code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
class UpperCamelCase__ : def __init__( self : str, __lowerCamelCase : Optional[Any] ) -> str: UpperCamelCase__ : Dict = val UpperCamelCase__ : Dict = None UpperCamelCase__ : Union[str, Any] = None def __lowercase( self : Optional[int], __lowerCamelCase : Union[str, Any] ) -> Union[str, Any]: if self.val: if val < self.val: if self.left is None: UpperCamelCase__ : int = Node(__lowerCamelCase ) else: self.left.insert(__lowerCamelCase ) elif val > self.val: if self.right is None: UpperCamelCase__ : Dict = Node(__lowerCamelCase ) else: self.right.insert(__lowerCamelCase ) else: UpperCamelCase__ : int = val def _lowercase ( __lowerCamelCase : List[str] ,__lowerCamelCase : Tuple ) -> Optional[int]: '''simple docstring''' if root: inorder(root.left ,__lowerCamelCase ) res.append(root.val ) inorder(root.right ,__lowerCamelCase ) def _lowercase ( __lowerCamelCase : Dict ) -> Optional[int]: '''simple docstring''' if len(__lowerCamelCase ) == 0: return arr UpperCamelCase__ : Tuple = Node(arr[0] ) for i in range(1 ,len(__lowerCamelCase ) ): root.insert(arr[i] ) # Traverse BST in order. UpperCamelCase__ : List[Any] = [] inorder(__lowerCamelCase ,__lowerCamelCase ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
344
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class UpperCamelCase__ ( __lowerCamelCase ): a__ : Dict = 'dandelin/vilt-b32-finetuned-vqa' a__ : List[str] = ( 'This is a tool that answers a question about an image. It takes an input named `image` which should be the ' 'image containing the information, as well as a `question` which should be the question in English. It ' 'returns a text that is the answer to the question.' ) a__ : List[str] = 'image_qa' a__ : Optional[int] = AutoProcessor a__ : List[str] = AutoModelForVisualQuestionAnswering a__ : Union[str, Any] = ['image', 'text'] a__ : int = ['text'] def __init__( self : Tuple, *__lowerCamelCase : Union[str, Any], **__lowerCamelCase : Dict ) -> Optional[int]: requires_backends(self, ['''vision'''] ) super().__init__(*__lowerCamelCase, **__lowerCamelCase ) def __lowercase( self : List[Any], __lowerCamelCase : "Image", __lowerCamelCase : str ) -> Optional[Any]: return self.pre_processor(__lowerCamelCase, __lowerCamelCase, return_tensors='''pt''' ) def __lowercase( self : Optional[int], __lowerCamelCase : List[str] ) -> Any: with torch.no_grad(): return self.model(**__lowerCamelCase ).logits def __lowercase( self : List[str], __lowerCamelCase : Dict ) -> Dict: UpperCamelCase__ : Union[str, Any] = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
344
1
"""simple docstring""" import math def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): """simple docstring""" return math.pow(__UpperCamelCase , 2 ) - a def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" return 2 * x def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" __A = 2.0 while start <= a: __A = math.pow(__UpperCamelCase , 2 ) return start def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase = 9_9_9_9 , __UpperCamelCase = 0.00000000000001 ): """simple docstring""" if a < 0: raise ValueError('''math domain error''' ) __A = get_initial_point(__UpperCamelCase ) for _ in range(__UpperCamelCase ): __A = value __A = value - fx(__UpperCamelCase , __UpperCamelCase ) / fx_derivative(__UpperCamelCase ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
215
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input lowercase_ = 'Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine' def lowerCAmelCase ( ): """simple docstring""" __A = _ask_options( '''In which compute environment are you running?''' , ['''This machine''', '''AWS (Amazon SageMaker)'''] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: __A = get_sagemaker_input() else: __A = get_cluster_input() return config def lowerCAmelCase ( __UpperCamelCase=None ): """simple docstring""" if subparsers is not None: __A = subparsers.add_parser('''config''' , description=__UpperCamelCase ) else: __A = argparse.ArgumentParser('''Accelerate config command''' , description=__UpperCamelCase ) parser.add_argument( '''--config_file''' , default=__UpperCamelCase , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , ) if subparsers is not None: parser.set_defaults(func=__UpperCamelCase ) return parser def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" __A = get_user_input() if args.config_file is not None: __A = args.config_file else: if not os.path.isdir(__UpperCamelCase ): os.makedirs(__UpperCamelCase ) __A = default_yaml_config_file if config_file.endswith('''.json''' ): config.to_json_file(__UpperCamelCase ) else: config.to_yaml_file(__UpperCamelCase ) print(f'accelerate configuration saved at {config_file}' ) def lowerCAmelCase ( ): """simple docstring""" __A = config_command_parser() __A = parser.parse_args() config_command(__UpperCamelCase ) if __name__ == "__main__": main()
215
1
"""simple docstring""" import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class a__ ( UpperCamelCase_ ): snake_case__ = (UnCLIPScheduler,) def __UpperCamelCase ( self : str ,**a__ : Dict) -> str: """simple docstring""" _lowerCAmelCase:Any = { '''num_train_timesteps''': 1000, '''variance_type''': '''fixed_small_log''', '''clip_sample''': True, '''clip_sample_range''': 1.0, '''prediction_type''': '''epsilon''', } config.update(**a__) return config def __UpperCamelCase ( self : Optional[int]) -> List[Any]: """simple docstring""" for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=a__) def __UpperCamelCase ( self : List[Any]) -> Union[str, Any]: """simple docstring""" for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=a__) def __UpperCamelCase ( self : str) -> Union[str, Any]: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=a__) def __UpperCamelCase ( self : List[Any]) -> Tuple: """simple docstring""" for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=a__) def __UpperCamelCase ( self : str) -> Dict: """simple docstring""" for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=a__) def __UpperCamelCase ( self : int) -> Optional[int]: """simple docstring""" for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=a__ ,prev_timestep=a__) def __UpperCamelCase ( self : List[str]) -> Dict: """simple docstring""" _lowerCAmelCase:List[Any] = self.scheduler_classes[0] _lowerCAmelCase:str = self.get_scheduler_config(variance_type='''fixed_small_log''') _lowerCAmelCase:str = scheduler_class(**a__) assert torch.sum(torch.abs(scheduler._get_variance(0) - 1.0_000E-10)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487) - 0.0549625)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999) - 0.9994987)) < 1E-5 def __UpperCamelCase ( self : List[str]) -> List[Any]: """simple docstring""" _lowerCAmelCase:Dict = self.scheduler_classes[0] _lowerCAmelCase:Union[str, Any] = self.get_scheduler_config(variance_type='''learned_range''') _lowerCAmelCase:List[Any] = scheduler_class(**a__) _lowerCAmelCase:str = 0.5 assert scheduler._get_variance(1 ,predicted_variance=a__) - -10.1712790 < 1E-5 assert scheduler._get_variance(487 ,predicted_variance=a__) - -5.7998052 < 1E-5 assert scheduler._get_variance(999 ,predicted_variance=a__) - -0.0010011 < 1E-5 def __UpperCamelCase ( self : Any) -> Dict: """simple docstring""" _lowerCAmelCase:str = self.scheduler_classes[0] _lowerCAmelCase:Any = self.get_scheduler_config() _lowerCAmelCase:List[Any] = scheduler_class(**a__) _lowerCAmelCase:List[Any] = scheduler.timesteps _lowerCAmelCase:Optional[Any] = self.dummy_model() _lowerCAmelCase:Tuple = self.dummy_sample_deter _lowerCAmelCase:Optional[Any] = torch.manual_seed(0) for i, t in enumerate(a__): # 1. predict noise residual _lowerCAmelCase:Dict = model(a__ ,a__) # 2. predict previous mean of sample x_t-1 _lowerCAmelCase:str = scheduler.step(a__ ,a__ ,a__ ,generator=a__).prev_sample _lowerCAmelCase:str = pred_prev_sample _lowerCAmelCase:Dict = torch.sum(torch.abs(a__)) _lowerCAmelCase:Optional[Any] = torch.mean(torch.abs(a__)) assert abs(result_sum.item() - 252.2682495) < 1E-2 assert abs(result_mean.item() - 0.3284743) < 1E-3 def __UpperCamelCase ( self : Tuple) -> List[Any]: """simple docstring""" _lowerCAmelCase:Any = self.scheduler_classes[0] _lowerCAmelCase:List[Any] = self.get_scheduler_config() _lowerCAmelCase:Dict = scheduler_class(**a__) scheduler.set_timesteps(25) _lowerCAmelCase:Any = scheduler.timesteps _lowerCAmelCase:Any = self.dummy_model() _lowerCAmelCase:int = self.dummy_sample_deter _lowerCAmelCase:List[Any] = torch.manual_seed(0) for i, t in enumerate(a__): # 1. predict noise residual _lowerCAmelCase:List[Any] = model(a__ ,a__) if i + 1 == timesteps.shape[0]: _lowerCAmelCase:Tuple = None else: _lowerCAmelCase:Optional[int] = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 _lowerCAmelCase:List[Any] = scheduler.step( a__ ,a__ ,a__ ,prev_timestep=a__ ,generator=a__).prev_sample _lowerCAmelCase:Optional[int] = pred_prev_sample _lowerCAmelCase:Dict = torch.sum(torch.abs(a__)) _lowerCAmelCase:List[str] = torch.mean(torch.abs(a__)) assert abs(result_sum.item() - 258.2044983) < 1E-2 assert abs(result_mean.item() - 0.3362038) < 1E-3 def __UpperCamelCase ( self : Union[str, Any]) -> str: """simple docstring""" pass def __UpperCamelCase ( self : Any) -> Union[str, Any]: """simple docstring""" pass
227
"""simple docstring""" import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) class a__ ( UpperCamelCase_ ): def __init__( self : Optional[Any] ,a__ : Union[List[ControlNetModel], Tuple[ControlNetModel]]) -> Union[str, Any]: """simple docstring""" super().__init__() _lowerCAmelCase:Dict = nn.ModuleList(a__) def __UpperCamelCase ( self : Optional[Any] ,a__ : torch.FloatTensor ,a__ : Union[torch.Tensor, float, int] ,a__ : torch.Tensor ,a__ : List[torch.tensor] ,a__ : List[float] ,a__ : Optional[torch.Tensor] = None ,a__ : Optional[torch.Tensor] = None ,a__ : Optional[torch.Tensor] = None ,a__ : Optional[Dict[str, Any]] = None ,a__ : bool = False ,a__ : bool = True ,) -> Union[ControlNetOutput, Tuple]: """simple docstring""" for i, (image, scale, controlnet) in enumerate(zip(a__ ,a__ ,self.nets)): _lowerCAmelCase , _lowerCAmelCase:Dict = controlnet( a__ ,a__ ,a__ ,a__ ,a__ ,a__ ,a__ ,a__ ,a__ ,a__ ,a__ ,) # merge samples if i == 0: _lowerCAmelCase , _lowerCAmelCase:Any = down_samples, mid_sample else: _lowerCAmelCase:str = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(a__ ,a__) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def __UpperCamelCase ( self : str ,a__ : Union[str, os.PathLike] ,a__ : bool = True ,a__ : Callable = None ,a__ : bool = False ,a__ : Optional[str] = None ,) -> Dict: """simple docstring""" _lowerCAmelCase:List[Any] = 0 _lowerCAmelCase:Any = save_directory for controlnet in self.nets: controlnet.save_pretrained( a__ ,is_main_process=a__ ,save_function=a__ ,safe_serialization=a__ ,variant=a__ ,) idx += 1 _lowerCAmelCase:int = model_path_to_save + F'_{idx}' @classmethod def __UpperCamelCase ( cls : Tuple ,a__ : Optional[Union[str, os.PathLike]] ,**a__ : int) -> Tuple: """simple docstring""" _lowerCAmelCase:List[str] = 0 _lowerCAmelCase:Optional[Any] = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... _lowerCAmelCase:str = pretrained_model_path while os.path.isdir(a__): _lowerCAmelCase:Tuple = ControlNetModel.from_pretrained(a__ ,**a__) controlnets.append(a__) idx += 1 _lowerCAmelCase:Optional[int] = pretrained_model_path + F'_{idx}' logger.info(F'{len(a__)} controlnets loaded from {pretrained_model_path}.') if len(a__) == 0: raise ValueError( F'No ControlNets found under {os.path.dirname(a__)}. Expected at least {pretrained_model_path + "_0"}.') return cls(a__)
227
1
from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class A__ ( A ): """simple docstring""" _lowercase : Union[str, Any] = ['''image_processor'''] _lowercase : Optional[Any] = '''SamImageProcessor''' def __init__( self : List[Any] , A_ : str ): '''simple docstring''' super().__init__(A_ ) _lowerCAmelCase : List[Any] = self.image_processor _lowerCAmelCase : Tuple = -1_0 _lowerCAmelCase : Any = self.image_processor.size["longest_edge"] def __call__( self : Any , A_ : Tuple=None , A_ : Optional[Any]=None , A_ : Union[str, Any]=None , A_ : Optional[Any]=None , A_ : Optional[Union[str, TensorType]] = None , **A_ : Union[str, Any] , ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.image_processor( A_ , return_tensors=A_ , **A_ , ) # pop arguments that are not used in the foward but used nevertheless _lowerCAmelCase : Optional[Any] = encoding_image_processor["original_sizes"] if hasattr(A_ , "numpy" ): # Checks if Torch or TF tensor _lowerCAmelCase : Any = original_sizes.numpy() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = self._check_and_preprocess_points( input_points=A_ , input_labels=A_ , input_boxes=A_ , ) _lowerCAmelCase : List[Any] = self._normalize_and_convert( A_ , A_ , input_points=A_ , input_labels=A_ , input_boxes=A_ , return_tensors=A_ , ) return encoding_image_processor def __magic_name__ ( self : int , A_ : List[Any] , A_ : Tuple , A_ : str=None , A_ : Any=None , A_ : Tuple=None , A_ : List[str]="pt" , ): '''simple docstring''' if input_points is not None: if len(A_ ) != len(A_ ): _lowerCAmelCase : List[str] = [ self._normalize_coordinates(self.target_size , A_ , original_sizes[0] ) for point in input_points ] else: _lowerCAmelCase : Any = [ self._normalize_coordinates(self.target_size , A_ , A_ ) for point, original_size in zip(A_ , A_ ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = self._pad_points_and_labels(A_ , A_ ) _lowerCAmelCase : Tuple = np.array(A_ ) if input_labels is not None: _lowerCAmelCase : List[str] = np.array(A_ ) if input_boxes is not None: if len(A_ ) != len(A_ ): _lowerCAmelCase : Optional[Any] = [ self._normalize_coordinates(self.target_size , A_ , original_sizes[0] , is_bounding_box=A_ ) for box in input_boxes ] else: _lowerCAmelCase : Union[str, Any] = [ self._normalize_coordinates(self.target_size , A_ , A_ , is_bounding_box=A_ ) for box, original_size in zip(A_ , A_ ) ] _lowerCAmelCase : Any = np.array(A_ ) if input_boxes is not None: if return_tensors == "pt": _lowerCAmelCase : Optional[int] = torch.from_numpy(A_ ) # boxes batch size of 1 by default _lowerCAmelCase : Tuple = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": _lowerCAmelCase : Dict = tf.convert_to_tensor(A_ ) # boxes batch size of 1 by default _lowerCAmelCase : List[Any] = tf.expand_dims(A_ , 1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({"input_boxes": input_boxes} ) if input_points is not None: if return_tensors == "pt": _lowerCAmelCase : Optional[Any] = torch.from_numpy(A_ ) # point batch size of 1 by default _lowerCAmelCase : Dict = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": _lowerCAmelCase : List[str] = tf.convert_to_tensor(A_ ) # point batch size of 1 by default _lowerCAmelCase : Tuple = tf.expand_dims(A_ , 1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({"input_points": input_points} ) if input_labels is not None: if return_tensors == "pt": _lowerCAmelCase : Any = torch.from_numpy(A_ ) # point batch size of 1 by default _lowerCAmelCase : Dict = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": _lowerCAmelCase : List[str] = tf.convert_to_tensor(A_ ) # point batch size of 1 by default _lowerCAmelCase : str = tf.expand_dims(A_ , 1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({"input_labels": input_labels} ) return encoding_image_processor def __magic_name__ ( self : Union[str, Any] , A_ : Tuple , A_ : List[Any] ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = max([point.shape[0] for point in input_points] ) _lowerCAmelCase : Any = [] for i, point in enumerate(A_ ): if point.shape[0] != expected_nb_points: _lowerCAmelCase : str = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 ) _lowerCAmelCase : Optional[int] = np.append(input_labels[i] , [self.point_pad_value] ) processed_input_points.append(A_ ) _lowerCAmelCase : Optional[int] = processed_input_points return input_points, input_labels def __magic_name__ ( self : List[Any] , A_ : int , A_ : np.ndarray , A_ : List[Any] , A_ : Tuple=False ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : List[Any] = original_size _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = self.image_processor._get_preprocess_shape(A_ , longest_edge=A_ ) _lowerCAmelCase : Any = deepcopy(A_ ).astype(A_ ) if is_bounding_box: _lowerCAmelCase : Any = coords.reshape(-1 , 2 , 2 ) _lowerCAmelCase : Dict = coords[..., 0] * (new_w / old_w) _lowerCAmelCase : str = coords[..., 1] * (new_h / old_h) if is_bounding_box: _lowerCAmelCase : Dict = coords.reshape(-1 , 4 ) return coords def __magic_name__ ( self : Any , A_ : Dict=None , A_ : Optional[Any]=None , A_ : Tuple=None , ): '''simple docstring''' if input_points is not None: if hasattr(A_ , "numpy" ): # Checks for TF or Torch tensor _lowerCAmelCase : List[Any] = input_points.numpy().tolist() if not isinstance(A_ , A_ ) or not isinstance(input_points[0] , A_ ): raise ValueError("Input points must be a list of list of floating points." ) _lowerCAmelCase : Dict = [np.array(A_ ) for input_point in input_points] else: _lowerCAmelCase : Any = None if input_labels is not None: if hasattr(A_ , "numpy" ): _lowerCAmelCase : Union[str, Any] = input_labels.numpy().tolist() if not isinstance(A_ , A_ ) or not isinstance(input_labels[0] , A_ ): raise ValueError("Input labels must be a list of list integers." ) _lowerCAmelCase : List[Any] = [np.array(A_ ) for label in input_labels] else: _lowerCAmelCase : Optional[Any] = None if input_boxes is not None: if hasattr(A_ , "numpy" ): _lowerCAmelCase : Optional[Any] = input_boxes.numpy().tolist() if ( not isinstance(A_ , A_ ) or not isinstance(input_boxes[0] , A_ ) or not isinstance(input_boxes[0][0] , A_ ) ): raise ValueError("Input boxes must be a list of list of list of floating points." ) _lowerCAmelCase : int = [np.array(A_ ).astype(np.floataa ) for box in input_boxes] else: _lowerCAmelCase : Union[str, Any] = None return input_points, input_labels, input_boxes @property def __magic_name__ ( self : List[Any] ): '''simple docstring''' _lowerCAmelCase : Any = self.image_processor.model_input_names return list(dict.fromkeys(A_ ) ) def __magic_name__ ( self : Tuple , *A_ : Any , **A_ : Tuple ): '''simple docstring''' return self.image_processor.post_process_masks(*A_ , **A_ )
503
# Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar __UpperCAmelCase = TypeVar('T') class A__ ( Generic[T] ): """simple docstring""" def __init__( self : Optional[int] , A_ : bool = True ): '''simple docstring''' _lowerCAmelCase : dict[T, list[T]] = {} # dictionary of lists _lowerCAmelCase : List[Any] = directed def __magic_name__ ( self : Any , A_ : T , A_ : T ): '''simple docstring''' if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(A_ ) self.adj_list[destination_vertex].append(A_ ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(A_ ) _lowerCAmelCase : List[Any] = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(A_ ) _lowerCAmelCase : List[str] = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: _lowerCAmelCase : List[str] = [destination_vertex] _lowerCAmelCase : Dict = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(A_ ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(A_ ) _lowerCAmelCase : Tuple = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: _lowerCAmelCase : Dict = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: _lowerCAmelCase : Any = [destination_vertex] _lowerCAmelCase : Union[str, Any] = [] return self def __repr__( self : List[str] ): '''simple docstring''' return pformat(self.adj_list )
503
1
import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def lowercase__( A ): snake_case__ , snake_case__ : Dict = image.size snake_case__ , snake_case__ : Union[str, Any] = (x - x % 3_2 for x in (w, h)) # resize to integer multiple of 32 snake_case__ : Optional[Any] = image.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) snake_case__ : Tuple = np.array(A ).astype(np.floataa ) / 255.0 snake_case__ : List[Any] = image[None].transpose(0 , 3 , 1 , 2 ) snake_case__ : List[str] = torch.from_numpy(A ) return 2.0 * image - 1.0 class snake_case__ ( UpperCamelCase_ ): def __init__( self : int , _lowerCamelCase : VQModel , _lowerCamelCase : UNetaDModel , _lowerCamelCase : Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ] , ): super().__init__() self.register_modules(vqvae=_lowerCamelCase , unet=_lowerCamelCase , scheduler=_lowerCamelCase ) @torch.no_grad() def __call__( self : Tuple , _lowerCamelCase : Union[torch.Tensor, PIL.Image.Image] = None , _lowerCamelCase : Optional[int] = 1 , _lowerCamelCase : Optional[int] = 1_0_0 , _lowerCamelCase : Optional[float] = 0.0 , _lowerCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _lowerCamelCase : Optional[str] = "pil" , _lowerCamelCase : bool = True , ): if isinstance(_lowerCamelCase , PIL.Image.Image ): snake_case__ : str = 1 elif isinstance(_lowerCamelCase , torch.Tensor ): snake_case__ : Any = image.shape[0] else: raise ValueError(F'''`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(_lowerCamelCase )}''' ) if isinstance(_lowerCamelCase , PIL.Image.Image ): snake_case__ : Tuple = preprocess(_lowerCamelCase ) snake_case__ , snake_case__ : Optional[Any] = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image snake_case__ : Optional[Any] = (batch_size, self.unet.config.in_channels // 2, height, width) snake_case__ : Dict = next(self.unet.parameters() ).dtype snake_case__ : Optional[int] = randn_tensor(_lowerCamelCase , generator=_lowerCamelCase , device=self.device , dtype=_lowerCamelCase ) snake_case__ : Tuple = image.to(device=self.device , dtype=_lowerCamelCase ) # set timesteps and move to the correct device self.scheduler.set_timesteps(_lowerCamelCase , device=self.device ) snake_case__ : List[str] = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler snake_case__ : Optional[int] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] snake_case__ : Tuple = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) snake_case__ : Union[str, Any] = {} if accepts_eta: snake_case__ : Optional[int] = eta for t in self.progress_bar(_lowerCamelCase ): # concat latents and low resolution image in the channel dimension. snake_case__ : Union[str, Any] = torch.cat([latents, image] , dim=1 ) snake_case__ : List[str] = self.scheduler.scale_model_input(_lowerCamelCase , _lowerCamelCase ) # predict the noise residual snake_case__ : int = self.unet(_lowerCamelCase , _lowerCamelCase ).sample # compute the previous noisy sample x_t -> x_t-1 snake_case__ : List[str] = self.scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ).prev_sample # decode the image latents with the VQVAE snake_case__ : List[Any] = self.vqvae.decode(_lowerCamelCase ).sample snake_case__ : Optional[Any] = torch.clamp(_lowerCamelCase , -1.0 , 1.0 ) snake_case__ : Union[str, Any] = image / 2 + 0.5 snake_case__ : List[str] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": snake_case__ : Optional[Any] = self.numpy_to_pil(_lowerCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowerCamelCase )
170
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCamelCase : List[str] = {'configuration_encoder_decoder': ['EncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] = ['EncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : str = ['TFEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Union[str, Any] = ['FlaxEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys lowerCamelCase : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
170
1
def _UpperCAmelCase (UpperCamelCase_ : int , UpperCamelCase_ : int ): '''simple docstring''' if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) _lowerCAmelCase : Optional[int] = str(bin(UpperCAmelCase__ ) )[2:] # remove the leading "0b" _lowerCAmelCase : str = str(bin(UpperCAmelCase__ ) )[2:] # remove the leading "0b" _lowerCAmelCase : Dict = max(len(UpperCAmelCase__ ) , len(UpperCAmelCase__ ) ) return "0b" + "".join( str(int(char_a == """1""" and char_b == """1""" ) ) for char_a, char_b in zip(a_binary.zfill(UpperCAmelCase__ ) , b_binary.zfill(UpperCAmelCase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
710
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __snake_case : def __init__( self : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str]=3 , _UpperCAmelCase : List[str]=32 , _UpperCAmelCase : str=3 , _UpperCAmelCase : Tuple=10 , _UpperCAmelCase : Optional[Any]=[10, 20, 30, 40] , _UpperCAmelCase : int=[1, 1, 2, 1] , _UpperCAmelCase : str=True , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : str="relu" , _UpperCAmelCase : int=3 , _UpperCAmelCase : int=None , ) -> Optional[Any]: '''simple docstring''' _lowerCAmelCase : Dict = parent _lowerCAmelCase : int = batch_size _lowerCAmelCase : List[str] = image_size _lowerCAmelCase : Optional[int] = num_channels _lowerCAmelCase : List[str] = embeddings_size _lowerCAmelCase : int = hidden_sizes _lowerCAmelCase : str = depths _lowerCAmelCase : int = is_training _lowerCAmelCase : Dict = use_labels _lowerCAmelCase : Dict = hidden_act _lowerCAmelCase : Dict = num_labels _lowerCAmelCase : List[Any] = scope _lowerCAmelCase : Optional[int] = len(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> int: '''simple docstring''' _lowerCAmelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase : Tuple = None if self.use_labels: _lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) _lowerCAmelCase : Dict = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: '''simple docstring''' return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] ) -> Optional[int]: '''simple docstring''' _lowerCAmelCase : Optional[Any] = TFResNetModel(config=_UpperCAmelCase ) _lowerCAmelCase : Union[str, Any] = model(_UpperCAmelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] ) -> Optional[Any]: '''simple docstring''' _lowerCAmelCase : Optional[int] = self.num_labels _lowerCAmelCase : Any = TFResNetForImageClassification(_UpperCAmelCase ) _lowerCAmelCase : str = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: '''simple docstring''' _lowerCAmelCase : Any = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : List[str] = config_and_inputs _lowerCAmelCase : Tuple = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class __snake_case (_a , _a , unittest.TestCase ): lowerCAmelCase__ = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () lowerCAmelCase__ = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def SCREAMING_SNAKE_CASE ( self : int ) -> int: '''simple docstring''' _lowerCAmelCase : Optional[int] = TFResNetModelTester(self ) _lowerCAmelCase : Union[str, Any] = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> str: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: '''simple docstring''' return @unittest.skip(reason="""ResNet does not use inputs_embeds""" ) def SCREAMING_SNAKE_CASE ( self : int ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip(reason="""ResNet does not support input and output embeddings""" ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Any = model_class(_UpperCAmelCase ) _lowerCAmelCase : Optional[Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Tuple = [*signature.parameters.keys()] _lowerCAmelCase : Optional[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: '''simple docstring''' _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: '''simple docstring''' def check_hidden_states_output(_UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple ): _lowerCAmelCase : Dict = model_class(_UpperCAmelCase ) _lowerCAmelCase : Optional[int] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) _lowerCAmelCase : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowerCAmelCase : Dict = self.model_tester.num_stages self.assertEqual(len(_UpperCAmelCase ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _lowerCAmelCase , _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : str = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: _lowerCAmelCase : Tuple = layer_type _lowerCAmelCase : Any = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase : Any = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Any: '''simple docstring''' _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: '''simple docstring''' for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Dict = TFResNetModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def _UpperCAmelCase (): '''simple docstring''' _lowerCAmelCase : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class __snake_case (unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> str: '''simple docstring''' return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: '''simple docstring''' _lowerCAmelCase : Dict = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) _lowerCAmelCase : Optional[int] = self.default_image_processor _lowerCAmelCase : int = prepare_img() _lowerCAmelCase : int = image_processor(images=_UpperCAmelCase , return_tensors="""tf""" ) # forward pass _lowerCAmelCase : int = model(**_UpperCAmelCase ) # verify the logits _lowerCAmelCase : Union[str, Any] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) _lowerCAmelCase : Any = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , _UpperCAmelCase , atol=1E-4 ) )
196
0
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class __A ( UpperCamelCase__ ): a__ : List[str] = """Salesforce/blip-image-captioning-base""" a__ : Optional[Any] = ( """This is a tool that generates a description of an image. It takes an input named `image` which should be the """ """image to caption, and returns a text that contains the description in English.""" ) a__ : str = """image_captioner""" a__ : List[str] = AutoModelForVisionaSeq a__ : int = ["""image"""] a__ : Optional[Any] = ["""text"""] def __init__(self : Any , *__a : Dict , **__a : Union[str, Any] ): requires_backends(self , ["vision"] ) super().__init__(*__a , **__a ) def _lowercase (self : Union[str, Any] , __a : "Image" ): return self.pre_processor(images=__a , return_tensors="pt" ) def _lowercase (self : List[str] , __a : Dict ): return self.model.generate(**__a ) def _lowercase (self : int , __a : Optional[Any] ): return self.pre_processor.batch_decode(__a , skip_special_tokens=__a )[0].strip()
78
'''simple docstring''' import argparse import os.path as osp import re import torch from safetensors.torch import load_file, save_file # =================# # UNet Conversion # # =================# SCREAMING_SNAKE_CASE_: Dict =[ # (stable-diffusion, HF Diffusers) ('time_embed.0.weight', 'time_embedding.linear_1.weight'), ('time_embed.0.bias', 'time_embedding.linear_1.bias'), ('time_embed.2.weight', 'time_embedding.linear_2.weight'), ('time_embed.2.bias', 'time_embedding.linear_2.bias'), ('input_blocks.0.0.weight', 'conv_in.weight'), ('input_blocks.0.0.bias', 'conv_in.bias'), ('out.0.weight', 'conv_norm_out.weight'), ('out.0.bias', 'conv_norm_out.bias'), ('out.2.weight', 'conv_out.weight'), ('out.2.bias', 'conv_out.bias'), ] SCREAMING_SNAKE_CASE_: List[Any] =[ # (stable-diffusion, HF Diffusers) ('in_layers.0', 'norm1'), ('in_layers.2', 'conv1'), ('out_layers.0', 'norm2'), ('out_layers.3', 'conv2'), ('emb_layers.1', 'time_emb_proj'), ('skip_connection', 'conv_shortcut'), ] SCREAMING_SNAKE_CASE_: Union[str, Any] =[] # hardcoded number of downblocks and resnets/attentions... # would need smarter logic for other networks. for i in range(4): # loop over downblocks/upblocks for j in range(2): # loop over resnets/attentions for downblocks SCREAMING_SNAKE_CASE_: Any =f"down_blocks.{i}.resnets.{j}." SCREAMING_SNAKE_CASE_: Tuple =f"input_blocks.{3*i + j + 1}.0." unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 SCREAMING_SNAKE_CASE_: Optional[Any] =f"down_blocks.{i}.attentions.{j}." SCREAMING_SNAKE_CASE_: List[str] =f"input_blocks.{3*i + j + 1}.1." unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) for j in range(3): # loop over resnets/attentions for upblocks SCREAMING_SNAKE_CASE_: Union[str, Any] =f"up_blocks.{i}.resnets.{j}." SCREAMING_SNAKE_CASE_: Any =f"output_blocks.{3*i + j}.0." unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 SCREAMING_SNAKE_CASE_: int =f"up_blocks.{i}.attentions.{j}." SCREAMING_SNAKE_CASE_: Optional[int] =f"output_blocks.{3*i + j}.1." unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) if i < 3: # no downsample in down_blocks.3 SCREAMING_SNAKE_CASE_: Union[str, Any] =f"down_blocks.{i}.downsamplers.0.conv." SCREAMING_SNAKE_CASE_: Union[str, Any] =f"input_blocks.{3*(i+1)}.0.op." unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) # no upsample in up_blocks.3 SCREAMING_SNAKE_CASE_: int =f"up_blocks.{i}.upsamplers.0." SCREAMING_SNAKE_CASE_: List[Any] =f"output_blocks.{3*i + 2}.{1 if i == 0 else 2}." unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) SCREAMING_SNAKE_CASE_: int ='mid_block.attentions.0.' SCREAMING_SNAKE_CASE_: List[Any] ='middle_block.1.' unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): SCREAMING_SNAKE_CASE_: Tuple =f"mid_block.resnets.{j}." SCREAMING_SNAKE_CASE_: Tuple =f"middle_block.{2*j}." unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) def lowerCAmelCase_ ( snake_case_ : Optional[Any] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = {k: k for k in unet_state_dict.keys()} for sd_name, hf_name in unet_conversion_map: UpperCAmelCase_ = sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: UpperCAmelCase_ = v.replace(snake_case_ , snake_case_ ) UpperCAmelCase_ = v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: UpperCAmelCase_ = v.replace(snake_case_ , snake_case_ ) UpperCAmelCase_ = v UpperCAmelCase_ = {v: unet_state_dict[k] for k, v in mapping.items()} return new_state_dict # ================# # VAE Conversion # # ================# SCREAMING_SNAKE_CASE_: int =[ # (stable-diffusion, HF Diffusers) ('nin_shortcut', 'conv_shortcut'), ('norm_out', 'conv_norm_out'), ('mid.attn_1.', 'mid_block.attentions.0.'), ] for i in range(4): # down_blocks have two resnets for j in range(2): SCREAMING_SNAKE_CASE_: Tuple =f"encoder.down_blocks.{i}.resnets.{j}." SCREAMING_SNAKE_CASE_: int =f"encoder.down.{i}.block.{j}." vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) if i < 3: SCREAMING_SNAKE_CASE_: int =f"down_blocks.{i}.downsamplers.0." SCREAMING_SNAKE_CASE_: str =f"down.{i}.downsample." vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) SCREAMING_SNAKE_CASE_: int =f"up_blocks.{i}.upsamplers.0." SCREAMING_SNAKE_CASE_: List[str] =f"up.{3-i}.upsample." vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) # up_blocks have three resnets # also, up blocks in hf are numbered in reverse from sd for j in range(3): SCREAMING_SNAKE_CASE_: List[str] =f"decoder.up_blocks.{i}.resnets.{j}." SCREAMING_SNAKE_CASE_: Dict =f"decoder.up.{3-i}.block.{j}." vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) # this part accounts for mid blocks in both the encoder and the decoder for i in range(2): SCREAMING_SNAKE_CASE_: Any =f"mid_block.resnets.{i}." SCREAMING_SNAKE_CASE_: Tuple =f"mid.block_{i+1}." vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) SCREAMING_SNAKE_CASE_: int =[ # (stable-diffusion, HF Diffusers) ('norm.', 'group_norm.'), ('q.', 'query.'), ('k.', 'key.'), ('v.', 'value.'), ('proj_out.', 'proj_attn.'), ] def lowerCAmelCase_ ( snake_case_ : Tuple ) -> Tuple: '''simple docstring''' return w.reshape(*w.shape , 1 , 1 ) def lowerCAmelCase_ ( snake_case_ : Optional[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = {k: k for k in vae_state_dict.keys()} for k, v in mapping.items(): for sd_part, hf_part in vae_conversion_map: UpperCAmelCase_ = v.replace(snake_case_ , snake_case_ ) UpperCAmelCase_ = v for k, v in mapping.items(): if "attentions" in k: for sd_part, hf_part in vae_conversion_map_attn: UpperCAmelCase_ = v.replace(snake_case_ , snake_case_ ) UpperCAmelCase_ = v UpperCAmelCase_ = {v: vae_state_dict[k] for k, v in mapping.items()} UpperCAmelCase_ = ["q", "k", "v", "proj_out"] for k, v in new_state_dict.items(): for weight_name in weights_to_convert: if f"""mid.attn_1.{weight_name}.weight""" in k: print(f"""Reshaping {k} for SD format""" ) UpperCAmelCase_ = reshape_weight_for_sd(snake_case_ ) return new_state_dict # =========================# # Text Encoder Conversion # # =========================# SCREAMING_SNAKE_CASE_: List[Any] =[ # (stable-diffusion, HF Diffusers) ('resblocks.', 'text_model.encoder.layers.'), ('ln_1', 'layer_norm1'), ('ln_2', 'layer_norm2'), ('.c_fc.', '.fc1.'), ('.c_proj.', '.fc2.'), ('.attn', '.self_attn'), ('ln_final.', 'transformer.text_model.final_layer_norm.'), ('token_embedding.weight', 'transformer.text_model.embeddings.token_embedding.weight'), ('positional_embedding', 'transformer.text_model.embeddings.position_embedding.weight'), ] SCREAMING_SNAKE_CASE_: Dict ={re.escape(x[1]): x[0] for x in textenc_conversion_lst} SCREAMING_SNAKE_CASE_: str =re.compile('|'.join(protected.keys())) # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp SCREAMING_SNAKE_CASE_: List[Any] ={'q': 0, 'k': 1, 'v': 2} def lowerCAmelCase_ ( snake_case_ : Union[str, Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = {} UpperCAmelCase_ = {} UpperCAmelCase_ = {} for k, v in text_enc_dict.items(): if ( k.endswith(".self_attn.q_proj.weight" ) or k.endswith(".self_attn.k_proj.weight" ) or k.endswith(".self_attn.v_proj.weight" ) ): UpperCAmelCase_ = k[: -len(".q_proj.weight" )] UpperCAmelCase_ = k[-len("q_proj.weight" )] if k_pre not in capture_qkv_weight: UpperCAmelCase_ = [None, None, None] UpperCAmelCase_ = v continue if ( k.endswith(".self_attn.q_proj.bias" ) or k.endswith(".self_attn.k_proj.bias" ) or k.endswith(".self_attn.v_proj.bias" ) ): UpperCAmelCase_ = k[: -len(".q_proj.bias" )] UpperCAmelCase_ = k[-len("q_proj.bias" )] if k_pre not in capture_qkv_bias: UpperCAmelCase_ = [None, None, None] UpperCAmelCase_ = v continue UpperCAmelCase_ = textenc_pattern.sub(lambda snake_case_ : protected[re.escape(m.group(0 ) )] , snake_case_ ) UpperCAmelCase_ = v for k_pre, tensors in capture_qkv_weight.items(): if None in tensors: raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing" ) UpperCAmelCase_ = textenc_pattern.sub(lambda snake_case_ : protected[re.escape(m.group(0 ) )] , snake_case_ ) UpperCAmelCase_ = torch.cat(snake_case_ ) for k_pre, tensors in capture_qkv_bias.items(): if None in tensors: raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing" ) UpperCAmelCase_ = textenc_pattern.sub(lambda snake_case_ : protected[re.escape(m.group(0 ) )] , snake_case_ ) UpperCAmelCase_ = torch.cat(snake_case_ ) return new_state_dict def lowerCAmelCase_ ( snake_case_ : List[Any] ) -> Union[str, Any]: '''simple docstring''' return text_enc_dict if __name__ == "__main__": SCREAMING_SNAKE_CASE_: str =argparse.ArgumentParser() parser.add_argument('--model_path', default=None, type=str, required=True, help='Path to the model to convert.') parser.add_argument('--checkpoint_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--half', action='store_true', help='Save weights in half precision.') parser.add_argument( '--use_safetensors', action='store_true', help='Save weights use safetensors, default is ckpt.' ) SCREAMING_SNAKE_CASE_: Dict =parser.parse_args() assert args.model_path is not None, "Must provide a model path!" assert args.checkpoint_path is not None, "Must provide a checkpoint path!" # Path for safetensors SCREAMING_SNAKE_CASE_: Any =osp.join(args.model_path, 'unet', 'diffusion_pytorch_model.safetensors') SCREAMING_SNAKE_CASE_: Dict =osp.join(args.model_path, 'vae', 'diffusion_pytorch_model.safetensors') SCREAMING_SNAKE_CASE_: Union[str, Any] =osp.join(args.model_path, 'text_encoder', 'model.safetensors') # Load models from safetensors if it exists, if it doesn't pytorch if osp.exists(unet_path): SCREAMING_SNAKE_CASE_: Union[str, Any] =load_file(unet_path, device='cpu') else: SCREAMING_SNAKE_CASE_: int =osp.join(args.model_path, 'unet', 'diffusion_pytorch_model.bin') SCREAMING_SNAKE_CASE_: Dict =torch.load(unet_path, map_location='cpu') if osp.exists(vae_path): SCREAMING_SNAKE_CASE_: Tuple =load_file(vae_path, device='cpu') else: SCREAMING_SNAKE_CASE_: List[Any] =osp.join(args.model_path, 'vae', 'diffusion_pytorch_model.bin') SCREAMING_SNAKE_CASE_: str =torch.load(vae_path, map_location='cpu') if osp.exists(text_enc_path): SCREAMING_SNAKE_CASE_: Tuple =load_file(text_enc_path, device='cpu') else: SCREAMING_SNAKE_CASE_: List[Any] =osp.join(args.model_path, 'text_encoder', 'pytorch_model.bin') SCREAMING_SNAKE_CASE_: Any =torch.load(text_enc_path, map_location='cpu') # Convert the UNet model SCREAMING_SNAKE_CASE_: List[Any] =convert_unet_state_dict(unet_state_dict) SCREAMING_SNAKE_CASE_: Any ={'model.diffusion_model.' + k: v for k, v in unet_state_dict.items()} # Convert the VAE model SCREAMING_SNAKE_CASE_: List[Any] =convert_vae_state_dict(vae_state_dict) SCREAMING_SNAKE_CASE_: Dict ={'first_stage_model.' + k: v for k, v in vae_state_dict.items()} # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper SCREAMING_SNAKE_CASE_: Dict ='text_model.encoder.layers.22.layer_norm2.bias' in text_enc_dict if is_vaa_model: # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm SCREAMING_SNAKE_CASE_: Any ={'transformer.' + k: v for k, v in text_enc_dict.items()} SCREAMING_SNAKE_CASE_: str =convert_text_enc_state_dict_vaa(text_enc_dict) SCREAMING_SNAKE_CASE_: int ={'cond_stage_model.model.' + k: v for k, v in text_enc_dict.items()} else: SCREAMING_SNAKE_CASE_: str =convert_text_enc_state_dict(text_enc_dict) SCREAMING_SNAKE_CASE_: Optional[int] ={'cond_stage_model.transformer.' + k: v for k, v in text_enc_dict.items()} # Put together new checkpoint SCREAMING_SNAKE_CASE_: List[str] ={**unet_state_dict, **vae_state_dict, **text_enc_dict} if args.half: SCREAMING_SNAKE_CASE_: List[str] ={k: v.half() for k, v in state_dict.items()} if args.use_safetensors: save_file(state_dict, args.checkpoint_path) else: SCREAMING_SNAKE_CASE_: str ={'state_dict': state_dict} torch.save(state_dict, args.checkpoint_path)
78
1
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class __snake_case : def __init__( self , _A , _A = 13 , _A = 64 , _A = 2 , _A = 3 , _A = 3 , _A = True , _A = True , _A = 128 , _A=[16, 32, 64, 128] , _A = 7 , _A = 4 , _A = 37 , _A = "gelu" , _A = 0.1 , _A = 0.1 , _A = 10 , _A = 0.0_2 , _A = 2 , _A = 1 , _A = 128 , _A = [2, 2, 2, 2] , _A = 2 , _A = 2 , ): SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = patch_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = type_sequence_label_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = encoder_stride SCREAMING_SNAKE_CASE_ = num_attention_outputs SCREAMING_SNAKE_CASE_ = embed_dim SCREAMING_SNAKE_CASE_ = embed_dim + 1 SCREAMING_SNAKE_CASE_ = resolution SCREAMING_SNAKE_CASE_ = depths SCREAMING_SNAKE_CASE_ = hidden_sizes SCREAMING_SNAKE_CASE_ = dim SCREAMING_SNAKE_CASE_ = mlp_expansion_ratio def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_ = None if self.use_labels: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.type_sequence_label_size) SCREAMING_SNAKE_CASE_ = self.get_config() return config, pixel_values, labels def lowerCAmelCase__ ( self): return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_A , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def lowerCAmelCase__ ( self , _A , _A , _A): SCREAMING_SNAKE_CASE_ = TFEfficientFormerModel(config=_A) SCREAMING_SNAKE_CASE_ = model(_A , training=_A) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def lowerCAmelCase__ ( self , _A , _A , _A): SCREAMING_SNAKE_CASE_ = self.type_sequence_label_size SCREAMING_SNAKE_CASE_ = TFEfficientFormerForImageClassification(_A) SCREAMING_SNAKE_CASE_ = model(_A , labels=_A , training=_A) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = TFEfficientFormerForImageClassification(_A) SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_ = model(_A , labels=_A) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = config_and_inputs SCREAMING_SNAKE_CASE_ = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class __snake_case ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): __lowerCAmelCase : int = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) __lowerCAmelCase : Any = ( { 'feature-extraction': TFEfficientFormerModel, 'image-classification': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) __lowerCAmelCase : int = False __lowerCAmelCase : int = False __lowerCAmelCase : int = False __lowerCAmelCase : Any = False __lowerCAmelCase : Union[str, Any] = False def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = TFEfficientFormerModelTester(self) SCREAMING_SNAKE_CASE_ = ConfigTester( self , config_class=_A , has_text_modality=_A , hidden_size=37) def lowerCAmelCase__ ( self): self.config_tester.run_common_tests() @unittest.skip(reason='EfficientFormer does not use inputs_embeds') def lowerCAmelCase__ ( self): pass @unittest.skip(reason='EfficientFormer does not support input and output embeddings') def lowerCAmelCase__ ( self): pass def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_A) SCREAMING_SNAKE_CASE_ = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , _A) def lowerCAmelCase__ ( self): def check_hidden_states_output(_A , _A , _A): SCREAMING_SNAKE_CASE_ = model_class(_A) SCREAMING_SNAKE_CASE_ = model(**self._prepare_for_class(_A , _A) , training=_A) SCREAMING_SNAKE_CASE_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE_ = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1) self.assertEqual(len(_A) , _A) if hasattr(self.model_tester , 'encoder_seq_length'): SCREAMING_SNAKE_CASE_ = self.model_tester.encoder_seq_length if hasattr(self.model_tester , 'chunk_length') and self.model_tester.chunk_length > 1: SCREAMING_SNAKE_CASE_ = seq_length * self.model_tester.chunk_length else: SCREAMING_SNAKE_CASE_ = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: SCREAMING_SNAKE_CASE_ = outputs.decoder_hidden_states self.asseretIsInstance(_A , (list, tuple)) self.assertEqual(len(_A) , _A) SCREAMING_SNAKE_CASE_ = getattr(self.model_tester , 'seq_length' , _A) SCREAMING_SNAKE_CASE_ = getattr(self.model_tester , 'decoder_seq_length' , _A) self.assertListEqual( list(hidden_states[-1].shape[-2:]) , [decoder_seq_length, self.model_tester.hidden_size] , ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = True check_hidden_states_output(_A , _A , _A) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE_ = True check_hidden_states_output(_A , _A , _A) def lowerCAmelCase__ ( self , _A , _A , _A=False): SCREAMING_SNAKE_CASE_ = super()._prepare_for_class(_A , _A , return_labels=_A) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A) @unittest.skip(reason='EfficientFormer does not implement masked image modeling yet') def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_A) def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A) @slow def lowerCAmelCase__ ( self): for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ = TFEfficientFormerModel.from_pretrained(_A) self.assertIsNotNone(_A) def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = getattr(self.model_tester , 'seq_length' , _A) SCREAMING_SNAKE_CASE_ = getattr(self.model_tester , 'encoder_seq_length' , _A) SCREAMING_SNAKE_CASE_ = getattr(self.model_tester , 'key_length' , _A) SCREAMING_SNAKE_CASE_ = getattr(self.model_tester , 'chunk_length' , _A) if chunk_length is not None and hasattr(self.model_tester , 'num_hashes'): SCREAMING_SNAKE_CASE_ = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = model_class(_A) SCREAMING_SNAKE_CASE_ = model(**self._prepare_for_class(_A , _A) , training=_A) SCREAMING_SNAKE_CASE_ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_A) , self.model_tester.num_attention_outputs) # check that output_attentions also work using config del inputs_dict["output_attentions"] SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = model_class(_A) SCREAMING_SNAKE_CASE_ = model(**self._prepare_for_class(_A , _A) , training=_A) SCREAMING_SNAKE_CASE_ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_A) , self.model_tester.num_attention_outputs) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:]) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def lowerCAmelCase__ ( self): # We use a simplified version of this test for EfficientFormer because it requires training=False # and Keras refuses to let us force that during functional construction SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model SCREAMING_SNAKE_CASE_ = model_class(_A) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes SCREAMING_SNAKE_CASE_ = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=_A) for key, val in model.input_signature.items() if key in model.dummy_inputs } SCREAMING_SNAKE_CASE_ = model(_A) self.assertTrue(outputs_dict is not None) def _UpperCAmelCase ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class __snake_case ( unittest.TestCase ): @cached_property def lowerCAmelCase__ ( self): return ( EfficientFormerImageProcessor.from_pretrained('snap-research/efficientformer-l1-300') if is_vision_available() else None ) @slow def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = TFEfficientFormerForImageClassification.from_pretrained('snap-research/efficientformer-l1-300') SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(images=_A , return_tensors='tf') # forward pass SCREAMING_SNAKE_CASE_ = model(**_A , training=_A) # verify the logits SCREAMING_SNAKE_CASE_ = tf.TensorShape((1, 1000)) self.assertEqual(outputs.logits.shape , _A) SCREAMING_SNAKE_CASE_ = tf.constant([-0.0_5_5_5, 0.4_8_2_5, -0.0_8_5_2]) self.assertTrue(np.allclose(outputs.logits[0, :3] , _A , atol=1E-4)) @slow def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( 'snap-research/efficientformer-l1-300') SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(images=_A , return_tensors='tf') # forward pass SCREAMING_SNAKE_CASE_ = model(**_A , training=_A) # verify the logits SCREAMING_SNAKE_CASE_ = tf.TensorShape((1, 1000)) self.assertEqual(outputs.logits.shape , _A) SCREAMING_SNAKE_CASE_ = tf.constant([-0.1_3_1_2, 0.4_3_5_3, -1.0_4_9_9]) self.assertTrue(np.allclose(outputs.logits[0, :3] , _A , atol=1E-4))
620
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : str = logging.get_logger(__name__) UpperCamelCase__ : Optional[int] = { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json" ), "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json" ), "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json" ), } class __snake_case ( lowerCAmelCase__ ): __lowerCAmelCase : Optional[int] = 'dpr' def __init__( self , _A=30522 , _A=768 , _A=12 , _A=12 , _A=3072 , _A="gelu" , _A=0.1 , _A=0.1 , _A=512 , _A=2 , _A=0.0_2 , _A=1E-12 , _A=0 , _A="absolute" , _A = 0 , **_A , ): super().__init__(pad_token_id=_A , **_A) SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = type_vocab_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = projection_dim SCREAMING_SNAKE_CASE_ = position_embedding_type
620
1
def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' assert x is not None assert y is not None SCREAMING_SNAKE_CASE__ = len(lowercase_ ) SCREAMING_SNAKE_CASE__ = len(lowercase_ ) # declaring the array for storing the dp values SCREAMING_SNAKE_CASE__ = [[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741 for i in range(1 , m + 1 ): for j in range(1 , n + 1 ): SCREAMING_SNAKE_CASE__ = 1 if x[i - 1] == y[j - 1] else 0 SCREAMING_SNAKE_CASE__ = max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match ) SCREAMING_SNAKE_CASE__ = '''''' SCREAMING_SNAKE_CASE__ = m, n while i > 0 and j > 0: SCREAMING_SNAKE_CASE__ = 1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: SCREAMING_SNAKE_CASE__ = x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Optional[int] = '''AGGTAB''' _SCREAMING_SNAKE_CASE : List[str] = '''GXTXAYB''' _SCREAMING_SNAKE_CASE : Optional[int] = 4 _SCREAMING_SNAKE_CASE : Union[str, Any] = '''GTAB''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[Any] = longest_common_subsequence(a, b) print('''len =''', ln, ''', sub-sequence =''', subseq) import doctest doctest.testmod()
493
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: lowerCAmelCase = None lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase = { """vocab_file""": { """facebook/mbart-large-en-ro""": ( """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model""" ), """facebook/mbart-large-cc25""": ( """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/mbart-large-en-ro""": """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json""", """facebook/mbart-large-cc25""": """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json""", }, } lowerCAmelCase = { """facebook/mbart-large-en-ro""": 1_024, """facebook/mbart-large-cc25""": 1_024, } # fmt: off lowerCAmelCase = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN"""] class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : List[str] = VOCAB_FILES_NAMES _lowerCAmelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase : str = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase : Optional[int] = ['''input_ids''', '''attention_mask'''] _lowerCAmelCase : Optional[int] = MBartTokenizer _lowerCAmelCase : List[int] = [] _lowerCAmelCase : List[int] = [] def __init__( self , lowercase__=None , lowercase__=None , lowercase__="<s>" , lowercase__="</s>" , lowercase__="</s>" , lowercase__="<s>" , lowercase__="<unk>" , lowercase__="<pad>" , lowercase__="<mask>" , lowercase__=None , lowercase__=None , lowercase__=None , **lowercase__ , ): # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase : Any = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__) if isinstance(lowercase__ , lowercase__) else mask_token super().__init__( vocab_file=lowercase__ , tokenizer_file=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , sep_token=lowercase__ , cls_token=lowercase__ , unk_token=lowercase__ , pad_token=lowercase__ , mask_token=lowercase__ , src_lang=lowercase__ , tgt_lang=lowercase__ , additional_special_tokens=lowercase__ , **lowercase__ , ) __UpperCAmelCase : Optional[Any] = vocab_file __UpperCAmelCase : int = False if not self.vocab_file else True __UpperCAmelCase : str = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens]) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens}) __UpperCAmelCase : Union[str, Any] = { lang_code: self.convert_tokens_to_ids(lowercase__) for lang_code in FAIRSEQ_LANGUAGE_CODES } __UpperCAmelCase : Any = src_lang if src_lang is not None else '''en_XX''' __UpperCAmelCase : Optional[int] = self.convert_tokens_to_ids(self._src_lang) __UpperCAmelCase : List[Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang) @property def A( self): return self._src_lang @src_lang.setter def A( self , lowercase__): __UpperCAmelCase : List[str] = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def A( self , lowercase__ , lowercase__ = None): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def A( self , lowercase__ , lowercase__ = None): __UpperCAmelCase : Optional[int] = [self.sep_token_id] __UpperCAmelCase : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , **lowercase__): if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''') __UpperCAmelCase : Optional[Any] = src_lang __UpperCAmelCase : Union[str, Any] = self(lowercase__ , add_special_tokens=lowercase__ , return_tensors=lowercase__ , **lowercase__) __UpperCAmelCase : int = self.convert_tokens_to_ids(lowercase__) __UpperCAmelCase : Tuple = tgt_lang_id return inputs def A( self , lowercase__ , lowercase__ = "en_XX" , lowercase__ = None , lowercase__ = "ro_RO" , **lowercase__ , ): __UpperCAmelCase : Any = src_lang __UpperCAmelCase : Tuple = tgt_lang return super().prepare_seqaseq_batch(lowercase__ , lowercase__ , **lowercase__) def A( self): return self.set_src_lang_special_tokens(self.src_lang) def A( self): return self.set_tgt_lang_special_tokens(self.tgt_lang) def A( self , lowercase__): __UpperCAmelCase : Optional[Any] = self.convert_tokens_to_ids(lowercase__) __UpperCAmelCase : Union[str, Any] = [] __UpperCAmelCase : Dict = [self.eos_token_id, self.cur_lang_code] __UpperCAmelCase : int = self.convert_ids_to_tokens(self.prefix_tokens) __UpperCAmelCase : Dict = self.convert_ids_to_tokens(self.suffix_tokens) __UpperCAmelCase : str = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , ) def A( self , lowercase__): __UpperCAmelCase : List[str] = self.convert_tokens_to_ids(lowercase__) __UpperCAmelCase : List[Any] = [] __UpperCAmelCase : List[Any] = [self.eos_token_id, self.cur_lang_code] __UpperCAmelCase : Tuple = self.convert_ids_to_tokens(self.prefix_tokens) __UpperCAmelCase : Tuple = self.convert_ids_to_tokens(self.suffix_tokens) __UpperCAmelCase : Optional[int] = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , ) def A( self , lowercase__ , lowercase__ = None): if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''') if not os.path.isdir(lowercase__): logger.error(F"Vocabulary path ({save_directory}) should be a directory.") return __UpperCAmelCase : List[Any] = os.path.join( lowercase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowercase__): copyfile(self.vocab_file , lowercase__) return (out_vocab_file,)
462
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available _A = { 'configuration_audio_spectrogram_transformer': [ 'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ASTConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'ASTForAudioClassification', 'ASTModel', 'ASTPreTrainedModel', ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ['ASTFeatureExtractor'] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
438
'''simple docstring''' import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() _A = logging.get_logger(__name__) def _UpperCamelCase ( SCREAMING_SNAKE_CASE_ ): lowercase_ : List[Any] = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: lowercase_ : List[Any] = 128 elif "12-12" in model_name: lowercase_ : Tuple = 12 lowercase_ : List[Any] = 12 elif "14-14" in model_name: lowercase_ : List[str] = 14 lowercase_ : Optional[Any] = 14 elif "16-16" in model_name: lowercase_ : Union[str, Any] = 16 lowercase_ : List[str] = 16 else: raise ValueError('Model not supported' ) lowercase_ : Optional[Any] = 'huggingface/label-files' if "speech-commands" in model_name: lowercase_ : List[str] = 35 lowercase_ : int = 'speech-commands-v2-id2label.json' else: lowercase_ : Union[str, Any] = 527 lowercase_ : int = 'audioset-id2label.json' lowercase_ : Union[str, Any] = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type='dataset' ) , 'r' ) ) lowercase_ : Union[str, Any] = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} lowercase_ : Optional[int] = idalabel lowercase_ : Optional[int] = {v: k for k, v in idalabel.items()} return config def _UpperCamelCase ( SCREAMING_SNAKE_CASE_ ): if "module.v" in name: lowercase_ : Dict = name.replace('module.v' , 'audio_spectrogram_transformer' ) if "cls_token" in name: lowercase_ : Optional[Any] = name.replace('cls_token' , 'embeddings.cls_token' ) if "dist_token" in name: lowercase_ : Any = name.replace('dist_token' , 'embeddings.distillation_token' ) if "pos_embed" in name: lowercase_ : List[str] = name.replace('pos_embed' , 'embeddings.position_embeddings' ) if "patch_embed.proj" in name: lowercase_ : int = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) # transformer blocks if "blocks" in name: lowercase_ : Optional[Any] = name.replace('blocks' , 'encoder.layer' ) if "attn.proj" in name: lowercase_ : Optional[int] = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: lowercase_ : Dict = name.replace('attn' , 'attention.self' ) if "norm1" in name: lowercase_ : int = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: lowercase_ : Optional[int] = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: lowercase_ : Optional[int] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: lowercase_ : int = name.replace('mlp.fc2' , 'output.dense' ) # final layernorm if "audio_spectrogram_transformer.norm" in name: lowercase_ : int = name.replace('audio_spectrogram_transformer.norm' , 'audio_spectrogram_transformer.layernorm' ) # classifier head if "module.mlp_head.0" in name: lowercase_ : Dict = name.replace('module.mlp_head.0' , 'classifier.layernorm' ) if "module.mlp_head.1" in name: lowercase_ : List[Any] = name.replace('module.mlp_head.1' , 'classifier.dense' ) return name def _UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): for key in orig_state_dict.copy().keys(): lowercase_ : List[str] = orig_state_dict.pop(SCREAMING_SNAKE_CASE_ ) if "qkv" in key: lowercase_ : List[str] = key.split('.' ) lowercase_ : int = int(key_split[3] ) lowercase_ : Tuple = config.hidden_size if "weight" in key: lowercase_ : Tuple = val[:dim, :] lowercase_ : Union[str, Any] = val[dim : dim * 2, :] lowercase_ : Optional[int] = val[-dim:, :] else: lowercase_ : Optional[Any] = val[:dim] lowercase_ : Any = val[dim : dim * 2] lowercase_ : Tuple = val[-dim:] else: lowercase_ : Optional[Any] = val return orig_state_dict def _UpperCamelCase ( SCREAMING_SNAKE_CASE_ ): lowercase_ : List[Any] = [ 'module.v.head.weight', 'module.v.head.bias', 'module.v.head_dist.weight', 'module.v.head_dist.bias', ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @torch.no_grad() def _UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False ): lowercase_ : Dict = get_audio_spectrogram_transformer_config(SCREAMING_SNAKE_CASE_ ) lowercase_ : Optional[int] = { 'ast-finetuned-audioset-10-10-0.4593': ( 'https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.450': ( 'https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.448': ( 'https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.448-v2': ( 'https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1' ), 'ast-finetuned-audioset-12-12-0.447': ( 'https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1' ), 'ast-finetuned-audioset-14-14-0.443': ( 'https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1' ), 'ast-finetuned-audioset-16-16-0.442': ( 'https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1' ), 'ast-finetuned-speech-commands-v2': ( 'https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1' ), } # load original state_dict lowercase_ : Dict = model_name_to_url[model_name] lowercase_ : Optional[Any] = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE_ , map_location='cpu' ) # remove some keys remove_keys(SCREAMING_SNAKE_CASE_ ) # rename some keys lowercase_ : str = convert_state_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # load 🤗 model lowercase_ : Optional[Any] = ASTForAudioClassification(SCREAMING_SNAKE_CASE_ ) model.eval() model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 lowercase_ : Tuple = -4.267_7393 if 'speech-commands' not in model_name else -6.84_5978 lowercase_ : str = 4.568_9974 if 'speech-commands' not in model_name else 5.565_4526 lowercase_ : str = 1_024 if 'speech-commands' not in model_name else 128 lowercase_ : Dict = ASTFeatureExtractor(mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ ) if "speech-commands" in model_name: lowercase_ : Optional[Any] = load_dataset('speech_commands' , 'v0.02' , split='validation' ) lowercase_ : Any = dataset[0]['audio']['array'] else: lowercase_ : Any = hf_hub_download( repo_id='nielsr/audio-spectogram-transformer-checkpoint' , filename='sample_audio.flac' , repo_type='dataset' , ) lowercase_ ,lowercase_ : Union[str, Any] = torchaudio.load(SCREAMING_SNAKE_CASE_ ) lowercase_ : str = waveform.squeeze().numpy() lowercase_ : str = feature_extractor(SCREAMING_SNAKE_CASE_ , sampling_rate=16_000 , return_tensors='pt' ) # forward pass lowercase_ : Tuple = model(**SCREAMING_SNAKE_CASE_ ) lowercase_ : Tuple = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": lowercase_ : int = torch.tensor([-0.8760, -7.0042, -8.6602] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": lowercase_ : Optional[int] = torch.tensor([-1.1986, -7.0903, -8.2718] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": lowercase_ : Optional[Any] = torch.tensor([-2.6128, -8.0080, -9.4344] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": lowercase_ : List[str] = torch.tensor([-1.5080, -7.4534, -8.8917] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": lowercase_ : List[str] = torch.tensor([-0.5050, -6.5833, -8.0843] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": lowercase_ : Any = torch.tensor([-0.3826, -7.0336, -8.2413] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": lowercase_ : List[str] = torch.tensor([-1.2113, -6.9101, -8.3470] ) elif model_name == "ast-finetuned-speech-commands-v2": lowercase_ : Optional[Any] = torch.tensor([6.1589, -8.0566, -8.7984] ) else: raise ValueError('Unknown model name' ) if not torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ): raise ValueError('Logits don\'t match' ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(f'''Saving feature extractor to {pytorch_dump_folder_path}''' ) feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if push_to_hub: print('Pushing model and feature extractor to the hub...' ) model.push_to_hub(f'''MIT/{model_name}''' ) feature_extractor.push_to_hub(f'''MIT/{model_name}''' ) if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='ast-finetuned-audioset-10-10-0.4593', type=str, help='Name of the Audio Spectrogram Transformer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _A = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
438
1
"""simple docstring""" import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__ = logging.get_logger(__name__) def UpperCAmelCase ( snake_case : Optional[Any] ): _lowerCAmelCase:Union[str, Any] = MobileNetVaConfig(layer_norm_eps=0.0_01 ) if "_quant" in model_name: raise ValueError('''Quantized models are not supported.''' ) _lowerCAmelCase:Tuple = re.match(R'''^mobilenet_v1_([^_]*)_([^_]*)$''' , snake_case ) if matches: _lowerCAmelCase:Optional[int] = float(matches[1] ) _lowerCAmelCase:str = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". _lowerCAmelCase:str = 1001 _lowerCAmelCase:Optional[Any] = '''imagenet-1k-id2label.json''' _lowerCAmelCase:Union[str, Any] = '''huggingface/label-files''' _lowerCAmelCase:Any = json.load(open(hf_hub_download(snake_case , snake_case , repo_type='''dataset''' ) , '''r''' ) ) _lowerCAmelCase:List[Any] = {int(snake_case ) + 1: v for k, v in idalabel.items()} _lowerCAmelCase:Optional[Any] = '''background''' _lowerCAmelCase:int = idalabel _lowerCAmelCase:Optional[int] = {v: k for k, v in idalabel.items()} return config def UpperCAmelCase ( ): _lowerCAmelCase:int = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _lowerCAmelCase:Any = Image.open(requests.get(snake_case , stream=snake_case ).raw ) return im @torch.no_grad() def UpperCAmelCase ( snake_case : Optional[Any] , snake_case : int , snake_case : Dict , snake_case : Optional[int]=False ): _lowerCAmelCase:Dict = get_mobilenet_va_config(snake_case ) # Load 🤗 model _lowerCAmelCase:List[Any] = MobileNetVaForImageClassification(snake_case ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(snake_case , snake_case , snake_case ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor _lowerCAmelCase:Optional[Any] = MobileNetVaImageProcessor( crop_size={'''width''': config.image_size, '''height''': config.image_size} , size={'''shortest_edge''': config.image_size + 32} , ) _lowerCAmelCase:Any = image_processor(images=prepare_img() , return_tensors='''pt''' ) _lowerCAmelCase:Optional[Any] = model(**snake_case ) _lowerCAmelCase:Any = outputs.logits assert logits.shape == (1, 1001) if model_name == "mobilenet_v1_1.0_224": _lowerCAmelCase:Union[str, Any] = torch.tensor([-4.17_39, -1.12_33, 3.12_05] ) elif model_name == "mobilenet_v1_0.75_192": _lowerCAmelCase:Union[str, Any] = torch.tensor([-3.94_40, -2.31_41, -0.33_33] ) else: _lowerCAmelCase:List[Any] = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , snake_case , atol=1e-4 ) Path(snake_case ).mkdir(exist_ok=snake_case ) print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(snake_case ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(snake_case ) if push_to_hub: print('''Pushing to the hub...''' ) _lowerCAmelCase:int = '''google/''' + model_name image_processor.push_to_hub(snake_case ) model.push_to_hub(snake_case ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''mobilenet_v1_1.0_224''', type=str, help='''Name of the MobileNetV1 model you\'d like to convert. Should in the form \'mobilenet_v1_<depth>_<size>\'.''', ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original TensorFlow checkpoint (.ckpt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) UpperCamelCase__ = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
227
"""simple docstring""" import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def UpperCAmelCase ( snake_case : str ): if "model" in orig_key: _lowerCAmelCase:str = orig_key.replace('''model.''' , '''''' ) if "norm1" in orig_key: _lowerCAmelCase:List[Any] = orig_key.replace('''norm1''' , '''attention.output.LayerNorm''' ) if "norm2" in orig_key: _lowerCAmelCase:Any = orig_key.replace('''norm2''' , '''output.LayerNorm''' ) if "norm" in orig_key: _lowerCAmelCase:Tuple = orig_key.replace('''norm''' , '''LayerNorm''' ) if "transformer" in orig_key: _lowerCAmelCase:Union[str, Any] = orig_key.split('''.''' )[0].split('''_''' )[-1] _lowerCAmelCase:Optional[int] = orig_key.replace(F'transformer_{layer_num}' , F'encoder.layer.{layer_num}' ) if "mha.attn" in orig_key: _lowerCAmelCase:Dict = orig_key.replace('''mha.attn''' , '''attention.self''' ) if "mha" in orig_key: _lowerCAmelCase:Union[str, Any] = orig_key.replace('''mha''' , '''attention''' ) if "W_q" in orig_key: _lowerCAmelCase:int = orig_key.replace('''W_q''' , '''self.query''' ) if "W_k" in orig_key: _lowerCAmelCase:Tuple = orig_key.replace('''W_k''' , '''self.key''' ) if "W_v" in orig_key: _lowerCAmelCase:str = orig_key.replace('''W_v''' , '''self.value''' ) if "ff1" in orig_key: _lowerCAmelCase:List[Any] = orig_key.replace('''ff1''' , '''intermediate.dense''' ) if "ff2" in orig_key: _lowerCAmelCase:int = orig_key.replace('''ff2''' , '''output.dense''' ) if "ff" in orig_key: _lowerCAmelCase:Any = orig_key.replace('''ff''' , '''output.dense''' ) if "mlm_class" in orig_key: _lowerCAmelCase:Optional[Any] = orig_key.replace('''mlm.mlm_class''' , '''cls.predictions.decoder''' ) if "mlm" in orig_key: _lowerCAmelCase:str = orig_key.replace('''mlm''' , '''cls.predictions.transform''' ) if "cls" not in orig_key: _lowerCAmelCase:str = '''yoso.''' + orig_key return orig_key def UpperCAmelCase ( snake_case : Dict , snake_case : List[Any] ): for key in orig_state_dict.copy().keys(): _lowerCAmelCase:Any = orig_state_dict.pop(snake_case ) if ("pooler" in key) or ("sen_class" in key): continue else: _lowerCAmelCase:Optional[Any] = val _lowerCAmelCase:Union[str, Any] = orig_state_dict['''cls.predictions.decoder.bias'''] _lowerCAmelCase:Union[str, Any] = torch.arange(snake_case ).expand((1, -1) ) + 2 return orig_state_dict def UpperCAmelCase ( snake_case : Any , snake_case : Union[str, Any] , snake_case : List[Any] ): _lowerCAmelCase:str = torch.load(snake_case , map_location='''cpu''' )['''model_state_dict'''] _lowerCAmelCase:List[str] = YosoConfig.from_json_file(snake_case ) _lowerCAmelCase:Optional[int] = YosoForMaskedLM(snake_case ) _lowerCAmelCase:Tuple = convert_checkpoint_helper(config.max_position_embeddings , snake_case ) print(model.load_state_dict(snake_case ) ) model.eval() model.save_pretrained(snake_case ) print(F'Checkpoint successfuly converted. Model saved at {pytorch_dump_path}' ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--pytorch_model_path''', default=None, type=str, required=True, help='''Path to YOSO pytorch checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The json file for YOSO model config.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCamelCase__ = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
227
1
def lowerCAmelCase( __lowerCamelCase = 6008_5147_5143 ): try: __a = int(__lowerCamelCase ) except (TypeError, ValueError): raise TypeError('Parameter n must be int or castable to int.' ) if n <= 0: raise ValueError('Parameter n must be greater than or equal to one.' ) __a = 1 __a = 2 while i * i <= n: while n % i == 0: __a = i n //= i i += 1 if n > 1: __a = n return int(__lowerCamelCase ) if __name__ == "__main__": print(F'''{solution() = }''')
721
import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch lowerCamelCase_ : List[Any] = random.Random() def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase=1.0 , __lowerCamelCase=None , __lowerCamelCase=None ): if rng is None: __a = global_rng __a = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class a__ ( unittest.TestCase ): def __init__( self , UpperCAmelCase , UpperCAmelCase=7 , UpperCAmelCase=4_0_0 , UpperCAmelCase=2_0_0_0 , UpperCAmelCase=1 , UpperCAmelCase=0.0 , UpperCAmelCase=1_6_0_0_0 , UpperCAmelCase=True , UpperCAmelCase=8_0 , UpperCAmelCase=1_6 , UpperCAmelCase=6_4 , UpperCAmelCase="hann_window" , UpperCAmelCase=8_0 , UpperCAmelCase=7_6_0_0 , UpperCAmelCase=1e-10 , UpperCAmelCase=True , ) -> Tuple: __a = parent __a = batch_size __a = min_seq_length __a = max_seq_length __a = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __a = feature_size __a = padding_value __a = sampling_rate __a = do_normalize __a = num_mel_bins __a = hop_length __a = win_length __a = win_function __a = fmin __a = fmax __a = mel_floor __a = return_attention_mask def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase=False , UpperCAmelCase=False ) -> Optional[int]: def _flatten(UpperCAmelCase ): return list(itertools.chain(*UpperCAmelCase ) ) if equal_length: __a = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size __a = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __a = [np.asarray(UpperCAmelCase ) for x in speech_inputs] return speech_inputs def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase=False , UpperCAmelCase=False ) -> List[Any]: if equal_length: __a = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __a = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __a = [np.asarray(UpperCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch class a__ ( __snake_case , unittest.TestCase ): A__ : Tuple = SpeechTaFeatureExtractor def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: __a = SpeechTaFeatureExtractionTester(self ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase ) -> Optional[Any]: self.assertTrue(np.all(np.mean(UpperCAmelCase , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(UpperCAmelCase , axis=0 ) - 1 ) < 1e-3 ) ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: # Tests that all call wrap to encode_plus and batch_encode_plus __a = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __a = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] __a = [np.asarray(UpperCAmelCase ) for speech_input in speech_inputs] # Test not batched input __a = feat_extract(speech_inputs[0] , return_tensors='np' ).input_values __a = feat_extract(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) # Test batched __a = feat_extract(UpperCAmelCase , return_tensors='np' ).input_values __a = feat_extract(UpperCAmelCase , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(UpperCAmelCase , UpperCAmelCase ): self.assertTrue(np.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: __a = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __a = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] __a = ['longest', 'max_length', 'do_not_pad'] __a = [None, 1_6_0_0, None] for max_length, padding in zip(UpperCAmelCase , UpperCAmelCase ): __a = feat_extract(UpperCAmelCase , padding=UpperCAmelCase , max_length=UpperCAmelCase , return_tensors='np' ) __a = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0] ) self.assertTrue(input_values[0][8_0_0:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0] ) self.assertTrue(input_values[0][1_0_0_0:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0] ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: __a = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __a = range(8_0_0 , 1_4_0_0 , 2_0_0 ) __a = [floats_list((1, x) )[0] for x in lengths] __a = ['longest', 'max_length', 'do_not_pad'] __a = [None, 1_6_0_0, None] for max_length, padding in zip(UpperCAmelCase , UpperCAmelCase ): __a = feat_extract(UpperCAmelCase , max_length=UpperCAmelCase , padding=UpperCAmelCase ) __a = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0] ) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0] ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: __a = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __a = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] __a = feat_extract( UpperCAmelCase , truncation=UpperCAmelCase , max_length=1_0_0_0 , padding='max_length' , return_tensors='np' ) __a = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: __a = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __a = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] __a = feat_extract( UpperCAmelCase , truncation=UpperCAmelCase , max_length=1_0_0_0 , padding='longest' , return_tensors='np' ) __a = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_0_0_0) ) __a = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] __a = feat_extract( UpperCAmelCase , truncation=UpperCAmelCase , max_length=2_0_0_0 , padding='longest' , return_tensors='np' ) __a = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_2_0_0) ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: __a = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __a = np.random.rand(1_0_0 ).astype(np.floataa ) __a = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __a = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) __a = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: # Tests that all call wrap to encode_plus and batch_encode_plus __a = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __a = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] __a = [np.asarray(UpperCAmelCase ) for speech_input in speech_inputs] # Test feature size __a = feature_extractor(audio_target=UpperCAmelCase , padding=UpperCAmelCase , return_tensors='np' ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input __a = feature_extractor(speech_inputs[0] , return_tensors='np' ).input_values __a = feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) # Test batched __a = feature_extractor(UpperCAmelCase , return_tensors='np' ).input_values __a = feature_extractor(UpperCAmelCase , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(UpperCAmelCase , UpperCAmelCase ): self.assertTrue(np.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. __a = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] __a = np.asarray(UpperCAmelCase ) __a = feature_extractor(UpperCAmelCase , return_tensors='np' ).input_values __a = feature_extractor(UpperCAmelCase , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(UpperCAmelCase , UpperCAmelCase ): self.assertTrue(np.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: __a = self.feat_extract_tester.prepare_inputs_for_target() __a = self.feature_extraction_class(**self.feat_extract_dict ) __a = feat_extract.model_input_names[0] __a = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(UpperCAmelCase ) == len(UpperCAmelCase ) for x, y in zip(UpperCAmelCase , processed_features[input_name] ) ) ) __a = self.feat_extract_tester.prepare_inputs_for_target(equal_length=UpperCAmelCase ) __a = BatchFeature({input_name: speech_inputs} , tensor_type='np' ) __a = processed_features[input_name] if len(batch_features_input.shape ) < 3: __a = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def __SCREAMING_SNAKE_CASE ( self ) -> Dict: __a = self.feat_extract_tester.prepare_inputs_for_target(equal_length=UpperCAmelCase ) __a = self.feature_extraction_class(**self.feat_extract_dict ) __a = feat_extract.model_input_names[0] __a = BatchFeature({input_name: speech_inputs} , tensor_type='pt' ) __a = processed_features[input_name] if len(batch_features_input.shape ) < 3: __a = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: __a = self.feature_extraction_class(**self.feat_extract_dict ) __a = self.feat_extract_tester.prepare_inputs_for_target() __a = feat_extract.model_input_names[0] __a = BatchFeature({input_name: speech_inputs} ) __a = feat_extract.num_mel_bins # hack! __a = feat_extract.pad(UpperCAmelCase , padding='longest' , return_tensors='np' )[input_name] __a = feat_extract.pad(UpperCAmelCase , padding='longest' , return_tensors='pt' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: __a = self.feat_extract_dict __a = True __a = self.feature_extraction_class(**UpperCAmelCase ) __a = self.feat_extract_tester.prepare_inputs_for_target() __a = [len(UpperCAmelCase ) for x in speech_inputs] __a = feat_extract.model_input_names[0] __a = BatchFeature({input_name: speech_inputs} ) __a = feat_extract.num_mel_bins # hack! __a = feat_extract.pad(UpperCAmelCase , padding='longest' , return_tensors='np' ) self.assertIn('attention_mask' , UpperCAmelCase ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: __a = self.feat_extract_dict __a = True __a = self.feature_extraction_class(**UpperCAmelCase ) __a = self.feat_extract_tester.prepare_inputs_for_target() __a = [len(UpperCAmelCase ) for x in speech_inputs] __a = feat_extract.model_input_names[0] __a = BatchFeature({input_name: speech_inputs} ) __a = min(UpperCAmelCase ) __a = feat_extract.num_mel_bins # hack! __a = feat_extract.pad( UpperCAmelCase , padding='max_length' , max_length=UpperCAmelCase , truncation=UpperCAmelCase , return_tensors='np' ) self.assertIn('attention_mask' , UpperCAmelCase ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase ) -> int: from datasets import load_dataset __a = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech __a = ds.sort('id' ).select(range(UpperCAmelCase ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def __SCREAMING_SNAKE_CASE ( self ) -> str: # fmt: off __a = torch.tensor( [2.3804e-03, 2.0752e-03, 1.9836e-03, 2.1057e-03, 1.6174e-03, 3.0518e-04, 9.1553e-05, 3.3569e-04, 9.7656e-04, 1.8311e-03, 2.0142e-03, 2.1057e-03, 1.7395e-03, 4.5776e-04, -3.9673e-04, 4.5776e-04, 1.0071e-03, 9.1553e-05, 4.8828e-04, 1.1597e-03, 7.3242e-04, 9.4604e-04, 1.8005e-03, 1.8311e-03, 8.8501e-04, 4.2725e-04, 4.8828e-04, 7.3242e-04, 1.0986e-03, 2.1057e-03] ) # fmt: on __a = self._load_datasamples(1 ) __a = SpeechTaFeatureExtractor() __a = feature_extractor(UpperCAmelCase , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 9_3_6_8_0) ) self.assertTrue(torch.allclose(input_values[0, :3_0] , UpperCAmelCase , atol=1e-6 ) ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: # fmt: off __a = torch.tensor( [-2.6_870, -3.0_104, -3.1_356, -3.5_352, -3.0_044, -3.0_353, -3.4_719, -3.6_777, -3.1_520, -2.9_435, -2.6_553, -2.8_795, -2.9_944, -2.5_921, -3.0_279, -3.0_386, -3.0_864, -3.1_291, -3.2_353, -2.7_444, -2.6_831, -2.7_287, -3.1_761, -3.1_571, -3.2_726, -3.0_582, -3.1_007, -3.4_533, -3.4_695, -3.0_998] ) # fmt: on __a = self._load_datasamples(1 ) __a = SpeechTaFeatureExtractor() __a = feature_extractor(audio_target=UpperCAmelCase , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 3_6_6, 8_0) ) self.assertTrue(torch.allclose(input_values[0, 0, :3_0] , UpperCAmelCase , atol=1e-4 ) )
246
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ = { """configuration_swinv2""": ["""SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Swinv2Config"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Swinv2ForImageClassification""", """Swinv2ForMaskedImageModeling""", """Swinv2Model""", """Swinv2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys a__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
654
import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class _lowerCAmelCase : """simple docstring""" def __init__( self : List[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : List[str]=sys.maxsize): '''simple docstring''' snake_case__ = """bilinear""" snake_case__ = max_size snake_case__ = short_edge_length def __call__( self : List[str] , UpperCamelCase__ : Tuple): '''simple docstring''' snake_case__ = [] for img in imgs: snake_case__ , snake_case__ = img.shape[:2] # later: provide list and randomly choose index for resize snake_case__ = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1) if size == 0: return img snake_case__ = size * 1.0 / min(UpperCamelCase__ , UpperCamelCase__) if h < w: snake_case__ , snake_case__ = size, scale * w else: snake_case__ , snake_case__ = scale * h, size if max(UpperCamelCase__ , UpperCamelCase__) > self.max_size: snake_case__ = self.max_size * 1.0 / max(UpperCamelCase__ , UpperCamelCase__) snake_case__ = newh * scale snake_case__ = neww * scale snake_case__ = int(neww + 0.5) snake_case__ = int(newh + 0.5) if img.dtype == np.uinta: snake_case__ = Image.fromarray(UpperCamelCase__) snake_case__ = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR) snake_case__ = np.asarray(UpperCamelCase__) else: snake_case__ = img.permute(2 , 0 , 1).unsqueeze(0) # 3, 0, 1) # hw(c) -> nchw snake_case__ = nn.functional.interpolate( UpperCamelCase__ , (newh, neww) , mode=self.interp_method , align_corners=UpperCamelCase__).squeeze(0) img_augs.append(UpperCamelCase__) return img_augs class _lowerCAmelCase : """simple docstring""" def __init__( self : Dict , UpperCamelCase__ : Optional[int]): '''simple docstring''' snake_case__ = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST) snake_case__ = cfg.INPUT.FORMAT snake_case__ = cfg.SIZE_DIVISIBILITY snake_case__ = cfg.PAD_VALUE snake_case__ = cfg.INPUT.MAX_SIZE_TEST snake_case__ = cfg.MODEL.DEVICE snake_case__ = torch.tensor(cfg.MODEL.PIXEL_STD).to(self.device).view(len(cfg.MODEL.PIXEL_STD) , 1 , 1) snake_case__ = torch.tensor(cfg.MODEL.PIXEL_MEAN).to(self.device).view(len(cfg.MODEL.PIXEL_STD) , 1 , 1) snake_case__ = lambda UpperCamelCase__: (x - self.pixel_mean) / self.pixel_std def __magic_name__ ( self : Dict , UpperCamelCase__ : Dict): '''simple docstring''' snake_case__ = tuple(max(UpperCamelCase__) for s in zip(*[img.shape for img in images])) snake_case__ = [im.shape[-2:] for im in images] snake_case__ = [ nn.functional.pad( UpperCamelCase__ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(UpperCamelCase__ , UpperCamelCase__) ] return torch.stack(UpperCamelCase__), torch.tensor(UpperCamelCase__) def __call__( self : List[str] , UpperCamelCase__ : Dict , UpperCamelCase__ : str=False): '''simple docstring''' with torch.no_grad(): if not isinstance(UpperCamelCase__ , UpperCamelCase__): snake_case__ = [images] if single_image: assert len(UpperCamelCase__) == 1 for i in range(len(UpperCamelCase__)): if isinstance(images[i] , torch.Tensor): images.insert(UpperCamelCase__ , images.pop(UpperCamelCase__).to(self.device).float()) elif not isinstance(images[i] , torch.Tensor): images.insert( UpperCamelCase__ , torch.as_tensor(img_tensorize(images.pop(UpperCamelCase__) , input_format=self.input_format)) .to(self.device) .float() , ) # resize smallest edge snake_case__ = torch.tensor([im.shape[:2] for im in images]) snake_case__ = self.aug(UpperCamelCase__) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic snake_case__ = [self.normalizer(UpperCamelCase__) for x in images] # now pad them to do the following operations snake_case__ , snake_case__ = self.pad(UpperCamelCase__) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad snake_case__ = torch.true_divide(UpperCamelCase__ , UpperCamelCase__) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def _UpperCAmelCase ( a : Optional[Any] , a : Any ): boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def _UpperCAmelCase ( a : Any , a : Tuple[int, int] ): assert torch.isfinite(a ).all(), "Box tensor contains infinite or NaN!" snake_case__ , snake_case__ = box_size tensor[:, 0].clamp_(min=0 , max=a ) tensor[:, 1].clamp_(min=0 , max=a ) tensor[:, 2].clamp_(min=0 , max=a ) tensor[:, 3].clamp_(min=0 , max=a )
654
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def _a ( __lowercase=None ) -> Any: """simple docstring""" if subparsers is not None: __UpperCamelCase = subparsers.add_parser('test' ) else: __UpperCamelCase = argparse.ArgumentParser('Accelerate test command' ) parser.add_argument( '--config_file' , default=__lowercase , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=__lowercase ) return parser def _a ( __lowercase ) -> Optional[Any]: """simple docstring""" __UpperCamelCase = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['test_utils', 'scripts', 'test_script.py'] ) if args.config_file is None: __UpperCamelCase = script_name else: __UpperCamelCase = F"""--config_file={args.config_file} {script_name}""" __UpperCamelCase = ['accelerate-launch'] + test_args.split() __UpperCamelCase = execute_subprocess_async(__lowercase , env=os.environ.copy() ) if result.returncode == 0: print('Test is a success! You are ready for your distributed training!' ) def _a ( ) -> List[Any]: """simple docstring""" __UpperCamelCase = test_command_parser() __UpperCamelCase = parser.parse_args() test_command(__lowercase ) if __name__ == "__main__": main()
567
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _snake_case = { 'configuration_convnext': ['CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvNextConfig', 'ConvNextOnnxConfig'] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['ConvNextFeatureExtractor'] _snake_case = ['ConvNextImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ 'CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvNextForImageClassification', 'ConvNextModel', 'ConvNextPreTrainedModel', 'ConvNextBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ 'TFConvNextForImageClassification', 'TFConvNextModel', 'TFConvNextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys _snake_case = _LazyModule(__name__, globals()['__file__'], _import_structure)
567
1
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class _UpperCamelCase : '''simple docstring''' def __init__( self , a_ , a_=1_3 , a_=7 , a_=True , a_=True , a_=True , a_=True , a_=9_9 , a_=3_2 , a_=2 , a_=4 , a_=3_7 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_1_2 , a_=1_6 , a_=2 , a_=0.02 , a_=3 , a_=4 , a_=None , ) -> Union[str, Any]: lowercase : Optional[int] = parent lowercase : Optional[Any] = 1_3 lowercase : List[Any] = 7 lowercase : Tuple = True lowercase : List[str] = True lowercase : List[str] = True lowercase : int = True lowercase : int = 9_9 lowercase : Dict = 3_8_4 lowercase : int = 2 lowercase : Optional[int] = 4 lowercase : Dict = 3_7 lowercase : List[Any] = "gelu" lowercase : Optional[Any] = 0.1 lowercase : Optional[int] = 0.1 lowercase : Optional[int] = 5_1_2 lowercase : str = 1_6 lowercase : List[str] = 2 lowercase : Optional[int] = 0.02 lowercase : Union[str, Any] = 3 lowercase : Optional[Any] = 4 lowercase : Any = 1_2_8 lowercase : List[Any] = 2 lowercase : List[Any] = 9 lowercase : Any = 1 lowercase : Tuple = None def a__ ( self ) -> Dict: lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : Any = None if self.use_input_mask: lowercase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase : Optional[Any] = None if self.use_token_type_ids: lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase : Optional[Any] = None lowercase : Optional[Any] = None lowercase : Optional[Any] = None if self.use_labels: lowercase : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) lowercase : Dict = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=a_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ ( self , a_ , a_ , a_ , a_ , a_ , a_ , a_ ) -> List[str]: lowercase : List[Any] = TFConvBertModel(config=a_ ) lowercase : Tuple = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowercase : Tuple = [input_ids, input_mask] lowercase : List[Any] = model(a_ ) lowercase : List[Any] = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self , a_ , a_ , a_ , a_ , a_ , a_ , a_ ) -> Optional[int]: lowercase : Optional[int] = TFConvBertForMaskedLM(config=a_ ) lowercase : List[Any] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } lowercase : int = model(a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self , a_ , a_ , a_ , a_ , a_ , a_ , a_ ) -> Any: lowercase : List[str] = self.num_labels lowercase : str = TFConvBertForSequenceClassification(config=a_ ) lowercase : List[Any] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } lowercase : str = model(a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ ( self , a_ , a_ , a_ , a_ , a_ , a_ , a_ ) -> str: lowercase : List[Any] = self.num_choices lowercase : Dict = TFConvBertForMultipleChoice(config=a_ ) lowercase : List[Any] = tf.tile(tf.expand_dims(a_ , 1 ) , (1, self.num_choices, 1) ) lowercase : Tuple = tf.tile(tf.expand_dims(a_ , 1 ) , (1, self.num_choices, 1) ) lowercase : Optional[int] = tf.tile(tf.expand_dims(a_ , 1 ) , (1, self.num_choices, 1) ) lowercase : Union[str, Any] = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } lowercase : Dict = model(a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a__ ( self , a_ , a_ , a_ , a_ , a_ , a_ , a_ ) -> List[Any]: lowercase : Optional[int] = self.num_labels lowercase : Optional[int] = TFConvBertForTokenClassification(config=a_ ) lowercase : Optional[int] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } lowercase : List[str] = model(a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a__ ( self , a_ , a_ , a_ , a_ , a_ , a_ , a_ ) -> List[Any]: lowercase : Optional[int] = TFConvBertForQuestionAnswering(config=a_ ) lowercase : int = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } lowercase : Dict = model(a_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a__ ( self ) -> Union[str, Any]: lowercase : List[str] = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : Dict = config_and_inputs lowercase : int = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class _UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase): '''simple docstring''' _snake_case = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) _snake_case = ( { '''feature-extraction''': TFConvBertModel, '''fill-mask''': TFConvBertForMaskedLM, '''question-answering''': TFConvBertForQuestionAnswering, '''text-classification''': TFConvBertForSequenceClassification, '''token-classification''': TFConvBertForTokenClassification, '''zero-shot''': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) _snake_case = False _snake_case = False _snake_case = False def a__ ( self ) -> int: lowercase : Dict = TFConvBertModelTester(self ) lowercase : Union[str, Any] = ConfigTester(self , config_class=a_ , hidden_size=3_7 ) def a__ ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def a__ ( self ) -> str: lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def a__ ( self ) -> Tuple: lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*a_ ) def a__ ( self ) -> Dict: lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*a_ ) def a__ ( self ) -> Union[str, Any]: lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a_ ) def a__ ( self ) -> Tuple: lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*a_ ) def a__ ( self ) -> Optional[Any]: lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a_ ) @slow def a__ ( self ) -> List[str]: lowercase , lowercase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() lowercase : int = True lowercase : Any = True if hasattr(a_ , "use_cache" ): lowercase : Any = True lowercase : Dict = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) lowercase : Tuple = getattr(self.model_tester , "key_length" , a_ ) for model_class in self.all_model_classes: lowercase : Dict = self._prepare_for_class(a_ , a_ ) lowercase : Optional[Any] = model_class(a_ ) lowercase : Optional[int] = len(model(a_ ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(a_ , saved_model=a_ ) lowercase : int = os.path.join(a_ , "saved_model" , "1" ) lowercase : Any = tf.keras.models.load_model(a_ ) lowercase : List[Any] = model(a_ ) if self.is_encoder_decoder: lowercase : Optional[Any] = outputs["encoder_hidden_states"] lowercase : Optional[int] = outputs["encoder_attentions"] else: lowercase : Union[str, Any] = outputs["hidden_states"] lowercase : Any = outputs["attentions"] self.assertEqual(len(a_ ) , a_ ) lowercase : Optional[Any] = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(a_ ) , a_ ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(a_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def a__ ( self ) -> int: lowercase : List[str] = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) self.assertIsNotNone(a_ ) def a__ ( self ) -> Optional[int]: lowercase , lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() lowercase : Tuple = True lowercase : Tuple = getattr(self.model_tester , "decoder_seq_length" , self.model_tester.seq_length ) lowercase : Dict = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) lowercase : Optional[int] = getattr(self.model_tester , "key_length" , a_ ) lowercase : List[Any] = getattr(self.model_tester , "key_length" , a_ ) def check_decoder_attentions_output(a_ ): lowercase : int = len(a_ ) self.assertEqual(out_len % 2 , 0 ) lowercase : List[Any] = outputs.decoder_attentions self.assertEqual(len(a_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(a_ ): lowercase : Union[str, Any] = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(a_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: lowercase : List[str] = True lowercase : List[str] = False lowercase : Optional[int] = model_class(a_ ) lowercase : int = model(self._prepare_for_class(a_ , a_ ) ) lowercase : Optional[Any] = len(a_ ) self.assertEqual(config.output_hidden_states , a_ ) check_encoder_attentions_output(a_ ) if self.is_encoder_decoder: lowercase : List[str] = model_class(a_ ) lowercase : Optional[int] = model(self._prepare_for_class(a_ , a_ ) ) self.assertEqual(config.output_hidden_states , a_ ) check_decoder_attentions_output(a_ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] lowercase : Optional[Any] = True lowercase : str = model_class(a_ ) lowercase : Union[str, Any] = model(self._prepare_for_class(a_ , a_ ) ) self.assertEqual(config.output_hidden_states , a_ ) check_encoder_attentions_output(a_ ) # Check attention is always last and order is fine lowercase : Optional[int] = True lowercase : str = True lowercase : Optional[Any] = model_class(a_ ) lowercase : Any = model(self._prepare_for_class(a_ , a_ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(a_ ) ) self.assertEqual(model.config.output_hidden_states , a_ ) check_encoder_attentions_output(a_ ) @require_tf class _UpperCamelCase ( unittest.TestCase): '''simple docstring''' @slow def a__ ( self ) -> List[Any]: lowercase : Optional[Any] = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) lowercase : List[str] = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase : Any = model(a_ )[0] lowercase : List[str] = [1, 6, 7_6_8] self.assertEqual(output.shape , a_ ) lowercase : Dict = tf.constant( [ [ [-0.03_47_54_93, -0.4_68_60_34, -0.30_63_88_32], [0.22_63_72_48, -0.26_98_86_46, -0.7_42_34_24], [0.10_32_48_68, -0.45_01_35_08, -0.58_28_07_84], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , a_ , atol=1e-4 )
372
'''simple docstring''' import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""1.0.0a"""): raise Exception("""requires fairseq >= 1.0.0a""") logging.set_verbosity_info() lowerCAmelCase : Optional[int] = logging.get_logger(__name__) lowerCAmelCase : Tuple = """Hello world! cécé herlolip""" def _A ( A ,A ,A ) -> str: lowercase : Optional[Any] = FairseqRobertaModel.from_pretrained(A ) roberta.eval() # disable dropout lowercase : int = roberta.model.encoder.sentence_encoder lowercase : Tuple = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings ,hidden_size=roberta.cfg.model.encoder_embed_dim ,num_hidden_layers=roberta.cfg.model.encoder_layers ,num_attention_heads=roberta.cfg.model.encoder_attention_heads ,intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim ,max_position_embeddings=5_1_4 ,type_vocab_size=1 ,layer_norm_eps=1e-5 ,) if classification_head: lowercase : Tuple = roberta.model.classification_heads["mnli"].out_proj.weight.shape[0] print("Our RoBERTa config:" ,A ) lowercase : Union[str, Any] = XLMRobertaXLForSequenceClassification(A ) if classification_head else XLMRobertaXLForMaskedLM(A ) model.eval() # Now let's copy all the weights. # Embeddings lowercase : Optional[Any] = roberta_sent_encoder.embed_tokens.weight lowercase : Dict = roberta_sent_encoder.embed_positions.weight lowercase : str = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. lowercase : Dict = roberta_sent_encoder.layer_norm.weight lowercase : str = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer lowercase : BertLayer = model.roberta.encoder.layer[i] lowercase : TransformerSentenceEncoderLayer = roberta_sent_encoder.layers[i] lowercase : RobertaAttention = layer.attention lowercase : str = roberta_layer.self_attn_layer_norm.weight lowercase : List[str] = roberta_layer.self_attn_layer_norm.bias # self attention lowercase : BertSelfAttention = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) lowercase : str = roberta_layer.self_attn.q_proj.weight lowercase : List[str] = roberta_layer.self_attn.q_proj.bias lowercase : Union[str, Any] = roberta_layer.self_attn.k_proj.weight lowercase : List[Any] = roberta_layer.self_attn.k_proj.bias lowercase : Dict = roberta_layer.self_attn.v_proj.weight lowercase : Tuple = roberta_layer.self_attn.v_proj.bias # self-attention output lowercase : BertSelfOutput = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape lowercase : Tuple = roberta_layer.self_attn.out_proj.weight lowercase : str = roberta_layer.self_attn.out_proj.bias # this one is final layer norm lowercase : List[Any] = roberta_layer.final_layer_norm.weight lowercase : Optional[Any] = roberta_layer.final_layer_norm.bias # intermediate lowercase : BertIntermediate = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape lowercase : Optional[int] = roberta_layer.fca.weight lowercase : Dict = roberta_layer.fca.bias # output lowercase : BertOutput = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape lowercase : Optional[int] = roberta_layer.fca.weight lowercase : str = roberta_layer.fca.bias # end of layer if classification_head: lowercase : int = roberta.model.classification_heads["mnli"].dense.weight lowercase : List[Any] = roberta.model.classification_heads["mnli"].dense.bias lowercase : Union[str, Any] = roberta.model.classification_heads["mnli"].out_proj.weight lowercase : Any = roberta.model.classification_heads["mnli"].out_proj.bias else: # LM Head lowercase : str = roberta.model.encoder.lm_head.dense.weight lowercase : List[Any] = roberta.model.encoder.lm_head.dense.bias lowercase : str = roberta.model.encoder.lm_head.layer_norm.weight lowercase : Optional[Any] = roberta.model.encoder.lm_head.layer_norm.bias lowercase : int = roberta.model.encoder.lm_head.weight lowercase : Optional[int] = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. lowercase : torch.Tensor = roberta.encode(A ).unsqueeze(0 ) # batch of size 1 lowercase : Tuple = model(A )[0] if classification_head: lowercase : Union[str, Any] = roberta.model.classification_heads["mnli"](roberta.extract_features(A ) ) else: lowercase : Optional[Any] = roberta.model(A )[0] print(our_output.shape ,their_output.shape ) lowercase : Optional[Any] = torch.max(torch.abs(our_output - their_output ) ).item() print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 lowercase : Dict = torch.allclose(A ,A ,atol=1e-3 ) print("Do both models output the same tensors?" ,"🔥" if success else "💩" ) if not success: raise Exception("Something went wRoNg" ) pathlib.Path(A ).mkdir(parents=A ,exist_ok=A ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(A ) if __name__ == "__main__": lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--roberta_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) lowerCAmelCase : Optional[Any] = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
372
1
from typing import TYPE_CHECKING from ...utils import _LazyModule __A = {"processing_wav2vec2_with_lm": ["Wav2Vec2ProcessorWithLM"]} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
712
from __future__ import annotations import numpy as np def lowerCamelCase_ ( UpperCamelCase__ : np.ndarray ) -> tuple[np.ndarray, np.ndarray]: """simple docstring""" __lowerCamelCase , __lowerCamelCase = np.shape(UpperCamelCase__ ) if rows != columns: __lowerCamelCase = ( '\'table\' has to be of square shaped array but got a ' F"""{rows}x{columns} array:\n{table}""" ) raise ValueError(UpperCamelCase__ ) __lowerCamelCase = np.zeros((rows, columns) ) __lowerCamelCase = np.zeros((rows, columns) ) for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): __lowerCamelCase = sum(lower[i][k] * upper[k][j] for k in range(UpperCamelCase__ ) ) if upper[j][j] == 0: raise ArithmeticError('No LU decomposition exists' ) __lowerCamelCase = (table[i][j] - total) / upper[j][j] __lowerCamelCase = 1 for j in range(UpperCamelCase__ , UpperCamelCase__ ): __lowerCamelCase = sum(lower[i][k] * upper[k][j] for k in range(UpperCamelCase__ ) ) __lowerCamelCase = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
167
0
def __a ( lowerCAmelCase_ : int = 10_00 ) -> int: '''simple docstring''' UpperCAmelCase_= -1 UpperCAmelCase_= 0 for a in range(1 ,n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c UpperCAmelCase_= (n * n - 2 * a * n) // (2 * n - 2 * a) UpperCAmelCase_= n - a - b if c * c == (a * a + b * b): UpperCAmelCase_= a * b * c if candidate >= product: UpperCAmelCase_= candidate return product if __name__ == "__main__": print(f'{solution() = }')
593
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def __a ( ) -> int: '''simple docstring''' UpperCAmelCase_, UpperCAmelCase_= 9, 14 # noqa: F841 UpperCAmelCase_= [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] UpperCAmelCase_= defaultdict(lowerCAmelCase_ ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) UpperCAmelCase_= mst(lowerCAmelCase_ ) UpperCAmelCase_= [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: UpperCAmelCase_= tuple(answer[:2] ) UpperCAmelCase_= tuple(edge[::-1] ) assert edge in result or reverse in result
593
1
import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class snake_case_ (lowercase__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = RoCBertTokenizer _lowerCamelCase = None _lowerCamelCase = False _lowerCamelCase = True _lowerCamelCase = filter_non_english def A_ ( self): """simple docstring""" super().setUp() UpperCAmelCase_ : int = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "你", "好", "是", "谁", "a", "b", "c", "d"] UpperCAmelCase_ : int = {} UpperCAmelCase_ : Tuple = {} for i, value in enumerate(lowercase): UpperCAmelCase_ : Tuple = i UpperCAmelCase_ : int = i UpperCAmelCase_ : Any = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"]) UpperCAmelCase_ : str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["word_shape_file"]) UpperCAmelCase_ : str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["word_pronunciation_file"]) with open(self.vocab_file ,"w" ,encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) with open(self.word_shape_file ,"w" ,encoding="utf-8") as word_shape_writer: json.dump(lowercase ,lowercase ,ensure_ascii=lowercase) with open(self.word_pronunciation_file ,"w" ,encoding="utf-8") as word_pronunciation_writer: json.dump(lowercase ,lowercase ,ensure_ascii=lowercase) def A_ ( self): """simple docstring""" UpperCAmelCase_ : Dict = self.tokenizer_class(self.vocab_file ,self.word_shape_file ,self.word_pronunciation_file) UpperCAmelCase_ : Dict = tokenizer.tokenize("你好[SEP]你是谁") self.assertListEqual(lowercase ,["你", "好", "[SEP]", "你", "是", "谁"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase) ,[5, 6, 2, 5, 7, 8]) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(lowercase) ,[5, 6, 2, 5, 7, 8]) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(lowercase) ,[5, 6, 2, 5, 7, 8]) def A_ ( self): """simple docstring""" UpperCAmelCase_ : int = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz") ,["ah", "\u535A", "\u63A8", "zz"]) def A_ ( self): """simple docstring""" UpperCAmelCase_ : Any = RoCBertBasicTokenizer(do_lower_case=lowercase) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? ") ,["hello", "!", "how", "are", "you", "?"]) self.assertListEqual(tokenizer.tokenize("H\u00E9llo") ,["hello"]) def A_ ( self): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=lowercase ,strip_accents=lowercase) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? ") ,["hällo", "!", "how", "are", "you", "?"]) self.assertListEqual(tokenizer.tokenize("H\u00E9llo") ,["h\u00E9llo"]) def A_ ( self): """simple docstring""" UpperCAmelCase_ : List[str] = RoCBertBasicTokenizer(do_lower_case=lowercase ,strip_accents=lowercase) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? ") ,["hallo", "!", "how", "are", "you", "?"]) self.assertListEqual(tokenizer.tokenize("H\u00E9llo") ,["hello"]) def A_ ( self): """simple docstring""" UpperCAmelCase_ : List[Any] = RoCBertBasicTokenizer(do_lower_case=lowercase) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? ") ,["hallo", "!", "how", "are", "you", "?"]) self.assertListEqual(tokenizer.tokenize("H\u00E9llo") ,["hello"]) def A_ ( self): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=lowercase) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? ") ,["HeLLo", "!", "how", "Are", "yoU", "?"]) def A_ ( self): """simple docstring""" UpperCAmelCase_ : List[Any] = RoCBertBasicTokenizer(do_lower_case=lowercase ,strip_accents=lowercase) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? ") ,["HäLLo", "!", "how", "Are", "yoU", "?"]) def A_ ( self): """simple docstring""" UpperCAmelCase_ : int = RoCBertBasicTokenizer(do_lower_case=lowercase ,strip_accents=lowercase) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? ") ,["HaLLo", "!", "how", "Are", "yoU", "?"]) def A_ ( self): """simple docstring""" UpperCAmelCase_ : Optional[int] = RoCBertBasicTokenizer(do_lower_case=lowercase ,never_split=["[UNK]"]) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]") ,["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"]) def A_ ( self): """simple docstring""" UpperCAmelCase_ : str = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] UpperCAmelCase_ : str = {} for i, token in enumerate(lowercase): UpperCAmelCase_ : Union[str, Any] = i UpperCAmelCase_ : Any = RoCBertWordpieceTokenizer(vocab=lowercase ,unk_token="[UNK]") self.assertListEqual(tokenizer.tokenize("") ,[]) self.assertListEqual(tokenizer.tokenize("unwanted running") ,["un", "##want", "##ed", "runn", "##ing"]) self.assertListEqual(tokenizer.tokenize("unwantedX running") ,["[UNK]", "runn", "##ing"]) def A_ ( self): """simple docstring""" self.assertTrue(_is_whitespace(" ")) self.assertTrue(_is_whitespace("\t")) self.assertTrue(_is_whitespace("\r")) self.assertTrue(_is_whitespace("\n")) self.assertTrue(_is_whitespace("\u00A0")) self.assertFalse(_is_whitespace("A")) self.assertFalse(_is_whitespace("-")) def A_ ( self): """simple docstring""" self.assertTrue(_is_control("\u0005")) self.assertFalse(_is_control("A")) self.assertFalse(_is_control(" ")) self.assertFalse(_is_control("\t")) self.assertFalse(_is_control("\r")) def A_ ( self): """simple docstring""" self.assertTrue(_is_punctuation("-")) self.assertTrue(_is_punctuation("$")) self.assertTrue(_is_punctuation("`")) self.assertTrue(_is_punctuation(".")) self.assertFalse(_is_punctuation("A")) self.assertFalse(_is_punctuation(" ")) def A_ ( self): """simple docstring""" UpperCAmelCase_ : int = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(lowercase) for t in ["Test", "\xad", "test"]] ,[["[UNK]"], [], ["[UNK]"]]) if self.test_rust_tokenizer: UpperCAmelCase_ : Dict = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(lowercase) for t in ["Test", "\xad", "test"]] ,[["[UNK]"], [], ["[UNK]"]]) def A_ ( self): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})"""): UpperCAmelCase_ : int = self.rust_tokenizer_class.from_pretrained(lowercase ,**lowercase) UpperCAmelCase_ : Tuple = F"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" UpperCAmelCase_ : str = tokenizer_r.encode_plus( lowercase ,return_attention_mask=lowercase ,return_token_type_ids=lowercase ,return_offsets_mapping=lowercase ,add_special_tokens=lowercase ,) UpperCAmelCase_ : Optional[int] = tokenizer_r.do_lower_case if hasattr(lowercase ,"do_lower_case") else False UpperCAmelCase_ : Optional[Any] = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] ,tokenizer_r.convert_ids_to_tokens(tokens["input_ids"])) self.assertEqual([e[0] for e in expected_results] ,tokens["offset_mapping"]) def A_ ( self): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = ["的", "人", "有"] UpperCAmelCase_ : str = "".join(lowercase) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})"""): UpperCAmelCase_ : Tuple = True UpperCAmelCase_ : Optional[Any] = self.tokenizer_class.from_pretrained(lowercase ,**lowercase) UpperCAmelCase_ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(lowercase ,**lowercase) UpperCAmelCase_ : Optional[int] = tokenizer_p.encode(lowercase ,add_special_tokens=lowercase) UpperCAmelCase_ : Optional[Any] = tokenizer_r.encode(lowercase ,add_special_tokens=lowercase) UpperCAmelCase_ : Union[str, Any] = tokenizer_r.convert_ids_to_tokens(lowercase) UpperCAmelCase_ : List[Any] = tokenizer_p.convert_ids_to_tokens(lowercase) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(lowercase ,lowercase) self.assertListEqual(lowercase ,lowercase) UpperCAmelCase_ : int = False UpperCAmelCase_ : Any = self.rust_tokenizer_class.from_pretrained(lowercase ,**lowercase) UpperCAmelCase_ : Optional[int] = self.tokenizer_class.from_pretrained(lowercase ,**lowercase) UpperCAmelCase_ : Union[str, Any] = tokenizer_r.encode(lowercase ,add_special_tokens=lowercase) UpperCAmelCase_ : Union[str, Any] = tokenizer_p.encode(lowercase ,add_special_tokens=lowercase) UpperCAmelCase_ : List[Any] = tokenizer_r.convert_ids_to_tokens(lowercase) UpperCAmelCase_ : List[Any] = tokenizer_p.convert_ids_to_tokens(lowercase) # it is expected that only the first Chinese character is not preceded by "##". UpperCAmelCase_ : Dict = [ F"""##{token}""" if idx != 0 else token for idx, token in enumerate(lowercase) ] self.assertListEqual(lowercase ,lowercase) self.assertListEqual(lowercase ,lowercase) @slow def A_ ( self): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = self.tokenizer_class(self.vocab_file ,self.word_shape_file ,self.word_pronunciation_file) UpperCAmelCase_ : List[Any] = tokenizer.encode("你好" ,add_special_tokens=lowercase) UpperCAmelCase_ : int = tokenizer.encode("你是谁" ,add_special_tokens=lowercase) UpperCAmelCase_ : Any = tokenizer.build_inputs_with_special_tokens(lowercase) UpperCAmelCase_ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(lowercase ,lowercase) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def A_ ( self): """simple docstring""" UpperCAmelCase_ : List[Any] = self.get_tokenizers(do_lower_case=lowercase) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}"""): UpperCAmelCase_ : Union[str, Any] = "你好,你是谁" UpperCAmelCase_ : Dict = tokenizer.tokenize(lowercase) UpperCAmelCase_ : Tuple = tokenizer.convert_tokens_to_ids(lowercase) UpperCAmelCase_ : int = tokenizer.convert_tokens_to_shape_ids(lowercase) UpperCAmelCase_ : Dict = tokenizer.convert_tokens_to_pronunciation_ids(lowercase) UpperCAmelCase_ : Any = tokenizer.prepare_for_model( lowercase ,lowercase ,lowercase ,add_special_tokens=lowercase) UpperCAmelCase_ : Optional[int] = tokenizer.encode_plus(lowercase ,add_special_tokens=lowercase) self.assertEqual(lowercase ,lowercase)
714
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { '''google/umt5-small''': '''https://huggingface.co/google/umt5-small/resolve/main/config.json''', # See all umt5 models at https://huggingface.co/models?filter=umt5 } class snake_case_ (lowercase__ ): """simple docstring""" _lowerCamelCase = """umt5""" _lowerCamelCase = ["""past_key_values"""] def __init__( self ,lowercase=250112 ,lowercase=512 ,lowercase=64 ,lowercase=1024 ,lowercase=8 ,lowercase=None ,lowercase=6 ,lowercase=32 ,lowercase=128 ,lowercase=0.1 ,lowercase=1E-6 ,lowercase=1.0 ,lowercase="gated-gelu" ,lowercase=True ,lowercase=True ,lowercase="T5Tokenizer" ,lowercase=True ,lowercase=0 ,lowercase=1 ,lowercase=0 ,**lowercase ,): """simple docstring""" super().__init__( is_encoder_decoder=lowercase ,tokenizer_class=lowercase ,tie_word_embeddings=lowercase ,pad_token_id=lowercase ,eos_token_id=lowercase ,decoder_start_token_id=lowercase ,**lowercase ,) UpperCAmelCase_ : Optional[int] = vocab_size UpperCAmelCase_ : Any = d_model UpperCAmelCase_ : Any = d_kv UpperCAmelCase_ : int = d_ff UpperCAmelCase_ : Tuple = num_layers UpperCAmelCase_ : int = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry UpperCAmelCase_ : Optional[int] = num_heads UpperCAmelCase_ : str = relative_attention_num_buckets UpperCAmelCase_ : Any = relative_attention_max_distance UpperCAmelCase_ : Optional[Any] = dropout_rate UpperCAmelCase_ : Union[str, Any] = layer_norm_epsilon UpperCAmelCase_ : Optional[Any] = initializer_factor UpperCAmelCase_ : int = feed_forward_proj UpperCAmelCase_ : str = use_cache UpperCAmelCase_ : List[str] = self.feed_forward_proj.split("-") UpperCAmelCase_ : Any = act_info[-1] UpperCAmelCase_ : Optional[int] = act_info[0] == "gated" if len(lowercase) > 1 and act_info[0] != "gated" or len(lowercase) > 2: raise ValueError( F"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" "Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. " "'gated-gelu' or 'relu'") if feed_forward_proj == "gated-gelu": UpperCAmelCase_ : Tuple = "gelu_new" @property def A_ ( self): """simple docstring""" return self.d_model @property def A_ ( self): """simple docstring""" return self.num_heads @property def A_ ( self): """simple docstring""" return self.num_layers class snake_case_ (lowercase__ ): """simple docstring""" @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def A_ ( self): """simple docstring""" UpperCAmelCase_ : int = { "input_ids": {0: "batch", 1: "encoder_sequence"}, "attention_mask": {0: "batch", 1: "encoder_sequence"}, } if self.use_past: UpperCAmelCase_ : Union[str, Any] = "past_encoder_sequence + sequence" UpperCAmelCase_ : Optional[int] = {0: "batch"} UpperCAmelCase_ : Union[str, Any] = {0: "batch", 1: "past_decoder_sequence + sequence"} else: UpperCAmelCase_ : Optional[int] = {0: "batch", 1: "decoder_sequence"} UpperCAmelCase_ : Dict = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(lowercase ,direction="inputs") return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def A_ ( self): """simple docstring""" return 13 @property def A_ ( self): """simple docstring""" return 5E-4
455
0
'''simple docstring''' import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def A ( UpperCamelCase_ : Dict ) -> Tuple: '''simple docstring''' lowerCAmelCase__ = fname.split(os.path.sep )[-1] return re.search(r"^(.*)_\d+\.jpg$" , UpperCamelCase_ ).groups()[0] class A ( SCREAMING_SNAKE_CASE__ ): def __init__( self : List[Any] , __magic_name__ : Dict , __magic_name__ : Any=None , __magic_name__ : List[Any]=None ): """simple docstring""" lowerCAmelCase__ = file_names lowerCAmelCase__ = image_transform lowerCAmelCase__ = label_to_id def __len__( self : Any ): """simple docstring""" return len(self.file_names ) def __getitem__( self : List[Any] , __magic_name__ : List[Any] ): """simple docstring""" lowerCAmelCase__ = self.file_names[idx] lowerCAmelCase__ = PIL.Image.open(__magic_name__ ) lowerCAmelCase__ = raw_image.convert("RGB" ) if self.image_transform is not None: lowerCAmelCase__ = self.image_transform(__magic_name__ ) lowerCAmelCase__ = extract_label(__magic_name__ ) if self.label_to_id is not None: lowerCAmelCase__ = self.label_to_id[label] return {"image": image, "label": label} def A ( UpperCamelCase_ : Tuple , UpperCamelCase_ : List[str] ) -> List[str]: '''simple docstring''' if args.with_tracking: lowerCAmelCase__ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="all" , project_dir=args.project_dir ) else: lowerCAmelCase__ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase__ = config["lr"] lowerCAmelCase__ = int(config["num_epochs"] ) lowerCAmelCase__ = int(config["seed"] ) lowerCAmelCase__ = int(config["batch_size"] ) lowerCAmelCase__ = config["image_size"] if not isinstance(UpperCamelCase_ , (list, tuple) ): lowerCAmelCase__ = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , "isdigit" ): if args.checkpointing_steps == "epoch": lowerCAmelCase__ = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): lowerCAmelCase__ = int(args.checkpointing_steps ) else: raise ValueError( F"""Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.""" ) else: lowerCAmelCase__ = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: lowerCAmelCase__ = os.path.split(UpperCamelCase_ )[-1].split("." )[0] accelerator.init_trackers(UpperCamelCase_ , UpperCamelCase_ ) # Grab all the image filenames lowerCAmelCase__ = [os.path.join(args.data_dir , UpperCamelCase_ ) for fname in os.listdir(args.data_dir ) if fname.endswith(".jpg" )] # Build the label correspondences lowerCAmelCase__ = [extract_label(UpperCamelCase_ ) for fname in file_names] lowerCAmelCase__ = list(set(UpperCamelCase_ ) ) id_to_label.sort() lowerCAmelCase__ = {lbl: i for i, lbl in enumerate(UpperCamelCase_ )} # Set the seed before splitting the data. np.random.seed(UpperCamelCase_ ) torch.manual_seed(UpperCamelCase_ ) torch.cuda.manual_seed_all(UpperCamelCase_ ) # Split our filenames between train and validation lowerCAmelCase__ = np.random.permutation(len(UpperCamelCase_ ) ) lowerCAmelCase__ = int(0.8 * len(UpperCamelCase_ ) ) lowerCAmelCase__ = random_perm[:cut] lowerCAmelCase__ = random_perm[cut:] # For training we use a simple RandomResizedCrop lowerCAmelCase__ = Compose([RandomResizedCrop(UpperCamelCase_ , scale=(0.5, 1.0) ), ToTensor()] ) lowerCAmelCase__ = PetsDataset( [file_names[i] for i in train_split] , image_transform=UpperCamelCase_ , label_to_id=UpperCamelCase_ ) # For evaluation, we use a deterministic Resize lowerCAmelCase__ = Compose([Resize(UpperCamelCase_ ), ToTensor()] ) lowerCAmelCase__ = PetsDataset([file_names[i] for i in eval_split] , image_transform=UpperCamelCase_ , label_to_id=UpperCamelCase_ ) # Instantiate dataloaders. lowerCAmelCase__ = DataLoader(UpperCamelCase_ , shuffle=UpperCamelCase_ , batch_size=UpperCamelCase_ , num_workers=4 ) lowerCAmelCase__ = DataLoader(UpperCamelCase_ , shuffle=UpperCamelCase_ , batch_size=UpperCamelCase_ , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase__ = create_model("resnet50d" , pretrained=UpperCamelCase_ , num_classes=len(UpperCamelCase_ ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCAmelCase__ = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): lowerCAmelCase__ = False for param in model.get_classifier().parameters(): lowerCAmelCase__ = True # We normalize the batches of images to be a bit faster. lowerCAmelCase__ = torch.tensor(model.default_cfg["mean"] )[None, :, None, None].to(accelerator.device ) lowerCAmelCase__ = torch.tensor(model.default_cfg["std"] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer lowerCAmelCase__ = torch.optim.Adam(params=model.parameters() , lr=lr / 25 ) # Instantiate learning rate scheduler lowerCAmelCase__ = OneCycleLR(optimizer=UpperCamelCase_ , max_lr=UpperCamelCase_ , epochs=UpperCamelCase_ , steps_per_epoch=len(UpperCamelCase_ ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = accelerator.prepare( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # We need to keep track of how many total steps we have iterated over lowerCAmelCase__ = 0 # We also need to keep track of the starting epoch so files are named properly lowerCAmelCase__ = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(F"""Resumed from checkpoint: {args.resume_from_checkpoint}""" ) accelerator.load_state(args.resume_from_checkpoint ) lowerCAmelCase__ = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint lowerCAmelCase__ = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) lowerCAmelCase__ = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` lowerCAmelCase__ = os.path.splitext(UpperCamelCase_ )[0] if "epoch" in training_difference: lowerCAmelCase__ = int(training_difference.replace("epoch_" , "" ) ) + 1 lowerCAmelCase__ = None else: lowerCAmelCase__ = int(training_difference.replace("step_" , "" ) ) lowerCAmelCase__ = resume_step // len(UpperCamelCase_ ) resume_step -= starting_epoch * len(UpperCamelCase_ ) # Now we train the model for epoch in range(UpperCamelCase_ , UpperCamelCase_ ): model.train() if args.with_tracking: lowerCAmelCase__ = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step lowerCAmelCase__ = accelerator.skip_first_batches(UpperCamelCase_ , UpperCamelCase_ ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader lowerCAmelCase__ = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. lowerCAmelCase__ = {k: v.to(accelerator.device ) for k, v in batch.items()} lowerCAmelCase__ = (batch["image"] - mean) / std lowerCAmelCase__ = model(UpperCamelCase_ ) lowerCAmelCase__ = torch.nn.functional.cross_entropy(UpperCamelCase_ , batch["label"] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(UpperCamelCase_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowerCAmelCase__ = F"""step_{overall_step}""" if overall_step % checkpointing_steps == 0: if args.output_dir is not None: lowerCAmelCase__ = os.path.join(args.output_dir , UpperCamelCase_ ) accelerator.save_state(UpperCamelCase_ ) model.eval() lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 for step, batch in enumerate(UpperCamelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. lowerCAmelCase__ = {k: v.to(accelerator.device ) for k, v in batch.items()} lowerCAmelCase__ = (batch["image"] - mean) / std with torch.no_grad(): lowerCAmelCase__ = model(UpperCamelCase_ ) lowerCAmelCase__ = outputs.argmax(dim=-1 ) lowerCAmelCase__ ,lowerCAmelCase__ = accelerator.gather_for_metrics((predictions, batch["label"]) ) lowerCAmelCase__ = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() lowerCAmelCase__ = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}: {1_00 * eval_metric:.2f}""" ) if args.with_tracking: accelerator.log( { "accuracy": 1_00 * eval_metric, "train_loss": total_loss.item() / len(UpperCamelCase_ ), "epoch": epoch, } , step=UpperCamelCase_ , ) if checkpointing_steps == "epoch": lowerCAmelCase__ = F"""epoch_{epoch}""" if args.output_dir is not None: lowerCAmelCase__ = os.path.join(args.output_dir , UpperCamelCase_ ) accelerator.save_state(UpperCamelCase_ ) if args.with_tracking: accelerator.end_training() def A ( ) -> Optional[int]: '''simple docstring''' lowerCAmelCase__ = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument("--data_dir" , required=UpperCamelCase_ , help="The data folder on disk." ) parser.add_argument("--fp16" , action="store_true" , help="If passed, will use FP16 training." ) parser.add_argument( "--mixed_precision" , type=UpperCamelCase_ , default=UpperCamelCase_ , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) parser.add_argument( "--checkpointing_steps" , type=UpperCamelCase_ , default=UpperCamelCase_ , help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch." , ) parser.add_argument( "--output_dir" , type=UpperCamelCase_ , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--resume_from_checkpoint" , type=UpperCamelCase_ , default=UpperCamelCase_ , help="If the training should continue from a checkpoint folder." , ) parser.add_argument( "--with_tracking" , action="store_true" , help="Whether to load in all available experiment trackers from the environment and use them for logging." , ) parser.add_argument( "--project_dir" , type=UpperCamelCase_ , default="logs" , help="Location on where to store experiment tracking logs` and relevent project information" , ) lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = {"lr": 3E-2, "num_epochs": 3, "seed": 42, "batch_size": 64, "image_size": 2_24} training_function(UpperCamelCase_ , UpperCamelCase_ ) if __name__ == "__main__": main()
48
from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) SCREAMING_SNAKE_CASE: str = _symbol_database.Default() SCREAMING_SNAKE_CASE: Dict = _descriptor_pool.Default().AddSerializedFile( b'''\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03''' ) SCREAMING_SNAKE_CASE: Optional[Any] = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, '''sentencepiece_model_pb2''', _globals) if _descriptor._USE_C_DESCRIPTORS is False: SCREAMING_SNAKE_CASE: List[Any] = None SCREAMING_SNAKE_CASE: str = b'''H\003''' # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" SCREAMING_SNAKE_CASE: List[Any] = 4_5 SCREAMING_SNAKE_CASE: List[Any] = 1_5_8_1 SCREAMING_SNAKE_CASE: Union[str, Any] = 1_5_1_7 SCREAMING_SNAKE_CASE: Any = 1_5_7_0 SCREAMING_SNAKE_CASE: Union[str, Any] = 1_5_8_4 SCREAMING_SNAKE_CASE: str = 1_7_9_3 SCREAMING_SNAKE_CASE: List[Any] = 1_7_9_5 SCREAMING_SNAKE_CASE: Any = 1_9_1_6 SCREAMING_SNAKE_CASE: Optional[Any] = 1_8_6_4 SCREAMING_SNAKE_CASE: Union[str, Any] = 1_9_0_5 SCREAMING_SNAKE_CASE: str = 1_9_1_9 SCREAMING_SNAKE_CASE: Any = 2_4_2_9 SCREAMING_SNAKE_CASE: Dict = 2_2_0_8 SCREAMING_SNAKE_CASE: Optional[Any] = 2_4_1_8 SCREAMING_SNAKE_CASE: Optional[Any] = 2_3_2_3 SCREAMING_SNAKE_CASE: Tuple = 2_4_0_7 # @@protoc_insertion_point(module_scope)
360
0
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class snake_case ( __snake_case ): """simple docstring""" __lowerCAmelCase = (UnCLIPScheduler,) def snake_case__ ( self , **lowerCAmelCase_ ): __lowercase = { "num_train_timesteps": 1000, "variance_type": "fixed_small_log", "clip_sample": True, "clip_sample_range": 1.0, "prediction_type": "epsilon", } config.update(**_UpperCAmelCase ) return config def snake_case__ ( self ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase ) def snake_case__ ( self ): for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=_UpperCAmelCase ) def snake_case__ ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=_UpperCAmelCase ) def snake_case__ ( self ): for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=_UpperCAmelCase ) def snake_case__ ( self ): for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=_UpperCAmelCase ) def snake_case__ ( self ): for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=_UpperCAmelCase , prev_timestep=_UpperCAmelCase ) def snake_case__ ( self ): __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(variance_type="fixed_small_log" ) __lowercase = scheduler_class(**_UpperCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0_0_0_0E-1_0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_54_96_25 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_99_49_87 ) ) < 1E-5 def snake_case__ ( self ): __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(variance_type="learned_range" ) __lowercase = scheduler_class(**_UpperCAmelCase ) __lowercase = 0.5 assert scheduler._get_variance(1 , predicted_variance=_UpperCAmelCase ) - -10.1_71_27_90 < 1E-5 assert scheduler._get_variance(487 , predicted_variance=_UpperCAmelCase ) - -5.7_99_80_52 < 1E-5 assert scheduler._get_variance(999 , predicted_variance=_UpperCAmelCase ) - -0.0_01_00_11 < 1E-5 def snake_case__ ( self ): __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**_UpperCAmelCase ) __lowercase = scheduler.timesteps __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter __lowercase = torch.manual_seed(0 ) for i, t in enumerate(_UpperCAmelCase ): # 1. predict noise residual __lowercase = model(_UpperCAmelCase , _UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 __lowercase = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ).prev_sample __lowercase = pred_prev_sample __lowercase = torch.sum(torch.abs(_UpperCAmelCase ) ) __lowercase = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 2_52.2_68_24_95 ) < 1E-2 assert abs(result_mean.item() - 0.3_28_47_43 ) < 1E-3 def snake_case__ ( self ): __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(25 ) __lowercase = scheduler.timesteps __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter __lowercase = torch.manual_seed(0 ) for i, t in enumerate(_UpperCAmelCase ): # 1. predict noise residual __lowercase = model(_UpperCAmelCase , _UpperCAmelCase ) if i + 1 == timesteps.shape[0]: __lowercase = None else: __lowercase = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 __lowercase = scheduler.step( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , prev_timestep=_UpperCAmelCase , generator=_UpperCAmelCase ).prev_sample __lowercase = pred_prev_sample __lowercase = torch.sum(torch.abs(_UpperCAmelCase ) ) __lowercase = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 2_58.2_04_49_83 ) < 1E-2 assert abs(result_mean.item() - 0.3_36_20_38 ) < 1E-3 def snake_case__ ( self ): pass def snake_case__ ( self ): pass
714
import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser( description=( 'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='bert', choices=['bert']) parser.add_argument('--model_name', default='bert-base-uncased', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') lowerCAmelCase__ = parser.parse_args() if args.model_type == "bert": lowerCAmelCase__ = BertForMaskedLM.from_pretrained(args.model_name) lowerCAmelCase__ = 'bert' else: raise ValueError('args.model_type should be "bert".') lowerCAmelCase__ = model.state_dict() lowerCAmelCase__ = {} for w in ["word_embeddings", "position_embeddings"]: lowerCAmelCase__ = state_dict[F"{prefix}.embeddings.{w}.weight"] for w in ["weight", "bias"]: lowerCAmelCase__ = state_dict[F"{prefix}.embeddings.LayerNorm.{w}"] lowerCAmelCase__ = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: lowerCAmelCase__ = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}" ] lowerCAmelCase__ = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}" ] lowerCAmelCase__ = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}" ] lowerCAmelCase__ = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}" ] lowerCAmelCase__ = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}" ] lowerCAmelCase__ = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}" ] lowerCAmelCase__ = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}" ] lowerCAmelCase__ = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}" ] std_idx += 1 lowerCAmelCase__ = state_dict['cls.predictions.decoder.weight'] lowerCAmelCase__ = state_dict['cls.predictions.bias'] if args.vocab_transform: for w in ["weight", "bias"]: lowerCAmelCase__ = state_dict[F"cls.predictions.transform.dense.{w}"] lowerCAmelCase__ = state_dict[F"cls.predictions.transform.LayerNorm.{w}"] print(F"N layers selected for distillation: {std_idx}") print(F"Number of params transferred for distillation: {len(compressed_sd.keys())}") print(F"Save transferred checkpoint to {args.dump_checkpoint}.") torch.save(compressed_sd, args.dump_checkpoint)
576
0
from __future__ import annotations from typing import Any class lowercase : def __init__( self , _a ) -> None: _A : int = num_of_nodes _A : list[list[int]] = [] _A : dict[int, int] = {} def a__ ( self , _a , _a , _a ) -> None: self.m_edges.append([u_node, v_node, weight] ) def a__ ( self , _a ) -> int: if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def a__ ( self , _a ) -> None: if self.m_component[u_node] != u_node: for k in self.m_component: _A : List[str] = self.find_component(_a ) def a__ ( self , _a , _a , _a ) -> None: if component_size[u_node] <= component_size[v_node]: _A : Union[str, Any] = v_node component_size[v_node] += component_size[u_node] self.set_component(_a ) elif component_size[u_node] >= component_size[v_node]: _A : str = self.find_component(_a ) component_size[u_node] += component_size[v_node] self.set_component(_a ) def a__ ( self ) -> None: _A : Tuple = [] _A : Tuple = 0 _A : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) _A : int = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: _A , _A , _A : str = edge _A : Dict = self.m_component[u] _A : int = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): _A : List[str] = [u, v, w] for edge in minimum_weight_edge: if isinstance(_a , _a ): _A , _A , _A : int = edge _A : Any = self.m_component[u] _A : int = self.m_component[v] if u_component != v_component: mst_weight += w self.union(_a , _a , _a ) print(F'''Added edge [{u} - {v}]\nAdded weight: {w}\n''' ) num_of_components -= 1 _A : Tuple = [-1] * self.m_num_of_nodes print(F'''The total weight of the minimal spanning tree is: {mst_weight}''' ) def lowerCAmelCase_ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
307
from __future__ import annotations import bisect def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ = 0,snake_case_ = -1 ): if hi < 0: _A : Optional[Any] = len(snake_case_ ) while lo < hi: _A : Any = lo + (hi - lo) // 2 if sorted_collection[mid] < item: _A : List[str] = mid + 1 else: _A : Optional[int] = mid return lo def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ = 0,snake_case_ = -1 ): if hi < 0: _A : Any = len(snake_case_ ) while lo < hi: _A : Union[str, Any] = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: _A : Tuple = mid + 1 else: _A : Optional[Any] = mid return lo def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ = 0,snake_case_ = -1 ): sorted_collection.insert(bisect_left(snake_case_,snake_case_,snake_case_,snake_case_ ),snake_case_ ) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ = 0,snake_case_ = -1 ): sorted_collection.insert(bisect_right(snake_case_,snake_case_,snake_case_,snake_case_ ),snake_case_ ) def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Optional[Any] = 0 _A : str = len(snake_case_ ) - 1 while left <= right: _A : Dict = left + (right - left) // 2 _A : Dict = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: _A : int = midpoint - 1 else: _A : int = midpoint + 1 return None def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : str = bisect.bisect_left(snake_case_,snake_case_ ) if index != len(snake_case_ ) and sorted_collection[index] == item: return index return None def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ): if right < left: return None _A : Dict = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(snake_case_,snake_case_,snake_case_,midpoint - 1 ) else: return binary_search_by_recursion(snake_case_,snake_case_,midpoint + 1,snake_case_ ) if __name__ == "__main__": _snake_case = input("Enter numbers separated by comma:\n").strip() _snake_case = sorted(int(item) for item in user_input.split(",")) _snake_case = int(input("Enter a single number to be found in the list:\n")) _snake_case = binary_search(collection, target) if result is None: print(f"""{target} was not found in {collection}.""") else: print(f"""{target} was found at position {result} in {collection}.""")
307
1
"""simple docstring""" def a ( __UpperCAmelCase : int = 1_0_0_0 ) -> int: return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
213
"""simple docstring""" from __future__ import annotations def a ( __UpperCAmelCase : list[int] , __UpperCAmelCase : int ) -> list[int]: __magic_name__: int = 0 __magic_name__: List[str] = len(__UpperCAmelCase ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: __magic_name__: Dict = i + 1 else: __magic_name__: Tuple = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f'''{two_pointer([2, 7, 11, 15], 9) = }''')
213
1
'''simple docstring''' import os import sys import unittest SCREAMING_SNAKE_CASE__ : Optional[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path SCREAMING_SNAKE_CASE__ : Any = os.path.join(git_repo_path, '''src''', '''transformers''') SCREAMING_SNAKE_CASE__ : List[Any] = '''\n{0} = None\n''' SCREAMING_SNAKE_CASE__ : Dict = '''\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n''' SCREAMING_SNAKE_CASE__ : Dict = '''\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n''' class a__( unittest.TestCase ): def _lowercase ( self ) -> Union[str, Any]: snake_case__ =find_backend(' _import_structure["models.albert"].append("AlbertTokenizerFast")' ) self.assertIsNone(_A ) snake_case__ =find_backend(' if not is_tokenizers_available():' ) self.assertEqual(_A , 'tokenizers' ) snake_case__ =find_backend(' if not is_tensorflow_text_available():' ) self.assertEqual(_A , 'tensorflow_text' ) snake_case__ =find_backend(' if not (is_sentencepiece_available() and is_tokenizers_available()):' ) self.assertEqual(_A , 'sentencepiece_and_tokenizers' ) snake_case__ =find_backend( ' if not (is_sentencepiece_available() and is_tensorflow_text_available()):' ) self.assertEqual(_A , 'sentencepiece_and_tensorflow_text' ) snake_case__ =find_backend( ' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):' ) self.assertEqual(_A , 'sentencepiece_and_tokenizers_and_vision' ) def _lowercase ( self ) -> str: snake_case__ =read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('torch' , _A ) self.assertIn('tensorflow_text' , _A ) self.assertIn('sentencepiece_and_tokenizers' , _A ) # Likewise, we can't assert on the exact content of a key self.assertIn('BertModel' , objects['torch'] ) self.assertIn('TFBertModel' , objects['tf'] ) self.assertIn('FlaxBertModel' , objects['flax'] ) self.assertIn('BertModel' , objects['torch'] ) self.assertIn('TFBertTokenizer' , objects['tensorflow_text'] ) self.assertIn('convert_slow_tokenizer' , objects['sentencepiece_and_tokenizers'] ) def _lowercase ( self ) -> Optional[Any]: snake_case__ =create_dummy_object('CONSTANT' , '\'torch\'' ) self.assertEqual(_A , '\nCONSTANT = None\n' ) snake_case__ =create_dummy_object('function' , '\'torch\'' ) self.assertEqual( _A , '\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n' ) snake_case__ =''' class FakeClass(metaclass=DummyObject): _backends = \'torch\' def __init__(self, *args, **kwargs): requires_backends(self, \'torch\') ''' snake_case__ =create_dummy_object('FakeClass' , '\'torch\'' ) self.assertEqual(_A , _A ) def _lowercase ( self ) -> Dict: snake_case__ ='''# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, ["torch"]) class FakeClass(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) ''' snake_case__ =create_dummy_files({'torch': ['CONSTANT', 'function', 'FakeClass']} ) self.assertEqual(dummy_files['torch'] , _A )
538
def snake_case( __magic_name__ ) -> int: '''simple docstring''' assert isinstance(__magic_name__ , __magic_name__ ), F"""The input value of [n={number}] is not an integer""" if number == 1: return 2 elif number < 1: lowercase : Union[str, Any] = F"""The input value of [n={number}] has to be > 0""" raise ValueError(__magic_name__ ) else: lowercase : int = sylvester(number - 1 ) lowercase : List[Any] = num - 1 lowercase : str = num return lower * upper + 1 if __name__ == "__main__": print(f'''The 8th number in Sylvester\'s sequence: {sylvester(8)}''')
217
0
'''simple docstring''' import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) A_ : List[str] =logging.getLogger() A_ : Optional[int] =logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __UpperCAmelCase ( __a ): def UpperCAmelCase_ ( self , _lowerCamelCase ): os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) lowerCAmelCase_ = {'''source''': '''What is love ?''', '''target''': '''life'''} lowerCAmelCase_ = {'''train''': 12, '''val''': 2, '''test''': 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: lowerCAmelCase_ = '''\n'''.join([contents[field]] * n_lines[split] ) with open(os.path.join(_lowerCamelCase , F'''{split}.{field}''' ) , '''w''' ) as f: f.write(_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = "pytorch" ): lowerCAmelCase_ = self.get_auto_remove_tmp_dir() lowerCAmelCase_ = os.path.join(_lowerCamelCase , '''output''' ) lowerCAmelCase_ = os.path.join(_lowerCamelCase , '''data''' ) self._create_dummy_data(data_dir=_lowerCamelCase ) lowerCAmelCase_ = F''' --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ '''.split() if gpus > 0: testargs.append(F'''--gpus={gpus}''' ) if is_apex_available(): testargs.append('''--fp16''' ) else: testargs.append('''--gpus=0''' ) testargs.append('''--distributed_backend=ddp_cpu''' ) testargs.append('''--num_processes=2''' ) lowerCAmelCase_ = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(_lowerCamelCase , env=self.get_env() ) lowerCAmelCase_ = os.path.join(_lowerCamelCase , '''metrics.json''' ) with open(_lowerCamelCase ) as f: lowerCAmelCase_ = json.load(_lowerCamelCase ) return result @require_torch_gpu def UpperCAmelCase_ ( self ): lowerCAmelCase_ = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result['''test'''][0]['''test_avg_em'''] , 0.2 ) @require_torch_multi_gpu def UpperCAmelCase_ ( self ): lowerCAmelCase_ = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result['''test'''][0]['''test_avg_em'''] , 0.2 ) @require_torch_gpu @require_ray def UpperCAmelCase_ ( self ): lowerCAmelCase_ = self._run_finetune(gpus=1 , distributed_retriever='''ray''' ) self.assertGreaterEqual(result['''test'''][0]['''test_avg_em'''] , 0.2 ) @require_torch_multi_gpu @require_ray def UpperCAmelCase_ ( self ): lowerCAmelCase_ = self._run_finetune(gpus=1 , distributed_retriever='''ray''' ) self.assertGreaterEqual(result['''test'''][0]['''test_avg_em'''] , 0.2 )
606
'''simple docstring''' from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING A_ : Optional[int] =logging.get_logger(__name__) @add_end_docstrings(__a ) class __UpperCAmelCase ( __a ): def __init__( self , *_lowerCamelCase , **_lowerCamelCase ): super().__init__(*_lowerCamelCase , **_lowerCamelCase ) requires_backends(self , '''decord''' ) self.check_model_type(_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None ): lowerCAmelCase_ = {} if frame_sampling_rate is not None: lowerCAmelCase_ = frame_sampling_rate if num_frames is not None: lowerCAmelCase_ = num_frames lowerCAmelCase_ = {} if top_k is not None: lowerCAmelCase_ = top_k return preprocess_params, {}, postprocess_params def __call__( self , _lowerCamelCase , **_lowerCamelCase ): return super().__call__(_lowerCamelCase , **_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=1 ): if num_frames is None: lowerCAmelCase_ = self.model.config.num_frames if video.startswith('''http://''' ) or video.startswith('''https://''' ): lowerCAmelCase_ = BytesIO(requests.get(_lowerCamelCase ).content ) lowerCAmelCase_ = VideoReader(_lowerCamelCase ) videoreader.seek(0 ) lowerCAmelCase_ = 0 lowerCAmelCase_ = num_frames * frame_sampling_rate - 1 lowerCAmelCase_ = np.linspace(_lowerCamelCase , _lowerCamelCase , num=_lowerCamelCase , dtype=np.intaa ) lowerCAmelCase_ = videoreader.get_batch(_lowerCamelCase ).asnumpy() lowerCAmelCase_ = list(_lowerCamelCase ) lowerCAmelCase_ = self.image_processor(_lowerCamelCase , return_tensors=self.framework ) return model_inputs def UpperCAmelCase_ ( self , _lowerCamelCase ): lowerCAmelCase_ = self.model(**_lowerCamelCase ) return model_outputs def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase=5 ): if top_k > self.model.config.num_labels: lowerCAmelCase_ = self.model.config.num_labels if self.framework == "pt": lowerCAmelCase_ = model_outputs.logits.softmax(-1 )[0] lowerCAmelCase_ ,lowerCAmelCase_ = probs.topk(_lowerCamelCase ) else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) lowerCAmelCase_ = scores.tolist() lowerCAmelCase_ = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(_lowerCamelCase , _lowerCamelCase )]
606
1
'''simple docstring''' import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = (DPMSolverSDEScheduler,) __SCREAMING_SNAKE_CASE = 1_0 def __lowerCamelCase ( self , **lowercase ) -> Optional[Any]: __UpperCamelCase = { """num_train_timesteps""": 1_1_0_0, """beta_start""": 0.0_001, """beta_end""": 0.02, """beta_schedule""": """linear""", """noise_sampler_seed""": 0, } config.update(**__SCREAMING_SNAKE_CASE ) return config def __lowerCamelCase ( self ) -> Union[str, Any]: for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=__SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ) -> List[Any]: for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=__SCREAMING_SNAKE_CASE , beta_end=__SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ) -> Any: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ) -> int: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ) -> Optional[Any]: __UpperCamelCase = self.scheduler_classes[0] __UpperCamelCase = self.get_scheduler_config() __UpperCamelCase = scheduler_class(**__SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(self.num_inference_steps ) __UpperCamelCase = self.dummy_model() __UpperCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma __UpperCamelCase = sample.to(__SCREAMING_SNAKE_CASE ) for i, t in enumerate(scheduler.timesteps ): __UpperCamelCase = scheduler.scale_model_input(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __UpperCamelCase = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __UpperCamelCase = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __UpperCamelCase = output.prev_sample __UpperCamelCase = torch.sum(torch.abs(__SCREAMING_SNAKE_CASE ) ) __UpperCamelCase = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47_821_044_921_875 ) < 1E-2 assert abs(result_mean.item() - 0.2_178_705_964_565_277 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_352_111_816_406 ) < 1E-2 assert abs(result_mean.item() - 0.22_342_906_892_299_652 ) < 1E-3 else: assert abs(result_sum.item() - 162.52_383_422_851_562 ) < 1E-2 assert abs(result_mean.item() - 0.211_619_570_851_326 ) < 1E-3 def __lowerCamelCase ( self ) -> List[str]: __UpperCamelCase = self.scheduler_classes[0] __UpperCamelCase = self.get_scheduler_config(prediction_type="""v_prediction""" ) __UpperCamelCase = scheduler_class(**__SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(self.num_inference_steps ) __UpperCamelCase = self.dummy_model() __UpperCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma __UpperCamelCase = sample.to(__SCREAMING_SNAKE_CASE ) for i, t in enumerate(scheduler.timesteps ): __UpperCamelCase = scheduler.scale_model_input(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __UpperCamelCase = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __UpperCamelCase = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __UpperCamelCase = output.prev_sample __UpperCamelCase = torch.sum(torch.abs(__SCREAMING_SNAKE_CASE ) ) __UpperCamelCase = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77_149_200_439_453 ) < 1E-2 assert abs(result_mean.item() - 0.16_226_289_014_816_284 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1_663_360_595_703 ) < 1E-2 assert abs(result_mean.item() - 0.16_688_326_001_167_297 ) < 1E-3 else: assert abs(result_sum.item() - 119.8_487_548_828_125 ) < 1E-2 assert abs(result_mean.item() - 0.1_560_530_662_536_621 ) < 1E-3 def __lowerCamelCase ( self ) -> Union[str, Any]: __UpperCamelCase = self.scheduler_classes[0] __UpperCamelCase = self.get_scheduler_config() __UpperCamelCase = scheduler_class(**__SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(self.num_inference_steps , device=__SCREAMING_SNAKE_CASE ) __UpperCamelCase = self.dummy_model() __UpperCamelCase = self.dummy_sample_deter.to(__SCREAMING_SNAKE_CASE ) * scheduler.init_noise_sigma for t in scheduler.timesteps: __UpperCamelCase = scheduler.scale_model_input(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __UpperCamelCase = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __UpperCamelCase = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __UpperCamelCase = output.prev_sample __UpperCamelCase = torch.sum(torch.abs(__SCREAMING_SNAKE_CASE ) ) __UpperCamelCase = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46_957_397_460_938 ) < 1E-2 assert abs(result_mean.item() - 0.21_805_934_607_982_635 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_353_637_695_312 ) < 1E-2 assert abs(result_mean.item() - 0.22_342_908_382_415_771 ) < 1E-3 else: assert abs(result_sum.item() - 162.52_383_422_851_562 ) < 1E-2 assert abs(result_mean.item() - 0.211_619_570_851_326 ) < 1E-3 def __lowerCamelCase ( self ) -> List[Any]: __UpperCamelCase = self.scheduler_classes[0] __UpperCamelCase = self.get_scheduler_config() __UpperCamelCase = scheduler_class(**__SCREAMING_SNAKE_CASE , use_karras_sigmas=__SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(self.num_inference_steps , device=__SCREAMING_SNAKE_CASE ) __UpperCamelCase = self.dummy_model() __UpperCamelCase = self.dummy_sample_deter.to(__SCREAMING_SNAKE_CASE ) * scheduler.init_noise_sigma __UpperCamelCase = sample.to(__SCREAMING_SNAKE_CASE ) for t in scheduler.timesteps: __UpperCamelCase = scheduler.scale_model_input(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __UpperCamelCase = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __UpperCamelCase = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __UpperCamelCase = output.prev_sample __UpperCamelCase = torch.sum(torch.abs(__SCREAMING_SNAKE_CASE ) ) __UpperCamelCase = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66_974_135_742_188 ) < 1E-2 assert abs(result_mean.item() - 0.23_003_872_730_981_811 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63_653_564_453_125 ) < 1E-2 assert abs(result_mean.item() - 0.23_003_872_730_981_811 ) < 1E-2 else: assert abs(result_sum.item() - 170.3_135_223_388_672 ) < 1E-2 assert abs(result_mean.item() - 0.23_003_872_730_981_811 ) < 1E-2
601
'''simple docstring''' UpperCAmelCase : Tuple = range(2, 2_0 + 1) UpperCAmelCase : int = [1_0**k for k in range(ks[-1] + 1)] UpperCAmelCase : dict[int, dict[int, list[list[int]]]] = {} def a__ ( a__ , a__ , a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = sum(a_i[j] for j in range(a__ , len(a__ ) ) ) __SCREAMING_SNAKE_CASE = sum(a_i[j] * base[j] for j in range(min(len(a__ ) , a__ ) ) ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 0, 0 __SCREAMING_SNAKE_CASE = n - i __SCREAMING_SNAKE_CASE = memo.get(a__ ) if sub_memo is not None: __SCREAMING_SNAKE_CASE = sub_memo.get(a__ ) if jumps is not None and len(a__ ) > 0: # find and make the largest jump without going over __SCREAMING_SNAKE_CASE = -1 for _k in range(len(a__ ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: __SCREAMING_SNAKE_CASE = _k break if max_jump >= 0: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = jumps[max_jump] # since the difference between jumps is cached, add c __SCREAMING_SNAKE_CASE = diff + c for j in range(min(a__ , len(a__ ) ) ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = divmod(a__ , 10 ) if new_c > 0: add(a__ , a__ , a__ ) else: __SCREAMING_SNAKE_CASE = [] else: __SCREAMING_SNAKE_CASE = {c: []} __SCREAMING_SNAKE_CASE = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = next_term(a__ , k - 1 , i + dn , a__ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = compute(a__ , a__ , i + dn , a__ ) diff += _diff dn += terms_jumped __SCREAMING_SNAKE_CASE = sub_memo[c] # keep jumps sorted by # of terms skipped __SCREAMING_SNAKE_CASE = 0 while j < len(a__ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(a__ , (diff, dn, k) ) return (diff, dn) def a__ ( a__ , a__ , a__ , a__ ): """simple docstring""" if i >= n: return 0, i if k > len(a__ ): a_i.extend([0 for _ in range(k - len(a__ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) __SCREAMING_SNAKE_CASE = i __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 0, 0, 0 for j in range(len(a__ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 __SCREAMING_SNAKE_CASE = ds_c + ds_b diff += addend __SCREAMING_SNAKE_CASE = 0 for j in range(a__ ): __SCREAMING_SNAKE_CASE = a_i[j] + addend __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = divmod(a__ , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(a__ , a__ , a__ ) return diff, i - start_i def a__ ( a__ , a__ , a__ ): """simple docstring""" for j in range(a__ , len(a__ ) ): __SCREAMING_SNAKE_CASE = digits[j] + addend if s >= 10: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = divmod(a__ , 10 ) __SCREAMING_SNAKE_CASE = addend // 10 + quotient else: __SCREAMING_SNAKE_CASE = s __SCREAMING_SNAKE_CASE = addend // 10 if addend == 0: break while addend > 0: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = divmod(a__ , 10 ) digits.append(a__ ) def a__ ( a__ = 10**15 ): """simple docstring""" __SCREAMING_SNAKE_CASE = [1] __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = 0 while True: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = next_term(a__ , 20 , i + dn , a__ ) dn += terms_jumped if dn == n - i: break __SCREAMING_SNAKE_CASE = 0 for j in range(len(a__ ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f"""{solution() = }""")
627
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __snake_case : Dict = logging.get_logger(__name__) __snake_case : Tuple = { "shi-labs/dinat-mini-in1k-224": "https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json", # See all Dinat models at https://huggingface.co/models?filter=dinat } class A ( a , a ): __UpperCAmelCase : Optional[Any] = """dinat""" __UpperCAmelCase : Dict = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self , snake_case_=4 , snake_case_=3 , snake_case_=6_4 , snake_case_=[3, 4, 6, 5] , snake_case_=[2, 4, 8, 1_6] , snake_case_=7 , snake_case_=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , snake_case_=3.0 , snake_case_=True , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.1 , snake_case_="gelu" , snake_case_=0.02 , snake_case_=1E-5 , snake_case_=0.0 , snake_case_=None , snake_case_=None , **snake_case_ , ) -> Tuple: super().__init__(**snake_case_ ) _a = patch_size _a = num_channels _a = embed_dim _a = depths _a = len(snake_case_ ) _a = num_heads _a = kernel_size _a = dilations _a = mlp_ratio _a = qkv_bias _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = drop_path_rate _a = hidden_act _a = layer_norm_eps _a = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _a = int(embed_dim * 2 ** (len(snake_case_ ) - 1) ) _a = layer_scale_init_value _a = ["stem"] + [F'''stage{idx}''' for idx in range(1 , len(snake_case_ ) + 1 )] _a , _a = get_aligned_output_features_output_indices( out_features=snake_case_ , out_indices=snake_case_ , stage_names=self.stage_names )
691
'''simple docstring''' import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) __snake_case : Tuple = "\\n Text data.\n Second line of data." __snake_case : int = "file" @pytest.fixture(scope="session" ) def _lowercase ( lowerCamelCase__ : Optional[Any] ): _a = tmp_path_factory.mktemp("data" ) / (FILE_PATH + ".zstd") _a = bytes(lowerCamelCase__, "utf-8" ) with zstd.open(lowerCamelCase__, "wb" ) as f: f.write(lowerCamelCase__ ) return path @pytest.fixture def _lowercase ( lowerCamelCase__ : int ): with open(os.path.join(tmpfs.local_root_dir, lowerCamelCase__ ), "w" ) as f: f.write(lowerCamelCase__ ) return FILE_PATH @pytest.mark.parametrize("compression_format", ["gzip", "xz", "zstd"] ) def _lowercase ( lowerCamelCase__ : str, lowerCamelCase__ : Optional[int], lowerCamelCase__ : Optional[int], lowerCamelCase__ : List[str], lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : Dict ): _a = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_path} _a = input_paths[compression_format] _a = tmp_path / "cache" _a = DownloadConfig(cache_dir=lowerCamelCase__, extract_compressed_file=lowerCamelCase__ ) _a = cached_path(lowerCamelCase__, download_config=lowerCamelCase__ ) with open(lowerCamelCase__ ) as f: _a = f.read() with open(lowerCamelCase__ ) as f: _a = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("default_extracted", [True, False] ) @pytest.mark.parametrize("default_cache_dir", [True, False] ) def _lowercase ( lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : List[Any], lowerCamelCase__ : List[str], lowerCamelCase__ : List[str], lowerCamelCase__ : List[str] ): _a = "custom_cache" _a = "custom_extracted_dir" _a = tmp_path / "custom_extracted_path" if default_extracted: _a = ("downloads" if default_cache_dir else custom_cache_dir, "extracted") else: monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_DIR", lowerCamelCase__ ) monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH", str(lowerCamelCase__ ) ) _a = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) _a = xz_file _a = ( DownloadConfig(extract_compressed_file=lowerCamelCase__ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir, extract_compressed_file=lowerCamelCase__ ) ) _a = cached_path(lowerCamelCase__, download_config=lowerCamelCase__ ) assert Path(lowerCamelCase__ ).parent.parts[-2:] == expected def _lowercase ( lowerCamelCase__ : Union[str, Any] ): # absolute path _a = str(Path(lowerCamelCase__ ).resolve() ) assert cached_path(lowerCamelCase__ ) == text_file # relative path _a = str(Path(lowerCamelCase__ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(lowerCamelCase__ ) == text_file def _lowercase ( lowerCamelCase__ : Dict ): # absolute path _a = str(tmp_path.resolve() / "__missing_file__.txt" ) with pytest.raises(lowerCamelCase__ ): cached_path(lowerCamelCase__ ) # relative path _a = "./__missing_file__.txt" with pytest.raises(lowerCamelCase__ ): cached_path(lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Union[str, Any] ): _a = get_from_cache(F'''tmp://{tmpfs_file}''' ) with open(lowerCamelCase__ ) as f: _a = f.read() assert output_file_content == FILE_CONTENT @patch("datasets.config.HF_DATASETS_OFFLINE", lowerCamelCase__ ) def _lowercase ( ): with pytest.raises(lowerCamelCase__ ): cached_path("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE", lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Union[str, Any] ): _a = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(lowerCamelCase__ ): http_get("https://huggingface.co", temp_file=lowerCamelCase__ ) with pytest.raises(lowerCamelCase__ ): http_head("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE", lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Union[str, Any] ): _a = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(lowerCamelCase__ ): ftp_get("ftp://huggingface.co", temp_file=lowerCamelCase__ ) with pytest.raises(lowerCamelCase__ ): ftp_head("ftp://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE", lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Optional[Any] ): _a = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(lowerCamelCase__ ): fsspec_get("s3://huggingface.co", temp_file=lowerCamelCase__ ) with pytest.raises(lowerCamelCase__ ): fsspec_head("s3://huggingface.co" )
691
1
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class SCREAMING_SNAKE_CASE_ ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" __magic_name__ : List[Any] = IFInpaintingPipeline __magic_name__ : Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} __magic_name__ : Tuple = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __magic_name__ : List[Any] = PipelineTesterMixin.required_optional_params - {'latents'} def lowerCamelCase__ ( self : Any ) -> int: """simple docstring""" return self._get_dummy_components() def lowerCamelCase__ ( self : Optional[int] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : int=0 ) -> Union[str, Any]: """simple docstring""" if str(lowerCAmelCase ).startswith("""mps""" ): __UpperCamelCase : List[str] = torch.manual_seed(lowerCAmelCase ) else: __UpperCamelCase : str = torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) __UpperCamelCase : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCAmelCase ) ).to(lowerCAmelCase ) __UpperCamelCase : List[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCAmelCase ) ).to(lowerCAmelCase ) __UpperCamelCase : int = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowerCamelCase__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def lowerCamelCase__ ( self : Any ) -> Dict: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def lowerCamelCase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def lowerCamelCase__ ( self : Tuple ) -> List[Any]: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def lowerCamelCase__ ( self : str ) -> Any: """simple docstring""" self._test_save_load_local() def lowerCamelCase__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
279
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class SCREAMING_SNAKE_CASE_ ( _UpperCamelCase ): """simple docstring""" def lowerCamelCase__ ( self : Dict ) -> List[Any]: """simple docstring""" __UpperCamelCase : Optional[Any] = SMALL_MODEL_IDENTIFIER __UpperCamelCase : List[str] = """pt""" __UpperCamelCase : List[Any] = """tf""" def lowerCamelCase__ ( self : Any , lowerCAmelCase : List[Any] ) -> List[Any]: """simple docstring""" __UpperCamelCase : str = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(lowerCAmelCase ) def lowerCamelCase__ ( self : List[Any] , lowerCAmelCase : Any ) -> Optional[Any]: """simple docstring""" __UpperCamelCase : List[str] = TFAutoModel.from_pretrained(self.test_model , from_pt=lowerCAmelCase ) model_tf.save_pretrained(lowerCAmelCase ) def lowerCamelCase__ ( self : str ) -> Tuple: """simple docstring""" __UpperCamelCase : Any = """mock_framework""" # Framework provided - return whatever the user provides __UpperCamelCase : List[Any] = FeaturesManager.determine_framework(self.test_model , lowerCAmelCase ) self.assertEqual(lowerCAmelCase , lowerCAmelCase ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(lowerCAmelCase ) __UpperCamelCase : Union[str, Any] = FeaturesManager.determine_framework(lowerCAmelCase , lowerCAmelCase ) self.assertEqual(lowerCAmelCase , lowerCAmelCase ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(lowerCAmelCase ) __UpperCamelCase : Any = FeaturesManager.determine_framework(lowerCAmelCase , lowerCAmelCase ) self.assertEqual(lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase__ ( self : Optional[Any] ) -> str: """simple docstring""" with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(lowerCAmelCase ) __UpperCamelCase : Optional[Any] = FeaturesManager.determine_framework(lowerCAmelCase ) self.assertEqual(lowerCAmelCase , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(lowerCAmelCase ) __UpperCamelCase : Union[str, Any] = FeaturesManager.determine_framework(lowerCAmelCase ) self.assertEqual(lowerCAmelCase , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(lowerCAmelCase ): __UpperCamelCase : int = FeaturesManager.determine_framework(lowerCAmelCase ) def lowerCamelCase__ ( self : Dict ) -> Tuple: """simple docstring""" __UpperCamelCase : str = MagicMock(return_value=lowerCAmelCase ) with patch("""transformers.onnx.features.is_tf_available""" , lowerCAmelCase ): __UpperCamelCase : Any = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(lowerCAmelCase , self.framework_pt ) # PyTorch not in environment -> use TensorFlow __UpperCamelCase : Optional[int] = MagicMock(return_value=lowerCAmelCase ) with patch("""transformers.onnx.features.is_torch_available""" , lowerCAmelCase ): __UpperCamelCase : Any = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(lowerCAmelCase , self.framework_tf ) # Both in environment -> use PyTorch __UpperCamelCase : Dict = MagicMock(return_value=lowerCAmelCase ) __UpperCamelCase : Any = MagicMock(return_value=lowerCAmelCase ) with patch("""transformers.onnx.features.is_tf_available""" , lowerCAmelCase ), patch( """transformers.onnx.features.is_torch_available""" , lowerCAmelCase ): __UpperCamelCase : int = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(lowerCAmelCase , self.framework_pt ) # Both not in environment -> raise error __UpperCamelCase : Union[str, Any] = MagicMock(return_value=lowerCAmelCase ) __UpperCamelCase : Tuple = MagicMock(return_value=lowerCAmelCase ) with patch("""transformers.onnx.features.is_tf_available""" , lowerCAmelCase ), patch( """transformers.onnx.features.is_torch_available""" , lowerCAmelCase ): with self.assertRaises(lowerCAmelCase ): __UpperCamelCase : str = FeaturesManager.determine_framework(self.test_model )
279
1
"""simple docstring""" from PIL import Image def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> int: '''simple docstring''' lowercase , lowercase = image.size lowercase = 0 lowercase = image.load() for i in range(__A ): for j in range(__A ): lowercase = pixels[j, i] mean += pixel mean //= width * height for j in range(__A ): for i in range(__A ): lowercase = 2_5_5 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": __lowerCAmelCase : Tuple =mean_threshold(Image.open("""path_to_image""").convert("""L""")) image.save("""output_image_path""")
701
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> bool: '''simple docstring''' lowercase = (1 + 2_4 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def UpperCAmelCase__ ( lowerCAmelCase__ :int = 5_0_0_0 ) -> int: '''simple docstring''' lowercase = [(i * (3 * i - 1)) // 2 for i in range(1 , lowerCAmelCase__ )] for i, pentagonal_i in enumerate(lowerCAmelCase__ ): for j in range(lowerCAmelCase__ , len(lowerCAmelCase__ ) ): lowercase = pentagonal_nums[j] lowercase = pentagonal_i + pentagonal_j lowercase = pentagonal_j - pentagonal_i if is_pentagonal(lowerCAmelCase__ ) and is_pentagonal(lowerCAmelCase__ ): return b return -1 if __name__ == "__main__": print(F"""{solution() = }""")
197
0
'''simple docstring''' import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class A__ ( A__ , unittest.TestCase ): A__ = BioGptTokenizer A__ = False def A ( self : str ) -> List[Any]: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _SCREAMING_SNAKE_CASE =[ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] _SCREAMING_SNAKE_CASE =dict(zip(_a , range(len(_a ) ) ) ) _SCREAMING_SNAKE_CASE =['l o 123', 'lo w 1456', 'e r</w> 1789', ''] _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' ) as fp: fp.write(json.dumps(_a ) ) with open(self.merges_file , 'w' ) as fp: fp.write('\n'.join(_a ) ) def A ( self : Optional[int] , _a : Union[str, Any] ) -> List[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE ='lower newer' _SCREAMING_SNAKE_CASE ='lower newer' return input_text, output_text def A ( self : Dict ) -> List[str]: '''simple docstring''' _SCREAMING_SNAKE_CASE =BioGptTokenizer(self.vocab_file , self.merges_file ) _SCREAMING_SNAKE_CASE ='lower' _SCREAMING_SNAKE_CASE =['low', 'er</w>'] _SCREAMING_SNAKE_CASE =tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) _SCREAMING_SNAKE_CASE =tokens + ['<unk>'] _SCREAMING_SNAKE_CASE =[14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , _a ) @slow def A ( self : str ) -> List[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =BioGptTokenizer.from_pretrained('microsoft/biogpt' ) _SCREAMING_SNAKE_CASE =tokenizer.encode('sequence builders' , add_special_tokens=_a ) _SCREAMING_SNAKE_CASE =tokenizer.encode('multi-sequence build' , add_special_tokens=_a ) _SCREAMING_SNAKE_CASE =tokenizer.build_inputs_with_special_tokens(_a ) _SCREAMING_SNAKE_CASE =tokenizer.build_inputs_with_special_tokens(_a , _a ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
405
'''simple docstring''' import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP lowerCamelCase : Optional[Any] = False try: lowerCamelCase : Union[str, Any] = _is_package_available("google.colab") except ModuleNotFoundError: pass @input.register class A__ : def __init__( self : Tuple , _a : str = None , _a : list = [] ) -> str: '''simple docstring''' _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =choices _SCREAMING_SNAKE_CASE =prompt if sys.platform == "win32": _SCREAMING_SNAKE_CASE ='*' else: _SCREAMING_SNAKE_CASE ='➔ ' def A ( self : Dict , _a : Union[str, Any] , _a : str = "" ) -> Dict: '''simple docstring''' if sys.platform != "win32": writeColor(self.choices[index] , 32 , _a ) else: forceWrite(self.choices[index] , _a ) def A ( self : str , _a : int ) -> int: '''simple docstring''' if index == self.position: forceWrite(f" {self.arrow_char} " ) self.write_choice(_a ) else: forceWrite(f" {self.choices[index]}" ) reset_cursor() def A ( self : Tuple , _a : Direction , _a : int = 1 ) -> Union[str, Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(_a ) move_cursor(_a , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP['up'] ) def A ( self : int ) -> Optional[Any]: '''simple docstring''' self.move_direction(Direction.UP ) @input.mark(KEYMAP['down'] ) def A ( self : Any ) -> List[Any]: '''simple docstring''' self.move_direction(Direction.DOWN ) @input.mark(KEYMAP['newline'] ) def A ( self : Any ) -> List[Any]: '''simple docstring''' move_cursor(len(self.choices ) - self.position , 'DOWN' ) return self.position @input.mark(KEYMAP['interrupt'] ) def A ( self : Union[str, Any] ) -> str: '''simple docstring''' move_cursor(len(self.choices ) - self.position , 'DOWN' ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(_a )] for number in range(10 )] ) def A ( self : Tuple ) -> List[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =int(chr(self.current_selection ) ) _SCREAMING_SNAKE_CASE =index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , _a ) else: return else: return def A ( self : str , _a : int = 0 ) -> Optional[Any]: '''simple docstring''' if self.prompt: linebreak() forceWrite(self.prompt , '\n' ) if in_colab: forceWrite('Please input a choice index (starting from 0), and press enter' , '\n' ) else: forceWrite('Please select a choice using the arrow or number keys, and selecting with enter' , '\n' ) _SCREAMING_SNAKE_CASE =default_choice for i in range(len(self.choices ) ): self.print_choice(_a ) forceWrite('\n' ) move_cursor(len(self.choices ) - self.position , 'UP' ) with cursor.hide(): while True: if in_colab: try: _SCREAMING_SNAKE_CASE =int(builtins.input() ) except ValueError: _SCREAMING_SNAKE_CASE =default_choice else: _SCREAMING_SNAKE_CASE =self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , 'UP' ) clear_line() self.write_choice(_a , '\n' ) return choice
405
1
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() __magic_name__ = logging.get_logger(__name__) def UpperCAmelCase__( __UpperCAmelCase : Any ): __snake_case : List[Any] = torch.load(__UpperCAmelCase , map_location='cpu' ) if "model" in sd.keys(): __snake_case : List[Any] = torch.load(__UpperCAmelCase , map_location='cpu' )['model'] # pop unnecessary weights __snake_case : List[Any] = [ 'decoder.version', 'decoder.output_projection.weight', ] for key in keys_to_delete: if key in sd: sd.pop(__UpperCAmelCase ) __snake_case : List[str] = { 'decoder.project_in_dim.weight': 'decoder.project_in.weight', 'decoder.project_out_dim.weight': 'decoder.project_out.weight', 'decoder.layer_norm.weight': 'decoder.final_layer_norm.weight', 'decoder.layer_norm.bias': 'decoder.final_layer_norm.bias', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: __snake_case : List[str] = sd.pop(__UpperCAmelCase ) __snake_case : Optional[int] = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: __snake_case : Dict = sd[key] # We split QKV in separate Q,K,V __snake_case : Dict = key.replace('.qkv_proj.' , '.q_proj.' ) __snake_case : Optional[Any] = key.replace('.qkv_proj.' , '.k_proj.' ) __snake_case : Optional[int] = key.replace('.qkv_proj.' , '.v_proj.' ) __snake_case : Optional[int] = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 __snake_case , __snake_case , __snake_case : Any = torch.split(__UpperCAmelCase , depth // 3 , dim=0 ) __snake_case : Tuple = q __snake_case : Optional[Any] = k __snake_case : Optional[Any] = v del sd[key] return sd @torch.no_grad() def UpperCAmelCase__( __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Any=None ): __snake_case : Optional[Any] = load_checkpoint(__UpperCAmelCase ) if config is not None: __snake_case : str = OPTConfig.from_pretrained(__UpperCAmelCase ) else: __snake_case : str = OPTConfig() __snake_case : List[Any] = OPTModel(__UpperCAmelCase ).half().eval() model.load_state_dict(__UpperCAmelCase ) # Check results Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) model.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--fairseq_path''', type=str, help=( '''path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:''' ''' https://huggingface.co/models?other=opt_metasq''' ), ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--hf_config''', default=None, type=str, help='''Define HF config.''') __magic_name__ = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
679
def UpperCAmelCase__( __UpperCAmelCase : int | float | str ): try: __snake_case : int = float(__UpperCAmelCase ) except ValueError: raise ValueError('Please enter a valid number' ) __snake_case : Any = decimal - int(__UpperCAmelCase ) if fractional_part == 0: return int(__UpperCAmelCase ), 1 else: __snake_case : Tuple = len(str(__UpperCAmelCase ).split('.' )[1] ) __snake_case : Tuple = int(decimal * (10**number_of_frac_digits) ) __snake_case : List[Any] = 10**number_of_frac_digits __snake_case , __snake_case : List[Any] = denominator, numerator while True: __snake_case : Any = dividend % divisor if remainder == 0: break __snake_case , __snake_case : Optional[int] = divisor, remainder __snake_case , __snake_case : Union[str, Any] = numerator / divisor, denominator / divisor return int(__UpperCAmelCase ), int(__UpperCAmelCase ) if __name__ == "__main__": print(F'''{decimal_to_fraction(2) = }''') print(F'''{decimal_to_fraction(89.0) = }''') print(F'''{decimal_to_fraction("67") = }''') print(F'''{decimal_to_fraction("45.0") = }''') print(F'''{decimal_to_fraction(1.5) = }''') print(F'''{decimal_to_fraction("6.25") = }''') print(F'''{decimal_to_fraction("78td") = }''')
679
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer __lowercase : str ={"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} __lowercase : Dict ={ """vocab_file""": { """google/electra-small-generator""": ( """https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt""" ), """google/electra-base-generator""": """https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt""", """google/electra-large-generator""": ( """https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt""" ), """google/electra-small-discriminator""": ( """https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt""" ), """google/electra-base-discriminator""": ( """https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt""" ), """google/electra-large-discriminator""": ( """https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """google/electra-small-generator""": ( """https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json""" ), """google/electra-base-generator""": ( """https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json""" ), """google/electra-large-generator""": ( """https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json""" ), """google/electra-small-discriminator""": ( """https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json""" ), """google/electra-base-discriminator""": ( """https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json""" ), """google/electra-large-discriminator""": ( """https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json""" ), }, } __lowercase : Optional[int] ={ """google/electra-small-generator""": 512, """google/electra-base-generator""": 512, """google/electra-large-generator""": 512, """google/electra-small-discriminator""": 512, """google/electra-base-discriminator""": 512, """google/electra-large-discriminator""": 512, } __lowercase : int ={ """google/electra-small-generator""": {"""do_lower_case""": True}, """google/electra-base-generator""": {"""do_lower_case""": True}, """google/electra-large-generator""": {"""do_lower_case""": True}, """google/electra-small-discriminator""": {"""do_lower_case""": True}, """google/electra-base-discriminator""": {"""do_lower_case""": True}, """google/electra-large-discriminator""": {"""do_lower_case""": True}, } class A ( __lowercase ): _snake_case =VOCAB_FILES_NAMES _snake_case =PRETRAINED_VOCAB_FILES_MAP _snake_case =PRETRAINED_INIT_CONFIGURATION _snake_case =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case =ElectraTokenizer def __init__( self: Dict , _lowerCAmelCase: List[str]=None , _lowerCAmelCase: Tuple=None , _lowerCAmelCase: List[str]=True , _lowerCAmelCase: Optional[int]="[UNK]" , _lowerCAmelCase: int="[SEP]" , _lowerCAmelCase: Tuple="[PAD]" , _lowerCAmelCase: int="[CLS]" , _lowerCAmelCase: Union[str, Any]="[MASK]" , _lowerCAmelCase: Optional[Any]=True , _lowerCAmelCase: str=None , **_lowerCAmelCase: Dict , ) -> Tuple: '''simple docstring''' super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , tokenize_chinese_chars=_lowerCAmelCase , strip_accents=_lowerCAmelCase , **_lowerCAmelCase , ) UpperCAmelCase_ =json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , _lowerCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , _lowerCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , _lowerCAmelCase ) != tokenize_chinese_chars ): UpperCAmelCase_ =getattr(_lowerCAmelCase , normalizer_state.pop("type" ) ) UpperCAmelCase_ =do_lower_case UpperCAmelCase_ =strip_accents UpperCAmelCase_ =tokenize_chinese_chars UpperCAmelCase_ =normalizer_class(**_lowerCAmelCase ) UpperCAmelCase_ =do_lower_case def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: Optional[int] , _lowerCAmelCase: int=None ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCAmelCase__ ( self: Optional[Any] , _lowerCAmelCase: List[int] , _lowerCAmelCase: Optional[List[int]] = None ) -> List[int]: '''simple docstring''' UpperCAmelCase_ =[self.sep_token_id] UpperCAmelCase_ =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: str , _lowerCAmelCase: Optional[str] = None ) -> Tuple[str]: '''simple docstring''' UpperCAmelCase_ =self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase )
54
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A ( __lowercase , unittest.TestCase ): _snake_case =KandinskyVaaImgaImgPipeline _snake_case =['''image_embeds''', '''negative_image_embeds''', '''image'''] _snake_case =[ '''image_embeds''', '''negative_image_embeds''', '''image''', ] _snake_case =[ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] _snake_case =False @property def lowerCAmelCase__ ( self: List[Any] ) -> Dict: '''simple docstring''' return 32 @property def lowerCAmelCase__ ( self: Any ) -> Optional[int]: '''simple docstring''' return 32 @property def lowerCAmelCase__ ( self: Optional[Any] ) -> List[str]: '''simple docstring''' return self.time_input_dim @property def lowerCAmelCase__ ( self: List[str] ) -> Dict: '''simple docstring''' return self.time_input_dim * 4 @property def lowerCAmelCase__ ( self: int ) -> str: '''simple docstring''' return 100 @property def lowerCAmelCase__ ( self: List[Any] ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ ={ "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } UpperCAmelCase_ =UNetaDConditionModel(**_lowerCAmelCase ) return model @property def lowerCAmelCase__ ( self: Any ) -> Tuple: '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCAmelCase__ ( self: Union[str, Any] ) -> Any: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ =VQModel(**self.dummy_movq_kwargs ) return model def lowerCAmelCase__ ( self: Dict ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =self.dummy_unet UpperCAmelCase_ =self.dummy_movq UpperCAmelCase_ ={ "num_train_timesteps": 1000, "beta_schedule": "linear", "beta_start": 0.0_00_85, "beta_end": 0.0_12, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } UpperCAmelCase_ =DDIMScheduler(**_lowerCAmelCase ) UpperCAmelCase_ ={ "unet": unet, "scheduler": scheduler, "movq": movq, } return components def lowerCAmelCase__ ( self: int , _lowerCAmelCase: Any , _lowerCAmelCase: Optional[Any]=0 ) -> Dict: '''simple docstring''' UpperCAmelCase_ =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) UpperCAmelCase_ =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _lowerCAmelCase ) # create init_image UpperCAmelCase_ =floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) UpperCAmelCase_ =image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ =Image.fromarray(np.uinta(_lowerCAmelCase ) ).convert("RGB" ).resize((256, 256) ) if str(_lowerCAmelCase ).startswith("mps" ): UpperCAmelCase_ =torch.manual_seed(_lowerCAmelCase ) else: UpperCAmelCase_ =torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) UpperCAmelCase_ ={ "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 10, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def lowerCAmelCase__ ( self: int ) -> int: '''simple docstring''' UpperCAmelCase_ ="cpu" UpperCAmelCase_ =self.get_dummy_components() UpperCAmelCase_ =self.pipeline_class(**_lowerCAmelCase ) UpperCAmelCase_ =pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ =pipe(**self.get_dummy_inputs(_lowerCAmelCase ) ) UpperCAmelCase_ =output.images UpperCAmelCase_ =pipe( **self.get_dummy_inputs(_lowerCAmelCase ) , return_dict=_lowerCAmelCase , )[0] UpperCAmelCase_ =image[0, -3:, -3:, -1] UpperCAmelCase_ =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ =np.array( [0.6_19_97_78, 0.63_98_44_06, 0.46_14_57_85, 0.62_94_49_84, 0.5_62_22_15, 0.47_30_61_32, 0.47_44_14_56, 0.4_60_76_06, 0.48_71_92_63] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class A ( unittest.TestCase ): def lowerCAmelCase__ ( self: List[Any] ) -> str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self: int ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_img2img_frog.npy" ) UpperCAmelCase_ =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) UpperCAmelCase_ ="A red cartoon frog, 4k" UpperCAmelCase_ =KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(_lowerCAmelCase ) UpperCAmelCase_ =KandinskyVaaImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder" , torch_dtype=torch.floataa ) UpperCAmelCase_ =pipeline.to(_lowerCAmelCase ) pipeline.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ =torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase_ , UpperCAmelCase_ =pipe_prior( _lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=5 , negative_prompt="" , ).to_tuple() UpperCAmelCase_ =pipeline( image=_lowerCAmelCase , image_embeds=_lowerCAmelCase , negative_image_embeds=_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="np" , ) UpperCAmelCase_ =output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCAmelCase , _lowerCAmelCase )
54
1
"""simple docstring""" from __future__ import annotations from random import choice def __lowerCamelCase ( SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" return choice(lowerCamelCase_ ) def __lowerCamelCase ( SCREAMING_SNAKE_CASE,SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" _UpperCAmelCase = random_pivot(lowerCamelCase_ ) # partition based on pivot # linear time _UpperCAmelCase = [e for e in lst if e < pivot] _UpperCAmelCase = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(lowerCamelCase_ ) == k - 1: return pivot # pivot is in elements bigger than k elif len(lowerCamelCase_ ) < k - 1: return kth_number(lowerCamelCase_,k - len(lowerCamelCase_ ) - 1 ) # pivot is in elements smaller than k else: return kth_number(lowerCamelCase_,lowerCamelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
702
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class lowerCAmelCase ( snake_case ): lowerCAmelCase__ = ( """This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.""" """It takes two arguments named `image` which should be the original image, and `label` which should be a text """ """describing the elements what should be identified in the segmentation mask. The tool returns the mask.""" ) lowerCAmelCase__ = """CIDAS/clipseg-rd64-refined""" lowerCAmelCase__ = """image_segmenter""" lowerCAmelCase__ = CLIPSegForImageSegmentation lowerCAmelCase__ = ["""image""", """text"""] lowerCAmelCase__ = ["""image"""] def __init__( self , *a__ , **a__ ): requires_backends(self , ['vision'] ) super().__init__(*a__ , **a__ ) def __A ( self , a__ , a__ ): return self.pre_processor(text=[label] , images=[image] , padding=a__ , return_tensors='pt' ) def __A ( self , a__ ): with torch.no_grad(): _UpperCAmelCase = self.model(**a__ ).logits return logits def __A ( self , a__ ): _UpperCAmelCase = outputs.cpu().detach().numpy() _UpperCAmelCase = 0 _UpperCAmelCase = 1 return Image.fromarray((array * 2_55).astype(np.uinta ) )
494
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __lowerCAmelCase : Optional[int] = logging.get_logger(__name__) def __lowerCAmelCase ( __UpperCamelCase : Tuple ): '''simple docstring''' if isinstance(UpperCAmelCase_ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(UpperCAmelCase_ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(UpperCAmelCase_ ): return [[videos]] raise ValueError(F'Could not make batched video from {videos}' ) class _lowerCAmelCase ( __UpperCAmelCase ): """simple docstring""" _lowerCamelCase = ['pixel_values'] def __init__( self , _lowercase = True , _lowercase = None , _lowercase = PILImageResampling.BILINEAR , _lowercase = True , _lowercase = None , _lowercase = True , _lowercase = 1 / 2_5_5 , _lowercase = True , _lowercase = None , _lowercase = None , **_lowercase , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**__lowercase ) snake_case_ : Tuple = size if size is not None else {'''shortest_edge''': 2_2_4} snake_case_ : str = get_size_dict(__lowercase , default_to_square=__lowercase ) snake_case_ : Optional[Any] = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} snake_case_ : Union[str, Any] = get_size_dict(__lowercase , param_name="""crop_size""" ) snake_case_ : Any = do_resize snake_case_ : Tuple = size snake_case_ : str = do_center_crop snake_case_ : Union[str, Any] = crop_size snake_case_ : Optional[Any] = resample snake_case_ : Union[str, Any] = do_rescale snake_case_ : int = rescale_factor snake_case_ : str = do_normalize snake_case_ : Optional[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case_ : List[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase = PILImageResampling.BILINEAR , _lowercase = None , **_lowercase , ) -> Optional[int]: '''simple docstring''' snake_case_ : Optional[Any] = get_size_dict(__lowercase , default_to_square=__lowercase ) if "shortest_edge" in size: snake_case_ : Union[str, Any] = get_resize_output_image_size(__lowercase , size["""shortest_edge"""] , default_to_square=__lowercase ) elif "height" in size and "width" in size: snake_case_ : List[Any] = (size['''height'''], size['''width''']) else: raise ValueError(f'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) return resize(__lowercase , size=__lowercase , resample=__lowercase , data_format=__lowercase , **__lowercase ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase = None , **_lowercase , ) -> Optional[Any]: '''simple docstring''' snake_case_ : Optional[int] = get_size_dict(__lowercase ) if "height" not in size or "width" not in size: raise ValueError(f'Size must have \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(__lowercase , size=(size["""height"""], size["""width"""]) , data_format=__lowercase , **__lowercase ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase = None , **_lowercase , ) -> Union[str, Any]: '''simple docstring''' return rescale(__lowercase , scale=__lowercase , data_format=__lowercase , **__lowercase ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase = None , **_lowercase , ) -> Union[str, Any]: '''simple docstring''' return normalize(__lowercase , mean=__lowercase , std=__lowercase , data_format=__lowercase , **__lowercase ) def UpperCAmelCase__ ( self , _lowercase , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = ChannelDimension.FIRST , ) -> str: '''simple docstring''' if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. snake_case_ : Tuple = to_numpy_array(__lowercase ) if do_resize: snake_case_ : Tuple = self.resize(image=__lowercase , size=__lowercase , resample=__lowercase ) if do_center_crop: snake_case_ : Union[str, Any] = self.center_crop(__lowercase , size=__lowercase ) if do_rescale: snake_case_ : int = self.rescale(image=__lowercase , scale=__lowercase ) if do_normalize: snake_case_ : int = self.normalize(image=__lowercase , mean=__lowercase , std=__lowercase ) snake_case_ : Optional[Any] = to_channel_dimension_format(__lowercase , __lowercase ) return image def UpperCAmelCase__ ( self , _lowercase , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = ChannelDimension.FIRST , **_lowercase , ) -> Dict: '''simple docstring''' snake_case_ : Tuple = do_resize if do_resize is not None else self.do_resize snake_case_ : str = resample if resample is not None else self.resample snake_case_ : List[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case_ : List[Any] = do_rescale if do_rescale is not None else self.do_rescale snake_case_ : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case_ : List[str] = do_normalize if do_normalize is not None else self.do_normalize snake_case_ : Any = image_mean if image_mean is not None else self.image_mean snake_case_ : Optional[Any] = image_std if image_std is not None else self.image_std snake_case_ : int = size if size is not None else self.size snake_case_ : Union[str, Any] = get_size_dict(__lowercase , default_to_square=__lowercase ) snake_case_ : str = crop_size if crop_size is not None else self.crop_size snake_case_ : Optional[Any] = get_size_dict(__lowercase , param_name="""crop_size""" ) if not valid_images(__lowercase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) snake_case_ : Union[str, Any] = make_batched(__lowercase ) snake_case_ : List[str] = [ [ self._preprocess_image( image=__lowercase , do_resize=__lowercase , size=__lowercase , resample=__lowercase , do_center_crop=__lowercase , crop_size=__lowercase , do_rescale=__lowercase , rescale_factor=__lowercase , do_normalize=__lowercase , image_mean=__lowercase , image_std=__lowercase , data_format=__lowercase , ) for img in video ] for video in videos ] snake_case_ : Dict = {'''pixel_values''': videos} return BatchFeature(data=__lowercase , tensor_type=__lowercase )
58
"""simple docstring""" import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel lowercase__ :Union[str, Any] = HfApi() lowercase__ :Optional[Any] = {} # fmt: off lowercase__ :Optional[int] = torch.tensor([ -0.7_515, -1.6_883, 0.2_420, 0.0_300, 0.6_347, 1.3_433, -1.1_743, -3.7_467, 1.2_342, -2.2_485, 0.4_636, 0.8_076, -0.7_991, 0.3_969, 0.8_498, 0.9_189, -1.8_887, -3.3_522, 0.7_639, 0.2_040, 0.6_271, -2.7_148, -1.6_316, 3.0_839, 0.3_186, 0.2_721, -0.9_759, -1.2_461, 2.6_257, 1.3_557 ]) lowercase__ :Optional[Any] = torch.tensor([ -2.3_639, -2.5_344, 0.0_054, -0.6_674, 1.5_990, 1.0_158, 0.3_124, -2.1_436, 1.8_795, -2.5_429, -0.1_566, -0.3_973, 1.2_490, 2.6_447, 1.2_283, -0.5_208, -2.8_154, -3.5_119, 2.3_838, 1.2_033, 1.7_201, -2.1_256, -1.4_576, 2.7_948, 2.4_204, -0.9_752, -1.2_546, 0.8_027, 3.2_758, 3.1_365 ]) lowercase__ :Optional[Any] = torch.tensor([ -0.6_531, -0.6_891, -0.3_172, -0.5_375, -0.9_140, -0.5_367, -0.1_175, -0.7_869, -0.3_808, -0.4_513, -0.2_098, -0.0_083, 0.3_183, 0.5_140, 0.2_247, -0.1_304, -0.1_302, -0.2_802, -0.2_084, -0.2_025, -0.4_967, -0.4_873, -0.0_861, 0.6_925, 0.0_250, 0.1_290, -0.1_543, 0.6_316, 1.0_460, 1.4_943 ]) lowercase__ :List[Any] = torch.tensor([ 0.0_911, 0.1_107, 0.0_182, 0.0_435, -0.0_805, -0.0_608, 0.0_381, 0.2_172, -0.0_280, 0.1_327, -0.0_299, -0.0_255, -0.0_050, -0.1_170, -0.1_046, 0.0_309, 0.1_367, 0.1_728, -0.0_533, -0.0_748, -0.0_534, 0.1_624, 0.0_384, -0.1_805, -0.0_707, 0.0_642, 0.0_220, -0.0_134, -0.1_333, -0.1_505 ]) lowercase__ :List[Any] = torch.tensor([ 0.1_321, 0.1_337, 0.0_440, 0.0_622, -0.0_591, -0.0_370, 0.0_503, 0.2_133, -0.0_177, 0.1_415, -0.0_116, -0.0_112, 0.0_044, -0.0_980, -0.0_789, 0.0_395, 0.1_502, 0.1_785, -0.0_488, -0.0_514, -0.0_404, 0.1_539, 0.0_454, -0.1_559, -0.0_665, 0.0_659, 0.0_383, -0.0_005, -0.1_266, -0.1_386 ]) lowercase__ :Optional[int] = torch.tensor([ 0.1_154, 0.1_218, 0.0_307, 0.0_526, -0.0_711, -0.0_541, 0.0_366, 0.2_078, -0.0_267, 0.1_317, -0.0_226, -0.0_193, -0.0_014, -0.1_055, -0.0_902, 0.0_330, 0.1_391, 0.1_709, -0.0_562, -0.0_693, -0.0_560, 0.1_482, 0.0_381, -0.1_683, -0.0_681, 0.0_661, 0.0_331, -0.0_046, -0.1_268, -0.1_431 ]) lowercase__ :Optional[Any] = torch.tensor([ 0.1_192, 0.1_240, 0.0_414, 0.0_606, -0.0_557, -0.0_412, 0.0_430, 0.2_042, -0.0_200, 0.1_385, -0.0_115, -0.0_132, 0.0_017, -0.0_965, -0.0_802, 0.0_398, 0.1_433, 0.1_747, -0.0_458, -0.0_533, -0.0_407, 0.1_545, 0.0_419, -0.1_574, -0.0_645, 0.0_626, 0.0_341, -0.0_010, -0.1_199, -0.1_390 ]) lowercase__ :List[str] = torch.tensor([ 0.1_075, 0.1_074, 0.0_205, 0.0_431, -0.0_774, -0.0_607, 0.0_298, 0.2_042, -0.0_320, 0.1_267, -0.0_281, -0.0_250, -0.0_064, -0.1_091, -0.0_946, 0.0_290, 0.1_328, 0.1_650, -0.0_580, -0.0_738, -0.0_586, 0.1_440, 0.0_337, -0.1_746, -0.0_712, 0.0_605, 0.0_250, -0.0_099, -0.1_316, -0.1_473 ]) lowercase__ :str = torch.tensor([ -1.4_572, -2.0_481, -0.0_414, -0.6_005, 1.4_136, 0.5_848, 0.4_028, -2.7_330, 1.2_212, -2.1_228, 0.2_155, 0.4_039, 0.7_662, 2.0_535, 0.7_477, -0.3_243, -2.1_758, -2.7_648, 1.6_947, 0.7_026, 1.2_338, -1.6_078, -0.8_682, 2.2_810, 1.8_574, -0.5_718, -0.5_586, -0.0_186, 2.3_415, 2.1_251]) lowercase__ :Union[str, Any] = torch.tensor([ -1.3_690, -1.9_720, -0.4_090, -0.6_966, 1.4_660, 0.9_938, -0.1_385, -2.7_324, 0.7_736, -1.8_917, 0.2_923, 0.4_293, 0.1_693, 1.4_112, 1.1_887, -0.3_181, -2.2_160, -2.6_381, 1.3_170, 0.8_163, 0.9_240, -1.6_544, -0.6_099, 2.5_259, 1.6_430, -0.9_090, -0.9_392, -0.0_126, 2.4_268, 2.3_266 ]) lowercase__ :List[Any] = torch.tensor([ -1.3_525, -1.9_628, -0.3_956, -0.6_860, 1.4_664, 1.0_014, -0.1_259, -2.7_212, 0.7_772, -1.8_811, 0.2_996, 0.4_388, 0.1_704, 1.4_029, 1.1_701, -0.3_027, -2.2_053, -2.6_287, 1.3_350, 0.8_131, 0.9_274, -1.6_292, -0.6_098, 2.5_131, 1.6_505, -0.8_958, -0.9_298, -0.0_151, 2.4_257, 2.3_355 ]) lowercase__ :Optional[Any] = torch.tensor([ -2.0_585, -2.7_897, -0.2_850, -0.8_940, 1.9_052, 0.5_702, 0.6_345, -3.8_959, 1.5_932, -3.2_319, 0.1_974, 0.0_287, 1.7_566, 2.6_543, 0.8_387, -0.5_351, -3.2_736, -4.3_375, 2.9_029, 1.6_390, 1.4_640, -2.1_701, -1.9_013, 2.9_341, 3.4_981, -0.6_255, -1.1_644, -0.1_591, 3.7_097, 3.2_066 ]) lowercase__ :Optional[int] = torch.tensor([ -2.3_139, -2.5_594, -0.0_197, -0.6_785, 1.7_001, 1.1_606, 0.3_075, -2.1_740, 1.8_071, -2.5_630, -0.0_926, -0.3_811, 1.2_116, 2.6_246, 1.2_731, -0.5_398, -2.8_153, -3.6_140, 2.3_893, 1.3_262, 1.6_258, -2.1_856, -1.3_267, 2.8_395, 2.3_779, -1.0_623, -1.2_468, 0.8_959, 3.3_367, 3.2_243 ]) lowercase__ :int = torch.tensor([ -2.0_628, -2.7_667, -0.2_089, -0.8_263, 2.0_539, 0.5_992, 0.6_495, -3.8_336, 1.6_025, -3.2_817, 0.1_721, -0.0_633, 1.7_516, 2.7_039, 0.8_100, -0.5_908, -3.2_113, -4.4_343, 2.9_257, 1.3_632, 1.5_562, -2.1_489, -1.9_894, 3.0_560, 3.3_396, -0.7_328, -1.0_417, 0.0_383, 3.7_093, 3.2_343 ]) lowercase__ :List[str] = torch.tensor([ -1.4_574, -2.0_569, -0.0_473, -0.6_117, 1.4_018, 0.5_769, 0.4_129, -2.7_344, 1.2_241, -2.1_397, 0.2_000, 0.3_937, 0.7_616, 2.0_453, 0.7_324, -0.3_391, -2.1_746, -2.7_744, 1.6_963, 0.6_921, 1.2_187, -1.6_172, -0.8_877, 2.2_439, 1.8_471, -0.5_839, -0.5_605, -0.0_464, 2.3_250, 2.1_219 ]) # fmt: on lowercase__ :Union[str, Any] = api.list_models(filter='diffusers') for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": lowercase__ :List[Any] = '/home/patrick/google_checkpoints/' + mod.modelId.split('/')[-1] print(f"""Started running {mod.modelId}!!!""") if mod.modelId.startswith('CompVis'): lowercase__ :str = UNetaDModel.from_pretrained(local_checkpoint, subfolder='unet') else: lowercase__ :List[str] = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) lowercase__ :Optional[int] = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) lowercase__ :List[Any] = torch.tensor([1_0] * noise.shape[0]) with torch.no_grad(): lowercase__ :int = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :3_0], results['_'.join('_'.join(mod.modelId.split('/')).split('-'))], atol=1E-3 ) print(f"""{mod.modelId} has passed successfully!!!""")
522
0
'''simple docstring''' import operator def lowerCamelCase ( lowerCamelCase : List[Any] , lowerCamelCase : Tuple = False , lowerCamelCase : List[str] = None): A_ : str = operator.lt if reverse else operator.gt A_ : Optional[Any] = solution or [] if not arr: return solution A_ : Dict = [arr.pop(0)] for i, item in enumerate(snake_case_): if _operator(snake_case_ , sublist[-1]): sublist.append(snake_case_) arr.pop(snake_case_) # merging sublist into solution list if not solution: solution.extend(snake_case_) else: while sublist: A_ : Union[str, Any] = sublist.pop(0) for i, xx in enumerate(snake_case_): if not _operator(snake_case_ , snake_case_): solution.insert(snake_case_ , snake_case_) break else: solution.append(snake_case_) strand_sort(snake_case_ , snake_case_ , snake_case_) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
709
'''simple docstring''' from __future__ import annotations def lowerCamelCase ( lowerCamelCase : dict , lowerCamelCase : str): A_ , A_ : List[Any] = set(lowerCamelCase), [start] while stack: A_ : Optional[Any] = stack.pop() explored.add(lowerCamelCase) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v]): if adj not in explored: stack.append(lowerCamelCase) return explored __magic_name__ = { 'A': ['B', 'C', 'D'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F'], 'D': ['B', 'D'], 'E': ['B', 'F'], 'F': ['C', 'E', 'G'], 'G': ['F'], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, 'A'))
27
0
from ....configuration_utils import PretrainedConfig from ....utils import logging __SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : int = { 'speechbrain/m-ctc-t-large': 'https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json', # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class lowercase_ ( __snake_case ): _lowerCamelCase = 'mctct' def __init__( self , lowercase_=8_065 , lowercase_=1_536 , lowercase_=36 , lowercase_=6_144 , lowercase_=4 , lowercase_=384 , lowercase_=920 , lowercase_=1e-5 , lowercase_=0.3 , lowercase_="relu" , lowercase_=0.02 , lowercase_=0.3 , lowercase_=0.3 , lowercase_=1 , lowercase_=0 , lowercase_=2 , lowercase_=1 , lowercase_=0.3 , lowercase_=1 , lowercase_=(7,) , lowercase_=(3,) , lowercase_=80 , lowercase_=1 , lowercase_=None , lowercase_="sum" , lowercase_=False , **lowercase_ , ): super().__init__(**lowercase_ , pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ ) _snake_case : Tuple = vocab_size _snake_case : Optional[Any] = hidden_size _snake_case : Optional[int] = num_hidden_layers _snake_case : str = intermediate_size _snake_case : str = num_attention_heads _snake_case : Optional[Any] = attention_head_dim _snake_case : Optional[int] = max_position_embeddings _snake_case : Optional[Any] = layer_norm_eps _snake_case : int = layerdrop _snake_case : List[str] = hidden_act _snake_case : Optional[Any] = initializer_range _snake_case : Optional[int] = hidden_dropout_prob _snake_case : Union[str, Any] = attention_probs_dropout_prob _snake_case : str = pad_token_id _snake_case : int = bos_token_id _snake_case : Tuple = eos_token_id _snake_case : Any = conv_glu_dim _snake_case : Any = conv_dropout _snake_case : Optional[int] = num_conv_layers _snake_case : List[str] = input_feat_per_channel _snake_case : Tuple = input_channels _snake_case : int = conv_channels _snake_case : Tuple = ctc_loss_reduction _snake_case : Dict = ctc_zero_infinity # prevents config testing fail with exporting to json _snake_case : Union[str, Any] = list(lowercase_ ) _snake_case : Any = list(lowercase_ ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.conv_kernel)` == `config.num_conv_layers` " f"""but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, """ f"""`config.num_conv_layers = {self.num_conv_layers}`.""" )
670
from cva import destroyAllWindows, imread, imshow, waitKey def snake_case (__lowercase ) -> Tuple: '''simple docstring''' _snake_case ,_snake_case : int = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(__lowercase ): for j in range(__lowercase ): _snake_case : Optional[Any] = [255, 255, 255] - img[i][j] return img if __name__ == "__main__": # read original image __SCREAMING_SNAKE_CASE : Optional[Any] = imread('image_data/lena.jpg', 1) # convert to its negative __SCREAMING_SNAKE_CASE : Tuple = convert_to_negative(img) # show result image imshow('negative of original image', img) waitKey(0) destroyAllWindows()
670
1
'''simple docstring''' import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCamelCase_ : '''simple docstring''' def __init__( self , snake_case_ , snake_case_=1_3 , snake_case_=[3_0, 3_0] , snake_case_=2 , snake_case_=3 , snake_case_=True , snake_case_=True , snake_case_=3_2 , snake_case_=5 , snake_case_=4 , snake_case_=3_7 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=1_0 , snake_case_=0.0_2 , snake_case_=3 , snake_case_=None , snake_case_=8 , snake_case_=1_0 , ) -> Optional[int]: '''simple docstring''' __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = is_training __lowercase = use_labels __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = scope __lowercase = n_targets __lowercase = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens __lowercase = (image_size[1] // patch_size) * (image_size[0] // patch_size) __lowercase = num_patches + 1 + self.num_detection_tokens def A ( self ) -> Dict: '''simple docstring''' __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) __lowercase = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) __lowercase = [] for i in range(self.batch_size ): __lowercase = {} __lowercase = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=snake_case_ ) __lowercase = torch.rand(self.n_targets , 4 , device=snake_case_ ) labels.append(snake_case_ ) __lowercase = self.get_config() return config, pixel_values, labels def A ( self ) -> Optional[int]: '''simple docstring''' return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case_ , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def A ( self , snake_case_ , snake_case_ , snake_case_ ) -> Dict: '''simple docstring''' __lowercase = YolosModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() __lowercase = model(snake_case_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def A ( self , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]: '''simple docstring''' __lowercase = YolosForObjectDetection(snake_case_ ) model.to(snake_case_ ) model.eval() __lowercase = model(pixel_values=snake_case_ ) __lowercase = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) __lowercase = model(pixel_values=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def A ( self ) -> List[Any]: '''simple docstring''' __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowerCamelCase_ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase = (YolosModel, YolosForObjectDetection) if is_torch_available() else () __UpperCAmelCase = ( {"feature-extraction": YolosModel, "object-detection": YolosForObjectDetection} if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False def A ( self , snake_case_ , snake_case_ , snake_case_=False ) -> int: '''simple docstring''' __lowercase = super()._prepare_for_class(snake_case_ , snake_case_ , return_labels=snake_case_ ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": __lowercase = [] for i in range(self.model_tester.batch_size ): __lowercase = {} __lowercase = torch.ones( size=(self.model_tester.n_targets,) , device=snake_case_ , dtype=torch.long ) __lowercase = torch.ones( self.model_tester.n_targets , 4 , device=snake_case_ , dtype=torch.float ) labels.append(snake_case_ ) __lowercase = labels return inputs_dict def A ( self ) -> int: '''simple docstring''' __lowercase = YolosModelTester(self ) __lowercase = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=3_7 ) def A ( self ) -> str: '''simple docstring''' self.config_tester.run_common_tests() def A ( self ) -> Any: '''simple docstring''' pass def A ( self ) -> List[Any]: '''simple docstring''' __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(snake_case_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowercase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case_ , nn.Linear ) ) def A ( self ) -> Tuple: '''simple docstring''' __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(snake_case_ ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , snake_case_ ) def A ( self ) -> Union[str, Any]: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def A ( self ) -> List[Any]: '''simple docstring''' __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = True # in YOLOS, the seq_len is different __lowercase = self.model_tester.expected_seq_len for model_class in self.all_model_classes: __lowercase = True __lowercase = False __lowercase = True __lowercase = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) __lowercase = outputs.attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowercase = True __lowercase = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) __lowercase = outputs.attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) __lowercase = len(snake_case_ ) # Check attention is always last and order is fine __lowercase = True __lowercase = True __lowercase = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) __lowercase = 1 self.assertEqual(out_len + added_hidden_states , len(snake_case_ ) ) __lowercase = outputs.attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def A ( self ) -> Tuple: '''simple docstring''' def check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ): __lowercase = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) __lowercase = outputs.hidden_states __lowercase = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(snake_case_ ) , snake_case_ ) # YOLOS has a different seq_length __lowercase = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = True check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ) def A ( self ) -> str: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*snake_case_ ) @slow def A ( self ) -> Union[str, Any]: '''simple docstring''' for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = YolosModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) def lowercase_ ( ): '''simple docstring''' __lowercase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def A ( self ) -> Optional[int]: '''simple docstring''' return AutoImageProcessor.from_pretrained('''hustvl/yolos-small''' ) if is_vision_available() else None @slow def A ( self ) -> int: '''simple docstring''' __lowercase = YolosForObjectDetection.from_pretrained('''hustvl/yolos-small''' ).to(snake_case_ ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=snake_case_ , return_tensors='''pt''' ).to(snake_case_ ) # forward pass with torch.no_grad(): __lowercase = model(inputs.pixel_values ) # verify outputs __lowercase = torch.Size((1, 1_0_0, 9_2) ) self.assertEqual(outputs.logits.shape , snake_case_ ) __lowercase = torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] , device=snake_case_ , ) __lowercase = torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] , device=snake_case_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , snake_case_ , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , snake_case_ , atol=1e-4 ) ) # verify postprocessing __lowercase = image_processor.post_process_object_detection( snake_case_ , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] __lowercase = torch.tensor([0.9_9_9_4, 0.9_7_9_0, 0.9_9_6_4, 0.9_9_7_2, 0.9_8_6_1] ).to(snake_case_ ) __lowercase = [7_5, 7_5, 1_7, 6_3, 1_7] __lowercase = torch.tensor([3_3_5.0_6_0_9, 7_9.3_8_4_8, 3_7_5.4_2_1_6, 1_8_7.2_4_9_5] ).to(snake_case_ ) self.assertEqual(len(results['''scores'''] ) , 5 ) self.assertTrue(torch.allclose(results['''scores'''] , snake_case_ , atol=1e-4 ) ) self.assertSequenceEqual(results['''labels'''].tolist() , snake_case_ ) self.assertTrue(torch.allclose(results['''boxes'''][0, :] , snake_case_ ) )
702
from itertools import count def lowercase_ ( _UpperCamelCase = 50 ): '''simple docstring''' __lowercase = [1] * min_block_length for n in count(_UpperCamelCase ): fill_count_functions.append(1 ) for block_length in range(_UpperCamelCase , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 1_00_00_00: break return n if __name__ == "__main__": print(f'''{solution() = }''')
527
0
from itertools import permutations def lowercase__ ( A_: tuple ) -> bool: """simple docstring""" if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False __UpperCAmelCase =[7, 11, 13, 17] for i, test in enumerate(A_ ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def lowercase__ ( A_: int = 10 ) -> int: """simple docstring""" return sum( int("""""".join(map(A_ , A_ ) ) ) for num in permutations(range(A_ ) ) if is_substring_divisible(A_ ) ) if __name__ == "__main__": print(F"""{solution() = }""")
68
import random def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int ): """simple docstring""" __a = num - 1 __a = 0 while s % 2 == 0: __a = s // 2 t += 1 for _ in range(5 ): __a = random.randrange(2 , num - 1 ) __a = pow(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if v != 1: __a = 0 while v != (num - 1): if i == t - 1: return False else: __a = i + 1 __a = (v**2) % num return True def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int ): """simple docstring""" if num < 2: return False __a = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(_SCREAMING_SNAKE_CASE ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int = 1024 ): """simple docstring""" while True: __a = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(_SCREAMING_SNAKE_CASE ): return num if __name__ == "__main__": lowerCamelCase__ = generate_large_prime() print(("""Prime number:""", num)) print(("""is_prime_low_num:""", is_prime_low_num(num)))
225
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class lowerCAmelCase_ ( __snake_case ): """simple docstring""" _snake_case : Dict = """speech_to_text_2""" _snake_case : Tuple = ["""past_key_values"""] _snake_case : Dict = {"""num_attention_heads""": """decoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self :Optional[Any] , lowerCamelCase__ :List[Any]=1_00_00 , lowerCamelCase__ :Tuple=6 , lowerCamelCase__ :Optional[int]=20_48 , lowerCamelCase__ :str=4 , lowerCamelCase__ :str=0.0 , lowerCamelCase__ :Optional[int]=True , lowerCamelCase__ :Optional[Any]="relu" , lowerCamelCase__ :List[str]=2_56 , lowerCamelCase__ :Optional[int]=0.1 , lowerCamelCase__ :str=0.0 , lowerCamelCase__ :Tuple=0.0 , lowerCamelCase__ :Tuple=0.02 , lowerCamelCase__ :Union[str, Any]=2 , lowerCamelCase__ :str=True , lowerCamelCase__ :Optional[int]=1 , lowerCamelCase__ :str=0 , lowerCamelCase__ :List[Any]=2 , lowerCamelCase__ :Optional[int]=10_24 , **lowerCamelCase__ :List[str] , ): '''simple docstring''' UpperCamelCase__ :Optional[int] = vocab_size UpperCamelCase__ :Any = d_model UpperCamelCase__ :List[str] = decoder_ffn_dim UpperCamelCase__ :str = decoder_layers UpperCamelCase__ :Optional[Any] = decoder_attention_heads UpperCamelCase__ :Optional[int] = dropout UpperCamelCase__ :Tuple = attention_dropout UpperCamelCase__ :int = activation_dropout UpperCamelCase__ :List[str] = activation_function UpperCamelCase__ :int = init_std UpperCamelCase__ :Dict = decoder_layerdrop UpperCamelCase__ :Dict = use_cache UpperCamelCase__ :Tuple = decoder_layers UpperCamelCase__ :Any = scale_embedding # scale factor will be sqrt(d_model) if True UpperCamelCase__ :Optional[Any] = max_target_positions super().__init__( pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , decoder_start_token_id=_lowercase , **_lowercase , )
719
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } UpperCamelCase = { "vocab_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json" }, "merges_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt" }, "tokenizer_config_file": { "facebook/blenderbot_small-90M": ( "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json" ) }, } UpperCamelCase = {"facebook/blenderbot_small-90M": 512} def A ( lowercase__ : int ) -> Optional[Any]: UpperCamelCase__ :str = set() UpperCamelCase__ :Any = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCamelCase__ :List[str] = char UpperCamelCase__ :str = set(lowercase__ ) return pairs class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : int = VOCAB_FILES_NAMES _snake_case : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _snake_case : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : Dict = ["""input_ids""", """attention_mask"""] def __init__( self :Union[str, Any] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Any , lowerCamelCase__ :List[Any]="__start__" , lowerCamelCase__ :Union[str, Any]="__end__" , lowerCamelCase__ :Tuple="__unk__" , lowerCamelCase__ :Optional[int]="__null__" , **lowerCamelCase__ :Optional[Any] , ): super().__init__(unk_token=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , **lowerCamelCase__ ) with open(lowerCamelCase__ , encoding="""utf-8""" ) as vocab_handle: UpperCamelCase__ :Any = json.load(lowerCamelCase__ ) UpperCamelCase__ :List[Any] = {v: k for k, v in self.encoder.items()} with open(lowerCamelCase__ , encoding="""utf-8""" ) as merges_handle: UpperCamelCase__ :List[str] = merges_handle.read().split("""\n""" )[1:-1] UpperCamelCase__ :Tuple = [tuple(merge.split() ) for merge in merges] UpperCamelCase__ :str = dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__ ) ) ) ) UpperCamelCase__ :Tuple = {} @property def __a ( self :List[str] ): return len(self.encoder ) def __a ( self :Optional[Any] ): return dict(self.encoder , **self.added_tokens_encoder ) def __a ( self :Any , lowerCamelCase__ :str ): if token in self.cache: return self.cache[token] UpperCamelCase__ :Tuple = re.sub("""([.,!?()])""" , r""" \1""" , lowerCamelCase__ ) UpperCamelCase__ :int = re.sub("""(')""" , r""" \1 """ , lowerCamelCase__ ) UpperCamelCase__ :str = re.sub(r"""\s{2,}""" , """ """ , lowerCamelCase__ ) if "\n" in token: UpperCamelCase__ :int = token.replace("""\n""" , """ __newln__""" ) UpperCamelCase__ :str = token.split(""" """ ) UpperCamelCase__ :List[Any] = [] for token in tokens: if not len(lowerCamelCase__ ): continue UpperCamelCase__ :Optional[Any] = token.lower() UpperCamelCase__ :Optional[Any] = tuple(lowerCamelCase__ ) UpperCamelCase__ :int = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) UpperCamelCase__ :Optional[int] = get_pairs(lowerCamelCase__ ) if not pairs: words.append(lowerCamelCase__ ) continue while True: UpperCamelCase__ :Any = min(lowerCamelCase__ , key=lambda lowerCamelCase__ : self.bpe_ranks.get(lowerCamelCase__ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = bigram UpperCamelCase__ :Union[str, Any] = [] UpperCamelCase__ :Dict = 0 while i < len(lowerCamelCase__ ): try: UpperCamelCase__ :Union[str, Any] = word.index(lowerCamelCase__ , lowerCamelCase__ ) new_word.extend(word[i:j] ) UpperCamelCase__ :str = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(lowerCamelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCamelCase__ :int = tuple(lowerCamelCase__ ) UpperCamelCase__ :int = new_word if len(lowerCamelCase__ ) == 1: break else: UpperCamelCase__ :Union[str, Any] = get_pairs(lowerCamelCase__ ) UpperCamelCase__ :int = """@@ """.join(lowerCamelCase__ ) UpperCamelCase__ :Optional[int] = word[:-4] UpperCamelCase__ :int = word words.append(lowerCamelCase__ ) return " ".join(lowerCamelCase__ ) def __a ( self :Optional[Any] , lowerCamelCase__ :str ): UpperCamelCase__ :Tuple = [] UpperCamelCase__ :Dict = re.findall(r"""\S+\n?""" , lowerCamelCase__ ) for token in words: split_tokens.extend(list(self.bpe(lowerCamelCase__ ).split(""" """ ) ) ) return split_tokens def __a ( self :List[Any] , lowerCamelCase__ :str ): UpperCamelCase__ :Any = token.lower() return self.encoder.get(lowerCamelCase__ , self.encoder.get(self.unk_token ) ) def __a ( self :Optional[int] , lowerCamelCase__ :int ): return self.decoder.get(lowerCamelCase__ , self.unk_token ) def __a ( self :Optional[Any] , lowerCamelCase__ :List[str] ): UpperCamelCase__ :Any = """ """.join(lowerCamelCase__ ).replace("""@@ """ , """""" ).strip() return out_string def __a ( self :Any , lowerCamelCase__ :str , lowerCamelCase__ :Optional[str] = None ): if not os.path.isdir(lowerCamelCase__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCamelCase__ :Tuple = os.path.join( lowerCamelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCamelCase__ :Tuple = os.path.join( lowerCamelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(lowerCamelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase__ , ensure_ascii=lowerCamelCase__ ) + """\n""" ) UpperCamelCase__ :int = 0 with open(lowerCamelCase__ , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase__ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" """ Please check that the tokenizer is not corrupted!""" ) UpperCamelCase__ :Any = token_index writer.write(""" """.join(lowerCamelCase__ ) + """\n""" ) index += 1 return vocab_file, merge_file
383
0
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer SCREAMING_SNAKE_CASE__ : Optional[int] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : str = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} SCREAMING_SNAKE_CASE__ : int = { """vocab_file""": { """allegro/herbert-base-cased""": """https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json""" }, """merges_file""": { """allegro/herbert-base-cased""": """https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt""" }, } SCREAMING_SNAKE_CASE__ : Optional[int] = {"""allegro/herbert-base-cased""": 5_14} SCREAMING_SNAKE_CASE__ : Union[str, Any] = {} class lowerCamelCase_ ( lowerCamelCase ): a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = PRETRAINED_INIT_CONFIGURATION a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = HerbertTokenizer def __init__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase="<s>" , __lowerCAmelCase="<unk>" , __lowerCAmelCase="<pad>" , __lowerCAmelCase="<mask>" , __lowerCAmelCase="</s>" , **__lowerCAmelCase , ): """simple docstring""" super().__init__( __lowerCAmelCase , __lowerCAmelCase , tokenizer_file=__lowerCAmelCase , cls_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , mask_token=__lowerCAmelCase , sep_token=__lowerCAmelCase , **__lowerCAmelCase , ) def A ( self , __lowerCAmelCase , __lowerCAmelCase = None ): """simple docstring""" __magic_name__ :str = [self.cls_token_id] __magic_name__ :Tuple = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def A ( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCAmelCase , token_ids_a=__lowerCAmelCase , already_has_special_tokens=__lowerCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCAmelCase )) + [1] return [1] + ([0] * len(__lowerCAmelCase )) + [1] + ([0] * len(__lowerCAmelCase )) + [1] def A ( self , __lowerCAmelCase , __lowerCAmelCase = None ): """simple docstring""" __magic_name__ :Dict = [self.sep_token_id] __magic_name__ :int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A ( self , __lowerCAmelCase , __lowerCAmelCase = None ): """simple docstring""" __magic_name__ :Optional[int] = self._tokenizer.model.save(__lowerCAmelCase , name=__lowerCAmelCase ) return tuple(__lowerCAmelCase )
0
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class lowerCamelCase_ ( unittest.TestCase ): def A ( self ): """simple docstring""" __magic_name__ :List[Any] = { '''task_specific_params''': { '''summarization''': {'''length_penalty''': 1.0, '''max_length''': 1_2_8, '''min_length''': 1_2, '''num_beams''': 4}, '''summarization_cnn''': {'''length_penalty''': 2.0, '''max_length''': 1_4_2, '''min_length''': 5_6, '''num_beams''': 4}, '''summarization_xsum''': {'''length_penalty''': 1.0, '''max_length''': 6_2, '''min_length''': 1_1, '''num_beams''': 6}, } } __magic_name__ :List[str] = { '''task_specific_params.summarization.length_penalty''': 1.0, '''task_specific_params.summarization.max_length''': 1_2_8, '''task_specific_params.summarization.min_length''': 1_2, '''task_specific_params.summarization.num_beams''': 4, '''task_specific_params.summarization_cnn.length_penalty''': 2.0, '''task_specific_params.summarization_cnn.max_length''': 1_4_2, '''task_specific_params.summarization_cnn.min_length''': 5_6, '''task_specific_params.summarization_cnn.num_beams''': 4, '''task_specific_params.summarization_xsum.length_penalty''': 1.0, '''task_specific_params.summarization_xsum.max_length''': 6_2, '''task_specific_params.summarization_xsum.min_length''': 1_1, '''task_specific_params.summarization_xsum.num_beams''': 6, } self.assertEqual(flatten_dict(__lowerCAmelCase ) , __lowerCAmelCase ) def A ( self ): """simple docstring""" __magic_name__ :Optional[Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(__lowerCAmelCase ) , x.transpose() ) ) __magic_name__ :List[Any] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(__lowerCAmelCase , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def A ( self ): """simple docstring""" __magic_name__ :Optional[Any] = np.random.randn(3 , 4 ) __magic_name__ :Tuple = torch.tensor(__lowerCAmelCase ) self.assertTrue(np.allclose(transpose(__lowerCAmelCase ) , transpose(__lowerCAmelCase ).numpy() ) ) __magic_name__ :int = np.random.randn(3 , 4 , 5 ) __magic_name__ :Union[str, Any] = torch.tensor(__lowerCAmelCase ) self.assertTrue(np.allclose(transpose(__lowerCAmelCase , axes=(1, 2, 0) ) , transpose(__lowerCAmelCase , axes=(1, 2, 0) ).numpy() ) ) @require_tf def A ( self ): """simple docstring""" __magic_name__ :int = np.random.randn(3 , 4 ) __magic_name__ :Optional[Any] = tf.constant(__lowerCAmelCase ) self.assertTrue(np.allclose(transpose(__lowerCAmelCase ) , transpose(__lowerCAmelCase ).numpy() ) ) __magic_name__ :List[str] = np.random.randn(3 , 4 , 5 ) __magic_name__ :Optional[Any] = tf.constant(__lowerCAmelCase ) self.assertTrue(np.allclose(transpose(__lowerCAmelCase , axes=(1, 2, 0) ) , transpose(__lowerCAmelCase , axes=(1, 2, 0) ).numpy() ) ) @require_flax def A ( self ): """simple docstring""" __magic_name__ :int = np.random.randn(3 , 4 ) __magic_name__ :Dict = jnp.array(__lowerCAmelCase ) self.assertTrue(np.allclose(transpose(__lowerCAmelCase ) , np.asarray(transpose(__lowerCAmelCase ) ) ) ) __magic_name__ :Dict = np.random.randn(3 , 4 , 5 ) __magic_name__ :Dict = jnp.array(__lowerCAmelCase ) self.assertTrue(np.allclose(transpose(__lowerCAmelCase , axes=(1, 2, 0) ) , np.asarray(transpose(__lowerCAmelCase , axes=(1, 2, 0) ) ) ) ) def A ( self ): """simple docstring""" __magic_name__ :Any = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(__lowerCAmelCase , (4, 3) ) , np.reshape(__lowerCAmelCase , (4, 3) ) ) ) __magic_name__ :Union[str, Any] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(__lowerCAmelCase , (1_2, 5) ) , np.reshape(__lowerCAmelCase , (1_2, 5) ) ) ) @require_torch def A ( self ): """simple docstring""" __magic_name__ :Dict = np.random.randn(3 , 4 ) __magic_name__ :Tuple = torch.tensor(__lowerCAmelCase ) self.assertTrue(np.allclose(reshape(__lowerCAmelCase , (4, 3) ) , reshape(__lowerCAmelCase , (4, 3) ).numpy() ) ) __magic_name__ :Union[str, Any] = np.random.randn(3 , 4 , 5 ) __magic_name__ :List[str] = torch.tensor(__lowerCAmelCase ) self.assertTrue(np.allclose(reshape(__lowerCAmelCase , (1_2, 5) ) , reshape(__lowerCAmelCase , (1_2, 5) ).numpy() ) ) @require_tf def A ( self ): """simple docstring""" __magic_name__ :Dict = np.random.randn(3 , 4 ) __magic_name__ :Union[str, Any] = tf.constant(__lowerCAmelCase ) self.assertTrue(np.allclose(reshape(__lowerCAmelCase , (4, 3) ) , reshape(__lowerCAmelCase , (4, 3) ).numpy() ) ) __magic_name__ :List[Any] = np.random.randn(3 , 4 , 5 ) __magic_name__ :Optional[int] = tf.constant(__lowerCAmelCase ) self.assertTrue(np.allclose(reshape(__lowerCAmelCase , (1_2, 5) ) , reshape(__lowerCAmelCase , (1_2, 5) ).numpy() ) ) @require_flax def A ( self ): """simple docstring""" __magic_name__ :List[str] = np.random.randn(3 , 4 ) __magic_name__ :Any = jnp.array(__lowerCAmelCase ) self.assertTrue(np.allclose(reshape(__lowerCAmelCase , (4, 3) ) , np.asarray(reshape(__lowerCAmelCase , (4, 3) ) ) ) ) __magic_name__ :List[Any] = np.random.randn(3 , 4 , 5 ) __magic_name__ :List[str] = jnp.array(__lowerCAmelCase ) self.assertTrue(np.allclose(reshape(__lowerCAmelCase , (1_2, 5) ) , np.asarray(reshape(__lowerCAmelCase , (1_2, 5) ) ) ) ) def A ( self ): """simple docstring""" __magic_name__ :List[Any] = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(__lowerCAmelCase ) , np.squeeze(__lowerCAmelCase ) ) ) __magic_name__ :Optional[Any] = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(__lowerCAmelCase , axis=2 ) , np.squeeze(__lowerCAmelCase , axis=2 ) ) ) @require_torch def A ( self ): """simple docstring""" __magic_name__ :Dict = np.random.randn(1 , 3 , 4 ) __magic_name__ :List[Any] = torch.tensor(__lowerCAmelCase ) self.assertTrue(np.allclose(squeeze(__lowerCAmelCase ) , squeeze(__lowerCAmelCase ).numpy() ) ) __magic_name__ :List[str] = np.random.randn(1 , 4 , 1 , 5 ) __magic_name__ :str = torch.tensor(__lowerCAmelCase ) self.assertTrue(np.allclose(squeeze(__lowerCAmelCase , axis=2 ) , squeeze(__lowerCAmelCase , axis=2 ).numpy() ) ) @require_tf def A ( self ): """simple docstring""" __magic_name__ :int = np.random.randn(1 , 3 , 4 ) __magic_name__ :Tuple = tf.constant(__lowerCAmelCase ) self.assertTrue(np.allclose(squeeze(__lowerCAmelCase ) , squeeze(__lowerCAmelCase ).numpy() ) ) __magic_name__ :Tuple = np.random.randn(1 , 4 , 1 , 5 ) __magic_name__ :Optional[int] = tf.constant(__lowerCAmelCase ) self.assertTrue(np.allclose(squeeze(__lowerCAmelCase , axis=2 ) , squeeze(__lowerCAmelCase , axis=2 ).numpy() ) ) @require_flax def A ( self ): """simple docstring""" __magic_name__ :Tuple = np.random.randn(1 , 3 , 4 ) __magic_name__ :Optional[Any] = jnp.array(__lowerCAmelCase ) self.assertTrue(np.allclose(squeeze(__lowerCAmelCase ) , np.asarray(squeeze(__lowerCAmelCase ) ) ) ) __magic_name__ :List[Any] = np.random.randn(1 , 4 , 1 , 5 ) __magic_name__ :Optional[Any] = jnp.array(__lowerCAmelCase ) self.assertTrue(np.allclose(squeeze(__lowerCAmelCase , axis=2 ) , np.asarray(squeeze(__lowerCAmelCase , axis=2 ) ) ) ) def A ( self ): """simple docstring""" __magic_name__ :Any = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(__lowerCAmelCase , axis=1 ) , np.expand_dims(__lowerCAmelCase , axis=1 ) ) ) @require_torch def A ( self ): """simple docstring""" __magic_name__ :List[Any] = np.random.randn(3 , 4 ) __magic_name__ :Any = torch.tensor(__lowerCAmelCase ) self.assertTrue(np.allclose(expand_dims(__lowerCAmelCase , axis=1 ) , expand_dims(__lowerCAmelCase , axis=1 ).numpy() ) ) @require_tf def A ( self ): """simple docstring""" __magic_name__ :Union[str, Any] = np.random.randn(3 , 4 ) __magic_name__ :Union[str, Any] = tf.constant(__lowerCAmelCase ) self.assertTrue(np.allclose(expand_dims(__lowerCAmelCase , axis=1 ) , expand_dims(__lowerCAmelCase , axis=1 ).numpy() ) ) @require_flax def A ( self ): """simple docstring""" __magic_name__ :List[str] = np.random.randn(3 , 4 ) __magic_name__ :Tuple = jnp.array(__lowerCAmelCase ) self.assertTrue(np.allclose(expand_dims(__lowerCAmelCase , axis=1 ) , np.asarray(expand_dims(__lowerCAmelCase , axis=1 ) ) ) )
0
1
import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__ ( snake_case__ :List[Any] , snake_case__ :Tuple , snake_case__ :Tuple , snake_case__ :Tuple="attention" ) -> List[str]: _lowercase = params[F"""{prefix}/layers_{i}/{layer_name}/key/kernel"""] _lowercase = params[F"""{prefix}/layers_{i}/{layer_name}/out/kernel"""] _lowercase = params[F"""{prefix}/layers_{i}/{layer_name}/query/kernel"""] _lowercase = params[F"""{prefix}/layers_{i}/{layer_name}/value/kernel"""] return k, o, q, v def SCREAMING_SNAKE_CASE__ ( snake_case__ :Tuple , snake_case__ :List[Any] , snake_case__ :Optional[Any] , snake_case__ :Optional[Any]=False ) -> Tuple: if split_mlp_wi: _lowercase = params[F"""{prefix}/layers_{i}/mlp/wi_0/kernel"""] _lowercase = params[F"""{prefix}/layers_{i}/mlp/wi_1/kernel"""] _lowercase = (wi_a, wi_a) else: _lowercase = params[F"""{prefix}/layers_{i}/mlp/wi/kernel"""] _lowercase = params[F"""{prefix}/layers_{i}/mlp/wo/kernel"""] return wi, wo def SCREAMING_SNAKE_CASE__ ( snake_case__ :Tuple , snake_case__ :Any , snake_case__ :Optional[Any] , snake_case__ :Dict ) -> str: return params[F"""{prefix}/layers_{i}/{layer_name}/scale"""] def SCREAMING_SNAKE_CASE__ ( snake_case__ :dict , *, snake_case__ :int , snake_case__ :bool ) -> List[str]: _lowercase = traverse_util.flatten_dict(variables['target'] ) _lowercase = {'/'.join(snake_case__ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi _lowercase = 'encoder/layers_0/mlp/wi_0/kernel' in old print('Split MLP:' , snake_case__ ) _lowercase = collections.OrderedDict() # Shared embeddings. _lowercase = old['token_embedder/embedding'] # Encoder. for i in range(snake_case__ ): # Block i, layer 0 (Self Attention). _lowercase = tax_layer_norm_lookup(snake_case__ , snake_case__ , 'encoder' , 'pre_attention_layer_norm' ) _lowercase , _lowercase , _lowercase , _lowercase = tax_attention_lookup(snake_case__ , snake_case__ , 'encoder' , 'attention' ) _lowercase = layer_norm _lowercase = k.T _lowercase = o.T _lowercase = q.T _lowercase = v.T # Block i, layer 1 (MLP). _lowercase = tax_layer_norm_lookup(snake_case__ , snake_case__ , 'encoder' , 'pre_mlp_layer_norm' ) _lowercase , _lowercase = tax_mlp_lookup(snake_case__ , snake_case__ , 'encoder' , snake_case__ ) _lowercase = layer_norm if split_mlp_wi: _lowercase = wi[0].T _lowercase = wi[1].T else: _lowercase = wi.T _lowercase = wo.T _lowercase = old[ 'encoder/relpos_bias/rel_embedding' ].T _lowercase = old['encoder/encoder_norm/scale'] if not is_encoder_only: # Decoder. for i in range(snake_case__ ): # Block i, layer 0 (Self Attention). _lowercase = tax_layer_norm_lookup(snake_case__ , snake_case__ , 'decoder' , 'pre_self_attention_layer_norm' ) _lowercase , _lowercase , _lowercase , _lowercase = tax_attention_lookup(snake_case__ , snake_case__ , 'decoder' , 'self_attention' ) _lowercase = layer_norm _lowercase = k.T _lowercase = o.T _lowercase = q.T _lowercase = v.T # Block i, layer 1 (Cross Attention). _lowercase = tax_layer_norm_lookup(snake_case__ , snake_case__ , 'decoder' , 'pre_cross_attention_layer_norm' ) _lowercase , _lowercase , _lowercase , _lowercase = tax_attention_lookup(snake_case__ , snake_case__ , 'decoder' , 'encoder_decoder_attention' ) _lowercase = layer_norm _lowercase = k.T _lowercase = o.T _lowercase = q.T _lowercase = v.T # Block i, layer 2 (MLP). _lowercase = tax_layer_norm_lookup(snake_case__ , snake_case__ , 'decoder' , 'pre_mlp_layer_norm' ) _lowercase , _lowercase = tax_mlp_lookup(snake_case__ , snake_case__ , 'decoder' , snake_case__ ) _lowercase = layer_norm if split_mlp_wi: _lowercase = wi[0].T _lowercase = wi[1].T else: _lowercase = wi.T _lowercase = wo.T _lowercase = old['decoder/decoder_norm/scale'] _lowercase = old[ 'decoder/relpos_bias/rel_embedding' ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: _lowercase = old['decoder/logits_dense/kernel'].T return new def SCREAMING_SNAKE_CASE__ ( snake_case__ :Dict , snake_case__ :bool ) -> Union[str, Any]: _lowercase = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: _lowercase = state_dict['shared.weight'] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: _lowercase = state_dict['shared.weight'] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('Using shared word embeddings as lm_head.' ) _lowercase = state_dict['shared.weight'] return state_dict def SCREAMING_SNAKE_CASE__ ( snake_case__ :List[str] , snake_case__ :Tuple , snake_case__ :Tuple , snake_case__ :Optional[int] ) -> List[Any]: _lowercase = checkpoints.load_tax_checkpoint(snake_case__ ) _lowercase = convert_tax_to_pytorch(snake_case__ , num_layers=config.num_layers , is_encoder_only=snake_case__ ) _lowercase = make_state_dict(snake_case__ , snake_case__ ) model.load_state_dict(snake_case__ , strict=snake_case__ ) def SCREAMING_SNAKE_CASE__ ( snake_case__ :Tuple , snake_case__ :Any , snake_case__ :int , snake_case__ :bool = False ) -> Optional[int]: _lowercase = TaConfig.from_json_file(snake_case__ ) print(F"""Building PyTorch model from configuration: {config}""" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: _lowercase = TaEncoderModel(snake_case__ ) else: _lowercase = TaForConditionalGeneration(snake_case__ ) # Load weights from tf checkpoint load_tax_weights_in_ta(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(snake_case__ ) # Verify that we can load the checkpoint. model.from_pretrained(snake_case__ ) print('Done' ) if __name__ == "__main__": snake_case = argparse.ArgumentParser(description="""Converts a native T5X checkpoint into a PyTorch checkpoint.""") # Required parameters parser.add_argument( """--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path to the T5X checkpoint.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_encoder_only""", action="""store_true""", help="""Check if the model is encoder-decoder model""", default=False ) snake_case = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
710
from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class A_ ( yaml.SafeLoader ): """simple docstring""" def __UpperCAmelCase ( self : Dict ,__A : List[Any] ) -> Any: _lowercase = [self.constructed_objects[key_node] for key_node, _ in node.value] _lowercase = [tuple(__A ) if isinstance(__A ,__A ) else key for key in keys] _lowercase = Counter(__A ) _lowercase = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(F"""Got duplicate yaml keys: {duplicate_keys}""" ) def __UpperCAmelCase ( self : Any ,__A : int ,__A : Dict=False ) -> Union[str, Any]: _lowercase = super().construct_mapping(__A ,deep=__A ) self._check_no_duplicates_on_constructed_node(__A ) return mapping def SCREAMING_SNAKE_CASE__ ( snake_case__ :str ) -> Tuple[Optional[str], str]: _lowercase = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: _lowercase = full_content[1:].index('---' ) + 1 _lowercase = '\n'.join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(snake_case__ ) class A_ ( UpperCAmelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = {'''train_eval_index'''} # train-eval-index in the YAML metadata @classmethod def __UpperCAmelCase ( cls : List[Any] ,__A : Path ) -> "DatasetMetadata": with open(__A ,encoding='utf-8' ) as readme_file: _lowercase , _lowercase = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(__A ) else: return cls() def __UpperCAmelCase ( self : Union[str, Any] ,__A : Path ) -> Optional[Any]: if path.exists(): with open(__A ,encoding='utf-8' ) as readme_file: _lowercase = readme_file.read() else: _lowercase = None _lowercase = self._to_readme(__A ) with open(__A ,'w' ,encoding='utf-8' ) as readme_file: readme_file.write(__A ) def __UpperCAmelCase ( self : Tuple ,__A : Optional[str] = None ) -> str: if readme_content is not None: _lowercase , _lowercase = _split_yaml_from_readme(__A ) _lowercase = '---\n' + self.to_yaml_string() + '---\n' + content else: _lowercase = '---\n' + self.to_yaml_string() + '---\n' return full_content @classmethod def __UpperCAmelCase ( cls : List[Any] ,__A : str ) -> "DatasetMetadata": _lowercase = yaml.load(__A ,Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields _lowercase = { (key.replace('-' ,'_' ) if key.replace('-' ,'_' ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**__A ) def __UpperCAmelCase ( self : Optional[int] ) -> str: return yaml.safe_dump( { (key.replace('_' ,'-' ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } ,sort_keys=__A ,allow_unicode=__A ,encoding='utf-8' ,).decode('utf-8' ) snake_case = { """image-classification""": [], """translation""": [], """image-segmentation""": [], """fill-mask""": [], """automatic-speech-recognition""": [], """token-classification""": [], """sentence-similarity""": [], """audio-classification""": [], """question-answering""": [], """summarization""": [], """zero-shot-classification""": [], """table-to-text""": [], """feature-extraction""": [], """other""": [], """multiple-choice""": [], """text-classification""": [], """text-to-image""": [], """text2text-generation""": [], """zero-shot-image-classification""": [], """tabular-classification""": [], """tabular-regression""": [], """image-to-image""": [], """tabular-to-text""": [], """unconditional-image-generation""": [], """text-retrieval""": [], """text-to-speech""": [], """object-detection""": [], """audio-to-audio""": [], """text-generation""": [], """conversational""": [], """table-question-answering""": [], """visual-question-answering""": [], """image-to-text""": [], """reinforcement-learning""": [], """voice-activity-detection""": [], """time-series-forecasting""": [], """document-question-answering""": [], } if __name__ == "__main__": from argparse import ArgumentParser snake_case = ArgumentParser(usage="""Validate the yaml metadata block of a README.md file.""") ap.add_argument("""readme_filepath""") snake_case = ap.parse_args() snake_case = Path(args.readme_filepath) snake_case = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
535
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''philschmid/bart-large-cnn-samsum''' UpperCAmelCase__ = ( '''This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, ''' '''and returns a summary of the text.''' ) UpperCAmelCase__ = '''summarizer''' UpperCAmelCase__ = AutoTokenizer UpperCAmelCase__ = AutoModelForSeqaSeqLM UpperCAmelCase__ = ['''text'''] UpperCAmelCase__ = ['''text'''] def SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase__ : Optional[Any]) ->List[Any]: '''simple docstring''' return self.pre_processor(UpperCAmelCase__ , return_tensors='''pt''' , truncation=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase__ : Dict) ->Dict: '''simple docstring''' return self.model.generate(**UpperCAmelCase__)[0] def SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase__ : str) ->str: '''simple docstring''' return self.pre_processor.decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ , clean_up_tokenization_spaces=UpperCAmelCase__)
87
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class snake_case ( __snake_case ): SCREAMING_SNAKE_CASE_ : List[str] = (DDPMScheduler,) def lowercase_ ( self : List[str] , **UpperCamelCase__ : str)-> str: '''simple docstring''' __lowerCAmelCase: List[Any] = { "num_train_timesteps": 1_0_0_0, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**UpperCamelCase__) return config def lowercase_ ( self : int)-> Dict: '''simple docstring''' for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=UpperCamelCase__) def lowercase_ ( self : Tuple)-> str: '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2]): self.check_over_configs(beta_start=UpperCamelCase__ , beta_end=UpperCamelCase__) def lowercase_ ( self : str)-> Optional[int]: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCamelCase__) def lowercase_ ( self : Union[str, Any])-> int: '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=UpperCamelCase__) def lowercase_ ( self : Tuple)-> Dict: '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCamelCase__) def lowercase_ ( self : str)-> str: '''simple docstring''' self.check_over_configs(thresholding=UpperCamelCase__) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=UpperCamelCase__ , prediction_type=UpperCamelCase__ , sample_max_value=UpperCamelCase__ , ) def lowercase_ ( self : List[str])-> Union[str, Any]: '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=UpperCamelCase__) def lowercase_ ( self : Optional[Any])-> Union[str, Any]: '''simple docstring''' for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=UpperCamelCase__) def lowercase_ ( self : Union[str, Any])-> List[Any]: '''simple docstring''' __lowerCAmelCase: Dict = self.scheduler_classes[0] __lowerCAmelCase: int = self.get_scheduler_config() __lowerCAmelCase: Dict = scheduler_class(**UpperCamelCase__) assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7) - 0.00979)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9) - 0.02)) < 1e-5 def lowercase_ ( self : Optional[int])-> Optional[Any]: '''simple docstring''' __lowerCAmelCase: int = self.scheduler_classes[0] __lowerCAmelCase: int = self.get_scheduler_config() __lowerCAmelCase: Optional[int] = scheduler_class(**UpperCamelCase__) __lowerCAmelCase: List[str] = len(UpperCamelCase__) __lowerCAmelCase: List[Any] = self.dummy_model() __lowerCAmelCase: Tuple = self.dummy_sample_deter __lowerCAmelCase: Tuple = torch.manual_seed(0) for t in reversed(range(UpperCamelCase__)): # 1. predict noise residual __lowerCAmelCase: List[str] = model(UpperCamelCase__ , UpperCamelCase__) # 2. predict previous mean of sample x_t-1 __lowerCAmelCase: List[Any] = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , generator=UpperCamelCase__).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __lowerCAmelCase: List[Any] = pred_prev_sample __lowerCAmelCase: List[str] = torch.sum(torch.abs(UpperCamelCase__)) __lowerCAmelCase: List[Any] = torch.mean(torch.abs(UpperCamelCase__)) assert abs(result_sum.item() - 258.9606) < 1e-2 assert abs(result_mean.item() - 0.3372) < 1e-3 def lowercase_ ( self : int)-> Any: '''simple docstring''' __lowerCAmelCase: str = self.scheduler_classes[0] __lowerCAmelCase: str = self.get_scheduler_config(prediction_type="v_prediction") __lowerCAmelCase: Dict = scheduler_class(**UpperCamelCase__) __lowerCAmelCase: Dict = len(UpperCamelCase__) __lowerCAmelCase: Any = self.dummy_model() __lowerCAmelCase: Dict = self.dummy_sample_deter __lowerCAmelCase: str = torch.manual_seed(0) for t in reversed(range(UpperCamelCase__)): # 1. predict noise residual __lowerCAmelCase: str = model(UpperCamelCase__ , UpperCamelCase__) # 2. predict previous mean of sample x_t-1 __lowerCAmelCase: Tuple = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , generator=UpperCamelCase__).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __lowerCAmelCase: Optional[Any] = pred_prev_sample __lowerCAmelCase: Union[str, Any] = torch.sum(torch.abs(UpperCamelCase__)) __lowerCAmelCase: Dict = torch.mean(torch.abs(UpperCamelCase__)) assert abs(result_sum.item() - 202.0296) < 1e-2 assert abs(result_mean.item() - 0.2631) < 1e-3 def lowercase_ ( self : Tuple)-> Any: '''simple docstring''' __lowerCAmelCase: List[str] = self.scheduler_classes[0] __lowerCAmelCase: List[Any] = self.get_scheduler_config() __lowerCAmelCase: List[Any] = scheduler_class(**UpperCamelCase__) __lowerCAmelCase: Optional[int] = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=UpperCamelCase__) __lowerCAmelCase: str = scheduler.timesteps for i, timestep in enumerate(UpperCamelCase__): if i == len(UpperCamelCase__) - 1: __lowerCAmelCase: str = -1 else: __lowerCAmelCase: str = timesteps[i + 1] __lowerCAmelCase: List[Any] = scheduler.previous_timestep(UpperCamelCase__) __lowerCAmelCase: List[str] = prev_t.item() self.assertEqual(UpperCamelCase__ , UpperCamelCase__) def lowercase_ ( self : Union[str, Any])-> Optional[Any]: '''simple docstring''' __lowerCAmelCase: int = self.scheduler_classes[0] __lowerCAmelCase: Optional[Any] = self.get_scheduler_config() __lowerCAmelCase: Any = scheduler_class(**UpperCamelCase__) __lowerCAmelCase: Union[str, Any] = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(UpperCamelCase__ , msg="`custom_timesteps` must be in descending order."): scheduler.set_timesteps(timesteps=UpperCamelCase__) def lowercase_ ( self : Any)-> Union[str, Any]: '''simple docstring''' __lowerCAmelCase: List[str] = self.scheduler_classes[0] __lowerCAmelCase: Any = self.get_scheduler_config() __lowerCAmelCase: Dict = scheduler_class(**UpperCamelCase__) __lowerCAmelCase: List[str] = [1_0_0, 8_7, 5_0, 1, 0] __lowerCAmelCase: Tuple = len(UpperCamelCase__) with self.assertRaises(UpperCamelCase__ , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`."): scheduler.set_timesteps(num_inference_steps=UpperCamelCase__ , timesteps=UpperCamelCase__) def lowercase_ ( self : Optional[Any])-> int: '''simple docstring''' __lowerCAmelCase: List[str] = self.scheduler_classes[0] __lowerCAmelCase: Any = self.get_scheduler_config() __lowerCAmelCase: Any = scheduler_class(**UpperCamelCase__) __lowerCAmelCase: Optional[Any] = [scheduler.config.num_train_timesteps] with self.assertRaises( UpperCamelCase__ , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=UpperCamelCase__)
346
0
import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase (__lowerCamelCase , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ = FunnelTokenizer UpperCAmelCase_ = FunnelTokenizerFast UpperCAmelCase_ = True UpperCAmelCase_ = True def A_ ( self : Dict ) -> Optional[int]: """simple docstring""" super().setUp() SCREAMING_SNAKE_CASE__ : Tuple = [ "<unk>", "<cls>", "<sep>", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] SCREAMING_SNAKE_CASE__ : Optional[Any] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file, "w", encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def A_ ( self : Tuple, **_UpperCAmelCase : List[str] ) -> Optional[int]: """simple docstring""" return FunnelTokenizer.from_pretrained(self.tmpdirname, **_UpperCAmelCase ) def A_ ( self : Union[str, Any], **_UpperCAmelCase : Tuple ) -> Union[str, Any]: """simple docstring""" return FunnelTokenizerFast.from_pretrained(self.tmpdirname, **_UpperCAmelCase ) def A_ ( self : List[str], _UpperCAmelCase : int ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = "UNwant\u00E9d,running" SCREAMING_SNAKE_CASE__ : Any = "unwanted, running" return input_text, output_text def A_ ( self : Any ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.tokenizer_class(self.vocab_file ) SCREAMING_SNAKE_CASE__ : Tuple = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(_UpperCAmelCase, ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ), [7, 4, 5, 1_0, 8, 9] ) def A_ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.get_tokenizers(do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: SCREAMING_SNAKE_CASE__ : int = tokenizer("UNwant\u00E9d,running" ) SCREAMING_SNAKE_CASE__ : int = len(inputs["input_ids"] ) - 1 self.assertListEqual(inputs["token_type_ids"], [2] + [0] * sentence_len ) SCREAMING_SNAKE_CASE__ : Tuple = tokenizer("UNwant\u00E9d,running", "UNwant\u00E9d,running" ) self.assertListEqual(inputs["token_type_ids"], [2] + [0] * sentence_len + [1] * sentence_len )
157
from collections.abc import Generator def _a ( ) -> Generator[int, None, None]: '''simple docstring''' SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Any = 0, 1 while True: SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Optional[Any] = b, a + b yield b def _a ( SCREAMING_SNAKE_CASE__ : int = 10_00 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = 1 SCREAMING_SNAKE_CASE__ : Union[str, Any] = fibonacci_generator() while len(str(next(SCREAMING_SNAKE_CASE__ ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
157
1
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class lowercase_ : def __init__( self , __A = None ) -> None: if components is None: SCREAMING_SNAKE_CASE_ : Dict =[] SCREAMING_SNAKE_CASE_ : List[Any] =list(__A ) def __len__( self ) -> int: return len(self.__components ) def __str__( self ) -> str: return "(" + ",".join(map(__A , self.__components ) ) + ")" def __add__( self , __A ) -> Vector: SCREAMING_SNAKE_CASE_ : Any =len(self ) if size == len(__A ): SCREAMING_SNAKE_CASE_ : Optional[Any] =[self.__components[i] + other.component(__A ) for i in range(__A )] return Vector(__A ) else: raise Exception('''must have the same size''' ) def __sub__( self , __A ) -> Vector: SCREAMING_SNAKE_CASE_ : int =len(self ) if size == len(__A ): SCREAMING_SNAKE_CASE_ : Union[str, Any] =[self.__components[i] - other.component(__A ) for i in range(__A )] return Vector(__A ) else: # error case raise Exception('''must have the same size''' ) @overload def __mul__( self , __A ) -> Vector: ... @overload def __mul__( self , __A ) -> float: ... def __mul__( self , __A ) -> float | Vector: if isinstance(__A , (float, int) ): SCREAMING_SNAKE_CASE_ : List[Any] =[c * other for c in self.__components] return Vector(__A ) elif isinstance(__A , __A ) and len(self ) == len(__A ): SCREAMING_SNAKE_CASE_ : int =len(self ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =[self.__components[i] * other.component(__A ) for i in range(__A )] return sum(__A ) else: # error case raise Exception('''invalid operand!''' ) def _snake_case ( self ) -> Vector: return Vector(self.__components ) def _snake_case ( self , __A ) -> float: if isinstance(__A , __A ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception('''index out of range''' ) def _snake_case ( self , __A , __A ) -> None: assert -len(self.__components ) <= pos < len(self.__components ) SCREAMING_SNAKE_CASE_ : Optional[int] =value def _snake_case ( self ) -> float: if len(self.__components ) == 0: raise Exception('''Vector is empty''' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =[c**2 for c in self.__components] return math.sqrt(sum(__A ) ) def _snake_case ( self , __A , __A = False ) -> float: SCREAMING_SNAKE_CASE_ : str =self * other SCREAMING_SNAKE_CASE_ : Dict =self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : int ) -> Vector: assert isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) return Vector([0] * dimension ) def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> Vector: assert isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and (isinstance(UpperCAmelCase_ , UpperCAmelCase_ )) SCREAMING_SNAKE_CASE_ : Dict =[0] * dimension SCREAMING_SNAKE_CASE_ : Dict =1 return Vector(UpperCAmelCase_ ) def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : float , UpperCAmelCase_ : Vector , UpperCAmelCase_ : Vector ) -> Vector: assert ( isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and (isinstance(UpperCAmelCase_ , (int, float) )) ) return x * scalar + y def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> Vector: random.seed(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[Any] =[random.randint(UpperCAmelCase_ , UpperCAmelCase_ ) for _ in range(UpperCAmelCase_ )] return Vector(UpperCAmelCase_ ) class lowercase_ : def __init__( self , __A , __A , __A ) -> None: SCREAMING_SNAKE_CASE_ : Optional[Any] =matrix SCREAMING_SNAKE_CASE_ : Dict =w SCREAMING_SNAKE_CASE_ : Optional[int] =h def __str__( self ) -> str: SCREAMING_SNAKE_CASE_ : Union[str, Any] ='''''' for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self , __A ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): SCREAMING_SNAKE_CASE_ : int =[] for i in range(self.__height ): SCREAMING_SNAKE_CASE_ : str =[ self.__matrix[i][j] + other.component(__A , __A ) for j in range(self.__width ) ] matrix.append(__A ) return Matrix(__A , self.__width , self.__height ) else: raise Exception('''matrix must have the same dimension!''' ) def __sub__( self , __A ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): SCREAMING_SNAKE_CASE_ : Optional[Any] =[] for i in range(self.__height ): SCREAMING_SNAKE_CASE_ : List[Any] =[ self.__matrix[i][j] - other.component(__A , __A ) for j in range(self.__width ) ] matrix.append(__A ) return Matrix(__A , self.__width , self.__height ) else: raise Exception('''matrices must have the same dimension!''' ) @overload def __mul__( self , __A ) -> Matrix: ... @overload def __mul__( self , __A ) -> Vector: ... def __mul__( self , __A ) -> Vector | Matrix: if isinstance(__A , __A ): # matrix-vector if len(__A ) == self.__width: SCREAMING_SNAKE_CASE_ : Optional[Any] =zero_vector(self.__height ) for i in range(self.__height ): SCREAMING_SNAKE_CASE_ : Tuple =[ self.__matrix[i][j] * other.component(__A ) for j in range(self.__width ) ] ans.change_component(__A , sum(__A ) ) return ans else: raise Exception( '''vector must have the same size as the ''' '''number of columns of the matrix!''' ) elif isinstance(__A , (int, float) ): # matrix-scalar SCREAMING_SNAKE_CASE_ : Dict =[ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(__A , self.__width , self.__height ) return None def _snake_case ( self ) -> int: return self.__height def _snake_case ( self ) -> int: return self.__width def _snake_case ( self , __A , __A ) -> float: if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception('''change_component: indices out of bounds''' ) def _snake_case ( self , __A , __A , __A ) -> None: if 0 <= x < self.__height and 0 <= y < self.__width: SCREAMING_SNAKE_CASE_ : Any =value else: raise Exception('''change_component: indices out of bounds''' ) def _snake_case ( self , __A , __A ) -> float: if self.__height != self.__width: raise Exception('''Matrix is not square''' ) SCREAMING_SNAKE_CASE_ : int =self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(__A ) ): SCREAMING_SNAKE_CASE_ : int =minor[i][:y] + minor[i][y + 1 :] return Matrix(__A , self.__width - 1 , self.__height - 1 ).determinant() def _snake_case ( self , __A , __A ) -> float: if self.__height != self.__width: raise Exception('''Matrix is not square''' ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(__A , __A ) else: raise Exception('''Indices out of bounds''' ) def _snake_case ( self ) -> float: if self.__height != self.__width: raise Exception('''Matrix is not square''' ) if self.__height < 1: raise Exception('''Matrix has no element''' ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: SCREAMING_SNAKE_CASE_ : Tuple =[ self.__matrix[0][y] * self.cofactor(0 , __A ) for y in range(self.__width ) ] return sum(__A ) def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : int ) -> Matrix: SCREAMING_SNAKE_CASE_ : list[list[float]] =[[0] * n for _ in range(UpperCAmelCase_ )] return Matrix(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> Matrix: random.seed(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE_ : list[list[float]] =[ [random.randint(UpperCAmelCase_ , UpperCAmelCase_ ) for _ in range(UpperCAmelCase_ )] for _ in range(UpperCAmelCase_ ) ] return Matrix(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
443
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets _lowercase = """\ @inproceedings{lin-2004-rouge, title = \"{ROUGE}: A Package for Automatic Evaluation of Summaries\", author = \"Lin, Chin-Yew\", booktitle = \"Text Summarization Branches Out\", month = jul, year = \"2004\", address = \"Barcelona, Spain\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/W04-1013\", pages = \"74--81\", } """ _lowercase = """\ ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for evaluating automatic summarization and machine translation software in natural language processing. The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation. Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters. This metrics is a wrapper around Google Research reimplementation of ROUGE: https://github.com/google-research/google-research/tree/master/rouge """ _lowercase = """ Calculates average rouge scores for a list of hypotheses and references Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. rouge_types: A list of rouge types to calculate. Valid names: `\"rouge{n}\"` (e.g. `\"rouge1\"`, `\"rouge2\"`) where: {n} is the n-gram based scoring, `\"rougeL\"`: Longest common subsequence based scoring. `\"rougeLSum\"`: rougeLsum splits text using `\"\n\"`. See details in https://github.com/huggingface/datasets/issues/617 use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes. use_aggregator: Return aggregates if this is set to True Returns: rouge1: rouge_1 (precision, recall, f1), rouge2: rouge_2 (precision, recall, f1), rougeL: rouge_l (precision, recall, f1), rougeLsum: rouge_lsum (precision, recall, f1) Examples: >>> rouge = datasets.load_metric('rouge') >>> predictions = [\"hello there\", \"general kenobi\"] >>> references = [\"hello there\", \"general kenobi\"] >>> results = rouge.compute(predictions=predictions, references=references) >>> print(list(results.keys())) ['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] >>> print(results[\"rouge1\"]) AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0)) >>> print(results[\"rouge1\"].mid.fmeasure) 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase_ ( datasets.Metric ): def _snake_case ( self ) -> Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/google-research/google-research/tree/master/rouge'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/ROUGE_(metric)''', '''https://github.com/google-research/google-research/tree/master/rouge''', ] , ) def _snake_case ( self , __A , __A , __A=None , __A=True , __A=False ) -> List[str]: if rouge_types is None: SCREAMING_SNAKE_CASE_ : Union[str, Any] =['''rouge1''', '''rouge2''', '''rougeL''', '''rougeLsum'''] SCREAMING_SNAKE_CASE_ : Tuple =rouge_scorer.RougeScorer(rouge_types=__A , use_stemmer=__A ) if use_aggregator: SCREAMING_SNAKE_CASE_ : List[str] =scoring.BootstrapAggregator() else: SCREAMING_SNAKE_CASE_ : Tuple =[] for ref, pred in zip(__A , __A ): SCREAMING_SNAKE_CASE_ : int =scorer.score(__A , __A ) if use_aggregator: aggregator.add_scores(__A ) else: scores.append(__A ) if use_aggregator: SCREAMING_SNAKE_CASE_ : Tuple =aggregator.aggregate() else: SCREAMING_SNAKE_CASE_ : Optional[int] ={} for key in scores[0]: SCREAMING_SNAKE_CASE_ : Tuple =[score[key] for score in scores] return result
443
1
def UpperCamelCase_ ( a_ ) ->int: A =len(a_ ) A =len(matrix[0] ) A =min(a_ , a_ ) for row in range(a_ ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , a_ ): A =matrix[col][row] / matrix[row][row] for i in range(a_ , a_ ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows A =True for i in range(row + 1 , a_ ): if matrix[i][row] != 0: A , A =matrix[i], matrix[row] A =False break if reduce: rank -= 1 for i in range(a_ ): A =matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
689
def UpperCamelCase_ ( a_ , a_ , a_ ) ->int: def count_of_possible_combinations(a_ ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(a_ ) def UpperCamelCase_ ( a_ , a_ , a_ ) ->int: def count_of_possible_combinations_with_dp_array( a_ , a_ ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] A =sum( count_of_possible_combinations_with_dp_array(target - item , a_ ) for item in array ) A =answer return answer A =[-1] * (target + 1) return count_of_possible_combinations_with_dp_array(a_ , a_ ) def UpperCamelCase_ ( a_ , a_ , a_ ) ->int: A =[0] * (target + 1) A =1 for i in range(1 , target + 1 ): for j in range(a_ ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() __a = 3 __a = 5 __a = [1, 2, 5] print(combination_sum_iv(n, array, target))
689
1
"""simple docstring""" # This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Tuple: __SCREAMING_SNAKE_CASE = multiprocessing.Manager() __SCREAMING_SNAKE_CASE = manager.list() __SCREAMING_SNAKE_CASE = multiprocessing.Process(target=lowercase_ , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append('''timed out''' ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Tuple: with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil __SCREAMING_SNAKE_CASE = shutil.rmtree __SCREAMING_SNAKE_CASE = os.rmdir __SCREAMING_SNAKE_CASE = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: __SCREAMING_SNAKE_CASE = {} with swallow_io(): with time_limit(lowercase_ ): exec(lowercase_ , lowercase_ ) result.append('''passed''' ) except TimeoutException: result.append('''timed out''' ) except BaseException as e: result.append(f"""failed: {e}""" ) # Needed for cleaning up. __SCREAMING_SNAKE_CASE = rmtree __SCREAMING_SNAKE_CASE = rmdir __SCREAMING_SNAKE_CASE = chdir @contextlib.contextmanager def _a ( UpperCAmelCase__ ) -> Optional[Any]: def signal_handler(UpperCAmelCase__ , UpperCAmelCase__ ): raise TimeoutException('''Timed out!''' ) signal.setitimer(signal.ITIMER_REAL , lowercase_ ) signal.signal(signal.SIGALRM , lowercase_ ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def _a ( ) -> int: __SCREAMING_SNAKE_CASE = WriteOnlyStringIO() with contextlib.redirect_stdout(lowercase_ ): with contextlib.redirect_stderr(lowercase_ ): with redirect_stdin(lowercase_ ): yield @contextlib.contextmanager def _a ( ) -> Optional[Any]: with tempfile.TemporaryDirectory() as dirname: with chdir(lowercase_ ): yield dirname class A__( snake_case__ ): pass class A__( io.StringIO ): def _a ( self : List[Any] , *__SCREAMING_SNAKE_CASE : Union[str, Any] , **__SCREAMING_SNAKE_CASE : Dict ) -> Optional[int]: """simple docstring""" raise OSError def _a ( self : List[Any] , *__SCREAMING_SNAKE_CASE : Dict , **__SCREAMING_SNAKE_CASE : Optional[Any] ) -> Any: """simple docstring""" raise OSError def _a ( self : str , *__SCREAMING_SNAKE_CASE : List[str] , **__SCREAMING_SNAKE_CASE : str ) -> str: """simple docstring""" raise OSError def _a ( self : Union[str, Any] , *__SCREAMING_SNAKE_CASE : str , **__SCREAMING_SNAKE_CASE : Dict ) -> Any: """simple docstring""" return False class A__( contextlib._RedirectStream ): # type: ignore lowerCAmelCase = '''stdin''' @contextlib.contextmanager def _a ( UpperCAmelCase__ ) -> List[str]: if root == ".": yield return __SCREAMING_SNAKE_CASE = os.getcwd() os.chdir(lowercase_ ) try: yield except BaseException as exc: raise exc finally: os.chdir(lowercase_ ) def _a ( UpperCAmelCase__=None ) -> str: if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None import os __SCREAMING_SNAKE_CASE = '''1''' __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None import shutil __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None import subprocess __SCREAMING_SNAKE_CASE = None # type: ignore __SCREAMING_SNAKE_CASE = None import sys __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None
482
import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def __magic_name__ ( lowercase_ , lowercase_ , lowercase_ , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , ) -> Union[str, Any]: '''simple docstring''' if attention_mask is None: UpperCamelCase = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: UpperCamelCase = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: UpperCamelCase = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=lowercase_ ) if decoder_head_mask is None: UpperCamelCase = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=lowercase_ ) if cross_attn_head_mask is None: UpperCamelCase = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=lowercase_ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class __UpperCAmelCase : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=13 , SCREAMING_SNAKE_CASE=7 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=99 , SCREAMING_SNAKE_CASE=16 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE="relu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=20 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=1 , SCREAMING_SNAKE_CASE=0 , ) -> Optional[int]: """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = encoder_layerdrop UpperCamelCase = decoder_layerdrop UpperCamelCase = max_position_embeddings UpperCamelCase = eos_token_id UpperCamelCase = pad_token_id UpperCamelCase = bos_token_id def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase = self.eos_token_id # Eos Token UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input UpperCamelCase = input_ids.clamp(self.pad_token_id + 1 ) UpperCamelCase = decoder_input_ids.clamp(self.pad_token_id + 1 ) UpperCamelCase = self.get_config() UpperCamelCase = prepare_mam_aaa_inputs_dict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return config, inputs_dict def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase , UpperCamelCase = self.prepare_config_and_inputs() return config, inputs_dict def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" UpperCamelCase = MaMaaaModel(config=SCREAMING_SNAKE_CASE ).get_decoder().to(SCREAMING_SNAKE_CASE ).eval() UpperCamelCase = inputs_dict["input_ids"] UpperCamelCase = inputs_dict["attention_mask"] UpperCamelCase = inputs_dict["head_mask"] # first forward pass UpperCamelCase = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , head_mask=SCREAMING_SNAKE_CASE , use_cache=SCREAMING_SNAKE_CASE ) UpperCamelCase , UpperCamelCase = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids UpperCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and UpperCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) UpperCamelCase = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE )["last_hidden_state"] UpperCamelCase = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , past_key_values=SCREAMING_SNAKE_CASE )[ "last_hidden_state" ] # select random slice UpperCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCamelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1e-2 ) ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" UpperCamelCase = MaMaaaModel(config=SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE ).eval() UpperCamelCase = model(**SCREAMING_SNAKE_CASE ) UpperCamelCase = outputs.encoder_last_hidden_state UpperCamelCase = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase = model.get_encoder() encoder.save_pretrained(SCREAMING_SNAKE_CASE ) UpperCamelCase = MaMaaaEncoder.from_pretrained(SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE ) UpperCamelCase = encoder(inputs_dict["input_ids"] , attention_mask=inputs_dict["attention_mask"] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase = model.get_decoder() decoder.save_pretrained(SCREAMING_SNAKE_CASE ) UpperCamelCase = MaMaaaDecoder.from_pretrained(SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE ) UpperCamelCase = decoder( input_ids=inputs_dict["decoder_input_ids"] , attention_mask=inputs_dict["decoder_attention_mask"] , encoder_hidden_states=SCREAMING_SNAKE_CASE , encoder_attention_mask=inputs_dict["attention_mask"] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class __UpperCAmelCase ( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" lowercase = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) lowercase = (MaMaaaForConditionalGeneration,) if is_torch_available() else () lowercase = ( { """conversational""": MaMaaaForConditionalGeneration, """feature-extraction""": MaMaaaModel, """summarization""": MaMaaaForConditionalGeneration, """text2text-generation""": MaMaaaForConditionalGeneration, """translation""": MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) lowercase = True lowercase = True lowercase = False lowercase = False def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = MaMaaaModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Any: """simple docstring""" self.config_tester.run_common_tests() def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: UpperCamelCase = model_class(SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(SCREAMING_SNAKE_CASE ) UpperCamelCase , UpperCamelCase = model_class.from_pretrained(SCREAMING_SNAKE_CASE , output_loading_info=SCREAMING_SNAKE_CASE ) self.assertEqual(info["missing_keys"] , [] ) def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): UpperCamelCase = model_class(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase = copy.deepcopy(self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) if not self.is_encoder_decoder: UpperCamelCase = inputs["input_ids"] del inputs["input_ids"] else: UpperCamelCase = inputs["input_ids"] UpperCamelCase = inputs.get("decoder_input_ids" , SCREAMING_SNAKE_CASE ) del inputs["input_ids"] inputs.pop("decoder_input_ids" , SCREAMING_SNAKE_CASE ) UpperCamelCase = model.get_input_embeddings() if not self.is_encoder_decoder: UpperCamelCase = wte(SCREAMING_SNAKE_CASE ) else: UpperCamelCase = wte(SCREAMING_SNAKE_CASE ) UpperCamelCase = wte(SCREAMING_SNAKE_CASE ) with torch.no_grad(): model(**SCREAMING_SNAKE_CASE )[0] def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs() UpperCamelCase = input_dict["input_ids"] UpperCamelCase = input_ids.ne(1 ).to(SCREAMING_SNAKE_CASE ) UpperCamelCase = MaMaaaForConditionalGeneration(SCREAMING_SNAKE_CASE ).eval().to(SCREAMING_SNAKE_CASE ) if torch_device == "cuda": model.half() model.generate(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE ) model.generate(num_beams=4 , do_sample=SCREAMING_SNAKE_CASE , early_stopping=SCREAMING_SNAKE_CASE , num_return_sequences=3 ) def __magic_name__ ( lowercase_ ) -> int: '''simple docstring''' return torch.tensor(lowercase_ , dtype=torch.long , device=lowercase_ ) __a : List[str] = 1E-4 @require_torch @require_sentencepiece @require_tokenizers @slow class __UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def __lowerCAmelCase ( self ) -> str: """simple docstring""" return MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" ) def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase = MaMaaaModel.from_pretrained("facebook/m2m100_418M" ).to(SCREAMING_SNAKE_CASE ) UpperCamelCase = _long_tensor([[128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38, 2]] ) UpperCamelCase = _long_tensor([[2, 128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38]] ) UpperCamelCase = prepare_mam_aaa_inputs_dict(model.config , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) with torch.no_grad(): UpperCamelCase = model(**SCREAMING_SNAKE_CASE )[0] UpperCamelCase = torch.Size((1, 11, 1024) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE ) # change to expected output here UpperCamelCase = torch.tensor( [[-0.7_780, -0.1_676, 0.1_038], [-6.7_556, -1.3_992, 0.0_567], [-7.5_383, -0.5_920, -0.2_779]] , device=SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE , atol=SCREAMING_SNAKE_CASE ) ) def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(SCREAMING_SNAKE_CASE ) # change to intended input UpperCamelCase = _long_tensor([[128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38, 2]] ) UpperCamelCase = _long_tensor([[2, 128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38]] ) UpperCamelCase = prepare_mam_aaa_inputs_dict(model.config , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) with torch.no_grad(): UpperCamelCase = model(**SCREAMING_SNAKE_CASE )[0] UpperCamelCase = torch.Size((1, 11, model.config.vocab_size) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE ) # change to expected output here UpperCamelCase = torch.tensor( [[-1.0_448, -1.0_411, 3.7_992], [-3.2_191, -3.2_386, -1.3_451], [-3.6_210, -3.5_993, 0.4_925]] , device=SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE , atol=SCREAMING_SNAKE_CASE ) ) def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(SCREAMING_SNAKE_CASE ) UpperCamelCase = MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" , src_lang="fr" , tgt_lang="en" ) UpperCamelCase = [ "L'affaire NSA souligne l'absence totale de débat sur le renseignement", "Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.", "Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent" " Fabius convoque l'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de" " l'ampleur de la surveillance américaine sur l'ensemble des communications en France.", ] # The below article tests that we don't add any hypotheses outside of the top n_beams UpperCamelCase = tokenizer(SCREAMING_SNAKE_CASE , padding=SCREAMING_SNAKE_CASE , return_tensors="pt" ) UpperCamelCase = model.generate( input_ids=dct["input_ids"].to(SCREAMING_SNAKE_CASE ) , attention_mask=dct["attention_mask"].to(SCREAMING_SNAKE_CASE ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id("en" ) , ) UpperCamelCase = [ "The NSA case highlights the total absence of intelligence debate", "I think there are two levels of response from the French government.", "When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S." " Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all" " communications in France.", ] UpperCamelCase = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE , skip_special_tokens=SCREAMING_SNAKE_CASE ) assert generated == expected_en
606
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A_ = { "configuration_electra": ["ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "ElectraConfig", "ElectraOnnxConfig"], "tokenization_electra": ["ElectraTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ["ElectraTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ "ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST", "ElectraForCausalLM", "ElectraForMaskedLM", "ElectraForMultipleChoice", "ElectraForPreTraining", "ElectraForQuestionAnswering", "ElectraForSequenceClassification", "ElectraForTokenClassification", "ElectraModel", "ElectraPreTrainedModel", "load_tf_weights_in_electra", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ "TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFElectraForMaskedLM", "TFElectraForMultipleChoice", "TFElectraForPreTraining", "TFElectraForQuestionAnswering", "TFElectraForSequenceClassification", "TFElectraForTokenClassification", "TFElectraModel", "TFElectraPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ "FlaxElectraForCausalLM", "FlaxElectraForMaskedLM", "FlaxElectraForMultipleChoice", "FlaxElectraForPreTraining", "FlaxElectraForQuestionAnswering", "FlaxElectraForSequenceClassification", "FlaxElectraForTokenClassification", "FlaxElectraModel", "FlaxElectraPreTrainedModel", ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys A_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
713
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def __UpperCamelCase ( a, a=False) ->Optional[Any]: lowerCamelCase__ = OmegaConf.load(a) if display: print(yaml.dump(OmegaConf.to_container(a))) return config def __UpperCamelCase ( a, a=None, a=None) ->List[Any]: if conf_path is None: lowerCamelCase__ = "./model_checkpoints/vqgan_only.yaml" lowerCamelCase__ = load_config(a, display=a) lowerCamelCase__ = VQModel(**config.model.params) if ckpt_path is None: lowerCamelCase__ = "./model_checkpoints/vqgan_only.pt" lowerCamelCase__ = torch.load(a, map_location=a) if ".ckpt" in ckpt_path: lowerCamelCase__ = sd["state_dict"] model.load_state_dict(a, strict=a) model.to(a) del sd return model def __UpperCamelCase ( a, a) ->int: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = model.encode(a) print(f"VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}") lowerCamelCase__ = model.decode(a) return xrec def __UpperCamelCase ( a, a=False) ->Dict: lowerCamelCase__ , lowerCamelCase__ = string.rsplit(".", 1) if reload: lowerCamelCase__ = importlib.import_module(a) importlib.reload(a) return getattr(importlib.import_module(a, package=a), cls) def __UpperCamelCase ( a) ->int: if "target" not in config: raise KeyError("Expected key `target` to instantiate.") return get_obj_from_str(config["target"])(**config.get("params", {})) def __UpperCamelCase ( a, a, a=True, a=True) ->Optional[Any]: lowerCamelCase__ = instantiate_from_config(a) if sd is not None: model.load_state_dict(a) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def __UpperCamelCase ( a, a, a, a) ->Dict: # load the specified checkpoint if ckpt: lowerCamelCase__ = torch.load(a, map_location="cpu") lowerCamelCase__ = pl_sd["global_step"] print(f"loaded model from global step {global_step}.") else: lowerCamelCase__ = {"state_dict": None} lowerCamelCase__ = None lowerCamelCase__ = load_model_from_config(config.model, pl_sd["state_dict"], gpu=a, eval_mode=a)["model"] return model, global_step
360
0
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } UpperCamelCase_ = { """vocab_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json""" }, """merges_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt""" }, """tokenizer_config_file""": { """facebook/blenderbot_small-90M""": ( """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json""" ) }, } UpperCamelCase_ = { """facebook/blenderbot_small-90M""": 512, } class __SCREAMING_SNAKE_CASE ( lowercase__ ): lowerCamelCase_ = VOCAB_FILES_NAMES lowerCamelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase_ = BlenderbotSmallTokenizer def __init__( self : Tuple , UpperCAmelCase__ : Union[str, Any]=None , UpperCAmelCase__ : Optional[int]=None , UpperCAmelCase__ : Optional[Any]="<|endoftext|>" , UpperCAmelCase__ : Dict="<|endoftext|>" , UpperCAmelCase__ : List[str]="<|endoftext|>" , UpperCAmelCase__ : List[Any]=False , UpperCAmelCase__ : Optional[Any]=True , **UpperCAmelCase__ : Optional[int] , ): '''simple docstring''' super().__init__( ByteLevelBPETokenizer( vocab=UpperCAmelCase__ , merges=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ , trim_offsets=UpperCAmelCase__ , ) , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , **UpperCAmelCase__ , ) lowercase : int =add_prefix_space def lowerCamelCase_ ( self : Any , UpperCAmelCase__ : str , UpperCAmelCase__ : Tuple=None ): '''simple docstring''' lowercase : Any =[self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCamelCase_ ( self : Union[str, Any] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ): '''simple docstring''' lowercase : Optional[Any] =[self.sep_token_id] lowercase : str =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
92
from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class lowerCamelCase : """simple docstring""" UpperCAmelCase_ = BlenderbotSmallConfig UpperCAmelCase_ = {} UpperCAmelCase_ = "gelu" def __init__( self : Optional[Any], _UpperCAmelCase : List[Any], _UpperCAmelCase : Optional[int]=1_3, _UpperCAmelCase : int=7, _UpperCAmelCase : List[Any]=True, _UpperCAmelCase : Union[str, Any]=False, _UpperCAmelCase : str=9_9, _UpperCAmelCase : Union[str, Any]=3_2, _UpperCAmelCase : Any=2, _UpperCAmelCase : Any=4, _UpperCAmelCase : List[Any]=3_7, _UpperCAmelCase : Dict=0.1, _UpperCAmelCase : List[str]=0.1, _UpperCAmelCase : Dict=2_0, _UpperCAmelCase : int=2, _UpperCAmelCase : Union[str, Any]=1, _UpperCAmelCase : List[str]=0, ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = parent SCREAMING_SNAKE_CASE__ : Tuple = batch_size SCREAMING_SNAKE_CASE__ : List[Any] = seq_length SCREAMING_SNAKE_CASE__ : Optional[int] = is_training SCREAMING_SNAKE_CASE__ : List[Any] = use_labels SCREAMING_SNAKE_CASE__ : List[Any] = vocab_size SCREAMING_SNAKE_CASE__ : Tuple = hidden_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE__ : Any = num_attention_heads SCREAMING_SNAKE_CASE__ : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE__ : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Tuple = max_position_embeddings SCREAMING_SNAKE_CASE__ : Any = eos_token_id SCREAMING_SNAKE_CASE__ : Optional[int] = pad_token_id SCREAMING_SNAKE_CASE__ : List[Any] = bos_token_id def A_ ( self : str ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ), 1 ) SCREAMING_SNAKE_CASE__ : Dict = tf.concat([input_ids, eos_tensor], axis=1 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) SCREAMING_SNAKE_CASE__ : Any = self.config_cls( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_ids=[2], bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, decoder_start_token_id=self.pad_token_id, **self.config_updates, ) SCREAMING_SNAKE_CASE__ : str = prepare_blenderbot_small_inputs_dict(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) return config, inputs_dict def A_ ( self : Tuple, _UpperCAmelCase : str, _UpperCAmelCase : int ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = TFBlenderbotSmallModel(config=_UpperCAmelCase ).get_decoder() SCREAMING_SNAKE_CASE__ : Union[str, Any] = inputs_dict["input_ids"] SCREAMING_SNAKE_CASE__ : Optional[Any] = input_ids[:1, :] SCREAMING_SNAKE_CASE__ : Optional[Any] = inputs_dict["attention_mask"][:1, :] SCREAMING_SNAKE_CASE__ : List[str] = inputs_dict["head_mask"] SCREAMING_SNAKE_CASE__ : Tuple = 1 # first forward pass SCREAMING_SNAKE_CASE__ : Tuple = model(_UpperCAmelCase, attention_mask=_UpperCAmelCase, head_mask=_UpperCAmelCase, use_cache=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Dict = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids SCREAMING_SNAKE_CASE__ : Dict = ids_tensor((self.batch_size, 3), config.vocab_size ) SCREAMING_SNAKE_CASE__ : int = tf.cast(ids_tensor((self.batch_size, 3), 2 ), tf.inta ) # append to next input_ids and SCREAMING_SNAKE_CASE__ : Any = tf.concat([input_ids, next_tokens], axis=-1 ) SCREAMING_SNAKE_CASE__ : Optional[Any] = tf.concat([attention_mask, next_attn_mask], axis=-1 ) SCREAMING_SNAKE_CASE__ : str = model(_UpperCAmelCase, attention_mask=_UpperCAmelCase )[0] SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(_UpperCAmelCase, attention_mask=_UpperCAmelCase, past_key_values=_UpperCAmelCase )[0] self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1] ) # select random slice SCREAMING_SNAKE_CASE__ : Tuple = int(ids_tensor((1,), output_from_past.shape[-1] ) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = output_from_no_past[:, -3:, random_slice_idx] SCREAMING_SNAKE_CASE__ : Any = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_UpperCAmelCase, _UpperCAmelCase, rtol=1E-3 ) def _a ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : List[Any]=None , ) -> List[Any]: '''simple docstring''' if attention_mask is None: SCREAMING_SNAKE_CASE__ : Tuple = tf.cast(tf.math.not_equal(SCREAMING_SNAKE_CASE__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: SCREAMING_SNAKE_CASE__ : List[Any] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: SCREAMING_SNAKE_CASE__ : List[str] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: SCREAMING_SNAKE_CASE__ : Optional[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: SCREAMING_SNAKE_CASE__ : List[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class lowerCamelCase (__lowerCamelCase , __lowerCamelCase , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ = ( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) UpperCAmelCase_ = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () UpperCAmelCase_ = ( { "conversational": TFBlenderbotSmallForConditionalGeneration, "feature-extraction": TFBlenderbotSmallModel, "summarization": TFBlenderbotSmallForConditionalGeneration, "text2text-generation": TFBlenderbotSmallForConditionalGeneration, "translation": TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) UpperCAmelCase_ = True UpperCAmelCase_ = False UpperCAmelCase_ = False def A_ ( self : Optional[int] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = TFBlenderbotSmallModelTester(self ) SCREAMING_SNAKE_CASE__ : Optional[int] = ConfigTester(self, config_class=_UpperCAmelCase ) def A_ ( self : Any ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def A_ ( self : Any ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_UpperCAmelCase ) @require_tokenizers @require_tf class lowerCamelCase (unittest.TestCase ): """simple docstring""" UpperCAmelCase_ = [ "Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like " " i'm going to throw up.\nand why is that?" ] UpperCAmelCase_ = "facebook/blenderbot_small-90M" @cached_property def A_ ( self : Dict ) -> Optional[Any]: """simple docstring""" # use "old" tokenizer here because of bug when downloading new tokenizer return BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) @cached_property def A_ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def A_ ( self : List[str] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.tokenizer(self.src_text, return_tensors="tf" ) SCREAMING_SNAKE_CASE__ : Optional[int] = self.model.generate( model_inputs.input_ids, attention_mask=model_inputs.attention_mask, num_beams=2, use_cache=_UpperCAmelCase, ) SCREAMING_SNAKE_CASE__ : Dict = self.tokenizer.batch_decode(generated_ids.numpy(), skip_special_tokens=_UpperCAmelCase )[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
663
0
def _lowerCAmelCase ( UpperCamelCase__: int = 4_00_00_00 ) -> Optional[Any]: """simple docstring""" A = [0, 1] A = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 A = 0 for j in range(len(UpperCamelCase__ ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(f'''{solution() = }''')
711
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class _UpperCamelCase : """simple docstring""" @property def _UpperCAmelCase ( self ) -> Any: return self.get_dummy_input() @property def _UpperCAmelCase ( self ) -> Union[str, Any]: if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(f'\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.' ) def _UpperCAmelCase ( self , a__=True , a__=False , a__=False , a__=False , ) -> Optional[Any]: A = 4 A = 32 A = (32, 32) A = torch.manual_seed(0 ) A = torch.device(a__ ) A = (batch_size, num_channels) + sizes A = randn_tensor(a__ , generator=a__ , device=a__ ) A = {"""hidden_states""": hidden_states} if include_temb: A = 128 A = randn_tensor((batch_size, temb_channels) , generator=a__ , device=a__ ) if include_res_hidden_states_tuple: A = torch.manual_seed(1 ) A = (randn_tensor(a__ , generator=a__ , device=a__ ),) if include_encoder_hidden_states: A = floats_tensor((batch_size, 32, 32) ).to(a__ ) if include_skip_sample: A = randn_tensor(((batch_size, 3) + sizes) , generator=a__ , device=a__ ) return dummy_input def _UpperCAmelCase ( self ) -> int: A = { """in_channels""": 32, """out_channels""": 32, """temb_channels""": 128, } if self.block_type == "up": A = 32 if self.block_type == "mid": init_dict.pop("""out_channels""" ) A = self.dummy_input return init_dict, inputs_dict def _UpperCAmelCase ( self , a__ ) -> Optional[int]: A , A = self.prepare_init_args_and_inputs_for_common() A = self.block_class(**a__ ) unet_block.to(a__ ) unet_block.eval() with torch.no_grad(): A = unet_block(**a__ ) if isinstance(a__ , a__ ): A = output[0] self.assertEqual(output.shape , self.output_shape ) A = output[0, -1, -3:, -3:] A = torch.tensor(a__ ).to(a__ ) assert torch_all_close(output_slice.flatten() , a__ , atol=5e-3 ) @unittest.skipIf(torch_device == """mps""" , """Training is not supported in mps""" ) def _UpperCAmelCase ( self ) -> str: A , A = self.prepare_init_args_and_inputs_for_common() A = self.block_class(**a__ ) model.to(a__ ) model.train() A = model(**a__ ) if isinstance(a__ , a__ ): A = output[0] A = torch.device(a__ ) A = randn_tensor(output.shape , device=a__ ) A = torch.nn.functional.mse_loss(a__ , a__ ) loss.backward()
546
0
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
461
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCamelCase_ : Any = logging.get_logger(__name__) class __lowercase ( __snake_case ): _A = ["pixel_values"] def __init__(self : Dict , snake_case : bool = True , snake_case : Dict[str, int] = None , snake_case : PILImageResampling = PILImageResampling.BICUBIC , snake_case : bool = True , snake_case : Dict[str, int] = None , snake_case : bool = True , snake_case : Union[int, float] = 1 / 255 , snake_case : bool = True , snake_case : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , snake_case : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **snake_case : Optional[int] , ) -> None: super().__init__(**snake_case ) _lowercase : str = size if size is not None else {"shortest_edge": 224} _lowercase : List[str] = get_size_dict(snake_case , default_to_square=snake_case ) _lowercase : Optional[int] = crop_size if crop_size is not None else {"height": 224, "width": 224} _lowercase : List[Any] = get_size_dict(snake_case , param_name="crop_size" ) _lowercase : Optional[int] = do_resize _lowercase : List[str] = size _lowercase : Tuple = resample _lowercase : Union[str, Any] = do_center_crop _lowercase : List[str] = crop_size _lowercase : Tuple = do_rescale _lowercase : Union[str, Any] = rescale_factor _lowercase : str = do_normalize _lowercase : List[Any] = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _lowercase : List[Any] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def _a(self : str , snake_case : np.ndarray , snake_case : Dict[str, int] , snake_case : PILImageResampling = PILImageResampling.BICUBIC , snake_case : Optional[Union[str, ChannelDimension]] = None , **snake_case : str , ) -> np.ndarray: _lowercase : Tuple = get_size_dict(snake_case , default_to_square=snake_case ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: _lowercase : List[str] = int((256 / 224) * size["shortest_edge"] ) _lowercase : Dict = get_resize_output_image_size(snake_case , size=snake_case , default_to_square=snake_case ) _lowercase : int = {"height": output_size[0], "width": output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( F"""Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}""" ) return resize( snake_case , size=(size_dict["height"], size_dict["width"]) , resample=snake_case , data_format=snake_case , **snake_case ) def _a(self : Any , snake_case : np.ndarray , snake_case : Dict[str, int] , snake_case : Optional[Union[str, ChannelDimension]] = None , **snake_case : Any , ) -> np.ndarray: _lowercase : Tuple = get_size_dict(snake_case ) if "height" not in size or "width" not in size: raise ValueError(F"""Size dict must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(snake_case , size=(size["height"], size["width"]) , data_format=snake_case , **snake_case ) def _a(self : Dict , snake_case : np.ndarray , snake_case : Union[int, float] , snake_case : Optional[Union[str, ChannelDimension]] = None , **snake_case : List[str] , ) -> np.ndarray: return rescale(snake_case , scale=snake_case , data_format=snake_case , **snake_case ) def _a(self : str , snake_case : np.ndarray , snake_case : Union[float, List[float]] , snake_case : Union[float, List[float]] , snake_case : Optional[Union[str, ChannelDimension]] = None , **snake_case : Optional[int] , ) -> np.ndarray: return normalize(snake_case , mean=snake_case , std=snake_case , data_format=snake_case , **snake_case ) def _a(self : Any , snake_case : ImageInput , snake_case : Optional[bool] = None , snake_case : Optional[Dict[str, int]] = None , snake_case : PILImageResampling = None , snake_case : Optional[bool] = None , snake_case : Optional[Dict[str, int]] = None , snake_case : Optional[bool] = None , snake_case : Optional[float] = None , snake_case : Optional[bool] = None , snake_case : Optional[Union[float, Iterable[float]]] = None , snake_case : Optional[Union[float, Iterable[float]]] = None , snake_case : Optional[TensorType] = None , snake_case : ChannelDimension = ChannelDimension.FIRST , **snake_case : Tuple , ) -> BatchFeature: _lowercase : Optional[Any] = do_resize if do_resize is not None else self.do_resize _lowercase : Any = resample if resample is not None else self.resample _lowercase : Optional[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop _lowercase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale _lowercase : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor _lowercase : str = do_normalize if do_normalize is not None else self.do_normalize _lowercase : Dict = image_mean if image_mean is not None else self.image_mean _lowercase : Dict = image_std if image_std is not None else self.image_std _lowercase : Optional[int] = size if size is not None else self.size _lowercase : Dict = get_size_dict(snake_case , default_to_square=snake_case ) _lowercase : Dict = crop_size if crop_size is not None else self.crop_size _lowercase : Optional[int] = get_size_dict(snake_case , param_name="crop_size" ) _lowercase : Dict = make_list_of_images(snake_case ) if not valid_images(snake_case ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. _lowercase : Dict = [to_numpy_array(snake_case ) for image in images] if do_resize: _lowercase : List[Any] = [self.resize(snake_case , snake_case , snake_case ) for image in images] if do_center_crop: _lowercase : Union[str, Any] = [self.center_crop(snake_case , snake_case ) for image in images] if do_rescale: _lowercase : List[str] = [self.rescale(snake_case , snake_case ) for image in images] if do_normalize: _lowercase : str = [self.normalize(snake_case , snake_case , snake_case ) for image in images] _lowercase : Any = [to_channel_dimension_format(snake_case , snake_case ) for image in images] _lowercase : str = {"pixel_values": images} return BatchFeature(data=snake_case , tensor_type=snake_case )
461
1
'''simple docstring''' import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version A__ : Optional[Any] =version.parse(importlib_metadata.version('nltk')) if NLTK_VERSION >= version.Version('3.6.4'): from nltk import word_tokenize A__ : Any ='\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n' A__ : Any ='\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n' A__ : Optional[int] ='\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n \'meteor\': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric(\'meteor\')\n >>> predictions = ["It is a guide to action which ensures that the military always obeys the commands of the party"]\n >>> references = ["It is a guide to action that ensures that the military will forever heed Party commands"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results["meteor"], 4))\n 0.6944\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): def lowercase_( self : List[str] ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py"""] , reference_urls=[ """https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score""", """https://en.wikipedia.org/wiki/METEOR""", ] , ) def lowercase_( self : int , lowerCamelCase : Optional[Any] ): """simple docstring""" import nltk nltk.download("""wordnet""" ) if NLTK_VERSION >= version.Version("""3.6.5""" ): nltk.download("""punkt""" ) if NLTK_VERSION >= version.Version("""3.6.6""" ): nltk.download("""omw-1.4""" ) def lowercase_( self : int , lowerCamelCase : Optional[Any] , lowerCamelCase : int , lowerCamelCase : Optional[Any]=0.9 , lowerCamelCase : Dict=3 , lowerCamelCase : Union[str, Any]=0.5 ): """simple docstring""" if NLTK_VERSION >= version.Version("""3.6.5""" ): __A : List[Any] = [ meteor_score.single_meteor_score( word_tokenize(lowerCamelCase ) , word_tokenize(lowerCamelCase ) , alpha=lowerCamelCase , beta=lowerCamelCase , gamma=lowerCamelCase ) for ref, pred in zip(lowerCamelCase , lowerCamelCase ) ] else: __A : Optional[int] = [ meteor_score.single_meteor_score(lowerCamelCase , lowerCamelCase , alpha=lowerCamelCase , beta=lowerCamelCase , gamma=lowerCamelCase ) for ref, pred in zip(lowerCamelCase , lowerCamelCase ) ] return {"meteor": np.mean(lowerCamelCase )}
718
'''simple docstring''' A__ : int =8.3_1_4_4_6_2 # Unit - J mol-1 K-1 def A_ ( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ) -> float: """simple docstring""" if moles < 0 or kelvin < 0 or volume < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def A_ ( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ) -> float: """simple docstring""" if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
499
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { """s-JoL/Open-Llama-V1""": """https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json""", } class __a ( __magic_name__ ): """simple docstring""" __UpperCamelCase : Any = 'open-llama' def __init__( self , snake_case=100_000 , snake_case=4_096 , snake_case=11_008 , snake_case=32 , snake_case=32 , snake_case="silu" , snake_case=2_048 , snake_case=0.02 , snake_case=1e-6 , snake_case=True , snake_case=0 , snake_case=1 , snake_case=2 , snake_case=False , snake_case=True , snake_case=0.1 , snake_case=0.1 , snake_case=True , snake_case=True , snake_case=None , **snake_case , ): """simple docstring""" lowerCAmelCase__ : int = vocab_size lowerCAmelCase__ : Dict = max_position_embeddings lowerCAmelCase__ : Any = hidden_size lowerCAmelCase__ : Optional[Any] = intermediate_size lowerCAmelCase__ : Any = num_hidden_layers lowerCAmelCase__ : Any = num_attention_heads lowerCAmelCase__ : List[Any] = hidden_act lowerCAmelCase__ : str = initializer_range lowerCAmelCase__ : str = rms_norm_eps lowerCAmelCase__ : int = use_cache lowerCAmelCase__ : str = kwargs.pop( "use_memorry_efficient_attention" , snake_case ) lowerCAmelCase__ : str = hidden_dropout_prob lowerCAmelCase__ : List[str] = attention_dropout_prob lowerCAmelCase__ : int = use_stable_embedding lowerCAmelCase__ : List[Any] = shared_input_output_embedding lowerCAmelCase__ : Tuple = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=snake_case , bos_token_id=snake_case , eos_token_id=snake_case , tie_word_embeddings=snake_case , **snake_case , ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling , snake_case ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " F"""got {self.rope_scaling}""" ) lowerCAmelCase__ : str = self.rope_scaling.get("type" , snake_case ) lowerCAmelCase__ : int = self.rope_scaling.get("factor" , snake_case ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(snake_case , snake_case ) or rope_scaling_factor <= 1.0: raise ValueError(F"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
453
"""simple docstring""" from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING _UpperCamelCase = logging.get_logger(__name__) @add_end_docstrings(__magic_name__ ) class __a ( __magic_name__ ): """simple docstring""" def __init__( self , *snake_case , **snake_case ): """simple docstring""" super().__init__(*snake_case , **snake_case ) self.check_model_type(snake_case ) def SCREAMING_SNAKE_CASE_ ( self , snake_case=None , snake_case=None , snake_case=None , **snake_case ): """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = {}, {} if padding is not None: lowerCAmelCase__ : Dict = padding if truncation is not None: lowerCAmelCase__ : Tuple = truncation if top_k is not None: lowerCAmelCase__ : str = top_k return preprocess_params, {}, postprocess_params def __call__( self , snake_case , snake_case = None , **snake_case ): """simple docstring""" if isinstance(snake_case , (Image.Image, str) ) and isinstance(snake_case , snake_case ): lowerCAmelCase__ : int = {"image": image, "question": question} else: lowerCAmelCase__ : Optional[int] = image lowerCAmelCase__ : Optional[Any] = super().__call__(snake_case , **snake_case ) return results def SCREAMING_SNAKE_CASE_ ( self , snake_case , snake_case=False , snake_case=False ): """simple docstring""" lowerCAmelCase__ : Union[str, Any] = load_image(inputs["image"] ) lowerCAmelCase__ : str = self.tokenizer( inputs["question"] , return_tensors=self.framework , padding=snake_case , truncation=snake_case ) lowerCAmelCase__ : int = self.image_processor(images=snake_case , return_tensors=self.framework ) model_inputs.update(snake_case ) return model_inputs def SCREAMING_SNAKE_CASE_ ( self , snake_case ): """simple docstring""" lowerCAmelCase__ : Optional[int] = self.model(**snake_case ) return model_outputs def SCREAMING_SNAKE_CASE_ ( self , snake_case , snake_case=5 ): """simple docstring""" if top_k > self.model.config.num_labels: lowerCAmelCase__ : List[Any] = self.model.config.num_labels if self.framework == "pt": lowerCAmelCase__ : Optional[int] = model_outputs.logits.sigmoid()[0] lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = probs.topk(snake_case ) else: raise ValueError(F"""Unsupported framework: {self.framework}""" ) lowerCAmelCase__ : int = scores.tolist() lowerCAmelCase__ : str = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(snake_case , snake_case )]
453
1
def UpperCAmelCase ( UpperCamelCase__ ) -> bool: '''simple docstring''' return credit_card_number.startswith(("""34""", """35""", """37""", """4""", """5""", """6""") ) def UpperCAmelCase ( UpperCamelCase__ ) -> bool: '''simple docstring''' __lowerCAmelCase = credit_card_number __lowerCAmelCase = 0 __lowerCAmelCase = len(UpperCamelCase__ ) - 2 for i in range(UpperCamelCase__ , -1 , -2 ): # double the value of every second digit __lowerCAmelCase = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 __lowerCAmelCase = cc_number[:i] + str(UpperCamelCase__ ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(UpperCamelCase__ ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def UpperCAmelCase ( UpperCamelCase__ ) -> bool: '''simple docstring''' __lowerCAmelCase = F'''{credit_card_number} is an invalid credit card number because''' if not credit_card_number.isdigit(): print(F'''{error_message} it has nonnumerical characters.''' ) return False if not 13 <= len(UpperCamelCase__ ) <= 16: print(F'''{error_message} of its length.''' ) return False if not validate_initial_digits(UpperCamelCase__ ): print(F'''{error_message} of its first two digits.''' ) return False if not luhn_validation(UpperCamelCase__ ): print(F'''{error_message} it fails the Luhn check.''' ) return False print(F'''{credit_card_number} is a valid credit card number.''' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("4111111111111111") validate_credit_card_number("32323")
702
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase_ : def __init__( self: Union[str, Any], _lowercase: str, _lowercase: Optional[Any]=12, _lowercase: Tuple=7, _lowercase: Union[str, Any]=True, _lowercase: Dict=True, _lowercase: List[Any]=True, _lowercase: int=99, _lowercase: List[str]=32, _lowercase: Dict=32, _lowercase: Optional[Any]=2, _lowercase: Optional[Any]=4, _lowercase: List[str]=37, _lowercase: Any=0.1, _lowercase: List[Any]=0.1, _lowercase: List[str]=512, _lowercase: Optional[int]=0.02, _lowercase: Dict=0, _lowercase: str=None, ): '''simple docstring''' __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_input_mask __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = projection_dim __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = dropout __lowerCAmelCase = attention_dropout __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = initializer_range __lowerCAmelCase = scope __lowerCAmelCase = bos_token_id def _lowercase ( self: Dict): '''simple docstring''' __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) __lowerCAmelCase = None if self.use_input_mask: __lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length]) if input_mask is not None: __lowerCAmelCase = input_mask.numpy() __lowerCAmelCase , __lowerCAmelCase = input_mask.shape __lowerCAmelCase = np.random.randint(1, seq_length - 1, size=(batch_size,)) for batch_idx, start_index in enumerate(_lowercase): __lowerCAmelCase = 1 __lowerCAmelCase = 0 __lowerCAmelCase = self.get_config() return config, input_ids, tf.convert_to_tensor(_lowercase) def _lowercase ( self: Dict): '''simple docstring''' return BlipTextConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, projection_dim=self.projection_dim, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, dropout=self.dropout, attention_dropout=self.attention_dropout, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, bos_token_id=self.bos_token_id, ) def _lowercase ( self: Dict, _lowercase: Union[str, Any], _lowercase: int, _lowercase: List[str]): '''simple docstring''' __lowerCAmelCase = TFBlipTextModel(config=_lowercase) __lowerCAmelCase = model(_lowercase, attention_mask=_lowercase, training=_lowercase) __lowerCAmelCase = model(_lowercase, training=_lowercase) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def _lowercase ( self: Optional[int]): '''simple docstring''' __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class lowercase_ ( lowerCAmelCase__ , unittest.TestCase ): __UpperCamelCase = (TFBlipTextModel,) if is_tf_available() else () __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def _lowercase ( self: Tuple): '''simple docstring''' __lowerCAmelCase = BlipTextModelTester(self) __lowerCAmelCase = ConfigTester(self, config_class=_lowercase, hidden_size=37) def _lowercase ( self: Optional[Any]): '''simple docstring''' self.config_tester.run_common_tests() def _lowercase ( self: str): '''simple docstring''' __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase) def _lowercase ( self: Any): '''simple docstring''' pass def _lowercase ( self: Tuple): '''simple docstring''' pass @unittest.skip(reason="""Blip does not use inputs_embeds""") def _lowercase ( self: str): '''simple docstring''' pass @unittest.skip(reason="""BlipTextModel has no base class and is not available in MODEL_MAPPING""") def _lowercase ( self: Dict): '''simple docstring''' pass @unittest.skip(reason="""BlipTextModel has no base class and is not available in MODEL_MAPPING""") def _lowercase ( self: Optional[Any]): '''simple docstring''' pass @slow def _lowercase ( self: str): '''simple docstring''' for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = TFBlipTextModel.from_pretrained(_lowercase) self.assertIsNotNone(_lowercase) def _lowercase ( self: Optional[int], _lowercase: Dict=True): '''simple docstring''' super().test_pt_tf_model_equivalence(allow_missing_keys=_lowercase)
334
0
from string import ascii_uppercase SCREAMING_SNAKE_CASE : Optional[Any] = {str(ord(c) - 55): c for c in ascii_uppercase} def __A ( _A , _A ): """simple docstring""" if isinstance(_A , _A ): raise TypeError("int() can't convert non-string with explicit base" ) if num < 0: raise ValueError("parameter must be positive int" ) if isinstance(_A , _A ): raise TypeError("'str' object cannot be interpreted as an integer" ) if isinstance(_A , _A ): raise TypeError("'float' object cannot be interpreted as an integer" ) if base in (0, 1): raise ValueError("base must be >= 2" ) if base > 36: raise ValueError("base must be <= 36" ) __a = "" __a = 0 __a = 0 while div != 1: __a , __a = divmod(_A , _A ) if base >= 11 and 9 < mod < 36: __a = ALPHABET_VALUES[str(_A )] else: __a = str(_A ) new_value += actual_value __a = num // base __a = div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(_A ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 37): for num in range(1000): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
197
def __A ( _A , _A ): """simple docstring""" return x if y == 0 else greatest_common_divisor(_A , x % y ) def __A ( _A , _A ): """simple docstring""" return (x * y) // greatest_common_divisor(_A , _A ) def __A ( _A = 20 ): """simple docstring""" __a = 1 for i in range(1 , n + 1 ): __a = lcm(_A , _A ) return g if __name__ == "__main__": print(f'''{solution() = }''')
197
1
import os import jsonlines import numpy as np from tqdm import tqdm __snake_case : Optional[Any] = 2_048 __snake_case : List[Any] = 4_096 __snake_case : List[str] = 42 __snake_case : List[str] = os.environ.pop('PROCESS_TRAIN', 'false') __snake_case : Optional[int] = {'null': 0, 'short': 1, 'long': 2, 'yes': 3, 'no': 4} def A ( SCREAMING_SNAKE_CASE ): """simple docstring""" def choose_first(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ): assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) == 1: UpperCAmelCase__ :str = answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: UpperCAmelCase__ :str = {k: [a[k]] for k in a} if len(a['start_token'] ) > 0: break return a UpperCAmelCase__ :Tuple = {'id': example['id']} UpperCAmelCase__ :int = example['annotations'] UpperCAmelCase__ :Union[str, Any] = annotation['yes_no_answer'] if 0 in yes_no_answer or 1 in yes_no_answer: UpperCAmelCase__ :str = ['yes'] if 1 in yes_no_answer else ['no'] UpperCAmelCase__ :Dict = [] UpperCAmelCase__ :Tuple = [] UpperCAmelCase__ :Any = ['<cls>'] else: UpperCAmelCase__ :Tuple = ['short'] UpperCAmelCase__ :int = choose_first(annotation['short_answers'] ) if len(out['start_token'] ) == 0: # answer will be long if short is not available UpperCAmelCase__ :Union[str, Any] = ['long'] UpperCAmelCase__ :Union[str, Any] = choose_first(annotation['long_answer'] , is_long_answer=SCREAMING_SNAKE_CASE ) UpperCAmelCase__ :Dict = [] answer.update(SCREAMING_SNAKE_CASE ) # disregard some samples if len(answer['start_token'] ) > 1 or answer["start_token"] == answer["end_token"]: UpperCAmelCase__ :Tuple = True else: UpperCAmelCase__ :Dict = False UpperCAmelCase__ :List[Any] = ['start_token', 'end_token', 'start_byte', 'end_byte', 'text'] if not all(isinstance(answer[k] , SCREAMING_SNAKE_CASE ) for k in cols ): raise ValueError('Issue in ID' , example['id'] ) return answer def A ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ): """simple docstring""" UpperCAmelCase__ :List[str] = _get_single_answer(SCREAMING_SNAKE_CASE ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element UpperCAmelCase__ :Union[str, Any] = example['document']['tokens'] UpperCAmelCase__ :List[str] = [] for i in range(len(doc['token'] ) ): if not doc["is_html"][i]: context.append(doc['token'][i] ) return { "context": " ".join(SCREAMING_SNAKE_CASE ), "answer": { "start_token": -100, # ignore index in cross-entropy "end_token": -100, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples UpperCAmelCase__ :Optional[Any] = ['start_token', 'end_token'] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 UpperCAmelCase__ :str = example['document']['tokens'] UpperCAmelCase__ :List[Any] = answer['start_token'] UpperCAmelCase__ :Dict = answer['end_token'] UpperCAmelCase__ :int = [] for i in range(len(doc['token'] ) ): if not doc["is_html"][i]: context.append(doc['token'][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 UpperCAmelCase__ :Optional[Any] = ' '.join(context[start_token:end_token] ) # checking above code if assertion: UpperCAmelCase__ :str = doc['is_html'][answer['start_token'] : answer['end_token']] UpperCAmelCase__ :Any = doc['token'][answer['start_token'] : answer['end_token']] UpperCAmelCase__ :str = ' '.join([old[i] for i in range(len(SCREAMING_SNAKE_CASE ) ) if not is_html[i]] ) if new != old: print('ID:' , example['id'] ) print('New:' , SCREAMING_SNAKE_CASE , end='\n' ) print('Old:' , SCREAMING_SNAKE_CASE , end='\n\n' ) return { "context": " ".join(SCREAMING_SNAKE_CASE ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def A ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=2048 , SCREAMING_SNAKE_CASE=4096 , SCREAMING_SNAKE_CASE=True ): """simple docstring""" UpperCAmelCase__ :Dict = get_context_and_ans(SCREAMING_SNAKE_CASE , assertion=SCREAMING_SNAKE_CASE ) UpperCAmelCase__ :Tuple = out['answer'] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } UpperCAmelCase__ :Optional[Any] = tokenizer(example['question']['text'] , out['context'] ).input_ids UpperCAmelCase__ :Any = input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element UpperCAmelCase__ :str = [] UpperCAmelCase__ :str = [] UpperCAmelCase__ :str = input_ids[:q_len] UpperCAmelCase__ :Union[str, Any] = range(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) , max_length - doc_stride ) for i in doc_start_indices: UpperCAmelCase__ :Optional[int] = i + max_length - q_len UpperCAmelCase__ :Union[str, Any] = input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer['category'][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-100] * len(SCREAMING_SNAKE_CASE ), "end_token": [-100] * len(SCREAMING_SNAKE_CASE ), "category": category, }, } UpperCAmelCase__ :Optional[Any] = out['context'].split() UpperCAmelCase__ :Optional[int] = splitted_context[answer['end_token']] UpperCAmelCase__ :Optional[Any] = len( tokenizer( ' '.join(splitted_context[: answer['start_token']] ) , add_special_tokens=SCREAMING_SNAKE_CASE , ).input_ids ) UpperCAmelCase__ :Tuple = len( tokenizer(' '.join(splitted_context[: answer['end_token']] ) , add_special_tokens=SCREAMING_SNAKE_CASE ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token UpperCAmelCase__ :str = len(tokenizer(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 UpperCAmelCase__ :str = input_ids[answer['start_token'] : answer['end_token'] + 1] # right & left are inclusive UpperCAmelCase__ :Union[str, Any] = answer['start_token'] UpperCAmelCase__ :Union[str, Any] = answer['end_token'] if assertion: UpperCAmelCase__ :str = tokenizer.decode(SCREAMING_SNAKE_CASE ) if answer["span"] != new: print('ISSUE IN TOKENIZATION' ) print('OLD:' , answer['span'] ) print('NEW:' , SCREAMING_SNAKE_CASE , end='\n\n' ) if len(SCREAMING_SNAKE_CASE ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } UpperCAmelCase__ :List[str] = input_ids[:q_len] UpperCAmelCase__ :Tuple = range(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) , max_length - doc_stride ) UpperCAmelCase__ :int = [] UpperCAmelCase__ :Optional[Any] = [] UpperCAmelCase__ :int = [] UpperCAmelCase__ :List[str] = [] # null, yes, no, long, short for i in doc_start_indices: UpperCAmelCase__ :List[Any] = i + max_length - q_len UpperCAmelCase__ :Any = input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: UpperCAmelCase__ :Any = start_token - i + q_len UpperCAmelCase__ :List[Any] = end_token - i + q_len answers_category.append(answer['category'][0] ) # ["short"] -> "short" else: UpperCAmelCase__ :Tuple = -100 UpperCAmelCase__ :List[Any] = -100 answers_category.append('null' ) UpperCAmelCase__ :List[Any] = inputs[-1][start_token : end_token + 1] answers_start_token.append(SCREAMING_SNAKE_CASE ) answers_end_token.append(SCREAMING_SNAKE_CASE ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print('ISSUE in strided for ID:' , example['id'] ) print('New:' , tokenizer.decode(SCREAMING_SNAKE_CASE ) ) print('Old:' , tokenizer.decode(SCREAMING_SNAKE_CASE ) , end='\n\n' ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def A ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=2048 , SCREAMING_SNAKE_CASE=4096 , SCREAMING_SNAKE_CASE=False ): """simple docstring""" UpperCAmelCase__ :Tuple = get_strided_contexts_and_ans( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , doc_stride=SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , assertion=SCREAMING_SNAKE_CASE , ) return example def A ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" with jsonlines.open(SCREAMING_SNAKE_CASE , 'a' ) as writer: for example in tqdm(SCREAMING_SNAKE_CASE , total=len(SCREAMING_SNAKE_CASE ) , desc='Saving samples ... ' ): UpperCAmelCase__ :Any = example['labels'] for ids, start, end, cat in zip( example['input_ids'] , labels['start_token'] , labels['end_token'] , labels['category'] , ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { 'input_ids': ids, 'start_token': start, 'end_token': end, 'category': CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer __snake_case : Tuple = load_dataset('natural_questions') __snake_case : int = BigBirdTokenizer.from_pretrained('google/bigbird-roberta-base') __snake_case : Tuple = data['train' if PROCESS_TRAIN == 'true' else 'validation'] __snake_case : Tuple = { 'tokenizer': tokenizer, 'doc_stride': DOC_STRIDE, 'max_length': MAX_LENGTH, 'assertion': False, } __snake_case : List[str] = data.map(prepare_inputs, fn_kwargs=fn_kwargs) __snake_case : Tuple = data.remove_columns(['annotations', 'document', 'id', 'question']) print(data) np.random.seed(SEED) __snake_case : Dict = 'nq-training.jsonl' if PROCESS_TRAIN == 'true' else 'nq-validation.jsonl' save_to_disk(data, file_name=cache_file_name)
702
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __snake_case : List[str] = abspath(join(dirname(dirname(__file__)), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def A ( SCREAMING_SNAKE_CASE ): """simple docstring""" from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(SCREAMING_SNAKE_CASE ) def A ( SCREAMING_SNAKE_CASE ): """simple docstring""" from diffusers.utils.testing_utils import pytest_terminal_summary_main UpperCAmelCase__ :List[str] = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(SCREAMING_SNAKE_CASE , id=SCREAMING_SNAKE_CASE )
433
0
"""simple docstring""" import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__="resnet50" , lowerCAmelCase__=3 , lowerCAmelCase__=3_2 , lowerCAmelCase__=3 , lowerCAmelCase__=True , lowerCAmelCase__=True , ): __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = out_indices if out_indices is not None else [4] __SCREAMING_SNAKE_CASE = stage_names __SCREAMING_SNAKE_CASE = out_features __SCREAMING_SNAKE_CASE = backbone __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = use_pretrained_backbone __SCREAMING_SNAKE_CASE = is_training def snake_case_ ( self): __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) __SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values def snake_case_ ( self): return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = TimmBackbone(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(lowerCAmelCase__) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 1_4, 1_4) , ) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = config_and_inputs __SCREAMING_SNAKE_CASE = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch @require_timm class SCREAMING_SNAKE_CASE_ ( __a , __a , __a , unittest.TestCase ): """simple docstring""" __lowercase : List[Any] = (TimmBackbone,) if is_torch_available() else () __lowercase : str = {'''feature-extraction''': TimmBackbone} if is_torch_available() else {} __lowercase : List[Any] = False __lowercase : Optional[Any] = False __lowercase : Dict = False __lowercase : Optional[int] = False def snake_case_ ( self): __SCREAMING_SNAKE_CASE = TimmBackboneModelTester(self) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__) def snake_case_ ( self): self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case_ ( self): __SCREAMING_SNAKE_CASE = """resnet18""" __SCREAMING_SNAKE_CASE = """microsoft/resnet-18""" __SCREAMING_SNAKE_CASE = AutoBackbone.from_pretrained(lowerCAmelCase__ , use_timm_backbone=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = AutoBackbone.from_pretrained(lowerCAmelCase__) self.assertEqual(len(timm_model.out_features) , len(transformers_model.out_features)) self.assertEqual(len(timm_model.stage_names) , len(transformers_model.stage_names)) self.assertEqual(timm_model.channels , transformers_model.channels) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,)) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names) - 1]) __SCREAMING_SNAKE_CASE = AutoBackbone.from_pretrained(lowerCAmelCase__ , use_timm_backbone=lowerCAmelCase__ , out_indices=[1, 2, 3]) __SCREAMING_SNAKE_CASE = AutoBackbone.from_pretrained(lowerCAmelCase__ , out_indices=[1, 2, 3]) self.assertEqual(timm_model.out_indices , transformers_model.out_indices) self.assertEqual(len(timm_model.out_features) , len(transformers_model.out_features)) self.assertEqual(timm_model.channels , transformers_model.channels) @unittest.skip("""TimmBackbone doesn't support feed forward chunking""") def snake_case_ ( self): pass @unittest.skip("""TimmBackbone doesn't have num_hidden_layers attribute""") def snake_case_ ( self): pass @unittest.skip("""TimmBackbone initialization is managed on the timm side""") def snake_case_ ( self): pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""") def snake_case_ ( self): pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""") def snake_case_ ( self): pass @unittest.skip("""TimmBackbone model cannot be created without specifying a backbone checkpoint""") def snake_case_ ( self): pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""") def snake_case_ ( self): pass @unittest.skip("""model weights aren't tied in TimmBackbone.""") def snake_case_ ( self): pass @unittest.skip("""model weights aren't tied in TimmBackbone.""") def snake_case_ ( self): pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""") def snake_case_ ( self): pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""") def snake_case_ ( self): pass @unittest.skip("""TimmBackbone doesn't have hidden size info in its configuration.""") def snake_case_ ( self): pass @unittest.skip("""TimmBackbone doesn't support output_attentions.""") def snake_case_ ( self): pass @unittest.skip("""Safetensors is not supported by timm.""") def snake_case_ ( self): pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""") def snake_case_ ( self): pass def snake_case_ ( self): __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase__) def snake_case_ ( self): __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = self.has_attentions # no need to test all models as different heads yield the same functionality __SCREAMING_SNAKE_CASE = self.all_model_classes[0] __SCREAMING_SNAKE_CASE = model_class(lowerCAmelCase__) model.to(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__) __SCREAMING_SNAKE_CASE = model(**lowerCAmelCase__) __SCREAMING_SNAKE_CASE = outputs[0][-1] # Encoder-/Decoder-only models __SCREAMING_SNAKE_CASE = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __SCREAMING_SNAKE_CASE = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=lowerCAmelCase__) self.assertIsNotNone(hidden_states.grad) if self.has_attentions: self.assertIsNotNone(attentions.grad) def snake_case_ ( self): __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() __SCREAMING_SNAKE_CASE = model(**lowerCAmelCase__) self.assertEqual(len(result.feature_maps) , len(config.out_indices)) self.assertEqual(len(model.channels) , len(config.out_indices)) # Check output of last stage is taken if out_features=None, out_indices=None __SCREAMING_SNAKE_CASE = copy.deepcopy(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = model_class(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() __SCREAMING_SNAKE_CASE = model(**lowerCAmelCase__) self.assertEqual(len(result.feature_maps) , 1) self.assertEqual(len(model.channels) , 1) # Check backbone can be initialized with fresh weights __SCREAMING_SNAKE_CASE = copy.deepcopy(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = model_class(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() __SCREAMING_SNAKE_CASE = model(**lowerCAmelCase__)
155
"""simple docstring""" from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup __magic_name__ = "https://www.indeed.co.in/jobs?q=mobile+app+development&l=" def _lowerCAmelCase ( UpperCamelCase_ = "mumbai" ): __SCREAMING_SNAKE_CASE = BeautifulSoup(requests.get(url + location ).content , """html.parser""" ) # This attribute finds out all the specifics listed in a job for job in soup.find_all("""div""" , attrs={"""data-tn-component""": """organicJob"""} ): __SCREAMING_SNAKE_CASE = job.find("""a""" , attrs={"""data-tn-element""": """jobTitle"""} ).text.strip() __SCREAMING_SNAKE_CASE = job.find("""span""" , {"""class""": """company"""} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("Bangalore"), 1): print(F"""Job {i:>2} is {job[0]} at {job[1]}""")
155
1
from abc import ABC, abstractmethod from typing import List, Optional class __A ( __a ): def __init__( self :Dict ): '''simple docstring''' self.test() def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : Tuple =0 __magic_name__ : List[Any] =False while not completed: if counter == 1: self.reset() __magic_name__ : List[str] =self.advance() if not self.does_advance(a_ ): raise Exception( """Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.""" ) __magic_name__ : Union[str, Any] =self.update(a_ ) counter += 1 if counter > 1_00_00: raise Exception("""update() does not fulfill the constraint.""" ) if self.remaining() != 0: raise Exception("""Custom Constraint is not defined correctly.""" ) @abstractmethod def A__ ( self :Optional[int] ): '''simple docstring''' raise NotImplementedError( f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def A__ ( self :Optional[int] , __snake_case :int ): '''simple docstring''' raise NotImplementedError( f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def A__ ( self :Optional[int] , __snake_case :int ): '''simple docstring''' raise NotImplementedError( f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def A__ ( self :Tuple ): '''simple docstring''' raise NotImplementedError( f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def A__ ( self :int ): '''simple docstring''' raise NotImplementedError( f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def A__ ( self :List[str] , __snake_case :Tuple=False ): '''simple docstring''' raise NotImplementedError( f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) class __A ( __a ): def __init__( self :Tuple , __snake_case :List[int] ): '''simple docstring''' super(a_ , self ).__init__() if not isinstance(a_ , a_ ) or len(a_ ) == 0: raise ValueError(f"`token_ids` has to be a non-empty list, but is {token_ids}." ) if any((not isinstance(a_ , a_ ) or token_id < 0) for token_id in token_ids ): raise ValueError(f"Each list in `token_ids` has to be a list of positive integers, but is {token_ids}." ) __magic_name__ : Optional[int] =token_ids __magic_name__ : Dict =len(self.token_ids ) __magic_name__ : Union[str, Any] =-1 # the index of the currently fulfilled step __magic_name__ : str =False def A__ ( self :Optional[int] ): '''simple docstring''' if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def A__ ( self :List[Any] , __snake_case :int ): '''simple docstring''' if not isinstance(a_ , a_ ): raise ValueError(f"`token_id` has to be an `int`, but is {token_id} of type {type(a_ )}" ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def A__ ( self :List[str] , __snake_case :int ): '''simple docstring''' if not isinstance(a_ , a_ ): raise ValueError(f"`token_id` has to be an `int`, but is {token_id} of type {type(a_ )}" ) __magic_name__ : Optional[int] =False __magic_name__ : List[str] =False __magic_name__ : List[Any] =False if self.does_advance(a_ ): self.fulfilled_idx += 1 __magic_name__ : List[str] =True if self.fulfilled_idx == (self.seqlen - 1): __magic_name__ : str =True __magic_name__ : Optional[int] =completed else: # failed to make progress. __magic_name__ : Union[str, Any] =True self.reset() return stepped, completed, reset def A__ ( self :Union[str, Any] ): '''simple docstring''' __magic_name__ : int =False __magic_name__ : Dict =0 def A__ ( self :Tuple ): '''simple docstring''' return self.seqlen - (self.fulfilled_idx + 1) def A__ ( self :Union[str, Any] , __snake_case :str=False ): '''simple docstring''' __magic_name__ : Dict =PhrasalConstraint(self.token_ids ) if stateful: __magic_name__ : List[Any] =self.seqlen __magic_name__ : str =self.fulfilled_idx __magic_name__ : Union[str, Any] =self.completed return new_constraint class __A : def __init__( self :int , __snake_case :List[List[int]] , __snake_case :int=True ): '''simple docstring''' __magic_name__ : List[str] =max([len(a_ ) for one in nested_token_ids] ) __magic_name__ : int ={} for token_ids in nested_token_ids: __magic_name__ : List[str] =root for tidx, token_id in enumerate(a_ ): if token_id not in level: __magic_name__ : int ={} __magic_name__ : List[Any] =level[token_id] if no_subsets and self.has_subsets(a_ , a_ ): raise ValueError( """Each list in `nested_token_ids` can't be a complete subset of another list, but is""" f" {nested_token_ids}." ) __magic_name__ : int =root def A__ ( self :Tuple , __snake_case :Tuple ): '''simple docstring''' __magic_name__ : Union[str, Any] =self.trie for current_token in current_seq: __magic_name__ : Any =start[current_token] __magic_name__ : Any =list(start.keys() ) return next_tokens def A__ ( self :List[Any] , __snake_case :Optional[int] ): '''simple docstring''' __magic_name__ : Any =self.next_tokens(a_ ) return len(a_ ) == 0 def A__ ( self :Dict , __snake_case :List[Any] ): '''simple docstring''' __magic_name__ : int =list(root.values() ) if len(a_ ) == 0: return 1 else: return sum([self.count_leaves(a_ ) for nn in next_nodes] ) def A__ ( self :str , __snake_case :List[Any] , __snake_case :int ): '''simple docstring''' __magic_name__ : str =self.count_leaves(a_ ) return len(a_ ) != leaf_count class __A ( __a ): def __init__( self :Tuple , __snake_case :List[List[int]] ): '''simple docstring''' super(a_ , self ).__init__() if not isinstance(a_ , a_ ) or len(a_ ) == 0: raise ValueError(f"`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}." ) if any(not isinstance(a_ , a_ ) for token_ids in nested_token_ids ): raise ValueError(f"`nested_token_ids` has to be a list of lists, but is {nested_token_ids}." ) if any( any((not isinstance(a_ , a_ ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( f"Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}." ) __magic_name__ : Optional[Any] =DisjunctiveTrie(a_ ) __magic_name__ : Optional[int] =nested_token_ids __magic_name__ : Tuple =self.trie.max_height __magic_name__ : List[str] =[] __magic_name__ : Union[str, Any] =False def A__ ( self :Any ): '''simple docstring''' __magic_name__ : List[Any] =self.trie.next_tokens(self.current_seq ) if len(a_ ) == 0: return None else: return token_list def A__ ( self :Tuple , __snake_case :int ): '''simple docstring''' if not isinstance(a_ , a_ ): raise ValueError(f"`token_id` is supposed to be type `int`, but is {token_id} of type {type(a_ )}" ) __magic_name__ : Optional[Any] =self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def A__ ( self :Any , __snake_case :int ): '''simple docstring''' if not isinstance(a_ , a_ ): raise ValueError(f"`token_id` is supposed to be type `int`, but is {token_id} of type {type(a_ )}" ) __magic_name__ : Any =False __magic_name__ : Union[str, Any] =False __magic_name__ : Tuple =False if self.does_advance(a_ ): self.current_seq.append(a_ ) __magic_name__ : Optional[Any] =True else: __magic_name__ : Tuple =True self.reset() __magic_name__ : Any =self.trie.reached_leaf(self.current_seq ) __magic_name__ : Tuple =completed return stepped, completed, reset def A__ ( self :str ): '''simple docstring''' __magic_name__ : Any =False __magic_name__ : Tuple =[] def A__ ( self :str ): '''simple docstring''' if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def A__ ( self :Dict , __snake_case :List[Any]=False ): '''simple docstring''' __magic_name__ : Union[str, Any] =DisjunctiveConstraint(self.token_ids ) if stateful: __magic_name__ : Tuple =self.seqlen __magic_name__ : List[str] =self.current_seq __magic_name__ : List[Any] =self.completed return new_constraint class __A : def __init__( self :Any , __snake_case :List[Constraint] ): '''simple docstring''' __magic_name__ : Any =constraints # max # of steps required to fulfill a given constraint __magic_name__ : Optional[int] =max([c.seqlen for c in constraints] ) __magic_name__ : Optional[Any] =len(a_ ) __magic_name__ : List[Any] =False self.init_state() def A__ ( self :Optional[int] ): '''simple docstring''' __magic_name__ : List[Any] =[] __magic_name__ : Union[str, Any] =None __magic_name__ : Optional[int] =[constraint.copy(stateful=a_ ) for constraint in self.constraints] def A__ ( self :Union[str, Any] ): '''simple docstring''' __magic_name__ : Any =0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def A__ ( self :Optional[int] ): '''simple docstring''' __magic_name__ : Union[str, Any] =[] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" __magic_name__ : str =constraint.advance() if isinstance(a_ , a_ ): token_list.append(a_ ) elif isinstance(a_ , a_ ): token_list.extend(a_ ) else: __magic_name__ : List[str] =self.inprogress_constraint.advance() if isinstance(a_ , a_ ): token_list.append(a_ ) elif isinstance(a_ , a_ ): token_list.extend(a_ ) if len(a_ ) == 0: return None else: return token_list def A__ ( self :int , __snake_case :Optional[List[int]] ): '''simple docstring''' self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint __magic_name__ : int =self.add(a_ ) # the entire list of constraints are fulfilled if self.completed: break def A__ ( self :List[Any] , __snake_case :int ): '''simple docstring''' if not isinstance(a_ , a_ ): raise ValueError(f"`token_id` should be an `int`, but is `{token_id}`." ) __magic_name__ : List[str] =False, False if self.completed: __magic_name__ : Dict =True __magic_name__ : List[Any] =False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state __magic_name__ : Optional[int] =self.inprogress_constraint.update(a_ ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=a_ ) ) __magic_name__ : Union[str, Any] =None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) __magic_name__ : Dict =None if len(self.pending_constraints ) == 0: # we're done! __magic_name__ : Union[str, Any] =True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(a_ ): __magic_name__ : Any =pending_constraint.update(a_ ) if not stepped: raise Exception( """`constraint.update(token_id)` is not yielding incremental progress, """ """even though `constraint.does_advance(token_id)` is true.""" ) if complete: self.complete_constraints.append(a_ ) __magic_name__ : Optional[Any] =None if not complete and stepped: __magic_name__ : List[Any] =pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". __magic_name__ : Any =( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. __magic_name__ : List[str] =True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def A__ ( self :Dict , __snake_case :int=True ): '''simple docstring''' __magic_name__ : Dict =ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: __magic_name__ : List[Any] =[ constraint.copy(stateful=a_ ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: __magic_name__ : Dict =self.inprogress_constraint.copy(stateful=a_ ) __magic_name__ : List[str] =[constraint.copy() for constraint in self.pending_constraints] return new_state
706
import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): def run_func(lowerCamelCase ): @wraps(lowerCamelCase ) def run_in_eager_mode(*lowerCamelCase , **lowerCamelCase ): return func(*lowerCamelCase , **lowerCamelCase ) @wraps(lowerCamelCase ) @tf.function(experimental_compile=lowerCamelCase ) def run_in_graph_mode(*lowerCamelCase , **lowerCamelCase ): return func(*lowerCamelCase , **lowerCamelCase ) if do_eager_mode is True: if use_xla is not False: raise ValueError( """Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.""" ) return run_in_eager_mode else: return run_in_graph_mode return run_func def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : Dict =random.Random() __magic_name__ : Union[str, Any] =[rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(lowerCamelCase , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class __A ( UpperCamelCase__ ): UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = "TensorFlow" @property def A__ ( self :str ): '''simple docstring''' return tf.__version__ def A__ ( self :str , __snake_case :str , __snake_case :int , __snake_case :int ): '''simple docstring''' __magic_name__ : Dict =self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) __magic_name__ : Union[str, Any] =self._prepare_inference_func(__snake_case , __snake_case , __snake_case ) return self._measure_speed(_inference ) def A__ ( self :int , __snake_case :str , __snake_case :int , __snake_case :int ): '''simple docstring''' __magic_name__ : Tuple =self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) __magic_name__ : Any =self._prepare_train_func(__snake_case , __snake_case , __snake_case ) return self._measure_speed(_train ) def A__ ( self :str , __snake_case :str , __snake_case :int , __snake_case :int ): '''simple docstring''' if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , __snake_case ) __magic_name__ : int =self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) __magic_name__ : Tuple =self._prepare_inference_func(__snake_case , __snake_case , __snake_case ) return self._measure_memory(_inference ) def A__ ( self :str , __snake_case :str , __snake_case :int , __snake_case :int ): '''simple docstring''' if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , __snake_case ) __magic_name__ : Tuple =self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) __magic_name__ : Any =self._prepare_train_func(__snake_case , __snake_case , __snake_case ) return self._measure_memory(_train ) def A__ ( self :int , __snake_case :str , __snake_case :int , __snake_case :int ): '''simple docstring''' __magic_name__ : int =self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) __magic_name__ : Any =( hasattr(__snake_case , """architectures""" ) and isinstance(config.architectures , __snake_case ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: __magic_name__ : Optional[int] ="""TF""" + config.architectures[0] # prepend 'TF' for tensorflow model __magic_name__ : Optional[int] =__import__("""transformers""" , fromlist=[model_class] ) __magic_name__ : Optional[Any] =getattr(__snake_case , __snake_case ) __magic_name__ : Optional[Any] =model_cls(__snake_case ) except ImportError: raise ImportError( f"{model_class} does not exist. If you just want to test the pretrained model, you might want to" """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: __magic_name__ : Optional[int] =TF_MODEL_MAPPING[config.__class__](__snake_case ) # encoder-decoder has vocab size saved differently __magic_name__ : List[str] =config.vocab_size if hasattr(__snake_case , """vocab_size""" ) else config.encoder.vocab_size __magic_name__ : Any =random_input_ids(__snake_case , __snake_case , __snake_case ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(__snake_case , decoder_input_ids=__snake_case , training=__snake_case ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(__snake_case , training=__snake_case ) __magic_name__ : Tuple =encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def A__ ( self :int , __snake_case :str , __snake_case :int , __snake_case :int ): '''simple docstring''' __magic_name__ : Tuple =self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError("""Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.""" ) if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) __magic_name__ : int =( hasattr(__snake_case , """architectures""" ) and isinstance(config.architectures , __snake_case ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: __magic_name__ : List[Any] ="""TF""" + config.architectures[0] # prepend 'TF' for tensorflow model __magic_name__ : Optional[int] =__import__("""transformers""" , fromlist=[model_class] ) __magic_name__ : str =getattr(__snake_case , __snake_case ) __magic_name__ : List[Any] =model_cls(__snake_case ) except ImportError: raise ImportError( f"{model_class} does not exist. If you just want to test the pretrained model, you might want to" """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: __magic_name__ : int =TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](__snake_case ) # encoder-decoder has vocab size saved differently __magic_name__ : int =config.vocab_size if hasattr(__snake_case , """vocab_size""" ) else config.encoder.vocab_size __magic_name__ : Optional[Any] =random_input_ids(__snake_case , __snake_case , __snake_case ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): __magic_name__ : List[str] =model(__snake_case , decoder_input_ids=__snake_case , labels=__snake_case , training=__snake_case )[0] __magic_name__ : int =tf.gradients(__snake_case , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): __magic_name__ : str =model(__snake_case , labels=__snake_case , training=__snake_case )[0] __magic_name__ : int =tf.gradients(__snake_case , model.trainable_variables ) return gradients __magic_name__ : Union[str, Any] =encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def A__ ( self :Any , __snake_case :Union[str, Any] ): '''simple docstring''' with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info("""Do inference on TPU. Running model 5 times to stabilize compilation""" ) timeit.repeat(__snake_case , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average __magic_name__ : Union[str, Any] =timeit.repeat( __snake_case , repeat=self.args.repeat , number=10 , ) return min(__snake_case ) / 10.0 except ResourceExhaustedError as e: self.print_fn(f"Doesn't fit on GPU. {e}" ) def A__ ( self :Any , __snake_case :Callable[[], None] ): '''simple docstring''' logger.info( """Note that TensorFlow allocates more memory than """ """it might need to speed up computation. """ """The memory reported here corresponds to the memory """ """reported by `nvidia-smi`, which can vary depending """ """on total available memory on the GPU that is used.""" ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( """`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory""" """ consumption line by line.""" ) __magic_name__ : Union[str, Any] =start_memory_tracing("""transformers""" ) if self.args.is_tpu: # tpu raise NotImplementedError( """Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking""" """ with `args.memory=False`""" ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( """py3nvml not installed, we won't log GPU memory usage. """ """Install py3nvml (pip install py3nvml) to log information about GPU.""" ) __magic_name__ : str ="""N/A""" else: logger.info( """Measuring total GPU usage on GPU device. Make sure to not have additional processes""" """ running on the same GPU.""" ) # init nvml nvml.nvmlInit() func() __magic_name__ : List[str] =nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) __magic_name__ : Tuple =nvml.nvmlDeviceGetMemoryInfo(__snake_case ) __magic_name__ : Any =meminfo.used __magic_name__ : str =Memory(__snake_case ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( """When enabling line by line tracing, the max peak memory for CPU is inaccurate in""" """ TensorFlow.""" ) __magic_name__ : List[str] =None else: __magic_name__ : List[Any] =measure_peak_memory_cpu(__snake_case ) __magic_name__ : str =Memory(__snake_case ) if isinstance(__snake_case , __snake_case ) else memory_bytes if self.args.trace_memory_line_by_line: __magic_name__ : List[Any] =stop_memory_tracing(__snake_case ) if memory is None: __magic_name__ : Any =summary.total else: __magic_name__ : Optional[Any] =None return memory, summary except ResourceExhaustedError as e: self.print_fn(f"Doesn't fit on GPU. {e}" ) return "N/A", None
367
0
"""simple docstring""" from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : str=1E-12 ): '''simple docstring''' __lowerCamelCase : Union[str, Any] =jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(_SCREAMING_SNAKE_CASE , axis=1 ) , a_min=_SCREAMING_SNAKE_CASE ) ).T __lowerCamelCase : int =jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(_SCREAMING_SNAKE_CASE , axis=1 ) , a_min=_SCREAMING_SNAKE_CASE ) ).T return jnp.matmul(_SCREAMING_SNAKE_CASE , norm_emb_a.T ) class SCREAMING_SNAKE_CASE_ ( nn.Module ): """simple docstring""" __snake_case : Dict = 42 __snake_case : Any = jnp.floataa def __lowercase ( self :Optional[int] ): __lowerCamelCase : Tuple =FlaxCLIPVisionModule(self.config.vision_config ) __lowerCamelCase : Any =nn.Dense(self.config.projection_dim , use_bias=__lowercase , dtype=self.dtype ) __lowerCamelCase : Dict =self.param('''concept_embeds''' , jax.nn.initializers.ones , (17, self.config.projection_dim) ) __lowerCamelCase : List[Any] =self.param( '''special_care_embeds''' , jax.nn.initializers.ones , (3, self.config.projection_dim) ) __lowerCamelCase : Any =self.param('''concept_embeds_weights''' , jax.nn.initializers.ones , (17,) ) __lowerCamelCase : Union[str, Any] =self.param('''special_care_embeds_weights''' , jax.nn.initializers.ones , (3,) ) def __call__( self :List[str] , __lowercase :Optional[int] ): __lowerCamelCase : List[str] =self.vision_model(__lowercase )[1] __lowerCamelCase : Tuple =self.visual_projection(__lowercase ) __lowerCamelCase : Union[str, Any] =jax_cosine_distance(__lowercase , self.special_care_embeds ) __lowerCamelCase : Dict =jax_cosine_distance(__lowercase , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs __lowerCamelCase : Dict =0.0 __lowerCamelCase : Optional[int] =special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment __lowerCamelCase : Union[str, Any] =jnp.round(__lowercase , 3 ) __lowerCamelCase : Optional[int] =jnp.any(special_scores > 0 , axis=1 , keepdims=__lowercase ) # Use a lower threshold if an image has any special care concept __lowerCamelCase : Optional[int] =is_special_care * 0.01 __lowerCamelCase : Dict =cos_dist - self.concept_embeds_weights[None, :] + special_adjustment __lowerCamelCase : Tuple =jnp.round(__lowercase , 3 ) __lowerCamelCase : Tuple =jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class SCREAMING_SNAKE_CASE_ ( __snake_case ): """simple docstring""" __snake_case : List[Any] = CLIPConfig __snake_case : str = """clip_input""" __snake_case : Dict = FlaxStableDiffusionSafetyCheckerModule def __init__( self :List[str] , __lowercase :Optional[Any] , __lowercase :int = None , __lowercase :str = 0 , __lowercase :int = jnp.floataa , __lowercase :Any = True , **__lowercase :Optional[int] , ): if input_shape is None: __lowerCamelCase : List[Any] =(1, 224, 224, 3) __lowerCamelCase : Union[str, Any] =self.module_class(config=__lowercase , dtype=__lowercase , **__lowercase ) super().__init__(__lowercase , __lowercase , input_shape=__lowercase , seed=__lowercase , dtype=__lowercase , _do_init=_do_init ) def __lowercase ( self :List[str] , __lowercase :Tuple , __lowercase :Optional[Any] , __lowercase :Tuple = None ): # init input tensor __lowerCamelCase : Optional[int] =jax.random.normal(__lowercase , __lowercase ) __lowerCamelCase , __lowerCamelCase : Optional[int] =jax.random.split(__lowercase ) __lowerCamelCase : List[Any] ={'''params''': params_rng, '''dropout''': dropout_rng} __lowerCamelCase : Optional[int] =self.module.init(__lowercase , __lowercase )['''params'''] return random_params def __call__( self :Tuple , __lowercase :Optional[Any] , __lowercase :Optional[int] = None , ): __lowerCamelCase : Optional[Any] =jnp.transpose(__lowercase , (0, 2, 3, 1) ) return self.module.apply( {'''params''': params or self.params} , jnp.array(__lowercase , dtype=jnp.floataa ) , rngs={} , )
179
'''simple docstring''' import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @property def lowercase (self ) -> Optional[Any]: torch.manual_seed(0 ) _snake_case = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def lowercase (self ) -> Dict: _snake_case = self.dummy_uncond_unet _snake_case = PNDMScheduler() _snake_case = PNDMPipeline(unet=UpperCAmelCase , scheduler=UpperCAmelCase ) pndm.to(UpperCAmelCase ) pndm.set_progress_bar_config(disable=UpperCAmelCase ) _snake_case = torch.manual_seed(0 ) _snake_case = pndm(generator=UpperCAmelCase , num_inference_steps=20 , output_type="""numpy""" ).images _snake_case = torch.manual_seed(0 ) _snake_case = pndm(generator=UpperCAmelCase , num_inference_steps=20 , output_type="""numpy""" , return_dict=UpperCAmelCase )[0] _snake_case = image[0, -3:, -3:, -1] _snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _snake_case = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowercase (self ) -> Optional[Any]: _snake_case = """google/ddpm-cifar10-32""" _snake_case = UNetaDModel.from_pretrained(UpperCAmelCase ) _snake_case = PNDMScheduler() _snake_case = PNDMPipeline(unet=UpperCAmelCase , scheduler=UpperCAmelCase ) pndm.to(UpperCAmelCase ) pndm.set_progress_bar_config(disable=UpperCAmelCase ) _snake_case = torch.manual_seed(0 ) _snake_case = pndm(generator=UpperCAmelCase , output_type="""numpy""" ).images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _snake_case = np.array([0.1564, 0.1_4645, 0.1406, 0.1_4715, 0.1_2425, 0.1_4045, 0.1_3115, 0.1_2175, 0.125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
585
0
"""simple docstring""" from sklearn.metrics import matthews_corrcoef import datasets UpperCAmelCase ="\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n" UpperCAmelCase ="\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results['matthews_correlation'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results['matthews_correlation'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results['matthews_correlation'], 2))\n -0.25\n" UpperCAmelCase ="\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase__ ( datasets.Metric ): '''simple docstring''' def UpperCamelCase__ ( self ) -> Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) ,reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html""" ] ,) def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_=None ) -> str: return { "matthews_correlation": float(matthews_corrcoef(lowerCamelCase_ ,lowerCamelCase_ ,sample_weight=lowerCamelCase_ ) ), }
255
"""simple docstring""" from __future__ import annotations UpperCAmelCase =list[tuple[int, int]] UpperCAmelCase =[ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] UpperCAmelCase =([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class lowerCamelCase__ : '''simple docstring''' def __init__( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,) -> int: A = pos_x A = pos_y A = (pos_y, pos_x) A = goal_x A = goal_y A = g_cost A = parent A = self.calculate_heuristic() def UpperCamelCase__ ( self ) -> float: A = abs(self.pos_x - self.goal_x ) A = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self ,lowerCamelCase_ ) -> bool: return self.f_cost < other.f_cost class lowerCamelCase__ : '''simple docstring''' def __init__( self ,lowerCamelCase_ ,lowerCamelCase_ ) -> List[str]: A = Node(start[1] ,start[0] ,goal[1] ,goal[0] ,0 ,lowerCamelCase_ ) A = Node(goal[1] ,goal[0] ,goal[1] ,goal[0] ,9_9_9_9_9 ,lowerCamelCase_ ) A = [self.start] A = [] A = False def UpperCamelCase__ ( self ) -> Path | None: while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() A = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: A = True return self.retrace_path(lowerCamelCase_ ) self.closed_nodes.append(lowerCamelCase_ ) A = self.get_successors(lowerCamelCase_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(lowerCamelCase_ ) else: # retrieve the best current path A = self.open_nodes.pop(self.open_nodes.index(lowerCamelCase_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(lowerCamelCase_ ) else: self.open_nodes.append(lowerCamelCase_ ) if not self.reached: return [self.start.pos] return None def UpperCamelCase__ ( self ,lowerCamelCase_ ) -> list[Node]: A = [] for action in delta: A = parent.pos_x + action[1] A = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowerCamelCase_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( lowerCamelCase_ ,lowerCamelCase_ ,self.target.pos_y ,self.target.pos_x ,parent.g_cost + 1 ,lowerCamelCase_ ,) ) return successors def UpperCamelCase__ ( self ,lowerCamelCase_ ) -> Path: A = node A = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) A = current_node.parent path.reverse() return path if __name__ == "__main__": UpperCAmelCase =(0, 0) UpperCAmelCase =(len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print("------") UpperCAmelCase =GreedyBestFirst(init, goal) UpperCAmelCase =greedy_bf.search() if path: for pos_x, pos_y in path: UpperCAmelCase =2 for elem in grid: print(elem)
255
1
import numpy # List of input, output pairs SCREAMING_SNAKE_CASE__ = ( ((5, 2, 3), 1_5), ((6, 5, 9), 2_5), ((1_1, 1_2, 1_3), 4_1), ((1, 1, 1), 8), ((1_1, 1_2, 1_3), 4_1), ) SCREAMING_SNAKE_CASE__ = (((5_1_5, 2_2, 1_3), 5_5_5), ((6_1, 3_5, 4_9), 1_5_0)) SCREAMING_SNAKE_CASE__ = [2, 4, 1, 5] SCREAMING_SNAKE_CASE__ = len(train_data) SCREAMING_SNAKE_CASE__ = 0.009 def A ( __UpperCamelCase , __UpperCamelCase="train" ) -> str: return calculate_hypothesis_value(__UpperCamelCase , __UpperCamelCase ) - output( __UpperCamelCase , __UpperCamelCase ) def A ( __UpperCamelCase ) -> int: A__ = 0 for i in range(len(__UpperCamelCase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def A ( __UpperCamelCase , __UpperCamelCase ) -> Any: if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def A ( __UpperCamelCase , __UpperCamelCase ) -> int: if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def A ( __UpperCamelCase , __UpperCamelCase=m ) -> Optional[int]: A__ = 0 for i in range(__UpperCamelCase ): if index == -1: summation_value += _error(__UpperCamelCase ) else: summation_value += _error(__UpperCamelCase ) * train_data[i][0][index] return summation_value def A ( __UpperCamelCase ) -> Dict: A__ = summation_of_cost_derivative(__UpperCamelCase , __UpperCamelCase ) / m return cost_derivative_value def A ( ) -> Tuple: global parameter_vector # Tune these values to set a tolerance value for predicted output A__ = 0.00_0002 A__ = 0 A__ = 0 while True: j += 1 A__ = [0, 0, 0, 0] for i in range(0 , len(__UpperCamelCase ) ): A__ = get_cost_derivative(i - 1 ) A__ = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( __UpperCamelCase , __UpperCamelCase , atol=__UpperCamelCase , rtol=__UpperCamelCase , ): break A__ = temp_parameter_vector print(('Number of iterations:', j) ) def A ( ) -> List[str]: for i in range(len(__UpperCamelCase ) ): print(('Actual output value:', output(__UpperCamelCase , 'test' )) ) print(('Hypothesis output:', calculate_hypothesis_value(__UpperCamelCase , 'test' )) ) if __name__ == "__main__": run_gradient_descent() print('''\nTesting gradient descent for a linear hypothesis function.\n''') test_gradient_descent()
9
"""simple docstring""" import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class lowerCAmelCase_ (a__ ): """simple docstring""" def __magic_name__ (self ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , """tf_padding""" ) ) self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , """depth_multiplier""" ) ) class lowerCAmelCase_ : """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=13 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=32 , SCREAMING_SNAKE_CASE__=0.25 , SCREAMING_SNAKE_CASE__=8 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=10_24 , SCREAMING_SNAKE_CASE__=32 , SCREAMING_SNAKE_CASE__="relu6" , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=10 , SCREAMING_SNAKE_CASE__=None , ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = parent SCREAMING_SNAKE_CASE__ : Union[str, Any] = batch_size SCREAMING_SNAKE_CASE__ : Dict = num_channels SCREAMING_SNAKE_CASE__ : str = image_size SCREAMING_SNAKE_CASE__ : Any = depth_multiplier SCREAMING_SNAKE_CASE__ : int = min_depth SCREAMING_SNAKE_CASE__ : Any = tf_padding SCREAMING_SNAKE_CASE__ : int = int(last_hidden_size * depth_multiplier ) SCREAMING_SNAKE_CASE__ : Any = output_stride SCREAMING_SNAKE_CASE__ : Union[str, Any] = hidden_act SCREAMING_SNAKE_CASE__ : int = classifier_dropout_prob SCREAMING_SNAKE_CASE__ : str = use_labels SCREAMING_SNAKE_CASE__ : Any = is_training SCREAMING_SNAKE_CASE__ : Dict = num_labels SCREAMING_SNAKE_CASE__ : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE__ : Tuple = scope def __magic_name__ (self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ : List[Any] = None SCREAMING_SNAKE_CASE__ : str = None if self.use_labels: SCREAMING_SNAKE_CASE__ : Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE__ : Any = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) SCREAMING_SNAKE_CASE__ : int = self.get_config() return config, pixel_values, labels, pixel_labels def __magic_name__ (self ) -> List[Any]: """simple docstring""" return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = MobileNetVaModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() SCREAMING_SNAKE_CASE__ : List[str] = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = self.num_labels SCREAMING_SNAKE_CASE__ : int = MobileNetVaForImageClassification(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__ (self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = config_and_inputs SCREAMING_SNAKE_CASE__ : str = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase_ (a__ , a__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase : List[Any] = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () __UpperCamelCase : Dict = ( {'''feature-extraction''': MobileNetVaModel, '''image-classification''': MobileNetVaForImageClassification} if is_torch_available() else {} ) __UpperCamelCase : Tuple = False __UpperCamelCase : Optional[int] = False __UpperCamelCase : Optional[Any] = False __UpperCamelCase : Tuple = False def __magic_name__ (self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = MobileNetVaModelTester(self ) SCREAMING_SNAKE_CASE__ : Optional[Any] = MobileNetVaConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , has_text_modality=SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""MobileNetV1 does not use inputs_embeds""" ) def __magic_name__ (self ) -> Tuple: """simple docstring""" pass @unittest.skip(reason="""MobileNetV1 does not support input and output embeddings""" ) def __magic_name__ (self ) -> Any: """simple docstring""" pass @unittest.skip(reason="""MobileNetV1 does not output attentions""" ) def __magic_name__ (self ) -> Union[str, Any]: """simple docstring""" pass def __magic_name__ (self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : Dict = model_class(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE__ : Optional[int] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE__ : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> Tuple: """simple docstring""" def check_hidden_states_output(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE__ : str = model_class(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE__ : List[str] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) SCREAMING_SNAKE_CASE__ : List[str] = outputs.hidden_states SCREAMING_SNAKE_CASE__ : Tuple = 26 self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : Optional[int] = True check_hidden_states_output(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE__ : int = True check_hidden_states_output(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE__ ) @slow def __magic_name__ (self ) -> Optional[Any]: """simple docstring""" for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ : str = MobileNetVaModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) def lowercase_ ( ): SCREAMING_SNAKE_CASE__ : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCAmelCase_ (unittest.TestCase ): """simple docstring""" @cached_property def __magic_name__ (self ) -> str: """simple docstring""" return ( MobileNetVaImageProcessor.from_pretrained("""google/mobilenet_v1_1.0_224""" ) if is_vision_available() else None ) @slow def __magic_name__ (self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = MobileNetVaForImageClassification.from_pretrained("""google/mobilenet_v1_1.0_224""" ).to(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Tuple = self.default_image_processor SCREAMING_SNAKE_CASE__ : int = prepare_img() SCREAMING_SNAKE_CASE__ : Optional[Any] = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ).to(SCREAMING_SNAKE_CASE__ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE__ : List[Any] = model(**SCREAMING_SNAKE_CASE__ ) # verify the logits SCREAMING_SNAKE_CASE__ : List[Any] = torch.Size((1, 10_01) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = torch.tensor([-4.1739, -1.1233, 3.1205] ).to(SCREAMING_SNAKE_CASE__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) )
223
0
import math import sys def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if number != int(a__ ): raise ValueError("""the value of input must be a natural number""" ) if number < 0: raise ValueError("""the value of input must not be a negative number""" ) if number == 0: return 1 lowerCAmelCase : int = [-1] * (number + 1) lowerCAmelCase : int = 0 for i in range(1 ,number + 1 ): lowerCAmelCase : int = sys.maxsize lowerCAmelCase : Union[str, Any] = int(math.sqrt(a__ ) ) for j in range(1 ,root + 1 ): lowerCAmelCase : List[Any] = 1 + answers[i - (j**2)] lowerCAmelCase : Dict = min(a__ ,a__ ) lowerCAmelCase : List[str] = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
714
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class _a ( unittest.TestCase ): def __init__( self , lowercase_ , lowercase_=7 , lowercase_=3 , lowercase_=30 , lowercase_=400 , lowercase_=True , lowercase_=None , lowercase_=True , lowercase_=1 / 255 , lowercase_=True , lowercase_=[0.5, 0.5, 0.5] , lowercase_=[0.5, 0.5, 0.5] , lowercase_=True , ) -> Tuple: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p lowerCAmelCase : Optional[Any] = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} lowerCAmelCase : Optional[int] = parent lowerCAmelCase : Optional[int] = batch_size lowerCAmelCase : Dict = num_channels lowerCAmelCase : str = min_resolution lowerCAmelCase : Optional[Any] = max_resolution lowerCAmelCase : Optional[int] = do_resize lowerCAmelCase : List[str] = size lowerCAmelCase : Dict = do_rescale lowerCAmelCase : Union[str, Any] = rescale_factor lowerCAmelCase : int = do_normalize lowerCAmelCase : Union[str, Any] = image_mean lowerCAmelCase : Dict = image_std lowerCAmelCase : Optional[int] = do_pad def _snake_case ( self ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def _snake_case ( self , lowercase_ , lowercase_=False ) -> List[Any]: if not batched: lowerCAmelCase : Tuple = image_inputs[0] if isinstance(lowercase_ , Image.Image ): lowerCAmelCase , lowerCAmelCase : Dict = image.size else: lowerCAmelCase , lowerCAmelCase : Tuple = image.shape[1], image.shape[2] if w < h: lowerCAmelCase : Union[str, Any] = int(self.size["""shortest_edge"""] * h / w ) lowerCAmelCase : Optional[Any] = self.size["""shortest_edge"""] elif w > h: lowerCAmelCase : List[Any] = self.size["""shortest_edge"""] lowerCAmelCase : List[Any] = int(self.size["""shortest_edge"""] * w / h ) else: lowerCAmelCase : Optional[int] = self.size["""shortest_edge"""] lowerCAmelCase : List[str] = self.size["""shortest_edge"""] else: lowerCAmelCase : Optional[int] = [] for image in image_inputs: lowerCAmelCase , lowerCAmelCase : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCAmelCase : Any = max(lowercase_ , key=lambda lowercase_ : item[0] )[0] lowerCAmelCase : Union[str, Any] = max(lowercase_ , key=lambda lowercase_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _a ( snake_case_ , unittest.TestCase ): _UpperCamelCase: Optional[Any] = DetrImageProcessor if is_vision_available() else None def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : List[str] = DetrImageProcessingTester(self ) @property def _snake_case ( self ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ , """image_mean""" ) ) self.assertTrue(hasattr(lowercase_ , """image_std""" ) ) self.assertTrue(hasattr(lowercase_ , """do_normalize""" ) ) self.assertTrue(hasattr(lowercase_ , """do_rescale""" ) ) self.assertTrue(hasattr(lowercase_ , """rescale_factor""" ) ) self.assertTrue(hasattr(lowercase_ , """do_resize""" ) ) self.assertTrue(hasattr(lowercase_ , """size""" ) ) self.assertTrue(hasattr(lowercase_ , """do_pad""" ) ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad , lowercase_ ) lowerCAmelCase : Optional[Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowercase_ ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , lowercase_ ) def _snake_case ( self ) -> List[Any]: pass def _snake_case ( self ) -> List[Any]: # Initialize image_processing lowerCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , Image.Image ) # Test not batched input lowerCAmelCase : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : Tuple = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase , lowerCAmelCase : str = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) lowerCAmelCase : Optional[int] = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case ( self ) -> Optional[int]: # Initialize image_processing lowerCAmelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , numpify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , np.ndarray ) # Test not batched input lowerCAmelCase : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : Dict = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase : List[Any] = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : int = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case ( self ) -> List[str]: # Initialize image_processing lowerCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , torchify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , torch.Tensor ) # Test not batched input lowerCAmelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : str = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase : str = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : List[str] = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _snake_case ( self ) -> int: # prepare image and target lowerCAmelCase : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: lowerCAmelCase : str = json.loads(f.read() ) lowerCAmelCase : List[Any] = {"""image_id""": 39769, """annotations""": target} # encode them lowerCAmelCase : Dict = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50""" ) lowerCAmelCase : List[str] = image_processing(images=lowercase_ , annotations=lowercase_ , return_tensors="""pt""" ) # verify pixel values lowerCAmelCase : Union[str, Any] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , lowercase_ ) lowerCAmelCase : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowercase_ , atol=1e-4 ) ) # verify area lowerCAmelCase : List[str] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowercase_ ) ) # verify boxes lowerCAmelCase : Tuple = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowercase_ ) lowerCAmelCase : Dict = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowercase_ , atol=1e-3 ) ) # verify image_id lowerCAmelCase : List[Any] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowercase_ ) ) # verify is_crowd lowerCAmelCase : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowercase_ ) ) # verify class_labels lowerCAmelCase : str = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowercase_ ) ) # verify orig_size lowerCAmelCase : int = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowercase_ ) ) # verify size lowerCAmelCase : str = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowercase_ ) ) @slow def _snake_case ( self ) -> int: # prepare image, target and masks_path lowerCAmelCase : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: lowerCAmelCase : Any = json.loads(f.read() ) lowerCAmelCase : Optional[Any] = {"""file_name""": """000000039769.png""", """image_id""": 39769, """segments_info""": target} lowerCAmelCase : List[str] = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them lowerCAmelCase : Any = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50-panoptic""" ) lowerCAmelCase : Tuple = image_processing(images=lowercase_ , annotations=lowercase_ , masks_path=lowercase_ , return_tensors="""pt""" ) # verify pixel values lowerCAmelCase : Tuple = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , lowercase_ ) lowerCAmelCase : str = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowercase_ , atol=1e-4 ) ) # verify area lowerCAmelCase : Union[str, Any] = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowercase_ ) ) # verify boxes lowerCAmelCase : Optional[int] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowercase_ ) lowerCAmelCase : Union[str, Any] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowercase_ , atol=1e-3 ) ) # verify image_id lowerCAmelCase : Tuple = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowercase_ ) ) # verify is_crowd lowerCAmelCase : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowercase_ ) ) # verify class_labels lowerCAmelCase : Tuple = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowercase_ ) ) # verify masks lowerCAmelCase : Union[str, Any] = 822873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , lowercase_ ) # verify orig_size lowerCAmelCase : str = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowercase_ ) ) # verify size lowerCAmelCase : List[str] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowercase_ ) )
693
0
'''simple docstring''' # DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : torch.FloatTensor _SCREAMING_SNAKE_CASE : torch.FloatTensor class _lowercase ( __lowercase , __lowercase ): _SCREAMING_SNAKE_CASE : int = 1 @register_to_config def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : int = 2000 , SCREAMING_SNAKE_CASE_ : float = 0.1_5 , SCREAMING_SNAKE_CASE_ : float = 0.0_1 , SCREAMING_SNAKE_CASE_ : float = 1_3_4_8.0 , SCREAMING_SNAKE_CASE_ : float = 1e-5 , SCREAMING_SNAKE_CASE_ : int = 1 , ) -> str: # standard deviation of the initial noise distribution __snake_case = sigma_max # setable values __snake_case = None self.set_sigmas(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : Optional[int] = None ) -> torch.FloatTensor: return sample def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : float = None , SCREAMING_SNAKE_CASE_ : Union[str, torch.device] = None ) -> Any: __snake_case = sampling_eps if sampling_eps is not None else self.config.sampling_eps __snake_case = torch.linspace(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , device=SCREAMING_SNAKE_CASE_ ) def a ( self : Dict , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : float = None , SCREAMING_SNAKE_CASE_ : float = None , SCREAMING_SNAKE_CASE_ : float = None ) -> str: __snake_case = sigma_min if sigma_min is not None else self.config.sigma_min __snake_case = sigma_max if sigma_max is not None else self.config.sigma_max __snake_case = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) __snake_case = torch.exp(torch.linspace(math.log(SCREAMING_SNAKE_CASE_ ) , math.log(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) ) __snake_case = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : int ) -> Union[str, Any]: return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def a ( self : Tuple , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : Optional[torch.Generator] = None , SCREAMING_SNAKE_CASE_ : bool = True , ) -> Union[SdeVeOutput, Tuple]: if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) __snake_case = timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) __snake_case = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda __snake_case = timesteps.to(self.discrete_sigmas.device ) __snake_case = self.discrete_sigmas[timesteps].to(sample.device ) __snake_case = self.get_adjacent_sigma(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).to(sample.device ) __snake_case = torch.zeros_like(SCREAMING_SNAKE_CASE_ ) __snake_case = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods __snake_case = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): __snake_case = diffusion.unsqueeze(-1 ) __snake_case = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of __snake_case = randn_tensor( sample.shape , layout=sample.layout , generator=SCREAMING_SNAKE_CASE_ , device=sample.device , dtype=sample.dtype ) __snake_case = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? __snake_case = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=SCREAMING_SNAKE_CASE_ , prev_sample_mean=SCREAMING_SNAKE_CASE_ ) def a ( self : Tuple , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : Optional[torch.Generator] = None , SCREAMING_SNAKE_CASE_ : bool = True , ) -> Union[SchedulerOutput, Tuple]: if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction __snake_case = randn_tensor(sample.shape , layout=sample.layout , generator=SCREAMING_SNAKE_CASE_ ).to(sample.device ) # compute step size from the model_output, the noise, and the snr __snake_case = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() __snake_case = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() __snake_case = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 __snake_case = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term __snake_case = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): __snake_case = step_size.unsqueeze(-1 ) __snake_case = sample + step_size * model_output __snake_case = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=SCREAMING_SNAKE_CASE_ ) def a ( self : List[str] , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples __snake_case = timesteps.to(original_samples.device ) __snake_case = self.discrete_sigmas.to(original_samples.device )[timesteps] __snake_case = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(SCREAMING_SNAKE_CASE_ ) * sigmas[:, None, None, None] ) __snake_case = noise + original_samples return noisy_samples def __len__( self : Union[str, Any] ) -> Optional[Any]: return self.config.num_train_timesteps
56
import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow snake_case__ = logging.getLogger() @unittest.skip('Temporarily disable the doc tests.') @require_torch @require_tf @slow class lowerCAmelCase_ ( unittest.TestCase): def _snake_case ( self : Dict , __A : Path , __A : Union[str, None] = None , __A : Union[List[str], None] = None , __A : Union[str, List[str], None] = None , __A : bool = True , ) ->Any: """simple docstring""" a__ :Dict = [file for file in os.listdir(__A ) if os.path.isfile(os.path.join(__A , __A ) )] if identifier is not None: a__ :Union[str, Any] = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(__A , __A ): for n_ in n_identifier: a__ :Union[str, Any] = [file for file in files if n_ not in file] else: a__ :Dict = [file for file in files if n_identifier not in file] a__ :List[str] = ignore_files or [] ignore_files.append("__init__.py" ) a__ :Optional[Any] = [file for file in files if file not in ignore_files] for file in files: # Open all files print("Testing" , __A ) if only_modules: a__ :Tuple = file.split("." )[0] try: a__ :Dict = getattr(__A , __A ) a__ :int = doctest.DocTestSuite(__A ) a__ :Any = unittest.TextTestRunner().run(__A ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F'''{module_identifier} is not a module.''' ) else: a__ :int = doctest.testfile(str(".." / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def _snake_case ( self : int ) ->List[Any]: """simple docstring""" a__ :Tuple = Path("src/transformers" ) a__ :Union[str, Any] = "modeling" a__ :Any = [ "modeling_ctrl.py", "modeling_tf_ctrl.py", ] self.analyze_directory(__A , identifier=__A , ignore_files=__A ) def _snake_case ( self : Union[str, Any] ) ->List[Any]: """simple docstring""" a__ :Optional[int] = Path("src/transformers" ) a__ :Dict = "tokenization" self.analyze_directory(__A , identifier=__A ) def _snake_case ( self : List[str] ) ->Union[str, Any]: """simple docstring""" a__ :List[Any] = Path("src/transformers" ) a__ :List[Any] = "configuration" self.analyze_directory(__A , identifier=__A ) def _snake_case ( self : Optional[Any] ) ->int: """simple docstring""" a__ :List[str] = Path("src/transformers" ) a__ :str = ["configuration", "modeling", "tokenization"] self.analyze_directory(__A , n_identifier=__A ) def _snake_case ( self : List[Any] ) ->Optional[int]: """simple docstring""" a__ :List[str] = Path("docs/source" ) a__ :Union[str, Any] = ["favicon.ico"] self.analyze_directory(__A , ignore_files=__A , only_modules=__A )
395
0
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _lowerCAmelCase = logging.get_logger(__name__) class __A ( a ): """simple docstring""" A_ = ['pixel_values'] def __init__( self , _lowerCamelCase = True , _lowerCamelCase = 3_2 , _lowerCamelCase=PILImageResampling.BILINEAR , _lowerCamelCase = True , **_lowerCamelCase , )-> None: lowercase__ = do_resize lowercase__ = do_rescale lowercase__ = size_divisor lowercase__ = resample super().__init__(**_lowerCamelCase ) def snake_case_( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , **_lowerCamelCase )-> np.ndarray: lowercase__ , lowercase__ = get_image_size(_lowerCamelCase ) # Rounds the height and width down to the closest multiple of size_divisor lowercase__ = height // size_divisor * size_divisor lowercase__ = width // size_divisor * size_divisor lowercase__ = resize(_lowerCamelCase , (new_h, new_w) , resample=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase ) return image def snake_case_( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , **_lowerCamelCase )-> np.ndarray: return rescale(image=_lowerCamelCase , scale=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase ) def snake_case_( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase=None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = ChannelDimension.FIRST , **_lowerCamelCase , )-> BatchFeature: lowercase__ = do_resize if do_resize is not None else self.do_resize lowercase__ = do_rescale if do_rescale is not None else self.do_rescale lowercase__ = size_divisor if size_divisor is not None else self.size_divisor lowercase__ = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''' ) lowercase__ = make_list_of_images(_lowerCamelCase ) if not valid_images(_lowerCamelCase ): raise ValueError('''Invalid image(s)''' ) # All transformations expect numpy arrays. lowercase__ = [to_numpy_array(_lowerCamelCase ) for img in images] if do_resize: lowercase__ = [self.resize(_lowerCamelCase , size_divisor=_lowerCamelCase , resample=_lowerCamelCase ) for image in images] if do_rescale: lowercase__ = [self.rescale(_lowerCamelCase , scale=1 / 2_5_5 ) for image in images] lowercase__ = [to_channel_dimension_format(_lowerCamelCase , _lowerCamelCase ) for image in images] lowercase__ = {'''pixel_values''': images} return BatchFeature(data=_lowerCamelCase , tensor_type=_lowerCamelCase )
318
'''simple docstring''' _lowerCAmelCase = "Input must be a string of 8 numbers plus letter" _lowerCAmelCase = "TRWAGMYFPDXBNJZSQVHLCKE" def _lowerCAmelCase ( lowercase : str ) ->bool: """simple docstring""" if not isinstance(lowercase , lowercase ): lowercase__ = F'''Expected string as input, found {type(lowercase ).__name__}''' raise TypeError(lowercase ) lowercase__ = spanish_id.replace('''-''' , '''''' ).upper() if len(lowercase ) != 9: raise ValueError(lowercase ) try: lowercase__ = int(spanish_id_clean[0:8] ) lowercase__ = spanish_id_clean[8] except ValueError as ex: raise ValueError(lowercase ) from ex if letter.isdigit(): raise ValueError(lowercase ) return letter == LOOKUP_LETTERS[number % 2_3] if __name__ == "__main__": import doctest doctest.testmod()
318
1
"""simple docstring""" from __future__ import annotations def SCREAMING_SNAKE_CASE_ ( snake_case : Any , snake_case : List[str] )-> Dict: if b == 0: return (1, 0) ((_lowerCamelCase) , (_lowerCamelCase)) = extended_euclid(snake_case , a % b ) _lowerCamelCase = a // b return (y, x - k * y) def SCREAMING_SNAKE_CASE_ ( snake_case : Union[str, Any] , snake_case : Union[str, Any] , snake_case : Tuple , snake_case : int )-> int: ((_lowerCamelCase) , (_lowerCamelCase)) = extended_euclid(snake_case , snake_case ) _lowerCamelCase = na * na _lowerCamelCase = ra * x * na + ra * y * na return (n % m + m) % m def SCREAMING_SNAKE_CASE_ ( snake_case : Optional[int] , snake_case : Optional[Any] )-> Tuple: ((_lowerCamelCase) , (_lowerCamelCase)) = extended_euclid(snake_case , snake_case ) if b < 0: _lowerCamelCase = (b % n + n) % n return b def SCREAMING_SNAKE_CASE_ ( snake_case : List[Any] , snake_case : int , snake_case : Union[str, Any] , snake_case : List[Any] )-> Dict: _lowerCamelCase , _lowerCamelCase = invert_modulo(snake_case , snake_case ), invert_modulo(snake_case , snake_case ) _lowerCamelCase = na * na _lowerCamelCase = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="""chinese_remainder_theorem""", verbose=True) testmod(name="""chinese_remainder_theorem2""", verbose=True) testmod(name="""invert_modulo""", verbose=True) testmod(name="""extended_euclid""", verbose=True)
650
import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ): __snake_case :List[Any] = 1 @register_to_config def __init__( self : str , _lowerCAmelCase : int = 1000 , _lowerCAmelCase : Optional[Union[np.ndarray, List[float]]] = None ) -> Optional[int]: """simple docstring""" self.set_timesteps(_lowerCAmelCase ) # standard deviation of the initial noise distribution __lowercase = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. __lowercase = 4 # running values __lowercase = [] def _a ( self : Optional[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Union[str, torch.device] = None ) -> int: """simple docstring""" __lowercase = num_inference_steps __lowercase = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1] __lowercase = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: __lowercase = torch.tensor(self.config.trained_betas , dtype=torch.floataa ) else: __lowercase = torch.sin(steps * math.pi / 2 ) ** 2 __lowercase = (1.0 - self.betas**2) ** 0.5 __lowercase = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1] __lowercase = timesteps.to(_lowerCAmelCase ) __lowercase = [] def _a ( self : List[str] , _lowerCAmelCase : torch.FloatTensor , _lowerCAmelCase : int , _lowerCAmelCase : torch.FloatTensor , _lowerCAmelCase : bool = True , ) -> Union[SchedulerOutput, Tuple]: """simple docstring""" if self.num_inference_steps is None: raise ValueError( """Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler""" ) __lowercase = (self.timesteps == timestep).nonzero().item() __lowercase = timestep_index + 1 __lowercase = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(_lowerCAmelCase ) if len(self.ets ) == 1: __lowercase = self.ets[-1] elif len(self.ets ) == 2: __lowercase = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: __lowercase = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: __lowercase = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) __lowercase = self._get_prev_sample(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_lowerCAmelCase ) def _a ( self : Union[str, Any] , _lowerCAmelCase : torch.FloatTensor , *_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : str ) -> torch.FloatTensor: """simple docstring""" return sample def _a ( self : Optional[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ) -> Dict: """simple docstring""" __lowercase = self.alphas[timestep_index] __lowercase = self.betas[timestep_index] __lowercase = self.alphas[prev_timestep_index] __lowercase = self.betas[prev_timestep_index] __lowercase = (sample - sigma * ets) / max(_lowerCAmelCase , 1e-8 ) __lowercase = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self : Optional[Any] ) -> Dict: """simple docstring""" return self.config.num_train_timesteps
80
0
import numpy as np def lowerCamelCase_ ( lowerCamelCase__ ): return 1 / (1 + np.exp(-vector )) def lowerCamelCase_ ( lowerCamelCase__ ): return vector * sigmoid(lowerCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
710
import sys from collections import defaultdict class _SCREAMING_SNAKE_CASE : def __init__( self ) -> int: lowerCamelCase_ = [] def SCREAMING_SNAKE_CASE_( self , lowercase ) -> List[Any]: return self.node_position[vertex] def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase ) -> List[Any]: lowerCamelCase_ = pos def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase ) -> List[Any]: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: lowerCamelCase_ = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: lowerCamelCase_ = 2 * start + 1 else: lowerCamelCase_ = 2 * start + 2 if heap[smallest_child] < heap[start]: lowerCamelCase_ , lowerCamelCase_ = heap[smallest_child], positions[smallest_child] lowerCamelCase_ , lowerCamelCase_ = ( heap[start], positions[start], ) lowerCamelCase_ , lowerCamelCase_ = temp, tempa lowerCamelCase_ = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , lowercase ) self.top_to_bottom(lowercase , lowercase , lowercase , lowercase ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]: lowerCamelCase_ = position[index] while index != 0: lowerCamelCase_ = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: lowerCamelCase_ = heap[parent] lowerCamelCase_ = position[parent] self.set_position(position[parent] , lowercase ) else: lowerCamelCase_ = val lowerCamelCase_ = temp self.set_position(lowercase , lowercase ) break lowerCamelCase_ = parent else: lowerCamelCase_ = val lowerCamelCase_ = temp self.set_position(lowercase , 0 ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase ) -> Union[str, Any]: lowerCamelCase_ = len(lowercase ) // 2 - 1 for i in range(lowercase , -1 , -1 ): self.top_to_bottom(lowercase , lowercase , len(lowercase ) , lowercase ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase ) -> Tuple: lowerCamelCase_ = positions[0] lowerCamelCase_ = sys.maxsize self.top_to_bottom(lowercase , 0 , len(lowercase ) , lowercase ) return temp def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ = Heap() lowerCamelCase_ = [0] * len(lowerCamelCase__ ) lowerCamelCase_ = [-1] * len(lowerCamelCase__ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph lowerCamelCase_ = [] # Heap of Distance of vertices from their neighboring vertex lowerCamelCase_ = [] for vertex in range(len(lowerCamelCase__ ) ): distance_tv.append(sys.maxsize ) positions.append(lowerCamelCase__ ) heap.node_position.append(lowerCamelCase__ ) lowerCamelCase_ = [] lowerCamelCase_ = 1 lowerCamelCase_ = sys.maxsize for neighbor, distance in adjacency_list[0]: lowerCamelCase_ = 0 lowerCamelCase_ = distance heap.heapify(lowerCamelCase__ , lowerCamelCase__ ) for _ in range(1 , len(lowerCamelCase__ ) ): lowerCamelCase_ = heap.delete_minimum(lowerCamelCase__ , lowerCamelCase__ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) lowerCamelCase_ = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(lowerCamelCase__ )] ): lowerCamelCase_ = distance heap.bottom_to_top( lowerCamelCase__ , heap.get_position(lowerCamelCase__ ) , lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > __A =int(input('''Enter number of edges: ''').strip()) __A =defaultdict(list) for _ in range(edges_number): __A =[int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
313
0
'''simple docstring''' import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) __magic_name__ : List[str] = { """sample_size""": 32, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": 1_000, """block_out_channels""": [32, 64], """attention_head_dim""": 8, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } __magic_name__ : int = { """sample_size""": 64, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 3, """num_class_embeds""": 1_000, """block_out_channels""": [192, 192 * 2, 192 * 3, 192 * 4], """attention_head_dim""": 64, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } __magic_name__ : List[Any] = { """sample_size""": 256, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": None, """block_out_channels""": [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], """attention_head_dim""": 64, """down_block_types""": [ """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """default""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } __magic_name__ : List[str] = { """num_train_timesteps""": 40, """sigma_min""": 0.002, """sigma_max""": 80.0, } __magic_name__ : Optional[int] = { """num_train_timesteps""": 201, """sigma_min""": 0.002, """sigma_max""": 80.0, } __magic_name__ : Optional[Any] = { """num_train_timesteps""": 151, """sigma_min""": 0.002, """sigma_max""": 80.0, } def snake_case_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if isinstance(snake_case__ , snake_case__ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError("boolean value expected" ) def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False ): '''simple docstring''' _snake_case = checkpoint[f'''{old_prefix}.in_layers.0.weight'''] _snake_case = checkpoint[f'''{old_prefix}.in_layers.0.bias'''] _snake_case = checkpoint[f'''{old_prefix}.in_layers.2.weight'''] _snake_case = checkpoint[f'''{old_prefix}.in_layers.2.bias'''] _snake_case = checkpoint[f'''{old_prefix}.emb_layers.1.weight'''] _snake_case = checkpoint[f'''{old_prefix}.emb_layers.1.bias'''] _snake_case = checkpoint[f'''{old_prefix}.out_layers.0.weight'''] _snake_case = checkpoint[f'''{old_prefix}.out_layers.0.bias'''] _snake_case = checkpoint[f'''{old_prefix}.out_layers.3.weight'''] _snake_case = checkpoint[f'''{old_prefix}.out_layers.3.bias'''] if has_skip: _snake_case = checkpoint[f'''{old_prefix}.skip_connection.weight'''] _snake_case = checkpoint[f'''{old_prefix}.skip_connection.bias'''] return new_checkpoint def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' _snake_case , _snake_case , _snake_case = checkpoint[f'''{old_prefix}.qkv.weight'''].chunk(3 , dim=0 ) _snake_case , _snake_case , _snake_case = checkpoint[f'''{old_prefix}.qkv.bias'''].chunk(3 , dim=0 ) _snake_case = checkpoint[f'''{old_prefix}.norm.weight'''] _snake_case = checkpoint[f'''{old_prefix}.norm.bias'''] _snake_case = weight_q.squeeze(-1 ).squeeze(-1 ) _snake_case = bias_q.squeeze(-1 ).squeeze(-1 ) _snake_case = weight_k.squeeze(-1 ).squeeze(-1 ) _snake_case = bias_k.squeeze(-1 ).squeeze(-1 ) _snake_case = weight_v.squeeze(-1 ).squeeze(-1 ) _snake_case = bias_v.squeeze(-1 ).squeeze(-1 ) _snake_case = ( checkpoint[f'''{old_prefix}.proj_out.weight'''].squeeze(-1 ).squeeze(-1 ) ) _snake_case = checkpoint[f'''{old_prefix}.proj_out.bias'''].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' _snake_case = torch.load(snake_case__ , map_location="cpu" ) _snake_case = {} _snake_case = checkpoint["time_embed.0.weight"] _snake_case = checkpoint["time_embed.0.bias"] _snake_case = checkpoint["time_embed.2.weight"] _snake_case = checkpoint["time_embed.2.bias"] if unet_config["num_class_embeds"] is not None: _snake_case = checkpoint["label_emb.weight"] _snake_case = checkpoint["input_blocks.0.0.weight"] _snake_case = checkpoint["input_blocks.0.0.bias"] _snake_case = unet_config["down_block_types"] _snake_case = unet_config["layers_per_block"] _snake_case = unet_config["attention_head_dim"] _snake_case = unet_config["block_out_channels"] _snake_case = 1 _snake_case = channels_list[0] for i, layer_type in enumerate(snake_case__ ): _snake_case = channels_list[i] _snake_case = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(snake_case__ ): _snake_case = f'''down_blocks.{i}.resnets.{j}''' _snake_case = f'''input_blocks.{current_layer}.0''' _snake_case = True if j == 0 and downsample_block_has_skip else False _snake_case = convert_resnet(snake_case__ , snake_case__ , snake_case__ , snake_case__ , has_skip=snake_case__ ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(snake_case__ ): _snake_case = f'''down_blocks.{i}.resnets.{j}''' _snake_case = f'''input_blocks.{current_layer}.0''' _snake_case = True if j == 0 and downsample_block_has_skip else False _snake_case = convert_resnet(snake_case__ , snake_case__ , snake_case__ , snake_case__ , has_skip=snake_case__ ) _snake_case = f'''down_blocks.{i}.attentions.{j}''' _snake_case = f'''input_blocks.{current_layer}.1''' _snake_case = convert_attention( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) current_layer += 1 if i != len(snake_case__ ) - 1: _snake_case = f'''down_blocks.{i}.downsamplers.0''' _snake_case = f'''input_blocks.{current_layer}.0''' _snake_case = convert_resnet(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) current_layer += 1 _snake_case = current_channels # hardcoded the mid-block for now _snake_case = "mid_block.resnets.0" _snake_case = "middle_block.0" _snake_case = convert_resnet(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) _snake_case = "mid_block.attentions.0" _snake_case = "middle_block.1" _snake_case = convert_attention(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) _snake_case = "mid_block.resnets.1" _snake_case = "middle_block.2" _snake_case = convert_resnet(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) _snake_case = 0 _snake_case = unet_config["up_block_types"] for i, layer_type in enumerate(snake_case__ ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): _snake_case = f'''up_blocks.{i}.resnets.{j}''' _snake_case = f'''output_blocks.{current_layer}.0''' _snake_case = convert_resnet(snake_case__ , snake_case__ , snake_case__ , snake_case__ , has_skip=snake_case__ ) current_layer += 1 if i != len(snake_case__ ) - 1: _snake_case = f'''up_blocks.{i}.upsamplers.0''' _snake_case = f'''output_blocks.{current_layer-1}.1''' _snake_case = convert_resnet(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): _snake_case = f'''up_blocks.{i}.resnets.{j}''' _snake_case = f'''output_blocks.{current_layer}.0''' _snake_case = convert_resnet(snake_case__ , snake_case__ , snake_case__ , snake_case__ , has_skip=snake_case__ ) _snake_case = f'''up_blocks.{i}.attentions.{j}''' _snake_case = f'''output_blocks.{current_layer}.1''' _snake_case = convert_attention( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) current_layer += 1 if i != len(snake_case__ ) - 1: _snake_case = f'''up_blocks.{i}.upsamplers.0''' _snake_case = f'''output_blocks.{current_layer-1}.2''' _snake_case = convert_resnet(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) _snake_case = checkpoint["out.0.weight"] _snake_case = checkpoint["out.0.bias"] _snake_case = checkpoint["out.2.weight"] _snake_case = checkpoint["out.2.bias"] return new_checkpoint if __name__ == "__main__": __magic_name__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("""--unet_path""", default=None, type=str, required=True, help="""Path to the unet.pt to convert.""") parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output the converted UNet model.""" ) parser.add_argument("""--class_cond""", default=True, type=str, help="""Whether the model is class-conditional.""") __magic_name__ : Optional[Any] = parser.parse_args() __magic_name__ : Dict = strabool(args.class_cond) __magic_name__ : Optional[Any] = os.path.basename(args.unet_path) print(F'Checkpoint: {ckpt_name}') # Get U-Net config if "imagenet64" in ckpt_name: __magic_name__ : Optional[int] = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): __magic_name__ : Union[str, Any] = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: __magic_name__ : List[Any] = TEST_UNET_CONFIG else: raise ValueError(F'Checkpoint type {ckpt_name} is not currently supported.') if not args.class_cond: __magic_name__ : Optional[Any] = None __magic_name__ : Any = con_pt_to_diffuser(args.unet_path, unet_config) __magic_name__ : int = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: __magic_name__ : List[str] = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: __magic_name__ : Union[str, Any] = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): __magic_name__ : Optional[Any] = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(F'Checkpoint type {ckpt_name} is not currently supported.') __magic_name__ : Dict = CMStochasticIterativeScheduler(**scheduler_config) __magic_name__ : Tuple = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
672
from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { '''deepmind/language-perceiver''': '''https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json''', # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class lowercase ( _UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """perceiver""" def __init__(self , __a=256 , __a=1280 , __a=768 , __a=1 , __a=26 , __a=8 , __a=8 , __a=None , __a=None , __a="kv" , __a=1 , __a=1 , __a="gelu" , __a=0.1 , __a=0.02 , __a=1E-1_2 , __a=True , __a=262 , __a=2048 , __a=56 , __a=[368, 496] , __a=16 , __a=1920 , __a=16 , __a=[1, 16, 224, 224] , **__a , ) -> Union[str, Any]: """simple docstring""" super().__init__(**__a ) UpperCAmelCase__ = num_latents UpperCAmelCase__ = d_latents UpperCAmelCase__ = d_model UpperCAmelCase__ = num_blocks UpperCAmelCase__ = num_self_attends_per_block UpperCAmelCase__ = num_self_attention_heads UpperCAmelCase__ = num_cross_attention_heads UpperCAmelCase__ = qk_channels UpperCAmelCase__ = v_channels UpperCAmelCase__ = cross_attention_shape_for_attention UpperCAmelCase__ = self_attention_widening_factor UpperCAmelCase__ = cross_attention_widening_factor UpperCAmelCase__ = hidden_act UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = initializer_range UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = use_query_residual # masked language modeling attributes UpperCAmelCase__ = vocab_size UpperCAmelCase__ = max_position_embeddings # image classification attributes UpperCAmelCase__ = image_size # flow attributes UpperCAmelCase__ = train_size # multimodal autoencoding attributes UpperCAmelCase__ = num_frames UpperCAmelCase__ = audio_samples_per_frame UpperCAmelCase__ = samples_per_patch UpperCAmelCase__ = output_shape class lowercase ( _UpperCamelCase ): '''simple docstring''' @property def UpperCamelCase__ (self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": UpperCAmelCase__ = {0: 'batch', 1: 'choice', 2: 'sequence'} else: UpperCAmelCase__ = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('inputs', dynamic_axis), ('attention_mask', dynamic_axis), ] ) @property def UpperCamelCase__ (self ) -> float: """simple docstring""" return 1E-4 def UpperCamelCase__ (self , __a , __a = -1 , __a = -1 , __a = -1 , __a = False , __a = None , __a = 3 , __a = 40 , __a = 40 , ) -> Mapping[str, Any]: """simple docstring""" if isinstance(__a , __a ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCAmelCase__ = compute_effective_axis_dimension( __a , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCAmelCase__ = preprocessor.num_special_tokens_to_add(__a ) UpperCAmelCase__ = compute_effective_axis_dimension( __a , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__a ) # Generate dummy inputs according to compute batch and sequence UpperCAmelCase__ = [' '.join(['a'] ) * seq_length] * batch_size UpperCAmelCase__ = dict(preprocessor(__a , return_tensors=__a ) ) UpperCAmelCase__ = inputs.pop('input_ids' ) return inputs elif isinstance(__a , __a ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCAmelCase__ = compute_effective_axis_dimension(__a , fixed_dimension=OnnxConfig.default_fixed_batch ) UpperCAmelCase__ = self._generate_dummy_images(__a , __a , __a , __a ) UpperCAmelCase__ = dict(preprocessor(images=__a , return_tensors=__a ) ) UpperCAmelCase__ = inputs.pop('pixel_values' ) return inputs else: raise ValueError( 'Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.' )
146
0
import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def __UpperCamelCase ( _lowercase ) -> Optional[Any]: if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class lowerCamelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : List[str] , UpperCamelCase_ : nn.Module , UpperCamelCase_ : int ) -> int: '''simple docstring''' super().__init__() _lowercase : Dict = module _lowercase : Optional[Any] = nn.Sequential( nn.Linear(module.in_features , UpperCamelCase_ , bias=UpperCamelCase_ ) , nn.Linear(UpperCamelCase_ , module.out_features , bias=UpperCamelCase_ ) , ) _lowercase : Union[str, Any] = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=UpperCamelCase_ ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def __UpperCAmelCase ( self : Any , UpperCamelCase_ : List[Any] , *UpperCamelCase_ : Dict , **UpperCamelCase_ : Optional[int] ) -> List[str]: '''simple docstring''' return self.module(UpperCamelCase_ , *UpperCamelCase_ , **UpperCamelCase_ ) + self.adapter(UpperCamelCase_ ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' A_ = """bigscience/bloom-1b7""" # Constant values A_ = 2.1_09_65_95_52_69_25_74 A_ = """Hello my name is""" A_ = set() EXPECTED_OUTPUTS.add("""Hello my name is John and I am a professional photographer. I""" ) EXPECTED_OUTPUTS.add("""Hello my name is John.\nI am a friend of your father.\n""" ) EXPECTED_OUTPUTS.add("""Hello my name is John Doe, I am a student at the University""" ) A_ = 10 def __UpperCAmelCase ( self : Optional[Any] ) -> Tuple: '''simple docstring''' _lowercase : List[Any] = AutoTokenizer.from_pretrained(self.model_name ) class lowerCamelCase__ ( A ): '''simple docstring''' def __UpperCAmelCase ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' super().setUp() # Models and tokenizer _lowercase : Union[str, Any] = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='auto' ) _lowercase : int = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=UpperCamelCase_ , device_map='auto' ) def __UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' _lowercase : Any = self.model_abit.config self.assertTrue(hasattr(UpperCamelCase_ , 'quantization_config' ) ) _lowercase : int = config.to_dict() _lowercase : Union[str, Any] = config.to_diff_dict() _lowercase : Optional[Any] = config.to_json_string() def __UpperCAmelCase ( self : List[Any] ) -> Tuple: '''simple docstring''' from bitsandbytes.nn import Paramsabit _lowercase : Any = self.model_fpaa.get_memory_footprint() _lowercase : str = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) _lowercase : Optional[Any] = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def __UpperCAmelCase ( self : List[Any] ) -> Tuple: '''simple docstring''' from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(UpperCamelCase_ , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def __UpperCAmelCase ( self : Optional[int] ) -> List[str]: '''simple docstring''' _lowercase : Union[str, Any] = self.tokenizer(self.input_text , return_tensors='pt' ) _lowercase : List[Any] = self.model_abit.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=UpperCamelCase_ ) , self.EXPECTED_OUTPUTS ) def __UpperCAmelCase ( self : Dict ) -> List[Any]: '''simple docstring''' _lowercase : Tuple = BitsAndBytesConfig() _lowercase : Optional[int] = True _lowercase : Union[str, Any] = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=UpperCamelCase_ , device_map='auto' ) _lowercase : str = self.tokenizer(self.input_text , return_tensors='pt' ) _lowercase : Tuple = model_abit_from_config.generate( input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=UpperCamelCase_ ) , self.EXPECTED_OUTPUTS ) def __UpperCAmelCase ( self : Dict ) -> int: '''simple docstring''' with self.assertRaises(UpperCamelCase_ ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(UpperCamelCase_ ) def __UpperCAmelCase ( self : str ) -> Union[str, Any]: '''simple docstring''' _lowercase : int = BitsAndBytesConfig() with self.assertRaises(UpperCamelCase_ ): _lowercase : int = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=UpperCamelCase_ , load_in_abit=UpperCamelCase_ , device_map='auto' , bnb_abit_quant_type='nf4' , ) def __UpperCAmelCase ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' with self.assertRaises(UpperCamelCase_ ): # Tries with `str` self.model_abit.to('cpu' ) with self.assertRaises(UpperCamelCase_ ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(UpperCamelCase_ ): # Tries with a `device` self.model_abit.to(torch.device('cuda:0' ) ) with self.assertRaises(UpperCamelCase_ ): # Tries with a `device` self.model_abit.float() with self.assertRaises(UpperCamelCase_ ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything _lowercase : int = self.tokenizer(self.input_text , return_tensors='pt' ) _lowercase : Union[str, Any] = self.model_fpaa.to(torch.floataa ) _lowercase : Tuple = self.model_fpaa.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error _lowercase : Tuple = self.model_fpaa.to('cpu' ) # Check this does not throw an error _lowercase : Dict = self.model_fpaa.half() # Check this does not throw an error _lowercase : Tuple = self.model_fpaa.float() def __UpperCAmelCase ( self : Optional[int] ) -> Any: '''simple docstring''' _lowercase : Tuple = AutoModelForSeqaSeqLM.from_pretrained('t5-small' , load_in_abit=UpperCamelCase_ , device_map='auto' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' @classmethod def __UpperCAmelCase ( cls : Tuple ) -> int: '''simple docstring''' _lowercase : Optional[int] = 't5-small' _lowercase : Tuple = 'google/flan-t5-small' # flan-t5 uses dense-act instead of dense-relu-dense _lowercase : Optional[int] = AutoTokenizer.from_pretrained(cls.model_name ) _lowercase : Union[str, Any] = 'Translate in German: Hello, my dog is cute' def __UpperCAmelCase ( self : Tuple ) -> List[str]: '''simple docstring''' gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self : Dict ) -> Any: '''simple docstring''' from transformers import TaForConditionalGeneration _lowercase : Union[str, Any] = TaForConditionalGeneration._keep_in_fpaa_modules _lowercase : Optional[Any] = None # test with `t5-small` _lowercase : List[Any] = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=UpperCamelCase_ , device_map='auto' ) _lowercase : Any = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) _lowercase : Optional[Any] = model.generate(**UpperCamelCase_ ) # test with `flan-t5-small` _lowercase : Dict = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=UpperCamelCase_ , device_map='auto' ) _lowercase : str = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) _lowercase : int = model.generate(**UpperCamelCase_ ) _lowercase : Optional[Any] = modules def __UpperCAmelCase ( self : List[str] ) -> Tuple: '''simple docstring''' import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` _lowercase : List[Any] = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=UpperCamelCase_ , device_map='auto' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) _lowercase : Optional[Any] = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) _lowercase : List[Any] = model.generate(**UpperCamelCase_ ) # test with `flan-t5-small` _lowercase : List[str] = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=UpperCamelCase_ , device_map='auto' ) _lowercase : Any = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) _lowercase : List[Any] = model.generate(**UpperCamelCase_ ) class lowerCamelCase__ ( A ): '''simple docstring''' def __UpperCAmelCase ( self : int ) -> int: '''simple docstring''' super().setUp() # model_name _lowercase : str = 'bigscience/bloom-560m' _lowercase : str = 't5-small' # Different types of model _lowercase : Tuple = AutoModel.from_pretrained(self.model_name , load_in_abit=UpperCamelCase_ , device_map='auto' ) # Sequence classification model _lowercase : Optional[int] = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=UpperCamelCase_ , device_map='auto' ) # CausalLM model _lowercase : Tuple = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=UpperCamelCase_ , device_map='auto' ) # Seq2seq model _lowercase : List[Any] = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=UpperCamelCase_ , device_map='auto' ) def __UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self : Dict ) -> Any: '''simple docstring''' from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class lowerCamelCase__ ( A ): '''simple docstring''' def __UpperCAmelCase ( self : Tuple ) -> Dict: '''simple docstring''' super().setUp() def __UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' del self.pipe gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self : List[str] ) -> List[str]: '''simple docstring''' _lowercase : str = pipeline( 'text-generation' , model=self.model_name , model_kwargs={'device_map': 'auto', 'load_in_4bit': True, 'torch_dtype': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass _lowercase : int = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['generated_text'] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class lowerCamelCase__ ( A ): '''simple docstring''' def __UpperCAmelCase ( self : int ) -> List[Any]: '''simple docstring''' super().setUp() def __UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' _lowercase : List[str] = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=UpperCamelCase_ , device_map='balanced' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model _lowercase : int = self.tokenizer(self.input_text , return_tensors='pt' ) # Second real batch _lowercase : str = model_parallel.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=UpperCamelCase_ ) , self.EXPECTED_OUTPUTS ) class lowerCamelCase__ ( A ): '''simple docstring''' def __UpperCAmelCase ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' _lowercase : Union[str, Any] = 'facebook/opt-350m' super().setUp() def __UpperCAmelCase ( self : List[str] ) -> Tuple: '''simple docstring''' if version.parse(importlib.metadata.version('bitsandbytes' ) ) < version.parse('0.37.0' ): return # Step 1: freeze all parameters _lowercase : Optional[int] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=UpperCamelCase_ ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): _lowercase : List[Any] = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability _lowercase : int = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(UpperCamelCase_ ) ): _lowercase : Optional[Any] = LoRALayer(module.q_proj , rank=16 ) _lowercase : Optional[int] = LoRALayer(module.k_proj , rank=16 ) _lowercase : Tuple = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch _lowercase : Dict = self.tokenizer('Test batch ' , return_tensors='pt' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): _lowercase : List[str] = model.forward(**UpperCamelCase_ ) out.logits.norm().backward() for module in model.modules(): if isinstance(UpperCamelCase_ , UpperCamelCase_ ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(UpperCamelCase_ , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class lowerCamelCase__ ( A ): '''simple docstring''' A_ = """gpt2-xl""" A_ = 3.31_91_85_48_54_15_21_87
702
'''simple docstring''' import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _A : Optional[int] =logging.get_logger(__name__) class lowerCamelCase__ ( A ): '''simple docstring''' A_ = ["""input_features""", """is_longer"""] def __init__( self : List[Any] , UpperCamelCase_ : List[Any]=64 , UpperCamelCase_ : int=4_8000 , UpperCamelCase_ : Union[str, Any]=480 , UpperCamelCase_ : Any=10 , UpperCamelCase_ : Optional[int]=1024 , UpperCamelCase_ : Optional[int]=0.0 , UpperCamelCase_ : Tuple=False , UpperCamelCase_ : float = 0 , UpperCamelCase_ : float = 1_4000 , UpperCamelCase_ : int = None , UpperCamelCase_ : str = "fusion" , UpperCamelCase_ : str = "repeatpad" , **UpperCamelCase_ : Optional[Any] , ) -> Dict: '''simple docstring''' super().__init__( feature_size=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , padding_value=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , **UpperCamelCase_ , ) _lowercase : Tuple = top_db _lowercase : Any = truncation _lowercase : str = padding _lowercase : int = fft_window_size _lowercase : Any = (fft_window_size >> 1) + 1 _lowercase : int = hop_length _lowercase : Any = max_length_s _lowercase : str = max_length_s * sampling_rate _lowercase : Any = sampling_rate _lowercase : List[Any] = frequency_min _lowercase : Tuple = frequency_max _lowercase : Tuple = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=UpperCamelCase_ , min_frequency=UpperCamelCase_ , max_frequency=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , norm=UpperCamelCase_ , mel_scale='htk' , ) _lowercase : Any = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=UpperCamelCase_ , min_frequency=UpperCamelCase_ , max_frequency=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , norm='slaney' , mel_scale='slaney' , ) def __UpperCAmelCase ( self : Tuple ) -> Dict[str, Any]: '''simple docstring''' _lowercase : Tuple = copy.deepcopy(self.__dict__ ) _lowercase : int = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : np.array , UpperCamelCase_ : Optional[np.array] = None ) -> np.ndarray: '''simple docstring''' _lowercase : List[str] = spectrogram( UpperCamelCase_ , window_function(self.fft_window_size , 'hann' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=UpperCamelCase_ , log_mel='dB' , ) return log_mel_spectrogram.T def __UpperCAmelCase ( self : List[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' _lowercase : Tuple = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk _lowercase : int = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk _lowercase : Union[str, Any] = [0] # randomly choose index for each part _lowercase : Tuple = np.random.choice(ranges[0] ) _lowercase : int = np.random.choice(ranges[1] ) _lowercase : Any = np.random.choice(ranges[2] ) _lowercase : int = mel[idx_front : idx_front + chunk_frames, :] _lowercase : int = mel[idx_middle : idx_middle + chunk_frames, :] _lowercase : Tuple = mel[idx_back : idx_back + chunk_frames, :] _lowercase : List[Any] = torch.tensor(mel[None, None, :] ) _lowercase : Optional[int] = torch.nn.functional.interpolate( UpperCamelCase_ , size=[chunk_frames, 64] , mode='bilinear' , align_corners=UpperCamelCase_ ) _lowercase : str = mel_shrink[0][0].numpy() _lowercase : int = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def __UpperCAmelCase ( self : List[str] , UpperCamelCase_ : np.array , UpperCamelCase_ : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : Optional[int] ) -> np.array: '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": _lowercase : Tuple = True # random crop to max_length (for compatibility) -> this should be handled by self.pad _lowercase : Any = len(UpperCamelCase_ ) - max_length _lowercase : Dict = np.random.randint(0 , overflow + 1 ) _lowercase : Optional[int] = waveform[idx : idx + max_length] _lowercase : Dict = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters_slaney )[None, :] elif truncation == "fusion": _lowercase : List[Any] = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters ) _lowercase : List[Any] = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed _lowercase : Optional[int] = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. _lowercase : Optional[Any] = np.stack([mel, mel, mel, mel] , axis=0 ) _lowercase : List[Any] = False else: _lowercase : Union[str, Any] = self._random_mel_fusion(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) _lowercase : int = True else: raise NotImplementedError(F'''data_truncating {truncation} not implemented''' ) else: _lowercase : Any = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": _lowercase : List[Any] = int(max_length / len(UpperCamelCase_ ) ) _lowercase : List[str] = np.stack(np.tile(UpperCamelCase_ , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": _lowercase : Union[str, Any] = int(max_length / len(UpperCamelCase_ ) ) _lowercase : Union[str, Any] = np.stack(np.tile(UpperCamelCase_ , UpperCamelCase_ ) ) _lowercase : Dict = np.pad(UpperCamelCase_ , (0, max_length - waveform.shape[0]) , mode='constant' , constant_values=0 ) if truncation == "fusion": _lowercase : str = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters ) _lowercase : Dict = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: _lowercase : List[Any] = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : Union[str, Any] , UpperCamelCase_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , UpperCamelCase_ : str = None , UpperCamelCase_ : Optional[str] = None , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[Union[str, TensorType]] = None , **UpperCamelCase_ : Dict , ) -> BatchFeature: '''simple docstring''' _lowercase : Dict = truncation if truncation is not None else self.truncation _lowercase : int = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' F''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' F''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) _lowercase : Optional[Any] = isinstance(UpperCamelCase_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) _lowercase : List[str] = is_batched_numpy or ( isinstance(UpperCamelCase_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _lowercase : Dict = [np.asarray(UpperCamelCase_ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(UpperCamelCase_ , np.ndarray ): _lowercase : Any = np.asarray(UpperCamelCase_ , dtype=np.floataa ) elif isinstance(UpperCamelCase_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _lowercase : Tuple = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _lowercase : int = [np.asarray(UpperCamelCase_ )] # convert to mel spectrogram, truncate and pad if needed. _lowercase : Optional[Any] = [ self._get_input_mel(UpperCamelCase_ , max_length if max_length else self.nb_max_samples , UpperCamelCase_ , UpperCamelCase_ ) for waveform in raw_speech ] _lowercase : List[Any] = [] _lowercase : Dict = [] for mel, longer in padded_inputs: input_mel.append(UpperCamelCase_ ) is_longer.append(UpperCamelCase_ ) if truncation == "fusion" and sum(UpperCamelCase_ ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer _lowercase : Optional[Any] = np.random.randint(0 , len(UpperCamelCase_ ) ) _lowercase : str = True if isinstance(input_mel[0] , UpperCamelCase_ ): _lowercase : str = [np.asarray(UpperCamelCase_ , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool _lowercase : Tuple = [[longer] for longer in is_longer] _lowercase : Optional[Any] = {'input_features': input_mel, 'is_longer': is_longer} _lowercase : Optional[int] = BatchFeature(UpperCamelCase_ ) if return_tensors is not None: _lowercase : List[Any] = input_features.convert_to_tensors(UpperCamelCase_ ) return input_features
4
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _lowercase : Any = { "configuration_vision_text_dual_encoder": ["VisionTextDualEncoderConfig"], "processing_vision_text_dual_encoder": ["VisionTextDualEncoderProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = ["VisionTextDualEncoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Union[str, Any] = ["FlaxVisionTextDualEncoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Tuple = ["TFVisionTextDualEncoderModel"] if TYPE_CHECKING: from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel else: import sys _lowercase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure)
641
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin a = get_tests_dir('''fixtures/test_sentencepiece_bpe_char.model''') @require_sentencepiece @require_tokenizers class lowercase_ ( __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCAmelCase : List[str] = SpeechTaTokenizer UpperCAmelCase : Tuple = False UpperCAmelCase : Optional[int] = True def lowerCAmelCase_ ( self : Tuple ): super().setUp() # We have a SentencePiece fixture for testing _A = SpeechTaTokenizer(_UpperCAmelCase ) _A = AddedToken('<mask>' , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) _A = mask_token tokenizer.add_special_tokens({'mask_token': mask_token} ) tokenizer.add_tokens(['<ctc_blank>'] ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Tuple ): _A = 'this is a test' _A = 'this is a test' return input_text, output_text def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any]=False , _UpperCAmelCase : Dict=20 , _UpperCAmelCase : str=5 ): _A , _A = self.get_input_output_texts(_UpperCAmelCase ) _A = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) _A = tokenizer.decode(_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) return text, ids def lowerCAmelCase_ ( self : Optional[Any] ): _A = '<pad>' _A = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def lowerCAmelCase_ ( self : Optional[Any] ): _A = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-4] , 'œ' ) self.assertEqual(vocab_keys[-2] , '<mask>' ) self.assertEqual(vocab_keys[-1] , '<ctc_blank>' ) self.assertEqual(len(_UpperCAmelCase ) , 81 ) def lowerCAmelCase_ ( self : Optional[Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 79 ) def lowerCAmelCase_ ( self : Any ): _A = self.get_tokenizers(do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _A = tokenizer.vocab_size _A = len(_UpperCAmelCase ) self.assertNotEqual(_UpperCAmelCase , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) _A = ['aaaaa bbbbbb', 'cccccccccdddddddd'] _A = tokenizer.add_tokens(_UpperCAmelCase ) _A = tokenizer.vocab_size _A = len(_UpperCAmelCase ) self.assertNotEqual(_UpperCAmelCase , 0 ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , len(_UpperCAmelCase ) ) self.assertEqual(_UpperCAmelCase , all_size + len(_UpperCAmelCase ) ) _A = tokenizer.encode('aaaaa bbbbbb low cccccccccdddddddd l' , add_special_tokens=_UpperCAmelCase ) self.assertGreaterEqual(len(_UpperCAmelCase ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) _A = {'eos_token': '>>>>|||<||<<|<<', 'pad_token': '<<<<<|||>|>>>>|>'} _A = tokenizer.add_special_tokens(_UpperCAmelCase ) _A = tokenizer.vocab_size _A = len(_UpperCAmelCase ) self.assertNotEqual(_UpperCAmelCase , 0 ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , len(_UpperCAmelCase ) ) self.assertEqual(_UpperCAmelCase , all_size_a + len(_UpperCAmelCase ) ) _A = tokenizer.encode( '>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l' , add_special_tokens=_UpperCAmelCase ) self.assertGreaterEqual(len(_UpperCAmelCase ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) def lowerCAmelCase_ ( self : str ): pass def lowerCAmelCase_ ( self : Any ): pass def lowerCAmelCase_ ( self : Dict ): _A = self.get_tokenizer() _A = tokenizer.tokenize('This is a test' ) # fmt: off self.assertListEqual(_UpperCAmelCase , [SPIECE_UNDERLINE, 'T', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'a', SPIECE_UNDERLINE, 't', 'e', 's', 't'] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , ) _A = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( _UpperCAmelCase , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '92000', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] ) _A = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) # fmt: off self.assertListEqual(_UpperCAmelCase , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on _A = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '<unk>', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] ) @slow def lowerCAmelCase_ ( self : List[Any] ): # Use custom sequence because this tokenizer does not handle numbers. _A = [ 'Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides ' 'general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural ' 'Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained ' 'models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.', 'BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly ' 'conditioning on both left and right context in all layers.', 'The quick brown fox jumps over the lazy dog.', ] # fmt: off _A = { 'input_ids': [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], 'attention_mask': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name='microsoft/speecht5_asr' , revision='c5ef64c71905caeccde0e4462ef3f9077224c524' , sequences=_UpperCAmelCase , )
7
0
import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : Any =XLMTokenizer __lowerCamelCase : Tuple =False def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __a = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] __a = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __a = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""] __a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" ) as fp: fp.write(json.dumps(__lowercase ) ) with open(self.merges_file , """w""" ) as fp: fp.write("""\n""".join(__lowercase ) ) def UpperCamelCase_ ( self : Optional[int] , __lowercase : Optional[Any] ): '''simple docstring''' __a = """lower newer""" __a = """lower newer""" return input_text, output_text def UpperCamelCase_ ( self : Dict ): '''simple docstring''' __a = XLMTokenizer(self.vocab_file , self.merges_file ) __a = """lower""" __a = ["""low""", """er</w>"""] __a = tokenizer.tokenize(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) __a = tokens + ["""<unk>"""] __a = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ) , __lowercase ) @slow def UpperCamelCase_ ( self : int ): '''simple docstring''' __a = XLMTokenizer.from_pretrained("""xlm-mlm-en-2048""" ) __a = tokenizer.encode("""sequence builders""" , add_special_tokens=__lowercase ) __a = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__lowercase ) __a = tokenizer.build_inputs_with_special_tokens(__lowercase ) __a = tokenizer.build_inputs_with_special_tokens(__lowercase , __lowercase ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
547
from __future__ import annotations from collections import Counter from random import random class SCREAMING_SNAKE_CASE : def __init__( self : Optional[Any] ): '''simple docstring''' __a = {} def UpperCamelCase_ ( self : Dict , __lowercase : str ): '''simple docstring''' __a = {} def UpperCamelCase_ ( self : List[str] , __lowercase : str , __lowercase : str , __lowercase : float ): '''simple docstring''' if nodea not in self.connections: self.add_node(__lowercase ) if nodea not in self.connections: self.add_node(__lowercase ) __a = probability def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return list(self.connections ) def UpperCamelCase_ ( self : Tuple , __lowercase : str ): '''simple docstring''' __a = 0 __a = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : list[tuple[str, str, float]] , _SCREAMING_SNAKE_CASE : int ): """simple docstring""" __a = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __a = Counter(graph.get_nodes() ) __a = start for _ in range(_SCREAMING_SNAKE_CASE ): __a = graph.transition(_SCREAMING_SNAKE_CASE ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
547
1
'''simple docstring''' import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class _A : def __init__( self : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : str=13 , __magic_name__ : Tuple=10 , __magic_name__ : Union[str, Any]=3 , __magic_name__ : Union[str, Any]=2 , __magic_name__ : Optional[Any]=2 , __magic_name__ : str=2 , __magic_name__ : Dict=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : Optional[int]=32 , __magic_name__ : str=5 , __magic_name__ : Tuple=4 , __magic_name__ : Tuple=37 , __magic_name__ : Union[str, Any]="gelu" , __magic_name__ : Any=0.1 , __magic_name__ : int=0.1 , __magic_name__ : Tuple=10 , __magic_name__ : Optional[int]=0.02 , __magic_name__ : Optional[Any]=0.9 , __magic_name__ : str=None , ) -> Any: """simple docstring""" __snake_case : List[Any] = parent __snake_case : Tuple = batch_size __snake_case : List[Any] = image_size __snake_case : Union[str, Any] = num_channels __snake_case : int = patch_size __snake_case : Dict = tubelet_size __snake_case : Union[str, Any] = num_frames __snake_case : Union[str, Any] = is_training __snake_case : Dict = use_labels __snake_case : Tuple = hidden_size __snake_case : Union[str, Any] = num_hidden_layers __snake_case : List[str] = num_attention_heads __snake_case : str = intermediate_size __snake_case : List[str] = hidden_act __snake_case : List[str] = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : List[str] = type_sequence_label_size __snake_case : List[str] = initializer_range __snake_case : Optional[Any] = mask_ratio __snake_case : int = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame __snake_case : Tuple = (image_size // patch_size) ** 2 __snake_case : Optional[Any] = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos __snake_case : Optional[Any] = int(mask_ratio * self.seq_length ) def lowercase__ ( self : Optional[int] ) -> str: """simple docstring""" __snake_case : Optional[Any] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) __snake_case : Optional[int] = None if self.use_labels: __snake_case : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : List[str] = self.get_config() return config, pixel_values, labels def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__magic_name__ , initializer_range=self.initializer_range , ) def lowercase__ ( self : Optional[Any] , __magic_name__ : Any , __magic_name__ : str , __magic_name__ : Tuple ) -> int: """simple docstring""" __snake_case : Tuple = VideoMAEModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Optional[int] = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Tuple , __magic_name__ : str , __magic_name__ : Tuple , __magic_name__ : Any ) -> int: """simple docstring""" __snake_case : Dict = VideoMAEForPreTraining(__magic_name__ ) model.to(__magic_name__ ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch __snake_case : List[str] = torch.ones((self.num_masks,) ) __snake_case : Tuple = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) __snake_case : Any = mask.expand(self.batch_size , -1 ).bool() __snake_case : Union[str, Any] = model(__magic_name__ , __magic_name__ ) # model only returns predictions for masked patches __snake_case : List[Any] = mask.sum().item() __snake_case : Any = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def lowercase__ ( self : int ) -> Any: """simple docstring""" __snake_case : List[str] = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case : Dict = config_and_inputs __snake_case : Optional[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _A ( __lowercase , __lowercase , unittest.TestCase ): lowercase__: Union[str, Any] = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) lowercase__: Any = ( {'''feature-extraction''': VideoMAEModel, '''video-classification''': VideoMAEForVideoClassification} if is_torch_available() else {} ) lowercase__: int = False lowercase__: Optional[Any] = False lowercase__: int = False lowercase__: List[Any] = False def lowercase__ ( self : Tuple ) -> Optional[int]: """simple docstring""" __snake_case : str = VideoMAEModelTester(self ) __snake_case : str = ConfigTester(self , config_class=__magic_name__ , has_text_modality=__magic_name__ , hidden_size=37 ) def lowercase__ ( self : int , __magic_name__ : Union[str, Any] , __magic_name__ : Union[str, Any] , __magic_name__ : str=False ) -> List[str]: """simple docstring""" __snake_case : Dict = copy.deepcopy(__magic_name__ ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch __snake_case : str = torch.ones((self.model_tester.num_masks,) ) __snake_case : str = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) __snake_case : Any = mask.expand(self.model_tester.batch_size , -1 ).bool() __snake_case : str = bool_masked_pos.to(__magic_name__ ) if return_labels: if model_class in [ *get_values(__magic_name__ ), ]: __snake_case : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ ) return inputs_dict def lowercase__ ( self : str ) -> Any: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""VideoMAE does not use inputs_embeds""" ) def lowercase__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" pass def lowercase__ ( self : List[str] ) -> str: """simple docstring""" __snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : List[Any] = model_class(__magic_name__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __snake_case : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__magic_name__ , nn.Linear ) ) def lowercase__ ( self : Any ) -> List[Any]: """simple docstring""" __snake_case , __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Any = model_class(__magic_name__ ) __snake_case : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : Any = [*signature.parameters.keys()] __snake_case : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __magic_name__ ) def lowercase__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def lowercase__ ( self : int ) -> List[Any]: """simple docstring""" __snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__magic_name__ ) @slow def lowercase__ ( self : Dict ) -> List[str]: """simple docstring""" for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : List[Any] = VideoMAEModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def lowercase__ ( self : Any ) -> List[str]: """simple docstring""" if not self.has_attentions: pass else: __snake_case , __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Tuple = True for model_class in self.all_model_classes: __snake_case : List[str] = self.model_tester.seq_length - self.model_tester.num_masks __snake_case : Union[str, Any] = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) __snake_case : str = True __snake_case : int = False __snake_case : List[str] = True __snake_case : Dict = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : List[str] = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) __snake_case : Any = outputs.attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __snake_case : str = True __snake_case : Union[str, Any] = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : Optional[Any] = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) __snake_case : Optional[Any] = outputs.attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) __snake_case : Tuple = len(__magic_name__ ) # Check attention is always last and order is fine __snake_case : Dict = True __snake_case : Optional[int] = True __snake_case : Optional[int] = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : Any = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) self.assertEqual(out_len + 1 , len(__magic_name__ ) ) __snake_case : List[str] = outputs.attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def lowercase__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" def check_hidden_states_output(__magic_name__ : Optional[int] , __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] ): __snake_case : Optional[int] = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : Dict = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) __snake_case : Any = outputs.hidden_states __snake_case : Union[str, Any] = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(__magic_name__ ) , __magic_name__ ) __snake_case : Any = self.model_tester.seq_length - self.model_tester.num_masks __snake_case : List[str] = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __snake_case , __snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : List[str] = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : Optional[int] = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowercase__ ( self : Any ) -> str: """simple docstring""" pass def _a ( ) -> int: """simple docstring""" __snake_case : Union[str, Any] = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" ) __snake_case : Union[str, Any] = np.load(_lowerCamelCase ) return list(_lowerCamelCase ) @require_torch @require_vision class _A ( unittest.TestCase ): @cached_property def lowercase__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def lowercase__ ( self : str ) -> List[str]: """simple docstring""" __snake_case : Dict = VideoMAEForVideoClassification.from_pretrained("""MCG-NJU/videomae-base-finetuned-kinetics""" ).to( __magic_name__ ) __snake_case : Optional[Any] = self.default_image_processor __snake_case : List[Any] = prepare_video() __snake_case : Union[str, Any] = image_processor(__magic_name__ , return_tensors="""pt""" ).to(__magic_name__ ) # forward pass with torch.no_grad(): __snake_case : int = model(**__magic_name__ ) # verify the logits __snake_case : Optional[int] = torch.Size((1, 4_00) ) self.assertEqual(outputs.logits.shape , __magic_name__ ) __snake_case : str = torch.tensor([0.3669, -0.0688, -0.2421] ).to(__magic_name__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __magic_name__ , atol=1E-4 ) ) @slow def lowercase__ ( self : List[Any] ) -> List[str]: """simple docstring""" __snake_case : Union[str, Any] = VideoMAEForPreTraining.from_pretrained("""MCG-NJU/videomae-base-short""" ).to(__magic_name__ ) __snake_case : List[Any] = self.default_image_processor __snake_case : List[str] = prepare_video() __snake_case : Union[str, Any] = image_processor(__magic_name__ , return_tensors="""pt""" ).to(__magic_name__ ) # add boolean mask, indicating which patches to mask __snake_case : str = hf_hub_download(repo_id="""hf-internal-testing/bool-masked-pos""" , filename="""bool_masked_pos.pt""" ) __snake_case : Tuple = torch.load(__magic_name__ ) # forward pass with torch.no_grad(): __snake_case : str = model(**__magic_name__ ) # verify the logits __snake_case : Tuple = torch.Size([1, 14_08, 15_36] ) __snake_case : Tuple = torch.tensor( [[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] , device=__magic_name__ ) self.assertEqual(outputs.logits.shape , __magic_name__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , __magic_name__ , atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) __snake_case : int = torch.tensor([0.5142] , device=__magic_name__ ) self.assertTrue(torch.allclose(outputs.loss , __magic_name__ , atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) __snake_case : Union[str, Any] = VideoMAEForPreTraining.from_pretrained("""MCG-NJU/videomae-base-short""" , norm_pix_loss=__magic_name__ ).to( __magic_name__ ) with torch.no_grad(): __snake_case : Optional[Any] = model(**__magic_name__ ) __snake_case : int = torch.tensor(torch.tensor([0.6469] ) , device=__magic_name__ ) self.assertTrue(torch.allclose(outputs.loss , __magic_name__ , atol=1E-4 ) )
26
from typing import List from .keymap import KEYMAP, get_character def _snake_case ( __snake_case ): def decorator(__snake_case ): _UpperCamelCase = getattr(__snake_case , '''handle_key''' , [] ) handle += [key] setattr(__snake_case , '''handle_key''' , __snake_case ) return func return decorator def _snake_case ( *__snake_case ): def decorator(__snake_case ): _UpperCamelCase = getattr(__snake_case , '''handle_key''' , [] ) handle += keys setattr(__snake_case , '''handle_key''' , __snake_case ) return func return decorator class lowerCAmelCase_ ( __lowercase ): def __new__( cls : Optional[Any] , _A : Optional[Any] , _A : Optional[int] , _A : Union[str, Any] ): _UpperCamelCase = super().__new__(cls , _A , _A , _A ) if not hasattr(_A , '''key_handler''' ): setattr(_A , '''key_handler''' , {} ) setattr(_A , '''handle_input''' , KeyHandler.handle_input ) for value in attrs.values(): _UpperCamelCase = getattr(_A , '''handle_key''' , [] ) for key in handled_keys: _UpperCamelCase = value return new_cls @staticmethod def UpperCamelCase_ ( cls : str ): _UpperCamelCase = get_character() if char != KEYMAP["undefined"]: _UpperCamelCase = ord(_A ) _UpperCamelCase = cls.key_handler.get(_A ) if handler: _UpperCamelCase = char return handler(cls ) else: return None def _snake_case ( cls ): return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
10
0
from graphs.minimum_spanning_tree_kruskal import kruskal def __magic_name__ ( ) -> List[str]: _lowercase : Optional[Any] = 9 _lowercase : Optional[int] = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] _lowercase : int = kruskal(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _lowercase : Optional[Any] = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(SCREAMING_SNAKE_CASE ) == sorted(SCREAMING_SNAKE_CASE )
677
from collections.abc import Sequence def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float: return sum(c * (x**i) for i, c in enumerate(SCREAMING_SNAKE_CASE ) ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float: _lowercase : Optional[Any] = 0.0 for coeff in reversed(SCREAMING_SNAKE_CASE ): _lowercase : Optional[int] = result * x + coeff return result if __name__ == "__main__": UpperCamelCase = (0.0, 0.0, 5.0, 9.3, 7.0) UpperCamelCase = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
677
1
"""simple docstring""" import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowerCamelCase__ ( unittest.TestCase ): @property def __a ( self : Optional[Any] ): torch.manual_seed(0 ) A = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def __a ( self : Dict ): A = self.dummy_uncond_unet A = KarrasVeScheduler() A = KarrasVePipeline(unet=_lowercase , scheduler=_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) A = torch.manual_seed(0 ) A = pipe(num_inference_steps=2 , generator=_lowercase , output_type='numpy' ).images A = torch.manual_seed(0 ) A = pipe(num_inference_steps=2 , generator=_lowercase , output_type='numpy' , return_dict=_lowercase )[0] A = image[0, -3:, -3:, -1] A = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) A = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Optional[Any] ): A = 'google/ncsnpp-celebahq-256' A = UNetaDModel.from_pretrained(_lowercase ) A = KarrasVeScheduler() A = KarrasVePipeline(unet=_lowercase , scheduler=_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) A = torch.manual_seed(0 ) A = pipe(num_inference_steps=20 , generator=_lowercase , output_type='numpy' ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) A = np.array([0.5_7_8, 0.5_8_1_1, 0.5_9_2_4, 0.5_8_0_9, 0.5_8_7, 0.5_8_8_6, 0.5_8_6_1, 0.5_8_0_2, 0.5_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
690
"""simple docstring""" from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def __snake_case ( UpperCamelCase__ = "laptop" ) -> DataFrame: """simple docstring""" A = f'https://www.amazon.in/laptop/s?k={product}' A = { 'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36', 'Accept-Language': 'en-US, en;q=0.5', } A = BeautifulSoup(requests.get(UpperCamelCase__ , headers=UpperCamelCase__ ).text ) # Initialize a Pandas dataframe with the column titles A = DataFrame( columns=[ 'Product Title', 'Product Link', 'Current Price of the product', 'Product Rating', 'MRP of the product', 'Discount', ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( 'div' , attrs={'class': 's-result-item', 'data-component-type': 's-search-result'} , ) , soup.find_all('div' , attrs={'class': 'a-row a-size-base a-color-base'} ) , ): try: A = item.ha.text A = 'https://www.amazon.in/' + item.ha.a['href'] A = item.find('span' , attrs={'class': 'a-offscreen'} ).text try: A = item.find('span' , attrs={'class': 'a-icon-alt'} ).text except AttributeError: A = 'Not available' try: A = ( '₹' + item.find( 'span' , attrs={'class': 'a-price a-text-price'} ).text.split('₹' )[1] ) except AttributeError: A = '' try: A = float( ( ( float(product_mrp.strip('₹' ).replace(',' , '' ) ) - float(product_price.strip('₹' ).replace(',' , '' ) ) ) / float(product_mrp.strip('₹' ).replace(',' , '' ) ) ) * 100 ) except ValueError: A = float('nan' ) except AttributeError: pass A = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] A = ' ' A = ' ' data_frame.index += 1 return data_frame if __name__ == "__main__": UpperCamelCase : Any = "headphones" get_amazon_product_data(product).to_csv(F"""Amazon Product Data for {product}.csv""")
690
1
'''simple docstring''' from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake __UpperCamelCase : List[Any] = numpy.array([0, 0]) __UpperCamelCase : Optional[int] = numpy.array([0.5, 0.866_0254]) __UpperCamelCase : Union[str, Any] = numpy.array([1, 0]) __UpperCamelCase : str = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def __UpperCAmelCase ( SCREAMING_SNAKE_CASE__: Tuple, SCREAMING_SNAKE_CASE__: Union[str, Any] ) -> list[numpy.ndarray]: """simple docstring""" __a = initial_vectors for _ in range(lowerCamelCase__ ): __a = iteration_step(lowerCamelCase__ ) return vectors def __UpperCAmelCase ( SCREAMING_SNAKE_CASE__: str ) -> list[numpy.ndarray]: """simple docstring""" __a = [] for i, start_vector in enumerate(vectors[:-1] ): __a = vectors[i + 1] new_vectors.append(lowerCamelCase__ ) __a = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3, 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def __UpperCAmelCase ( SCREAMING_SNAKE_CASE__: Union[str, Any], SCREAMING_SNAKE_CASE__: Any ) -> numpy.ndarray: """simple docstring""" __a = numpy.radians(lowerCamelCase__ ) __a , __a = numpy.cos(lowerCamelCase__ ), numpy.sin(lowerCamelCase__ ) __a = numpy.array(((c, -s), (s, c)) ) return numpy.dot(lowerCamelCase__, lowerCamelCase__ ) def __UpperCAmelCase ( SCREAMING_SNAKE_CASE__: List[str] ) -> None: """simple docstring""" __a = plt.gca() axes.set_aspect('equal' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() __a , __a = zip(*lowerCamelCase__ ) plt.plot(lowerCamelCase__, lowerCamelCase__ ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() __UpperCamelCase : Optional[int] = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
721
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL __UpperCamelCase : Dict = logging.get_logger(__name__) def __UpperCAmelCase ( SCREAMING_SNAKE_CASE__: str ) -> List[List[ImageInput]]: """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE__, (list, tuple) ) and isinstance(videos[0], (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(SCREAMING_SNAKE_CASE__, (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(SCREAMING_SNAKE_CASE__ ): return [[videos]] raise ValueError(f"""Could not make batched video from {videos}""" ) class __SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): __a =["pixel_values"] def __init__( self , lowerCamelCase = True , lowerCamelCase = None , lowerCamelCase = PILImageResampling.BILINEAR , lowerCamelCase = True , lowerCamelCase = None , lowerCamelCase = True , lowerCamelCase = 1 / 255 , lowerCamelCase = True , lowerCamelCase = True , lowerCamelCase = None , lowerCamelCase = None , **lowerCamelCase , ) ->None: '''simple docstring''' super().__init__(**lowerCamelCase ) __a = size if size is not None else {'shortest_edge': 256} __a = get_size_dict(lowerCamelCase , default_to_square=lowerCamelCase ) __a = crop_size if crop_size is not None else {'height': 224, 'width': 224} __a = get_size_dict(lowerCamelCase , param_name='crop_size' ) __a = do_resize __a = size __a = do_center_crop __a = crop_size __a = resample __a = do_rescale __a = rescale_factor __a = offset __a = do_normalize __a = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __a = image_std if image_std is not None else IMAGENET_STANDARD_STD def __UpperCamelCase ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = PILImageResampling.BILINEAR , lowerCamelCase = None , **lowerCamelCase , ) ->np.ndarray: '''simple docstring''' __a = get_size_dict(lowerCamelCase , default_to_square=lowerCamelCase ) if "shortest_edge" in size: __a = get_resize_output_image_size(lowerCamelCase , size['shortest_edge'] , default_to_square=lowerCamelCase ) elif "height" in size and "width" in size: __a = (size['height'], size['width']) else: raise ValueError(F"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(lowerCamelCase , size=lowerCamelCase , resample=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def __UpperCamelCase ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , **lowerCamelCase , ) ->np.ndarray: '''simple docstring''' __a = get_size_dict(lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(lowerCamelCase , size=(size['height'], size['width']) , data_format=lowerCamelCase , **lowerCamelCase ) def __UpperCamelCase ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = True , lowerCamelCase = None , **lowerCamelCase , ) ->Optional[Any]: '''simple docstring''' __a = image.astype(np.floataa ) if offset: __a = image - (scale / 2) return rescale(lowerCamelCase , scale=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def __UpperCamelCase ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , **lowerCamelCase , ) ->np.ndarray: '''simple docstring''' return normalize(lowerCamelCase , mean=lowerCamelCase , std=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def __UpperCamelCase ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = ChannelDimension.FIRST , ) ->np.ndarray: '''simple docstring''' if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) if offset and not do_rescale: raise ValueError('For offset, do_rescale must also be set to True.' ) # All transformations expect numpy arrays. __a = to_numpy_array(lowerCamelCase ) if do_resize: __a = self.resize(image=lowerCamelCase , size=lowerCamelCase , resample=lowerCamelCase ) if do_center_crop: __a = self.center_crop(lowerCamelCase , size=lowerCamelCase ) if do_rescale: __a = self.rescale(image=lowerCamelCase , scale=lowerCamelCase , offset=lowerCamelCase ) if do_normalize: __a = self.normalize(image=lowerCamelCase , mean=lowerCamelCase , std=lowerCamelCase ) __a = to_channel_dimension_format(lowerCamelCase , lowerCamelCase ) return image def __UpperCamelCase ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = ChannelDimension.FIRST , **lowerCamelCase , ) ->PIL.Image.Image: '''simple docstring''' __a = do_resize if do_resize is not None else self.do_resize __a = resample if resample is not None else self.resample __a = do_center_crop if do_center_crop is not None else self.do_center_crop __a = do_rescale if do_rescale is not None else self.do_rescale __a = rescale_factor if rescale_factor is not None else self.rescale_factor __a = offset if offset is not None else self.offset __a = do_normalize if do_normalize is not None else self.do_normalize __a = image_mean if image_mean is not None else self.image_mean __a = image_std if image_std is not None else self.image_std __a = size if size is not None else self.size __a = get_size_dict(lowerCamelCase , default_to_square=lowerCamelCase ) __a = crop_size if crop_size is not None else self.crop_size __a = get_size_dict(lowerCamelCase , param_name='crop_size' ) if not valid_images(lowerCamelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) __a = make_batched(lowerCamelCase ) __a = [ [ self._preprocess_image( image=lowerCamelCase , do_resize=lowerCamelCase , size=lowerCamelCase , resample=lowerCamelCase , do_center_crop=lowerCamelCase , crop_size=lowerCamelCase , do_rescale=lowerCamelCase , rescale_factor=lowerCamelCase , offset=lowerCamelCase , do_normalize=lowerCamelCase , image_mean=lowerCamelCase , image_std=lowerCamelCase , data_format=lowerCamelCase , ) for img in video ] for video in videos ] __a = {'pixel_values': videos} return BatchFeature(data=lowerCamelCase , tensor_type=lowerCamelCase )
270
0
'''simple docstring''' from typing import Any def _a (lowercase__ : list , lowercase__ : list , lowercase__ : dict , lowercase__ : dict , lowercase__ : dict , ) -> list: """simple docstring""" _validation( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ) # Creates data structures and fill initial step __snake_case = {} __snake_case = {} for state in states_space: __snake_case = observations_space[0] __snake_case = ( initial_probabilities[state] * emission_probabilities[state][observation] ) __snake_case = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(lowercase__ ) ): __snake_case = observations_space[o] __snake_case = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function __snake_case = '' __snake_case = -1 for k_state in states_space: __snake_case = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: __snake_case = probability __snake_case = k_state # Update probabilities and pointers dicts __snake_case = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) __snake_case = arg_max # The final observation __snake_case = observations_space[len(lowercase__ ) - 1] # argmax for given final observation __snake_case = '' __snake_case = -1 for k_state in states_space: __snake_case = probabilities[(k_state, final_observation)] if probability > max_probability: __snake_case = probability __snake_case = k_state __snake_case = arg_max # Process pointers backwards __snake_case = last_state __snake_case = [] for o in range(len(lowercase__ ) - 1 , -1 , -1 ): result.append(lowercase__ ) __snake_case = pointers[previous, observations_space[o]] result.reverse() return result def _a (lowercase__ : Any , lowercase__ : Any , lowercase__ : Any , lowercase__ : Any , lowercase__ : Any , ) -> None: """simple docstring""" _validate_not_empty( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ) _validate_lists(lowercase__ , lowercase__ ) _validate_dicts( lowercase__ , lowercase__ , lowercase__ ) def _a (lowercase__ : Any , lowercase__ : Any , lowercase__ : Any , lowercase__ : Any , lowercase__ : Any , ) -> None: """simple docstring""" if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('There\'s an empty parameter' ) def _a (lowercase__ : Any , lowercase__ : Any ) -> None: """simple docstring""" _validate_list(lowercase__ , 'observations_space' ) _validate_list(lowercase__ , 'states_space' ) def _a (lowercase__ : Any , lowercase__ : str ) -> None: """simple docstring""" if not isinstance(_object , lowercase__ ): __snake_case = f'{var_name} must be a list' raise ValueError(lowercase__ ) else: for x in _object: if not isinstance(lowercase__ , lowercase__ ): __snake_case = f'{var_name} must be a list of strings' raise ValueError(lowercase__ ) def _a (lowercase__ : Any , lowercase__ : Any , lowercase__ : Any , ) -> None: """simple docstring""" _validate_dict(lowercase__ , 'initial_probabilities' , lowercase__ ) _validate_nested_dict(lowercase__ , 'transition_probabilities' ) _validate_nested_dict(lowercase__ , 'emission_probabilities' ) def _a (lowercase__ : Any , lowercase__ : str ) -> None: """simple docstring""" _validate_dict(_object , lowercase__ , lowercase__ ) for x in _object.values(): _validate_dict(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) def _a (lowercase__ : Any , lowercase__ : str , lowercase__ : type , lowercase__ : bool = False ) -> None: """simple docstring""" if not isinstance(_object , lowercase__ ): __snake_case = f'{var_name} must be a dict' raise ValueError(lowercase__ ) if not all(isinstance(lowercase__ , lowercase__ ) for x in _object ): __snake_case = f'{var_name} all keys must be strings' raise ValueError(lowercase__ ) if not all(isinstance(lowercase__ , lowercase__ ) for x in _object.values() ): __snake_case = 'nested dictionary ' if nested else '' __snake_case = f'{var_name} {nested_text}all values must be {value_type.__name__}' raise ValueError(lowercase__ ) if __name__ == "__main__": from doctest import testmod testmod()
56
'''simple docstring''' import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class _lowercase ( unittest.TestCase ): def a ( self : int ) -> List[str]: __snake_case = '| <pad> <unk> <s> </s> a b c d e f g h i j k'.split() __snake_case = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) __snake_case = { 'unk_token': '<unk>', 'bos_token': '<s>', 'eos_token': '</s>', } __snake_case = { 'feature_size': 1, 'padding_value': 0.0, 'sampling_rate': 1_6000, 'return_attention_mask': False, 'do_normalize': True, } __snake_case = tempfile.mkdtemp() __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __snake_case = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE_ ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '\n' ) with open(self.feature_extraction_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '\n' ) # load decoder from hub __snake_case = 'hf-internal-testing/ngram-beam-search-decoder' def a ( self : Optional[int] , **SCREAMING_SNAKE_CASE_ : Tuple ) -> Dict: __snake_case = self.add_kwargs_tokens_map.copy() kwargs.update(SCREAMING_SNAKE_CASE_ ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] , **SCREAMING_SNAKE_CASE_ : Any ) -> Optional[Any]: return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def a ( self : Union[str, Any] , **SCREAMING_SNAKE_CASE_ : List[Any] ) -> Tuple: return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **SCREAMING_SNAKE_CASE_ ) def a ( self : int ) -> Dict: shutil.rmtree(self.tmpdirname ) def a ( self : int ) -> Tuple: __snake_case = self.get_tokenizer() __snake_case = self.get_feature_extractor() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) processor.save_pretrained(self.tmpdirname ) __snake_case = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE_ ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , SCREAMING_SNAKE_CASE_ ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , SCREAMING_SNAKE_CASE_ ) def a ( self : Dict ) -> Union[str, Any]: __snake_case = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __snake_case = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def a ( self : str ) -> Tuple: __snake_case = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['xx'] ) with self.assertRaisesRegex(SCREAMING_SNAKE_CASE_ , 'include' ): WavaVecaProcessorWithLM( tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def a ( self : List[str] ) -> List[str]: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = floats_list((3, 1000) ) __snake_case = feature_extractor(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) __snake_case = processor(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def a ( self : Tuple ) -> Tuple: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = 'This is a test string' __snake_case = processor(text=SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer(SCREAMING_SNAKE_CASE_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def a ( self : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any]=(2, 10, 16) , SCREAMING_SNAKE_CASE_ : Dict=77 ) -> Dict: np.random.seed(SCREAMING_SNAKE_CASE_ ) return np.random.rand(*SCREAMING_SNAKE_CASE_ ) def a ( self : Any ) -> Tuple: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = self._get_dummy_logits(shape=(10, 16) , seed=13 ) __snake_case = processor.decode(SCREAMING_SNAKE_CASE_ ) __snake_case = decoder.decode_beams(SCREAMING_SNAKE_CASE_ )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('</s> <s> </s>' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['fork'], ['spawn']] ) def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] ) -> Dict: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __snake_case = processor.batch_decode(SCREAMING_SNAKE_CASE_ ) else: with get_context(SCREAMING_SNAKE_CASE_ ).Pool() as pool: __snake_case = processor.batch_decode(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = list(SCREAMING_SNAKE_CASE_ ) with get_context('fork' ).Pool() as p: __snake_case = decoder.decode_beams_batch(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case , __snake_case , __snake_case = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , decoded_processor.text ) self.assertListEqual(['<s> <s> </s>', '<s> <s> <s>'] , decoded_processor.text ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , decoded_processor.logit_score ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , decoded_processor.lm_score ) def a ( self : Any ) -> Dict: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = self._get_dummy_logits() __snake_case = 15 __snake_case = -2_0.0 __snake_case = -4.0 __snake_case = processor.batch_decode( SCREAMING_SNAKE_CASE_ , beam_width=SCREAMING_SNAKE_CASE_ , beam_prune_logp=SCREAMING_SNAKE_CASE_ , token_min_logp=SCREAMING_SNAKE_CASE_ , ) __snake_case = decoded_processor_out.text __snake_case = list(SCREAMING_SNAKE_CASE_ ) with get_context('fork' ).Pool() as pool: __snake_case = decoder.decode_beams_batch( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , beam_width=SCREAMING_SNAKE_CASE_ , beam_prune_logp=SCREAMING_SNAKE_CASE_ , token_min_logp=SCREAMING_SNAKE_CASE_ , ) __snake_case = [d[0][0] for d in decoded_decoder_out] __snake_case = [d[0][2] for d in decoded_decoder_out] __snake_case = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(['</s> <s> <s>', '<s> <s> <s>'] , SCREAMING_SNAKE_CASE_ ) self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE_ , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-2_0.0_5_4, -1_8.4_4_7] , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) ) self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE_ , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-1_5.5_5_4, -1_3.9_4_7_4] , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) ) def a ( self : Optional[Any] ) -> Tuple: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = self._get_dummy_logits() __snake_case = 2.0 __snake_case = 5.0 __snake_case = -2_0.0 __snake_case = True __snake_case = processor.batch_decode( SCREAMING_SNAKE_CASE_ , alpha=SCREAMING_SNAKE_CASE_ , beta=SCREAMING_SNAKE_CASE_ , unk_score_offset=SCREAMING_SNAKE_CASE_ , lm_score_boundary=SCREAMING_SNAKE_CASE_ , ) __snake_case = decoded_processor_out.text __snake_case = list(SCREAMING_SNAKE_CASE_ ) decoder.reset_params( alpha=SCREAMING_SNAKE_CASE_ , beta=SCREAMING_SNAKE_CASE_ , unk_score_offset=SCREAMING_SNAKE_CASE_ , lm_score_boundary=SCREAMING_SNAKE_CASE_ , ) with get_context('fork' ).Pool() as pool: __snake_case = decoder.decode_beams_batch( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) __snake_case = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(['<s> </s> <s> </s> </s>', '</s> </s> <s> </s> </s>'] , SCREAMING_SNAKE_CASE_ ) __snake_case = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -2_0.0 ) self.assertEqual(lm_model.score_boundary , SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] ) -> List[str]: __snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case = processor.decoder.model_container[processor.decoder._model_key] __snake_case = Path(language_model._kenlm_model.path.decode('utf-8' ) ).parent.parent.absolute() __snake_case = os.listdir(SCREAMING_SNAKE_CASE_ ) __snake_case = ['alphabet.json', 'language_model'] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Dict ) -> Dict: __snake_case = snapshot_download('hf-internal-testing/processor_with_lm' ) __snake_case = WavaVecaProcessorWithLM.from_pretrained(SCREAMING_SNAKE_CASE_ ) __snake_case = processor.decoder.model_container[processor.decoder._model_key] __snake_case = Path(language_model._kenlm_model.path.decode('utf-8' ) ).parent.parent.absolute() __snake_case = os.listdir(SCREAMING_SNAKE_CASE_ ) __snake_case = os.listdir(SCREAMING_SNAKE_CASE_ ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Any ) -> List[Any]: __snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case = AutoProcessor.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case = floats_list((3, 1000) ) __snake_case = processor_wavaveca(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) __snake_case = processor_auto(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 ) __snake_case = self._get_dummy_logits() __snake_case = processor_wavaveca.batch_decode(SCREAMING_SNAKE_CASE_ ) __snake_case = processor_auto.batch_decode(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def a ( self : Dict ) -> Optional[int]: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , ) @staticmethod def a ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> int: __snake_case = [d[key] for d in offsets] return retrieved_list def a ( self : Optional[int] ) -> str: __snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case = self._get_dummy_logits()[0] __snake_case = processor.decode(SCREAMING_SNAKE_CASE_ , output_word_offsets=SCREAMING_SNAKE_CASE_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('text' in outputs ) self.assertTrue('word_offsets' in outputs ) self.assertTrue(isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) self.assertEqual(' '.join(self.get_from_offsets(outputs['word_offsets'] , 'word' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'word' ) , ['<s>', '<s>', '</s>'] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'start_offset' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'end_offset' ) , [1, 3, 5] ) def a ( self : Optional[Any] ) -> Optional[int]: __snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case = self._get_dummy_logits() __snake_case = processor.batch_decode(SCREAMING_SNAKE_CASE_ , output_word_offsets=SCREAMING_SNAKE_CASE_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('text' in outputs ) self.assertTrue('word_offsets' in outputs ) self.assertTrue(isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual( [' '.join(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'word' ) ) for o in outputs['word_offsets']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'word' ) , ['<s>', '<s>', '</s>'] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'start_offset' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'end_offset' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def a ( self : Optional[Any] ) -> Optional[Any]: import torch __snake_case = load_dataset('common_voice' , 'en' , split='train' , streaming=SCREAMING_SNAKE_CASE_ ) __snake_case = ds.cast_column('audio' , datasets.Audio(sampling_rate=1_6000 ) ) __snake_case = iter(SCREAMING_SNAKE_CASE_ ) __snake_case = next(SCREAMING_SNAKE_CASE_ ) __snake_case = AutoProcessor.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm' ) __snake_case = WavaVecaForCTC.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __snake_case = processor(sample['audio']['array'] , return_tensors='pt' ).input_values with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ ).logits.cpu().numpy() __snake_case = processor.decode(logits[0] , output_word_offsets=SCREAMING_SNAKE_CASE_ ) __snake_case = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __snake_case = [ { 'start_time': d['start_offset'] * time_offset, 'end_time': d['end_offset'] * time_offset, 'word': d['word'], } for d in output['word_offsets'] ] __snake_case = 'WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL' # output words self.assertEqual(' '.join(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'word' ) ) , SCREAMING_SNAKE_CASE_ ) self.assertEqual(' '.join(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'word' ) ) , output.text ) # output times __snake_case = torch.tensor(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'start_time' ) ) __snake_case = torch.tensor(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'end_time' ) ) # fmt: off __snake_case = torch.tensor([1.4_1_9_9, 1.6_5_9_9, 2.2_5_9_9, 3.0, 3.2_4, 3.5_9_9_9, 3.7_9_9_9, 4.0_9_9_9, 4.2_6, 4.9_4, 5.2_8, 5.6_5_9_9, 5.7_8, 5.9_4, 6.3_2, 6.5_3_9_9, 6.6_5_9_9] ) __snake_case = torch.tensor([1.5_3_9_9, 1.8_9_9_9, 2.9, 3.1_6, 3.5_3_9_9, 3.7_2, 4.0_1_9_9, 4.1_7_9_9, 4.7_6, 5.1_5_9_9, 5.5_5_9_9, 5.6_9_9_9, 5.8_6, 6.1_9_9_9, 6.3_8, 6.6_1_9_9, 6.9_4] ) # fmt: on self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=0.0_1 ) ) self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=0.0_1 ) )
56
1
import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def _snake_case ( __snake_case ): _UpperCamelCase , _UpperCamelCase = image.size _UpperCamelCase , _UpperCamelCase = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 _UpperCamelCase = image.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) _UpperCamelCase = np.array(__snake_case ).astype(np.floataa ) / 255.0 _UpperCamelCase = image[None].transpose(0 , 3 , 1 , 2 ) _UpperCamelCase = torch.from_numpy(__snake_case ) return 2.0 * image - 1.0 class lowerCAmelCase_ ( __lowercase ): def __init__( self : str , _A : VQModel , _A : UNetaDModel , _A : Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ] , ): super().__init__() self.register_modules(vqvae=_A , unet=_A , scheduler=_A ) @torch.no_grad() def __call__( self : List[str] , _A : Union[torch.Tensor, PIL.Image.Image] = None , _A : Optional[int] = 1 , _A : Optional[int] = 100 , _A : Optional[float] = 0.0 , _A : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _A : Optional[str] = "pil" , _A : bool = True , ): if isinstance(_A , PIL.Image.Image ): _UpperCamelCase = 1 elif isinstance(_A , torch.Tensor ): _UpperCamelCase = image.shape[0] else: raise ValueError(F"""`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(_A )}""" ) if isinstance(_A , PIL.Image.Image ): _UpperCamelCase = preprocess(_A ) _UpperCamelCase , _UpperCamelCase = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image _UpperCamelCase = (batch_size, self.unet.config.in_channels // 2, height, width) _UpperCamelCase = next(self.unet.parameters() ).dtype _UpperCamelCase = randn_tensor(_A , generator=_A , device=self.device , dtype=_A ) _UpperCamelCase = image.to(device=self.device , dtype=_A ) # set timesteps and move to the correct device self.scheduler.set_timesteps(_A , device=self.device ) _UpperCamelCase = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler _UpperCamelCase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _UpperCamelCase = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _UpperCamelCase = {} if accepts_eta: _UpperCamelCase = eta for t in self.progress_bar(_A ): # concat latents and low resolution image in the channel dimension. _UpperCamelCase = torch.cat([latents, image] , dim=1 ) _UpperCamelCase = self.scheduler.scale_model_input(_A , _A ) # predict the noise residual _UpperCamelCase = self.unet(_A , _A ).sample # compute the previous noisy sample x_t -> x_t-1 _UpperCamelCase = self.scheduler.step(_A , _A , _A , **_A ).prev_sample # decode the image latents with the VQVAE _UpperCamelCase = self.vqvae.decode(_A ).sample _UpperCamelCase = torch.clamp(_A , -1.0 , 1.0 ) _UpperCamelCase = image / 2 + 0.5 _UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _UpperCamelCase = self.numpy_to_pil(_A ) if not return_dict: return (image,) return ImagePipelineOutput(images=_A )
71
from __future__ import annotations import math class lowerCAmelCase_ : def __init__( self : int , _A : int ): _UpperCamelCase = size # approximate the overall size of segment tree with given value _UpperCamelCase = [0 for i in range(0 , 4 * size )] # create array to store lazy update _UpperCamelCase = [0 for i in range(0 , 4 * size )] _UpperCamelCase = [0 for i in range(0 , 4 * size )] # flag for lazy update def UpperCamelCase_ ( self : str , _A : int ): return idx * 2 def UpperCamelCase_ ( self : Any , _A : int ): return idx * 2 + 1 def UpperCamelCase_ ( self : Union[str, Any] , _A : int , _A : int , _A : int , _A : list[int] ): if left_element == right_element: _UpperCamelCase = a[left_element - 1] else: _UpperCamelCase = (left_element + right_element) // 2 self.build(self.left(_A ) , _A , _A , _A ) self.build(self.right(_A ) , mid + 1 , _A , _A ) _UpperCamelCase = max( self.segment_tree[self.left(_A )] , self.segment_tree[self.right(_A )] ) def UpperCamelCase_ ( self : Tuple , _A : int , _A : int , _A : int , _A : int , _A : int , _A : int ): if self.flag[idx] is True: _UpperCamelCase = self.lazy[idx] _UpperCamelCase = False if left_element != right_element: _UpperCamelCase = self.lazy[idx] _UpperCamelCase = self.lazy[idx] _UpperCamelCase = True _UpperCamelCase = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: _UpperCamelCase = val if left_element != right_element: _UpperCamelCase = val _UpperCamelCase = val _UpperCamelCase = True _UpperCamelCase = True return True _UpperCamelCase = (left_element + right_element) // 2 self.update(self.left(_A ) , _A , _A , _A , _A , _A ) self.update(self.right(_A ) , mid + 1 , _A , _A , _A , _A ) _UpperCamelCase = max( self.segment_tree[self.left(_A )] , self.segment_tree[self.right(_A )] ) return True def UpperCamelCase_ ( self : Any , _A : int , _A : int , _A : int , _A : int , _A : int ): if self.flag[idx] is True: _UpperCamelCase = self.lazy[idx] _UpperCamelCase = False if left_element != right_element: _UpperCamelCase = self.lazy[idx] _UpperCamelCase = self.lazy[idx] _UpperCamelCase = True _UpperCamelCase = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] _UpperCamelCase = (left_element + right_element) // 2 _UpperCamelCase = self.query(self.left(_A ) , _A , _A , _A , _A ) _UpperCamelCase = self.query(self.right(_A ) , mid + 1 , _A , _A , _A ) return max(_A , _A ) def __str__( self : Tuple ): return str([self.query(1 , 1 , self.size , _A , _A ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": _lowerCAmelCase = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] _lowerCAmelCase = 15 _lowerCAmelCase = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 111) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 235) print(segt)
71
1
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def A_ ( lowercase_ , lowercase_ , lowercase_ = "x" , lowercase_ = 10**-10 , lowercase_ = 1 , ) -> List[Any]: _snake_case : str = symbols(_A ) _snake_case : Any = lambdify(_A , _A ) _snake_case : Dict = lambdify(_A , diff(_A , _A ) ) _snake_case : Tuple = starting_point while True: if diff_function(_A ) != 0: _snake_case : List[str] = prev_guess - multiplicity * func(_A ) / diff_function( _A ) else: raise ZeroDivisionError('''Could not find root''' ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess _snake_case : List[str] = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F"""The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}""") # Find root of polynomial # Find fourth Root of 5 print(F"""The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5J)}""") # Find value of e print( "The root of log(y) - 1 = 0 is ", F"""{newton_raphson("log(y) - 1", 2, variable="y")}""", ) # Exponential Roots print( "The root of exp(x) - 1 = 0 is", F"""{newton_raphson("exp(x) - 1", 1_0, precision=0.0_0_5)}""", ) # Find root of cos(x) print(F"""The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}""")
326
'''simple docstring''' import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def __UpperCamelCase( _A : Any , _A : List[str]=() , _A : List[str]=None , _A : Dict="no" , _A : List[str]="29500" ): '''simple docstring''' UpperCAmelCase__ : int = False UpperCAmelCase__ : List[str] = False if any(key.startswith('''KAGGLE''' ) for key in os.environ.keys() ): UpperCAmelCase__ : List[str] = True elif "IPython" in sys.modules: UpperCAmelCase__ : List[Any] = '''google.colab''' in str(sys.modules['''IPython'''].get_ipython() ) try: UpperCAmelCase__ : Tuple = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( F'''Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.''' ) if (in_colab or in_kaggle) and (os.environ.get('''TPU_NAME''' , _A ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ''' '''your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if num_processes is None: UpperCAmelCase__ : Tuple = 8 UpperCAmelCase__ : Optional[Any] = PrepareForLaunch(_A , distributed_type='''TPU''' ) print(F'''Launching a training on {num_processes} TPU cores.''' ) xmp.spawn(_A , args=_A , nprocs=_A , start_method='''fork''' ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on one CPU.''' ) function(*_A ) else: if num_processes is None: raise ValueError( '''You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.''' ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ''' '''inside your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if torch.cuda.is_initialized(): raise ValueError( '''To launch a multi-GPU training from your notebook, you need to avoid running any instruction ''' '''using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ''' '''function.''' ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=_A , master_addr='''127.0.01''' , master_port=_A , mixed_precision=_A ): UpperCAmelCase__ : str = PrepareForLaunch(_A , distributed_type='''MULTI_GPU''' ) print(F'''Launching training on {num_processes} GPUs.''' ) try: start_processes(_A , args=_A , nprocs=_A , start_method='''fork''' ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( '''CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ''' '''This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ''' '''Please review your imports and test them when running the `notebook_launcher()` to identify ''' '''which one is problematic.''' ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): UpperCAmelCase__ : Union[str, Any] = '''1''' print('''Launching training on MPS.''' ) elif torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on CPU.''' ) function(*_A ) def __UpperCamelCase( _A : List[str] , _A : Optional[Any]=() , _A : str=2 ): '''simple docstring''' from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=_A , master_addr='''127.0.01''' , master_port='''29500''' , accelerate_mixed_precision='''no''' , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu='''yes''' , ): UpperCAmelCase__ : Optional[int] = PrepareForLaunch(_A , debug=_A ) start_processes(_A , args=_A , nprocs=_A , start_method='''fork''' )
614
0
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process snake_case = logging.getLogger(__name__) def UpperCamelCase_ ( lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" return (preds == labels).mean() @dataclass class __A : '''simple docstring''' a_ = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) a_ = field( default=snake_case__ ,metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) a_ = field( default=snake_case__ ,metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) a_ = field( default=snake_case__ ,metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} ,) @dataclass class __A : '''simple docstring''' a_ = field(metadata={'''help''': '''The name of the task to train on: ''' + ''', '''.join(processors.keys() )} ) a_ = field(metadata={'''help''': '''Should contain the data files for the task.'''} ) a_ = field( default=1_28 ,metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } ,) a_ = field( default=snake_case__ ,metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def UpperCamelCase_ ( ): """simple docstring""" _lowerCAmelCase : Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _lowerCAmelCase : Tuple = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s" , lowerCAmelCase__ ) # Set seed set_seed(training_args.seed ) try: _lowerCAmelCase : int = processors[data_args.task_name]() _lowerCAmelCase : List[str] = processor.get_labels() _lowerCAmelCase : str = len(lowerCAmelCase__ ) except KeyError: raise ValueError("Task not found: %s" % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCAmelCase : List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowerCAmelCase__ , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) _lowerCAmelCase : str = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowerCAmelCase : Any = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=lowerCAmelCase__ , cache_dir=model_args.cache_dir , ) # Get datasets _lowerCAmelCase : Optional[int] = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=lowerCAmelCase__ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) _lowerCAmelCase : Any = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=lowerCAmelCase__ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(lowerCAmelCase__ ) -> Dict: _lowerCAmelCase : str = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(lowerCAmelCase__ , p.label_ids )} # Data collator _lowerCAmelCase : Dict = DataCollatorWithPadding(lowerCAmelCase__ , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer _lowerCAmelCase : List[Any] = Trainer( model=lowerCAmelCase__ , args=lowerCAmelCase__ , train_dataset=lowerCAmelCase__ , eval_dataset=lowerCAmelCase__ , compute_metrics=lowerCAmelCase__ , data_collator=lowerCAmelCase__ , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _lowerCAmelCase : Optional[int] = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) _lowerCAmelCase : Optional[Any] = trainer.evaluate() _lowerCAmelCase : Union[str, Any] = os.path.join(training_args.output_dir , "eval_results.txt" ) if trainer.is_world_master(): with open(lowerCAmelCase__ , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(" %s = %s" , lowerCAmelCase__ , lowerCAmelCase__ ) writer.write("%s = %s\n" % (key, value) ) results.update(lowerCAmelCase__ ) return results def UpperCamelCase_ ( lowerCAmelCase__ ): """simple docstring""" main() if __name__ == "__main__": main()
718
def UpperCamelCase_ ( lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" _lowerCAmelCase : Optional[Any] = word.split() def justify(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: _lowerCAmelCase : Union[str, Any] = max_width - width _lowerCAmelCase : Optional[Any] = len(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: _lowerCAmelCase : Dict = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] _lowerCAmelCase : Any = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] _lowerCAmelCase : str = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(lowerCAmelCase__ ): num_spaces_between_words_list[i] += 1 _lowerCAmelCase : Dict = [] for i in range(lowerCAmelCase__ ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * " " ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(lowerCAmelCase__ ) _lowerCAmelCase : Optional[Any] = [] _lowerCAmelCase : list[str] = [] _lowerCAmelCase : Optional[int] = 0 for word in words: if width + len(lowerCAmelCase__ ) + len(lowerCAmelCase__ ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(lowerCAmelCase__ ) width += len(lowerCAmelCase__ ) else: # justify the line and add it to result answer.append(justify(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) ) # reset new line and new width _lowerCAmelCase , _lowerCAmelCase : int = [word], len(lowerCAmelCase__ ) _lowerCAmelCase : Optional[int] = max_width - width - len(lowerCAmelCase__ ) answer.append(" ".join(lowerCAmelCase__ ) + (remaining_spaces + 1) * " " ) return answer if __name__ == "__main__": from doctest import testmod testmod()
587
0
"""simple docstring""" class lowercase__ : '''simple docstring''' def __init__( self , snake_case ) -> None: _UpperCAmelCase = set_counts _UpperCAmelCase = max(snake_case ) _UpperCAmelCase = len(snake_case ) _UpperCAmelCase = [1] * num_sets _UpperCAmelCase = list(range(snake_case ) ) def lowerCamelCase_ ( self , snake_case , snake_case ) -> bool: _UpperCAmelCase = self.get_parent(snake_case ) _UpperCAmelCase = self.get_parent(snake_case ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] _UpperCAmelCase = 0 _UpperCAmelCase = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 _UpperCAmelCase = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] _UpperCAmelCase = 0 _UpperCAmelCase = src_parent _UpperCAmelCase = self.set_counts[src_parent] _UpperCAmelCase = max(self.max_set , snake_case ) return True def lowerCamelCase_ ( self , snake_case ) -> int: if self.parents[disj_set] == disj_set: return disj_set _UpperCAmelCase = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
573
"""simple docstring""" def UpperCAmelCase ( A : list[int] , A : list[int] ): '''simple docstring''' if not len(A ) == len(A ) == 3: raise ValueError('Please enter a valid equation.' ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError('Both a & b of two equations can\'t be zero.' ) # Extract the coefficients _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = equationa _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = equationa # Calculate the determinants of the matrices _UpperCAmelCase = aa * ba - aa * ba _UpperCAmelCase = ca * ba - ca * ba _UpperCAmelCase = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError('Infinite solutions. (Consistent system)' ) else: raise ValueError('No solution. (Inconsistent system)' ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: _UpperCAmelCase = determinant_x / determinant _UpperCAmelCase = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
573
1
"""simple docstring""" import os # Precomputes a list of the 100 first triangular numbers _A = [int(0.5 * n * (n + 1)) for n in range(1, 1_0_1)] def SCREAMING_SNAKE_CASE ( ) -> int: SCREAMING_SNAKE_CASE__ = os.path.dirname(os.path.realpath(__UpperCAmelCase ) ) SCREAMING_SNAKE_CASE__ = os.path.join(__UpperCAmelCase , "words.txt" ) SCREAMING_SNAKE_CASE__ = "" with open(__UpperCAmelCase ) as f: SCREAMING_SNAKE_CASE__ = f.readline() SCREAMING_SNAKE_CASE__ = [word.strip("\"" ) for word in words.strip("\r\n" ).split("," )] SCREAMING_SNAKE_CASE__ = [ word for word in [sum(ord(__UpperCAmelCase ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(__UpperCAmelCase ) if __name__ == "__main__": print(solution())
712
"""simple docstring""" # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def SCREAMING_SNAKE_CASE ( __UpperCAmelCase ) -> List[str]: return 1 / (1 + np.exp(-z )) def SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ) -> Dict: return (-y * np.log(__UpperCAmelCase ) - (1 - y) * np.log(1 - h )).mean() def SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any: SCREAMING_SNAKE_CASE__ = np.dot(__UpperCAmelCase , __UpperCAmelCase ) return np.sum(y * scores - np.log(1 + np.exp(__UpperCAmelCase ) ) ) def SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=70_000 ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = np.zeros(x.shape[1] ) for iterations in range(__UpperCAmelCase ): SCREAMING_SNAKE_CASE__ = np.dot(__UpperCAmelCase , __UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = sigmoid_function(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = np.dot(x.T , h - y ) / y.size SCREAMING_SNAKE_CASE__ = theta - alpha * gradient # updating the weights SCREAMING_SNAKE_CASE__ = np.dot(__UpperCAmelCase , __UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = sigmoid_function(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = cost_function(__UpperCAmelCase , __UpperCAmelCase ) if iterations % 100 == 0: print(F"""loss: {j} \t""" ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": _A = datasets.load_iris() _A = iris.data[:, :2] _A = (iris.target != 0) * 1 _A = 0.1 _A = logistic_reg(alpha, x, y, max_iterations=7_0_0_0_0) print('theta: ', theta) # printing the theta i.e our weights vector def SCREAMING_SNAKE_CASE ( __UpperCAmelCase ) -> Union[str, Any]: return sigmoid_function( np.dot(__UpperCAmelCase , __UpperCAmelCase ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(1_0, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='b', label='0') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='r', label='1') ((_A) , (_A)) = (x[:, 0].min(), x[:, 0].max()) ((_A) , (_A)) = (x[:, 1].min(), x[:, 1].max()) ((_A) , (_A)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) _A = np.c_[xxa.ravel(), xxa.ravel()] _A = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='black') plt.legend() plt.show()
538
0
import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) __SCREAMING_SNAKE_CASE : Any =logging.getLogger(__name__) def UpperCamelCase__ ( lowerCAmelCase__ ): lowercase = git.Repo(search_parent_directories=lowerCAmelCase__ ) lowercase = { """repo_id""": str(lowerCAmelCase__ ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), } with open(os.path.join(lowerCAmelCase__ ,"""git_log.json""" ) ,"""w""" ) as f: json.dump(lowerCAmelCase__ ,lowerCAmelCase__ ,indent=4 ) def UpperCamelCase__ ( lowerCAmelCase__ ): if params.n_gpu <= 0: lowercase = 0 lowercase = -1 lowercase = True lowercase = False return assert torch.cuda.is_available() logger.info("""Initializing GPUs""" ) if params.n_gpu > 1: assert params.local_rank != -1 lowercase = int(os.environ["""WORLD_SIZE"""] ) lowercase = int(os.environ["""N_GPU_NODE"""] ) lowercase = int(os.environ["""RANK"""] ) # number of nodes / node ID lowercase = params.world_size // params.n_gpu_per_node lowercase = params.global_rank // params.n_gpu_per_node lowercase = True assert params.n_nodes == int(os.environ["""N_NODES"""] ) assert params.node_id == int(os.environ["""NODE_RANK"""] ) # local job (single GPU) else: assert params.local_rank == -1 lowercase = 1 lowercase = 0 lowercase = 0 lowercase = 0 lowercase = 1 lowercase = 1 lowercase = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode lowercase = params.node_id == 0 and params.local_rank == 0 lowercase = params.n_nodes > 1 # summary lowercase = f"""--- Global rank: {params.global_rank} - """ logger.info(PREFIX + """Number of nodes: %i""" % params.n_nodes ) logger.info(PREFIX + """Node ID : %i""" % params.node_id ) logger.info(PREFIX + """Local rank : %i""" % params.local_rank ) logger.info(PREFIX + """World size : %i""" % params.world_size ) logger.info(PREFIX + """GPUs per node : %i""" % params.n_gpu_per_node ) logger.info(PREFIX + """Master : %s""" % str(params.is_master ) ) logger.info(PREFIX + """Multi-node : %s""" % str(params.multi_node ) ) logger.info(PREFIX + """Multi-GPU : %s""" % str(params.multi_gpu ) ) logger.info(PREFIX + """Hostname : %s""" % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info("""Initializing PyTorch distributed""" ) torch.distributed.init_process_group( init_method="""env://""" ,backend="""nccl""" ,) def UpperCamelCase__ ( lowerCAmelCase__ ): np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
428
import functools def UpperCamelCase__ ( lowerCAmelCase__ ,lowerCAmelCase__ ): lowercase = len(lowerCAmelCase__ ) lowercase = len(lowerCAmelCase__ ) @functools.cache def min_distance(lowerCAmelCase__ ,lowerCAmelCase__ ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa lowercase = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 ,lowerCAmelCase__ ) ,1 + min_distance(lowerCAmelCase__ ,indexa + 1 ) ,diff + min_distance(indexa + 1 ,indexa + 1 ) ,) return min_distance(0 ,0 ) if __name__ == "__main__": import doctest doctest.testmod()
428
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase_ = { "configuration_conditional_detr": [ "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConditionalDetrConfig", "ConditionalDetrOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ["ConditionalDetrFeatureExtractor"] lowerCamelCase_ = ["ConditionalDetrImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ "CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST", "ConditionalDetrForObjectDetection", "ConditionalDetrForSegmentation", "ConditionalDetrModel", "ConditionalDetrPreTrainedModel", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
708
"""simple docstring""" import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument('''--user''', type=str, default='''ubuntu''') parser.add_argument('''--host''', type=str, default='''localhost''') parser.add_argument('''--key_path''', type=str, default=None) parser.add_argument('''--instance''', type=str, default='''V100:1''') parser.add_argument('''--provider''', type=str, default='''cheapest''') parser.add_argument('''--use_spot''', type=bool, default=False) parser.add_argument('''--example''', type=str, default='''pytorch/text-generation/run_generation.py''') lowerCamelCase_ , lowerCamelCase_ = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError('''Cannot specify both BYO and on-demand cluster args''') lowerCamelCase_ = rh.cluster( name='''rh-cluster''', ips=[args.host], ssh_creds={'''ssh_user''': args.user, '''ssh_private_key''': args.key_path} ) else: lowerCamelCase_ = rh.cluster( name='''rh-cluster''', instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) lowerCamelCase_ = args.example.rsplit('''/''', 1)[0] # Set up remote environment cluster.install_packages(['''pip:./''']) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([f'pip install -r transformers/examples/{example_dir}/requirements.txt']) cluster.run(['''pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117''']) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([f'python transformers/examples/{args.example} {" ".join(shlex.quote(arg) for arg in unknown)}']) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
463
0
import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class A_ ( UpperCAmelCase ): """simple docstring""" def __UpperCAmelCase ( self : Tuple ) -> List[Any]: _lowercase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__A ,'hidden_sizes' ) ) self.parent.assertTrue(hasattr(__A ,'num_attention_heads' ) ) self.parent.assertTrue(hasattr(__A ,'num_encoder_blocks' ) ) class A_ : """simple docstring""" def __init__( self : List[Any] ,__A : List[str] ,__A : Tuple=13 ,__A : Tuple=64 ,__A : Union[str, Any]=3 ,__A : Dict=4 ,__A : Any=[2, 2, 2, 2] ,__A : int=[8, 4, 2, 1] ,__A : int=[16, 32, 64, 128] ,__A : List[Any]=[1, 4, 8, 16] ,__A : int=[1, 2, 4, 8] ,__A : Optional[int]=True ,__A : Any=True ,__A : int="gelu" ,__A : List[Any]=0.1 ,__A : List[str]=0.1 ,__A : List[Any]=0.02 ,__A : str=3 ,__A : List[str]=None ,) -> str: _lowercase = parent _lowercase = batch_size _lowercase = image_size _lowercase = num_channels _lowercase = num_encoder_blocks _lowercase = sr_ratios _lowercase = depths _lowercase = hidden_sizes _lowercase = downsampling_rates _lowercase = num_attention_heads _lowercase = is_training _lowercase = use_labels _lowercase = hidden_act _lowercase = hidden_dropout_prob _lowercase = attention_probs_dropout_prob _lowercase = initializer_range _lowercase = num_labels _lowercase = scope def __UpperCAmelCase ( self : Union[str, Any] ) -> str: _lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowercase = None if self.use_labels: _lowercase = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels ) _lowercase = self.get_config() return config, pixel_values, labels def __UpperCAmelCase ( self : Dict ) -> Optional[int]: return SegformerConfig( image_size=self.image_size ,num_channels=self.num_channels ,num_encoder_blocks=self.num_encoder_blocks ,depths=self.depths ,hidden_sizes=self.hidden_sizes ,num_attention_heads=self.num_attention_heads ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,initializer_range=self.initializer_range ,) def __UpperCAmelCase ( self : Tuple ,__A : List[str] ,__A : Any ,__A : str ) -> Dict: _lowercase = SegformerModel(config=__A ) model.to(__A ) model.eval() _lowercase = model(__A ) _lowercase = _lowercase = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def __UpperCAmelCase ( self : Optional[Any] ,__A : int ,__A : Optional[int] ,__A : Optional[int] ) -> Union[str, Any]: _lowercase = self.num_labels _lowercase = SegformerForSemanticSegmentation(__A ) model.to(__A ) model.eval() _lowercase = model(__A ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) _lowercase = model(__A ,labels=__A ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss ,0.0 ) def __UpperCAmelCase ( self : Any ,__A : List[Any] ,__A : str ,__A : Optional[Any] ) -> Optional[int]: _lowercase = 1 _lowercase = SegformerForSemanticSegmentation(config=__A ) model.to(__A ) model.eval() _lowercase = torch.randint(0 ,1 ,(self.batch_size, self.image_size, self.image_size) ).to(__A ) _lowercase = model(__A ,labels=__A ) self.parent.assertGreater(result.loss ,0.0 ) def __UpperCAmelCase ( self : str ) -> int: _lowercase = self.prepare_config_and_inputs() _lowercase , _lowercase , _lowercase = config_and_inputs _lowercase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A_ ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ : str = ( { '''feature-extraction''': SegformerModel, '''image-classification''': SegformerForImageClassification, '''image-segmentation''': SegformerForSemanticSegmentation, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = True SCREAMING_SNAKE_CASE_ : Optional[int] = False SCREAMING_SNAKE_CASE_ : List[Any] = False SCREAMING_SNAKE_CASE_ : List[Any] = False def __UpperCAmelCase ( self : List[Any] ) -> List[Any]: _lowercase = SegformerModelTester(self ) _lowercase = SegformerConfigTester(self ,config_class=__A ) def __UpperCAmelCase ( self : str ) -> Dict: self.config_tester.run_common_tests() def __UpperCAmelCase ( self : Dict ) -> Optional[int]: _lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def __UpperCAmelCase ( self : Optional[int] ) -> Optional[int]: _lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*__A ) def __UpperCAmelCase ( self : List[str] ) -> Any: _lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*__A ) @unittest.skip('SegFormer does not use inputs_embeds' ) def __UpperCAmelCase ( self : Optional[Any] ) -> Dict: pass @unittest.skip('SegFormer does not have get_input_embeddings method and get_output_embeddings methods' ) def __UpperCAmelCase ( self : List[Any] ) -> Tuple: pass def __UpperCAmelCase ( self : Dict ) -> int: _lowercase , _lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase = model_class(__A ) _lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowercase = [*signature.parameters.keys()] _lowercase = ['pixel_values'] self.assertListEqual(arg_names[:1] ,__A ) def __UpperCAmelCase ( self : Dict ) -> List[str]: _lowercase , _lowercase = self.model_tester.prepare_config_and_inputs_for_common() _lowercase = True for model_class in self.all_model_classes: _lowercase = True _lowercase = False _lowercase = True _lowercase = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): _lowercase = model(**self._prepare_for_class(__A ,__A ) ) _lowercase = outputs.attentions _lowercase = sum(self.model_tester.depths ) self.assertEqual(len(__A ) ,__A ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _lowercase = True _lowercase = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): _lowercase = model(**self._prepare_for_class(__A ,__A ) ) _lowercase = outputs.attentions self.assertEqual(len(__A ) ,__A ) # verify the first attentions (first block, first layer) _lowercase = (self.model_tester.image_size // 4) ** 2 _lowercase = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] ,) # verify the last attentions (last block, last layer) _lowercase = (self.model_tester.image_size // 32) ** 2 _lowercase = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ) ,[self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] ,) _lowercase = len(__A ) # Check attention is always last and order is fine _lowercase = True _lowercase = True _lowercase = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): _lowercase = model(**self._prepare_for_class(__A ,__A ) ) self.assertEqual(out_len + 1 ,len(__A ) ) _lowercase = outputs.attentions self.assertEqual(len(__A ) ,__A ) # verify the first attentions (first block, first layer) _lowercase = (self.model_tester.image_size // 4) ** 2 _lowercase = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] ,) def __UpperCAmelCase ( self : Dict ) -> int: def check_hidden_states_output(__A : Union[str, Any] ,__A : int ,__A : int ): _lowercase = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): _lowercase = model(**self._prepare_for_class(__A ,__A ) ) _lowercase = outputs.hidden_states _lowercase = self.model_tester.num_encoder_blocks self.assertEqual(len(__A ) ,__A ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) ,[ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] ,) _lowercase , _lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase = True check_hidden_states_output(__A ,__A ,__A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowercase = True check_hidden_states_output(__A ,__A ,__A ) def __UpperCAmelCase ( self : Any ) -> Optional[Any]: if not self.model_tester.is_training: return _lowercase , _lowercase = self.model_tester.prepare_config_and_inputs_for_common() _lowercase = True for model_class in self.all_model_classes: if model_class in get_values(__A ): continue _lowercase = model_class(__A ) model.to(__A ) model.train() _lowercase = self._prepare_for_class(__A ,__A ,return_labels=__A ) _lowercase = model(**__A ).loss loss.backward() @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __UpperCAmelCase ( self : Optional[Any] ) -> Tuple: pass @slow def __UpperCAmelCase ( self : Tuple ) -> Any: for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase = SegformerModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def SCREAMING_SNAKE_CASE__ ( ) -> List[str]: _lowercase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class A_ ( unittest.TestCase ): """simple docstring""" @slow def __UpperCAmelCase ( self : Union[str, Any] ) -> List[Any]: # only resize + normalize _lowercase = SegformerImageProcessor( image_scale=(512, 512) ,keep_ratio=__A ,align=__A ,do_random_crop=__A ) _lowercase = SegformerForSemanticSegmentation.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512' ).to( __A ) _lowercase = prepare_img() _lowercase = image_processor(images=__A ,return_tensors='pt' ) _lowercase = encoded_inputs.pixel_values.to(__A ) with torch.no_grad(): _lowercase = model(__A ) _lowercase = torch.Size((1, model.config.num_labels, 128, 128) ) self.assertEqual(outputs.logits.shape ,__A ) _lowercase = torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] ,__A ,atol=1e-4 ) ) @slow def __UpperCAmelCase ( self : str ) -> Any: # only resize + normalize _lowercase = SegformerImageProcessor( image_scale=(512, 512) ,keep_ratio=__A ,align=__A ,do_random_crop=__A ) _lowercase = SegformerForSemanticSegmentation.from_pretrained( 'nvidia/segformer-b1-finetuned-cityscapes-1024-1024' ).to(__A ) _lowercase = prepare_img() _lowercase = image_processor(images=__A ,return_tensors='pt' ) _lowercase = encoded_inputs.pixel_values.to(__A ) with torch.no_grad(): _lowercase = model(__A ) _lowercase = torch.Size((1, model.config.num_labels, 128, 128) ) self.assertEqual(outputs.logits.shape ,__A ) _lowercase = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] ,__A ,atol=1e-1 ) ) @slow def __UpperCAmelCase ( self : str ) -> Any: # only resize + normalize _lowercase = SegformerImageProcessor( image_scale=(512, 512) ,keep_ratio=__A ,align=__A ,do_random_crop=__A ) _lowercase = SegformerForSemanticSegmentation.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512' ).to( __A ) _lowercase = prepare_img() _lowercase = image_processor(images=__A ,return_tensors='pt' ) _lowercase = encoded_inputs.pixel_values.to(__A ) with torch.no_grad(): _lowercase = model(__A ) _lowercase = outputs.logits.detach().cpu() _lowercase = image_processor.post_process_semantic_segmentation(outputs=__A ,target_sizes=[(500, 300)] ) _lowercase = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape ,__A ) _lowercase = image_processor.post_process_semantic_segmentation(outputs=__A ) _lowercase = torch.Size((128, 128) ) self.assertEqual(segmentation[0].shape ,__A )
67
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { """funnel-transformer/small""": """https://huggingface.co/funnel-transformer/small/resolve/main/config.json""", """funnel-transformer/small-base""": """https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json""", """funnel-transformer/medium""": """https://huggingface.co/funnel-transformer/medium/resolve/main/config.json""", """funnel-transformer/medium-base""": """https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json""", """funnel-transformer/intermediate""": ( """https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json""" ), """funnel-transformer/intermediate-base""": ( """https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json""" ), """funnel-transformer/large""": """https://huggingface.co/funnel-transformer/large/resolve/main/config.json""", """funnel-transformer/large-base""": """https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json""", """funnel-transformer/xlarge""": """https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json""", """funnel-transformer/xlarge-base""": """https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json""", } class lowerCamelCase__ ( snake_case ): SCREAMING_SNAKE_CASE = '''funnel''' SCREAMING_SNAKE_CASE = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', } def __init__( self ,A=30_522 ,A=[4, 4, 4] ,A=None ,A=2 ,A=768 ,A=12 ,A=64 ,A=3_072 ,A="gelu_new" ,A=0.1 ,A=0.1 ,A=0.0 ,A=0.1 ,A=None ,A=1e-9 ,A="mean" ,A="relative_shift" ,A=True ,A=True ,A=True ,**A ,): UpperCAmelCase = vocab_size UpperCAmelCase = block_sizes UpperCAmelCase = [1] * len(A ) if block_repeats is None else block_repeats assert len(A ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." UpperCAmelCase = num_decoder_layers UpperCAmelCase = d_model UpperCAmelCase = n_head UpperCAmelCase = d_head UpperCAmelCase = d_inner UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout UpperCAmelCase = attention_dropout UpperCAmelCase = activation_dropout UpperCAmelCase = initializer_range UpperCAmelCase = initializer_std UpperCAmelCase = layer_norm_eps assert pooling_type in [ "mean", "max", ], F'''Got {pooling_type} for `pooling_type` but only \'mean\' and \'max\' are supported.''' UpperCAmelCase = pooling_type assert attention_type in [ "relative_shift", "factorized", ], F'''Got {attention_type} for `attention_type` but only \'relative_shift\' and \'factorized\' are supported.''' UpperCAmelCase = attention_type UpperCAmelCase = separate_cls UpperCAmelCase = truncate_seq UpperCAmelCase = pool_q_only super().__init__(**A ) @property def _UpperCamelCase ( self ): return sum(self.block_sizes ) @num_hidden_layers.setter def _UpperCamelCase ( self ,A ): raise NotImplementedError( """This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.""" ) @property def _UpperCamelCase ( self ): return len(self.block_sizes ) @num_blocks.setter def _UpperCamelCase ( self ,A ): raise NotImplementedError("""This model does not support the setting of `num_blocks`. Please set `block_sizes`.""" )
341
0
'''simple docstring''' import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { "vocab_file": "vocab.json", "tokenizer_config_file": "tokenizer_config.json", "merges_file": "merges.txt", } lowerCAmelCase__ = { "vocab_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json" ), }, "tokenizer_config_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json" ), }, "merges_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt" ), }, } lowerCAmelCase__ = "</w>" lowerCAmelCase__ = "@@ " def SCREAMING_SNAKE_CASE( UpperCamelCase ) -> List[Any]: UpperCAmelCase_ : str = set() UpperCAmelCase_ : List[str] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase_ : Any = char return pairs # Speech2Text2 has no max input length lowerCAmelCase__ = {"facebook/s2t-wav2vec2-large-en-de": 1024} class lowercase ( a_ ): _lowerCamelCase : Optional[int]= VOCAB_FILES_NAMES _lowerCamelCase : List[Any]= PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : Any= PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase : Dict= ["input_ids", "attention_mask"] def __init__( self , _snake_case , _snake_case="<s>" , _snake_case="<pad>" , _snake_case="</s>" , _snake_case="<unk>" , _snake_case=False , _snake_case=None , **_snake_case , ) -> Optional[int]: super().__init__( unk_token=_snake_case , bos_token=_snake_case , eos_token=_snake_case , pad_token=_snake_case , do_lower_case=_snake_case , **_snake_case , ) UpperCAmelCase_ : Optional[Any] = do_lower_case with open(_snake_case , encoding='utf-8') as vocab_handle: UpperCAmelCase_ : Dict = json.load(_snake_case) UpperCAmelCase_ : Any = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(F"""No merges files provided. {self.__class__.__name__} can only be used for decoding.""") UpperCAmelCase_ : str = None UpperCAmelCase_ : Dict = None else: with open(_snake_case , encoding='utf-8') as merges_handle: UpperCAmelCase_ : Dict = merges_handle.read().split('\n')[:-1] UpperCAmelCase_ : List[str] = [tuple(merge.split()[:2]) for merge in merges] UpperCAmelCase_ : Union[str, Any] = dict(zip(_snake_case , range(len(_snake_case)))) UpperCAmelCase_ : Any = {} @property def _snake_case ( self) -> int: return len(self.decoder) def _snake_case ( self) -> Dict: return dict(self.encoder , **self.added_tokens_encoder) def _snake_case ( self , _snake_case) -> Dict: UpperCAmelCase_ : str = tuple(token[:-1]) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] UpperCAmelCase_ : List[str] = get_pairs(_snake_case) if not pairs: return token while True: UpperCAmelCase_ : Union[str, Any] = min(_snake_case , key=lambda _snake_case: self.bpe_ranks.get(_snake_case , float('inf'))) if bigram not in self.bpe_ranks: break UpperCAmelCase_ : Dict = bigram UpperCAmelCase_ : int = [] UpperCAmelCase_ : Tuple = 0 while i < len(_snake_case): try: UpperCAmelCase_ : List[Any] = word.index(_snake_case , _snake_case) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) UpperCAmelCase_ : Any = j if word[i] == first and i < len(_snake_case) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 UpperCAmelCase_ : List[Any] = tuple(_snake_case) UpperCAmelCase_ : Optional[int] = new_word if len(_snake_case) == 1: break else: UpperCAmelCase_ : Dict = get_pairs(_snake_case) UpperCAmelCase_ : str = ' '.join(_snake_case) if word == "\n " + BPE_TOKEN_MERGES: UpperCAmelCase_ : List[Any] = '\n' + BPE_TOKEN_MERGES if word.endswith(_snake_case): UpperCAmelCase_ : Union[str, Any] = word.replace(_snake_case , '') UpperCAmelCase_ : List[Any] = word.replace(' ' , _snake_case) UpperCAmelCase_ : Union[str, Any] = word return word def _snake_case ( self , _snake_case) -> Optional[int]: if self.bpe_ranks is None: raise ValueError( 'This tokenizer was instantiated without a `merges.txt` file, so' ' that it can only be used for decoding, not for encoding.' 'Make sure to provide `merges.txt` file at instantiation to enable ' 'encoding.') if self.do_lower_case: UpperCAmelCase_ : str = text.lower() UpperCAmelCase_ : List[str] = text.split() UpperCAmelCase_ : str = [] for token in text: if token: split_tokens.extend(list(self.bpe(_snake_case).split(' '))) return split_tokens def _snake_case ( self , _snake_case) -> int: return self.encoder.get(_snake_case , self.encoder.get(self.unk_token)) def _snake_case ( self , _snake_case) -> str: UpperCAmelCase_ : Optional[int] = self.decoder.get(_snake_case , self.unk_token) return result def _snake_case ( self , _snake_case) -> str: UpperCAmelCase_ : Optional[Any] = ' '.join(_snake_case) # make sure @@ tokens are concatenated UpperCAmelCase_ : str = ''.join(string.split(_snake_case)) return string def _snake_case ( self , _snake_case , _snake_case = None) -> Tuple[str]: if not os.path.isdir(_snake_case): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""") return UpperCAmelCase_ : Any = os.path.join( _snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) UpperCAmelCase_ : List[Any] = os.path.join( _snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file']) with open(_snake_case , 'w' , encoding='utf-8') as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_snake_case , ensure_ascii=_snake_case) + '\n') UpperCAmelCase_ : Optional[int] = 0 if self.bpe_ranks is None: return (vocab_file,) with open(_snake_case , 'w' , encoding='utf-8') as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _snake_case: kv[1]): if index != token_index: logger.warning( F"""Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!') UpperCAmelCase_ : List[str] = token_index writer.write(' '.join(_snake_case) + '\n') index += 1 return (vocab_file, merges_file)
715
'''simple docstring''' import math class lowercase : def __init__( self , _snake_case=0) -> Union[str, Any]: # a graph with Node 0,1,...,N-1 UpperCAmelCase_ : Tuple = n UpperCAmelCase_ : Optional[Any] = [ [math.inf for j in range(0 , _snake_case)] for i in range(0 , _snake_case) ] # adjacency matrix for weight UpperCAmelCase_ : Tuple = [ [math.inf for j in range(0 , _snake_case)] for i in range(0 , _snake_case) ] # dp[i][j] stores minimum distance from i to j def _snake_case ( self , _snake_case , _snake_case , _snake_case) -> List[Any]: UpperCAmelCase_ : Union[str, Any] = w def _snake_case ( self) -> str: for k in range(0 , self.n): for i in range(0 , self.n): for j in range(0 , self.n): UpperCAmelCase_ : Optional[int] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j]) def _snake_case ( self , _snake_case , _snake_case) -> str: return self.dp[u][v] if __name__ == "__main__": lowerCAmelCase__ = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
471
0
import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class snake_case ( _snake_case ): '''simple docstring''' def UpperCAmelCase ( self : Optional[int] ) ->str: '''simple docstring''' UpperCAmelCase__ = tempfile.mkdtemp() UpperCAmelCase__ = 5 # Realm tok UpperCAmelCase__ = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """test""", """question""", """this""", """is""", """the""", """first""", """second""", """third""", """fourth""", """fifth""", """record""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] UpperCAmelCase__ = os.path.join(self.tmpdirname , """realm_tokenizer""" ) os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ ) UpperCAmelCase__ = os.path.join(lowerCamelCase_ , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) UpperCAmelCase__ = os.path.join(self.tmpdirname , """realm_block_records""" ) os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ ) def UpperCAmelCase ( self : Union[str, Any] ) ->RealmTokenizer: '''simple docstring''' return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , """realm_tokenizer""" ) ) def UpperCAmelCase ( self : str ) ->Tuple: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCAmelCase ( self : List[Any] ) ->List[str]: '''simple docstring''' UpperCAmelCase__ = RealmConfig(num_block_records=self.num_block_records ) return config def UpperCAmelCase ( self : Optional[int] ) ->Dict: '''simple docstring''' UpperCAmelCase__ = Dataset.from_dict( { """id""": ["""0""", """1"""], """question""": ["""foo""", """bar"""], """answers""": [["""Foo""", """Bar"""], ["""Bar"""]], } ) return dataset def UpperCAmelCase ( self : Optional[int] ) ->List[Any]: '''simple docstring''' UpperCAmelCase__ = np.array( [ b"""This is the first record""", b"""This is the second record""", b"""This is the third record""", b"""This is the fourth record""", b"""This is the fifth record""", b"""This is a longer longer longer record""", ] , dtype=lowerCamelCase_ , ) return block_records def UpperCAmelCase ( self : Optional[int] ) ->int: '''simple docstring''' UpperCAmelCase__ = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def UpperCAmelCase ( self : Union[str, Any] ) ->List[str]: '''simple docstring''' UpperCAmelCase__ = self.get_config() UpperCAmelCase__ = self.get_dummy_retriever() UpperCAmelCase__ = retriever.tokenizer UpperCAmelCase__ = np.array([0, 3] , dtype="""long""" ) UpperCAmelCase__ = tokenizer(["""Test question"""] ).input_ids UpperCAmelCase__ = tokenizer( ["""the fourth"""] , add_special_tokens=lowerCamelCase_ , return_token_type_ids=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , ).input_ids UpperCAmelCase__ = config.reader_seq_len UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = retriever( lowerCamelCase_ , lowerCamelCase_ , answer_ids=lowerCamelCase_ , max_length=lowerCamelCase_ , return_tensors="""np""" ) self.assertEqual(len(lowerCamelCase_ ) , 2 ) self.assertEqual(len(lowerCamelCase_ ) , 2 ) self.assertEqual(len(lowerCamelCase_ ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ["""[CLS]""", """test""", """question""", """[SEP]""", """this""", """is""", """the""", """first""", """record""", """[SEP]"""] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ["""[CLS]""", """test""", """question""", """[SEP]""", """this""", """is""", """the""", """fourth""", """record""", """[SEP]"""] , ) def UpperCAmelCase ( self : Dict ) ->Optional[Any]: '''simple docstring''' UpperCAmelCase__ = self.get_config() UpperCAmelCase__ = self.get_dummy_retriever() UpperCAmelCase__ = retriever.tokenizer UpperCAmelCase__ = np.array([0, 3, 5] , dtype="""long""" ) UpperCAmelCase__ = tokenizer(["""Test question"""] ).input_ids UpperCAmelCase__ = tokenizer( ["""the fourth""", """longer longer"""] , add_special_tokens=lowerCamelCase_ , return_token_type_ids=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , ).input_ids UpperCAmelCase__ = config.reader_seq_len UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = retriever( lowerCamelCase_ , lowerCamelCase_ , answer_ids=lowerCamelCase_ , max_length=lowerCamelCase_ , return_tensors="""np""" ) self.assertEqual([False, True, True] , lowerCamelCase_ ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , lowerCamelCase_ ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , lowerCamelCase_ ) def UpperCAmelCase ( self : Optional[Any] ) ->Dict: '''simple docstring''' UpperCAmelCase__ = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , """realm_block_records""" ) ) # Test local path UpperCAmelCase__ = retriever.from_pretrained(os.path.join(self.tmpdirname , """realm_block_records""" ) ) self.assertEqual(retriever.block_records[0] , b"""This is the first record""" ) # Test mocked remote path with patch("""transformers.models.realm.retrieval_realm.hf_hub_download""" ) as mock_hf_hub_download: UpperCAmelCase__ = os.path.join( os.path.join(self.tmpdirname , """realm_block_records""" ) , _REALM_BLOCK_RECORDS_FILENAME ) UpperCAmelCase__ = RealmRetriever.from_pretrained("""google/realm-cc-news-pretrained-openqa""" ) self.assertEqual(retriever.block_records[0] , b"""This is the first record""" )
392
import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": snake_case__ : Tuple = pd.read_csv('''sample_data.csv''', header=None) snake_case__ : List[str] = df.shape[:1][0] # If you're using some other dataset input the target column snake_case__ : Dict = df.iloc[:, 1:2] snake_case__ : List[str] = actual_data.values.reshape(len_data, 1) snake_case__ : Union[str, Any] = MinMaxScaler().fit_transform(actual_data) snake_case__ : Tuple = 1_0 snake_case__ : str = 5 snake_case__ : Any = 2_0 snake_case__ : Union[str, Any] = len_data - periods * look_back snake_case__ : Union[str, Any] = actual_data[:division] snake_case__ : Optional[Any] = actual_data[division - look_back :] snake_case__ , snake_case__ : Dict = [], [] snake_case__ , snake_case__ : Dict = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) snake_case__ : int = np.array(train_x) snake_case__ : List[str] = np.array(test_x) snake_case__ : Optional[Any] = np.array([list(i.ravel()) for i in train_y]) snake_case__ : int = np.array([list(i.ravel()) for i in test_y]) snake_case__ : List[Any] = Sequential() model.add(LSTM(1_2_8, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(6_4, input_shape=(1_2_8, 1))) model.add(Dense(forward_days)) model.compile(loss='''mean_squared_error''', optimizer='''adam''') snake_case__ : List[str] = model.fit( x_train, y_train, epochs=1_5_0, verbose=1, shuffle=True, batch_size=4 ) snake_case__ : Optional[int] = model.predict(x_test)
392
1
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "asapp/sew-tiny-100k": "https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json", # See all SEW models at https://huggingface.co/models?filter=sew } class SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): """simple docstring""" _A : Any = """sew""" def __init__(self , lowerCAmelCase_=32 , lowerCAmelCase_=768 , lowerCAmelCase_=12 , lowerCAmelCase_=12 , lowerCAmelCase_=3072 , lowerCAmelCase_=2 , lowerCAmelCase_="gelu" , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.02 , lowerCAmelCase_=1e-5 , lowerCAmelCase_="group" , lowerCAmelCase_="gelu" , lowerCAmelCase_=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , lowerCAmelCase_=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowerCAmelCase_=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowerCAmelCase_=False , lowerCAmelCase_=128 , lowerCAmelCase_=16 , lowerCAmelCase_=True , lowerCAmelCase_=0.05 , lowerCAmelCase_=10 , lowerCAmelCase_=2 , lowerCAmelCase_=0.0 , lowerCAmelCase_=10 , lowerCAmelCase_=0 , lowerCAmelCase_="mean" , lowerCAmelCase_=False , lowerCAmelCase_=False , lowerCAmelCase_=256 , lowerCAmelCase_=0 , lowerCAmelCase_=1 , lowerCAmelCase_=2 , **lowerCAmelCase_ , ): super().__init__(**lowerCAmelCase_ , pad_token_id=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ ) A_ : int = hidden_size A_ : List[str] = feat_extract_norm A_ : Union[str, Any] = feat_extract_activation A_ : int = list(lowerCAmelCase_ ) A_ : Tuple = list(lowerCAmelCase_ ) A_ : int = list(lowerCAmelCase_ ) A_ : Tuple = conv_bias A_ : Union[str, Any] = num_conv_pos_embeddings A_ : Optional[int] = num_conv_pos_embedding_groups A_ : Any = len(self.conv_dim ) A_ : Optional[Any] = num_hidden_layers A_ : int = intermediate_size A_ : Dict = squeeze_factor A_ : Tuple = hidden_act A_ : Any = num_attention_heads A_ : List[Any] = hidden_dropout A_ : Union[str, Any] = attention_dropout A_ : List[Any] = activation_dropout A_ : Optional[Any] = feat_proj_dropout A_ : Any = final_dropout A_ : Tuple = layerdrop A_ : Optional[Any] = layer_norm_eps A_ : Dict = initializer_range A_ : str = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect.""" """It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,""" f"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)""" f"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 A_ : str = apply_spec_augment A_ : List[str] = mask_time_prob A_ : Union[str, Any] = mask_time_length A_ : Any = mask_time_min_masks A_ : List[Any] = mask_feature_prob A_ : List[Any] = mask_feature_length A_ : Union[str, Any] = mask_feature_min_masks # ctc loss A_ : Any = ctc_loss_reduction A_ : Optional[Any] = ctc_zero_infinity # sequence classification A_ : Any = use_weighted_layer_sum A_ : List[str] = classifier_proj_size @property def lowerCamelCase(self ): return functools.reduce(operator.mul , self.conv_stride , 1 )
480
"""simple docstring""" def __UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ ): return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(snake_case__ ) ) def __UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ ): # Base Case if index == len(snake_case__ ): return True # Recursive Step for i in range(snake_case__ ): if valid_coloring(graph[index] , snake_case__ , snake_case__ ): # Color current vertex A_ : Dict = i # Validate coloring if util_color(snake_case__ , snake_case__ , snake_case__ , index + 1 ): return True # Backtrack A_ : Union[str, Any] = -1 return False def __UpperCamelCase ( snake_case__ , snake_case__ ): A_ : int = [-1] * len(snake_case__ ) if util_color(snake_case__ , snake_case__ , snake_case__ , 0 ): return colored_vertices return []
480
1
'''simple docstring''' import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class _snake_case ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self: List[Any] ) -> Tuple: __magic_name__ : Optional[int] = 10 def lowerCAmelCase__ ( self: int ) -> Union[str, Any]: __magic_name__ : Optional[int] = [1, 2, 3, 4] __magic_name__ : Union[str, Any] = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(__UpperCamelCase , self.block_size , 0 ) , __UpperCamelCase ) def lowerCAmelCase__ ( self: Dict ) -> Optional[Any]: __magic_name__ : int = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] __magic_name__ : int = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(__UpperCamelCase , self.block_size , 0 ) , __UpperCamelCase ) def lowerCAmelCase__ ( self: Union[str, Any] ) -> Tuple: __magic_name__ : Dict = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] __magic_name__ : List[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(__UpperCamelCase , self.block_size , 0 ) , __UpperCamelCase ) def lowerCAmelCase__ ( self: Tuple ) -> Union[str, Any]: __magic_name__ : str = "It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this." __magic_name__ , __magic_name__ : Tuple = process_story(__UpperCamelCase ) self.assertEqual(__UpperCamelCase , [] ) def lowerCAmelCase__ ( self: Union[str, Any] ) -> Any: __magic_name__ : Optional[Any] = "" __magic_name__ , __magic_name__ : Optional[Any] = process_story(__UpperCamelCase ) self.assertEqual(__UpperCamelCase , [] ) self.assertEqual(__UpperCamelCase , [] ) def lowerCAmelCase__ ( self: Tuple ) -> Optional[Any]: __magic_name__ : str = ( "It was the year of Our Lord one thousand seven hundred and " "seventy-five\n\nSpiritual revelations were conceded to England " "at that favoured period, as at this.\n@highlight\n\nIt was the best of times" ) __magic_name__ , __magic_name__ : List[str] = process_story(__UpperCamelCase ) __magic_name__ : Optional[Any] = [ "It was the year of Our Lord one thousand seven hundred and seventy-five.", "Spiritual revelations were conceded to England at that favoured period, as at this.", ] self.assertEqual(__UpperCamelCase , __UpperCamelCase ) __magic_name__ : Optional[int] = ["It was the best of times."] self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def lowerCAmelCase__ ( self: int ) -> Dict: __magic_name__ : Any = torch.tensor([1, 2, 3, 4] ) __magic_name__ : List[Any] = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(__UpperCamelCase , 0 ).numpy() , expected.numpy() ) def lowerCAmelCase__ ( self: Tuple ) -> Tuple: __magic_name__ : Union[str, Any] = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) __magic_name__ : int = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(__UpperCamelCase , 23 ).numpy() , expected.numpy() ) def lowerCAmelCase__ ( self: Tuple ) -> Union[str, Any]: __magic_name__ : Union[str, Any] = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) __magic_name__ : Optional[int] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(__UpperCamelCase , 1 ).numpy() , expected.numpy() ) def lowerCAmelCase__ ( self: List[str] ) -> str: __magic_name__ : Union[str, Any] = 101 __magic_name__ : Optional[int] = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) __magic_name__ : Dict = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) __magic_name__ : List[str] = compute_token_type_ids(__UpperCamelCase , __UpperCamelCase ) np.testing.assert_array_equal(__UpperCamelCase , __UpperCamelCase )
436
'''simple docstring''' import argparse import struct import unittest class _snake_case : '''simple docstring''' def __init__( self: Optional[int] , __UpperCamelCase: bytes ) -> None: __magic_name__ : str = data # Initialize hash values __magic_name__ : List[str] = [ 0x6A09_E667, 0xBB67_AE85, 0x3C6E_F372, 0xA54F_F53A, 0x510E_527F, 0x9B05_688C, 0x1F83_D9AB, 0x5BE0_CD19, ] # Initialize round constants __magic_name__ : Dict = [ 0x428A_2F98, 0x7137_4491, 0xB5C0_FBCF, 0xE9B5_DBA5, 0x3956_C25B, 0x59F1_11F1, 0x923F_82A4, 0xAB1C_5ED5, 0xD807_AA98, 0x1283_5B01, 0x2431_85BE, 0x550C_7DC3, 0x72BE_5D74, 0x80DE_B1FE, 0x9BDC_06A7, 0xC19B_F174, 0xE49B_69C1, 0xEFBE_4786, 0x0FC1_9DC6, 0x240C_A1CC, 0x2DE9_2C6F, 0x4A74_84AA, 0x5CB0_A9DC, 0x76F9_88DA, 0x983E_5152, 0xA831_C66D, 0xB003_27C8, 0xBF59_7FC7, 0xC6E0_0BF3, 0xD5A7_9147, 0x06CA_6351, 0x1429_2967, 0x27B7_0A85, 0x2E1B_2138, 0x4D2C_6DFC, 0x5338_0D13, 0x650A_7354, 0x766A_0ABB, 0x81C2_C92E, 0x9272_2C85, 0xA2BF_E8A1, 0xA81A_664B, 0xC24B_8B70, 0xC76C_51A3, 0xD192_E819, 0xD699_0624, 0xF40E_3585, 0x106A_A070, 0x19A4_C116, 0x1E37_6C08, 0x2748_774C, 0x34B0_BCB5, 0x391C_0CB3, 0x4ED8_AA4A, 0x5B9C_CA4F, 0x682E_6FF3, 0x748F_82EE, 0x78A5_636F, 0x84C8_7814, 0x8CC7_0208, 0x90BE_FFFA, 0xA450_6CEB, 0xBEF9_A3F7, 0xC671_78F2, ] __magic_name__ : str = self.preprocessing(self.data ) self.final_hash() @staticmethod def lowerCAmelCase__ ( __UpperCamelCase: bytes ) -> bytes: __magic_name__ : List[Any] = b"\x80" + (b"\x00" * (63 - (len(__UpperCamelCase ) + 8) % 64)) __magic_name__ : str = struct.pack(">Q" , (len(__UpperCamelCase ) * 8) ) return data + padding + big_endian_integer def lowerCAmelCase__ ( self: int ) -> None: # Convert into blocks of 64 bytes __magic_name__ : Any = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers __magic_name__ : Tuple = list(struct.unpack(">16L" , __UpperCamelCase ) ) # add 48 0-ed integers words += [0] * 48 __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Tuple = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array __magic_name__ : Optional[Any] = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) __magic_name__ : Tuple = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) __magic_name__ : Any = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x1_0000_0000 # Compression __magic_name__ : Union[str, Any] = self.ror(__UpperCamelCase , 6 ) ^ self.ror(__UpperCamelCase , 11 ) ^ self.ror(__UpperCamelCase , 25 ) __magic_name__ : Tuple = (e & f) ^ ((~e & 0xFFFF_FFFF) & g) __magic_name__ : Dict = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x1_0000_0000 __magic_name__ : int = self.ror(__UpperCamelCase , 2 ) ^ self.ror(__UpperCamelCase , 13 ) ^ self.ror(__UpperCamelCase , 22 ) __magic_name__ : Optional[int] = (a & b) ^ (a & c) ^ (b & c) __magic_name__ : int = (sa + maj) % 0x1_0000_0000 __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Tuple = ( g, f, e, ((d + tempa) % 0x1_0000_0000), c, b, a, ((tempa + tempa) % 0x1_0000_0000), ) __magic_name__ : Optional[Any] = [a, b, c, d, e, f, g, h] # Modify final values __magic_name__ : int = [ ((element + mutated_hash_values[index]) % 0x1_0000_0000) for index, element in enumerate(self.hashes ) ] __magic_name__ : List[str] = "".join([hex(__UpperCamelCase )[2:].zfill(8 ) for value in self.hashes] ) def lowerCAmelCase__ ( self: List[Any] , __UpperCamelCase: int , __UpperCamelCase: int ) -> int: return 0xFFFF_FFFF & (value << (32 - rotations)) | (value >> rotations) class _snake_case ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self: Dict ) -> None: import hashlib __magic_name__ : Tuple = bytes("Test String" , "utf-8" ) self.assertEqual(SHAaaa(__UpperCamelCase ).hash , hashlib.shaaaa(__UpperCamelCase ).hexdigest() ) def _UpperCamelCase ( ): """simple docstring""" import doctest doctest.testmod() __magic_name__ : Dict = argparse.ArgumentParser() parser.add_argument( "-s" , "--string" , dest="input_string" , default="Hello World!! Welcome to Cryptography" , help="Hash the string" , ) parser.add_argument( "-f" , "--file" , dest="input_file" , help="Hash contents of a file" ) __magic_name__ : Any = parser.parse_args() __magic_name__ : List[str] = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , "rb" ) as f: __magic_name__ : Union[str, Any] = f.read() else: __magic_name__ : List[str] = bytes(UpperCamelCase__ , "utf-8" ) print(SHAaaa(UpperCamelCase__ ).hash ) if __name__ == "__main__": main()
436
1
import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor UpperCamelCase__ : Union[str, Any] = logging.get_logger(__name__) class __snake_case ( lowerCAmelCase__ ): def __init__( self , *_A , **_A): warnings.warn( 'The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use DeiTImageProcessor instead.' , _A , ) super().__init__(*_A , **_A)
702
from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __snake_case ( lowerCAmelCase__ ): def __init__( self , _A , _A , _A , _A = None , ): super().__init__() self.register_modules(transformer=_A , vae=_A , scheduler=_A) # create a imagenet -> id dictionary for easier use SCREAMING_SNAKE_CASE_ = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(','): SCREAMING_SNAKE_CASE_ = int(_A) SCREAMING_SNAKE_CASE_ = dict(sorted(self.labels.items())) def lowerCAmelCase__ ( self , _A): if not isinstance(_A , _A): SCREAMING_SNAKE_CASE_ = list(_A) for l in label: if l not in self.labels: raise ValueError( f"""{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.""") return [self.labels[l] for l in label] @torch.no_grad() def __call__( self , _A , _A = 4.0 , _A = None , _A = 50 , _A = "pil" , _A = True , ): SCREAMING_SNAKE_CASE_ = len(_A) SCREAMING_SNAKE_CASE_ = self.transformer.config.sample_size SCREAMING_SNAKE_CASE_ = self.transformer.config.in_channels SCREAMING_SNAKE_CASE_ = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=_A , device=self.device , dtype=self.transformer.dtype , ) SCREAMING_SNAKE_CASE_ = torch.cat([latents] * 2) if guidance_scale > 1 else latents SCREAMING_SNAKE_CASE_ = torch.tensor(_A , device=self.device).reshape(-1) SCREAMING_SNAKE_CASE_ = torch.tensor([1000] * batch_size , device=self.device) SCREAMING_SNAKE_CASE_ = torch.cat([class_labels, class_null] , 0) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(_A) for t in self.progress_bar(self.scheduler.timesteps): if guidance_scale > 1: SCREAMING_SNAKE_CASE_ = latent_model_input[: len(_A) // 2] SCREAMING_SNAKE_CASE_ = torch.cat([half, half] , dim=0) SCREAMING_SNAKE_CASE_ = self.scheduler.scale_model_input(_A , _A) SCREAMING_SNAKE_CASE_ = t if not torch.is_tensor(_A): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) SCREAMING_SNAKE_CASE_ = latent_model_input.device.type == 'mps' if isinstance(_A , _A): SCREAMING_SNAKE_CASE_ = torch.floataa if is_mps else torch.floataa else: SCREAMING_SNAKE_CASE_ = torch.intaa if is_mps else torch.intaa SCREAMING_SNAKE_CASE_ = torch.tensor([timesteps] , dtype=_A , device=latent_model_input.device) elif len(timesteps.shape) == 0: SCREAMING_SNAKE_CASE_ = timesteps[None].to(latent_model_input.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML SCREAMING_SNAKE_CASE_ = timesteps.expand(latent_model_input.shape[0]) # predict noise model_output SCREAMING_SNAKE_CASE_ = self.transformer( _A , timestep=_A , class_labels=_A).sample # perform guidance if guidance_scale > 1: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = torch.split(_A , len(_A) // 2 , dim=0) SCREAMING_SNAKE_CASE_ = uncond_eps + guidance_scale * (cond_eps - uncond_eps) SCREAMING_SNAKE_CASE_ = torch.cat([half_eps, half_eps] , dim=0) SCREAMING_SNAKE_CASE_ = torch.cat([eps, rest] , dim=1) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = torch.split(_A , _A , dim=1) else: SCREAMING_SNAKE_CASE_ = noise_pred # compute previous image: x_t -> x_t-1 SCREAMING_SNAKE_CASE_ = self.scheduler.step(_A , _A , _A).prev_sample if guidance_scale > 1: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = latent_model_input.chunk(2 , dim=0) else: SCREAMING_SNAKE_CASE_ = latent_model_input SCREAMING_SNAKE_CASE_ = 1 / self.vae.config.scaling_factor * latents SCREAMING_SNAKE_CASE_ = self.vae.decode(_A).sample SCREAMING_SNAKE_CASE_ = (samples / 2 + 0.5).clamp(0 , 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 SCREAMING_SNAKE_CASE_ = samples.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": SCREAMING_SNAKE_CASE_ = self.numpy_to_pil(_A) if not return_dict: return (samples,) return ImagePipelineOutput(images=_A)
620
0
"""simple docstring""" import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class _UpperCAmelCase ( UpperCAmelCase__): __a : List[str] = (EulerDiscreteScheduler,) __a : Optional[int] = 1_0 def __snake_case ( self , **_A ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = { """num_train_timesteps""": 11_00, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**_A ) return config def __snake_case ( self ) -> Optional[Any]: '''simple docstring''' for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=_A ) def __snake_case ( self ) -> int: '''simple docstring''' for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=_A , beta_end=_A ) def __snake_case ( self ) -> Optional[Any]: '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_A ) def __snake_case ( self ) -> Any: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_A ) def __snake_case ( self ) -> Any: '''simple docstring''' _UpperCAmelCase : Dict = self.scheduler_classes[0] _UpperCAmelCase : List[str] = self.get_scheduler_config() _UpperCAmelCase : List[str] = scheduler_class(**_A ) scheduler.set_timesteps(self.num_inference_steps ) _UpperCAmelCase : List[str] = torch.manual_seed(0 ) _UpperCAmelCase : Dict = self.dummy_model() _UpperCAmelCase : Any = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCAmelCase : Dict = sample.to(_A ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase : Union[str, Any] = scheduler.scale_model_input(_A , _A ) _UpperCAmelCase : Optional[int] = model(_A , _A ) _UpperCAmelCase : Dict = scheduler.step(_A , _A , _A , generator=_A ) _UpperCAmelCase : Any = output.prev_sample _UpperCAmelCase : Dict = torch.sum(torch.abs(_A ) ) _UpperCAmelCase : Optional[int] = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def __snake_case ( self ) -> Dict: '''simple docstring''' _UpperCAmelCase : Tuple = self.scheduler_classes[0] _UpperCAmelCase : Union[str, Any] = self.get_scheduler_config(prediction_type="""v_prediction""" ) _UpperCAmelCase : Tuple = scheduler_class(**_A ) scheduler.set_timesteps(self.num_inference_steps ) _UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) _UpperCAmelCase : Dict = self.dummy_model() _UpperCAmelCase : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCAmelCase : List[Any] = sample.to(_A ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase : Dict = scheduler.scale_model_input(_A , _A ) _UpperCAmelCase : Optional[Any] = model(_A , _A ) _UpperCAmelCase : Tuple = scheduler.step(_A , _A , _A , generator=_A ) _UpperCAmelCase : Dict = output.prev_sample _UpperCAmelCase : Tuple = torch.sum(torch.abs(_A ) ) _UpperCAmelCase : Optional[Any] = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 0.0002 ) < 1e-2 assert abs(result_mean.item() - 2.26_76e-06 ) < 1e-3 def __snake_case ( self ) -> Dict: '''simple docstring''' _UpperCAmelCase : int = self.scheduler_classes[0] _UpperCAmelCase : int = self.get_scheduler_config() _UpperCAmelCase : List[str] = scheduler_class(**_A ) scheduler.set_timesteps(self.num_inference_steps , device=_A ) _UpperCAmelCase : Any = torch.manual_seed(0 ) _UpperCAmelCase : str = self.dummy_model() _UpperCAmelCase : str = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _UpperCAmelCase : List[str] = sample.to(_A ) for t in scheduler.timesteps: _UpperCAmelCase : List[str] = scheduler.scale_model_input(_A , _A ) _UpperCAmelCase : Any = model(_A , _A ) _UpperCAmelCase : Union[str, Any] = scheduler.step(_A , _A , _A , generator=_A ) _UpperCAmelCase : List[Any] = output.prev_sample _UpperCAmelCase : int = torch.sum(torch.abs(_A ) ) _UpperCAmelCase : List[Any] = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def __snake_case ( self ) -> str: '''simple docstring''' _UpperCAmelCase : int = self.scheduler_classes[0] _UpperCAmelCase : Union[str, Any] = self.get_scheduler_config() _UpperCAmelCase : Union[str, Any] = scheduler_class(**_A , use_karras_sigmas=_A ) scheduler.set_timesteps(self.num_inference_steps , device=_A ) _UpperCAmelCase : Union[str, Any] = torch.manual_seed(0 ) _UpperCAmelCase : Union[str, Any] = self.dummy_model() _UpperCAmelCase : List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _UpperCAmelCase : Dict = sample.to(_A ) for t in scheduler.timesteps: _UpperCAmelCase : List[Any] = scheduler.scale_model_input(_A , _A ) _UpperCAmelCase : Tuple = model(_A , _A ) _UpperCAmelCase : List[str] = scheduler.step(_A , _A , _A , generator=_A ) _UpperCAmelCase : Optional[Any] = output.prev_sample _UpperCAmelCase : List[str] = torch.sum(torch.abs(_A ) ) _UpperCAmelCase : Optional[int] = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 124.52299499511719 ) < 1e-2 assert abs(result_mean.item() - 0.16213932633399963 ) < 1e-3
238
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list[int] ,_UpperCAmelCase : int ) -> bool: _a : Optional[int] =len(_UpperCAmelCase ) _a : Tuple =[[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): _a : Any =True # sum is not zero and set is empty then false for i in range(1 ,required_sum + 1 ): _a : int =False for i in range(1 ,arr_len + 1 ): for j in range(1 ,required_sum + 1 ): if arr[i - 1] > j: _a : Optional[Any] =subset[i - 1][j] if arr[i - 1] <= j: _a : Union[str, Any] =subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
694
0
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) def lowercase_ ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Tuple=False ): """simple docstring""" snake_case__ : str =[] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''deit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''deit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''deit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''deit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''deit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''deit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''deit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''deit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''deit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''deit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''deit.embeddings.cls_token'''), ('''dist_token''', '''deit.embeddings.distillation_token'''), ('''patch_embed.proj.weight''', '''deit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''deit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''deit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" snake_case__ : List[str] =[(pair[0], pair[1][4:]) if pair[1].startswith('''deit''' ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ('''norm.weight''', '''deit.layernorm.weight'''), ('''norm.bias''', '''deit.layernorm.bias'''), ('''head.weight''', '''cls_classifier.weight'''), ('''head.bias''', '''cls_classifier.bias'''), ('''head_dist.weight''', '''distillation_classifier.weight'''), ('''head_dist.bias''', '''distillation_classifier.bias'''), ] ) return rename_keys def lowercase_ ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Tuple=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: snake_case__ : List[str] ='''''' else: snake_case__ : Any ='''deit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case__ : Any =state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) snake_case__ : Any =state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict snake_case__ : Union[str, Any] =in_proj_weight[ : config.hidden_size, : ] snake_case__ : Optional[int] =in_proj_bias[: config.hidden_size] snake_case__ : Optional[Any] =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case__ : Tuple =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case__ : List[str] =in_proj_weight[ -config.hidden_size :, : ] snake_case__ : Union[str, Any] =in_proj_bias[-config.hidden_size :] def lowercase_ ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" snake_case__ : Any =dct.pop(SCREAMING_SNAKE_CASE ) snake_case__ : List[str] =val def lowercase_ ( ): """simple docstring""" snake_case__ : List[Any] ='''http://images.cocodataset.org/val2017/000000039769.jpg''' snake_case__ : Tuple =Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def lowercase_ ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : str ): """simple docstring""" snake_case__ : Optional[Any] =DeiTConfig() # all deit models have fine-tuned heads snake_case__ : List[Any] =False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size snake_case__ : Union[str, Any] =10_00 snake_case__ : Union[str, Any] ='''huggingface/label-files''' snake_case__ : Optional[int] ='''imagenet-1k-id2label.json''' snake_case__ : Union[str, Any] =json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='''dataset''' ) , '''r''' ) ) snake_case__ : Optional[int] ={int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} snake_case__ : Tuple =idalabel snake_case__ : str ={v: k for k, v in idalabel.items()} snake_case__ : Tuple =int(deit_name[-6:-4] ) snake_case__ : Tuple =int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith('''tiny''' ): snake_case__ : Tuple =1_92 snake_case__ : str =7_68 snake_case__ : List[str] =12 snake_case__ : List[Any] =3 elif deit_name[9:].startswith('''small''' ): snake_case__ : str =3_84 snake_case__ : List[Any] =15_36 snake_case__ : str =12 snake_case__ : Optional[int] =6 if deit_name[9:].startswith('''base''' ): pass elif deit_name[4:].startswith('''large''' ): snake_case__ : str =10_24 snake_case__ : Dict =40_96 snake_case__ : Dict =24 snake_case__ : Tuple =16 # load original model from timm snake_case__ : Tuple =timm.create_model(SCREAMING_SNAKE_CASE , pretrained=SCREAMING_SNAKE_CASE ) timm_model.eval() # load state_dict of original model, remove and rename some keys snake_case__ : Tuple =timm_model.state_dict() snake_case__ : int =create_rename_keys(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) read_in_q_k_v(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # load HuggingFace model snake_case__ : int =DeiTForImageClassificationWithTeacher(SCREAMING_SNAKE_CASE ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE ) # Check outputs on an image, prepared by DeiTImageProcessor snake_case__ : int =int( (2_56 / 2_24) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 snake_case__ : Optional[Any] =DeiTImageProcessor(size=SCREAMING_SNAKE_CASE , crop_size=config.image_size ) snake_case__ : str =image_processor(images=prepare_img() , return_tensors='''pt''' ) snake_case__ : int =encoding['''pixel_values'''] snake_case__ : Tuple =model(SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] =timm_model(SCREAMING_SNAKE_CASE ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(SCREAMING_SNAKE_CASE , outputs.logits , atol=1E-3 ) Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) print(F'''Saving model {deit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--deit_name''', default='''vit_deit_base_distilled_patch16_224''', type=str, help='''Name of the DeiT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) lowerCamelCase__ = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
720
import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase__ = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( __UpperCamelCase , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ =DebertaVaTokenizer lowerCAmelCase__ =DebertaVaTokenizerFast lowerCAmelCase__ =True lowerCAmelCase__ =True def UpperCAmelCase ( self ) -> Optional[int]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing snake_case__ : Union[str, Any] =DebertaVaTokenizer(__SCREAMING_SNAKE_CASE , unk_token='''<unk>''' ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" snake_case__ : Optional[Any] ='''this is a test''' snake_case__ : Optional[int] ='''this is a test''' return input_text, output_text def UpperCAmelCase ( self ) -> str: """simple docstring""" snake_case__ : List[Any] ='''<pad>''' snake_case__ : int =0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ) -> Optional[int]: """simple docstring""" snake_case__ : Dict =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''[PAD]''' ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 3_0001 ) def UpperCAmelCase ( self ) -> List[str]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 3_0000 ) def UpperCAmelCase ( self ) -> Optional[Any]: """simple docstring""" snake_case__ : int =''' \tHeLLo!how \n Are yoU? ''' snake_case__ : List[str] =['''▁hello''', '''!''', '''how''', '''▁are''', '''▁you''', '''?'''] # fmt: on snake_case__ : str =DebertaVaTokenizer(__SCREAMING_SNAKE_CASE , do_lower_case=__SCREAMING_SNAKE_CASE ) snake_case__ : str =tokenizer.convert_ids_to_tokens(tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) snake_case__ : Tuple =DebertaVaTokenizerFast(__SCREAMING_SNAKE_CASE , do_lower_case=__SCREAMING_SNAKE_CASE ) snake_case__ : Dict =rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def UpperCAmelCase ( self ) -> List[str]: """simple docstring""" pass @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def UpperCAmelCase ( self ) -> Tuple: """simple docstring""" pass def UpperCAmelCase ( self ) -> Optional[Any]: """simple docstring""" snake_case__ : Union[str, Any] ='''I was born in 92000, and this is falsé.''' snake_case__ : int =['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on snake_case__ : Tuple =DebertaVaTokenizer(__SCREAMING_SNAKE_CASE , split_by_punct=__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] =tokenizer.convert_ids_to_tokens(tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] =DebertaVaTokenizerFast(__SCREAMING_SNAKE_CASE , split_by_punct=__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] =rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ) -> Any: """simple docstring""" snake_case__ : Tuple ='''I was born in 92000, and this is falsé.''' snake_case__ : Tuple =['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on snake_case__ : Optional[Any] =DebertaVaTokenizer(__SCREAMING_SNAKE_CASE , do_lower_case=__SCREAMING_SNAKE_CASE , split_by_punct=__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] =tokenizer.convert_ids_to_tokens(tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) snake_case__ : Dict =DebertaVaTokenizerFast(__SCREAMING_SNAKE_CASE , do_lower_case=__SCREAMING_SNAKE_CASE , split_by_punct=__SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] =rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ) -> Dict: """simple docstring""" snake_case__ : str ='''I was born in 92000, and this is falsé.''' snake_case__ : Optional[Any] =['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on snake_case__ : Dict =DebertaVaTokenizer(__SCREAMING_SNAKE_CASE , do_lower_case=__SCREAMING_SNAKE_CASE , split_by_punct=__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] =tokenizer.convert_ids_to_tokens(tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] =DebertaVaTokenizerFast(__SCREAMING_SNAKE_CASE , do_lower_case=__SCREAMING_SNAKE_CASE , split_by_punct=__SCREAMING_SNAKE_CASE ) snake_case__ : Any =rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ) -> List[str]: """simple docstring""" snake_case__ : Any ='''I was born in 92000, and this is falsé.''' snake_case__ : int =['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on snake_case__ : Any =DebertaVaTokenizer(__SCREAMING_SNAKE_CASE , do_lower_case=__SCREAMING_SNAKE_CASE , split_by_punct=__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] =tokenizer.convert_ids_to_tokens(tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) snake_case__ : int =DebertaVaTokenizerFast(__SCREAMING_SNAKE_CASE , do_lower_case=__SCREAMING_SNAKE_CASE , split_by_punct=__SCREAMING_SNAKE_CASE ) snake_case__ : Dict =rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ) -> Optional[int]: """simple docstring""" snake_case__ : List[Any] =''' \tHeLLo!how \n Are yoU? ''' snake_case__ : Tuple =['''▁''', '''<unk>''', '''e''', '''<unk>''', '''o''', '''!''', '''how''', '''▁''', '''<unk>''', '''re''', '''▁yo''', '''<unk>''', '''?'''] # fmt: on snake_case__ : Tuple =DebertaVaTokenizer(__SCREAMING_SNAKE_CASE , do_lower_case=__SCREAMING_SNAKE_CASE , split_by_punct=__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] =tokenizer.convert_ids_to_tokens(tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) snake_case__ : str =DebertaVaTokenizerFast(__SCREAMING_SNAKE_CASE , do_lower_case=__SCREAMING_SNAKE_CASE , split_by_punct=__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] =rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ) -> Any: """simple docstring""" snake_case__ : Optional[int] =self.get_tokenizer() snake_case__ : Tuple =self.get_rust_tokenizer() snake_case__ : int ='''I was born in 92000, and this is falsé.''' snake_case__ : int =tokenizer.convert_ids_to_tokens(tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) ) snake_case__ : List[str] =rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) snake_case__ : Any =tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) snake_case__ : Dict =rust_tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] =self.get_rust_tokenizer() snake_case__ : Dict =tokenizer.encode(__SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] =rust_tokenizer.encode(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ) -> Optional[Any]: """simple docstring""" snake_case__ : Tuple ='''This is a test''' snake_case__ : List[str] =[13, 1, 4398, 25, 21, 1289] snake_case__ : Union[str, Any] =['''▁''', '''T''', '''his''', '''▁is''', '''▁a''', '''▁test'''] snake_case__ : Any =['''▁''', '''<unk>''', '''his''', '''▁is''', '''▁a''', '''▁test'''] snake_case__ : Union[str, Any] =DebertaVaTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE ) snake_case__ : Tuple =DebertaVaTokenizerFast(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[int] =tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) snake_case__ : List[str] =tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) snake_case__ : int =tokenizer.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) snake_case__ : Dict =rust_tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) snake_case__ : str =rust_tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] =rust_tokenizer.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # fmt: off snake_case__ : Union[str, Any] ='''I was born in 92000, and this is falsé.''' snake_case__ : Union[str, Any] =[13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] snake_case__ : List[str] =['''▁''', '''I''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''', ] snake_case__ : int =['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on snake_case__ : Union[str, Any] =tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) snake_case__ : Dict =tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) snake_case__ : Dict =tokenizer.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] =rust_tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) snake_case__ : Tuple =rust_tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) snake_case__ : str =rust_tokenizer.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ) -> List[Any]: """simple docstring""" snake_case__ : Union[str, Any] =DebertaVaTokenizer(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] =tokenizer.encode('''sequence builders''' ) snake_case__ : str =tokenizer.encode('''multi-sequence build''' ) snake_case__ : List[Any] =tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE ) snake_case__ : Any =tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , __SCREAMING_SNAKE_CASE ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , __SCREAMING_SNAKE_CASE , ) @slow def UpperCAmelCase ( self ) -> Dict: """simple docstring""" snake_case__ : Any ={'''input_ids''': [[1, 3_9867, 36, 1_9390, 486, 27, 3_5052, 8_1436, 18, 6_0685, 1225, 7, 3_5052, 8_1436, 18, 9367, 1_6899, 18, 1_5937, 53, 594, 773, 18, 1_6287, 3_0465, 36, 1_5937, 6, 4_1139, 38, 3_6979, 6_0763, 191, 6, 3_4132, 99, 6, 5_0538, 390, 4_3230, 6, 3_4132, 2779, 2_0850, 14, 699, 1072, 1194, 36, 382, 1_0901, 53, 7, 699, 1072, 2084, 36, 2_0422, 630, 53, 19, 105, 3049, 1896, 1053, 1_6899, 1506, 11, 3_7978, 4243, 7, 1237, 3_1869, 200, 1_6566, 654, 6, 3_5052, 8_1436, 7, 5_5630, 1_3593, 4, 2], [1, 26, 1_5011, 13, 667, 8, 1053, 18, 2_3611, 1237, 7_2356, 1_2820, 34, 10_4134, 1209, 35, 1_3313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 1_5785, 1_4951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__SCREAMING_SNAKE_CASE , model_name='''microsoft/deberta-v2-xlarge''' , revision='''ad6e42c1532ddf3a15c39246b63f5559d558b670''' , )
408
0
"""simple docstring""" import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger() @dataclass class __magic_name__ : _SCREAMING_SNAKE_CASE : nn.Module _SCREAMING_SNAKE_CASE : List[nn.Module] = field(default_factory=lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : list = field(default_factory=lowerCAmelCase_ ) def lowerCAmelCase ( self : Optional[Any] , snake_case_ : str , snake_case_ : Tensor , snake_case_ : Tensor ): __snake_case = len(list(m.modules() ) ) == 1 or isinstance(lowercase__ , nn.Convad ) or isinstance(lowercase__ , nn.BatchNormad ) if has_not_submodules: self.traced.append(lowercase__ ) def __call__( self : Dict , snake_case_ : Tensor ): for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(lowercase__ ) [x.remove() for x in self.handles] return self @property def lowerCAmelCase ( self : List[Any] ): # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda snake_case_ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class __magic_name__ : _SCREAMING_SNAKE_CASE : nn.Module _SCREAMING_SNAKE_CASE : nn.Module _SCREAMING_SNAKE_CASE : int = 0 _SCREAMING_SNAKE_CASE : List = field(default_factory=lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : List = field(default_factory=lowerCAmelCase_ ) def __call__( self : str , snake_case_ : Tensor ): __snake_case = Tracker(self.dest )(lowercase__ ).parametrized __snake_case = Tracker(self.src )(lowercase__ ).parametrized __snake_case = list(filter(lambda snake_case_ : type(lowercase__ ) not in self.src_skip , lowercase__ ) ) __snake_case = list(filter(lambda snake_case_ : type(lowercase__ ) not in self.dest_skip , lowercase__ ) ) if len(lowercase__ ) != len(lowercase__ ): raise Exception( F'''Numbers of operations are different. Source module has {len(lowercase__ )} operations while''' F''' destination module has {len(lowercase__ )}.''' ) for dest_m, src_m in zip(lowercase__ , lowercase__ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F'''Transfered from={src_m} to={dest_m}''' ) def __UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = True ) -> List[str]: """simple docstring""" print(F'''Converting {name}...''' ) with torch.no_grad(): __snake_case = timm.create_model(_lowerCamelCase , pretrained=_lowerCamelCase ).eval() __snake_case = ResNetForImageClassification(_lowerCamelCase ).eval() __snake_case = ModuleTransfer(src=_lowerCamelCase , dest=_lowerCamelCase ) __snake_case = torch.randn((1, 3, 2_24, 2_24) ) module_transfer(_lowerCamelCase ) assert torch.allclose(from_model(_lowerCamelCase ) , our_model(_lowerCamelCase ).logits ), "The model logits don't match the original one." __snake_case = F'''resnet{"-".join(name.split("resnet" ) )}''' print(_lowerCamelCase ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="Add model" , use_temp_dir=_lowerCamelCase , ) # we can use the convnext one __snake_case = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="Add image processor" , use_temp_dir=_lowerCamelCase , ) print(F'''Pushed {checkpoint_name}''' ) def __UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = True ) -> Any: """simple docstring""" __snake_case = "imagenet-1k-id2label.json" __snake_case = 10_00 __snake_case = (1, num_labels) __snake_case = "huggingface/label-files" __snake_case = num_labels __snake_case = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) __snake_case = {int(_lowerCamelCase ): v for k, v in idalabel.items()} __snake_case = idalabel __snake_case = {v: k for k, v in idalabel.items()} __snake_case = partial(_lowerCamelCase , num_labels=_lowerCamelCase , idalabel=_lowerCamelCase , labelaid=_lowerCamelCase ) __snake_case = { "resnet18": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 1_28, 2_56, 5_12] , layer_type="basic" ), "resnet26": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type="bottleneck" ), "resnet34": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 1_28, 2_56, 5_12] , layer_type="basic" ), "resnet50": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type="bottleneck" ), "resnet101": ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type="bottleneck" ), "resnet152": ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type="bottleneck" ), } if model_name: convert_weight_and_push(_lowerCamelCase , names_to_config[model_name] , _lowerCamelCase , _lowerCamelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return config, expected_shape if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default=None, type=str, help=( """The name of the model you wish to convert, it must be one of the supported resnet* architecture,""" """ currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=Path, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=True, type=bool, required=False, help="""If True, push model and image processor to the hub.""", ) _SCREAMING_SNAKE_CASE = parser.parse_args() _SCREAMING_SNAKE_CASE = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
163
"""simple docstring""" def snake_case__ ( _lowerCamelCase ) ->int: """simple docstring""" if not isinstance(_lowerCamelCase, _lowerCamelCase ): raise ValueError("Input must be an integer" ) if input_num <= 0: raise ValueError("Input must be positive" ) return sum( divisor for divisor in range(1, input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
575
0
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __magic_name__ =logging.get_logger(__name__) def __UpperCamelCase ( A , A=False ): UpperCamelCase__ = [] # fmt: off # stem: rename_keys.append(('''cls_token''', '''vit.embeddings.cls_token''') ) rename_keys.append(('''pos_embed''', '''vit.embeddings.position_embeddings''') ) rename_keys.append(('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias''') ) # backbone rename_keys.append(('''patch_embed.backbone.stem.conv.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight''') ) rename_keys.append(('''patch_embed.backbone.stem.norm.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight''') ) rename_keys.append(('''patch_embed.backbone.stem.norm.bias''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias''') ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias") ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((f"blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" UpperCamelCase__ = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) # fmt: on return rename_keys def __UpperCamelCase ( A , A , A=False ): for i in range(config.num_hidden_layers ): if base_model: UpperCamelCase__ = '''''' else: UpperCamelCase__ = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCamelCase__ = state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) UpperCamelCase__ = state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase__ = in_proj_weight[ : config.hidden_size, : ] UpperCamelCase__ = in_proj_bias[: config.hidden_size] UpperCamelCase__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCamelCase__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCamelCase__ = in_proj_weight[ -config.hidden_size :, : ] UpperCamelCase__ = in_proj_bias[-config.hidden_size :] def __UpperCamelCase ( A ): UpperCamelCase__ = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(A , A ) def __UpperCamelCase ( A , A , A ): UpperCamelCase__ = dct.pop(A ) UpperCamelCase__ = val def __UpperCamelCase ( ): UpperCamelCase__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCamelCase__ = Image.open(requests.get(A , stream=A ).raw ) return im @torch.no_grad() def __UpperCamelCase ( A , A , A=False ): UpperCamelCase__ = BitConfig( global_padding='''same''' , layer_type='''bottleneck''' , depths=(3, 4, 9) , out_features=['''stage3'''] , embedding_dynamic_padding=A , ) UpperCamelCase__ = ViTHybridConfig(backbone_config=A , image_size=384 , num_labels=1000 ) UpperCamelCase__ = False # load original model from timm UpperCamelCase__ = timm.create_model(A , pretrained=A ) timm_model.eval() # load state_dict of original model, remove and rename some keys UpperCamelCase__ = timm_model.state_dict() if base_model: remove_classification_head_(A ) UpperCamelCase__ = create_rename_keys(A , A ) for src, dest in rename_keys: rename_key(A , A , A ) read_in_q_k_v(A , A , A ) UpperCamelCase__ = '''huggingface/label-files''' UpperCamelCase__ = '''imagenet-1k-id2label.json''' UpperCamelCase__ = json.load(open(hf_hub_download(A , A , repo_type='''dataset''' ) , '''r''' ) ) UpperCamelCase__ = {int(A ): v for k, v in idalabel.items()} UpperCamelCase__ = idalabel UpperCamelCase__ = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": UpperCamelCase__ = ViTHybridModel(A ).eval() else: UpperCamelCase__ = ViTHybridForImageClassification(A ).eval() model.load_state_dict(A ) # create image processor UpperCamelCase__ = create_transform(**resolve_data_config({} , model=A ) ) UpperCamelCase__ = transform.transforms UpperCamelCase__ = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } UpperCamelCase__ = ViTHybridImageProcessor( do_resize=A , size={'''shortest_edge''': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=A , crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]} , do_normalize=A , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) UpperCamelCase__ = prepare_img() UpperCamelCase__ = transform(A ).unsqueeze(0 ) UpperCamelCase__ = processor(A , return_tensors='''pt''' ).pixel_values # verify pixel values assert torch.allclose(A , A ) # verify logits with torch.no_grad(): UpperCamelCase__ = model(A ) UpperCamelCase__ = outputs.logits print('''Predicted class:''' , logits.argmax(-1 ).item() ) if base_model: UpperCamelCase__ = timm_model.forward_features(A ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(A , outputs.pooler_output , atol=1e-3 ) else: UpperCamelCase__ = timm_model(A ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(A , outputs.logits , atol=1e-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(A ).mkdir(exist_ok=A ) print(f"Saving model {vit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(A ) print(f"Saving processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(A ) if push_to_hub: print(f"Pushing model and processor to the hub {vit_name}" ) model.push_to_hub(f"ybelkada/{vit_name}" ) processor.push_to_hub(f"ybelkada/{vit_name}" ) if __name__ == "__main__": __magic_name__ =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--vit_name''', default='''vit_base_r50_s16_384''', type=str, help='''Name of the hybrid ViT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to upload the model to the HuggingFace hub.''' ) __magic_name__ =parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
710
import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int __magic_name__ =datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class _A ( datasets.BuilderConfig ): SCREAMING_SNAKE_CASE_ : Optional[datasets.Features] =None def __UpperCamelCase ( A , A , ): import pyspark def generate_fn(): UpperCamelCase__ = df.select('''*''' , pyspark.sql.functions.spark_partition_id().alias('''part_id''' ) ) for partition_id in partition_order: UpperCamelCase__ = df_with_partition_id.select('''*''' ).where(f"part_id = {partition_id}" ).drop('''part_id''' ) UpperCamelCase__ = partition_df.collect() UpperCamelCase__ = 0 for row in rows: yield f"{partition_id}_{row_id}", row.asDict() row_id += 1 return generate_fn class _A ( _BaseExamplesIterable ): def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , ) -> Any: '''simple docstring''' UpperCamelCase__ = df UpperCamelCase__ = partition_order or range(self.df.rdd.getNumPartitions() ) UpperCamelCase__ = _generate_iterable_examples(self.df , self.partition_order ) def __iter__(self ) -> int: '''simple docstring''' yield from self.generate_examples_fn() def _a (self , SCREAMING_SNAKE_CASE_ ) -> "SparkExamplesIterable": '''simple docstring''' UpperCamelCase__ = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(SCREAMING_SNAKE_CASE_ ) return SparkExamplesIterable(self.df , partition_order=SCREAMING_SNAKE_CASE_ ) def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> "SparkExamplesIterable": '''simple docstring''' UpperCamelCase__ = self.split_shard_indices_by_worker(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return SparkExamplesIterable(self.df , partition_order=SCREAMING_SNAKE_CASE_ ) @property def _a (self ) -> int: '''simple docstring''' return len(self.partition_order ) class _A ( datasets.DatasetBuilder ): SCREAMING_SNAKE_CASE_ : List[str] =SparkConfig def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> Union[str, Any]: '''simple docstring''' import pyspark UpperCamelCase__ = pyspark.sql.SparkSession.builder.getOrCreate() UpperCamelCase__ = df UpperCamelCase__ = working_dir super().__init__( cache_dir=SCREAMING_SNAKE_CASE_ , config_name=str(self.df.semanticHash() ) , **SCREAMING_SNAKE_CASE_ , ) def _a (self ) -> Union[str, Any]: '''simple docstring''' def create_cache_and_write_probe(SCREAMING_SNAKE_CASE_ ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = os.path.join(self._cache_dir , '''fs_test''' + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(SCREAMING_SNAKE_CASE_ , '''a''' ) return [probe_file] if self._spark.conf.get('''spark.master''' , '''''' ).startswith('''local''' ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: UpperCamelCase__ = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(SCREAMING_SNAKE_CASE_ ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( '''When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir''' ) def _a (self ) -> Any: '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def _a (self , SCREAMING_SNAKE_CASE_ ) -> int: '''simple docstring''' return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def _a (self , SCREAMING_SNAKE_CASE_ ) -> List[str]: '''simple docstring''' import pyspark def get_arrow_batch_size(SCREAMING_SNAKE_CASE_ ): for batch in it: yield pa.RecordBatch.from_pydict({'''batch_bytes''': [batch.nbytes]} ) UpperCamelCase__ = self.df.count() UpperCamelCase__ = df_num_rows if df_num_rows <= 100 else 100 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. UpperCamelCase__ = ( self.df.limit(SCREAMING_SNAKE_CASE_ ) .repartition(1 ) .mapInArrow(SCREAMING_SNAKE_CASE_ , '''batch_bytes: long''' ) .agg(pyspark.sql.functions.sum('''batch_bytes''' ).alias('''sample_bytes''' ) ) .collect()[0] .sample_bytes / sample_num_rows ) UpperCamelCase__ = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. UpperCamelCase__ = min(SCREAMING_SNAKE_CASE_ , int(approx_total_size / max_shard_size ) ) UpperCamelCase__ = self.df.repartition(SCREAMING_SNAKE_CASE_ ) def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) -> Iterable[Tuple[int, bool, Union[int, tuple]]]: '''simple docstring''' import pyspark UpperCamelCase__ = ParquetWriter if file_format == '''parquet''' else ArrowWriter UpperCamelCase__ = os.path.join(self._working_dir , os.path.basename(SCREAMING_SNAKE_CASE_ ) ) if self._working_dir else fpath UpperCamelCase__ = file_format == '''parquet''' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. UpperCamelCase__ = self.config.features UpperCamelCase__ = self._writer_batch_size UpperCamelCase__ = self._fs.storage_options def write_arrow(SCREAMING_SNAKE_CASE_ ): # Within the same SparkContext, no two task attempts will share the same attempt ID. UpperCamelCase__ = pyspark.TaskContext().taskAttemptId() UpperCamelCase__ = next(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) UpperCamelCase__ = 0 UpperCamelCase__ = writer_class( features=SCREAMING_SNAKE_CASE_ , path=working_fpath.replace('''SSSSS''' , F"{shard_id:05d}" ).replace('''TTTTT''' , F"{task_id:05d}" ) , writer_batch_size=SCREAMING_SNAKE_CASE_ , storage_options=SCREAMING_SNAKE_CASE_ , embed_local_files=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase__ = pa.Table.from_batches([first_batch] ) writer.write_table(SCREAMING_SNAKE_CASE_ ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: UpperCamelCase__ , UpperCamelCase__ = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) shard_id += 1 UpperCamelCase__ = writer_class( features=writer._features , path=working_fpath.replace('''SSSSS''' , F"{shard_id:05d}" ).replace('''TTTTT''' , F"{task_id:05d}" ) , writer_batch_size=SCREAMING_SNAKE_CASE_ , storage_options=SCREAMING_SNAKE_CASE_ , embed_local_files=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase__ = pa.Table.from_batches([batch] ) writer.write_table(SCREAMING_SNAKE_CASE_ ) if writer._num_bytes > 0: UpperCamelCase__ , UpperCamelCase__ = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(SCREAMING_SNAKE_CASE_ ) ): UpperCamelCase__ = os.path.join(os.path.dirname(SCREAMING_SNAKE_CASE_ ) , os.path.basename(SCREAMING_SNAKE_CASE_ ) ) shutil.move(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = ( self.df.mapInArrow(SCREAMING_SNAKE_CASE_ , '''task_id: long, num_examples: long, num_bytes: long''' ) .groupBy('''task_id''' ) .agg( pyspark.sql.functions.sum('''num_examples''' ).alias('''total_num_examples''' ) , pyspark.sql.functions.sum('''num_bytes''' ).alias('''total_num_bytes''' ) , pyspark.sql.functions.count('''num_bytes''' ).alias('''num_shards''' ) , pyspark.sql.functions.collect_list('''num_examples''' ).alias('''shard_lengths''' ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = "arrow" , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> Optional[int]: '''simple docstring''' self._validate_cache_dir() UpperCamelCase__ = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = not is_remote_filesystem(self._fs ) UpperCamelCase__ = os.path.join if is_local else posixpath.join UpperCamelCase__ = '''-TTTTT-SSSSS-of-NNNNN''' UpperCamelCase__ = F"{self.name}-{split_generator.name}{SUFFIX}.{file_format}" UpperCamelCase__ = path_join(self._output_dir , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = 0 UpperCamelCase__ = 0 UpperCamelCase__ = 0 UpperCamelCase__ = [] UpperCamelCase__ = [] for task_id, content in self._prepare_split_single(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = total_num_examples UpperCamelCase__ = total_num_bytes # should rename everything at the end logger.debug(F"Renaming {total_shards} shards." ) if total_shards > 1: UpperCamelCase__ = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. UpperCamelCase__ = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ): rename( SCREAMING_SNAKE_CASE_ , fpath.replace('''SSSSS''' , F"{shard_id:05d}" ).replace('''TTTTT''' , F"{task_id:05d}" ) , fpath.replace('''TTTTT-SSSSS''' , F"{global_shard_id:05d}" ).replace('''NNNNN''' , F"{total_shards:05d}" ) , ) UpperCamelCase__ = [] UpperCamelCase__ = 0 for i in range(len(SCREAMING_SNAKE_CASE_ ) ): UpperCamelCase__ , UpperCamelCase__ = task_id_and_num_shards[i] for shard_id in range(SCREAMING_SNAKE_CASE_ ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) ).map(lambda SCREAMING_SNAKE_CASE_ : _rename_shard(*SCREAMING_SNAKE_CASE_ ) ).collect() else: # don't use any pattern UpperCamelCase__ = 0 UpperCamelCase__ = task_id_and_num_shards[0][0] self._rename( fpath.replace('''SSSSS''' , F"{shard_id:05d}" ).replace('''TTTTT''' , F"{task_id:05d}" ) , fpath.replace(SCREAMING_SNAKE_CASE_ , '''''' ) , ) def _a (self , SCREAMING_SNAKE_CASE_ , ) -> SparkExamplesIterable: '''simple docstring''' return SparkExamplesIterable(self.df )
469
0
"""simple docstring""" import unittest from knapsack import knapsack as k class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = 0 _lowerCAmelCase : Optional[Any] = [0] _lowerCAmelCase : Any = [0] _lowerCAmelCase : Dict = len(_A ) self.assertEqual(k.knapsack(_A ,_A ,_A ,_A ) ,0 ) _lowerCAmelCase : Any = [60] _lowerCAmelCase : Optional[Any] = [10] _lowerCAmelCase : Union[str, Any] = len(_A ) self.assertEqual(k.knapsack(_A ,_A ,_A ,_A ) ,0 ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = 3 _lowerCAmelCase : str = [1, 2, 3] _lowerCAmelCase : Optional[int] = [3, 2, 1] _lowerCAmelCase : Union[str, Any] = len(_A ) self.assertEqual(k.knapsack(_A ,_A ,_A ,_A ) ,5 ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = 50 _lowerCAmelCase : Optional[Any] = [60, 100, 120] _lowerCAmelCase : Any = [10, 20, 30] _lowerCAmelCase : Any = len(_A ) self.assertEqual(k.knapsack(_A ,_A ,_A ,_A ) ,220 ) if __name__ == "__main__": unittest.main()
259
"""simple docstring""" import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=True , _lowerCamelCase="pt" ): '''simple docstring''' _lowerCAmelCase : str = {'add_prefix_space': True} if isinstance(_lowerCamelCase , _lowerCamelCase ) and not line.startswith(' ' ) else {} _lowerCAmelCase : List[str] = padding_side return tokenizer( [line] , max_length=_lowerCamelCase , padding='max_length' if pad_to_max_length else None , truncation=_lowerCamelCase , return_tensors=_lowerCamelCase , add_special_tokens=_lowerCamelCase , **_lowerCamelCase , ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , ): '''simple docstring''' _lowerCAmelCase : str = input_ids.ne(_lowerCamelCase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __UpperCamelCase ( a__ ): def __init__( self ,_A ,_A ,_A ,_A ,_A="train" ,_A=None ,_A=None ,_A=None ,_A="" ,): '''simple docstring''' super().__init__() _lowerCAmelCase : Any = Path(_A ).joinpath(type_path + '.source' ) _lowerCAmelCase : Optional[int] = Path(_A ).joinpath(type_path + '.target' ) _lowerCAmelCase : List[Any] = self.get_char_lens(self.src_file ) _lowerCAmelCase : Tuple = max_source_length _lowerCAmelCase : Union[str, Any] = max_target_length assert min(self.src_lens ) > 0, F"""found empty line in {self.src_file}""" _lowerCAmelCase : Dict = tokenizer _lowerCAmelCase : List[Any] = prefix if n_obs is not None: _lowerCAmelCase : int = self.src_lens[:n_obs] _lowerCAmelCase : List[str] = src_lang _lowerCAmelCase : Any = tgt_lang def __len__( self ): '''simple docstring''' return len(self.src_lens ) def __getitem__( self ,_A ): '''simple docstring''' _lowerCAmelCase : str = index + 1 # linecache starts at 1 _lowerCAmelCase : Optional[int] = self.prefix + linecache.getline(str(self.src_file ) ,_A ).rstrip('\n' ) _lowerCAmelCase : Optional[int] = linecache.getline(str(self.tgt_file ) ,_A ).rstrip('\n' ) assert source_line, F"""empty source line for index {index}""" assert tgt_line, F"""empty tgt line for index {index}""" # Need to add eos token manually for T5 if isinstance(self.tokenizer ,_A ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right _lowerCAmelCase : List[str] = ( self.tokenizer.question_encoder if isinstance(self.tokenizer ,_A ) else self.tokenizer ) _lowerCAmelCase : Dict = self.tokenizer.generator if isinstance(self.tokenizer ,_A ) else self.tokenizer _lowerCAmelCase : Union[str, Any] = encode_line(_A ,_A ,self.max_source_length ,'right' ) _lowerCAmelCase : Optional[int] = encode_line(_A ,_A ,self.max_target_length ,'right' ) _lowerCAmelCase : Tuple = source_inputs['input_ids'].squeeze() _lowerCAmelCase : int = target_inputs['input_ids'].squeeze() _lowerCAmelCase : Optional[Any] = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def __lowerCamelCase ( _A ): '''simple docstring''' return [len(_A ) for x in Path(_A ).open().readlines()] def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = torch.stack([x['input_ids'] for x in batch] ) _lowerCAmelCase : List[Any] = torch.stack([x['attention_mask'] for x in batch] ) _lowerCAmelCase : Any = torch.stack([x['decoder_input_ids'] for x in batch] ) _lowerCAmelCase : List[str] = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer ,_A ) else self.tokenizer.pad_token_id ) _lowerCAmelCase : List[str] = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer ,_A ) else self.tokenizer.pad_token_id ) _lowerCAmelCase : int = trim_batch(_A ,_A ) _lowerCAmelCase, _lowerCAmelCase : Optional[int] = trim_batch(_A ,_A ,attention_mask=_A ) _lowerCAmelCase : List[str] = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch _lowerCAmelCase = getLogger(__name__) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return list(itertools.chain.from_iterable(_lowerCamelCase ) ) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = get_git_info() save_json(_lowerCamelCase , os.path.join(_lowerCamelCase , 'git_log.json' ) ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=4 , **_lowerCamelCase ): '''simple docstring''' with open(_lowerCamelCase , 'w' ) as f: json.dump(_lowerCamelCase , _lowerCamelCase , indent=_lowerCamelCase , **_lowerCamelCase ) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' with open(_lowerCamelCase ) as f: return json.load(_lowerCamelCase ) def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = git.Repo(search_parent_directories=_lowerCamelCase ) _lowerCAmelCase : Optional[int] = { 'repo_id': str(_lowerCamelCase ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return list(map(_lowerCamelCase , _lowerCamelCase ) ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' with open(_lowerCamelCase , 'wb' ) as f: return pickle.dump(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' def remove_articles(_lowerCamelCase ): return re.sub(R'\b(a|an|the)\b' , ' ' , _lowerCamelCase ) def white_space_fix(_lowerCamelCase ): return " ".join(text.split() ) def remove_punc(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_lowerCamelCase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_lowerCamelCase ) ) ) ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = normalize_answer(_lowerCamelCase ).split() _lowerCAmelCase : List[str] = normalize_answer(_lowerCamelCase ).split() _lowerCAmelCase : Optional[Any] = Counter(_lowerCamelCase ) & Counter(_lowerCamelCase ) _lowerCAmelCase : List[Any] = sum(common.values() ) if num_same == 0: return 0 _lowerCAmelCase : Any = 1.0 * num_same / len(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = 1.0 * num_same / len(_lowerCamelCase ) _lowerCAmelCase : str = (2 * precision * recall) / (precision + recall) return fa def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return normalize_answer(_lowerCamelCase ) == normalize_answer(_lowerCamelCase ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' assert len(_lowerCamelCase ) == len(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = 0 for hypo, pred in zip(_lowerCamelCase , _lowerCamelCase ): em += exact_match_score(_lowerCamelCase , _lowerCamelCase ) if len(_lowerCamelCase ) > 0: em /= len(_lowerCamelCase ) return {"em": em} def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return model_prefix.startswith('rag' ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead _lowerCAmelCase : List[str] = 'dropout_rate' for p in extra_params: if getattr(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if not hasattr(_lowerCamelCase , _lowerCamelCase ) and not hasattr(_lowerCamelCase , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(_lowerCamelCase ) ) delattr(_lowerCamelCase , _lowerCamelCase ) continue _lowerCAmelCase : Optional[Any] = p if hasattr(_lowerCamelCase , _lowerCamelCase ) else equivalent_param[p] setattr(_lowerCamelCase , _lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase ) ) delattr(_lowerCamelCase , _lowerCamelCase ) return hparams, config
259
1
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input UpperCAmelCase ="Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine" def _A ( ): """simple docstring""" A = _ask_options( """In which compute environment are you running?""" , ["""This machine""", """AWS (Amazon SageMaker)"""] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: A = get_sagemaker_input() else: A = get_cluster_input() return config def _A ( _a : Any=None ): """simple docstring""" if subparsers is not None: A = subparsers.add_parser("""config""" , description=_a ) else: A = argparse.ArgumentParser("""Accelerate config command""" , description=_a ) parser.add_argument( """--config_file""" , default=_a , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ) , ) if subparsers is not None: parser.set_defaults(func=_a ) return parser def _A ( _a : Optional[Any] ): """simple docstring""" A = get_user_input() if args.config_file is not None: A = args.config_file else: if not os.path.isdir(_a ): os.makedirs(_a ) A = default_yaml_config_file if config_file.endswith(""".json""" ): config.to_json_file(_a ) else: config.to_yaml_file(_a ) print(f'accelerate configuration saved at {config_file}' ) def _A ( ): """simple docstring""" A = config_command_parser() A = parser.parse_args() config_command(_a ) if __name__ == "__main__": main()
255
"""simple docstring""" from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowerCamelCase = 42 class lowerCamelCase__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' @register_to_config def __init__( self ,lowerCamelCase_ = 3_2 ,lowerCamelCase_ = 6_4 ,lowerCamelCase_ = 2_0 ,lowerCamelCase_ = 7_6_8 ,lowerCamelCase_=7_7 ,lowerCamelCase_=4 ,lowerCamelCase_ = 0.0 ,lowerCamelCase_ = "silu" ,lowerCamelCase_ = None ,lowerCamelCase_ = None ,lowerCamelCase_ = "linear" ,lowerCamelCase_ = "prd" ,lowerCamelCase_ = None ,lowerCamelCase_ = None ,lowerCamelCase_ = None ,) -> Optional[int]: super().__init__() A = num_attention_heads A = attention_head_dim A = num_attention_heads * attention_head_dim A = additional_embeddings A = time_embed_dim or inner_dim A = embedding_proj_dim or embedding_dim A = clip_embed_dim or embedding_dim A = Timesteps(lowerCamelCase_ ,lowerCamelCase_ ,0 ) A = TimestepEmbedding(lowerCamelCase_ ,lowerCamelCase_ ,out_dim=lowerCamelCase_ ,act_fn=lowerCamelCase_ ) A = nn.Linear(lowerCamelCase_ ,lowerCamelCase_ ) if embedding_proj_norm_type is None: A = None elif embedding_proj_norm_type == "layer": A = nn.LayerNorm(lowerCamelCase_ ) else: raise ValueError(f'unsupported embedding_proj_norm_type: {embedding_proj_norm_type}' ) A = nn.Linear(lowerCamelCase_ ,lowerCamelCase_ ) if encoder_hid_proj_type is None: A = None elif encoder_hid_proj_type == "linear": A = nn.Linear(lowerCamelCase_ ,lowerCamelCase_ ) else: raise ValueError(f'unsupported encoder_hid_proj_type: {encoder_hid_proj_type}' ) A = nn.Parameter(torch.zeros(1 ,num_embeddings + additional_embeddings ,lowerCamelCase_ ) ) if added_emb_type == "prd": A = nn.Parameter(torch.zeros(1 ,1 ,lowerCamelCase_ ) ) elif added_emb_type is None: A = None else: raise ValueError( f'`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.' ) A = nn.ModuleList( [ BasicTransformerBlock( lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,dropout=lowerCamelCase_ ,activation_fn="""gelu""" ,attention_bias=lowerCamelCase_ ,) for d in range(lowerCamelCase_ ) ] ) if norm_in_type == "layer": A = nn.LayerNorm(lowerCamelCase_ ) elif norm_in_type is None: A = None else: raise ValueError(f'Unsupported norm_in_type: {norm_in_type}.' ) A = nn.LayerNorm(lowerCamelCase_ ) A = nn.Linear(lowerCamelCase_ ,lowerCamelCase_ ) A = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] ,-1_00_00.0 ) causal_attention_mask.triu_(1 ) A = causal_attention_mask[None, ...] self.register_buffer("""causal_attention_mask""" ,lowerCamelCase_ ,persistent=lowerCamelCase_ ) A = nn.Parameter(torch.zeros(1 ,lowerCamelCase_ ) ) A = nn.Parameter(torch.zeros(1 ,lowerCamelCase_ ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def UpperCamelCase__ ( self ) -> Dict[str, AttentionProcessor]: A = {} def fn_recursive_add_processors(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ): if hasattr(lowerCamelCase_ ,"""set_processor""" ): A = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f'{name}.{sub_name}' ,lowerCamelCase_ ,lowerCamelCase_ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) return processors def UpperCamelCase__ ( self ,lowerCamelCase_ ) -> Tuple: A = len(self.attn_processors.keys() ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) and len(lowerCamelCase_ ) != count: raise ValueError( f'A dict of processors was passed, but the number of processors {len(lowerCamelCase_ )} does not match the' f' number of attention layers: {count}. Please make sure to pass {count} processor classes.' ) def fn_recursive_attn_processor(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ): if hasattr(lowerCamelCase_ ,"""set_processor""" ): if not isinstance(lowerCamelCase_ ,lowerCamelCase_ ): module.set_processor(lowerCamelCase_ ) else: module.set_processor(processor.pop(f'{name}.processor' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f'{name}.{sub_name}' ,lowerCamelCase_ ,lowerCamelCase_ ) for name, module in self.named_children(): fn_recursive_attn_processor(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) def UpperCamelCase__ ( self ) -> Union[str, Any]: self.set_attn_processor(AttnProcessor() ) def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = None ,lowerCamelCase_ = None ,lowerCamelCase_ = True ,) -> Tuple: A = hidden_states.shape[0] A = timestep if not torch.is_tensor(lowerCamelCase_ ): A = torch.tensor([timesteps] ,dtype=torch.long ,device=hidden_states.device ) elif torch.is_tensor(lowerCamelCase_ ) and len(timesteps.shape ) == 0: A = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML A = timesteps * torch.ones(lowerCamelCase_ ,dtype=timesteps.dtype ,device=timesteps.device ) A = self.time_proj(lowerCamelCase_ ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. A = timesteps_projected.to(dtype=self.dtype ) A = self.time_embedding(lowerCamelCase_ ) if self.embedding_proj_norm is not None: A = self.embedding_proj_norm(lowerCamelCase_ ) A = self.embedding_proj(lowerCamelCase_ ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: A = self.encoder_hidden_states_proj(lowerCamelCase_ ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError("""`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set""" ) A = self.proj_in(lowerCamelCase_ ) A = self.positional_embedding.to(hidden_states.dtype ) A = [] A = 0 if encoder_hidden_states is not None: additional_embeds.append(lowerCamelCase_ ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: A = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: A = hidden_states[:, None, :] A = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: A = self.prd_embedding.to(hidden_states.dtype ).expand(lowerCamelCase_ ,-1 ,-1 ) additional_embeds.append(lowerCamelCase_ ) A = torch.cat( lowerCamelCase_ ,dim=1 ,) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens A = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: A = F.pad( lowerCamelCase_ ,( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) ,value=0.0 ,) A = hidden_states + positional_embeddings if attention_mask is not None: A = (1 - attention_mask.to(hidden_states.dtype )) * -1_00_00.0 A = F.pad(lowerCamelCase_ ,(0, self.additional_embeddings) ,value=0.0 ) A = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) A = attention_mask.repeat_interleave(self.config.num_attention_heads ,dim=0 ) if self.norm_in is not None: A = self.norm_in(lowerCamelCase_ ) for block in self.transformer_blocks: A = block(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ) A = self.norm_out(lowerCamelCase_ ) if self.prd_embedding is not None: A = hidden_states[:, -1] else: A = hidden_states[:, additional_embeddings_len:] A = self.proj_to_clip_embeddings(lowerCamelCase_ ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=lowerCamelCase_ ) def UpperCamelCase__ ( self ,lowerCamelCase_ ) -> Optional[int]: A = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
255
1
'''simple docstring''' from timeit import timeit def UpperCamelCase_( snake_case : int ): '''simple docstring''' if number < 0: raise ValueError("the value of input must not be negative" ) snake_case_ = 0 while number: number &= number - 1 result += 1 return result def UpperCamelCase_( snake_case : int ): '''simple docstring''' if number < 0: raise ValueError("the value of input must not be negative" ) snake_case_ = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def UpperCamelCase_( ): '''simple docstring''' def do_benchmark(snake_case : int ) -> None: snake_case_ = "import __main__ as z" print(f'Benchmark when {number = }:' ) print(f'{get_set_bits_count_using_modulo_operator(snake_case ) = }' ) snake_case_ = timeit("z.get_set_bits_count_using_modulo_operator(25)" , setup=snake_case ) print(f'timeit() runs in {timing} seconds' ) print(f'{get_set_bits_count_using_brian_kernighans_algorithm(snake_case ) = }' ) snake_case_ = timeit( "z.get_set_bits_count_using_brian_kernighans_algorithm(25)" , setup=snake_case , ) print(f'timeit() runs in {timing} seconds' ) for number in (2_5, 3_7, 5_8, 0): do_benchmark(snake_case ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
400
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer _SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : List[str] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all BART models at https://huggingface.co/models?filter=bart _SCREAMING_SNAKE_CASE : List[str] = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, "tokenizer_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json", }, } _SCREAMING_SNAKE_CASE : str = { "facebook/bart-base": 1024, "facebook/bart-large": 1024, "facebook/bart-large-mnli": 1024, "facebook/bart-large-cnn": 1024, "facebook/bart-large-xsum": 1024, "yjernite/bart_eli5": 1024, } class _snake_case ( lowercase_ ): lowerCAmelCase_ : str = VOCAB_FILES_NAMES lowerCAmelCase_ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ : List[str] = ["input_ids", "attention_mask"] lowerCAmelCase_ : Dict = BartTokenizer def __init__( self , a__=None , a__=None , a__=None , a__="replace" , a__="<s>" , a__="</s>" , a__="</s>" , a__="<s>" , a__="<unk>" , a__="<pad>" , a__="<mask>" , a__=False , a__=True , **a__ , ) -> Optional[Any]: '''simple docstring''' super().__init__( a__ , a__ , tokenizer_file=a__ , errors=a__ , bos_token=a__ , eos_token=a__ , sep_token=a__ , cls_token=a__ , unk_token=a__ , pad_token=a__ , mask_token=a__ , add_prefix_space=a__ , trim_offsets=a__ , **a__ , ) snake_case_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , a__ ) != add_prefix_space: snake_case_ = getattr(a__ , pre_tok_state.pop("type" ) ) snake_case_ = add_prefix_space snake_case_ = pre_tok_class(**a__ ) snake_case_ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` snake_case_ = "post_processor" snake_case_ = getattr(self.backend_tokenizer , a__ , a__ ) if tokenizer_component_instance: snake_case_ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: snake_case_ = tuple(state["sep"] ) if "cls" in state: snake_case_ = tuple(state["cls"] ) snake_case_ = False if state.get("add_prefix_space" , a__ ) != add_prefix_space: snake_case_ = add_prefix_space snake_case_ = True if state.get("trim_offsets" , a__ ) != trim_offsets: snake_case_ = trim_offsets snake_case_ = True if changes_to_apply: snake_case_ = getattr(a__ , state.pop("type" ) ) snake_case_ = component_class(**a__ ) setattr(self.backend_tokenizer , a__ , a__ ) @property def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def lowerCAmelCase__ ( self , a__ ) -> Union[str, Any]: '''simple docstring''' snake_case_ = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else value snake_case_ = value def lowerCAmelCase__ ( self , *a__ , **a__ ) -> BatchEncoding: '''simple docstring''' snake_case_ = kwargs.get("is_split_into_words" , a__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*a__ , **a__ ) def lowerCAmelCase__ ( self , *a__ , **a__ ) -> BatchEncoding: '''simple docstring''' snake_case_ = kwargs.get("is_split_into_words" , a__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*a__ , **a__ ) def lowerCAmelCase__ ( self , a__ , a__ = None ) -> Tuple[str]: '''simple docstring''' snake_case_ = self._tokenizer.model.save(a__ , name=a__ ) return tuple(a__ ) def lowerCAmelCase__ ( self , a__ , a__=None ) -> int: '''simple docstring''' snake_case_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCAmelCase__ ( self , a__ , a__ = None ) -> List[int]: '''simple docstring''' snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
400
1
"""simple docstring""" import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal UpperCAmelCase_ : List[Any] = datasets.utils.logging.get_logger(__name__) UpperCAmelCase_ : Dict = ['''names''', '''prefix'''] UpperCAmelCase_ : Tuple = ['''warn_bad_lines''', '''error_bad_lines''', '''mangle_dupe_cols'''] UpperCAmelCase_ : Tuple = ['''encoding_errors''', '''on_bad_lines'''] UpperCAmelCase_ : int = ['''date_format'''] @dataclass class lowerCAmelCase__ ( datasets.BuilderConfig ): '''simple docstring''' __UpperCamelCase = "," __UpperCamelCase = None __UpperCamelCase = "infer" __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = True __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = False __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = False __UpperCamelCase = True __UpperCamelCase = None __UpperCamelCase = "." __UpperCamelCase = None __UpperCamelCase = '"' __UpperCamelCase = 0 __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = 0 __UpperCamelCase = True __UpperCamelCase = False __UpperCamelCase = None __UpperCamelCase = 1_0_0_0_0 __UpperCamelCase = None __UpperCamelCase = "strict" __UpperCamelCase = "error" __UpperCamelCase = None def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' if self.delimiter is not None: SCREAMING_SNAKE_CASE_ : List[str] = self.delimiter if self.column_names is not None: SCREAMING_SNAKE_CASE_ : Tuple = self.column_names @property def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = { '''sep''': self.sep, '''header''': self.header, '''names''': self.names, '''index_col''': self.index_col, '''usecols''': self.usecols, '''prefix''': self.prefix, '''mangle_dupe_cols''': self.mangle_dupe_cols, '''engine''': self.engine, '''converters''': self.converters, '''true_values''': self.true_values, '''false_values''': self.false_values, '''skipinitialspace''': self.skipinitialspace, '''skiprows''': self.skiprows, '''nrows''': self.nrows, '''na_values''': self.na_values, '''keep_default_na''': self.keep_default_na, '''na_filter''': self.na_filter, '''verbose''': self.verbose, '''skip_blank_lines''': self.skip_blank_lines, '''thousands''': self.thousands, '''decimal''': self.decimal, '''lineterminator''': self.lineterminator, '''quotechar''': self.quotechar, '''quoting''': self.quoting, '''escapechar''': self.escapechar, '''comment''': self.comment, '''encoding''': self.encoding, '''dialect''': self.dialect, '''error_bad_lines''': self.error_bad_lines, '''warn_bad_lines''': self.warn_bad_lines, '''skipfooter''': self.skipfooter, '''doublequote''': self.doublequote, '''memory_map''': self.memory_map, '''float_precision''': self.float_precision, '''chunksize''': self.chunksize, '''encoding_errors''': self.encoding_errors, '''on_bad_lines''': self.on_bad_lines, '''date_format''': self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , __SCREAMING_SNAKE_CASE): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class lowerCAmelCase__ ( datasets.ArrowBasedBuilder ): '''simple docstring''' __UpperCamelCase = CsvConfig def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowercase_ : str): '''simple docstring''' if not self.config.data_files: raise ValueError(F'At least one data file must be specified, but got data_files={self.config.data_files}') SCREAMING_SNAKE_CASE_ : Dict = dl_manager.download_and_extract(self.config.data_files) if isinstance(__SCREAMING_SNAKE_CASE , (str, list, tuple)): SCREAMING_SNAKE_CASE_ : Optional[Any] = data_files if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): SCREAMING_SNAKE_CASE_ : Optional[int] = [files] SCREAMING_SNAKE_CASE_ : str = [dl_manager.iter_files(__SCREAMING_SNAKE_CASE) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files})] SCREAMING_SNAKE_CASE_ : List[Any] = [] for split_name, files in data_files.items(): if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): SCREAMING_SNAKE_CASE_ : Optional[Any] = [files] SCREAMING_SNAKE_CASE_ : List[Any] = [dl_manager.iter_files(__SCREAMING_SNAKE_CASE) for file in files] splits.append(datasets.SplitGenerator(name=__SCREAMING_SNAKE_CASE , gen_kwargs={'''files''': files})) return splits def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowercase_ : pa.Table): '''simple docstring''' if self.config.features is not None: SCREAMING_SNAKE_CASE_ : List[Any] = self.config.features.arrow_schema if all(not require_storage_cast(__SCREAMING_SNAKE_CASE) for feature in self.config.features.values()): # cheaper cast SCREAMING_SNAKE_CASE_ : Union[str, Any] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=__SCREAMING_SNAKE_CASE) else: # more expensive cast; allows str <-> int/float or str to Audio for example SCREAMING_SNAKE_CASE_ : Dict = table_cast(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) return pa_table def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str SCREAMING_SNAKE_CASE_ : Union[str, Any] = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(__SCREAMING_SNAKE_CASE) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values()) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(__SCREAMING_SNAKE_CASE)): SCREAMING_SNAKE_CASE_ : Dict = pd.read_csv(__SCREAMING_SNAKE_CASE , iterator=__SCREAMING_SNAKE_CASE , dtype=__SCREAMING_SNAKE_CASE , **self.config.pd_read_csv_kwargs) try: for batch_idx, df in enumerate(__SCREAMING_SNAKE_CASE): SCREAMING_SNAKE_CASE_ : Dict = pa.Table.from_pandas(__SCREAMING_SNAKE_CASE) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(__SCREAMING_SNAKE_CASE) except ValueError as e: logger.error(F'Failed to read file \'{file}\' with error {type(__SCREAMING_SNAKE_CASE)}: {e}') raise
716
"""simple docstring""" from __future__ import annotations def _A (__a , __a , __a ) -> int | float: """simple docstring""" if len(__a ) == 0: raise ValueError('''find_max() arg is an empty sequence''' ) if ( left >= len(__a ) or left < -len(__a ) or right >= len(__a ) or right < -len(__a ) ): raise IndexError('''list index out of range''' ) if left == right: return nums[left] SCREAMING_SNAKE_CASE_ : str = (left + right) >> 1 # the middle SCREAMING_SNAKE_CASE_ : int = find_max(__a , __a , __a ) # find max in range[left, mid] SCREAMING_SNAKE_CASE_ : str = find_max(__a , mid + 1 , __a ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
176
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() a = logging.get_logger(__name__) def UpperCamelCase_( __magic_name__ : Union[str, Any] , __magic_name__ : Union[str, Any]=False , __magic_name__ : Dict=False ): """simple docstring""" _lowerCAmelCase :List[Any] = 'backbone.' if is_semantic else '' _lowerCAmelCase :Any = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""{prefix}blocks.{i}.norm1.weight""", f"""beit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""{prefix}blocks.{i}.norm1.bias""", f"""beit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (f"""{prefix}blocks.{i}.attn.proj.weight""", f"""beit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (f"""{prefix}blocks.{i}.attn.proj.bias""", f"""beit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""{prefix}blocks.{i}.norm2.weight""", f"""beit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""{prefix}blocks.{i}.norm2.bias""", f"""beit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc1.weight""", f"""beit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc1.bias""", f"""beit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc2.weight""", f"""beit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc2.bias""", f"""beit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ (f"""{prefix}cls_token""", 'beit.embeddings.cls_token'), (f"""{prefix}patch_embed.proj.weight""", 'beit.embeddings.patch_embeddings.projection.weight'), (f"""{prefix}patch_embed.proj.bias""", 'beit.embeddings.patch_embeddings.projection.bias'), (f"""{prefix}pos_embed""", 'beit.embeddings.position_embeddings'), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ('mask_token', 'beit.embeddings.mask_token'), ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ] ) else: # layernorm + classification head rename_keys.extend( [ ('fc_norm.weight', 'beit.pooler.layernorm.weight'), ('fc_norm.bias', 'beit.pooler.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def UpperCamelCase_( __magic_name__ : Optional[int] , __magic_name__ : int , __magic_name__ : int=False , __magic_name__ : List[str]=False ): """simple docstring""" for i in range(config.num_hidden_layers ): _lowerCAmelCase :str = 'backbone.' if is_semantic else '' # queries, keys and values _lowerCAmelCase :List[Any] = state_dict.pop(f"""{prefix}blocks.{i}.attn.qkv.weight""" ) _lowerCAmelCase :List[str] = state_dict.pop(f"""{prefix}blocks.{i}.attn.q_bias""" ) _lowerCAmelCase :Optional[int] = state_dict.pop(f"""{prefix}blocks.{i}.attn.v_bias""" ) _lowerCAmelCase :str = in_proj_weight[ : config.hidden_size, : ] _lowerCAmelCase :str = q_bias _lowerCAmelCase :Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCAmelCase :Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] _lowerCAmelCase :Optional[Any] = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained _lowerCAmelCase :Dict = state_dict.pop(f"""{prefix}blocks.{i}.gamma_1""" ) _lowerCAmelCase :Tuple = state_dict.pop(f"""{prefix}blocks.{i}.gamma_2""" ) _lowerCAmelCase :Optional[Any] = gamma_a _lowerCAmelCase :Optional[int] = gamma_a def UpperCamelCase_( __magic_name__ : Optional[int] , __magic_name__ : Tuple , __magic_name__ : Dict ): """simple docstring""" _lowerCAmelCase :Optional[Any] = dct.pop(_lowerCamelCase ) _lowerCAmelCase :Tuple = val def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase :int = 'http://images.cocodataset.org/val2017/000000039769.jpg' _lowerCAmelCase :Optional[int] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def UpperCamelCase_( __magic_name__ : int , __magic_name__ : Any , __magic_name__ : Union[str, Any]=False ): """simple docstring""" _lowerCAmelCase :Optional[Any] = False if 'rvlcdip' in checkpoint_url else True _lowerCAmelCase :str = BeitConfig(use_absolute_position_embeddings=_lowerCamelCase , use_mask_token=_lowerCamelCase ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: _lowerCAmelCase :Union[str, Any] = 1024 _lowerCAmelCase :Optional[int] = 4096 _lowerCAmelCase :Optional[Any] = 24 _lowerCAmelCase :List[str] = 16 # labels if "rvlcdip" in checkpoint_url: _lowerCAmelCase :Optional[int] = 16 _lowerCAmelCase :Any = 'huggingface/label-files' _lowerCAmelCase :Tuple = 'rvlcdip-id2label.json' _lowerCAmelCase :Any = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type='dataset' ) , 'r' ) ) _lowerCAmelCase :List[str] = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCAmelCase :Optional[Any] = idalabel _lowerCAmelCase :List[Any] = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys _lowerCAmelCase :List[Any] = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location='cpu' )['model'] _lowerCAmelCase :Optional[int] = create_rename_keys(_lowerCamelCase , has_lm_head=_lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase , has_lm_head=_lowerCamelCase ) # load HuggingFace model _lowerCAmelCase :Optional[Any] = BeitForMaskedImageModeling(_lowerCamelCase ) if has_lm_head else BeitForImageClassification(_lowerCamelCase ) model.eval() model.load_state_dict(_lowerCamelCase ) # Check outputs on an image _lowerCAmelCase :Optional[int] = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=_lowerCamelCase ) _lowerCAmelCase :Tuple = prepare_img() _lowerCAmelCase :Dict = image_processor(images=_lowerCamelCase , return_tensors='pt' ) _lowerCAmelCase :Any = encoding['pixel_values'] _lowerCAmelCase :str = model(_lowerCamelCase ) _lowerCAmelCase :Any = outputs.logits # verify logits _lowerCAmelCase :int = [1, 16] if 'rvlcdip' in checkpoint_url else [1, 196, 8192] assert logits.shape == torch.Size(_lowerCamelCase ), "Shape of logits not as expected" Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCamelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_lowerCamelCase ) if push_to_hub: if has_lm_head: _lowerCAmelCase :Tuple = 'dit-base' if 'base' in checkpoint_url else 'dit-large' else: _lowerCAmelCase :Optional[Any] = 'dit-base-finetuned-rvlcdip' if 'dit-b' in checkpoint_url else 'dit-large-finetuned-rvlcdip' image_processor.push_to_hub( repo_path_or_name=Path(_lowerCamelCase , _lowerCamelCase ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=_lowerCamelCase , ) model.push_to_hub( repo_path_or_name=Path(_lowerCamelCase , _lowerCamelCase ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=_lowerCamelCase , ) if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth""", type=str, help="""URL to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", ) a = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
687
import numpy as np import torch from torch.utils.data import Dataset from utils import logger class _a ( A__ ): """simple docstring""" def __init__( self , _snake_case , _snake_case ): _UpperCAmelCase =params _UpperCAmelCase =np.array(_snake_case ) _UpperCAmelCase =np.array([len(_snake_case ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self , _snake_case ): return (self.token_ids[index], self.lengths[index]) def __len__( self ): return len(self.lengths ) def SCREAMING_SNAKE_CASE ( self ): assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =self.params.max_model_input_size _UpperCAmelCase =self.lengths > max_len logger.info(F"Splitting {sum(_snake_case )} too long sequences." ) def divide_chunks(_snake_case , _snake_case ): return [l[i : i + n] for i in range(0 , len(_snake_case ) , _snake_case )] _UpperCAmelCase =[] _UpperCAmelCase =[] if self.params.mlm: _UpperCAmelCase , _UpperCAmelCase =self.params.special_tok_ids["cls_token"], self.params.special_tok_ids["sep_token"] else: _UpperCAmelCase , _UpperCAmelCase =self.params.special_tok_ids["bos_token"], self.params.special_tok_ids["eos_token"] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: _UpperCAmelCase =[] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: _UpperCAmelCase =np.insert(_snake_case , 0 , _snake_case ) if sub_s[-1] != sep_id: _UpperCAmelCase =np.insert(_snake_case , len(_snake_case ) , _snake_case ) assert len(_snake_case ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(_snake_case ) new_tok_ids.extend(_snake_case ) new_lengths.extend([len(_snake_case ) for l in sub_seqs] ) _UpperCAmelCase =np.array(_snake_case ) _UpperCAmelCase =np.array(_snake_case ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =len(self ) _UpperCAmelCase =self.lengths > 11 _UpperCAmelCase =self.token_ids[indices] _UpperCAmelCase =self.lengths[indices] _UpperCAmelCase =len(self ) logger.info(F"Remove {init_size - new_size} too short (<=11 tokens) sequences." ) def SCREAMING_SNAKE_CASE ( self ): if "unk_token" not in self.params.special_tok_ids: return else: _UpperCAmelCase =self.params.special_tok_ids["unk_token"] _UpperCAmelCase =len(self ) _UpperCAmelCase =np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) _UpperCAmelCase =(unk_occs / self.lengths) < 0.5 _UpperCAmelCase =self.token_ids[indices] _UpperCAmelCase =self.lengths[indices] _UpperCAmelCase =len(self ) logger.info(F"Remove {init_size - new_size} sequences with a high level of unknown tokens (50%)." ) def SCREAMING_SNAKE_CASE ( self ): if not self.params.is_master: return logger.info(F"{len(self )} sequences" ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def SCREAMING_SNAKE_CASE ( self , _snake_case ): _UpperCAmelCase =[t[0] for t in batch] _UpperCAmelCase =[t[1] for t in batch] assert len(_snake_case ) == len(_snake_case ) # Max for paddings _UpperCAmelCase =max(_snake_case ) # Pad token ids if self.params.mlm: _UpperCAmelCase =self.params.special_tok_ids["pad_token"] else: _UpperCAmelCase =self.params.special_tok_ids["unk_token"] _UpperCAmelCase =[list(t.astype(_snake_case ) ) + [pad_idx] * (max_seq_len_ - len(_snake_case )) for t in token_ids] assert len(tk_ ) == len(_snake_case ) assert all(len(_snake_case ) == max_seq_len_ for t in tk_ ) _UpperCAmelCase =torch.tensor(tk_ ) # (bs, max_seq_len_) _UpperCAmelCase =torch.tensor(_snake_case ) # (bs) return tk_t, lg_t
408
0
from __future__ import annotations def lowerCAmelCase ( UpperCAmelCase ) ->list[int]: """simple docstring""" __magic_name__ : Union[str, Any] = [True] * limit __magic_name__ : Dict = False __magic_name__ : Optional[int] = False __magic_name__ : Any = True for i in range(3, int(limit**0.5 + 1 ), 2 ): __magic_name__ : Tuple = i * 2 while index < limit: __magic_name__ : List[str] = False __magic_name__ : List[str] = index + i __magic_name__ : List[str] = [2] for i in range(3, UpperCAmelCase, 2 ): if is_prime[i]: primes.append(UpperCAmelCase ) return primes def lowerCAmelCase ( UpperCAmelCase = 100_0000 ) ->int: """simple docstring""" __magic_name__ : Dict = prime_sieve(UpperCAmelCase ) __magic_name__ : Optional[Any] = 0 __magic_name__ : Optional[Any] = 0 for i in range(len(UpperCAmelCase ) ): for j in range(i + length, len(UpperCAmelCase ) ): __magic_name__ : Any = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: __magic_name__ : Any = j - i __magic_name__ : Union[str, Any] = sol return largest if __name__ == "__main__": print(f"{solution() = }")
336
import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowercase_ = 16 lowercase_ = 32 def lowerCAmelCase ( UpperCAmelCase, UpperCAmelCase = 16 ) ->Any: """simple docstring""" __magic_name__ : List[Any] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) __magic_name__ : Tuple = load_dataset('''glue''', '''mrpc''' ) def tokenize_function(UpperCAmelCase ): # max_length=None => use the model max length (it's actually the default) __magic_name__ : Any = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=UpperCAmelCase, max_length=UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __magic_name__ : Tuple = datasets.map( UpperCAmelCase, batched=UpperCAmelCase, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __magic_name__ : str = tokenized_datasets.rename_column('''label''', '''labels''' ) def collate_fn(UpperCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. __magic_name__ : Optional[int] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __magic_name__ : Any = 16 elif accelerator.mixed_precision != "no": __magic_name__ : Union[str, Any] = 8 else: __magic_name__ : Optional[Any] = None return tokenizer.pad( UpperCAmelCase, padding='''longest''', max_length=UpperCAmelCase, pad_to_multiple_of=UpperCAmelCase, return_tensors='''pt''', ) # Instantiate dataloaders. __magic_name__ : List[Any] = DataLoader( tokenized_datasets['''train'''], shuffle=UpperCAmelCase, collate_fn=UpperCAmelCase, batch_size=UpperCAmelCase, drop_last=UpperCAmelCase ) __magic_name__ : Union[str, Any] = DataLoader( tokenized_datasets['''validation'''], shuffle=UpperCAmelCase, collate_fn=UpperCAmelCase, batch_size=UpperCAmelCase, drop_last=(accelerator.mixed_precision == '''fp8'''), ) return train_dataloader, eval_dataloader def lowerCAmelCase ( UpperCAmelCase, UpperCAmelCase ) ->Optional[Any]: """simple docstring""" __magic_name__ : Union[str, Any] = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __magic_name__ : int = config['''lr'''] __magic_name__ : Any = int(config['''num_epochs'''] ) __magic_name__ : List[str] = int(config['''seed'''] ) __magic_name__ : Optional[int] = int(config['''batch_size'''] ) __magic_name__ : Optional[Any] = evaluate.load('''glue''', '''mrpc''' ) # If the batch size is too big we use gradient accumulation __magic_name__ : List[str] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: __magic_name__ : List[str] = batch_size // MAX_GPU_BATCH_SIZE __magic_name__ : str = MAX_GPU_BATCH_SIZE set_seed(UpperCAmelCase ) __magic_name__ , __magic_name__ : int = get_dataloaders(UpperCAmelCase, UpperCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __magic_name__ : Optional[Any] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''', return_dict=UpperCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __magic_name__ : Any = model.to(accelerator.device ) # Instantiate optimizer __magic_name__ : int = AdamW(params=model.parameters(), lr=UpperCAmelCase ) # Instantiate scheduler __magic_name__ : Tuple = get_linear_schedule_with_warmup( optimizer=UpperCAmelCase, num_warmup_steps=100, num_training_steps=(len(UpperCAmelCase ) * num_epochs) // gradient_accumulation_steps, ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Optional[Any] = accelerator.prepare( UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase ) # Now we train the model for epoch in range(UpperCAmelCase ): model.train() for step, batch in enumerate(UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __magic_name__ : Dict = model(**UpperCAmelCase ) __magic_name__ : Tuple = outputs.loss __magic_name__ : Optional[int] = loss / gradient_accumulation_steps accelerator.backward(UpperCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __magic_name__ : Dict = model(**UpperCAmelCase ) __magic_name__ : List[str] = outputs.logits.argmax(dim=-1 ) __magic_name__ , __magic_name__ : Optional[int] = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=UpperCAmelCase, references=UpperCAmelCase, ) __magic_name__ : str = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''', UpperCAmelCase ) def lowerCAmelCase ( ) ->Optional[Any]: """simple docstring""" __magic_name__ : List[str] = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''', type=UpperCAmelCase, default=UpperCAmelCase, choices=['''no''', '''fp16''', '''bf16''', '''fp8'''], help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''', ) parser.add_argument('''--cpu''', action='''store_true''', help='''If passed, will train on the CPU.''' ) __magic_name__ : Dict = parser.parse_args() __magic_name__ : int = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(UpperCAmelCase, UpperCAmelCase ) if __name__ == "__main__": main()
336
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case : Dict = logging.get_logger(__name__) _snake_case : Optional[int] = { "transfo-xl-wt103": "https://huggingface.co/transfo-xl-wt103/resolve/main/config.json", } class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : List[str] = "transfo-xl" __UpperCAmelCase : List[Any] = ["mems"] __UpperCAmelCase : Optional[Any] = { "n_token": "vocab_size", "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : int , lowerCamelCase : Tuple=267735 , lowerCamelCase : Optional[int]=[20000, 40000, 200000] , lowerCamelCase : Tuple=1024 , lowerCamelCase : str=1024 , lowerCamelCase : Dict=16 , lowerCamelCase : str=64 , lowerCamelCase : Optional[int]=4096 , lowerCamelCase : Optional[Any]=4 , lowerCamelCase : int=False , lowerCamelCase : Dict=18 , lowerCamelCase : Union[str, Any]=1600 , lowerCamelCase : Optional[Any]=1000 , lowerCamelCase : Union[str, Any]=True , lowerCamelCase : Any=True , lowerCamelCase : Optional[int]=0 , lowerCamelCase : List[Any]=-1 , lowerCamelCase : Dict=True , lowerCamelCase : List[str]=0.1 , lowerCamelCase : List[str]=0.0 , lowerCamelCase : Tuple=True , lowerCamelCase : List[Any]="normal" , lowerCamelCase : int=0.01 , lowerCamelCase : Optional[int]=0.01 , lowerCamelCase : Optional[int]=0.02 , lowerCamelCase : str=1E-5 , lowerCamelCase : Tuple=0 , **lowerCamelCase : List[str] , ) -> int: __snake_case : str = vocab_size __snake_case : Union[str, Any] = [] self.cutoffs.extend(lowerCamelCase ) if proj_share_all_but_first: __snake_case : Dict = [False] + [True] * len(self.cutoffs ) else: __snake_case : List[Any] = [False] + [False] * len(self.cutoffs ) __snake_case : List[Any] = d_model __snake_case : List[str] = d_embed __snake_case : str = d_head __snake_case : Union[str, Any] = d_inner __snake_case : Union[str, Any] = div_val __snake_case : Optional[Any] = pre_lnorm __snake_case : Any = n_layer __snake_case : Union[str, Any] = n_head __snake_case : Dict = mem_len __snake_case : Union[str, Any] = same_length __snake_case : Any = attn_type __snake_case : Any = clamp_len __snake_case : Any = sample_softmax __snake_case : List[str] = adaptive __snake_case : Optional[int] = dropout __snake_case : List[Any] = dropatt __snake_case : Tuple = untie_r __snake_case : Tuple = init __snake_case : Any = init_range __snake_case : Any = proj_init_std __snake_case : int = init_std __snake_case : Union[str, Any] = layer_norm_epsilon super().__init__(eos_token_id=lowerCamelCase , **lowerCamelCase ) @property def __snake_case ( self : Optional[int] ) -> str: # Message copied from Transformer-XL documentation logger.info(F'The model {self.model_type} is one of the few models that has no sequence length limit.' ) return -1 @max_position_embeddings.setter def __snake_case ( self : List[str] , lowerCamelCase : Any ) -> Any: # Message copied from Transformer-XL documentation raise NotImplementedError( F'The model {self.model_type} is one of the few models that has no sequence length limit.' )
81
import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class __magic_name__ ( __a , __a , unittest.TestCase ): """simple docstring""" lowerCAmelCase : Dict = VQModel lowerCAmelCase : List[str] = '''sample''' @property def lowerCAmelCase ( self : List[Any] , _lowercase : Tuple=(32, 32) ): """simple docstring""" _UpperCamelCase: List[Any] = 4 _UpperCamelCase: Tuple = 3 _UpperCamelCase: List[str] = floats_tensor((batch_size, num_channels) + sizes ).to(_lowercase ) return {"sample": image} @property def lowerCAmelCase ( self : List[Any] ): """simple docstring""" return (3, 32, 32) @property def lowerCAmelCase ( self : str ): """simple docstring""" return (3, 32, 32) def lowerCAmelCase ( self : Optional[int] ): """simple docstring""" _UpperCamelCase: Any = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 3, } _UpperCamelCase: Optional[Any] = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase ( self : List[Any] ): """simple docstring""" pass def lowerCAmelCase ( self : List[Any] ): """simple docstring""" pass def lowerCAmelCase ( self : Optional[Any] ): """simple docstring""" _UpperCamelCase , _UpperCamelCase: int = VQModel.from_pretrained('''fusing/vqgan-dummy''' , output_loading_info=_lowercase ) self.assertIsNotNone(_lowercase ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_lowercase ) _UpperCamelCase: Tuple = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def lowerCAmelCase ( self : Optional[Any] ): """simple docstring""" _UpperCamelCase: Dict = VQModel.from_pretrained('''fusing/vqgan-dummy''' ) model.to(_lowercase ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) _UpperCamelCase: int = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size ) _UpperCamelCase: Tuple = image.to(_lowercase ) with torch.no_grad(): _UpperCamelCase: Optional[int] = model(_lowercase ).sample _UpperCamelCase: List[Any] = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off _UpperCamelCase: Any = torch.tensor([-0.0153, -0.4044, -0.1880, -0.5161, -0.2418, -0.4072, -0.1612, -0.0633, -0.0143] ) # fmt: on self.assertTrue(torch.allclose(_lowercase , _lowercase , atol=1E-3 ) )
271
0
"""simple docstring""" __UpperCAmelCase = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' __UpperCAmelCase = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] __UpperCAmelCase = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
700
"""simple docstring""" import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): __lowerCamelCase : Dict = CLIPTokenizer __lowerCamelCase : Optional[Any] = CLIPTokenizerFast __lowerCamelCase : List[Any] = True __lowerCamelCase : Optional[int] = {} __lowerCamelCase : List[Any] = False def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' super().setUp() # fmt: off a__ : Tuple = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on a__ : str = dict(zip(a_ , range(len(a_ ) ) ) ) a__ : Optional[int] = ["#version: 0.2", "l o", "lo w</w>", "e r</w>"] a__ : Union[str, Any] = {"unk_token": "<unk>"} a__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) a__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(a_ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(a_ ) ) def UpperCAmelCase ( self : Optional[Any] , **a_ : Tuple ) -> Any: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **a_ ) def UpperCAmelCase ( self : Tuple , **a_ : Any ) -> Optional[int]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **a_ ) def UpperCAmelCase ( self : Tuple , a_ : Dict ) -> Tuple: '''simple docstring''' a__ : Optional[int] = "lower newer" a__ : Dict = "lower newer" return input_text, output_text def UpperCAmelCase ( self : Any ) -> List[Any]: '''simple docstring''' a__ : List[str] = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) a__ : Optional[Any] = "lower newer" a__ : Tuple = ["lo", "w", "er</w>", "n", "e", "w", "er</w>"] a__ : Tuple = tokenizer.tokenize(a_ ) self.assertListEqual(a_ , a_ ) a__ : List[str] = tokens + [tokenizer.unk_token] a__ : str = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(a_ ) , a_ ) @require_ftfy def UpperCAmelCase ( self : Dict ) -> Union[str, Any]: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): a__ : Dict = self.tokenizer_class.from_pretrained(a_ , **a_ ) a__ : Any = self.rust_tokenizer_class.from_pretrained(a_ , **a_ ) a__ : Optional[int] = "A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d." a__ : str = tokenizer_s.tokenize(a_ ) a__ : int = tokenizer_r.tokenize(a_ ) self.assertListEqual(a_ , a_ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways a__ : Dict = "xa\u0303y" + " " + "x\xe3y" a__ : Any = tokenizer_s.tokenize(a_ ) a__ : Optional[int] = tokenizer_r.tokenize(a_ ) self.assertListEqual(a_ , a_ ) # Test that the tokenization is identical on unicode of space type a__ : str = [ "\u0009", # (horizontal tab, '\t') "\u000B", # (vertical tab) "\u000C", # (form feed) "\u0020", # (space, ' ') "\u200E", # (left-to-right mark):w "\u200F", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: a__ : str = tokenizer_s.tokenize(a_ ) a__ : List[Any] = tokenizer_r.tokenize(a_ ) self.assertListEqual(a_ , a_ ) # Test that the tokenization is identical on unicode of line break type a__ : int = [ "\u000A", # (line feed, '\n') "\r\n", # (carriage return and line feed, '\r\n') "\u000D", # (carriage return, '\r') "\r", # (carriage return, '\r') "\u000D", # (carriage return, '\r') "\u2028", # (line separator) "\u2029", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: a__ : Any = tokenizer_s.tokenize(a_ ) a__ : Dict = tokenizer_r.tokenize(a_ ) self.assertListEqual(a_ , a_ ) def UpperCAmelCase ( self : str ) -> Union[str, Any]: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): a__ : Union[str, Any] = "hello" # `hello` is a token in the vocabulary of `pretrained_name` a__ : Union[str, Any] = F"{text_of_1_token} {text_of_1_token}" a__ : List[str] = self.rust_tokenizer_class.from_pretrained( a_ , use_fast=a_ , ) a__ : List[Any] = tokenizer_r(a_ , return_offsets_mapping=a_ , add_special_tokens=a_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(a_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(a_ ) + 1, len(a_ ) + 1 + len(a_ )) , ) a__ : List[Any] = F" {text}" a__ : List[Any] = self.rust_tokenizer_class.from_pretrained( a_ , use_fast=a_ , ) a__ : Tuple = tokenizer_r(a_ , return_offsets_mapping=a_ , add_special_tokens=a_ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(a_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(a_ ) + 1, 1 + len(a_ ) + 1 + len(a_ )) , ) def UpperCAmelCase ( self : List[str] ) -> List[str]: '''simple docstring''' with self.assertRaises(a_ ) as context: self.rust_tokenizer_class.from_pretrained("robot-test/old-clip-tokenizer" ) self.assertTrue( context.exception.args[0].startswith( "The `backend_tokenizer` provided does not match the expected format." ) ) @require_ftfy def UpperCAmelCase ( self : Dict ) -> Union[str, Any]: '''simple docstring''' super().test_tokenization_python_rust_equals() def UpperCAmelCase ( self : Dict ) -> str: '''simple docstring''' pass
251
0
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor a_ : Dict = logging.get_logger(__name__) class _snake_case ( A__ ): def __init__( self , *a , **a) -> None: warnings.warn( 'The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use GLPNImageProcessor instead.' , a , ) super().__init__(*a , **a)
73
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available a_ : int = { 'configuration_rag': ['RagConfig'], 'retrieval_rag': ['RagRetriever'], 'tokenization_rag': ['RagTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : List[Any] = [ 'RagModel', 'RagPreTrainedModel', 'RagSequenceForGeneration', 'RagTokenForGeneration', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Tuple = [ 'TFRagModel', 'TFRagPreTrainedModel', 'TFRagSequenceForGeneration', 'TFRagTokenForGeneration', ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys a_ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
73
1
"""simple docstring""" import requests UpperCAmelCase__ = """""" # <-- Put your OpenWeatherMap appid here! UpperCAmelCase__ = """https://api.openweathermap.org/data/2.5/""" def __UpperCAmelCase ( lowercase = "Chicago" ,lowercase = APPID ): """simple docstring""" return requests.get(URL_BASE + """weather""" ,params=locals() ).json() def __UpperCAmelCase ( lowercase = "Kolkata, India" ,lowercase = APPID ): """simple docstring""" return requests.get(URL_BASE + """forecast""" ,params=locals() ).json() def __UpperCAmelCase ( lowercase = 55.68 ,lowercase = 12.57 ,lowercase = APPID ): """simple docstring""" return requests.get(URL_BASE + """onecall""" ,params=locals() ).json() if __name__ == "__main__": from pprint import pprint while True: UpperCAmelCase__ = input("""Enter a location:""").strip() if location: pprint(current_weather(location)) else: break
712
"""simple docstring""" import torch from torch import nn class a ( nn.Module ): def __init__( self : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : int , __lowerCAmelCase : List[Any]=1 , __lowerCAmelCase : Tuple=False ): super().__init__() _UpperCAmelCase = n_token _UpperCAmelCase = d_embed _UpperCAmelCase = d_proj _UpperCAmelCase = cutoffs + [n_token] _UpperCAmelCase = [0] + self.cutoffs _UpperCAmelCase = div_val _UpperCAmelCase = self.cutoffs[0] _UpperCAmelCase = len(self.cutoffs ) - 1 _UpperCAmelCase = self.shortlist_size + self.n_clusters if self.n_clusters > 0: _UpperCAmelCase = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) _UpperCAmelCase = nn.Parameter(torch.zeros(self.n_clusters ) ) _UpperCAmelCase = nn.ModuleList() _UpperCAmelCase = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(__lowerCAmelCase , __lowerCAmelCase ) ) ) else: self.out_projs.append(__lowerCAmelCase ) self.out_layers.append(nn.Linear(__lowerCAmelCase , __lowerCAmelCase ) ) else: for i in range(len(self.cutoffs ) ): _UpperCAmelCase , _UpperCAmelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1] _UpperCAmelCase = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(__lowerCAmelCase , __lowerCAmelCase ) ) ) self.out_layers.append(nn.Linear(__lowerCAmelCase , r_idx - l_idx ) ) _UpperCAmelCase = keep_order def lowerCAmelCase_ ( self : Optional[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : int , __lowerCAmelCase : Tuple ): if proj is None: _UpperCAmelCase = nn.functional.linear(__lowerCAmelCase , __lowerCAmelCase , bias=__lowerCAmelCase ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: _UpperCAmelCase = nn.functional.linear(__lowerCAmelCase , proj.t().contiguous() ) _UpperCAmelCase = nn.functional.linear(__lowerCAmelCase , __lowerCAmelCase , bias=__lowerCAmelCase ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[Any]=None , __lowerCAmelCase : Union[str, Any]=False ): if labels is not None: # Shift so that tokens < n predict n _UpperCAmelCase = hidden[..., :-1, :].contiguous() _UpperCAmelCase = labels[..., 1:].contiguous() _UpperCAmelCase = hidden.view(-1 , hidden.size(-1 ) ) _UpperCAmelCase = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError("""Input and labels should have the same size in the batch dimension.""" ) else: _UpperCAmelCase = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: _UpperCAmelCase = self._compute_logit(__lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: _UpperCAmelCase = labels != -100 _UpperCAmelCase = torch.zeros_like(__lowerCAmelCase , dtype=hidden.dtype , device=hidden.device ) _UpperCAmelCase = ( -nn.functional.log_softmax(__lowerCAmelCase , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: _UpperCAmelCase = nn.functional.log_softmax(__lowerCAmelCase , dim=-1 ) else: # construct weights and biases _UpperCAmelCase , _UpperCAmelCase = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: _UpperCAmelCase , _UpperCAmelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1] _UpperCAmelCase = self.out_layers[0].weight[l_idx:r_idx] _UpperCAmelCase = self.out_layers[0].bias[l_idx:r_idx] else: _UpperCAmelCase = self.out_layers[i].weight _UpperCAmelCase = self.out_layers[i].bias if i == 0: _UpperCAmelCase = torch.cat([weight_i, self.cluster_weight] , dim=0 ) _UpperCAmelCase = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(__lowerCAmelCase ) biases.append(__lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = weights[0], biases[0], self.out_projs[0] _UpperCAmelCase = self._compute_logit(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = nn.functional.log_softmax(__lowerCAmelCase , dim=1 ) if labels is None: _UpperCAmelCase = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: _UpperCAmelCase = torch.zeros_like(__lowerCAmelCase , dtype=hidden.dtype , device=hidden.device ) _UpperCAmelCase = 0 _UpperCAmelCase = [0] + self.cutoffs for i in range(len(__lowerCAmelCase ) - 1 ): _UpperCAmelCase , _UpperCAmelCase = cutoff_values[i], cutoff_values[i + 1] if labels is not None: _UpperCAmelCase = (labels >= l_idx) & (labels < r_idx) _UpperCAmelCase = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue _UpperCAmelCase = labels.index_select(0 , __lowerCAmelCase ) - l_idx _UpperCAmelCase = head_logprob.index_select(0 , __lowerCAmelCase ) _UpperCAmelCase = hidden.index_select(0 , __lowerCAmelCase ) else: _UpperCAmelCase = hidden if i == 0: if labels is not None: _UpperCAmelCase = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: _UpperCAmelCase = head_logprob[:, : self.cutoffs[0]] else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = weights[i], biases[i], self.out_projs[i] _UpperCAmelCase = self._compute_logit(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = nn.functional.log_softmax(__lowerCAmelCase , dim=1 ) _UpperCAmelCase = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: _UpperCAmelCase = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: _UpperCAmelCase = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i _UpperCAmelCase = logprob_i if labels is not None: if (hasattr(self , """keep_order""" ) and self.keep_order) or keep_order: out.index_copy_(0 , __lowerCAmelCase , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCAmelCase : List[Any] ): if self.n_clusters == 0: _UpperCAmelCase = self._compute_logit(__lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(__lowerCAmelCase , dim=-1 ) else: # construct weights and biases _UpperCAmelCase , _UpperCAmelCase = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: _UpperCAmelCase , _UpperCAmelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1] _UpperCAmelCase = self.out_layers[0].weight[l_idx:r_idx] _UpperCAmelCase = self.out_layers[0].bias[l_idx:r_idx] else: _UpperCAmelCase = self.out_layers[i].weight _UpperCAmelCase = self.out_layers[i].bias if i == 0: _UpperCAmelCase = torch.cat([weight_i, self.cluster_weight] , dim=0 ) _UpperCAmelCase = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(__lowerCAmelCase ) biases.append(__lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = weights[0], biases[0], self.out_projs[0] _UpperCAmelCase = self._compute_logit(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = hidden.new_empty((head_logit.size(0 ), self.n_token) ) _UpperCAmelCase = nn.functional.log_softmax(__lowerCAmelCase , dim=1 ) _UpperCAmelCase = [0] + self.cutoffs for i in range(len(__lowerCAmelCase ) - 1 ): _UpperCAmelCase , _UpperCAmelCase = cutoff_values[i], cutoff_values[i + 1] if i == 0: _UpperCAmelCase = head_logprob[:, : self.cutoffs[0]] else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = weights[i], biases[i], self.out_projs[i] _UpperCAmelCase = self._compute_logit(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = nn.functional.log_softmax(__lowerCAmelCase , dim=1 ) _UpperCAmelCase = head_logprob[:, -i] + tail_logprob_i _UpperCAmelCase = logprob_i return out
275
0