about an image. It takes an input named `image` which should be the " "image containing the information, as well as a `question` which should be the question in English. It " "returns a text that is the answer to the question." ) UpperCamelCase : Optional[int] = "image_qa" UpperCamelCase : Dict = AutoProcessor UpperCamelCase : Optional[int] = AutoModelForVisualQuestionAnswering UpperCamelCase : int = ["image", "text"] UpperCamelCase : Optional[Any] = ["text"] def __init__( self , *A , **A ) -> Dict: '''simple docstring''' requires_backends(self , ["""vision"""] ) super().__init__(*A , **A ) def __A ( self , A , A ) -> int: '''simple docstring''' return self.pre_processor(A , A , return_tensors="""pt""" ) def __A ( self , A ) -> Any: '''simple docstring''' with torch.no_grad(): return self.model(**A ).logits def __A ( self , A ) -> Optional[int]: '''simple docstring''' lowerCamelCase = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
457
"""simple docstring""" import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process SCREAMING_SNAKE_CASE : Any = logging.getLogger(__name__) def __UpperCAmelCase ( snake_case_ : Union[str, Any] , snake_case_ : str ) -> Union[str, Any]: """simple docstring""" return (preds == labels).mean() @dataclass class __lowerCamelCase : __UpperCamelCase = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) __UpperCamelCase = field( default=__lowercase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __UpperCamelCase = field( default=__lowercase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __UpperCamelCase = field( default=__lowercase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) @dataclass class __lowerCamelCase : __UpperCamelCase = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(processors.keys() )} ) __UpperCamelCase = field(metadata={'help': 'Should contain the data files for the task.'} ) __UpperCamelCase = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __UpperCamelCase = field( default=__lowercase , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def __UpperCAmelCase ( ) -> List[str]: """simple docstring""" _lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , snake_case_ ) # Set seed set_seed(training_args.seed ) try: _lowerCAmelCase = processors[data_args.task_name]() _lowerCAmelCase = processor.get_labels() _lowerCAmelCase = len(snake_case_ ) except KeyError: raise ValueError("""Task not found: %s""" % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=snake_case_ , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) _lowerCAmelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowerCAmelCase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=snake_case_ , cache_dir=model_args.cache_dir , ) # Get datasets _lowerCAmelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=snake_case_ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) _lowerCAmelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=snake_case_ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(snake_case_ : EvalPrediction ) -> Dict: _lowerCAmelCase = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(snake_case_ , p.label_ids )} # Data collator _lowerCAmelCase = DataCollatorWithPadding(snake_case_ , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer _lowerCAmelCase = Trainer( model=snake_case_ , args=snake_case_ , train_dataset=snake_case_ , eval_dataset=snake_case_ , compute_metrics=snake_case_ , data_collator=snake_case_ , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _lowerCAmelCase = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) _lowerCAmelCase = trainer.evaluate() _lowerCAmelCase = os.path.join(training_args.output_dir , """eval_results.txt""" ) if trainer.is_world_master(): with open(snake_case_ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(""" %s = %s""" , snake_case_ , snake_case_ ) writer.write("""%s = %s\n""" % (key, value) ) results.update(snake_case_ ) return results def __UpperCAmelCase ( snake_case_ : Optional[Any] ) -> Dict: """simple docstring""" main() if __name__ == "__main__": main()
156
0
import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel lowercase = logging.getLogger(__name__) def __lowerCAmelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[Any] ) -> Any: # save results if os.path.exists(UpperCAmelCase__ ): if os.path.exists(os.path.join(UpperCAmelCase__ , """config.json""" ) ) and os.path.isfile( os.path.join(UpperCAmelCase__ , """config.json""" ) ): os.remove(os.path.join(UpperCAmelCase__ , """config.json""" ) ) if os.path.exists(os.path.join(UpperCAmelCase__ , """pytorch_model.bin""" ) ) and os.path.isfile( os.path.join(UpperCAmelCase__ , """pytorch_model.bin""" ) ): os.remove(os.path.join(UpperCAmelCase__ , """pytorch_model.bin""" ) ) else: os.makedirs(UpperCAmelCase__ ) model.save_pretrained(UpperCAmelCase__ ) def __lowerCAmelCase ( UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Union[str, Any]=False ) -> int: lowerCamelCase_ = 2 if unlogit: lowerCamelCase_ = torch.pow(UpperCAmelCase__ , UpperCAmelCase__ ) lowerCamelCase_ = p * torch.log(UpperCAmelCase__ ) lowerCamelCase_ = 0 return -plogp.sum(dim=-1 ) def __lowerCAmelCase ( UpperCAmelCase__ : Union[str, Any] ) -> Optional[int]: logger.info("""lv, h >\t""" + """\t""".join(F'''{x + 1}''' for x in range(len(UpperCAmelCase__ ) ) ) ) for row in range(len(UpperCAmelCase__ ) ): if tensor.dtype != torch.long: logger.info(F'''layer {row + 1}:\t''' + """\t""".join(F'''{x:.5f}''' for x in tensor[row].cpu().data ) ) else: logger.info(F'''layer {row + 1}:\t''' + """\t""".join(F'''{x:d}''' for x in tensor[row].cpu().data ) ) def __lowerCAmelCase ( UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int=True , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : int=None , UpperCAmelCase__ : Optional[int]=False ) -> int: lowerCamelCase_ , lowerCamelCase_ = model.config.num_hidden_layers, model.config.num_attention_heads lowerCamelCase_ = torch.zeros(UpperCAmelCase__ , UpperCAmelCase__ ).to(args.device ) lowerCamelCase_ = torch.zeros(UpperCAmelCase__ , UpperCAmelCase__ ).to(args.device ) if head_mask is None: lowerCamelCase_ = torch.ones(UpperCAmelCase__ , UpperCAmelCase__ ).to(args.device ) head_mask.requires_grad_(requires_grad=UpperCAmelCase__ ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: lowerCamelCase_ = None lowerCamelCase_ = 0.0 lowerCamelCase_ = 0.0 for step, inputs in enumerate(tqdm(UpperCAmelCase__ , desc="""Iteration""" , disable=args.local_rank not in [-1, 0] ) ): lowerCamelCase_ = tuple(t.to(args.device ) for t in inputs ) ((lowerCamelCase_) , ) = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) lowerCamelCase_ = model(UpperCAmelCase__ , labels=UpperCAmelCase__ , head_mask=UpperCAmelCase__ ) # (loss), lm_logits, presents, (all hidden_states), (attentions) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(UpperCAmelCase__ ): lowerCamelCase_ = entropy(attn.detach() , UpperCAmelCase__ ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(UpperCAmelCase__ ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: lowerCamelCase_ = 2 lowerCamelCase_ = torch.pow(torch.pow(UpperCAmelCase__ , UpperCAmelCase__ ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-20 if not args.dont_normalize_global_importance: lowerCamelCase_ = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info("""Attention entropies""" ) print_ad_tensor(UpperCAmelCase__ ) if compute_importance: logger.info("""Head importance scores""" ) print_ad_tensor(UpperCAmelCase__ ) logger.info("""Head ranked by importance scores""" ) lowerCamelCase_ = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) lowerCamelCase_ = torch.arange( head_importance.numel() , device=args.device ) lowerCamelCase_ = head_ranks.view_as(UpperCAmelCase__ ) print_ad_tensor(UpperCAmelCase__ ) return attn_entropy, head_importance, total_loss def __lowerCAmelCase ( UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Dict ) -> Optional[int]: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = compute_heads_importance(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , compute_entropy=UpperCAmelCase__ ) lowerCamelCase_ = 1 / loss # instead of downsteam score use the LM loss logger.info("""Pruning: original score: %f, threshold: %f""" , UpperCAmelCase__ , original_score * args.masking_threshold ) lowerCamelCase_ = torch.ones_like(UpperCAmelCase__ ) lowerCamelCase_ = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) lowerCamelCase_ = original_score while current_score >= original_score * args.masking_threshold: lowerCamelCase_ = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads lowerCamelCase_ = float("""Inf""" ) lowerCamelCase_ = head_importance.view(-1 ).sort()[1] if len(UpperCAmelCase__ ) <= num_to_mask: print("""BREAK BY num_to_mask""" ) break # mask heads lowerCamelCase_ = current_heads_to_mask[:num_to_mask] logger.info("""Heads to mask: %s""" , str(current_heads_to_mask.tolist() ) ) lowerCamelCase_ = new_head_mask.view(-1 ) lowerCamelCase_ = 0.0 lowerCamelCase_ = new_head_mask.view_as(UpperCAmelCase__ ) lowerCamelCase_ = new_head_mask.clone().detach() print_ad_tensor(UpperCAmelCase__ ) # Compute metric and head importance again lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = compute_heads_importance( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , compute_entropy=UpperCAmelCase__ , head_mask=UpperCAmelCase__ ) lowerCamelCase_ = 1 / loss logger.info( """Masking: current score: %f, remaining heads %d (%.1f percents)""" , UpperCAmelCase__ , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_0_0 , ) logger.info("""Final head mask""" ) print_ad_tensor(UpperCAmelCase__ ) np.save(os.path.join(args.output_dir , """head_mask.npy""" ) , head_mask.detach().cpu().numpy() ) return head_mask def __lowerCAmelCase ( UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[int] ) -> int: lowerCamelCase_ = datetime.now() lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = compute_heads_importance( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , compute_entropy=UpperCAmelCase__ , compute_importance=UpperCAmelCase__ , head_mask=UpperCAmelCase__ ) lowerCamelCase_ = 1 / loss lowerCamelCase_ = datetime.now() - before_time lowerCamelCase_ = sum(p.numel() for p in model.parameters() ) lowerCamelCase_ = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(UpperCAmelCase__ ) ) } for k, v in heads_to_prune.items(): if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): lowerCamelCase_ = [ v, ] assert sum(len(UpperCAmelCase__ ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(UpperCAmelCase__ ) lowerCamelCase_ = sum(p.numel() for p in model.parameters() ) lowerCamelCase_ = datetime.now() lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = compute_heads_importance( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , compute_entropy=UpperCAmelCase__ , compute_importance=UpperCAmelCase__ , head_mask=UpperCAmelCase__ , actually_pruned=UpperCAmelCase__ , ) lowerCamelCase_ = 1 / loss lowerCamelCase_ = datetime.now() - before_time logger.info( """Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)""" , UpperCAmelCase__ , UpperCAmelCase__ , pruned_num_params / original_num_params * 1_0_0 , ) logger.info("""Pruning: score with masking: %f score with pruning: %f""" , UpperCAmelCase__ , UpperCAmelCase__ ) logger.info("""Pruning: speed ratio (original timing / new timing): %f percents""" , original_time / new_time * 1_0_0 ) save_model(UpperCAmelCase__ , args.output_dir ) def __lowerCAmelCase ( ) -> Optional[Any]: lowerCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--data_dir""" , default=UpperCAmelCase__ , type=UpperCAmelCase__ , required=UpperCAmelCase__ , help="""The input data dir. Should contain the .tsv files (or other data files) for the task.""" , ) parser.add_argument( """--model_name_or_path""" , default=UpperCAmelCase__ , type=UpperCAmelCase__ , required=UpperCAmelCase__ , help="""Path to pretrained model or model identifier from huggingface.co/models""" , ) parser.add_argument( """--output_dir""" , default=UpperCAmelCase__ , type=UpperCAmelCase__ , required=UpperCAmelCase__ , help="""The output directory where the model predictions and checkpoints will be written.""" , ) # Other parameters parser.add_argument( """--config_name""" , default="""""" , type=UpperCAmelCase__ , help="""Pretrained config name or path if not the same as model_name_or_path""" , ) parser.add_argument( """--tokenizer_name""" , default="""""" , type=UpperCAmelCase__ , help="""Pretrained tokenizer name or path if not the same as model_name_or_path""" , ) parser.add_argument( """--cache_dir""" , default=UpperCAmelCase__ , type=UpperCAmelCase__ , help="""Where do you want to store the pre-trained models downloaded from s3""" , ) parser.add_argument( """--data_subset""" , type=UpperCAmelCase__ , default=-1 , help="""If > 0: limit the data to a subset of data_subset instances.""" ) parser.add_argument( """--overwrite_output_dir""" , action="""store_true""" , help="""Whether to overwrite data in output directory""" ) parser.add_argument( """--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""" ) parser.add_argument( """--dont_normalize_importance_by_layer""" , action="""store_true""" , help="""Don't normalize importance score by layers""" ) parser.add_argument( """--dont_normalize_global_importance""" , action="""store_true""" , help="""Don't normalize all importance scores between 0 and 1""" , ) parser.add_argument( """--try_masking""" , action="""store_true""" , help="""Whether to try to mask head until a threshold of accuracy.""" ) parser.add_argument( """--masking_threshold""" , default=0.9 , type=UpperCAmelCase__ , help="""masking threshold in term of metrics (stop masking when metric < threshold * original metric value).""" , ) parser.add_argument( """--masking_amount""" , default=0.1 , type=UpperCAmelCase__ , help="""Amount to heads to masking at each masking step.""" ) parser.add_argument("""--metric_name""" , default="""acc""" , type=UpperCAmelCase__ , help="""Metric to use for head masking.""" ) parser.add_argument( """--max_seq_length""" , default=1_2_8 , type=UpperCAmelCase__ , help=( """The maximum total input sequence length after WordPiece tokenization. \n""" """Sequences longer than this will be truncated, sequences shorter padded.""" ) , ) parser.add_argument("""--batch_size""" , default=1 , type=UpperCAmelCase__ , help="""Batch size.""" ) parser.add_argument("""--seed""" , type=UpperCAmelCase__ , default=4_2 ) parser.add_argument("""--local_rank""" , type=UpperCAmelCase__ , default=-1 , help="""local_rank for distributed training on gpus""" ) parser.add_argument("""--no_cuda""" , action="""store_true""" , help="""Whether not to use CUDA when available""" ) parser.add_argument("""--server_ip""" , type=UpperCAmelCase__ , default="""""" , help="""Can be used for distant debugging.""" ) parser.add_argument("""--server_port""" , type=UpperCAmelCase__ , default="""""" , help="""Can be used for distant debugging.""" ) lowerCamelCase_ = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("""Waiting for debugger attach""" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=UpperCAmelCase__ ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: lowerCamelCase_ = torch.device("""cuda""" if torch.cuda.is_available() and not args.no_cuda else """cpu""" ) lowerCamelCase_ = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) lowerCamelCase_ = torch.device("""cuda""" , args.local_rank ) lowerCamelCase_ = 1 torch.distributed.init_process_group(backend="""nccl""" ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info("""device: {} n_gpu: {}, distributed: {}""".format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) lowerCamelCase_ = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: lowerCamelCase_ = nn.parallel.DistributedDataParallel( UpperCAmelCase__ , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=UpperCAmelCase__ ) elif args.n_gpu > 1: lowerCamelCase_ = nn.DataParallel(UpperCAmelCase__ ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=UpperCAmelCase__ ) torch.save(UpperCAmelCase__ , os.path.join(args.output_dir , """run_args.bin""" ) ) logger.info("""Training/evaluation parameters %s""" , UpperCAmelCase__ ) # Prepare dataset lowerCamelCase_ = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) lowerCamelCase_ = (torch.from_numpy(UpperCAmelCase__ ),) lowerCamelCase_ = TensorDataset(*UpperCAmelCase__ ) lowerCamelCase_ = RandomSampler(UpperCAmelCase__ ) lowerCamelCase_ = DataLoader(UpperCAmelCase__ , sampler=UpperCAmelCase__ , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: lowerCamelCase_ = mask_heads(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) prune_heads(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) if __name__ == "__main__": main()
103
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase = logging.get_logger(__name__) lowercase = {'''vocab_file''': '''vocab.txt'''} lowercase = { '''vocab_file''': { '''openbmb/cpm-ant-10b''': '''https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt''', }, } lowercase = { '''openbmb/cpm-ant-10b''': 1_0_2_4, } def __lowerCAmelCase ( UpperCAmelCase__ : List[str] ) -> Dict: lowerCamelCase_ = collections.OrderedDict() with open(UpperCAmelCase__ , """r""" , encoding="""utf-8""" ) as reader: lowerCamelCase_ = reader.readlines() for index, token in enumerate(UpperCAmelCase__ ): lowerCamelCase_ = token.rstrip("""\n""" ) lowerCamelCase_ = index return vocab class __A( UpperCAmelCase ): def __init__( self : Optional[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : List[str]="<unk>" , __UpperCamelCase : List[str]=2_0_0 ): lowerCamelCase_ = vocab lowerCamelCase_ = unk_token lowerCamelCase_ = max_input_chars_per_word def lowercase__ ( self : int , __UpperCamelCase : int ): lowerCamelCase_ = list(__UpperCamelCase ) if len(__UpperCamelCase ) > self.max_input_chars_per_word: return [self.unk_token] lowerCamelCase_ = 0 lowerCamelCase_ = [] while start < len(__UpperCamelCase ): lowerCamelCase_ = len(__UpperCamelCase ) lowerCamelCase_ = None while start < end: lowerCamelCase_ = """""".join(chars[start:end] ) if substr in self.vocab: lowerCamelCase_ = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(__UpperCamelCase ) lowerCamelCase_ = end return sub_tokens class __A( UpperCAmelCase ): SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = ['''input_ids''', '''attention_mask'''] SCREAMING_SNAKE_CASE = False def __init__( self : int , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[int]="<d>" , __UpperCamelCase : List[str]="</d>" , __UpperCamelCase : Optional[Any]="<s>" , __UpperCamelCase : Union[str, Any]="</s>" , __UpperCamelCase : List[str]="<pad>" , __UpperCamelCase : Union[str, Any]="<unk>" , __UpperCamelCase : List[Any]="</n>" , __UpperCamelCase : Tuple="</_>" , __UpperCamelCase : Optional[Any]="left" , **__UpperCamelCase : List[str] , ): requires_backends(self , ["""jieba"""] ) super().__init__( bod_token=__UpperCamelCase , eod_token=__UpperCamelCase , bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , pad_token=__UpperCamelCase , unk_token=__UpperCamelCase , line_token=__UpperCamelCase , space_token=__UpperCamelCase , padding_side=__UpperCamelCase , **__UpperCamelCase , ) lowerCamelCase_ = bod_token lowerCamelCase_ = eod_token lowerCamelCase_ = load_vocab(__UpperCamelCase ) lowerCamelCase_ = self.encoder[space_token] lowerCamelCase_ = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] lowerCamelCase_ = collections.OrderedDict(sorted(self.encoder.items() , key=lambda __UpperCamelCase : x[1] ) ) lowerCamelCase_ = {v: k for k, v in self.encoder.items()} lowerCamelCase_ = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def lowercase__ ( self : Any ): return self.encoder[self.bod_token] @property def lowercase__ ( self : Any ): return self.encoder[self.eod_token] @property def lowercase__ ( self : int ): return self.encoder["\n"] @property def lowercase__ ( self : str ): return len(self.encoder ) def lowercase__ ( self : Any ): return dict(self.encoder , **self.added_tokens_encoder ) def lowercase__ ( self : Any , __UpperCamelCase : Optional[Any] ): lowerCamelCase_ = [] for x in jieba.cut(__UpperCamelCase , cut_all=__UpperCamelCase ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(__UpperCamelCase ) ) return output_tokens def lowercase__ ( self : Optional[Any] , __UpperCamelCase : Dict , **__UpperCamelCase : str ): lowerCamelCase_ = [i for i in token_ids if i >= 0] lowerCamelCase_ = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Dict , __UpperCamelCase : Optional[Any] ): return token in self.encoder def lowercase__ ( self : int , __UpperCamelCase : List[str] ): return "".join(__UpperCamelCase ) def lowercase__ ( self : List[str] , __UpperCamelCase : int ): return self.encoder.get(__UpperCamelCase , self.encoder.get(self.unk_token ) ) def lowercase__ ( self : Any , __UpperCamelCase : Union[str, Any] ): return self.decoder.get(__UpperCamelCase , self.unk_token ) def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : str , __UpperCamelCase : Optional[str] = None ): if os.path.isdir(__UpperCamelCase ): lowerCamelCase_ = os.path.join( __UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) else: lowerCamelCase_ = (filename_prefix + """-""" if filename_prefix else """""") + save_directory lowerCamelCase_ = 0 if " " in self.encoder: lowerCamelCase_ = self.encoder[""" """] del self.encoder[" "] if "\n" in self.encoder: lowerCamelCase_ = self.encoder["""\n"""] del self.encoder["\n"] lowerCamelCase_ = collections.OrderedDict(sorted(self.encoder.items() , key=lambda __UpperCamelCase : x[1] ) ) with open(__UpperCamelCase , """w""" , encoding="""utf-8""" ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( F'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' """ Please check that the vocabulary is not corrupted!""" ) lowerCamelCase_ = token_index writer.write(token + """\n""" ) index += 1 return (vocab_file,) def lowercase__ ( self : Any , __UpperCamelCase : List[int] , __UpperCamelCase : List[int] = None ): if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def lowercase__ ( self : int , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None , __UpperCamelCase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCamelCase , token_ids_a=__UpperCamelCase , already_has_special_tokens=__UpperCamelCase ) if token_ids_a is not None: return [1] + ([0] * len(__UpperCamelCase )) + [1] + ([0] * len(__UpperCamelCase )) return [1] + ([0] * len(__UpperCamelCase ))
103
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ : int = { 'configuration_llama': ['LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LlamaConfig'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[int] = ['LlamaTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Dict = ['LlamaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Any = [ 'LlamaForCausalLM', 'LlamaModel', 'LlamaPreTrainedModel', 'LlamaForSequenceClassification', ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys UpperCAmelCase_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
533
'''simple docstring''' def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" print("""\nThe shortest path matrix using Floyd Warshall algorithm\n""" ) for i in range(SCREAMING_SNAKE_CASE__ ): for j in range(SCREAMING_SNAKE_CASE__ ): if dist[i][j] != float("""inf""" ): print(int(dist[i][j] ) , end="""\t""" ) else: print("""INF""" , end="""\t""" ) print() def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : Any = [[float("""inf""" ) for _ in range(SCREAMING_SNAKE_CASE__ )] for _ in range(SCREAMING_SNAKE_CASE__ )] for i in range(SCREAMING_SNAKE_CASE__ ): for j in range(SCREAMING_SNAKE_CASE__ ): _SCREAMING_SNAKE_CASE : List[str] = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(SCREAMING_SNAKE_CASE__ ): # looping through rows of graph array for i in range(SCREAMING_SNAKE_CASE__ ): # looping through columns of graph array for j in range(SCREAMING_SNAKE_CASE__ ): if ( dist[i][k] != float("""inf""" ) and dist[k][j] != float("""inf""" ) and dist[i][k] + dist[k][j] < dist[i][j] ): _SCREAMING_SNAKE_CASE : int = dist[i][k] + dist[k][j] _print_dist(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return dist, v if __name__ == "__main__": UpperCAmelCase_ : str = int(input('Enter number of vertices: ')) UpperCAmelCase_ : Union[str, Any] = int(input('Enter number of edges: ')) UpperCAmelCase_ : Dict = [[float('inf') for i in range(v)] for j in range(v)] for i in range(v): UpperCAmelCase_ : Union[str, Any] = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print('\nEdge ', i + 1) UpperCAmelCase_ : int = int(input('Enter source:')) UpperCAmelCase_ : List[str] = int(input('Enter destination:')) UpperCAmelCase_ : List[str] = float(input('Enter weight:')) UpperCAmelCase_ : int = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
533
1
import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters lowercase_ = logging.get_logger(__name__) def _snake_case( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : str=None ) -> str: '''simple docstring''' if "." in tensor_name: A__ = tensor_name.split('.' ) for split in splits[:-1]: A__ = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if new_module is None: raise ValueError(f'{module} has no attribute {split}.' ) A__ = new_module A__ = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(f'{module} does not have a parameter or a buffer named {tensor_name}.' ) A__ = tensor_name in module._buffers A__ = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if old_value.device == torch.device('meta' ) and device not in ["meta", torch.device('meta' )] and value is None: raise ValueError(f'{tensor_name} is on the meta device, we need a `value` to put in on {device}.' ) A__ = False A__ = False if is_buffer or not is_bitsandbytes_available(): A__ = False A__ = False else: A__ = hasattr(bnb.nn , 'Params4bit' ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) A__ = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: A__ = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: A__ = old_value.to(SCREAMING_SNAKE_CASE__ ) elif isinstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ): A__ = value.to('cpu' ) if value.dtype == torch.inta: A__ = version.parse(importlib.metadata.version('bitsandbytes' ) ) > version.parse( '0.37.2' ) if not is_abit_serializable: raise ValueError( 'Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. ' 'Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.' ) else: A__ = torch.tensor(SCREAMING_SNAKE_CASE__ , device='cpu' ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , SCREAMING_SNAKE_CASE__ ) and fpaa_statistics is None: A__ = new_value.T A__ = old_value.__dict__ if is_abit: A__ = bnb.nn.IntaParams(SCREAMING_SNAKE_CASE__ , requires_grad=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) elif is_abit: A__ = bnb.nn.Paramsabit(SCREAMING_SNAKE_CASE__ , requires_grad=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) A__ = new_value if fpaa_statistics is not None: setattr(module.weight , 'SCB' , fpaa_statistics.to(SCREAMING_SNAKE_CASE__ ) ) else: if value is None: A__ = old_value.to(SCREAMING_SNAKE_CASE__ ) elif isinstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ): A__ = value.to(SCREAMING_SNAKE_CASE__ ) else: A__ = torch.tensor(SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ ) if is_buffer: A__ = new_value else: A__ = nn.Parameter(SCREAMING_SNAKE_CASE__ , requires_grad=old_value.requires_grad ) A__ = new_value def _snake_case( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str=None , SCREAMING_SNAKE_CASE__ : str=None , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : Optional[int]=False ) -> List[str]: '''simple docstring''' for name, module in model.named_children(): if current_key_name is None: A__ = [] current_key_name.append(SCREAMING_SNAKE_CASE__ ) if (isinstance(SCREAMING_SNAKE_CASE__ , nn.Linear ) or isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in '.'.join(SCREAMING_SNAKE_CASE__ ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): A__ , A__ = module.weight.shape else: A__ = module.in_features A__ = module.out_features if quantization_config.quantization_method() == "llm_int8": A__ = bnb.nn.LinearabitLt( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) A__ = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: A__ = bnb.nn.Linearabit( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) A__ = True # Store the module class in case we need to transpose the weight later A__ = type(SCREAMING_SNAKE_CASE__ ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(SCREAMING_SNAKE_CASE__ ) if len(list(module.children() ) ) > 0: A__ , A__ = _replace_with_bnb_linear( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , has_been_replaced=SCREAMING_SNAKE_CASE__ , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def _snake_case( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : str=None ) -> List[Any]: '''simple docstring''' A__ = ['lm_head'] if modules_to_not_convert is None else modules_to_not_convert A__ , A__ = _replace_with_bnb_linear( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if not has_been_replaced: logger.warning( 'You are loading your model in 8bit or 4bit but no linear modules were found in your model.' ' Please double check your model architecture, or submit an issue on github if you think this is' ' a bug.' ) return model def _snake_case( *SCREAMING_SNAKE_CASE__ : List[Any] , **SCREAMING_SNAKE_CASE__ : Dict ) -> Optional[int]: '''simple docstring''' warnings.warn( '`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead' , SCREAMING_SNAKE_CASE__ , ) return replace_with_bnb_linear(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def _snake_case( *SCREAMING_SNAKE_CASE__ : Optional[int] , **SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Dict: '''simple docstring''' warnings.warn( '`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead' , SCREAMING_SNAKE_CASE__ , ) return set_module_quantized_tensor_to_device(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ : List[Any] ) -> Union[str, Any]: '''simple docstring''' A__ = deepcopy(SCREAMING_SNAKE_CASE__ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() A__ = find_tied_parameters(SCREAMING_SNAKE_CASE__ ) # For compatibility with Accelerate < 0.18 if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): A__ = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: A__ = sum(SCREAMING_SNAKE_CASE__ , [] ) A__ = len(SCREAMING_SNAKE_CASE__ ) > 0 # Check if it is a base model A__ = not hasattr(SCREAMING_SNAKE_CASE__ , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head A__ = list(model.named_children() ) A__ = [list_modules[-1][0]] # add last module together with tied weights A__ = set(SCREAMING_SNAKE_CASE__ ) - set(SCREAMING_SNAKE_CASE__ ) A__ = list(set(SCREAMING_SNAKE_CASE__ ) ) + list(SCREAMING_SNAKE_CASE__ ) # remove ".weight" from the keys A__ = ['.weight', '.bias'] A__ = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: A__ = name.replace(SCREAMING_SNAKE_CASE__ , '' ) filtered_module_names.append(SCREAMING_SNAKE_CASE__ ) return filtered_module_names
701
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset lowercase_ = random.Random() def _snake_case( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[int]=1.0 , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : Tuple=None ) -> List[Any]: '''simple docstring''' if rng is None: A__ = global_rng A__ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class A ( unittest.TestCase ): """simple docstring""" def __init__( self : Tuple,lowercase_ : str,lowercase_ : Optional[Any]=7,lowercase_ : Union[str, Any]=4_0_0,lowercase_ : Optional[int]=2_0_0_0,lowercase_ : Dict=2_0_4_8,lowercase_ : int=1_2_8,lowercase_ : str=1,lowercase_ : List[Any]=5_1_2,lowercase_ : Union[str, Any]=3_0,lowercase_ : Any=4_4_1_0_0,)-> Union[str, Any]: '''simple docstring''' A__ = parent A__ = batch_size A__ = min_seq_length A__ = max_seq_length A__ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) A__ = spectrogram_length A__ = feature_size A__ = num_audio_channels A__ = hop_length A__ = chunk_length A__ = sampling_rate def snake_case__ ( self : Tuple )-> Dict: '''simple docstring''' return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def snake_case__ ( self : Tuple,lowercase_ : List[Any]=False,lowercase_ : Optional[int]=False )-> str: '''simple docstring''' def _flatten(lowercase_ : Any ): return list(itertools.chain(*lowercase_ ) ) if equal_length: A__ = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size A__ = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length,self.max_seq_length,self.seq_length_diff ) ] if numpify: A__ = [np.asarray(lowercase_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class A ( _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase = TvltFeatureExtractor def snake_case__ ( self : Optional[Any] )-> Dict: '''simple docstring''' A__ = TvltFeatureExtractionTester(self ) def snake_case__ ( self : List[Any] )-> Any: '''simple docstring''' A__ = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(lowercase_,'spectrogram_length' ) ) self.assertTrue(hasattr(lowercase_,'feature_size' ) ) self.assertTrue(hasattr(lowercase_,'num_audio_channels' ) ) self.assertTrue(hasattr(lowercase_,'hop_length' ) ) self.assertTrue(hasattr(lowercase_,'chunk_length' ) ) self.assertTrue(hasattr(lowercase_,'sampling_rate' ) ) def snake_case__ ( self : Dict )-> Any: '''simple docstring''' A__ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A__ = feat_extract_first.save_pretrained(lowercase_ )[0] check_json_file_has_correct_format(lowercase_ ) A__ = self.feature_extraction_class.from_pretrained(lowercase_ ) A__ = feat_extract_first.to_dict() A__ = feat_extract_second.to_dict() A__ = dict_first.pop('mel_filters' ) A__ = dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(lowercase_,lowercase_ ) ) self.assertEqual(lowercase_,lowercase_ ) def snake_case__ ( self : str )-> Dict: '''simple docstring''' A__ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A__ = os.path.join(lowercase_,'feat_extract.json' ) feat_extract_first.to_json_file(lowercase_ ) A__ = self.feature_extraction_class.from_json_file(lowercase_ ) A__ = feat_extract_first.to_dict() A__ = feat_extract_second.to_dict() A__ = dict_first.pop('mel_filters' ) A__ = dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(lowercase_,lowercase_ ) ) self.assertEqual(lowercase_,lowercase_ ) def snake_case__ ( self : Optional[int] )-> Optional[int]: '''simple docstring''' A__ = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 A__ = [floats_list((1, x) )[0] for x in range(8_0_0,1_4_0_0,2_0_0 )] A__ = [np.asarray(lowercase_ ) for speech_input in speech_inputs] # Test not batched input A__ = feature_extractor(np_speech_inputs[0],return_tensors='np',sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched A__ = feature_extractor(lowercase_,return_tensors='np',sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking A__ = feature_extractor( lowercase_,return_tensors='np',sampling_rate=4_4_1_0_0,mask_audio=lowercase_ ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. A__ = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] A__ = np.asarray(lowercase_ ) A__ = feature_extractor(lowercase_,return_tensors='np',sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def snake_case__ ( self : Optional[Any],lowercase_ : Tuple )-> Tuple: '''simple docstring''' A__ = load_dataset('hf-internal-testing/librispeech_asr_dummy','clean',split='validation' ) # automatic decoding with librispeech A__ = ds.sort('id' ).select(range(lowercase_ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def snake_case__ ( self : List[Any] )-> Any: '''simple docstring''' A__ = self._load_datasamples(1 ) A__ = TvltFeatureExtractor() A__ = feature_extractor(lowercase_,return_tensors='pt' ).audio_values self.assertEquals(audio_values.shape,(1, 1, 1_9_2, 1_2_8) ) A__ = torch.tensor([[-0.3_032, -0.2_708], [-0.4_434, -0.4_007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2],lowercase_,atol=1E-4 ) )
586
0
from ...configuration_utils import PretrainedConfig from ...utils import logging A_: Any = logging.get_logger(__name__) A_: Optional[int] = { 'transfo-xl-wt103': 'https://huggingface.co/transfo-xl-wt103/resolve/main/config.json', } class _lowercase ( _UpperCAmelCase ): """simple docstring""" lowerCAmelCase__ = 'transfo-xl' lowerCAmelCase__ = ['mems'] lowerCAmelCase__ = { 'n_token': 'vocab_size', 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , UpperCAmelCase=267735 , UpperCAmelCase=[20000, 40000, 200000] , UpperCAmelCase=1024 , UpperCAmelCase=1024 , UpperCAmelCase=16 , UpperCAmelCase=64 , UpperCAmelCase=4096 , UpperCAmelCase=4 , UpperCAmelCase=False , UpperCAmelCase=18 , UpperCAmelCase=1600 , UpperCAmelCase=1000 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=0 , UpperCAmelCase=-1 , UpperCAmelCase=True , UpperCAmelCase=0.1 , UpperCAmelCase=0.0 , UpperCAmelCase=True , UpperCAmelCase="normal" , UpperCAmelCase=0.01 , UpperCAmelCase=0.01 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-5 , UpperCAmelCase=0 , **UpperCAmelCase , ): '''simple docstring''' _lowercase = vocab_size _lowercase = [] self.cutoffs.extend(UpperCAmelCase ) if proj_share_all_but_first: _lowercase = [False] + [True] * len(self.cutoffs ) else: _lowercase = [False] + [False] * len(self.cutoffs ) _lowercase = d_model _lowercase = d_embed _lowercase = d_head _lowercase = d_inner _lowercase = div_val _lowercase = pre_lnorm _lowercase = n_layer _lowercase = n_head _lowercase = mem_len _lowercase = same_length _lowercase = attn_type _lowercase = clamp_len _lowercase = sample_softmax _lowercase = adaptive _lowercase = dropout _lowercase = dropatt _lowercase = untie_r _lowercase = init _lowercase = init_range _lowercase = proj_init_std _lowercase = init_std _lowercase = layer_norm_epsilon super().__init__(eos_token_id=UpperCAmelCase , **UpperCAmelCase ) @property def _UpperCAmelCase ( self ): '''simple docstring''' logger.info(F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def _UpperCAmelCase ( self , UpperCAmelCase ): '''simple docstring''' raise NotImplementedError( F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
398
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging A_: Tuple = logging.get_logger(__name__) A_: str = { 'BridgeTower/bridgetower-base': 'https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json', 'BridgeTower/bridgetower-base-itm-mlm': ( 'https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json' ), } class _lowercase ( _UpperCAmelCase ): """simple docstring""" lowerCAmelCase__ = 'bridgetower_vision_model' def __init__( self , UpperCAmelCase=768 , UpperCAmelCase=12 , UpperCAmelCase=3 , UpperCAmelCase=16 , UpperCAmelCase=288 , UpperCAmelCase=1 , UpperCAmelCase=1e-05 , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=False , **UpperCAmelCase , ): '''simple docstring''' super().__init__(**UpperCAmelCase ) _lowercase = hidden_size _lowercase = num_hidden_layers _lowercase = num_channels _lowercase = patch_size _lowercase = image_size _lowercase = initializer_factor _lowercase = layer_norm_eps _lowercase = stop_gradient _lowercase = share_layernorm _lowercase = remove_last_layer @classmethod def _UpperCAmelCase ( cls , UpperCAmelCase , **UpperCAmelCase ): '''simple docstring''' _lowercase , _lowercase = cls.get_config_dict(UpperCAmelCase , **UpperCAmelCase ) if config_dict.get("""model_type""" ) == "bridgetower": _lowercase = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(UpperCAmelCase , **UpperCAmelCase ) class _lowercase ( _UpperCAmelCase ): """simple docstring""" lowerCAmelCase__ = 'bridgetower_text_model' def __init__( self , UpperCAmelCase=50265 , UpperCAmelCase=768 , UpperCAmelCase=12 , UpperCAmelCase=12 , UpperCAmelCase=1 , UpperCAmelCase=3072 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=514 , UpperCAmelCase=1 , UpperCAmelCase=1e-05 , UpperCAmelCase=1 , UpperCAmelCase=0 , UpperCAmelCase=2 , UpperCAmelCase="absolute" , UpperCAmelCase=True , **UpperCAmelCase , ): '''simple docstring''' super().__init__(**UpperCAmelCase ) _lowercase = vocab_size _lowercase = hidden_size _lowercase = num_hidden_layers _lowercase = num_attention_heads _lowercase = hidden_act _lowercase = initializer_factor _lowercase = intermediate_size _lowercase = hidden_dropout_prob _lowercase = attention_probs_dropout_prob _lowercase = max_position_embeddings _lowercase = type_vocab_size _lowercase = layer_norm_eps _lowercase = position_embedding_type _lowercase = use_cache _lowercase = pad_token_id _lowercase = bos_token_id _lowercase = eos_token_id @classmethod def _UpperCAmelCase ( cls , UpperCAmelCase , **UpperCAmelCase ): '''simple docstring''' _lowercase , _lowercase = cls.get_config_dict(UpperCAmelCase , **UpperCAmelCase ) if config_dict.get("""model_type""" ) == "bridgetower": _lowercase = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(UpperCAmelCase , **UpperCAmelCase ) class _lowercase ( _UpperCAmelCase ): """simple docstring""" lowerCAmelCase__ = 'bridgetower' def __init__( self , UpperCAmelCase=True , UpperCAmelCase="gelu" , UpperCAmelCase=768 , UpperCAmelCase=1 , UpperCAmelCase=1e-05 , UpperCAmelCase=False , UpperCAmelCase="add" , UpperCAmelCase=12 , UpperCAmelCase=6 , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase , ): '''simple docstring''' _lowercase = kwargs.pop("""text_config_dict""" , UpperCAmelCase ) _lowercase = kwargs.pop("""vision_config_dict""" , UpperCAmelCase ) super().__init__(**UpperCAmelCase ) _lowercase = share_cross_modal_transformer_layers _lowercase = hidden_act _lowercase = hidden_size _lowercase = initializer_factor _lowercase = layer_norm_eps _lowercase = share_link_tower_layers _lowercase = link_tower_type _lowercase = num_attention_heads _lowercase = num_hidden_layers _lowercase = tie_word_embeddings _lowercase = init_layernorm_from_vision_encoder if text_config is None: _lowercase = {} logger.info("""`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.""" ) if vision_config is None: _lowercase = {} logger.info("""`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.""" ) _lowercase = BridgeTowerTextConfig(**UpperCAmelCase ) _lowercase = BridgeTowerVisionConfig(**UpperCAmelCase ) @classmethod def _UpperCAmelCase ( cls , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ): '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **UpperCAmelCase ) def _UpperCAmelCase ( self ): '''simple docstring''' _lowercase = copy.deepcopy(self.__dict__ ) _lowercase = self.text_config.to_dict() _lowercase = self.vision_config.to_dict() _lowercase = self.__class__.model_type return output
398
1
'''simple docstring''' def __magic_name__( lowerCamelCase = 2_0_0_0_0_0_0): __lowerCAmelCase = [0 for i in range(n + 1)] __lowerCAmelCase = 1 __lowerCAmelCase = 1 for i in range(2, int(n**0.5) + 1): if primality_list[i] == 0: for j in range(i * i, n + 1, lowerCamelCase): __lowerCAmelCase = 1 __lowerCAmelCase = 0 for i in range(lowerCamelCase): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(f"""{solution() = }""")
711
'''simple docstring''' def __magic_name__( ): return [ a * b * (1_0_0_0 - a - b) for a in range(1, 9_9_9) for b in range(lowerCamelCase, 9_9_9) if (a * a + b * b == (1_0_0_0 - a - b) ** 2) ][0] if __name__ == "__main__": print(f"""{solution() = }""")
474
0
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : Any = { 'configuration_mgp_str': ['MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MgpstrConfig'], 'processing_mgp_str': ['MgpstrProcessor'], 'tokenization_mgp_str': ['MgpstrTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = [ 'MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST', 'MgpstrModel', 'MgpstrPreTrainedModel', 'MgpstrForSceneTextRecognition', ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
394
'''simple docstring''' import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer __A : Optional[Any] = logging.getLogger(__name__) def lowerCAmelCase_ ( ): a__ = argparse.ArgumentParser( description='Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.' ) parser.add_argument( '--dataset_name' , type=a , default='wikitext' , help='Name of the training. Explore datasets at: hf.co/datasets.' , ) parser.add_argument( '--dataset_config' , type=a , default='wikitext-103-raw-v1' , help='Configuration name of the dataset.' ) parser.add_argument( '--tokenizer_name_or_path' , type=a , default='sayakpaul/unigram-tokenizer-wikitext' , help='Tokenizer identifier. Can be a local filepath or a Hub identifier.' , ) parser.add_argument( '--shard_size' , type=a , default=1000 , help='Number of entries to go in a single shard.' , ) parser.add_argument('--split' , type=a , default='train' , choices=['train', 'test', 'validation'] ) parser.add_argument( '--limit' , default=a , type=a , help='Limit the number of shards (used for debugging).' , ) parser.add_argument( '--max_length' , type=a , default=512 , help='Maximum sequence length. For training on TPUs, it helps to have a maximum' ' sequence length that is a multiple of 8.' , ) parser.add_argument( '--output_dir' , default='tf-tpu' , type=a , help='Output directory where the TFRecord shards will be saved. If the' ' path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord' ' shards will be directly saved to a Google Cloud Storage bucket.' , ) a__ = parser.parse_args() return args def lowerCAmelCase_ ( a : int ): def fn(a : int ): return tokenizer(examples['text'] ) return fn def lowerCAmelCase_ ( a : str ): a__ = [] for i in range(len(tokenized_data['input_ids'] ) ): a__ = { 'input_ids': tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data['input_ids'][i] ) ), 'attention_mask': tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data['attention_mask'][i] ) ), } a__ = tf.train.Features(feature=a ) a__ = tf.train.Example(features=a ) a__ = example.SerializeToString() records.append(a ) return records def lowerCAmelCase_ ( a : Any ): a__ = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: a__ = min(len(a ) , args.limit ) a__ = dataset.select(range(a ) ) print(f'''Limiting the dataset to {args.limit} entries.''' ) a__ = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) a__ = os.path.join(args.output_dir , args.split ) if not os.path.exists(a ): os.makedirs(a ) else: a__ = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. a__ = tokenize_function(a ) a__ = dataset.map(a , batched=a , num_proc=4 , remove_columns=['text'] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(a : Optional[Any] ): # Concatenate all texts. a__ = {k: sum(examples[k] , [] ) for k in examples.keys()} a__ = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 a__ = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. a__ = { k: [t[i : i + args.max_length] for i in range(0 , a , args.max_length )] for k, t in concatenated_examples.items() } return result a__ = dataset_tokenized.map(a , batched=a , batch_size=1000 , num_proc=4 ) a__ = 0 a__ = 0 for shard in range(0 , len(a ) , args.shard_size ): a__ = grouped_dataset[shard : shard + args.shard_size] a__ = len(dataset_snapshot['input_ids'] ) a__ = os.path.join(a , f'''dataset-{shard_count}-{records_containing}.tfrecord''' ) a__ = get_serialized_examples(a ) with tf.io.TFRecordWriter(a ) as out_file: for i in range(len(a ) ): a__ = serialized_examples[i] out_file.write(a ) print('Wrote file {} containing {} records'.format(a , a ) ) shard_count += 1 total_records += records_containing with open(f'''split-{args.split}-records-count.txt''' , 'w' ) as f: print(f'''Total {args.split} records: {total_records}''' , file=a ) if __name__ == "__main__": __A : str = parse_args() main(args)
394
1
'''simple docstring''' import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self , __A , __A , __A ) -> int: self.assertEqual(len(_lowercase ) , len(_lowercase ) ) for a, b in zip(_lowercase , _lowercase ): self.assertAlmostEqual(_lowercase , _lowercase , delta=_lowercase ) def UpperCamelCase__ ( self ) -> Optional[int]: _lowerCAmelCase =GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(_lowercase ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1E-2 ) def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =None ops.enable_eager_execution_internal() _lowerCAmelCase =tf.config.list_physical_devices('CPU' ) if len(_lowercase ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) _lowerCAmelCase =tf.config.list_logical_devices(device_type='CPU' ) _lowerCAmelCase =tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): _lowerCAmelCase =GradientAccumulator() _lowerCAmelCase =tf.Variable([4.0, 3.0] ) _lowerCAmelCase , _lowerCAmelCase =create_optimizer(5E-5 , 10 , 5 ) _lowerCAmelCase =tf.Variable([0.0, 0.0] , trainable=_lowercase ) def accumulate_on_replica(__A ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(__A , __A ): with strategy.scope(): _lowerCAmelCase =strategy.experimental_local_results(_lowercase ) local_variables[0].assign(_lowercase ) local_variables[1].assign(_lowercase ) strategy.run(_lowercase , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(_lowercase ) def _check_local_values(__A , __A ): _lowerCAmelCase =strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , _lowercase , tol=1E-2 ) self.assertListAlmostEqual(values[1].value() , _lowercase , tol=1E-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
702
'''simple docstring''' from __future__ import annotations lowercase_ = 10 def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =1 _lowerCAmelCase =max(a__ ) while placement <= max_digit: # declare and initialize empty buckets _lowerCAmelCase =[[] for _ in range(a__ )] # split list_of_ints between the buckets for i in list_of_ints: _lowerCAmelCase =int((i / placement) % RADIX ) buckets[tmp].append(a__ ) # put each buckets' contents into list_of_ints _lowerCAmelCase =0 for b in range(a__ ): for i in buckets[b]: _lowerCAmelCase =i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
58
0
import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def lowercase_ ( __snake_case : int , __snake_case : List[str] , __snake_case : Dict , __snake_case : Tuple , __snake_case : List[str] ) -> str: '''simple docstring''' snake_case__ :Dict = TapasConfig.from_json_file(__snake_case ) # set absolute/relative position embeddings parameter snake_case__ :Any = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": snake_case__ :int = TapasForQuestionAnswering(config=__snake_case ) elif task == "WTQ": # run_task_main.py hparams snake_case__ :Dict = 4 snake_case__ :int = True # hparam_utils.py hparams snake_case__ :Any = 0.6_6_4_6_9_4 snake_case__ :str = 0.2_0_7_9_5_1 snake_case__ :Optional[Any] = 0.1_2_1_1_9_4 snake_case__ :Dict = True snake_case__ :Union[str, Any] = True snake_case__ :Dict = False snake_case__ :Optional[int] = 0.0_3_5_2_5_1_3 snake_case__ :Any = TapasForQuestionAnswering(config=__snake_case ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams snake_case__ :List[str] = 4 snake_case__ :List[str] = False # hparam_utils.py hparams snake_case__ :Union[str, Any] = 3_6.4_5_1_9 snake_case__ :Optional[Any] = 0.9_0_3_4_2_1 snake_case__ :List[Any] = 2_2_2.0_8_8 snake_case__ :Dict = True snake_case__ :str = True snake_case__ :Any = True snake_case__ :List[Any] = 0.7_6_3_1_4_1 snake_case__ :Union[str, Any] = TapasForQuestionAnswering(config=__snake_case ) elif task == "TABFACT": snake_case__ :Optional[int] = TapasForSequenceClassification(config=__snake_case ) elif task == "MLM": snake_case__ :Any = TapasForMaskedLM(config=__snake_case ) elif task == "INTERMEDIATE_PRETRAINING": snake_case__ :Optional[int] = TapasModel(config=__snake_case ) else: raise ValueError(F'Task {task} not supported.' ) print(F'Building PyTorch model from configuration: {config}' ) # Load weights from tf checkpoint load_tf_weights_in_tapas(__snake_case , __snake_case , __snake_case ) # Save pytorch-model (weights and configuration) print(F'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(__snake_case ) # Save tokenizer files print(F'Save tokenizer files to {pytorch_dump_path}' ) snake_case__ :Optional[int] = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + "vocab.txt" , model_max_length=5_12 ) tokenizer.save_pretrained(__snake_case ) print("Used relative position embeddings:" , model.config.reset_position_index_per_cell ) if __name__ == "__main__": __UpperCAmelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="SQA", type=str, help="Model task for which to convert a checkpoint. Defaults to SQA." ) parser.add_argument( "--reset_position_index_per_cell", default=False, action="store_true", help="Whether to use relative position embeddings or not. Defaults to True.", ) parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--tapas_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained TAPAS model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __UpperCAmelCase : List[str] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
241
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _a ( unittest.TestCase ): def lowerCamelCase_ ( self: Optional[int] ) -> Optional[int]: """simple docstring""" super().tearDown() gc.collect() def lowerCamelCase_ ( self: Dict ) -> Tuple: """simple docstring""" lowercase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) lowercase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) lowercase__ = '''xvjiarui/stable-diffusion-2-inpainting''' lowercase__ , lowercase__ = FlaxStableDiffusionInpaintPipeline.from_pretrained(UpperCamelCase_ , safety_checker=UpperCamelCase_ ) lowercase__ = '''Face of a yellow cat, high resolution, sitting on a park bench''' lowercase__ = jax.random.PRNGKey(0 ) lowercase__ = 50 lowercase__ = jax.device_count() lowercase__ = num_samples * [prompt] lowercase__ = num_samples * [init_image] lowercase__ = num_samples * [mask_image] lowercase__ , lowercase__ , lowercase__ = pipeline.prepare_inputs(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # shard inputs and rng lowercase__ = replicate(UpperCamelCase_ ) lowercase__ = jax.random.split(UpperCamelCase_ , jax.device_count() ) lowercase__ = shard(UpperCamelCase_ ) lowercase__ = shard(UpperCamelCase_ ) lowercase__ = shard(UpperCamelCase_ ) lowercase__ = pipeline( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , jit=UpperCamelCase_ ) lowercase__ = output.images.reshape(UpperCamelCase_ , 512 , 512 , 3 ) lowercase__ = images[0, 253:256, 253:256, -1] lowercase__ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowercase__ = jnp.array( [0.3611307, 0.37649736, 0.3757408, 0.38213953, 0.39295167, 0.3841631, 0.41554978, 0.4137475, 0.4217084] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
43
0
from itertools import product def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = sides_number UpperCAmelCase_ : List[str] = max_face_number * dice_number UpperCAmelCase_ : Optional[Any] = [0] * (max_total + 1) UpperCAmelCase_ : List[str] = 1 UpperCAmelCase_ : Union[str, Any] = range(UpperCamelCase__ , max_face_number + 1 ) for dice_numbers in product(UpperCamelCase__ , repeat=UpperCamelCase__ ): UpperCAmelCase_ : Dict = sum(UpperCamelCase__ ) totals_frequencies[total] += 1 return totals_frequencies def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase_ : Any = total_frequency_distribution( sides_number=4 , dice_number=9 ) UpperCAmelCase_ : Optional[int] = total_frequency_distribution( sides_number=6 , dice_number=6 ) UpperCAmelCase_ : int = 0 UpperCAmelCase_ : Optional[Any] = 9 UpperCAmelCase_ : Union[str, Any] = 4 * 9 UpperCAmelCase_ : Optional[int] = 6 for peter_total in range(UpperCamelCase__ , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) UpperCAmelCase_ : str = (4**9) * (6**6) UpperCAmelCase_ : List[Any] = peter_wins_count / total_games_number UpperCAmelCase_ : List[str] = round(UpperCamelCase__ , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F"""{solution() = }""")
703
from math import ceil def lowerCamelCase__ ( _lowercase = 1001 ): '''simple docstring''' UpperCAmelCase_ : Dict = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): UpperCAmelCase_ : Tuple = 2 * i + 1 UpperCAmelCase_ : List[str] = 2 * i UpperCAmelCase_ : List[str] = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: __a = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number')
300
0
from ....configuration_utils import PretrainedConfig from ....utils import logging lowerCAmelCase__: Tuple = logging.get_logger(__name__) lowerCAmelCase__: Union[str, Any] = { "Visual-Attention-Network/van-base": ( "https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json" ), } class snake_case_ ( lowerCAmelCase ): __lowerCamelCase : List[Any] = 'van' def __init__( self , __lowerCAmelCase=224 , __lowerCAmelCase=3 , __lowerCAmelCase=[7, 3, 3, 3] , __lowerCAmelCase=[4, 2, 2, 2] , __lowerCAmelCase=[64, 128, 320, 512] , __lowerCAmelCase=[3, 3, 12, 3] , __lowerCAmelCase=[8, 8, 4, 4] , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.02 , __lowerCAmelCase=1e-6 , __lowerCAmelCase=1e-2 , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.0 , **__lowerCAmelCase , ): super().__init__(**__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = image_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = num_channels SCREAMING_SNAKE_CASE_ : int = patch_sizes SCREAMING_SNAKE_CASE_ : Union[str, Any] = strides SCREAMING_SNAKE_CASE_ : List[str] = hidden_sizes SCREAMING_SNAKE_CASE_ : Optional[Any] = depths SCREAMING_SNAKE_CASE_ : int = mlp_ratios SCREAMING_SNAKE_CASE_ : str = hidden_act SCREAMING_SNAKE_CASE_ : Union[str, Any] = initializer_range SCREAMING_SNAKE_CASE_ : Any = layer_norm_eps SCREAMING_SNAKE_CASE_ : Optional[int] = layer_scale_init_value SCREAMING_SNAKE_CASE_ : Optional[Any] = drop_path_rate SCREAMING_SNAKE_CASE_ : Any = dropout_rate
345
import warnings from functools import wraps from typing import Callable def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ) -> Callable: @wraps(SCREAMING_SNAKE_CASE ) def _inner_fn(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): warnings.warn( (f'\'{fn.__name__}\' is experimental and might be subject to breaking changes in the future.') , SCREAMING_SNAKE_CASE , ) return fn(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) return _inner_fn
345
1
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class _a ( A__ ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_snake_case , "tf_padding" ) ) self.parent.assertTrue(hasattr(_snake_case , "depth_multiplier" ) ) class _a : """simple docstring""" def __init__( self , _snake_case , _snake_case=13 , _snake_case=3 , _snake_case=32 , _snake_case=0.25 , _snake_case=8 , _snake_case=8 , _snake_case=6 , _snake_case=32 , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case="relu6" , _snake_case=1280 , _snake_case=0.1 , _snake_case=0.02 , _snake_case=True , _snake_case=True , _snake_case=10 , _snake_case=None , ): _UpperCAmelCase =parent _UpperCAmelCase =batch_size _UpperCAmelCase =num_channels _UpperCAmelCase =image_size _UpperCAmelCase =depth_multiplier _UpperCAmelCase =depth_divisible_by _UpperCAmelCase =min_depth _UpperCAmelCase =expand_ratio _UpperCAmelCase =tf_padding _UpperCAmelCase =output_stride _UpperCAmelCase =first_layer_is_expansion _UpperCAmelCase =finegrained_output _UpperCAmelCase =hidden_act _UpperCAmelCase =last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) _UpperCAmelCase =classifier_dropout_prob _UpperCAmelCase =use_labels _UpperCAmelCase =is_training _UpperCAmelCase =num_labels _UpperCAmelCase =initializer_range _UpperCAmelCase =scope def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase =None _UpperCAmelCase =None if self.use_labels: _UpperCAmelCase =ids_tensor([self.batch_size] , self.num_labels ) _UpperCAmelCase =ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _UpperCAmelCase =self.get_config() return config, pixel_values, labels, pixel_labels def SCREAMING_SNAKE_CASE ( self ): return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case , _snake_case , _snake_case ): _UpperCAmelCase =MobileNetVaModel(config=_snake_case ) model.to(_snake_case ) model.eval() _UpperCAmelCase =model(_snake_case ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case , _snake_case , _snake_case ): _UpperCAmelCase =self.num_labels _UpperCAmelCase =MobileNetVaForImageClassification(_snake_case ) model.to(_snake_case ) model.eval() _UpperCAmelCase =model(_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case , _snake_case , _snake_case ): _UpperCAmelCase =self.num_labels _UpperCAmelCase =MobileNetVaForSemanticSegmentation(_snake_case ) model.to(_snake_case ) model.eval() _UpperCAmelCase =model(_snake_case ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) _UpperCAmelCase =model(_snake_case , labels=_snake_case ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase =config_and_inputs _UpperCAmelCase ={"pixel_values": pixel_values} return config, inputs_dict @require_torch class _a ( A__ , A__ , unittest.TestCase ): """simple docstring""" snake_case =( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) snake_case =( { """feature-extraction""": MobileNetVaModel, """image-classification""": MobileNetVaForImageClassification, """image-segmentation""": MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) snake_case =False snake_case =False snake_case =False snake_case =False def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =MobileNetVaModelTester(self ) _UpperCAmelCase =MobileNetVaConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case ) def SCREAMING_SNAKE_CASE ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="MobileNetV2 does not use inputs_embeds" ) def SCREAMING_SNAKE_CASE ( self ): pass @unittest.skip(reason="MobileNetV2 does not support input and output embeddings" ) def SCREAMING_SNAKE_CASE ( self ): pass @unittest.skip(reason="MobileNetV2 does not output attentions" ) def SCREAMING_SNAKE_CASE ( self ): pass def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase , _UpperCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase =model_class(_snake_case ) _UpperCAmelCase =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase =[*signature.parameters.keys()] _UpperCAmelCase =["pixel_values"] self.assertListEqual(arg_names[:1] , _snake_case ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def SCREAMING_SNAKE_CASE ( self ): def check_hidden_states_output(_snake_case , _snake_case , _snake_case ): _UpperCAmelCase =model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): _UpperCAmelCase =model(**self._prepare_for_class(_snake_case , _snake_case ) ) _UpperCAmelCase =outputs.hidden_states _UpperCAmelCase =16 self.assertEqual(len(_snake_case ) , _snake_case ) _UpperCAmelCase , _UpperCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase =True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase =True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_snake_case ) @slow def SCREAMING_SNAKE_CASE ( self ): for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase =MobileNetVaModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def lowerCamelCase__ ( ) ->List[str]: _UpperCAmelCase =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _a ( unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE ( self ): return ( MobileNetVaImageProcessor.from_pretrained("google/mobilenet_v2_1.0_224" ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =MobileNetVaForImageClassification.from_pretrained("google/mobilenet_v2_1.0_224" ).to(_snake_case ) _UpperCAmelCase =self.default_image_processor _UpperCAmelCase =prepare_img() _UpperCAmelCase =image_processor(images=_snake_case , return_tensors="pt" ).to(_snake_case ) # forward pass with torch.no_grad(): _UpperCAmelCase =model(**_snake_case ) # verify the logits _UpperCAmelCase =torch.Size((1, 1001) ) self.assertEqual(outputs.logits.shape , _snake_case ) _UpperCAmelCase =torch.tensor([0.2_445, -1.1_993, 0.1_905] ).to(_snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _snake_case , atol=1E-4 ) ) @slow def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =MobileNetVaForSemanticSegmentation.from_pretrained("google/deeplabv3_mobilenet_v2_1.0_513" ) _UpperCAmelCase =model.to(_snake_case ) _UpperCAmelCase =MobileNetVaImageProcessor.from_pretrained("google/deeplabv3_mobilenet_v2_1.0_513" ) _UpperCAmelCase =prepare_img() _UpperCAmelCase =image_processor(images=_snake_case , return_tensors="pt" ).to(_snake_case ) # forward pass with torch.no_grad(): _UpperCAmelCase =model(**_snake_case ) _UpperCAmelCase =outputs.logits # verify the logits _UpperCAmelCase =torch.Size((1, 21, 65, 65) ) self.assertEqual(logits.shape , _snake_case ) _UpperCAmelCase =torch.tensor( [ [[17.5_790, 17.7_581, 18.3_355], [18.3_257, 18.4_230, 18.8_973], [18.6_169, 18.8_650, 19.2_187]], [[-2.1_595, -2.0_977, -2.3_741], [-2.4_226, -2.3_028, -2.6_835], [-2.7_819, -2.5_991, -2.7_706]], [[4.2_058, 4.8_317, 4.7_638], [4.4_136, 5.0_361, 4.9_383], [4.5_028, 4.9_644, 4.8_734]], ] , device=_snake_case , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _snake_case , atol=1E-4 ) )
592
from __future__ import annotations def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ) ->bool: _UpperCAmelCase =get_failure_array(_lowerCamelCase ) # 2) Step through text searching for pattern _UpperCAmelCase , _UpperCAmelCase =0, 0 # index into text, pattern while i < len(_lowerCamelCase ): if pattern[j] == text[i]: if j == (len(_lowerCamelCase ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: _UpperCAmelCase =failure[j - 1] continue i += 1 return False def lowerCamelCase__ ( _lowerCamelCase ) ->list[int]: _UpperCAmelCase =[0] _UpperCAmelCase =0 _UpperCAmelCase =1 while j < len(_lowerCamelCase ): if pattern[i] == pattern[j]: i += 1 elif i > 0: _UpperCAmelCase =failure[i - 1] continue j += 1 failure.append(_lowerCamelCase ) return failure if __name__ == "__main__": # Test 1) snake_case__ : Dict = 'abc1abc12' snake_case__ : Tuple = 'alskfjaldsabc1abc1abc12k23adsfabcabc' snake_case__ : int = 'alskfjaldsk23adsfabcabc' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) snake_case__ : Tuple = 'ABABX' snake_case__ : Any = 'ABABZABABYABABX' assert kmp(pattern, text) # Test 3) snake_case__ : Optional[int] = 'AAAB' snake_case__ : Optional[Any] = 'ABAAAAAB' assert kmp(pattern, text) # Test 4) snake_case__ : int = 'abcdabcy' snake_case__ : int = 'abcxabcdabxabcdabcdabcy' assert kmp(pattern, text) # Test 5) snake_case__ : str = 'aabaabaaa' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
592
1
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class __UpperCamelCase : def __init__( self , _UpperCamelCase , _UpperCamelCase=2 , _UpperCamelCase=True , _UpperCamelCase=False , _UpperCamelCase=10 , _UpperCamelCase=3 , _UpperCamelCase=32 * 4 , _UpperCamelCase=32 * 6 , _UpperCamelCase=4 , _UpperCamelCase=32 , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = is_training _UpperCAmelCase = use_auxiliary_loss _UpperCAmelCase = num_queries _UpperCAmelCase = num_channels _UpperCAmelCase = min_size _UpperCAmelCase = max_size _UpperCAmelCase = num_labels _UpperCAmelCase = mask_feature_size def UpperCamelCase( self ): _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _UpperCamelCase ) _UpperCAmelCase = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_UpperCamelCase ) _UpperCAmelCase = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_UpperCamelCase ) > 0.5 ).float() _UpperCAmelCase = (torch.rand((self.batch_size, self.num_labels) , device=_UpperCamelCase ) > 0.5).long() _UpperCAmelCase = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def UpperCamelCase( self ): return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=128 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def UpperCamelCase( self ): _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = output.encoder_hidden_states _UpperCAmelCase = output.pixel_decoder_hidden_states _UpperCAmelCase = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_UpperCamelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_UpperCamelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_UpperCamelCase ) , config.decoder_config.decoder_layers ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=False ): with torch.no_grad(): _UpperCAmelCase = MaskFormerModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model(pixel_values=_UpperCamelCase , pixel_mask=_UpperCamelCase ) _UpperCAmelCase = model(_UpperCamelCase , output_hidden_states=_UpperCamelCase ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_UpperCamelCase , _UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = MaskFormerForInstanceSegmentation(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() def comm_check_on_output(_UpperCamelCase ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): _UpperCAmelCase = model(pixel_values=_UpperCamelCase , pixel_mask=_UpperCamelCase ) _UpperCAmelCase = model(_UpperCamelCase ) comm_check_on_output(_UpperCamelCase ) _UpperCAmelCase = model( pixel_values=_UpperCamelCase , pixel_mask=_UpperCamelCase , mask_labels=_UpperCamelCase , class_labels=_UpperCamelCase ) comm_check_on_output(_UpperCamelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class __UpperCamelCase ( A__ , A__ , unittest.TestCase ): __A : int = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () __A : int = ( {"""feature-extraction""": MaskFormerModel, """image-segmentation""": MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) __A : List[str] = False __A : Optional[Any] = False __A : Union[str, Any] = False __A : Optional[Any] = False def UpperCamelCase( self ): _UpperCAmelCase = MaskFormerModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=_UpperCamelCase , has_text_modality=_UpperCamelCase ) def UpperCamelCase( self ): self.config_tester.run_common_tests() def UpperCamelCase( self ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(_UpperCamelCase , **_UpperCamelCase , output_hidden_states=_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*_UpperCamelCase ) @unittest.skip(reason='''MaskFormer does not use inputs_embeds''' ) def UpperCamelCase( self ): pass @unittest.skip(reason='''MaskFormer does not have a get_input_embeddings method''' ) def UpperCamelCase( self ): pass @unittest.skip(reason='''MaskFormer is not a generative model''' ) def UpperCamelCase( self ): pass @unittest.skip(reason='''MaskFormer does not use token embeddings''' ) def UpperCamelCase( self ): pass @require_torch_multi_gpu @unittest.skip( reason='''MaskFormer has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def UpperCamelCase( self ): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def UpperCamelCase( self ): pass def UpperCamelCase( self ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(_UpperCamelCase ) _UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _UpperCamelCase ) @slow def UpperCamelCase( self ): for model_name in ["facebook/maskformer-swin-small-coco"]: _UpperCAmelCase = MaskFormerModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = (self.model_tester.min_size,) * 2 _UpperCAmelCase = { '''pixel_values''': torch.randn((2, 3, *size) , device=_UpperCamelCase ), '''mask_labels''': torch.randn((2, 10, *size) , device=_UpperCamelCase ), '''class_labels''': torch.zeros(2 , 10 , device=_UpperCamelCase ).long(), } _UpperCAmelCase = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(_UpperCamelCase ) _UpperCAmelCase = model(**_UpperCamelCase ) self.assertTrue(outputs.loss is not None ) def UpperCamelCase( self ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(_UpperCamelCase , **_UpperCamelCase , output_hidden_states=_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(_UpperCamelCase ).to(_UpperCamelCase ) _UpperCAmelCase = model(**_UpperCamelCase , output_attentions=_UpperCamelCase ) self.assertTrue(outputs.attentions is not None ) def UpperCamelCase( self ): if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss _UpperCAmelCase = self.all_model_classes[1] _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() _UpperCAmelCase = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.train() _UpperCAmelCase = model(_UpperCamelCase , mask_labels=_UpperCamelCase , class_labels=_UpperCamelCase ).loss loss.backward() def UpperCamelCase( self ): # only MaskFormerForInstanceSegmentation has the loss _UpperCAmelCase = self.all_model_classes[1] _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.train() _UpperCAmelCase = model(_UpperCamelCase , mask_labels=_UpperCamelCase , class_labels=_UpperCamelCase ) _UpperCAmelCase = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() _UpperCAmelCase = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't _UpperCAmelCase = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() _UpperCAmelCase = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_UpperCamelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) UpperCAmelCase_ = 1e-4 def A__ ( ) -> Dict: """simple docstring""" _UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @slow class __UpperCamelCase ( unittest.TestCase ): @cached_property def UpperCamelCase( self ): return ( MaskFormerImageProcessor.from_pretrained('''facebook/maskformer-swin-small-coco''' ) if is_vision_available() else None ) def UpperCamelCase( self ): _UpperCAmelCase = MaskFormerModel.from_pretrained('''facebook/maskformer-swin-small-coco''' ).to(_UpperCamelCase ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(_UpperCamelCase , return_tensors='''pt''' ).to(_UpperCamelCase ) _UpperCAmelCase = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_UpperCamelCase , (1, 3, 800, 1088) ) with torch.no_grad(): _UpperCAmelCase = model(**_UpperCamelCase ) _UpperCAmelCase = torch.tensor( [[-0.0482, 0.9228, 0.4951], [-0.2547, 0.8017, 0.8527], [-0.0069, 0.3385, -0.0089]] ).to(_UpperCamelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _UpperCamelCase , atol=_UpperCamelCase ) ) _UpperCAmelCase = torch.tensor( [[-0.8422, -0.8434, -0.9718], [-1.0144, -0.5565, -0.4195], [-1.0038, -0.4484, -0.1961]] ).to(_UpperCamelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _UpperCamelCase , atol=_UpperCamelCase ) ) _UpperCAmelCase = torch.tensor( [[0.2852, -0.0159, 0.9735], [0.6254, 0.1858, 0.8529], [-0.0680, -0.4116, 1.8413]] ).to(_UpperCamelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _UpperCamelCase , atol=_UpperCamelCase ) ) def UpperCamelCase( self ): _UpperCAmelCase = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-swin-small-coco''' ) .to(_UpperCamelCase ) .eval() ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(_UpperCamelCase , return_tensors='''pt''' ).to(_UpperCamelCase ) _UpperCAmelCase = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_UpperCamelCase , (1, 3, 800, 1088) ) with torch.no_grad(): _UpperCAmelCase = model(**_UpperCamelCase ) # masks_queries_logits _UpperCAmelCase = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) _UpperCAmelCase = [ [-1.3737124, -1.7724937, -1.9364233], [-1.5977281, -1.9867939, -2.1523695], [-1.5795398, -1.9269832, -2.093942], ] _UpperCAmelCase = torch.tensor(_UpperCamelCase ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _UpperCamelCase , atol=_UpperCamelCase ) ) # class_queries_logits _UpperCAmelCase = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) _UpperCAmelCase = torch.tensor( [ [1.6512e00, -5.2572e00, -3.3519e00], [3.6169e-02, -5.9025e00, -2.9313e00], [1.0766e-04, -7.7630e00, -5.1263e00], ] ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _UpperCamelCase , atol=_UpperCamelCase ) ) def UpperCamelCase( self ): _UpperCAmelCase = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-resnet101-coco-stuff''' ) .to(_UpperCamelCase ) .eval() ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(_UpperCamelCase , return_tensors='''pt''' ).to(_UpperCamelCase ) _UpperCAmelCase = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_UpperCamelCase , (1, 3, 800, 1088) ) with torch.no_grad(): _UpperCAmelCase = model(**_UpperCamelCase ) # masks_queries_logits _UpperCAmelCase = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) _UpperCAmelCase = [[-0.9046, -2.6366, -4.6062], [-3.4179, -5.7890, -8.8057], [-4.9179, -7.6560, -10.7711]] _UpperCAmelCase = torch.tensor(_UpperCamelCase ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _UpperCamelCase , atol=_UpperCamelCase ) ) # class_queries_logits _UpperCAmelCase = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) _UpperCAmelCase = torch.tensor( [[4.7188, -3.2585, -2.8857], [6.6871, -2.9181, -1.2487], [7.2449, -2.2764, -2.1874]] ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _UpperCamelCase , atol=_UpperCamelCase ) ) def UpperCamelCase( self ): _UpperCAmelCase = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-swin-small-coco''' ) .to(_UpperCamelCase ) .eval() ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='''pt''' , ) _UpperCAmelCase = inputs['''pixel_values'''].to(_UpperCamelCase ) _UpperCAmelCase = [el.to(_UpperCamelCase ) for el in inputs['''mask_labels''']] _UpperCAmelCase = [el.to(_UpperCamelCase ) for el in inputs['''class_labels''']] with torch.no_grad(): _UpperCAmelCase = model(**_UpperCamelCase ) self.assertTrue(outputs.loss is not None )
32
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : List[str] = logging.get_logger(__name__) UpperCAmelCase : str = { """microsoft/trocr-base-handwritten""": ( """https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json""" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class __lowerCAmelCase ( UpperCamelCase__): _lowercase : Any = """trocr""" _lowercase : Optional[Any] = ["""past_key_values"""] _lowercase : List[str] = { """num_attention_heads""": """decoder_attention_heads""", """hidden_size""": """d_model""", """num_hidden_layers""": """decoder_layers""", } def __init__( self , lowerCAmelCase__=5_0_2_6_5 , lowerCAmelCase__=1_0_2_4 , lowerCAmelCase__=1_2 , lowerCAmelCase__=1_6 , lowerCAmelCase__=4_0_9_6 , lowerCAmelCase__="gelu" , lowerCAmelCase__=5_1_2 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=2 , lowerCAmelCase__=0.02 , lowerCAmelCase__=0.0 , lowerCAmelCase__=True , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=1 , lowerCAmelCase__=0 , lowerCAmelCase__=2 , **lowerCAmelCase__ , ) -> Any: '''simple docstring''' a__ : List[Any] =vocab_size a__ : str =d_model a__ : str =decoder_layers a__ : Union[str, Any] =decoder_attention_heads a__ : str =decoder_ffn_dim a__ : List[str] =activation_function a__ : List[Any] =max_position_embeddings a__ : int =dropout a__ : List[Any] =attention_dropout a__ : Any =activation_dropout a__ : Union[str, Any] =init_std a__ : List[Any] =decoder_layerdrop a__ : int =use_cache a__ : str =scale_embedding a__ : Tuple =use_learned_position_embeddings a__ : Union[str, Any] =layernorm_embedding super().__init__( pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , decoder_start_token_id=lowerCAmelCase__ , **lowerCAmelCase__ , )
563
0
"""simple docstring""" from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} _lowerCamelCase = { 'vocab_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json' }, 'merges_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt' }, } _lowerCamelCase = {'allegro/herbert-base-cased': 514} _lowerCamelCase = {} class lowerCamelCase_ ( lowercase ): """simple docstring""" _lowerCAmelCase : Union[str, Any] = VOCAB_FILES_NAMES _lowerCAmelCase : Dict = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase : Optional[int] = PRETRAINED_INIT_CONFIGURATION _lowerCAmelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase : Any = HerbertTokenizer def __init__( self , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__="<s>" , UpperCAmelCase__="<unk>" , UpperCAmelCase__="<pad>" , UpperCAmelCase__="<mask>" , UpperCAmelCase__="</s>" , **UpperCAmelCase__ , ): super().__init__( UpperCAmelCase__ , UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , **UpperCAmelCase__ , ) def lowerCAmelCase__ ( self , UpperCAmelCase__ , UpperCAmelCase__ = None ): SCREAMING_SNAKE_CASE__ = [self.cls_token_id] SCREAMING_SNAKE_CASE__ = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase__ ( self , UpperCAmelCase__ , UpperCAmelCase__ = None , UpperCAmelCase__ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase__ , token_ids_a=UpperCAmelCase__ , already_has_special_tokens=UpperCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase__ )) + [1] return [1] + ([0] * len(UpperCAmelCase__ )) + [1] + ([0] * len(UpperCAmelCase__ )) + [1] def lowerCAmelCase__ ( self , UpperCAmelCase__ , UpperCAmelCase__ = None ): SCREAMING_SNAKE_CASE__ = [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase__ ( self , UpperCAmelCase__ , UpperCAmelCase__ = None ): SCREAMING_SNAKE_CASE__ = self._tokenizer.model.save(UpperCAmelCase__ , name=UpperCAmelCase__ ) return tuple(UpperCAmelCase__ )
112
"""simple docstring""" import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values _lowerCamelCase = argparse.ArgumentParser() parser.add_argument('--user', type=str, default='ubuntu') parser.add_argument('--host', type=str, default='localhost') parser.add_argument('--key_path', type=str, default=None) parser.add_argument('--instance', type=str, default='V100:1') parser.add_argument('--provider', type=str, default='cheapest') parser.add_argument('--use_spot', type=bool, default=False) parser.add_argument('--example', type=str, default='pytorch/text-generation/run_generation.py') _lowerCamelCase , _lowerCamelCase = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError('Cannot specify both BYO and on-demand cluster args') _lowerCamelCase = rh.cluster( name='rh-cluster', ips=[args.host], ssh_creds={'ssh_user': args.user, 'ssh_private_key': args.key_path} ) else: _lowerCamelCase = rh.cluster( name='rh-cluster', instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) _lowerCamelCase = args.example.rsplit('/', 1)[0] # Set up remote environment cluster.install_packages(['pip:./']) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([f"""pip install -r transformers/examples/{example_dir}/requirements.txt"""]) cluster.run(['pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117']) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([f"""python transformers/examples/{args.example} {' '.join(shlex.quote(arg) for arg in unknown)}"""]) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
112
1
import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap a__ = '''Usage of script: script_name <size_of_canvas:int>''' a__ = [0] * 100 + [1] * 10 random.shuffle(choice) def __UpperCAmelCase ( __a : int ) -> list[list[bool]]: """simple docstring""" _a : int = [[False for i in range(__a )] for j in range(__a )] return canvas def __UpperCAmelCase ( __a : list[list[bool]] ) -> None: """simple docstring""" for i, row in enumerate(__a ): for j, _ in enumerate(__a ): _a : Optional[int] = bool(random.getrandbits(1 ) ) def __UpperCAmelCase ( __a : list[list[bool]] ) -> list[list[bool]]: """simple docstring""" _a : Any = np.array(__a ) _a : Optional[int] = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(__a ): for c, pt in enumerate(__a ): _a : Tuple = __judge_point( __a ,current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) _a : List[str] = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. _a : list[list[bool]] = current_canvas.tolist() return return_canvas def __UpperCAmelCase ( __a : bool ,__a : list[list[bool]] ) -> bool: """simple docstring""" _a : Optional[Any] = 0 _a : str = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. _a : Optional[int] = pt if pt: if alive < 2: _a : Dict = False elif alive == 2 or alive == 3: _a : Optional[Any] = True elif alive > 3: _a : str = False else: if alive == 3: _a : int = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) a__ = int(sys.argv[1]) # main working structure of this module. a__ = create_canvas(canvas_size) seed(c) a__ , a__ = plt.subplots() fig.show() a__ = ListedColormap(['''w''', '''k''']) try: while True: a__ = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
14
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { '''google/mobilenet_v1_1.0_224''': '''https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json''', '''google/mobilenet_v1_0.75_192''': '''https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : int = "mobilenet_v1" def __init__( self , _a=3 , _a=2_2_4 , _a=1.0 , _a=8 , _a="relu6" , _a=True , _a=0.999 , _a=0.02 , _a=0.001 , **_a , ) -> List[Any]: super().__init__(**_a ) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''' ) _a : Tuple = num_channels _a : str = image_size _a : Tuple = depth_multiplier _a : Any = min_depth _a : int = hidden_act _a : Optional[Any] = tf_padding _a : str = classifier_dropout_prob _a : Optional[int] = initializer_range _a : Any = layer_norm_eps class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : str = version.parse("1.11" ) @property def __lowercase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict([('''pixel_values''', {0: '''batch'''})] ) @property def __lowercase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})] ) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] ) @property def __lowercase ( self ) -> float: return 1e-4
14
1
"""simple docstring""" from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = '''T5Config''' class _snake_case ( __lowerCamelCase ): """simple docstring""" a = "mt5" a = MTaConfig class _snake_case ( __lowerCamelCase ): """simple docstring""" a = "mt5" a = MTaConfig class _snake_case ( __lowerCamelCase ): """simple docstring""" a = "mt5" a = MTaConfig
720
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.g4dn.xlarge", "results": {"train_runtime": 6_50, "eval_accuracy": 0.6, "eval_loss": 0.9}, }, { "framework": "tensorflow", "script": "run_tf.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.g4dn.xlarge", "results": {"train_runtime": 6_00, "eval_accuracy": 0.3, "eval_loss": 0.9}, }, ] ) class _snake_case ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : Optional[int]): """simple docstring""" if self.framework == "pytorch": subprocess.run( f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="""utf-8""" , check=_A , ) assert hasattr(self , """env""") def _lowerCAmelCase ( self : Union[str, Any] , _A : str=1): """simple docstring""" return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f"""{self.env.base_job_name}-single""" , instance_count=_A , instance_type=self.instance_type , debugger_hook_config=_A , hyperparameters={**self.env.hyperparameters, """model_name_or_path""": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version="""py36""" , ) def _lowerCAmelCase ( self : Union[str, Any] , _A : Union[str, Any]): """simple docstring""" TrainingJobAnalytics(_A).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""") def _lowerCAmelCase ( self : Any): """simple docstring""" _SCREAMING_SNAKE_CASE : str = self.create_estimator() # run training estimator.fit() # result dataframe _SCREAMING_SNAKE_CASE : Any = TrainingJobAnalytics(estimator.latest_training_job.name).dataframe() # extract kpis _SCREAMING_SNAKE_CASE : Any = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""]) _SCREAMING_SNAKE_CASE : Tuple = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""]) # get train time from SageMaker job, this includes starting, preprocessing, stopping _SCREAMING_SNAKE_CASE : int = ( Session().describe_training_job(estimator.latest_training_job.name).get("""TrainingTimeInSeconds""" , 9_9_9_9_9_9) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy) assert all(t <= self.results["""eval_loss"""] for t in eval_loss) # dump tests result into json file to share in PR with open(f"""{estimator.latest_training_job.name}.json""" , """w""") as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , _A)
635
0
'''simple docstring''' import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: _lowerCamelCase : List[Any] = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __init__( self : int , UpperCamelCase__ : str , UpperCamelCase__ : List[str]=7 , UpperCamelCase__ : Optional[int]=3 , UpperCamelCase__ : Optional[Any]=1_8 , UpperCamelCase__ : List[Any]=3_0 , UpperCamelCase__ : List[Any]=4_0_0 , UpperCamelCase__ : int=None , UpperCamelCase__ : int=True , UpperCamelCase__ : Tuple=True , UpperCamelCase__ : str=None , ): """simple docstring""" UpperCamelCase = size if size is not None else {'height': 2_0, 'width': 2_0} UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = num_channels UpperCamelCase = image_size UpperCamelCase = min_resolution UpperCamelCase = max_resolution UpperCamelCase = size UpperCamelCase = do_normalize UpperCamelCase = do_convert_rgb UpperCamelCase = [5_1_2, 1_0_2_4, 2_0_4_8, 4_0_9_6] UpperCamelCase = patch_size if patch_size is not None else {'height': 1_6, 'width': 1_6} def A ( self : Any ): """simple docstring""" return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def A ( self : str ): """simple docstring""" UpperCamelCase = 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg' UpperCamelCase = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ).convert('RGB' ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="""`Pix2StructImageProcessor` requires `torch>=1.11.0`.""" , ) @require_torch @require_vision class SCREAMING_SNAKE_CASE ( lowercase__ , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = PixaStructImageProcessor if is_vision_available() else None def A ( self : Any ): """simple docstring""" UpperCamelCase = PixaStructImageProcessingTester(self ) @property def A ( self : List[str] ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def A ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ , 'do_normalize' ) ) self.assertTrue(hasattr(lowercase_ , 'do_convert_rgb' ) ) def A ( self : List[str] ): """simple docstring""" UpperCamelCase = self.image_processor_tester.prepare_dummy_image() UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) UpperCamelCase = 2_0_4_8 UpperCamelCase = image_processor(lowercase_ , return_tensors='pt' , max_patches=lowercase_ ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0_6_0_6 ) , atol=1E-3 , rtol=1E-3 ) ) def A ( self : int ): """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , Image.Image ) # Test not batched input UpperCamelCase = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCamelCase = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=lowercase_ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCamelCase = image_processor( lowercase_ , return_tensors='pt' , max_patches=lowercase_ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def A ( self : Dict ): """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , Image.Image ) # Test not batched input UpperCamelCase = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 UpperCamelCase = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(lowercase_ ): UpperCamelCase = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=lowercase_ ).flattened_patches UpperCamelCase = 'Hello' UpperCamelCase = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=lowercase_ , header_text=lowercase_ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCamelCase = image_processor( lowercase_ , return_tensors='pt' , max_patches=lowercase_ , header_text=lowercase_ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def A ( self : Optional[int] ): """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , numpify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , np.ndarray ) UpperCamelCase = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCamelCase = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=lowercase_ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCamelCase = image_processor( lowercase_ , return_tensors='pt' , max_patches=lowercase_ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def A ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , torchify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , torch.Tensor ) # Test not batched input UpperCamelCase = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCamelCase = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=lowercase_ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCamelCase = image_processor( lowercase_ , return_tensors='pt' , max_patches=lowercase_ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="""`Pix2StructImageProcessor` requires `torch>=1.11.0`.""" , ) @require_torch @require_vision class SCREAMING_SNAKE_CASE ( lowercase__ , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = PixaStructImageProcessor if is_vision_available() else None def A ( self : Tuple ): """simple docstring""" UpperCamelCase = PixaStructImageProcessingTester(self , num_channels=4 ) UpperCamelCase = 3 @property def A ( self : Optional[int] ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def A ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ , 'do_normalize' ) ) self.assertTrue(hasattr(lowercase_ , 'do_convert_rgb' ) ) def A ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , Image.Image ) # Test not batched input UpperCamelCase = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCamelCase = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=lowercase_ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCamelCase = image_processor( lowercase_ , return_tensors='pt' , max_patches=lowercase_ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
430
from manim import * class lowercase_ (lowercase__ ): def __UpperCamelCase ( self) -> List[Any]: a__ =Rectangle(height=0.5 , width=0.5) a__ =Rectangle(height=0.46 , width=0.46).set_stroke(width=0) a__ =[mem.copy() for i in range(6)] a__ =[mem.copy() for i in range(6)] a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =VGroup(lowercase_ , lowercase_).arrange(lowercase_ , buff=0) a__ =Text('CPU' , font_size=24) a__ =Group(lowercase_ , lowercase_).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_) cpu.move_to([-2.5, -0.5, 0]) self.add(lowercase_) a__ =[mem.copy() for i in range(4)] a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =Text('GPU' , font_size=24) a__ =Group(lowercase_ , lowercase_).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_) gpu.move_to([-1, -1, 0]) self.add(lowercase_) a__ =[mem.copy() for i in range(6)] a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =Text('Model' , font_size=24) a__ =Group(lowercase_ , lowercase_).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_) model.move_to([3, -1.0, 0]) self.add(lowercase_) a__ =[] for i, rect in enumerate(lowercase_): rect.set_stroke(lowercase_) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) a__ =Rectangle(height=0.46 / 4 , width=0.46 / 3).set_stroke(width=0.0).set_fill(lowercase_ , opacity=0.7) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT) , buff=0.02 , direction=lowercase_) cpu_target.set_x(cpu_target.get_x() + 0.1) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=lowercase_ , buff=0.0) else: cpu_target.next_to(cpu_targs[i - 1] , direction=lowercase_ , buff=0.0) self.add(lowercase_) cpu_targs.append(lowercase_) a__ =[mem.copy() for i in range(6)] a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =Text('Loaded Checkpoint' , font_size=24) a__ =Group(lowercase_ , lowercase_).arrange(lowercase_ , aligned_edge=lowercase_ , buff=0.4) checkpoint.move_to([3, 0.5, 0]) a__ =Square(side_length=2.2) key.move_to([-5, 2, 0]) a__ =MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0]) self.add(lowercase_ , lowercase_) a__ =MarkupText( F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(lowercase_ , DOWN * 2.4 , aligned_edge=key_text.get_left()) a__ =MarkupText( F"""Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.""" , font_size=24 , ) step_a.move_to([2, 2, 0]) self.play(Write(lowercase_) , Write(lowercase_)) self.play(Write(lowercase_ , run_time=1) , Create(lowercase_ , run_time=1)) a__ =[] a__ =[] for i, rect in enumerate(lowercase_): a__ =fill.copy().set_fill(lowercase_ , opacity=0.7) target.move_to(lowercase_) first_animations.append(GrowFromCenter(lowercase_ , run_time=1)) a__ =target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1]) else: cpu_target.target.move_to(cpu_right_col_base[i - 5]) second_animations.append(MoveToTarget(lowercase_ , run_time=1.5)) self.play(*lowercase_) self.play(*lowercase_) self.wait()
20
0
import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : List[str] = os.path.abspath(snake_case_ ) logger.info(f'''Converting TensorFlow checkpoint from {tf_path}''' ) # Load weights from TF model _A : List[str] = tf.train.list_variables(snake_case_ ) _A : List[Any] = [] _A : Optional[Any] = [] _A : Union[str, Any] = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") _A : Tuple = full_name.split("""/""" ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(f'''Skipping non-model layer {full_name}''' ) continue if "optimizer" in full_name: logger.info(f'''Skipping optimization layer {full_name}''' ) continue if name[0] == "model": # ignore initial 'model' _A : int = name[1:] # figure out how many levels deep the name is _A : Any = 0 for _name in name: if _name.startswith("""layer_with_weights""" ): depth += 1 else: break layer_depth.append(snake_case_ ) # read data _A : List[str] = tf.train.load_variable(snake_case_,snake_case_ ) names.append("""/""".join(snake_case_ ) ) arrays.append(snake_case_ ) logger.info(f'''Read a total of {len(snake_case_ ):,} layers''' ) # Sanity check if len(set(snake_case_ ) ) != 1: raise ValueError(f'''Found layer names with different depths (layer depth {list(set(snake_case_ ) )})''' ) _A : List[str] = list(set(snake_case_ ) )[0] if layer_depth != 1: raise ValueError( """The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP""" """ heads.""" ) # convert layers logger.info("""Converting weights...""" ) for full_name, array in zip(snake_case_,snake_case_ ): _A : Optional[Any] = full_name.split("""/""" ) _A : Any = model _A : Any = [] for i, m_name in enumerate(snake_case_ ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith("""layer_with_weights""" ): _A : Optional[Any] = int(m_name.split("""-""" )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(["""embeddings""", """LayerNorm"""] ) _A : int = getattr(snake_case_,"""embeddings""" ) _A : Dict = getattr(snake_case_,"""LayerNorm""" ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(["""encoder""", """layer""", str(layer_num - 4 )] ) _A : Any = getattr(snake_case_,"""encoder""" ) _A : Tuple = getattr(snake_case_,"""layer""" ) _A : str = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(["""pooler""", """dense"""] ) _A : str = getattr(snake_case_,"""pooler""" ) _A : Union[str, Any] = getattr(snake_case_,"""dense""" ) elif m_name == "embeddings": trace.append("""embeddings""" ) _A : List[str] = getattr(snake_case_,"""embeddings""" ) if layer_num == 0: trace.append("""word_embeddings""" ) _A : Optional[Any] = getattr(snake_case_,"""word_embeddings""" ) elif layer_num == 1: trace.append("""position_embeddings""" ) _A : Optional[Any] = getattr(snake_case_,"""position_embeddings""" ) elif layer_num == 2: trace.append("""token_type_embeddings""" ) _A : Optional[Any] = getattr(snake_case_,"""token_type_embeddings""" ) else: raise ValueError(f'''Unknown embedding layer with name {full_name}''' ) trace.append("""weight""" ) _A : Any = getattr(snake_case_,"""weight""" ) elif m_name == "_attention_layer": # self-attention layer trace.extend(["""attention""", """self"""] ) _A : Optional[int] = getattr(snake_case_,"""attention""" ) _A : List[Any] = getattr(snake_case_,"""self""" ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(["""attention""", """output""", """LayerNorm"""] ) _A : Optional[int] = getattr(snake_case_,"""attention""" ) _A : Tuple = getattr(snake_case_,"""output""" ) _A : int = getattr(snake_case_,"""LayerNorm""" ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(["""attention""", """output""", """dense"""] ) _A : Optional[Any] = getattr(snake_case_,"""attention""" ) _A : Any = getattr(snake_case_,"""output""" ) _A : Optional[int] = getattr(snake_case_,"""dense""" ) elif m_name == "_output_dense": # output dense trace.extend(["""output""", """dense"""] ) _A : Any = getattr(snake_case_,"""output""" ) _A : Union[str, Any] = getattr(snake_case_,"""dense""" ) elif m_name == "_output_layer_norm": # output dense trace.extend(["""output""", """LayerNorm"""] ) _A : str = getattr(snake_case_,"""output""" ) _A : Union[str, Any] = getattr(snake_case_,"""LayerNorm""" ) elif m_name == "_key_dense": # attention key trace.append("""key""" ) _A : Optional[int] = getattr(snake_case_,"""key""" ) elif m_name == "_query_dense": # attention query trace.append("""query""" ) _A : Optional[int] = getattr(snake_case_,"""query""" ) elif m_name == "_value_dense": # attention value trace.append("""value""" ) _A : Optional[Any] = getattr(snake_case_,"""value""" ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(["""intermediate""", """dense"""] ) _A : Dict = getattr(snake_case_,"""intermediate""" ) _A : Union[str, Any] = getattr(snake_case_,"""dense""" ) elif m_name == "_output_layer_norm": # output layer norm trace.append("""output""" ) _A : int = getattr(snake_case_,"""output""" ) # weights & biases elif m_name in ["bias", "beta"]: trace.append("""bias""" ) _A : List[str] = getattr(snake_case_,"""bias""" ) elif m_name in ["kernel", "gamma"]: trace.append("""weight""" ) _A : Optional[Any] = getattr(snake_case_,"""weight""" ) else: logger.warning(f'''Ignored {m_name}''' ) # for certain layers reshape is necessary _A : List[str] = """.""".join(snake_case_ ) if re.match(r"""(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)""",snake_case_ ) or re.match( r"""(\S+)\.attention\.output\.dense\.weight""",snake_case_ ): _A : str = array.reshape(pointer.data.shape ) if "kernel" in full_name: _A : Tuple = array.transpose() if pointer.shape == array.shape: _A : Union[str, Any] = torch.from_numpy(snake_case_ ) else: raise ValueError( f'''Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:''' f''' {array.shape}''' ) logger.info(f'''Successfully set variable {full_name} to PyTorch layer {trace}''' ) return model def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): # Instantiate model logger.info(f'''Loading model based on config from {config_path}...''' ) _A : Tuple = BertConfig.from_json_file(snake_case_ ) _A : Union[str, Any] = BertModel(snake_case_ ) # Load weights from checkpoint logger.info(f'''Loading weights from checkpoint {tf_checkpoint_path}...''' ) load_tfa_weights_in_bert(snake_case_,snake_case_,snake_case_ ) # Save pytorch-model logger.info(f'''Saving PyTorch model to {pytorch_dump_path}...''' ) torch.save(model.state_dict(),snake_case_ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument( "--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow 2.x checkpoint path." ) parser.add_argument( "--bert_config_file", type=str, required=True, help="The config json file corresponding to the BERT model. This specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", type=str, required=True, help="Path to the output PyTorch model (must include filename).", ) _snake_case = parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
700
import operator def lowerCAmelCase_ ( snake_case_,snake_case_ = False,snake_case_ = None ): _A : str = operator.lt if reverse else operator.gt _A : Optional[Any] = solution or [] if not arr: return solution _A : Dict = [arr.pop(0 )] for i, item in enumerate(snake_case_ ): if _operator(snake_case_,sublist[-1] ): sublist.append(snake_case_ ) arr.pop(snake_case_ ) # merging sublist into solution list if not solution: solution.extend(snake_case_ ) else: while sublist: _A : Union[str, Any] = sublist.pop(0 ) for i, xx in enumerate(snake_case_ ): if not _operator(snake_case_,snake_case_ ): solution.insert(snake_case_,snake_case_ ) break else: solution.append(snake_case_ ) strand_sort(snake_case_,snake_case_,snake_case_ ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
54
0
"""simple docstring""" import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL __A = version.parse(version.parse(torch.__version__).base_version) < version.parse("""1.11""") def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False , ) ->Any: """simple docstring""" output_path.parent.mkdir(parents=_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , f=output_path.as_posix() , input_names=_SCREAMING_SNAKE_CASE , output_names=_SCREAMING_SNAKE_CASE , dynamic_axes=_SCREAMING_SNAKE_CASE , do_constant_folding=_SCREAMING_SNAKE_CASE , use_external_data_format=_SCREAMING_SNAKE_CASE , enable_onnx_checker=_SCREAMING_SNAKE_CASE , opset_version=_SCREAMING_SNAKE_CASE , ) else: export( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , f=output_path.as_posix() , input_names=_SCREAMING_SNAKE_CASE , output_names=_SCREAMING_SNAKE_CASE , dynamic_axes=_SCREAMING_SNAKE_CASE , do_constant_folding=_SCREAMING_SNAKE_CASE , opset_version=_SCREAMING_SNAKE_CASE , ) @torch.no_grad() def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False ) ->List[str]: """simple docstring""" lowerCAmelCase__ :List[Any] = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): lowerCAmelCase__ :Optional[int] = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: lowerCAmelCase__ :Dict = 'cpu' lowerCAmelCase__ :Any = Path(_SCREAMING_SNAKE_CASE ) # VAE DECODER lowerCAmelCase__ :Optional[Any] = AutoencoderKL.from_pretrained(model_path + '/vae' ) lowerCAmelCase__ :Optional[Any] = vae_decoder.config.latent_channels # forward only through the decoder part lowerCAmelCase__ :Optional[Any] = vae_decoder.decode onnx_export( _SCREAMING_SNAKE_CASE , model_args=( torch.randn(1 , _SCREAMING_SNAKE_CASE , 25 , 25 ).to(device=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=_SCREAMING_SNAKE_CASE , ) del vae_decoder if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument( """--model_path""", type=str, required=True, help="""Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).""", ) parser.add_argument("""--output_path""", type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--opset""", default=14, type=int, help="""The version of the ONNX operator set to use.""", ) parser.add_argument("""--fp16""", action="""store_true""", default=False, help="""Export the models in `float16` mode""") __A = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("""SD: Done: ONNX""")
93
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case_ : Tuple = { "configuration_albert": ["ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "AlbertConfig", "AlbertOnnxConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Dict = ["AlbertTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Union[str, Any] = ["AlbertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Union[str, Any] = [ "ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "AlbertForMaskedLM", "AlbertForMultipleChoice", "AlbertForPreTraining", "AlbertForQuestionAnswering", "AlbertForSequenceClassification", "AlbertForTokenClassification", "AlbertModel", "AlbertPreTrainedModel", "load_tf_weights_in_albert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[Any] = [ "TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFAlbertForMaskedLM", "TFAlbertForMultipleChoice", "TFAlbertForPreTraining", "TFAlbertForQuestionAnswering", "TFAlbertForSequenceClassification", "TFAlbertForTokenClassification", "TFAlbertMainLayer", "TFAlbertModel", "TFAlbertPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Optional[Any] = [ "FlaxAlbertForMaskedLM", "FlaxAlbertForMultipleChoice", "FlaxAlbertForPreTraining", "FlaxAlbertForQuestionAnswering", "FlaxAlbertForSequenceClassification", "FlaxAlbertForTokenClassification", "FlaxAlbertModel", "FlaxAlbertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert import AlbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert_fast import AlbertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_albert import ( ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, AlbertPreTrainedModel, load_tf_weights_in_albert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_albert import ( TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFAlbertForMaskedLM, TFAlbertForMultipleChoice, TFAlbertForPreTraining, TFAlbertForQuestionAnswering, TFAlbertForSequenceClassification, TFAlbertForTokenClassification, TFAlbertMainLayer, TFAlbertModel, TFAlbertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, FlaxAlbertPreTrainedModel, ) else: import sys snake_case_ : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
488
0
import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer snake_case__ : int = logging.get_logger(__name__) class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = """AutoTokenizer""" A_ = ["""tokenizer"""] A_ = { """semantic_prompt""": 1, """coarse_prompt""": 2, """fine_prompt""": 2, } def __init__( self , _UpperCAmelCase , _UpperCAmelCase=None ) -> int: super().__init__(_UpperCAmelCase ) UpperCamelCase_ = speaker_embeddings @classmethod def _UpperCAmelCase ( cls , _UpperCAmelCase , _UpperCAmelCase="speaker_embeddings_path.json" , **_UpperCAmelCase ) -> Union[str, Any]: if speaker_embeddings_dict_path is not None: UpperCamelCase_ = get_file_from_repo( _UpperCAmelCase , _UpperCAmelCase , subfolder=kwargs.pop('subfolder' , _UpperCAmelCase ) , cache_dir=kwargs.pop('cache_dir' , _UpperCAmelCase ) , force_download=kwargs.pop('force_download' , _UpperCAmelCase ) , proxies=kwargs.pop('proxies' , _UpperCAmelCase ) , resume_download=kwargs.pop('resume_download' , _UpperCAmelCase ) , local_files_only=kwargs.pop('local_files_only' , _UpperCAmelCase ) , use_auth_token=kwargs.pop('use_auth_token' , _UpperCAmelCase ) , revision=kwargs.pop('revision' , _UpperCAmelCase ) , ) if speaker_embeddings_path is None: logger.warning( f"""`{os.path.join(_UpperCAmelCase , _UpperCAmelCase )}` does not exists , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.""" ) UpperCamelCase_ = None else: with open(_UpperCAmelCase ) as speaker_embeddings_json: UpperCamelCase_ = json.load(_UpperCAmelCase ) else: UpperCamelCase_ = None UpperCamelCase_ = AutoTokenizer.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) return cls(tokenizer=_UpperCAmelCase , speaker_embeddings=_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase="speaker_embeddings_path.json" , _UpperCAmelCase="speaker_embeddings" , _UpperCAmelCase = False , **_UpperCAmelCase , ) -> List[str]: if self.speaker_embeddings is not None: os.makedirs(os.path.join(_UpperCAmelCase , _UpperCAmelCase , 'v2' ) , exist_ok=_UpperCAmelCase ) UpperCamelCase_ = {} UpperCamelCase_ = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": UpperCamelCase_ = self._load_voice_preset(_UpperCAmelCase ) UpperCamelCase_ = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict['repo_or_path'] , _UpperCAmelCase , f"""{prompt_key}_{key}""" ) , voice_preset[key] , allow_pickle=_UpperCAmelCase , ) UpperCamelCase_ = os.path.join(_UpperCAmelCase , f"""{prompt_key}_{key}.npy""" ) UpperCamelCase_ = tmp_dict with open(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , 'w' ) as fp: json.dump(_UpperCAmelCase , _UpperCAmelCase ) super().save_pretrained(_UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase = None , **_UpperCAmelCase ) -> int: UpperCamelCase_ = self.speaker_embeddings[voice_preset] UpperCamelCase_ = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( f"""Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].""" ) UpperCamelCase_ = get_file_from_repo( self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] , subfolder=kwargs.pop('subfolder' , _UpperCAmelCase ) , cache_dir=kwargs.pop('cache_dir' , _UpperCAmelCase ) , force_download=kwargs.pop('force_download' , _UpperCAmelCase ) , proxies=kwargs.pop('proxies' , _UpperCAmelCase ) , resume_download=kwargs.pop('resume_download' , _UpperCAmelCase ) , local_files_only=kwargs.pop('local_files_only' , _UpperCAmelCase ) , use_auth_token=kwargs.pop('use_auth_token' , _UpperCAmelCase ) , revision=kwargs.pop('revision' , _UpperCAmelCase ) , ) if path is None: raise ValueError( f"""`{os.path.join(self.speaker_embeddings.get("repo_or_path" , "/" ) , voice_preset_paths[key] )}` does not exists , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset} embeddings.""" ) UpperCamelCase_ = np.load(_UpperCAmelCase ) return voice_preset_dict def _UpperCAmelCase ( self , _UpperCAmelCase = None ) -> Optional[Any]: for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(f"""Voice preset unrecognized, missing {key} as a key.""" ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(f"""{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.""" ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(f"""{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.""" ) def __call__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="pt" , _UpperCAmelCase=256 , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=False , **_UpperCAmelCase , ) -> Tuple: if voice_preset is not None and not isinstance(_UpperCAmelCase , _UpperCAmelCase ): if ( isinstance(_UpperCAmelCase , _UpperCAmelCase ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): UpperCamelCase_ = self._load_voice_preset(_UpperCAmelCase ) else: if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and not voice_preset.endswith('.npz' ): UpperCamelCase_ = voice_preset + '.npz' UpperCamelCase_ = np.load(_UpperCAmelCase ) if voice_preset is not None: self._validate_voice_preset_dict(_UpperCAmelCase , **_UpperCAmelCase ) UpperCamelCase_ = BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase ) UpperCamelCase_ = self.tokenizer( _UpperCAmelCase , return_tensors=_UpperCAmelCase , padding='max_length' , max_length=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) if voice_preset is not None: UpperCamelCase_ = voice_preset return encoded_text
700
import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class _a : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=2 , _UpperCAmelCase=32 , _UpperCAmelCase=16 , _UpperCAmelCase=3 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=32 , _UpperCAmelCase=4 , _UpperCAmelCase=[0, 1, 2, 3] , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=3 , _UpperCAmelCase=[1, 384, 24, 24] , _UpperCAmelCase=True , _UpperCAmelCase=None , ) -> Optional[Any]: UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = image_size UpperCamelCase_ = patch_size UpperCamelCase_ = num_channels UpperCamelCase_ = is_training UpperCamelCase_ = use_labels UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = backbone_out_indices UpperCamelCase_ = num_attention_heads UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_act UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = initializer_range UpperCamelCase_ = num_labels UpperCamelCase_ = backbone_featmap_shape UpperCamelCase_ = scope UpperCamelCase_ = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) UpperCamelCase_ = (image_size // patch_size) ** 2 UpperCamelCase_ = num_patches + 1 def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase_ = None if self.use_labels: UpperCamelCase_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCamelCase_ = self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ = { 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, 'hidden_sizes': [96, 192, 384, 768], 'num_groups': 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=_UpperCAmelCase , backbone_featmap_shape=self.backbone_featmap_shape , ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: UpperCamelCase_ = DPTModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCamelCase_ = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: UpperCamelCase_ = self.num_labels UpperCamelCase_ = DPTForDepthEstimation(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCamelCase_ = model(_UpperCAmelCase ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: UpperCamelCase_ = self.num_labels UpperCamelCase_ = DPTForSemanticSegmentation(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCamelCase_ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def _UpperCAmelCase ( self ) -> str: UpperCamelCase_ = self.prepare_config_and_inputs() UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = config_and_inputs UpperCamelCase_ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _a ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): """simple docstring""" A_ = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () A_ = ( { """depth-estimation""": DPTForDepthEstimation, """feature-extraction""": DPTModel, """image-segmentation""": DPTForSemanticSegmentation, } if is_torch_available() else {} ) A_ = False A_ = False A_ = False def _UpperCAmelCase ( self ) -> List[str]: UpperCamelCase_ = DPTModelTester(self ) UpperCamelCase_ = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37 ) def _UpperCAmelCase ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() @unittest.skip(reason='DPT does not use inputs_embeds' ) def _UpperCAmelCase ( self ) -> Optional[int]: pass def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ = model_class(_UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear ) ) def _UpperCAmelCase ( self ) -> Any: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ = model_class(_UpperCAmelCase ) UpperCamelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase_ = [*signature.parameters.keys()] UpperCamelCase_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Tuple: UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> str: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_ = True if model_class in get_values(_UpperCAmelCase ): continue UpperCamelCase_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.train() UpperCamelCase_ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) UpperCamelCase_ = model(**_UpperCAmelCase ).loss loss.backward() def _UpperCAmelCase ( self ) -> List[str]: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_ = False UpperCamelCase_ = True if model_class in get_values(_UpperCAmelCase ) or not model_class.supports_gradient_checkpointing: continue UpperCamelCase_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.gradient_checkpointing_enable() model.train() UpperCamelCase_ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) UpperCamelCase_ = model(**_UpperCAmelCase ).loss loss.backward() def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_ = _config_zero_init(_UpperCAmelCase ) for model_class in self.all_model_classes: UpperCamelCase_ = model_class(config=_UpperCAmelCase ) # Skip the check for the backbone UpperCamelCase_ = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": UpperCamelCase_ = [f"""{name}.{key}""" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _UpperCAmelCase ( self ) -> Any: pass @slow def _UpperCAmelCase ( self ) -> Optional[int]: for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: UpperCamelCase_ = DPTModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Optional[int]: # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_ = 'add' with self.assertRaises(_UpperCAmelCase ): UpperCamelCase_ = DPTForDepthEstimation(_UpperCAmelCase ) def _snake_case (): UpperCamelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') return image @require_torch @require_vision @slow class _a ( unittest.TestCase ): """simple docstring""" def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ = DPTImageProcessor.from_pretrained('Intel/dpt-hybrid-midas' ) UpperCamelCase_ = DPTForDepthEstimation.from_pretrained('Intel/dpt-hybrid-midas' ).to(_UpperCAmelCase ) UpperCamelCase_ = prepare_img() UpperCamelCase_ = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCamelCase_ = model(**_UpperCAmelCase ) UpperCamelCase_ = outputs.predicted_depth # verify the predicted depth UpperCamelCase_ = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , _UpperCAmelCase ) UpperCamelCase_ = torch.tensor( [[[5.6_4_3_7, 5.6_1_4_6, 5.6_5_1_1], [5.4_3_7_1, 5.5_6_4_9, 5.5_9_5_8], [5.5_2_1_5, 5.5_1_8_4, 5.5_2_9_3]]] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , _UpperCAmelCase , atol=1e-4 ) )
618
0
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('''TEST_SAGEMAKER''' , '''False''' ) ) is not True , reason='''Skipping test because should only be run when releasing minor transformers version''' , ) @pytest.mark.usefixtures('''sm_env''' ) @parameterized_class( [ { '''framework''': '''pytorch''', '''script''': '''run_glue.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.g4dn.xlarge''', '''results''': {'''train_runtime''': 650, '''eval_accuracy''': 0.6, '''eval_loss''': 0.9}, }, { '''framework''': '''tensorflow''', '''script''': '''run_tf.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.g4dn.xlarge''', '''results''': {'''train_runtime''': 600, '''eval_accuracy''': 0.3, '''eval_loss''': 0.9}, }, ] ) class _lowerCAmelCase ( unittest.TestCase ): def _a ( self ) -> str: if self.framework == "pytorch": subprocess.run( f"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split() , encoding="utf-8" , check=a_ , ) assert hasattr(self , "env" ) def _a ( self , a_=1 ) -> Union[str, Any]: # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f"{self.env.base_job_name}-single" , instance_count=a_ , instance_type=self.instance_type , debugger_hook_config=a_ , hyperparameters={**self.env.hyperparameters, "model_name_or_path": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version="py36" , ) def _a ( self , a_ ) -> Optional[Any]: TrainingJobAnalytics(a_ ).export_csv(f"{self.env.test_path}/{job_name}_metrics.csv" ) def _a ( self ) -> List[str]: # create estimator _UpperCAmelCase = self.create_estimator() # run training estimator.fit() # result dataframe _UpperCAmelCase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis _UpperCAmelCase = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] ) _UpperCAmelCase = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping _UpperCAmelCase = ( Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds" , 999999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy ) assert all(t <= self.results["eval_loss"] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"{estimator.latest_training_job.name}.json" , "w" ) as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , a_ )
657
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __magic_name__ = { '''configuration_electra''': ['''ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ElectraConfig''', '''ElectraOnnxConfig'''], '''tokenization_electra''': ['''ElectraTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ['''ElectraTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ '''ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ElectraForCausalLM''', '''ElectraForMaskedLM''', '''ElectraForMultipleChoice''', '''ElectraForPreTraining''', '''ElectraForQuestionAnswering''', '''ElectraForSequenceClassification''', '''ElectraForTokenClassification''', '''ElectraModel''', '''ElectraPreTrainedModel''', '''load_tf_weights_in_electra''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ '''TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFElectraForMaskedLM''', '''TFElectraForMultipleChoice''', '''TFElectraForPreTraining''', '''TFElectraForQuestionAnswering''', '''TFElectraForSequenceClassification''', '''TFElectraForTokenClassification''', '''TFElectraModel''', '''TFElectraPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ '''FlaxElectraForCausalLM''', '''FlaxElectraForMaskedLM''', '''FlaxElectraForMultipleChoice''', '''FlaxElectraForPreTraining''', '''FlaxElectraForQuestionAnswering''', '''FlaxElectraForSequenceClassification''', '''FlaxElectraForTokenClassification''', '''FlaxElectraModel''', '''FlaxElectraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
657
1
from __future__ import annotations import math def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : int ,lowerCAmelCase_ : int ,lowerCAmelCase_ : bool ,lowerCAmelCase_ : list[int] ,lowerCAmelCase_ : float ) -> int: """simple docstring""" if depth < 0: raise ValueError('Depth cannot be less than 0' ) if len(lowerCAmelCase_ ) == 0: raise ValueError('Scores cannot be empty' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 ,node_index * 2 ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ) ,minimax(depth + 1 ,node_index * 2 + 1 ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ) ,) return min( minimax(depth + 1 ,node_index * 2 ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ) ,minimax(depth + 1 ,node_index * 2 + 1 ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ) ,) def SCREAMING_SNAKE_CASE__ ( ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict =[90, 23, 6, 33, 21, 65, 123, 3_4423] SCREAMING_SNAKE_CASE_ : List[Any] =math.log(len(lowerCAmelCase_ ) ,2 ) print('Optimal value : ' ,end='' ) print(minimax(0 ,0 ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
153
__SCREAMING_SNAKE_CASE = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' __SCREAMING_SNAKE_CASE = [{'type': 'code', 'content': INSTALL_CONTENT}] __SCREAMING_SNAKE_CASE = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
153
1
import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": lowerCamelCase : int = pd.read_csv('''sample_data.csv''', header=None) lowerCamelCase : Any = df.shape[:1][0] # If you're using some other dataset input the target column lowerCamelCase : int = df.iloc[:, 1:2] lowerCamelCase : Tuple = actual_data.values.reshape(len_data, 1) lowerCamelCase : List[Any] = MinMaxScaler().fit_transform(actual_data) lowerCamelCase : Tuple = 10 lowerCamelCase : Tuple = 5 lowerCamelCase : Union[str, Any] = 20 lowerCamelCase : Any = len_data - periods * look_back lowerCamelCase : int = actual_data[:division] lowerCamelCase : Optional[int] = actual_data[division - look_back :] lowerCamelCase , lowerCamelCase : str = [], [] lowerCamelCase , lowerCamelCase : Union[str, Any] = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) lowerCamelCase : Union[str, Any] = np.array(train_x) lowerCamelCase : List[Any] = np.array(test_x) lowerCamelCase : List[str] = np.array([list(i.ravel()) for i in train_y]) lowerCamelCase : Dict = np.array([list(i.ravel()) for i in test_y]) lowerCamelCase : List[str] = Sequential() model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(128, 1))) model.add(Dense(forward_days)) model.compile(loss='''mean_squared_error''', optimizer='''adam''') lowerCamelCase : List[str] = model.fit( x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4 ) lowerCamelCase : List[str] = model.predict(x_test)
367
from math import pow, sqrt def __lowerCAmelCase ( *__snake_case ): __lowerCAmelCase = len(__snake_case ) > 0 and all(value > 0.0 for value in values ) return result def __lowerCAmelCase ( __snake_case , __snake_case ): return ( round(sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(__snake_case , __snake_case ) else ValueError("Input Error: Molar mass values must greater than 0." ) ) def __lowerCAmelCase ( __snake_case , __snake_case , __snake_case ): return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(__snake_case , __snake_case , __snake_case ) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0." ) ) def __lowerCAmelCase ( __snake_case , __snake_case , __snake_case ): return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(__snake_case , __snake_case , __snake_case ) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0." ) ) def __lowerCAmelCase ( __snake_case , __snake_case , __snake_case ): return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 ) if validate(__snake_case , __snake_case , __snake_case ) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0." ) ) def __lowerCAmelCase ( __snake_case , __snake_case , __snake_case ): return ( round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 ) if validate(__snake_case , __snake_case , __snake_case ) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0." ) )
367
1
'''simple docstring''' import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class a ( unittest.TestCase ,__magic_name__ ): def __snake_case ( self : Any ): snake_case : Optional[int] = load_tool('''text-to-speech''' ) self.tool.setup() def __snake_case ( self : Union[str, Any] ): # SpeechT5 isn't deterministic torch.manual_seed(0 ) snake_case : Optional[int] = self.tool('''hey''' ) snake_case : int = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3], torch.tensor([-0.0005966668832115829, -0.0003657640190795064, -0.00013439502799883485] ), ) ) def __snake_case ( self : Any ): # SpeechT5 isn't deterministic torch.manual_seed(0 ) snake_case : Optional[Any] = self.tool('''hey''' ) snake_case : Tuple = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3], torch.tensor([-0.0005966668832115829, -0.0003657640190795064, -0.00013439502799883485] ), ) )
555
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} UpperCAmelCase = { "vocab_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/vocab.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/vocab.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/vocab.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/vocab.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/vocab.json", }, "merges_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/merges.txt", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/merges.txt", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/merges.txt", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/merges.txt", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/merges.txt", }, "tokenizer_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/tokenizer.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/tokenizer.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/tokenizer.json", }, } UpperCAmelCase = { "gpt2": 1_024, "gpt2-medium": 1_024, "gpt2-large": 1_024, "gpt2-xl": 1_024, "distilgpt2": 1_024, } class a ( __magic_name__ ): _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = ['''input_ids''', '''attention_mask'''] _snake_case = GPTaTokenizer def __init__( self : Union[str, Any], SCREAMING_SNAKE_CASE_ : Union[str, Any]=None, SCREAMING_SNAKE_CASE_ : Any=None, SCREAMING_SNAKE_CASE_ : List[str]=None, SCREAMING_SNAKE_CASE_ : Union[str, Any]="<|endoftext|>", SCREAMING_SNAKE_CASE_ : Optional[int]="<|endoftext|>", SCREAMING_SNAKE_CASE_ : Dict="<|endoftext|>", SCREAMING_SNAKE_CASE_ : Union[str, Any]=False, **SCREAMING_SNAKE_CASE_ : Tuple, ): super().__init__( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, tokenizer_file=SCREAMING_SNAKE_CASE_, unk_token=SCREAMING_SNAKE_CASE_, bos_token=SCREAMING_SNAKE_CASE_, eos_token=SCREAMING_SNAKE_CASE_, add_prefix_space=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, ) snake_case : Optional[Any] = kwargs.pop('''add_bos_token''', SCREAMING_SNAKE_CASE_ ) snake_case : Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''', SCREAMING_SNAKE_CASE_ ) != add_prefix_space: snake_case : List[Any] = getattr(SCREAMING_SNAKE_CASE_, pre_tok_state.pop('''type''' ) ) snake_case : Dict = add_prefix_space snake_case : List[Any] = pre_tok_class(**SCREAMING_SNAKE_CASE_ ) snake_case : Optional[Any] = add_prefix_space def __snake_case ( self : Optional[Any], *SCREAMING_SNAKE_CASE_ : Dict, **SCREAMING_SNAKE_CASE_ : List[str] ): snake_case : str = kwargs.get('''is_split_into_words''', SCREAMING_SNAKE_CASE_ ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) def __snake_case ( self : Union[str, Any], *SCREAMING_SNAKE_CASE_ : Tuple, **SCREAMING_SNAKE_CASE_ : int ): snake_case : int = kwargs.get('''is_split_into_words''', SCREAMING_SNAKE_CASE_ ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) def __snake_case ( self : List[Any], SCREAMING_SNAKE_CASE_ : str, SCREAMING_SNAKE_CASE_ : Optional[str] = None ): snake_case : List[Any] = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_, name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ ) def __snake_case ( self : Optional[Any], SCREAMING_SNAKE_CASE_ : "Conversation" ): snake_case : int = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(SCREAMING_SNAKE_CASE_, add_special_tokens=SCREAMING_SNAKE_CASE_ ) + [self.eos_token_id] ) if len(SCREAMING_SNAKE_CASE_ ) > self.model_max_length: snake_case : str = input_ids[-self.model_max_length :] return input_ids
555
1
"""simple docstring""" import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger UpperCAmelCase : Optional[int] = get_logger(__name__) class SCREAMING_SNAKE_CASE__ : def __init__( self : Optional[Any] , lowerCAmelCase_ : Optional[str] = None): """simple docstring""" lowercase_ = ( os.path.join(_lowerCAmelCase , config.EXTRACTED_DATASETS_DIR) if cache_dir else config.EXTRACTED_DATASETS_PATH ) lowercase_ = Extractor def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : str): """simple docstring""" from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" lowercase_ = os.path.abspath(_lowerCAmelCase) return os.path.join(self.extract_dir , hash_url_to_filename(_lowerCAmelCase)) def _UpperCAmelCase ( self : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : bool): """simple docstring""" return force_extract or ( not os.path.isfile(_lowerCAmelCase) and not (os.path.isdir(_lowerCAmelCase) and os.listdir(_lowerCAmelCase)) ) def _UpperCAmelCase ( self : str , lowerCAmelCase_ : str , lowerCAmelCase_ : bool = False): """simple docstring""" lowercase_ = self.extractor.infer_extractor_format(_lowerCAmelCase) if not extractor_format: return input_path lowercase_ = self._get_output_path(_lowerCAmelCase) if self._do_extract(_lowerCAmelCase , _lowerCAmelCase): self.extractor.extract(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase) return output_path class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): @classmethod @abstractmethod def _UpperCAmelCase ( cls : List[Any] , lowerCAmelCase_ : Union[Path, str] , **lowerCAmelCase_ : Union[str, Any]): """simple docstring""" ... @staticmethod @abstractmethod def _UpperCAmelCase ( lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : Union[Path, str]): """simple docstring""" ... class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ): lowercase__ = [] @staticmethod def _UpperCAmelCase ( lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : int): """simple docstring""" with open(_lowerCAmelCase , """rb""") as f: return f.read(_lowerCAmelCase) @classmethod def _UpperCAmelCase ( cls : Union[str, Any] , lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : bytes = b""): """simple docstring""" if not magic_number: lowercase_ = max(len(_lowerCAmelCase) for cls_magic_number in cls.magic_numbers) try: lowercase_ = cls.read_magic_number(_lowerCAmelCase , _lowerCAmelCase) except OSError: return False return any(magic_number.startswith(_lowerCAmelCase) for cls_magic_number in cls.magic_numbers) class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): @classmethod def _UpperCAmelCase ( cls : List[str] , lowerCAmelCase_ : Union[Path, str] , **lowerCAmelCase_ : Union[str, Any]): """simple docstring""" return tarfile.is_tarfile(_lowerCAmelCase) @staticmethod def _UpperCAmelCase ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any]): """simple docstring""" def resolved(lowerCAmelCase_ : str) -> str: return os.path.realpath(os.path.abspath(_lowerCAmelCase)) def badpath(lowerCAmelCase_ : str , lowerCAmelCase_ : str) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(_lowerCAmelCase , _lowerCAmelCase)).startswith(_lowerCAmelCase) def badlink(lowerCAmelCase_ : Tuple , lowerCAmelCase_ : str) -> bool: # Links are interpreted relative to the directory containing the link lowercase_ = resolved(os.path.join(_lowerCAmelCase , os.path.dirname(info.name))) return badpath(info.linkname , base=_lowerCAmelCase) lowercase_ = resolved(_lowerCAmelCase) for finfo in members: if badpath(finfo.name , _lowerCAmelCase): logger.error(F'''Extraction of {finfo.name} is blocked (illegal path)''') elif finfo.issym() and badlink(_lowerCAmelCase , _lowerCAmelCase): logger.error(F'''Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}''') elif finfo.islnk() and badlink(_lowerCAmelCase , _lowerCAmelCase): logger.error(F'''Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}''') else: yield finfo @staticmethod def _UpperCAmelCase ( lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : Union[Path, str]): """simple docstring""" os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase) lowercase_ = tarfile.open(_lowerCAmelCase) tar_file.extractall(_lowerCAmelCase , members=TarExtractor.safemembers(_lowerCAmelCase , _lowerCAmelCase)) tar_file.close() class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = [b"\x1F\x8B"] @staticmethod def _UpperCAmelCase ( lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : Union[Path, str]): """simple docstring""" with gzip.open(_lowerCAmelCase , """rb""") as gzip_file: with open(_lowerCAmelCase , """wb""") as extracted_file: shutil.copyfileobj(_lowerCAmelCase , _lowerCAmelCase) class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = [ b"PK\x03\x04", b"PK\x05\x06", # empty archive b"PK\x07\x08", # spanned archive ] @classmethod def _UpperCAmelCase ( cls : Optional[int] , lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : bytes = b""): """simple docstring""" if super().is_extractable(_lowerCAmelCase , magic_number=_lowerCAmelCase): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(_lowerCAmelCase , """rb""") as fp: lowercase_ = _EndRecData(_lowerCAmelCase) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET]) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: lowercase_ = fp.read(_lowerCAmelCase) # CD is where we expect it to be if len(_lowerCAmelCase) == sizeCentralDir: lowercase_ = struct.unpack(_lowerCAmelCase , _lowerCAmelCase) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def _UpperCAmelCase ( lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : Union[Path, str]): """simple docstring""" os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase) with zipfile.ZipFile(_lowerCAmelCase , """r""") as zip_file: zip_file.extractall(_lowerCAmelCase) zip_file.close() class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = [b"\xFD\x37\x7A\x58\x5A\x00"] @staticmethod def _UpperCAmelCase ( lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : Union[Path, str]): """simple docstring""" with lzma.open(_lowerCAmelCase) as compressed_file: with open(_lowerCAmelCase , """wb""") as extracted_file: shutil.copyfileobj(_lowerCAmelCase , _lowerCAmelCase) class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = [b"Rar!\x1a\x07\x00", b"Rar!\x1a\x07\x01\x00"] # RAR_ID # RAR5_ID @staticmethod def _UpperCAmelCase ( lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : Union[Path, str]): """simple docstring""" if not config.RARFILE_AVAILABLE: raise ImportError("""Please pip install rarfile""") import rarfile os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase) lowercase_ = rarfile.RarFile(_lowerCAmelCase) rf.extractall(_lowerCAmelCase) rf.close() class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = [b"\x28\xb5\x2F\xFD"] @staticmethod def _UpperCAmelCase ( lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : Union[Path, str]): """simple docstring""" if not config.ZSTANDARD_AVAILABLE: raise ImportError("""Please pip install zstandard""") import zstandard as zstd lowercase_ = zstd.ZstdDecompressor() with open(_lowerCAmelCase , """rb""") as ifh, open(_lowerCAmelCase , """wb""") as ofh: dctx.copy_stream(_lowerCAmelCase , _lowerCAmelCase) class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = [b"\x42\x5A\x68"] @staticmethod def _UpperCAmelCase ( lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : Union[Path, str]): """simple docstring""" with bza.open(_lowerCAmelCase , """rb""") as compressed_file: with open(_lowerCAmelCase , """wb""") as extracted_file: shutil.copyfileobj(_lowerCAmelCase , _lowerCAmelCase) class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = [b"\x37\x7A\xBC\xAF\x27\x1C"] @staticmethod def _UpperCAmelCase ( lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : Union[Path, str]): """simple docstring""" if not config.PY7ZR_AVAILABLE: raise ImportError("""Please pip install py7zr""") import pyazr os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase) with pyazr.SevenZipFile(_lowerCAmelCase , """r""") as archive: archive.extractall(_lowerCAmelCase) class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = [b"\x04\x22\x4D\x18"] @staticmethod def _UpperCAmelCase ( lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : Union[Path, str]): """simple docstring""" if not config.LZ4_AVAILABLE: raise ImportError("""Please pip install lz4""") import lza.frame with lza.frame.open(_lowerCAmelCase , """rb""") as compressed_file: with open(_lowerCAmelCase , """wb""") as extracted_file: shutil.copyfileobj(_lowerCAmelCase , _lowerCAmelCase) class SCREAMING_SNAKE_CASE__ : lowercase__ = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def _UpperCAmelCase ( cls : Dict): """simple docstring""" return max( len(_lowerCAmelCase) for extractor in cls.extractors.values() if issubclass(_lowerCAmelCase , _lowerCAmelCase) for extractor_magic_number in extractor.magic_numbers) @staticmethod def _UpperCAmelCase ( lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : int): """simple docstring""" try: return MagicNumberBaseExtractor.read_magic_number(_lowerCAmelCase , magic_number_length=_lowerCAmelCase) except OSError: return b"" @classmethod def _UpperCAmelCase ( cls : int , lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : bool = False): """simple docstring""" warnings.warn( """Method \'is_extractable\' was deprecated in version 2.4.0 and will be removed in 3.0.0. """ """Use \'infer_extractor_format\' instead.""" , category=_lowerCAmelCase , ) lowercase_ = cls.infer_extractor_format(_lowerCAmelCase) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def _UpperCAmelCase ( cls : Optional[Any] , lowerCAmelCase_ : Union[Path, str]): # <Added version="2.4.0"/> """simple docstring""" lowercase_ = cls._get_magic_number_max_length() lowercase_ = cls._read_magic_number(_lowerCAmelCase , _lowerCAmelCase) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(_lowerCAmelCase , magic_number=_lowerCAmelCase): return extractor_format @classmethod def _UpperCAmelCase ( cls : List[str] , lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : Optional[str] = None , lowerCAmelCase_ : Optional[BaseExtractor] = "deprecated" , ): """simple docstring""" os.makedirs(os.path.dirname(_lowerCAmelCase) , exist_ok=_lowerCAmelCase) # Prevent parallel extractions lowercase_ = str(Path(_lowerCAmelCase).with_suffix(""".lock""")) with FileLock(_lowerCAmelCase): shutil.rmtree(_lowerCAmelCase , ignore_errors=_lowerCAmelCase) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(_lowerCAmelCase , _lowerCAmelCase): # passed as positional arg warnings.warn( """Parameter \'extractor\' was deprecated in version 2.4.0 and will be removed in 3.0.0. """ """Use \'extractor_format\' instead.""" , category=_lowerCAmelCase , ) lowercase_ = extractor if extractor != """deprecated""" else extractor_format else: lowercase_ = cls.extractors[extractor_format] return extractor.extract(_lowerCAmelCase , _lowerCAmelCase) else: warnings.warn( """Parameter \'extractor_format\' was made required in version 2.4.0 and not passing it will raise an """ """exception in 3.0.0.""" , category=_lowerCAmelCase , ) for extractor in cls.extractors.values(): if extractor.is_extractable(_lowerCAmelCase): return extractor.extract(_lowerCAmelCase , _lowerCAmelCase)
567
'''simple docstring''' from torch import nn def _A ( _lowerCAmelCase ): """simple docstring""" if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f"""Unsupported activation function: {act_fn}""" )
474
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase__ : List[str] = logging.get_logger(__name__) UpperCAmelCase__ : Optional[int] = { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/config.json", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/config.json", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/config.json", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/config.json", "bert-base-multilingual-uncased": "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json", "bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json", "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/config.json", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/config.json", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-base-cased-finetuned-mrpc": "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json", "bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json", "bert-base-german-dbmdz-uncased": "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json", "cl-tohoku/bert-base-japanese": "https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json", "cl-tohoku/bert-base-japanese-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json" ), "wietsedv/bert-base-dutch-cased": "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json", # See all BERT models at https://huggingface.co/models?filter=bert } class __lowercase ( __a ): __UpperCAmelCase = '''bert''' def __init__( self , lowercase_=3_0_5_2_2 , lowercase_=7_6_8 , lowercase_=1_2 , lowercase_=1_2 , lowercase_=3_0_7_2 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=5_1_2 , lowercase_=2 , lowercase_=0.02 , lowercase_=1e-12 , lowercase_=0 , lowercase_="absolute" , lowercase_=True , lowercase_=None , **lowercase_ , ) -> List[Any]: super().__init__(pad_token_id=A__ , **A__) __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = hidden_act __snake_case = intermediate_size __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = position_embedding_type __snake_case = use_cache __snake_case = classifier_dropout class __lowercase ( __a ): @property def _a ( self) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __snake_case = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __snake_case = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ])
700
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging UpperCAmelCase__ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name class __lowercase ( lowerCamelCase__ ): def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> List[str]: super().__init__() if safety_checker is None: logger.warning( F"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" ' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered' ' results in services or applications open to the public. Both the diffusers team and Hugging Face' ' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling' ' it only for use-cases that involve analyzing network behavior or auditing its results. For more' ' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .') self.register_modules( speech_model=lowercase_ , speech_processor=lowercase_ , vae=lowercase_ , text_encoder=lowercase_ , tokenizer=lowercase_ , unet=lowercase_ , scheduler=lowercase_ , feature_extractor=lowercase_ , ) def _a ( self , lowercase_ = "auto") -> Union[str, Any]: if slice_size == "auto": __snake_case = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowercase_) def _a ( self) -> Any: self.enable_attention_slicing(lowercase_) @torch.no_grad() def __call__( self , lowercase_ , lowercase_=1_6_0_0_0 , lowercase_ = 5_1_2 , lowercase_ = 5_1_2 , lowercase_ = 5_0 , lowercase_ = 7.5 , lowercase_ = None , lowercase_ = 1 , lowercase_ = 0.0 , lowercase_ = None , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , lowercase_ = None , lowercase_ = 1 , **lowercase_ , ) -> List[str]: __snake_case = self.speech_processor.feature_extractor( lowercase_ , return_tensors='pt' , sampling_rate=lowercase_).input_features.to(self.device) __snake_case = self.speech_model.generate(lowercase_ , max_length=4_8_0_0_0_0) __snake_case = self.speech_processor.tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ , normalize=lowercase_)[ 0 ] if isinstance(lowercase_ , lowercase_): __snake_case = 1 elif isinstance(lowercase_ , lowercase_): __snake_case = len(lowercase_) else: raise ValueError(F"`prompt` has to be of type `str` or `list` but is {type(lowercase_)}") if height % 8 != 0 or width % 8 != 0: raise ValueError(F"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowercase_ , lowercase_) or callback_steps <= 0) ): raise ValueError( F"`callback_steps` has to be a positive integer but is {callback_steps} of type" F" {type(lowercase_)}.") # get prompt text embeddings __snake_case = self.tokenizer( lowercase_ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) __snake_case = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __snake_case = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :]) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' F" {self.tokenizer.model_max_length} tokens: {removed_text}") __snake_case = text_input_ids[:, : self.tokenizer.model_max_length] __snake_case = self.text_encoder(text_input_ids.to(self.device))[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __snake_case , __snake_case , __snake_case = text_embeddings.shape __snake_case = text_embeddings.repeat(1 , lowercase_ , 1) __snake_case = text_embeddings.view(bs_embed * num_images_per_prompt , lowercase_ , -1) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __snake_case = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __snake_case = 42 if negative_prompt is None: __snake_case = [''] * batch_size elif type(lowercase_) is not type(lowercase_): raise TypeError( F"`negative_prompt` should be the same type to `prompt`, but got {type(lowercase_)} !=" F" {type(lowercase_)}.") elif isinstance(lowercase_ , lowercase_): __snake_case = [negative_prompt] elif batch_size != len(lowercase_): raise ValueError( F"`negative_prompt`: {negative_prompt} has batch size {len(lowercase_)}, but `prompt`:" F" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" ' the batch size of `prompt`.') else: __snake_case = negative_prompt __snake_case = text_input_ids.shape[-1] __snake_case = self.tokenizer( lowercase_ , padding='max_length' , max_length=lowercase_ , truncation=lowercase_ , return_tensors='pt' , ) __snake_case = self.text_encoder(uncond_input.input_ids.to(self.device))[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __snake_case = uncond_embeddings.shape[1] __snake_case = uncond_embeddings.repeat(1 , lowercase_ , 1) __snake_case = uncond_embeddings.view(batch_size * num_images_per_prompt , lowercase_ , -1) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __snake_case = torch.cat([uncond_embeddings, text_embeddings]) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __snake_case = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __snake_case = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __snake_case = torch.randn(lowercase_ , generator=lowercase_ , device='cpu' , dtype=lowercase_).to( self.device) else: __snake_case = torch.randn(lowercase_ , generator=lowercase_ , device=self.device , dtype=lowercase_) else: if latents.shape != latents_shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {latents_shape}") __snake_case = latents.to(self.device) # set timesteps self.scheduler.set_timesteps(lowercase_) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __snake_case = self.scheduler.timesteps.to(self.device) # scale the initial noise by the standard deviation required by the scheduler __snake_case = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __snake_case = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) __snake_case = {} if accepts_eta: __snake_case = eta for i, t in enumerate(self.progress_bar(lowercase_)): # expand the latents if we are doing classifier free guidance __snake_case = torch.cat([latents] * 2) if do_classifier_free_guidance else latents __snake_case = self.scheduler.scale_model_input(lowercase_ , lowercase_) # predict the noise residual __snake_case = self.unet(lowercase_ , lowercase_ , encoder_hidden_states=lowercase_).sample # perform guidance if do_classifier_free_guidance: __snake_case , __snake_case = noise_pred.chunk(2) __snake_case = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __snake_case = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowercase_ , lowercase_ , lowercase_) __snake_case = 1 / 0.1_8215 * latents __snake_case = self.vae.decode(lowercase_).sample __snake_case = (image / 2 + 0.5).clamp(0 , 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __snake_case = image.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": __snake_case = self.numpy_to_pil(lowercase_) if not return_dict: return image return StableDiffusionPipelineOutput(images=lowercase_ , nsfw_content_detected=lowercase_)
676
0
"""simple docstring""" import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path _lowerCAmelCase = [ {"dataset": "wikipedia", "config_name": "20220301.de"}, {"dataset": "wikipedia", "config_name": "20220301.en"}, {"dataset": "wikipedia", "config_name": "20220301.fr"}, {"dataset": "wikipedia", "config_name": "20220301.frr"}, {"dataset": "wikipedia", "config_name": "20220301.it"}, {"dataset": "wikipedia", "config_name": "20220301.simple"}, {"dataset": "snli", "config_name": "plain_text"}, {"dataset": "eli5", "config_name": "LFQA_reddit"}, {"dataset": "wiki40b", "config_name": "en"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.compressed"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.no_index"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.multiset.no_index"}, {"dataset": "natural_questions", "config_name": "default"}, ] def __UpperCamelCase ( snake_case__=True ): if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=_SCREAMING_SNAKE_CASE ) ) class SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): """simple docstring""" _A : int = None _A : Tuple = None def lowerCamelCase(self , lowerCAmelCase_ , lowerCAmelCase_ ): with TemporaryDirectory() as tmp_dir: A_ : str = dataset_module_factory(lowerCAmelCase_ , cache_dir=lowerCAmelCase_ ) A_ : int = import_main_class(dataset_module.module_path , dataset=lowerCAmelCase_ ) A_ : DatasetBuilder = builder_cls( cache_dir=lowerCAmelCase_ , config_name=lowerCAmelCase_ , hash=dataset_module.hash , ) A_ : List[Any] = """/""".join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=lowerCAmelCase_ ).replace(os.sep , """/""" ), config.DATASET_INFO_FILENAME, ] ) A_ : Optional[int] = cached_path(lowerCAmelCase_ , cache_dir=lowerCAmelCase_ ) self.assertTrue(os.path.exists(lowerCAmelCase_ ) ) @pytest.mark.integration def __UpperCamelCase ( snake_case__ ): A_ : List[str] = tmp_path_factory.mktemp("""test_hf_gcp""" ) / """test_wikipedia_simple""" A_ : int = dataset_module_factory("""wikipedia""" , cache_dir=snake_case__ ) A_ : List[Any] = import_main_class(dataset_module.module_path ) A_ : DatasetBuilder = builder_cls( cache_dir=snake_case__ , config_name="""20220301.frr""" , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam A_ : Any = None builder_instance.download_and_prepare() A_ : List[str] = builder_instance.as_dataset() assert ds @pytest.mark.integration def __UpperCamelCase ( snake_case__ ): A_ : int = dataset_module_factory("""wikipedia""" , cache_dir=snake_case__ ) A_ : Tuple = import_main_class(dataset_module.module_path , dataset=snake_case__ ) A_ : DatasetBuilder = builder_cls( cache_dir=snake_case__ , config_name="""20220301.frr""" , hash=dataset_module.hash , ) A_ : Tuple = builder_instance.as_streaming_dataset() assert ds assert isinstance(snake_case__ , snake_case__ ) assert "train" in ds assert isinstance(ds["""train"""] , snake_case__ ) assert next(iter(ds["""train"""] ) )
180
"""simple docstring""" import numpy as np def __UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ = 1E-12 , snake_case__ = 100 , ): assert np.shape(snake_case__ )[0] == np.shape(snake_case__ )[1] # Ensure proper dimensionality. assert np.shape(snake_case__ )[0] == np.shape(snake_case__ )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(snake_case__ ) == np.iscomplexobj(snake_case__ ) A_ : Union[str, Any] = np.iscomplexobj(snake_case__ ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(snake_case__ , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. A_ : List[str] = False A_ : int = 0 A_ : List[Any] = 0 A_ : Tuple = 1E12 while not convergence: # Multiple matrix by the vector. A_ : Dict = np.dot(snake_case__ , snake_case__ ) # Normalize the resulting output vector. A_ : str = w / np.linalg.norm(snake_case__ ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) A_ : str = vector.conj().T if is_complex else vector.T A_ : Optional[Any] = np.dot(snake_case__ , np.dot(snake_case__ , snake_case__ ) ) # Check convergence. A_ : Any = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: A_ : Optional[Any] = True A_ : Union[str, Any] = lambda_ if is_complex: A_ : str = np.real(lambda_ ) return lambda_, vector def __UpperCamelCase ( ): A_ : Optional[int] = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) A_ : Tuple = np.array([41, 4, 20] ) A_ : Tuple = real_input_matrix.astype(np.complexaaa ) A_ : List[Any] = np.triu(1J * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T A_ : Any = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": A_ : Optional[int] = real_input_matrix A_ : List[str] = real_vector elif problem_type == "complex": A_ : List[Any] = complex_input_matrix A_ : str = complex_vector # Our implementation. A_ , A_ : Dict = power_iteration(snake_case__ , snake_case__ ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). A_ , A_ : Optional[Any] = np.linalg.eigh(snake_case__ ) # Last eigenvalue is the maximum one. A_ : List[Any] = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. A_ : Optional[Any] = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(snake_case__ ) - np.abs(snake_case__ ) ) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
180
1
"""simple docstring""" # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys SCREAMING_SNAKE_CASE_ : int = subprocess.check_output('git merge-base main HEAD'.split()).decode('utf-8') SCREAMING_SNAKE_CASE_ : Optional[int] = ( subprocess.check_output(f"""git diff --diff-filter=d --name-only {fork_point_sha}""".split()).decode('utf-8').split() ) SCREAMING_SNAKE_CASE_ : Dict = '|'.join(sys.argv[1:]) SCREAMING_SNAKE_CASE_ : Tuple = re.compile(rf"""^({joined_dirs}).*?\.py$""") SCREAMING_SNAKE_CASE_ : Any = [x for x in modified_files if regex.match(x)] print(' '.join(relevant_modified_files), end='')
500
"""simple docstring""" import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def _snake_case ( ): A__ = argparse.ArgumentParser() parser.add_argument("""--model_ckpt""" , type=UpperCAmelCase_ , default="""microsoft/unixcoder-base-nine""" ) parser.add_argument("""--num_epochs""" , type=UpperCAmelCase_ , default=5 ) parser.add_argument("""--batch_size""" , type=UpperCAmelCase_ , default=6 ) parser.add_argument("""--gradient_accumulation_steps""" , type=UpperCAmelCase_ , default=1 ) parser.add_argument("""--freeze""" , type=UpperCAmelCase_ , default=UpperCAmelCase_ ) parser.add_argument("""--learning_rate""" , type=UpperCAmelCase_ , default=5e-4 ) parser.add_argument("""--seed""" , type=UpperCAmelCase_ , default=0 ) parser.add_argument("""--lr_scheduler_type""" , type=UpperCAmelCase_ , default="""cosine""" ) parser.add_argument("""--num_warmup_steps""" , type=UpperCAmelCase_ , default=10 ) parser.add_argument("""--weight_decay""" , type=UpperCAmelCase_ , default=0.01 ) parser.add_argument("""--output_dir""" , type=UpperCAmelCase_ , default="""./results""" ) return parser.parse_args() SCREAMING_SNAKE_CASE_ : Union[str, Any] = load('accuracy') def _snake_case ( UpperCAmelCase_ : Tuple ): A__ , A__ = eval_pred A__ = np.argmax(UpperCAmelCase_ , axis=1 ) return metric.compute(predictions=UpperCAmelCase_ , references=UpperCAmelCase_ ) class a ( _lowerCamelCase ): """simple docstring""" def __init__( self: Optional[int] , UpperCamelCase: Optional[Any] ): """simple docstring""" super().__init__() A__ = trainer def UpperCamelCase ( self: int , UpperCamelCase: Tuple , UpperCamelCase: Optional[int] , UpperCamelCase: Dict , **UpperCamelCase: int ): """simple docstring""" if control.should_evaluate: A__ = deepcopy(UpperCamelCase ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix="""train""" ) return control_copy def _snake_case ( ): A__ = get_args() set_seed(args.seed ) A__ = load_dataset("""codeparrot/codecomplex""" , split="""train""" ) A__ = dataset.train_test_split(test_size=0.2 ) A__ = train_test["""test"""].train_test_split(test_size=0.5 ) A__ = DatasetDict( { """train""": train_test["""train"""], """test""": test_validation["""train"""], """valid""": test_validation["""test"""], } ) print("""Loading tokenizer and model""" ) A__ = AutoTokenizer.from_pretrained(args.model_ckpt ) A__ = tokenizer.eos_token A__ = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) A__ = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): A__ = False A__ = ClassLabel(num_classes=7 , names=list(set(train_test_validation["""train"""]["""complexity"""] ) ) ) def tokenize(UpperCAmelCase_ : int ): A__ = tokenizer(example["""src"""] , truncation=UpperCAmelCase_ , max_length=1024 ) A__ = labels.straint(example["""complexity"""] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } A__ = train_test_validation.map( UpperCAmelCase_ , batched=UpperCAmelCase_ , remove_columns=train_test_validation["""train"""].column_names , ) A__ = DataCollatorWithPadding(tokenizer=UpperCAmelCase_ ) A__ = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy="""epoch""" , save_strategy="""epoch""" , logging_strategy="""epoch""" , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model="""accuracy""" , run_name="""complexity-java""" , report_to="""wandb""" , ) A__ = Trainer( model=UpperCAmelCase_ , args=UpperCAmelCase_ , train_dataset=tokenized_datasets["""train"""] , eval_dataset=tokenized_datasets["""valid"""] , tokenizer=UpperCAmelCase_ , data_collator=UpperCAmelCase_ , compute_metrics=UpperCAmelCase_ , ) print("""Training...""" ) trainer.add_callback(CustomCallback(UpperCAmelCase_ ) ) trainer.train() if __name__ == "__main__": main()
500
1
'''simple docstring''' _lowerCAmelCase = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] _lowerCAmelCase = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] _lowerCAmelCase = { 0: "Sunday", 1: "Monday", 2: "Tuesday", 3: "Wednesday", 4: "Thursday", 5: "Friday", 6: "Saturday", } def _lowerCAmelCase ( lowercase : int , lowercase : int , lowercase : int ) ->str: """simple docstring""" assert len(str(lowercase ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 1_2, "month should be between 1 to 12" assert 1 <= day <= 3_1, "day should be between 1 to 31" # Doomsday algorithm: lowercase__ = year // 1_0_0 lowercase__ = (5 * (century % 4) + 2) % 7 lowercase__ = year % 1_0_0 lowercase__ = centurian % 1_2 lowercase__ = ( (centurian // 1_2) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 lowercase__ = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 4_0_0) == 0) else DOOMSDAY_LEAP[month - 1] ) lowercase__ = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
161
'''simple docstring''' import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class __A ( unittest.TestCase ): """simple docstring""" def snake_case_( self )-> Dict: lowercase__ = 0 @slow def snake_case_( self )-> int: for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): lowercase__ = AutoTokenizer.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) self.assertIsInstance(_lowerCamelCase , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(_lowerCamelCase ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): lowercase__ = AutoTokenizer.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) self.assertIsInstance(_lowerCamelCase , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(_lowerCamelCase ) , 0 ) def snake_case_( self )-> List[Any]: lowercase__ = AutoTokenizer.from_pretrained(_lowerCamelCase ) self.assertIsInstance(_lowerCamelCase , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 1_2 ) def snake_case_( self )-> Optional[Any]: lowercase__ = AutoTokenizer.from_pretrained(_lowerCamelCase ) self.assertIsInstance(_lowerCamelCase , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 2_0 ) def snake_case_( self )-> str: lowercase__ = AutoConfig.from_pretrained(_lowerCamelCase ) self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) # Check that tokenizer_type ≠ model_type lowercase__ = AutoTokenizer.from_pretrained(_lowerCamelCase , config=_lowerCamelCase ) self.assertIsInstance(_lowerCamelCase , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 1_2 ) def snake_case_( self )-> int: with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(_lowerCamelCase , '''vocab.txt''' ) ) lowercase__ = AutoTokenizer.from_pretrained(_lowerCamelCase , tokenizer_type='''bert''' , use_fast=_lowerCamelCase ) self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(_lowerCamelCase , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(_lowerCamelCase , '''merges.txt''' ) ) lowercase__ = AutoTokenizer.from_pretrained(_lowerCamelCase , tokenizer_type='''gpt2''' , use_fast=_lowerCamelCase ) self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) @require_tokenizers def snake_case_( self )-> Optional[int]: with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(_lowerCamelCase , '''vocab.txt''' ) ) lowercase__ = AutoTokenizer.from_pretrained(_lowerCamelCase , tokenizer_type='''bert''' ) self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(_lowerCamelCase , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(_lowerCamelCase , '''merges.txt''' ) ) lowercase__ = AutoTokenizer.from_pretrained(_lowerCamelCase , tokenizer_type='''gpt2''' ) self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) def snake_case_( self )-> Union[str, Any]: with pytest.raises(_lowerCamelCase ): AutoTokenizer.from_pretrained('''./''' , tokenizer_type='''xxx''' ) @require_tokenizers def snake_case_( self )-> Dict: for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: lowercase__ = tokenizer_class.from_pretrained('''wietsedv/bert-base-dutch-cased''' ) self.assertIsInstance(_lowerCamelCase , (BertTokenizer, BertTokenizerFast) ) if isinstance(_lowerCamelCase , _lowerCamelCase ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , _lowerCamelCase ) else: self.assertEqual(tokenizer.do_lower_case , _lowerCamelCase ) self.assertEqual(tokenizer.model_max_length , 5_1_2 ) @require_tokenizers def snake_case_( self )-> Optional[Any]: for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( _lowerCamelCase , '''julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier''' , ): lowercase__ = tokenizer_class.from_pretrained('''julien-c/herlolip-not-exists''' ) def snake_case_( self )-> int: # tests: https://github.com/huggingface/transformers/pull/13251 # 1. models with `-`, e.g. xlm-roberta -> xlm_roberta # 2. models that don't remap 1-1 from model-name to model file, e.g., openai-gpt -> openai lowercase__ = TOKENIZER_MAPPING.values() lowercase__ = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(_lowerCamelCase ) @require_tokenizers def snake_case_( self )-> Union[str, Any]: self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=_lowerCamelCase ) , _lowerCamelCase ) self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' ) , _lowerCamelCase ) @require_tokenizers def snake_case_( self )-> List[Any]: lowercase__ = AutoTokenizer.from_pretrained('''distilbert-base-uncased''' , do_lower_case=_lowerCamelCase ) lowercase__ = '''Hello, world. How are you?''' lowercase__ = tokenizer.tokenize(_lowerCamelCase ) self.assertEqual('''[UNK]''' , tokens[0] ) lowercase__ = AutoTokenizer.from_pretrained('''microsoft/mpnet-base''' , do_lower_case=_lowerCamelCase ) lowercase__ = tokenizer.tokenize(_lowerCamelCase ) self.assertEqual('''[UNK]''' , tokens[0] ) @require_tokenizers def snake_case_( self )-> List[str]: lowercase__ = AutoTokenizer.from_pretrained('''robot-test/dummy-tokenizer-fast-with-model-config''' ) self.assertEqual(type(_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(tokenizer.model_max_length , 5_1_2 ) self.assertEqual(tokenizer.vocab_size , 3_0_0_0_0 ) self.assertEqual(tokenizer.unk_token , '''[UNK]''' ) self.assertEqual(tokenizer.padding_side , '''right''' ) self.assertEqual(tokenizer.truncation_side , '''right''' ) def snake_case_( self )-> Optional[int]: lowercase__ = AutoTokenizer.from_pretrained(_lowerCamelCase ) self.assertIsInstance(_lowerCamelCase , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_lowerCamelCase ) lowercase__ = AutoTokenizer.from_pretrained(_lowerCamelCase ) self.assertIsInstance(_lowerCamelCase , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 1_2 ) def snake_case_( self )-> Tuple: lowercase__ = AutoTokenizer.from_pretrained('''ctrl''' ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) def snake_case_( self )-> Tuple: # Check we can load the tokenizer config of an online model. lowercase__ = get_tokenizer_config('''bert-base-cased''' ) lowercase__ = config.pop('''_commit_hash''' , _lowerCamelCase ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(_lowerCamelCase , {'''do_lower_case''': False} ) # This model does not have a tokenizer_config so we get back an empty dict. lowercase__ = get_tokenizer_config(_lowerCamelCase ) self.assertDictEqual(_lowerCamelCase , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. lowercase__ = AutoTokenizer.from_pretrained(_lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_lowerCamelCase ) lowercase__ = get_tokenizer_config(_lowerCamelCase ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config['''tokenizer_class'''] , '''BertTokenizer''' ) def snake_case_( self )-> int: try: AutoConfig.register('''custom''' , _lowerCamelCase ) AutoTokenizer.register(_lowerCamelCase , slow_tokenizer_class=_lowerCamelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_lowerCamelCase ): AutoTokenizer.register(_lowerCamelCase , slow_tokenizer_class=_lowerCamelCase ) lowercase__ = CustomTokenizer.from_pretrained(_lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_lowerCamelCase ) lowercase__ = AutoTokenizer.from_pretrained(_lowerCamelCase ) self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def snake_case_( self )-> Any: try: AutoConfig.register('''custom''' , _lowerCamelCase ) # Can register in two steps AutoTokenizer.register(_lowerCamelCase , slow_tokenizer_class=_lowerCamelCase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(_lowerCamelCase , fast_tokenizer_class=_lowerCamelCase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( _lowerCamelCase , slow_tokenizer_class=_lowerCamelCase , fast_tokenizer_class=_lowerCamelCase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_lowerCamelCase ): AutoTokenizer.register(_lowerCamelCase , fast_tokenizer_class=_lowerCamelCase ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ = BertTokenizerFast.from_pretrained(_lowerCamelCase ) bert_tokenizer.save_pretrained(_lowerCamelCase ) lowercase__ = CustomTokenizerFast.from_pretrained(_lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_lowerCamelCase ) lowercase__ = AutoTokenizer.from_pretrained(_lowerCamelCase ) self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) lowercase__ = AutoTokenizer.from_pretrained(_lowerCamelCase , use_fast=_lowerCamelCase ) self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def snake_case_( self )-> Tuple: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_lowerCamelCase ): lowercase__ = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_lowerCamelCase ): lowercase__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_lowerCamelCase ) lowercase__ = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_lowerCamelCase ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_lowerCamelCase ) lowercase__ = AutoTokenizer.from_pretrained(_lowerCamelCase , trust_remote_code=_lowerCamelCase ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version lowercase__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_lowerCamelCase , use_fast=_lowerCamelCase ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_lowerCamelCase ) lowercase__ = AutoTokenizer.from_pretrained(_lowerCamelCase , trust_remote_code=_lowerCamelCase , use_fast=_lowerCamelCase ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) @require_tokenizers def snake_case_( self )-> Optional[Any]: class __A ( a ): """simple docstring""" A_ = False class __A ( a ): """simple docstring""" A_ = NewTokenizer A_ = False try: AutoConfig.register('''custom''' , _lowerCamelCase ) AutoTokenizer.register(_lowerCamelCase , slow_tokenizer_class=_lowerCamelCase ) AutoTokenizer.register(_lowerCamelCase , fast_tokenizer_class=_lowerCamelCase ) # If remote code is not set, the default is to use local lowercase__ = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) lowercase__ = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , use_fast=_lowerCamelCase ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. lowercase__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_lowerCamelCase ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) lowercase__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_lowerCamelCase , use_fast=_lowerCamelCase ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub lowercase__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_lowerCamelCase ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertTrue(tokenizer.special_attribute_present ) lowercase__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_lowerCamelCase , use_fast=_lowerCamelCase ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def snake_case_( self )-> Dict: lowercase__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=_lowerCamelCase ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version lowercase__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=_lowerCamelCase , use_fast=_lowerCamelCase ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def snake_case_( self )-> Union[str, Any]: with self.assertRaisesRegex( _lowerCamelCase , '''bert-base is not a local folder and is not a valid model identifier''' ): lowercase__ = AutoTokenizer.from_pretrained('''bert-base''' ) def snake_case_( self )-> Union[str, Any]: with self.assertRaisesRegex( _lowerCamelCase , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): lowercase__ = AutoTokenizer.from_pretrained(_lowerCamelCase , revision='''aaaaaa''' ) def snake_case_( self )-> Optional[Any]: # Make sure we have cached the tokenizer. lowercase__ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: lowercase__ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
161
1
'''simple docstring''' from __future__ import annotations import numpy as np def lowercase_ ( lowercase__ ) ->Optional[Any]: return np.maximum(0 , lowercase__ ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
273
'''simple docstring''' from sklearn.metrics import matthews_corrcoef import datasets A : Dict = '\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n' A : int = '\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric("matthews_correlation")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results[\'matthews_correlation\'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric("matthews_correlation")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results[\'matthews_correlation\'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric("matthews_correlation")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results[\'matthews_correlation\'], 2))\n -0.25\n' A : Dict = '\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase ( datasets.Metric ): def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int32' ), 'references': datasets.Value('int32' ), } ) , reference_urls=[ 'https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html' ] , ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , __snake_case : int , __snake_case : List[Any] , __snake_case : Union[str, Any]=None ): '''simple docstring''' return { "matthews_correlation": float(matthews_corrcoef(__snake_case , __snake_case , sample_weight=__snake_case ) ), }
273
1
'''simple docstring''' from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class UpperCAmelCase_ ( __A , __A ): """simple docstring""" @register_to_config def __init__( self : Any , UpperCAmelCase : int = 768 , ) -> Optional[int]: '''simple docstring''' super().__init__() lowercase : Optional[int] =nn.Parameter(torch.zeros(1 , UpperCAmelCase ) ) lowercase : Tuple =nn.Parameter(torch.ones(1 , UpperCAmelCase ) ) def A__ ( self : Union[str, Any] , UpperCAmelCase : Optional[Union[str, torch.device]] = None , UpperCAmelCase : Optional[torch.dtype] = None , ) -> Any: '''simple docstring''' lowercase : Union[str, Any] =nn.Parameter(self.mean.to(UpperCAmelCase ).to(UpperCAmelCase ) ) lowercase : Union[str, Any] =nn.Parameter(self.std.to(UpperCAmelCase ).to(UpperCAmelCase ) ) return self def A__ ( self : int , UpperCAmelCase : List[Any] ) -> Optional[Any]: '''simple docstring''' lowercase : List[Any] =(embeds - self.mean) * 1.0 / self.std return embeds def A__ ( self : int , UpperCAmelCase : List[Any] ) -> Tuple: '''simple docstring''' lowercase : Dict =(embeds * self.std) + self.mean return embeds
94
'''simple docstring''' import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py _a : Tuple = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. _a : int = direct_transformers_import(PATH_TO_TRANSFORMERS) _a : Dict = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` _a : int = re.compile(R"\[(.+?)\]\((https://huggingface\.co/.+?)\)") _a : Any = { "DecisionTransformerConfig", "EncoderDecoderConfig", "MusicgenConfig", "RagConfig", "SpeechEncoderDecoderConfig", "TimmBackboneConfig", "VisionEncoderDecoderConfig", "VisionTextDualEncoderConfig", "LlamaConfig", } def _lowercase ( lowerCamelCase__ ) -> Tuple: """simple docstring""" __UpperCAmelCase : Any = None # source code of `config_class` __UpperCAmelCase : Any = inspect.getsource(lowerCamelCase__ ) __UpperCAmelCase : List[Any] = _re_checkpoint.findall(lowerCamelCase__ ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith("/" ): __UpperCAmelCase : List[str] = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link __UpperCAmelCase : List[str] = f"""https://huggingface.co/{ckpt_name}""" if ckpt_link == ckpt_link_from_name: __UpperCAmelCase : Union[str, Any] = ckpt_name break return checkpoint def _lowercase ( ) -> List[Any]: """simple docstring""" __UpperCAmelCase : Optional[int] = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue __UpperCAmelCase : List[Any] = get_checkpoint_from_config_class(lowerCamelCase__ ) __UpperCAmelCase : Optional[Any] = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(lowerCamelCase__ ) if len(lowerCamelCase__ ) > 0: __UpperCAmelCase : Optional[Any] = "\n".join(sorted(lowerCamelCase__ ) ) raise ValueError(f"""The following configurations don't contain any valid checkpoint:\n{message}""" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
168
0
import math import sys import cva import numpy as np def __snake_case ( _UpperCamelCase , _UpperCamelCase ) -> np.ndarray: # For applying gaussian function for each element in matrix. _a = math.sqrt(_UpperCamelCase ) _a = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def __snake_case ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> np.ndarray: _a = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def __snake_case ( _UpperCamelCase , _UpperCamelCase ) -> np.ndarray: # Creates a gaussian kernel of given dimension. _a = np.zeros((kernel_size, kernel_size) ) for i in range(0 , _UpperCamelCase ): for j in range(0 , _UpperCamelCase ): _a = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(_UpperCamelCase , _UpperCamelCase ) def __snake_case ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) -> np.ndarray: _a = np.zeros(img.shape ) _a = get_gauss_kernel(_UpperCamelCase , _UpperCamelCase ) _a , _a = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): _a = get_slice(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) _a = img_s - img_s[kernel_size // 2, kernel_size // 2] _a = vec_gaussian(_UpperCamelCase , _UpperCamelCase ) _a = np.multiply(_UpperCamelCase , _UpperCamelCase ) _a = np.multiply(_UpperCamelCase , _UpperCamelCase ) _a = np.sum(_UpperCamelCase ) / np.sum(_UpperCamelCase ) _a = val return imga def __snake_case ( _UpperCamelCase ) -> tuple: _a = args[1] if args[1:] else '''../image_data/lena.jpg''' _a = float(args[2] ) if args[2:] else 1.0 _a = float(args[3] ) if args[3:] else 1.0 if args[4:]: _a = int(args[4] ) _a = kernel_size + abs(kernel_size % 2 - 1 ) else: _a = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase :List[Any] = parse_args(sys.argv) lowerCamelCase :List[Any] = cva.imread(filename, 0) cva.imshow('input image', img) lowerCamelCase :Optional[Any] = img / 255 lowerCamelCase :Any = out.astype('float32') lowerCamelCase :Tuple = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) lowerCamelCase :Dict = out * 255 lowerCamelCase :Any = np.uinta(out) cva.imshow('output image', out) cva.waitKey(0) cva.destroyAllWindows()
346
def __snake_case ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> bool: return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(_UpperCamelCase ) ) def __snake_case ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> bool: # Base Case if index == len(_UpperCamelCase ): return True # Recursive Step for i in range(_UpperCamelCase ): if valid_coloring(graph[index] , _UpperCamelCase , _UpperCamelCase ): # Color current vertex _a = i # Validate coloring if util_color(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , index + 1 ): return True # Backtrack _a = -1 return False def __snake_case ( _UpperCamelCase , _UpperCamelCase ) -> list[int]: _a = [-1] * len(_UpperCamelCase ) if util_color(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , 0 ): return colored_vertices return []
346
1
from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { '''MIT/ast-finetuned-audioset-10-10-0.4593''': ( '''https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json''' ), } class UpperCAmelCase__ ( snake_case ): """simple docstring""" lowerCAmelCase__ : str = "audio-spectrogram-transformer" def __init__( self: Any , __lowerCAmelCase: int=768 , __lowerCAmelCase: str=12 , __lowerCAmelCase: Optional[Any]=12 , __lowerCAmelCase: Optional[int]=3_072 , __lowerCAmelCase: List[Any]="gelu" , __lowerCAmelCase: int=0.0 , __lowerCAmelCase: str=0.0 , __lowerCAmelCase: Optional[Any]=0.02 , __lowerCAmelCase: Dict=1E-12 , __lowerCAmelCase: List[Any]=16 , __lowerCAmelCase: Dict=True , __lowerCAmelCase: int=10 , __lowerCAmelCase: Optional[Any]=10 , __lowerCAmelCase: Union[str, Any]=1_024 , __lowerCAmelCase: Optional[Any]=128 , **__lowerCAmelCase: Dict , ) -> List[Any]: '''simple docstring''' super().__init__(**__lowerCAmelCase ) __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_act __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = initializer_range __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = patch_size __UpperCAmelCase = qkv_bias __UpperCAmelCase = frequency_stride __UpperCAmelCase = time_stride __UpperCAmelCase = max_length __UpperCAmelCase = num_mel_bins
221
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def a_ ( __lowercase : Any ) -> List[Any]: _snake_case = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(__lowercase , __lowercase ) def a_ ( __lowercase : Dict ) -> Tuple: _snake_case , _snake_case = emb.weight.shape _snake_case = nn.Linear(__lowercase , __lowercase , bias=__lowercase ) _snake_case = emb.weight.data return lin_layer def a_ ( __lowercase : Optional[int] , __lowercase : Union[str, Any]=None ) -> Tuple: _snake_case = {} for old_key in state_dict.keys(): _snake_case = old_key if "moe_layer.experts." in key: if expert_idx is not None: _snake_case = key.replace('moe_layer.experts.0' , f'''ffn.experts.expert_{expert_idx}''' ) else: _snake_case = key.replace('moe_layer.experts.' , 'ffn.experts.expert_' ) if "gate" in key: _snake_case = key.replace('.moe_layer.gate.wg' , '.ffn.router.classifier' ) if "fc2" and "experts" not in key: _snake_case = key.replace('.fc2.' , '.ffn.fc2.' ) if "fc1" and "experts" not in key: _snake_case = key.replace('.fc1.' , '.ffn.fc1.' ) if ".encoder_attn." in key: _snake_case = key.replace('.encoder_attn.' , '.cross_attention.' ) if "encoder_attn_layer_norm" in key: _snake_case = key.replace('encoder_attn_layer_norm' , 'cross_attention_layer_norm' ) if "final_layer_norm" in key: _snake_case = key.replace('final_layer_norm' , 'ff_layer_norm' ) _snake_case = state_dict[old_key] return new_dict def a_ ( __lowercase : Optional[Any] , __lowercase : Tuple , __lowercase : Any , __lowercase : List[str] , __lowercase : str = WEIGHTS_NAME ) -> Union[str, Any]: _snake_case = [] _snake_case = 0 os.makedirs(__lowercase , exist_ok=__lowercase ) for expert in range(__lowercase ): _snake_case = switch_checkpoint_path + f'''-rank-{expert}.pt''' if os.path.isfile(__lowercase ): _snake_case = torch.load(__lowercase )['model'] remove_ignore_keys_(__lowercase ) _snake_case = rename_fairseq_keys(__lowercase , __lowercase ) _snake_case = os.path.join( __lowercase , weights_name.replace('.bin' , f'''-{len(__lowercase )+1:05d}-of-???.bin''' ) ) torch.save(__lowercase , __lowercase ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(__lowercase )[0]].dtype ) # Add the last block _snake_case = os.path.join(__lowercase , weights_name.replace('.bin' , f'''-{len(__lowercase )+1:05d}-of-???.bin''' ) ) _snake_case = torch.load(switch_checkpoint_path + '-shared.pt' )['model'] remove_ignore_keys_(__lowercase ) _snake_case = rename_fairseq_keys(__lowercase , __lowercase ) _snake_case = shared_weights['decoder.embed_tokens.weight'] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(__lowercase ) == 1: _snake_case = os.path.join(__lowercase , __lowercase ) torch.save(__lowercase , __lowercase ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(__lowercase , __lowercase ) # Otherwise, let's build the index _snake_case = {} for idx, shard in enumerate(__lowercase ): _snake_case = weights_name.replace('.bin' , f'''-{idx+1:05d}-of-{len(__lowercase ):05d}.bin''' ) _snake_case = os.path.join(__lowercase , weights_name.replace('.bin' , f'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(__lowercase , os.path.join(__lowercase , __lowercase ) ) for key in shard: _snake_case = shard_file # Add the metadata _snake_case = {'total_size': total_size} _snake_case = {'metadata': metadata, 'weight_map': weight_map} with open(os.path.join(__lowercase , __lowercase ) , 'w' , encoding='utf-8' ) as f: _snake_case = json.dumps(__lowercase , indent=2 , sort_keys=__lowercase ) + '\n' f.write(__lowercase ) return metadata, index if __name__ == "__main__": _lowerCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--nllb_moe_checkpoint_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000''', type=str, required=False, help='''Path to a directory containing a folder per layer. Follows the original Google format.''', ) parser.add_argument('''--dtype''', default='''float32''', type=str, required=False, help='''dtype of the saved model''') parser.add_argument( '''--pytorch_dump_folder_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b''', type=str, required=False, help='''Path to the output pytorch model.''', ) _lowerCamelCase : List[str] = parser.parse_args() _lowerCamelCase , _lowerCamelCase : Union[str, Any] = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) _lowerCamelCase : Tuple = NllbMoeConfig.from_pretrained( '''facebook/nllb-200-3.3B''', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) _lowerCamelCase : Dict = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('''Done''') model.save_pretrained(args.pytorch_dump_folder_path)
686
0
"""simple docstring""" import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy a_ = logging.getLogger(__name__) a_ = "pytorch_model.bin" @dataclasses.dataclass class snake_case : __UpperCamelCase = dataclasses.field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models.'}) __UpperCamelCase = dataclasses.field( default=_UpperCamelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co.'} , ) @dataclasses.dataclass class snake_case : __UpperCamelCase = dataclasses.field(metadata={'help': 'A csv or a json file containing the training data.'}) __UpperCamelCase = dataclasses.field(metadata={'help': 'A csv or a json file containing the data to predict on.'}) __UpperCamelCase = dataclasses.field( default=_UpperCamelCase , metadata={'help': 'A csv or a json file containing the validation data.'}) __UpperCamelCase = dataclasses.field( default=_UpperCamelCase , metadata={'help': 'The name of the task to train on.'} , ) __UpperCamelCase = dataclasses.field( default=_UpperCamelCase , metadata={'help': 'The list of labels for the task.'}) @dataclasses.dataclass class snake_case : __UpperCamelCase = dataclasses.field( metadata={'help': 'The output directory where the model predictions and checkpoints will be written.'}) __UpperCamelCase = dataclasses.field( default='accuracy' , metadata={'help': 'The evaluation metric used for the task.'}) __UpperCamelCase = dataclasses.field( default='no' , metadata={ 'help': 'The evaluation strategy to adopt during training. Possible values are: ["no", "step", "epoch]' } , ) __UpperCamelCase = dataclasses.field( default=10 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , ) __UpperCamelCase = dataclasses.field( default=0.0 , metadata={ 'help': 'How much the specified evaluation metric must improve to satisfy early stopping conditions.' } , ) __UpperCamelCase = dataclasses.field( default=_UpperCamelCase , metadata={'help': 'Whether to filter the pseudo-labeled data based on the confidence score.'} , ) __UpperCamelCase = dataclasses.field( default=_UpperCamelCase , metadata={'help': 'Whether to filter the pseudo-labeled data based on the validation performance.'} , ) __UpperCamelCase = dataclasses.field( default=_UpperCamelCase , metadata={'help': 'Whether to fine-tune on labeled data after pseudo training.'} , ) __UpperCamelCase = dataclasses.field( default=0.0 , metadata={'help': 'Confidence threshold for pseudo-labeled data filtering.'} , ) __UpperCamelCase = dataclasses.field( default=100 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , ) __UpperCamelCase = dataclasses.field( default=_UpperCamelCase , metadata={'help': 'Random seed for initialization.'} , ) def a__ ( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) -> Union[str, Any]: _A = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: _A = dataset.filter(lambda __lowercase : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 _A = int(eval_result * len(__lowercase ) ) print(__lowercase ) _A = dataset.sort("probability" , reverse=__lowercase ) _A = dataset.select(range(__lowercase ) ) _A = dataset.remove_columns(["label", "probability"] ) _A = dataset.rename_column("prediction" , "label" ) _A = dataset.map(lambda __lowercase : {"label": idalabel[example["label"]]} ) _A = dataset.shuffle(seed=args.seed ) _A = os.path.join(__lowercase , f"""train_pseudo.{args.data_file_extension}""" ) if args.data_file_extension == "csv": dataset.to_csv(__lowercase , index=__lowercase ) else: dataset.to_json(__lowercase ) def a__ ( __lowercase , __lowercase , __lowercase , __lowercase , **__lowercase ) -> List[Any]: _A = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() _A = STModelArguments(model_name_or_path=__lowercase ) _A = STDataArguments(train_file=__lowercase , infer_file=__lowercase ) _A = STTrainingArguments(output_dir=__lowercase ) _A = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(__lowercase ).items(): setattr(__lowercase , __lowercase , __lowercase ) for key, value in kwargs.items(): if hasattr(__lowercase , __lowercase ): setattr(__lowercase , __lowercase , __lowercase ) # Sanity checks _A = {} _A = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None _A = args.train_file _A = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None _A = args.eval_file for key in data_files: _A = data_files[key].split("." )[-1] assert extension in ["csv", "json"], f"""`{key}_file` should be a csv or a json file.""" if args.data_file_extension is None: _A = extension else: assert extension == args.data_file_extension, f"""`{key}_file` should be a {args.data_file_extension} file`.""" assert ( args.eval_metric in datasets.list_metrics() ), f"""{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.""" # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info("Creating the initial data directory for self-training..." ) _A = f"""{args.output_dir}/self-train_iter-{{}}""".format _A = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=__lowercase ) os.makedirs(__lowercase , exist_ok=__lowercase ) accelerator.wait_for_everyone() _A = None _A = None _A = 0 _A = False # Show the progress bar _A = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): _A = data_dir_format(__lowercase ) assert os.path.exists(__lowercase ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 _A = os.path.join(__lowercase , "stage-1" ) _A = { "accelerator": accelerator, "model_name_or_path": args.model_name_or_path, "cache_dir": args.cache_dir, "do_train": True, "train_file": data_files["train"] if iteration == 0 else data_files["train_pseudo"], "do_eval": True if args.eval_file is not None else False, "eval_file": data_files["eval"], "do_predict": True, "infer_file": data_files["infer"], "task_name": args.task_name, "label_list": args.label_list, "output_dir": current_output_dir, "eval_metric": args.eval_metric, "evaluation_strategy": args.evaluation_strategy, "early_stopping_patience": args.early_stopping_patience, "early_stopping_threshold": args.early_stopping_threshold, "seed": args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(__lowercase , __lowercase ): arguments_dict.update({key: value} ) _A = os.path.join(__lowercase , "best-checkpoint" , __lowercase ) if os.path.exists(__lowercase ): logger.info( "Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1." , __lowercase , __lowercase , ) else: logger.info("***** Running self-training: iteration: %d, stage: 1 *****" , __lowercase ) finetune(**__lowercase ) accelerator.wait_for_everyone() assert os.path.exists(__lowercase ) logger.info("Self-training job completed: iteration: %d, stage: 1." , __lowercase ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data _A = os.path.join(__lowercase , "best-checkpoint" ) _A = os.path.join(__lowercase , "stage-2" ) # Update arguments_dict _A = model_path _A = data_files["train"] _A = current_output_dir _A = os.path.join(__lowercase , "best-checkpoint" , __lowercase ) if os.path.exists(__lowercase ): logger.info( "Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2." , __lowercase , __lowercase , ) else: logger.info("***** Running self-training: iteration: %d, stage: 2 *****" , __lowercase ) finetune(**__lowercase ) accelerator.wait_for_everyone() assert os.path.exists(__lowercase ) logger.info("Self-training job completed: iteration: %d, stage: 2." , __lowercase ) _A = iteration _A = data_dir_format(iteration + 1 ) _A = AutoConfig.from_pretrained(os.path.join(__lowercase , "best-checkpoint" ) ) _A = config.idalabel _A = os.path.join(__lowercase , "eval_results_best-checkpoint.json" ) _A = os.path.join(__lowercase , "test_results_best-checkpoint.json" ) assert os.path.exists(__lowercase ) with open(__lowercase , "r" ) as f: _A = float(json.load(__lowercase )[args.eval_metric] ) _A = os.path.join(__lowercase , "infer_output_best-checkpoint.csv" ) assert os.path.exists(__lowercase ) # Loading the dataset from local csv or json files. _A = load_dataset(args.data_file_extension , data_files={"data": data_files["infer"]} )["data"] _A = load_dataset("csv" , data_files={"data": infer_output_file} )["data"] if accelerator.is_main_process: os.makedirs(__lowercase , exist_ok=__lowercase ) shutil.copy(__lowercase , os.path.join(__lowercase , f"""eval_results_iter-{iteration}.json""" ) ) if os.path.exists(__lowercase ): shutil.copy(__lowercase , os.path.join(__lowercase , f"""test_results_iter-{iteration}.json""" ) ) create_pseudo_labeled_data(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) accelerator.wait_for_everyone() _A = os.path.join(__lowercase , f"""train_pseudo.{args.data_file_extension}""" ) if args.evaluation_strategy != IntervalStrategy.NO.value: _A = eval_result if best_iteration is None: _A = new_iteration _A = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: _A = new_iteration _A = new_eval_result _A = 0 else: if new_eval_result == best_eval_result: _A = new_iteration _A = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: _A = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info("Best iteration: %d" , __lowercase ) logger.info("Best evaluation result: %s = %f" , args.eval_metric , __lowercase ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(__lowercase , f"""eval_results_iter-{iteration}.json""" ) , os.path.join(__lowercase , "eval_results_best-iteration.json" ) , ) else: # Assume that the last iteration is the best logger.info("Best iteration: %d" , args.max_selftrain_iterations - 1 ) logger.info("Best evaluation result: %s = %f" , args.eval_metric , __lowercase ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(__lowercase , f"""eval_results_iter-{args.max_selftrain_iterations - 1}.json""" ) , os.path.join(__lowercase , "eval_results_best-iteration.json" ) , )
706
"""simple docstring""" import random def a__ ( __lowercase , __lowercase , __lowercase ) -> Optional[Any]: _A = a[left_index] _A = left_index + 1 for j in range(left_index + 1 , __lowercase ): if a[j] < pivot: _A , _A = a[i], a[j] i += 1 _A , _A = a[i - 1], a[left_index] return i - 1 def a__ ( __lowercase , __lowercase , __lowercase ) -> int: if left < right: _A = random.randint(__lowercase , right - 1 ) _A , _A = ( a[left], a[pivot], ) # switches the pivot with the left most bound _A = partition(__lowercase , __lowercase , __lowercase ) quick_sort_random( __lowercase , __lowercase , __lowercase ) # recursive quicksort to the left of the pivot point quick_sort_random( __lowercase , pivot_index + 1 , __lowercase ) # recursive quicksort to the right of the pivot point def a__ ( ) -> Dict: _A = input("Enter numbers separated by a comma:\n" ).strip() _A = [int(__lowercase ) for item in user_input.split("," )] quick_sort_random(__lowercase , 0 , len(__lowercase ) ) print(__lowercase ) if __name__ == "__main__": main()
621
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCamelCase : int = { '''configuration_roberta''': ['''ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RobertaConfig''', '''RobertaOnnxConfig'''], '''tokenization_roberta''': ['''RobertaTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[str] = ['''RobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = [ '''ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RobertaForCausalLM''', '''RobertaForMaskedLM''', '''RobertaForMultipleChoice''', '''RobertaForQuestionAnswering''', '''RobertaForSequenceClassification''', '''RobertaForTokenClassification''', '''RobertaModel''', '''RobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Union[str, Any] = [ '''TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRobertaForCausalLM''', '''TFRobertaForMaskedLM''', '''TFRobertaForMultipleChoice''', '''TFRobertaForQuestionAnswering''', '''TFRobertaForSequenceClassification''', '''TFRobertaForTokenClassification''', '''TFRobertaMainLayer''', '''TFRobertaModel''', '''TFRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = [ '''FlaxRobertaForCausalLM''', '''FlaxRobertaForMaskedLM''', '''FlaxRobertaForMultipleChoice''', '''FlaxRobertaForQuestionAnswering''', '''FlaxRobertaForSequenceClassification''', '''FlaxRobertaForTokenClassification''', '''FlaxRobertaModel''', '''FlaxRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys __UpperCamelCase : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
4
"""simple docstring""" import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def lowerCamelCase_( _lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' return 1.0 / (1.0 + np.exp(-_outputs )) def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Any = np.max(_outputs , axis=-1 , keepdims=_lowerCamelCase ) _lowerCamelCase : Dict = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=_lowerCamelCase ) class A_ ( _a ): lowerCAmelCase__ = 'sigmoid' lowerCAmelCase__ = 'softmax' lowerCAmelCase__ = 'none' @add_end_docstrings( _a , r'\n return_all_scores (`bool`, *optional*, defaults to `False`):\n Whether to return all prediction scores or just the one of the predicted class.\n function_to_apply (`str`, *optional*, defaults to `"default"`):\n The function to apply to the model outputs in order to retrieve the scores. Accepts four different values:\n\n - `"default"`: if the model has a single label, will apply the sigmoid function on the output. If the model\n has several labels, will apply the softmax function on the output.\n - `"sigmoid"`: Applies the sigmoid function on the output.\n - `"softmax"`: Applies the softmax function on the output.\n - `"none"`: Does not apply any function on the output.\n ' , ) class A_ ( _a ): lowerCAmelCase__ = False lowerCAmelCase__ = ClassificationFunction.NONE def __init__( self: str ,**__lowerCAmelCase: str ): '''simple docstring''' super().__init__(**__lowerCAmelCase ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def _lowercase ( self: Dict ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: Optional[Any]=None ,__lowerCAmelCase: List[Any]="" ,**__lowerCAmelCase: List[str] ): '''simple docstring''' _lowerCamelCase : Optional[int] = tokenizer_kwargs _lowerCamelCase : Optional[int] = {} if hasattr(self.model.config ,"return_all_scores" ) and return_all_scores is None: _lowerCamelCase : Tuple = self.model.config.return_all_scores if isinstance(__lowerCAmelCase ,__lowerCAmelCase ) or top_k is None: _lowerCamelCase : List[str] = top_k _lowerCamelCase : Union[str, Any] = False elif return_all_scores is not None: warnings.warn( "`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of" " `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`." ,__lowerCAmelCase ,) if return_all_scores: _lowerCamelCase : Optional[int] = None else: _lowerCamelCase : Union[str, Any] = 1 if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : Optional[int] = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: _lowerCamelCase : Dict = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self: int ,*__lowerCAmelCase: List[Any] ,**__lowerCAmelCase: str ): '''simple docstring''' _lowerCamelCase : Dict = super().__call__(*__lowerCAmelCase ,**__lowerCAmelCase ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. _lowerCamelCase : Optional[Any] = "top_k" not in kwargs if isinstance(args[0] ,__lowerCAmelCase ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def _lowercase ( self: int ,__lowerCAmelCase: List[str] ,**__lowerCAmelCase: Optional[int] ): '''simple docstring''' _lowerCamelCase : int = self.framework if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): return self.tokenizer(**__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ) elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ) and len(__lowerCAmelCase ) == 1 and isinstance(inputs[0] ,__lowerCAmelCase ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] ,text_pair=inputs[0][1] ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ) elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( "The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a" " dictionary `{\"text\": \"My text\", \"text_pair\": \"My pair\"}` in order to send a text pair." ) return self.tokenizer(__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ) def _lowercase ( self: int ,__lowerCAmelCase: Optional[Any] ): '''simple docstring''' return self.model(**__lowerCAmelCase ) def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: int=None ,__lowerCAmelCase: str=1 ,__lowerCAmelCase: Dict=True ): '''simple docstring''' if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: _lowerCamelCase : Dict = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: _lowerCamelCase : List[Any] = ClassificationFunction.SOFTMAX elif hasattr(self.model.config ,"function_to_apply" ) and function_to_apply is None: _lowerCamelCase : Optional[int] = self.model.config.function_to_apply else: _lowerCamelCase : str = ClassificationFunction.NONE _lowerCamelCase : List[Any] = model_outputs["logits"][0] _lowerCamelCase : Optional[int] = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: _lowerCamelCase : str = sigmoid(__lowerCAmelCase ) elif function_to_apply == ClassificationFunction.SOFTMAX: _lowerCamelCase : Optional[int] = softmax(__lowerCAmelCase ) elif function_to_apply == ClassificationFunction.NONE: _lowerCamelCase : str = outputs else: raise ValueError(F"""Unrecognized `function_to_apply` argument: {function_to_apply}""" ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} _lowerCamelCase : Optional[int] = [ {"label": self.model.config.idalabel[i], "score": score.item()} for i, score in enumerate(__lowerCAmelCase ) ] if not _legacy: dict_scores.sort(key=lambda __lowerCAmelCase : x["score"] ,reverse=__lowerCAmelCase ) if top_k is not None: _lowerCamelCase : Any = dict_scores[:top_k] return dict_scores
46
0
'''simple docstring''' import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class UpperCAmelCase ( __snake_case ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = 'char' SCREAMING_SNAKE_CASE_ = 'bpe' SCREAMING_SNAKE_CASE_ = 'wp' A_ = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class UpperCAmelCase ( __snake_case ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = ['image_processor', 'char_tokenizer'] SCREAMING_SNAKE_CASE_ = 'ViTImageProcessor' SCREAMING_SNAKE_CASE_ = 'MgpstrTokenizer' def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ ) -> Any: '''simple docstring''' lowerCamelCase_ = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _lowercase , ) lowerCamelCase_ = kwargs.pop('feature_extractor' ) lowerCamelCase_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) lowerCamelCase_ = tokenizer lowerCamelCase_ = AutoTokenizer.from_pretrained('gpt2' ) lowerCamelCase_ = AutoTokenizer.from_pretrained('bert-base-uncased' ) super().__init__(_lowercase , _lowercase ) def __call__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ ) -> Dict: '''simple docstring''' if images is None and text is None: raise ValueError('You need to specify either an `images` or `text` input to process.' ) if images is not None: lowerCamelCase_ = self.image_processor(_lowercase , return_tensors=_lowercase , **_lowercase ) if text is not None: lowerCamelCase_ = self.char_tokenizer(_lowercase , return_tensors=_lowercase , **_lowercase ) if text is None: return inputs elif images is None: return encodings else: lowerCamelCase_ = encodings["""input_ids"""] return inputs def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = sequences lowerCamelCase_ = char_preds.size(0 ) lowerCamelCase_ = self._decode_helper(_lowercase , 'char' ) lowerCamelCase_ = self._decode_helper(_lowercase , 'bpe' ) lowerCamelCase_ = self._decode_helper(_lowercase , 'wp' ) lowerCamelCase_ = [] lowerCamelCase_ = [] for i in range(_lowercase ): lowerCamelCase_ = [char_scores[i], bpe_scores[i], wp_scores[i]] lowerCamelCase_ = [char_strs[i], bpe_strs[i], wp_strs[i]] lowerCamelCase_ = scores.index(max(_lowercase ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) lowerCamelCase_ = {} lowerCamelCase_ = final_strs lowerCamelCase_ = final_scores lowerCamelCase_ = char_strs lowerCamelCase_ = bpe_strs lowerCamelCase_ = wp_strs return out def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Dict: '''simple docstring''' if format == DecodeType.CHARACTER: lowerCamelCase_ = self.char_decode lowerCamelCase_ = 1 lowerCamelCase_ = """[s]""" elif format == DecodeType.BPE: lowerCamelCase_ = self.bpe_decode lowerCamelCase_ = 2 lowerCamelCase_ = """#""" elif format == DecodeType.WORDPIECE: lowerCamelCase_ = self.wp_decode lowerCamelCase_ = 102 lowerCamelCase_ = """[SEP]""" else: raise ValueError(f'''Format {format} is not supported.''' ) lowerCamelCase_ = [], [] lowerCamelCase_ = pred_logits.size(0 ) lowerCamelCase_ = pred_logits.size(1 ) lowerCamelCase_ = pred_logits.topk(1 , dim=-1 , largest=_lowercase , sorted=_lowercase ) lowerCamelCase_ = preds_index.view(-1 , _lowercase )[:, 1:] lowerCamelCase_ = decoder(_lowercase ) lowerCamelCase_ = torch.nn.functional.softmax(_lowercase , dim=2 ).max(dim=2 ) lowerCamelCase_ = preds_max_prob[:, 1:] for index in range(_lowercase ): lowerCamelCase_ = preds_str[index].find(_lowercase ) lowerCamelCase_ = preds_str[index][:pred_eos] lowerCamelCase_ = preds_index[index].cpu().tolist() lowerCamelCase_ = pred_index.index(_lowercase ) if eos_token in pred_index else -1 lowerCamelCase_ = preds_max_prob[index][: pred_eos_index + 1] lowerCamelCase_ = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(_lowercase ) conf_scores.append(_lowercase ) return dec_strs, conf_scores def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Any: '''simple docstring''' lowerCamelCase_ = [seq.replace(' ' , '' ) for seq in self.char_tokenizer.batch_decode(_lowercase )] return decode_strs def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> str: '''simple docstring''' return self.bpe_tokenizer.batch_decode(_lowercase ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Tuple: '''simple docstring''' lowerCamelCase_ = [seq.replace(' ' , '' ) for seq in self.wp_tokenizer.batch_decode(_lowercase )] return decode_strs
719
'''simple docstring''' import os import sys import unittest A_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) A_ = os.path.join("tests", "models", "bert", "test_modeling_bert.py") A_ = os.path.join("tests", "models", "blip", "test_modeling_blip.py") class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = get_test_to_tester_mapping(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = get_test_to_tester_mapping(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = {'BertModelTest': 'BertModelTester'} lowerCamelCase_ = { 'BlipModelTest': 'BlipModelTester', 'BlipTextImageModelTest': 'BlipTextImageModelsModelTester', 'BlipTextModelTest': 'BlipTextModelTester', 'BlipTextRetrievalModelTest': 'BlipTextRetrievalModelTester', 'BlipVQAModelTest': 'BlipVQAModelTester', 'BlipVisionModelTest': 'BlipVisionModelTester', } self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = get_model_to_test_mapping(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = get_model_to_test_mapping(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = { 'BertForMaskedLM': ['BertModelTest'], 'BertForMultipleChoice': ['BertModelTest'], 'BertForNextSentencePrediction': ['BertModelTest'], 'BertForPreTraining': ['BertModelTest'], 'BertForQuestionAnswering': ['BertModelTest'], 'BertForSequenceClassification': ['BertModelTest'], 'BertForTokenClassification': ['BertModelTest'], 'BertLMHeadModel': ['BertModelTest'], 'BertModel': ['BertModelTest'], } lowerCamelCase_ = { 'BlipForConditionalGeneration': ['BlipTextImageModelTest'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTest'], 'BlipForQuestionAnswering': ['BlipVQAModelTest'], 'BlipModel': ['BlipModelTest'], 'BlipTextModel': ['BlipTextModelTest'], 'BlipVisionModel': ['BlipVisionModelTest'], } self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = get_model_to_tester_mapping(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = get_model_to_tester_mapping(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = { 'BertForMaskedLM': ['BertModelTester'], 'BertForMultipleChoice': ['BertModelTester'], 'BertForNextSentencePrediction': ['BertModelTester'], 'BertForPreTraining': ['BertModelTester'], 'BertForQuestionAnswering': ['BertModelTester'], 'BertForSequenceClassification': ['BertModelTester'], 'BertForTokenClassification': ['BertModelTester'], 'BertLMHeadModel': ['BertModelTester'], 'BertModel': ['BertModelTester'], } lowerCamelCase_ = { 'BlipForConditionalGeneration': ['BlipTextImageModelsModelTester'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTester'], 'BlipForQuestionAnswering': ['BlipVQAModelTester'], 'BlipModel': ['BlipModelTester'], 'BlipTextModel': ['BlipTextModelTester'], 'BlipVisionModel': ['BlipVisionModelTester'], } self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ )
384
0
def __lowerCAmelCase ( A = 600851475143 ): try: UpperCAmelCase_ = int(A ) except (TypeError, ValueError): raise TypeError("Parameter n must be int or castable to int." ) if n <= 0: raise ValueError("Parameter n must be greater than or equal to one." ) UpperCAmelCase_ = 1 UpperCAmelCase_ = 2 while i * i <= n: while n % i == 0: UpperCAmelCase_ = i n //= i i += 1 if n > 1: UpperCAmelCase_ = n return int(A ) if __name__ == "__main__": print(F'{solution() = }')
162
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _a: int = logging.get_logger(__name__) _a: Optional[Any] = { """SenseTime/deformable-detr""": """https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json""", # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class __UpperCamelCase ( lowercase ): SCREAMING_SNAKE_CASE__ = 'deformable_detr' SCREAMING_SNAKE_CASE__ = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : Optional[int] , lowerCAmelCase : Any=True , lowerCAmelCase : str=None , lowerCAmelCase : List[str]=3 , lowerCAmelCase : Tuple=300 , lowerCAmelCase : List[str]=1_024 , lowerCAmelCase : Any=6 , lowerCAmelCase : str=1_024 , lowerCAmelCase : Any=8 , lowerCAmelCase : Dict=6 , lowerCAmelCase : Any=1_024 , lowerCAmelCase : Dict=8 , lowerCAmelCase : str=0.0 , lowerCAmelCase : Dict=True , lowerCAmelCase : Optional[int]="relu" , lowerCAmelCase : List[str]=256 , lowerCAmelCase : List[str]=0.1 , lowerCAmelCase : str=0.0 , lowerCAmelCase : Union[str, Any]=0.0 , lowerCAmelCase : Union[str, Any]=0.02 , lowerCAmelCase : List[str]=1.0 , lowerCAmelCase : Dict=True , lowerCAmelCase : int=False , lowerCAmelCase : Tuple="sine" , lowerCAmelCase : Optional[Any]="resnet50" , lowerCAmelCase : Optional[int]=True , lowerCAmelCase : Optional[Any]=False , lowerCAmelCase : Dict=4 , lowerCAmelCase : int=4 , lowerCAmelCase : Union[str, Any]=4 , lowerCAmelCase : int=False , lowerCAmelCase : Any=300 , lowerCAmelCase : Dict=False , lowerCAmelCase : Any=1 , lowerCAmelCase : Tuple=5 , lowerCAmelCase : str=2 , lowerCAmelCase : int=1 , lowerCAmelCase : List[Any]=1 , lowerCAmelCase : Any=5 , lowerCAmelCase : Optional[Any]=2 , lowerCAmelCase : List[str]=0.1 , lowerCAmelCase : List[Any]=0.25 , lowerCAmelCase : List[str]=False , **lowerCAmelCase : Union[str, Any] , ): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) UpperCAmelCase_ = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = backbone_config.get("model_type" ) UpperCAmelCase_ = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase_ = config_class.from_dict(lowerCAmelCase ) UpperCAmelCase_ = use_timm_backbone UpperCAmelCase_ = backbone_config UpperCAmelCase_ = num_channels UpperCAmelCase_ = num_queries UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = d_model UpperCAmelCase_ = encoder_ffn_dim UpperCAmelCase_ = encoder_layers UpperCAmelCase_ = encoder_attention_heads UpperCAmelCase_ = decoder_ffn_dim UpperCAmelCase_ = decoder_layers UpperCAmelCase_ = decoder_attention_heads UpperCAmelCase_ = dropout UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = activation_dropout UpperCAmelCase_ = activation_function UpperCAmelCase_ = init_std UpperCAmelCase_ = init_xavier_std UpperCAmelCase_ = encoder_layerdrop UpperCAmelCase_ = auxiliary_loss UpperCAmelCase_ = position_embedding_type UpperCAmelCase_ = backbone UpperCAmelCase_ = use_pretrained_backbone UpperCAmelCase_ = dilation # deformable attributes UpperCAmelCase_ = num_feature_levels UpperCAmelCase_ = encoder_n_points UpperCAmelCase_ = decoder_n_points UpperCAmelCase_ = two_stage UpperCAmelCase_ = two_stage_num_proposals UpperCAmelCase_ = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError("If two_stage is True, with_box_refine must be True." ) # Hungarian matcher UpperCAmelCase_ = class_cost UpperCAmelCase_ = bbox_cost UpperCAmelCase_ = giou_cost # Loss coefficients UpperCAmelCase_ = mask_loss_coefficient UpperCAmelCase_ = dice_loss_coefficient UpperCAmelCase_ = bbox_loss_coefficient UpperCAmelCase_ = giou_loss_coefficient UpperCAmelCase_ = eos_coefficient UpperCAmelCase_ = focal_alpha UpperCAmelCase_ = disable_custom_kernels super().__init__(is_encoder_decoder=lowerCAmelCase , **lowerCAmelCase ) @property def __A ( self : Optional[int] ): '''simple docstring''' return self.encoder_attention_heads @property def __A ( self : Any ): '''simple docstring''' return self.d_model def __A ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: UpperCAmelCase_ = self.backbone_config.to_dict() UpperCAmelCase_ = self.__class__.model_type return output
162
1
"""simple docstring""" from __future__ import annotations snake_case = '''Muhammad Umer Farooq''' snake_case = '''MIT''' snake_case = '''1.0.0''' snake_case = '''Muhammad Umer Farooq''' snake_case = '''contact@muhammadumerfarooq.me''' snake_case = '''Alpha''' import re from html.parser import HTMLParser from urllib import parse import requests class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self : List[Any] , __lowerCamelCase : str ): """simple docstring""" super().__init__() _snake_case = [] _snake_case = domain def __UpperCAmelCase ( self : str , __lowerCamelCase : str , __lowerCamelCase : list[tuple[str, str | None]] ): """simple docstring""" # Only parse the 'anchor' tag. if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: _snake_case = parse.urljoin(self.domain , __lowerCamelCase ) self.urls.append(__lowerCamelCase ) def snake_case ( lowerCAmelCase_ ) -> str: return ".".join(get_sub_domain_name(lowerCAmelCase_ ).split('''.''' )[-2:] ) def snake_case ( lowerCAmelCase_ ) -> str: return parse.urlparse(lowerCAmelCase_ ).netloc def snake_case ( lowerCAmelCase_ = "https://github.com" ) -> list[str]: _snake_case = get_domain_name(lowerCAmelCase_ ) # Initialize the parser _snake_case = Parser(lowerCAmelCase_ ) try: # Open URL _snake_case = requests.get(lowerCAmelCase_ ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through _snake_case = set() for link in parser.urls: # open URL. # read = requests.get(link) try: _snake_case = requests.get(lowerCAmelCase_ ) # Get the valid email. _snake_case = re.findall('''[a-zA-Z0-9]+@''' + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(lowerCAmelCase_ ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(lowerCAmelCase_ ) if __name__ == "__main__": snake_case = emails_from_url('''https://github.com''') print(F"{len(emails)} emails found:") print('''\n'''.join(sorted(emails)))
404
"""simple docstring""" import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class UpperCAmelCase ( unittest.TestCase ): def __init__( self : List[str] , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[Any]=1_3 , __lowerCamelCase : Optional[int]=7 , __lowerCamelCase : str=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Dict=True , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Any=9_9 , __lowerCamelCase : Any=3_2 , __lowerCamelCase : Any=5 , __lowerCamelCase : Dict=4 , __lowerCamelCase : Any=3_7 , __lowerCamelCase : Any="gelu" , __lowerCamelCase : str=0.1 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Optional[Any]=5_1_2 , __lowerCamelCase : Dict=1_6 , __lowerCamelCase : int=2 , __lowerCamelCase : Optional[Any]=0.0_2 , __lowerCamelCase : Dict=4 , ): """simple docstring""" _snake_case = parent _snake_case = batch_size _snake_case = seq_length _snake_case = is_training _snake_case = use_attention_mask _snake_case = use_token_type_ids _snake_case = use_labels _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = type_vocab_size _snake_case = type_sequence_label_size _snake_case = initializer_range _snake_case = num_choices def __UpperCAmelCase ( self : str ): """simple docstring""" _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case = None if self.use_attention_mask: _snake_case = random_attention_mask([self.batch_size, self.seq_length] ) _snake_case = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=__lowerCamelCase , ) return config, input_ids, attention_mask def __UpperCAmelCase ( self : Any ): """simple docstring""" _snake_case = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case = config_and_inputs _snake_case = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class UpperCAmelCase ( __SCREAMING_SNAKE_CASE,unittest.TestCase ): A__ : Optional[int] = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def __UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" _snake_case = FlaxDistilBertModelTester(self ) @slow def __UpperCAmelCase ( self : Any ): """simple docstring""" for model_class_name in self.all_model_classes: _snake_case = model_class_name.from_pretrained('''distilbert-base-uncased''' ) _snake_case = model(np.ones((1, 1) ) ) self.assertIsNotNone(__lowerCamelCase ) @require_flax class UpperCAmelCase ( unittest.TestCase ): @slow def __UpperCAmelCase ( self : Any ): """simple docstring""" _snake_case = FlaxDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) _snake_case = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) _snake_case = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _snake_case = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0] _snake_case = (1, 1_1, 7_6_8) self.assertEqual(output.shape , __lowerCamelCase ) _snake_case = np.array([[[-0.1_6_3_9, 0.3_2_9_9, 0.1_6_4_8], [-0.1_7_4_6, 0.3_2_8_9, 0.1_7_1_0], [-0.1_8_8_4, 0.3_3_5_7, 0.1_8_1_0]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , __lowerCamelCase , atol=1E-4 ) )
404
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __UpperCamelCase : List[Any] = logging.get_logger(__name__) __UpperCamelCase : str = { 'shi-labs/nat-mini-in1k-224': 'https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json', # See all Nat models at https://huggingface.co/models?filter=nat } class _UpperCamelCase ( A,A ): '''simple docstring''' a_ : Dict = "nat" a_ : List[Any] = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : List[Any] , _lowerCamelCase : str=4 , _lowerCamelCase : List[str]=3 , _lowerCamelCase : Union[str, Any]=6_4 , _lowerCamelCase : str=[3, 4, 6, 5] , _lowerCamelCase : List[Any]=[2, 4, 8, 1_6] , _lowerCamelCase : str=7 , _lowerCamelCase : int=3.0 , _lowerCamelCase : Dict=True , _lowerCamelCase : Tuple=0.0 , _lowerCamelCase : List[str]=0.0 , _lowerCamelCase : int=0.1 , _lowerCamelCase : int="gelu" , _lowerCamelCase : int=0.02 , _lowerCamelCase : str=1E-5 , _lowerCamelCase : Union[str, Any]=0.0 , _lowerCamelCase : Dict=None , _lowerCamelCase : str=None , **_lowerCamelCase : Any , ): '''simple docstring''' super().__init__(**_lowerCamelCase ) __lowerCamelCase : Any = patch_size __lowerCamelCase : Optional[int] = num_channels __lowerCamelCase : Dict = embed_dim __lowerCamelCase : Optional[int] = depths __lowerCamelCase : Union[str, Any] = len(_lowerCamelCase ) __lowerCamelCase : Optional[Any] = num_heads __lowerCamelCase : Any = kernel_size __lowerCamelCase : Optional[Any] = mlp_ratio __lowerCamelCase : List[Any] = qkv_bias __lowerCamelCase : int = hidden_dropout_prob __lowerCamelCase : List[str] = attention_probs_dropout_prob __lowerCamelCase : Tuple = drop_path_rate __lowerCamelCase : Optional[Any] = hidden_act __lowerCamelCase : Optional[Any] = layer_norm_eps __lowerCamelCase : Union[str, Any] = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __lowerCamelCase : Optional[Any] = int(embed_dim * 2 ** (len(_lowerCamelCase ) - 1) ) __lowerCamelCase : List[str] = layer_scale_init_value __lowerCamelCase : List[Any] = ["""stem"""] + [F"""stage{idx}""" for idx in range(1 , len(_lowerCamelCase ) + 1 )] __lowerCamelCase , __lowerCamelCase : Tuple = get_aligned_output_features_output_indices( out_features=_lowerCamelCase , out_indices=_lowerCamelCase , stage_names=self.stage_names )
519
import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask __UpperCamelCase : str = logging.getLogger(__name__) class _UpperCamelCase ( A ): '''simple docstring''' def __init__( self : List[str] , _lowerCamelCase : List[Any]=-1 ): '''simple docstring''' __lowerCamelCase : Optional[int] = label_idx def _snake_case ( self : Optional[Any] , _lowerCamelCase : Any , _lowerCamelCase : Union[Split, str] ): '''simple docstring''' if isinstance(_lowerCamelCase , _lowerCamelCase ): __lowerCamelCase : Dict = mode.value __lowerCamelCase : Tuple = os.path.join(_lowerCamelCase , F"""{mode}.txt""" ) __lowerCamelCase : Optional[Any] = 1 __lowerCamelCase : List[str] = [] with open(_lowerCamelCase , encoding="""utf-8""" ) as f: __lowerCamelCase : List[Any] = [] __lowerCamelCase : Optional[int] = [] for line in f: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=F"""{mode}-{guid_index}""" , words=_lowerCamelCase , labels=_lowerCamelCase ) ) guid_index += 1 __lowerCamelCase : Optional[Any] = [] __lowerCamelCase : Tuple = [] else: __lowerCamelCase : Dict = line.split(""" """ ) words.append(splits[0] ) if len(_lowerCamelCase ) > 1: labels.append(splits[self.label_idx].replace("""\n""" , """""" ) ) else: # Examples could have no label for mode = "test" labels.append("""O""" ) if words: examples.append(InputExample(guid=F"""{mode}-{guid_index}""" , words=_lowerCamelCase , labels=_lowerCamelCase ) ) return examples def _snake_case ( self : str , _lowerCamelCase : TextIO , _lowerCamelCase : TextIO , _lowerCamelCase : List ): '''simple docstring''' __lowerCamelCase : str = 0 for line in test_input_reader: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": writer.write(_lowerCamelCase ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: __lowerCamelCase : str = line.split()[0] + """ """ + preds_list[example_id].pop(0 ) + """\n""" writer.write(_lowerCamelCase ) else: logger.warning("""Maximum sequence length exceeded: No prediction for '%s'.""" , line.split()[0] ) def _snake_case ( self : List[str] , _lowerCamelCase : str ): '''simple docstring''' if path: with open(_lowerCamelCase , """r""" ) as f: __lowerCamelCase : Dict = f.read().splitlines() if "O" not in labels: __lowerCamelCase : int = ["""O"""] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class _UpperCamelCase ( A ): '''simple docstring''' def __init__( self : str ): '''simple docstring''' super().__init__(label_idx=-2 ) def _snake_case ( self : Tuple , _lowerCamelCase : str ): '''simple docstring''' if path: with open(_lowerCamelCase , """r""" ) as f: __lowerCamelCase : List[str] = f.read().splitlines() if "O" not in labels: __lowerCamelCase : Tuple = ["""O"""] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class _UpperCamelCase ( A ): '''simple docstring''' def _snake_case ( self : List[str] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Union[Split, str] ): '''simple docstring''' if isinstance(_lowerCamelCase , _lowerCamelCase ): __lowerCamelCase : str = mode.value __lowerCamelCase : List[str] = os.path.join(_lowerCamelCase , F"""{mode}.txt""" ) __lowerCamelCase : str = 1 __lowerCamelCase : Dict = [] with open(_lowerCamelCase , encoding="""utf-8""" ) as f: for sentence in parse_incr(_lowerCamelCase ): __lowerCamelCase : Union[str, Any] = [] __lowerCamelCase : int = [] for token in sentence: words.append(token["""form"""] ) labels.append(token["""upos"""] ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) if words: examples.append(InputExample(guid=F"""{mode}-{guid_index}""" , words=_lowerCamelCase , labels=_lowerCamelCase ) ) guid_index += 1 return examples def _snake_case ( self : Any , _lowerCamelCase : TextIO , _lowerCamelCase : TextIO , _lowerCamelCase : List ): '''simple docstring''' __lowerCamelCase : Dict = 0 for sentence in parse_incr(_lowerCamelCase ): __lowerCamelCase : List[str] = preds_list[example_id] __lowerCamelCase : Tuple = """""" for token in sentence: out += F"""{token["form"]} ({token["upos"]}|{s_p.pop(0 )}) """ out += "\n" writer.write(_lowerCamelCase ) example_id += 1 def _snake_case ( self : Optional[int] , _lowerCamelCase : str ): '''simple docstring''' if path: with open(_lowerCamelCase , """r""" ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
519
1
import math def lowercase_ ( _UpperCamelCase ): '''simple docstring''' __lowercase = [] __lowercase = 2 __lowercase = int(math.sqrt(_lowerCamelCase ) ) # Size of every segment __lowercase = [True] * (end + 1) __lowercase = [] while start <= end: if temp[start] is True: in_prime.append(_lowerCamelCase ) for i in range(start * start , end + 1 , _lowerCamelCase ): __lowercase = False start += 1 prime += in_prime __lowercase = end + 1 __lowercase = min(2 * end , _lowerCamelCase ) while low <= n: __lowercase = [True] * (high - low + 1) for each in in_prime: __lowercase = math.floor(low / each ) * each if t < low: t += each for j in range(_lowerCamelCase , high + 1 , _lowerCamelCase ): __lowercase = False for j in range(len(_lowerCamelCase ) ): if temp[j] is True: prime.append(j + low ) __lowercase = high + 1 __lowercase = min(high + end , _lowerCamelCase ) return prime print(sieve(10**6))
700
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : Union[str, Any] = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} a : Union[str, Any] = { '''vocab_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), }, '''merges_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), }, } a : Dict = { '''allenai/longformer-base-4096''': 4096, '''allenai/longformer-large-4096''': 4096, '''allenai/longformer-large-4096-finetuned-triviaqa''': 4096, '''allenai/longformer-base-4096-extra.pos.embd.only''': 4096, '''allenai/longformer-large-4096-extra.pos.embd.only''': 4096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def lowercase_ ( ): '''simple docstring''' __lowercase = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) __lowercase = bs[:] __lowercase = 0 for b in range(2**8 ): if b not in bs: bs.append(_UpperCamelCase ) cs.append(2**8 + n ) n += 1 __lowercase = [chr(_UpperCamelCase ) for n in cs] return dict(zip(_UpperCamelCase , _UpperCamelCase ) ) def lowercase_ ( _UpperCamelCase ): '''simple docstring''' __lowercase = set() __lowercase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowercase = char return pairs class lowerCamelCase_ ( lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase = ["input_ids", "attention_mask"] def __init__( self , snake_case_ , snake_case_ , snake_case_="replace" , snake_case_="<s>" , snake_case_="</s>" , snake_case_="</s>" , snake_case_="<s>" , snake_case_="<unk>" , snake_case_="<pad>" , snake_case_="<mask>" , snake_case_=False , **snake_case_ , ) -> Optional[int]: '''simple docstring''' __lowercase = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else bos_token __lowercase = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else eos_token __lowercase = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else sep_token __lowercase = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else cls_token __lowercase = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else unk_token __lowercase = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __lowercase = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else mask_token super().__init__( errors=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , cls_token=snake_case_ , pad_token=snake_case_ , mask_token=snake_case_ , add_prefix_space=snake_case_ , **snake_case_ , ) with open(snake_case_ , encoding='''utf-8''' ) as vocab_handle: __lowercase = json.load(snake_case_ ) __lowercase = {v: k for k, v in self.encoder.items()} __lowercase = errors # how to handle errors in decoding __lowercase = bytes_to_unicode() __lowercase = {v: k for k, v in self.byte_encoder.items()} with open(snake_case_ , encoding='''utf-8''' ) as merges_handle: __lowercase = merges_handle.read().split('''\n''' )[1:-1] __lowercase = [tuple(merge.split() ) for merge in bpe_merges] __lowercase = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) ) __lowercase = {} __lowercase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __lowercase = re.compile(r'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property def A ( self ) -> List[str]: '''simple docstring''' return len(self.encoder ) def A ( self ) -> Union[str, Any]: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def A ( self , snake_case_ ) -> List[str]: '''simple docstring''' if token in self.cache: return self.cache[token] __lowercase = tuple(snake_case_ ) __lowercase = get_pairs(snake_case_ ) if not pairs: return token while True: __lowercase = min(snake_case_ , key=lambda snake_case_ : self.bpe_ranks.get(snake_case_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break __lowercase , __lowercase = bigram __lowercase = [] __lowercase = 0 while i < len(snake_case_ ): try: __lowercase = word.index(snake_case_ , snake_case_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __lowercase = j if word[i] == first and i < len(snake_case_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowercase = tuple(snake_case_ ) __lowercase = new_word if len(snake_case_ ) == 1: break else: __lowercase = get_pairs(snake_case_ ) __lowercase = ''' '''.join(snake_case_ ) __lowercase = word return word def A ( self , snake_case_ ) -> Union[str, Any]: '''simple docstring''' __lowercase = [] for token in re.findall(self.pat , snake_case_ ): __lowercase = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(snake_case_ ).split(''' ''' ) ) return bpe_tokens def A ( self , snake_case_ ) -> Any: '''simple docstring''' return self.encoder.get(snake_case_ , self.encoder.get(self.unk_token ) ) def A ( self , snake_case_ ) -> Dict: '''simple docstring''' return self.decoder.get(snake_case_ ) def A ( self , snake_case_ ) -> List[str]: '''simple docstring''' __lowercase = ''''''.join(snake_case_ ) __lowercase = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def A ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(snake_case_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __lowercase = os.path.join( snake_case_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) __lowercase = os.path.join( snake_case_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(snake_case_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=snake_case_ , ensure_ascii=snake_case_ ) + '''\n''' ) __lowercase = 0 with open(snake_case_ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda snake_case_ : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ''' Please check that the tokenizer is not corrupted!''' ) __lowercase = token_index writer.write(''' '''.join(snake_case_ ) + '''\n''' ) index += 1 return vocab_file, merge_file def A ( self , snake_case_ , snake_case_ = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowercase = [self.cls_token_id] __lowercase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A ( self , snake_case_ , snake_case_ = None , snake_case_ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case_ , token_ids_a=snake_case_ , already_has_special_tokens=snake_case_ ) if token_ids_a is None: return [1] + ([0] * len(snake_case_ )) + [1] return [1] + ([0] * len(snake_case_ )) + [1, 1] + ([0] * len(snake_case_ )) + [1] def A ( self , snake_case_ , snake_case_ = None ) -> List[int]: '''simple docstring''' __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A ( self , snake_case_ , snake_case_=False , **snake_case_ ) -> Union[str, Any]: '''simple docstring''' __lowercase = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(snake_case_ ) > 0 and not text[0].isspace()): __lowercase = ''' ''' + text return (text, kwargs)
527
0
'''simple docstring''' import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase_ : Tuple = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = XGLMTokenizer UpperCAmelCase__ = XGLMTokenizerFast UpperCAmelCase__ = True UpperCAmelCase__ = True def snake_case__ ( self : List[str] ) ->Optional[int]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _UpperCamelCase : List[Any] = XGLMTokenizer(lowercase__ , keep_accents=lowercase__ ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case__ ( self : int ) ->Tuple: '''simple docstring''' _UpperCamelCase : Union[str, Any] = "<pad>" _UpperCamelCase : Any = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase__ ) , lowercase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase__ ) , lowercase__ ) def snake_case__ ( self : List[str] ) ->Tuple: '''simple docstring''' _UpperCamelCase : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(len(lowercase__ ) , 1_008 ) def snake_case__ ( self : Tuple ) ->List[Any]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_008 ) def snake_case__ ( self : List[str] ) ->Dict: '''simple docstring''' _UpperCamelCase : Any = XGLMTokenizer(lowercase__ , keep_accents=lowercase__ ) _UpperCamelCase : Tuple = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowercase__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) _UpperCamelCase : List[str] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowercase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) _UpperCamelCase : int = tokenizer.convert_tokens_to_ids(lowercase__ ) self.assertListEqual( lowercase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) _UpperCamelCase : Dict = tokenizer.convert_ids_to_tokens(lowercase__ ) self.assertListEqual( lowercase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def snake_case__ ( self : int ) ->Dict: '''simple docstring''' return XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) def snake_case__ ( self : Tuple ) ->Any: '''simple docstring''' with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowercase__ , f.name ) _UpperCamelCase : List[str] = XGLMTokenizer(f.name , keep_accents=lowercase__ ) _UpperCamelCase : Optional[Any] = pickle.dumps(lowercase__ ) pickle.loads(lowercase__ ) def snake_case__ ( self : Tuple ) ->Dict: '''simple docstring''' if not self.test_rust_tokenizer: return _UpperCamelCase : List[Any] = self.get_tokenizer() _UpperCamelCase : List[Any] = self.get_rust_tokenizer() _UpperCamelCase : Tuple = "I was born in 92000, and this is falsé." _UpperCamelCase : Union[str, Any] = tokenizer.tokenize(lowercase__ ) _UpperCamelCase : Optional[Any] = rust_tokenizer.tokenize(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) _UpperCamelCase : List[Any] = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ ) _UpperCamelCase : Union[str, Any] = rust_tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) _UpperCamelCase : Tuple = self.get_rust_tokenizer() _UpperCamelCase : List[str] = tokenizer.encode(lowercase__ ) _UpperCamelCase : Union[str, Any] = rust_tokenizer.encode(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) @slow def snake_case__ ( self : Any ) ->List[Any]: '''simple docstring''' _UpperCamelCase : List[str] = "Hello World!" _UpperCamelCase : List[Any] = [2, 31_227, 4_447, 35] self.assertListEqual(lowercase__ , self.big_tokenizer.encode(lowercase__ ) ) @slow def snake_case__ ( self : Tuple ) ->Union[str, Any]: '''simple docstring''' _UpperCamelCase : Optional[Any] = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth" ) # fmt: off _UpperCamelCase : List[str] = [2, 1_018, 67, 11, 1_988, 2_617, 5_631, 278, 11, 3_407, 48, 71_630, 28_085, 4, 3_234, 157, 13, 6, 5, 6, 4, 3_526, 768, 15, 659, 57, 298, 3_983, 864, 129, 21, 6, 5, 13_675, 377, 652, 7_580, 10_341, 155, 2_817, 422, 1_666, 7, 1_674, 53, 113, 202_277, 17_892, 33, 60, 87, 4, 3_234, 157, 61, 2_667, 52_376, 19, 88, 23, 735] # fmt: on self.assertListEqual(lowercase__ , self.big_tokenizer.encode(lowercase__ ) ) @slow def snake_case__ ( self : List[Any] ) ->Dict: '''simple docstring''' _UpperCamelCase : Any = { "input_ids": [[2, 108_825, 1_163, 15, 88_010, 473, 15_898, 157, 13_672, 1_857, 312, 8, 238_021, 1_163, 53, 13_672, 1_857, 312, 8, 53_283, 182_396, 8, 18_566, 16, 36_733, 4_101, 8, 230, 244_017, 122_553, 7, 15, 132_597, 4, 293, 12_511, 7_610, 4, 3_414, 132_597, 9, 4, 32_361, 362, 4, 734, 28_512, 32_569, 18, 4, 32_361, 26_096, 14_982, 73, 18_715, 21_433, 235_261, 15, 492, 12_427, 16, 53, 18_715, 21_433, 65_454, 15, 23_659, 563, 16, 278, 597, 2_843, 595, 7_931, 182_396, 64_186, 22, 886, 595, 132_981, 53, 25_540, 3_449, 43_982, 39_901, 5_951, 878, 330, 4, 27_694, 80_269, 312, 53, 6_517, 11_780, 611, 20_408, 5], [2, 6, 132_597, 67, 42_897, 33, 592, 8, 163_729, 25_540, 361, 136_997, 109_514, 173_230, 7, 501, 60, 102_913, 196, 5_631, 235, 63_243, 473, 6, 231_757, 74, 5_277, 7_905, 53, 3_095, 37_317, 22, 454, 183_874, 5], [2, 268, 31_298, 46_530, 6, 132_935, 43_831, 7, 597, 32, 24, 3_688, 9_865, 5]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase__ , model_name="facebook/xglm-564M" , padding=lowercase__ , )
435
'''simple docstring''' import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin lowerCAmelCase_ : List[str] = """ Hugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning. In March 2021, Hugging Face raised $40 million in a Series B funding round.[3] On April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5] """ class SCREAMING_SNAKE_CASE ( unittest.TestCase , SCREAMING_SNAKE_CASE ): '''simple docstring''' def snake_case__ ( self : Tuple ) ->Union[str, Any]: '''simple docstring''' _UpperCamelCase : str = load_tool("text-question-answering" ) self.tool.setup() _UpperCamelCase : str = load_tool("text-question-answering" , remote=lowercase__ ) def snake_case__ ( self : List[Any] ) ->Tuple: '''simple docstring''' _UpperCamelCase : int = self.tool(lowercase__ , "What did Hugging Face do in April 2021?" ) self.assertEqual(lowercase__ , "launched the BigScience Research Workshop" ) def snake_case__ ( self : List[str] ) ->Dict: '''simple docstring''' _UpperCamelCase : Optional[Any] = self.remote_tool(lowercase__ , "What did Hugging Face do in April 2021?" ) self.assertEqual(lowercase__ , "launched the BigScience Research Workshop" ) def snake_case__ ( self : Union[str, Any] ) ->Optional[Any]: '''simple docstring''' _UpperCamelCase : List[Any] = self.tool(text=lowercase__ , question="What did Hugging Face do in April 2021?" ) self.assertEqual(lowercase__ , "launched the BigScience Research Workshop" ) def snake_case__ ( self : Any ) ->str: '''simple docstring''' _UpperCamelCase : List[str] = self.remote_tool(text=lowercase__ , question="What did Hugging Face do in April 2021?" ) self.assertEqual(lowercase__ , "launched the BigScience Research Workshop" )
435
1
'''simple docstring''' import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class snake_case__ ( UpperCamelCase_ , unittest.TestCase ): _lowerCAmelCase =BioGptTokenizer _lowerCAmelCase =False def UpperCAmelCase__ ( self : Any ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt snake_case__ : str = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] snake_case__ : List[Any] = dict(zip(UpperCAmelCase__ , range(len(UpperCAmelCase__ ) ) ) ) snake_case__ : List[Any] = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] snake_case__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) snake_case__ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' ) as fp: fp.write(json.dumps(UpperCAmelCase__ ) ) with open(self.merges_file , 'w' ) as fp: fp.write('\n'.join(UpperCAmelCase__ ) ) def UpperCAmelCase__ ( self : List[str] , _lowerCamelCase : Optional[Any] ): snake_case__ : Tuple = 'lower newer' snake_case__ : Any = 'lower newer' return input_text, output_text def UpperCAmelCase__ ( self : Tuple ): snake_case__ : str = BioGptTokenizer(self.vocab_file , self.merges_file ) snake_case__ : int = 'lower' snake_case__ : Optional[int] = ['low', 'er</w>'] snake_case__ : Optional[Any] = tokenizer.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) snake_case__ : Dict = tokens + ['<unk>'] snake_case__ : List[str] = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) , UpperCAmelCase__ ) @slow def UpperCAmelCase__ ( self : Any ): snake_case__ : int = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) snake_case__ : Union[str, Any] = tokenizer.encode('sequence builders' , add_special_tokens=UpperCAmelCase__ ) snake_case__ : Optional[int] = tokenizer.encode('multi-sequence build' , add_special_tokens=UpperCAmelCase__ ) snake_case__ : str = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase__ ) snake_case__ : str = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase__ , UpperCAmelCase__ ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
721
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase : Any = {'configuration_mmbt': ['MMBTConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] = ['MMBTForClassification', 'MMBTModel', 'ModalEmbeddings'] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys lowerCamelCase : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
303
0