code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from math import factorial def __a ( lowerCAmelCase__ : int = 100 ): return sum(map(lowerCAmelCase__ , str(factorial(lowerCAmelCase__ ) ) ) ) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
688
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def _lowerCAmelCase ( __magic_name__ :Union[str, Any] , __magic_name__ :Union[str, Any] , __magic_name__ :List[Any] ): # Initialise PyTorch model UpperCAmelCase_ = MobileBertConfig.from_json_file(__magic_name__ ) print(F'''Building PyTorch model from configuration: {config}''' ) UpperCAmelCase_ = MobileBertForPreTraining(__magic_name__ ) # Load weights from tf checkpoint UpperCAmelCase_ = load_tf_weights_in_mobilebert(__magic_name__ , __magic_name__ , __magic_name__ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , __magic_name__ ) if __name__ == "__main__": _lowerCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--mobilebert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained MobileBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _lowerCamelCase : List[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
121
0
"""simple docstring""" # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib _a : Optional[int] = get_logger() _a : Optional[dict] = None class _UpperCAmelCase ( TensorFormatter[Mapping, """jax.Array""", Mapping]): def __init__( self , snake_case_=None , snake_case_=None , **snake_case_ ): super().__init__(features=snake_case_ ) import jax from jaxlib.xla_client import Device if isinstance(snake_case_ , snake_case_ ): raise ValueError( F'Expected {device} to be a `str` not {type(snake_case_ )}, as `jaxlib.xla_extension.Device` ' "is not serializable neither with `pickle` nor with `dill`. Instead you can surround " "the device with `str()` to get its string identifier that will be internally mapped " "to the actual `jaxlib.xla_extension.Device`." ) _snake_case : Union[str, Any] = device if isinstance(snake_case_ , snake_case_ ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _snake_case : Tuple = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F'Device with string identifier {self.device} not listed among the available ' F'devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ' F'device: {str(jax.devices()[0] )}.' ) _snake_case : Dict = str(jax.devices()[0] ) _snake_case : List[Any] = jnp_array_kwargs @staticmethod def lowerCamelCase__ ( ): import jax return {str(snake_case_ ): device for device in jax.devices()} def lowerCamelCase__ ( self , snake_case_ ): import jax import jax.numpy as jnp if isinstance(snake_case_ , snake_case_ ) and column: if all( isinstance(snake_case_ , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(snake_case_ , axis=0 ) return column def lowerCamelCase__ ( self , snake_case_ ): import jax import jax.numpy as jnp if isinstance(snake_case_ , (str, bytes, type(snake_case_ )) ): return value elif isinstance(snake_case_ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() _snake_case : Union[str, Any] = {} if isinstance(snake_case_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: _snake_case : Optional[int] = {"dtype": jnp.intaa} else: _snake_case : Union[str, Any] = {"dtype": jnp.intaa} elif isinstance(snake_case_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): _snake_case : List[str] = {"dtype": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(snake_case_ , PIL.Image.Image ): _snake_case : Optional[Any] = np.asarray(snake_case_ ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _snake_case : str = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(snake_case_ , **{**default_dtype, **self.jnp_array_kwargs} ) def lowerCamelCase__ ( self , snake_case_ ): import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(snake_case_ , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(snake_case_ , "__array__" ) and not isinstance(snake_case_ , jax.Array ): _snake_case : Tuple = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(snake_case_ , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(snake_case_ ) for substruct in data_struct] ) elif isinstance(snake_case_ , (list, tuple) ): return self._consolidate([self.recursive_tensorize(snake_case_ ) for substruct in data_struct] ) return self._tensorize(snake_case_ ) def lowerCamelCase__ ( self , snake_case_ ): return map_nested(self._recursive_tensorize , snake_case_ , map_list=snake_case_ ) def lowerCamelCase__ ( self , snake_case_ ): _snake_case : List[str] = self.numpy_arrow_extractor().extract_row(snake_case_ ) _snake_case : Optional[int] = self.python_features_decoder.decode_row(snake_case_ ) return self.recursive_tensorize(snake_case_ ) def lowerCamelCase__ ( self , snake_case_ ): _snake_case : Any = self.numpy_arrow_extractor().extract_column(snake_case_ ) _snake_case : Any = self.python_features_decoder.decode_column(snake_case_ , pa_table.column_names[0] ) _snake_case : Any = self.recursive_tensorize(snake_case_ ) _snake_case : str = self._consolidate(snake_case_ ) return column def lowerCamelCase__ ( self , snake_case_ ): _snake_case : int = self.numpy_arrow_extractor().extract_batch(snake_case_ ) _snake_case : Optional[int] = self.python_features_decoder.decode_batch(snake_case_ ) _snake_case : Union[str, Any] = self.recursive_tensorize(snake_case_ ) for column_name in batch: _snake_case : int = self._consolidate(batch[column_name] ) return batch
87
"""simple docstring""" import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class _UpperCAmelCase ( _snake_case): def __init__( self , snake_case_ , snake_case_ , snake_case_ ): _snake_case : Optional[int] = dataset _snake_case : str = process _snake_case : int = params def __len__( self ): return len(self.dataset ) def __getitem__( self , snake_case_ ): _snake_case : Union[str, Any] = self.dataset[i] _snake_case : Optional[Any] = self.process(snake_case_ , **self.params ) return processed class _UpperCAmelCase ( _snake_case): def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=None ): _snake_case : Union[str, Any] = loader _snake_case : Tuple = infer _snake_case : List[Any] = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether _snake_case : int = None _snake_case : int = loader_batch_size # Internal bookkeeping _snake_case : Any = None _snake_case : Dict = None def __len__( self ): return len(self.loader ) def __iter__( self ): _snake_case : int = iter(self.loader ) return self def lowerCamelCase__ ( self ): if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice _snake_case : List[Any] = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) _snake_case : int = {} for k, element in self._loader_batch_data.items(): if isinstance(snake_case_ , snake_case_ ): # Convert ModelOutput to tuple first _snake_case : Tuple = element.to_tuple() if isinstance(element[0] , torch.Tensor ): _snake_case : Union[str, Any] = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): _snake_case : int = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(snake_case_ , snake_case_ ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): _snake_case : Tuple = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): _snake_case : Tuple = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around _snake_case : Tuple = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _snake_case : List[Any] = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _snake_case : Union[str, Any] = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. _snake_case : List[Any] = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 _snake_case : int = self._loader_batch_data.__class__(snake_case_ ) self._loader_batch_index += 1 return result def lowerCamelCase__ ( self ): if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch _snake_case : Tuple = next(self.iterator ) _snake_case : Any = self.infer(snake_case_ , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(snake_case_ , torch.Tensor ): _snake_case : Union[str, Any] = processed else: _snake_case : Optional[int] = list(processed.keys() )[0] _snake_case : List[str] = processed[key] if isinstance(snake_case_ , snake_case_ ): _snake_case : Dict = len(snake_case_ ) else: _snake_case : Optional[int] = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _snake_case : Union[str, Any] = observed_batch_size # Setting internal index to unwrap the batch _snake_case : str = processed _snake_case : List[Any] = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class _UpperCAmelCase ( _snake_case): def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=None ): super().__init__(snake_case_ , snake_case_ , snake_case_ ) def __iter__( self ): _snake_case : Tuple = iter(self.loader ) _snake_case : List[Any] = None return self def lowerCamelCase__ ( self ): if self.subiterator is None: _snake_case : Optional[Any] = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item _snake_case : Union[str, Any] = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators _snake_case : str = self.infer(next(self.iterator ) , **self.params ) _snake_case : Tuple = next(self.subiterator ) return processed class _UpperCAmelCase ( _snake_case): def __iter__( self ): _snake_case : Optional[Any] = iter(self.loader ) return self def lowerCamelCase__ ( self ): # Extremely similar to PipelineIterator in its unpacking mechanism # BUT, we have an extra required item which is the presence of `is_last` # That is because everything is flattened by `PipelineChunkIterator` we # need to keep track of how to regroup here in the original `process` # boundaries so that `process` and `postprocess` see the same data. # This iterator accumulates items (possibly while unbatching) until it # its a `is_last` and then just passes it on to the caller. _snake_case : Optional[Any] = False _snake_case : Tuple = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: _snake_case : Union[str, Any] = self.loader_batch_item() _snake_case : str = item.pop("is_last" ) accumulator.append(snake_case_ ) if is_last: return accumulator while not is_last: _snake_case : List[str] = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(snake_case_ , torch.Tensor ): _snake_case : Union[str, Any] = processed else: _snake_case : Tuple = list(processed.keys() )[0] _snake_case : Tuple = processed[key] if isinstance(snake_case_ , snake_case_ ): _snake_case : Any = len(snake_case_ ) else: _snake_case : List[Any] = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _snake_case : Dict = observed_batch_size _snake_case : List[Any] = processed _snake_case : List[str] = 0 while self._loader_batch_index < self.loader_batch_size: _snake_case : Union[str, Any] = self.loader_batch_item() _snake_case : int = item.pop("is_last" ) accumulator.append(snake_case_ ) if is_last: return accumulator else: _snake_case : Dict = processed _snake_case : Dict = item.pop("is_last" ) accumulator.append(snake_case_ ) return accumulator class _UpperCAmelCase ( _snake_case): def __init__( self , snake_case_ , snake_case_ ): _snake_case : str = dataset _snake_case : Any = key def __len__( self ): return len(self.dataset ) def __getitem__( self , snake_case_ ): return self.dataset[i][self.key] class _UpperCAmelCase ( _snake_case): def __init__( self , snake_case_ , snake_case_ , snake_case_ ): _snake_case : int = dataset _snake_case : Any = keya _snake_case : int = keya def __len__( self ): return len(self.dataset ) def __getitem__( self , snake_case_ ): return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
87
1
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __lowercase : Optional[int] = """pt""" elif is_tf_available(): __lowercase : List[Any] = """tf""" else: __lowercase : Optional[int] = """jax""" class lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" __lowercase :List[Any] = ByTaTokenizer __lowercase :List[Any] = False def _lowerCAmelCase ( self ) -> Optional[int]: '''simple docstring''' super().setUp() lowerCamelCase_ = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowerCAmelCase ( self ) -> List[Any]: '''simple docstring''' return ByTaTokenizer.from_pretrained('''google/byt5-small''' ) def _lowerCAmelCase ( self , **UpperCamelCase__ ) -> ByTaTokenizer: '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def _lowerCAmelCase ( self , UpperCamelCase__ , UpperCamelCase__=False , UpperCamelCase__=20 , UpperCamelCase__=5 ) -> Tuple[str, list]: '''simple docstring''' lowerCamelCase_ = [] for i in range(len(UpperCamelCase__ ) ): try: lowerCamelCase_ = tokenizer.decode([i] , clean_up_tokenization_spaces=UpperCamelCase__ ) except UnicodeDecodeError: pass toks.append((i, tok) ) lowerCamelCase_ = list(filter(lambda UpperCamelCase__ : re.match(r'''^[ a-zA-Z]+$''' , t[1] ) , UpperCamelCase__ ) ) lowerCamelCase_ = list(filter(lambda UpperCamelCase__ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=UpperCamelCase__ ) , UpperCamelCase__ ) ) if max_length is not None and len(UpperCamelCase__ ) > max_length: lowerCamelCase_ = toks[:max_length] if min_length is not None and len(UpperCamelCase__ ) < min_length and len(UpperCamelCase__ ) > 0: while len(UpperCamelCase__ ) < min_length: lowerCamelCase_ = toks + toks # toks_str = [t[1] for t in toks] lowerCamelCase_ = [t[0] for t in toks] # Ensure consistency lowerCamelCase_ = tokenizer.decode(UpperCamelCase__ , clean_up_tokenization_spaces=UpperCamelCase__ ) if " " not in output_txt and len(UpperCamelCase__ ) > 1: lowerCamelCase_ = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=UpperCamelCase__ ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=UpperCamelCase__ ) ) if with_prefix_space: lowerCamelCase_ = ''' ''' + output_txt lowerCamelCase_ = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) return output_txt, output_ids def _lowerCAmelCase ( self ) -> List[str]: '''simple docstring''' lowerCamelCase_ = self.ta_base_tokenizer lowerCamelCase_ = tokenizer(['''hi</s>''', '''I went to the gym</s>''', '''</s>'''] ) lowerCamelCase_ = tokenizer(['''hi''', '''I went to the gym''', ''''''] ) self.assertListEqual(batch_with_eos_added['''input_ids'''] , batch_without_eos_added['''input_ids'''] ) def _lowerCAmelCase ( self ) -> Any: '''simple docstring''' lowerCamelCase_ = self.ta_base_tokenizer lowerCamelCase_ = '''Unicode €.''' lowerCamelCase_ = tokenizer(UpperCamelCase__ ) lowerCamelCase_ = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded['''input_ids'''] , UpperCamelCase__ ) # decoding lowerCamelCase_ = tokenizer.decode(UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , '''Unicode €.</s>''' ) lowerCamelCase_ = tokenizer('''e è é ê ë''' ) lowerCamelCase_ = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded['''input_ids'''] , UpperCamelCase__ ) # decoding lowerCamelCase_ = tokenizer.decode(UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , '''e è é ê ë</s>''' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''e è é ê ë</s>''' ) def _lowerCAmelCase ( self ) -> int: '''simple docstring''' lowerCamelCase_ = self.ta_base_tokenizer lowerCamelCase_ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off lowerCamelCase_ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on lowerCamelCase_ = tokenizer(UpperCamelCase__ , padding=UpperCamelCase__ , return_tensors=UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) if FRAMEWORK != "jax": lowerCamelCase_ = list(batch.input_ids.numpy()[0] ) else: lowerCamelCase_ = list(batch.input_ids.tolist()[0] ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def _lowerCAmelCase ( self ) -> Any: '''simple docstring''' lowerCamelCase_ = self.ta_base_tokenizer lowerCamelCase_ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] lowerCamelCase_ = tokenizer(UpperCamelCase__ , padding=UpperCamelCase__ , return_tensors=UpperCamelCase__ ) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' , UpperCamelCase__ ) self.assertIn('''attention_mask''' , UpperCamelCase__ ) self.assertNotIn('''decoder_input_ids''' , UpperCamelCase__ ) self.assertNotIn('''decoder_attention_mask''' , UpperCamelCase__ ) def _lowerCAmelCase ( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = self.ta_base_tokenizer lowerCamelCase_ = [ '''Summary of the text.''', '''Another summary.''', ] lowerCamelCase_ = tokenizer( text_target=UpperCamelCase__ , max_length=32 , padding='''max_length''' , truncation=UpperCamelCase__ , return_tensors=UpperCamelCase__ ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) def _lowerCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = self.ta_base_tokenizer lowerCamelCase_ = ['''A long paragraph for summarization. </s>'''] lowerCamelCase_ = ['''Summary of the text. </s>'''] # fmt: off lowerCamelCase_ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] lowerCamelCase_ = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on lowerCamelCase_ = tokenizer(UpperCamelCase__ , text_target=UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , batch['''input_ids'''][0] ) self.assertEqual(UpperCamelCase__ , batch['''labels'''][0] ) def _lowerCAmelCase ( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test lowerCamelCase_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = ''' He is very happy, UNwant\u00E9d,running''' lowerCamelCase_ = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) tokenizer.save_pretrained(UpperCamelCase__ ) lowerCamelCase_ = tokenizer.__class__.from_pretrained(UpperCamelCase__ ) lowerCamelCase_ = after_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) shutil.rmtree(UpperCamelCase__ ) lowerCamelCase_ = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = ''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(['''bim''', '''bambam'''] ) lowerCamelCase_ = tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''' ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) lowerCamelCase_ = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) tokenizer.save_pretrained(UpperCamelCase__ ) lowerCamelCase_ = tokenizer.__class__.from_pretrained(UpperCamelCase__ ) lowerCamelCase_ = after_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) lowerCamelCase_ = tokenizer.__class__.from_pretrained(UpperCamelCase__ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(UpperCamelCase__ ) def _lowerCAmelCase ( self ) -> List[str]: '''simple docstring''' lowerCamelCase_ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(UpperCamelCase__ ) with open(os.path.join(UpperCamelCase__ , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: lowerCamelCase_ = json.load(UpperCamelCase__ ) with open(os.path.join(UpperCamelCase__ , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: lowerCamelCase_ = json.load(UpperCamelCase__ ) lowerCamelCase_ = [F"""<extra_id_{i}>""" for i in range(125 )] lowerCamelCase_ = added_tokens_extra_ids + [ '''an_additional_special_token''' ] lowerCamelCase_ = added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(UpperCamelCase__ , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(UpperCamelCase__ , UpperCamelCase__ ) with open(os.path.join(UpperCamelCase__ , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(UpperCamelCase__ , UpperCamelCase__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowerCamelCase_ = tokenizer_class.from_pretrained( UpperCamelCase__ , ) self.assertIn( '''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowerCamelCase_ = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=UpperCamelCase__ )] lowerCamelCase_ = tokenizer_class.from_pretrained( UpperCamelCase__ , additional_special_tokens=UpperCamelCase__ , ) self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens ) self.assertEqual( ['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , ) def _lowerCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(UpperCamelCase__ ) lowerCamelCase_ = tokenizer_class.from_pretrained(UpperCamelCase__ ) self.assertTrue(tokenizer.decode([255] ) == '''''' ) def _lowerCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' pass def _lowerCAmelCase ( self ) -> Optional[int]: '''simple docstring''' pass def _lowerCAmelCase ( self ) -> Any: '''simple docstring''' pass def _lowerCAmelCase ( self ) -> str: '''simple docstring''' pass def _lowerCAmelCase ( self ) -> Any: '''simple docstring''' lowerCamelCase_ = self.get_tokenizers(fast=UpperCamelCase__ , do_lower_case=UpperCamelCase__ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): lowerCamelCase_ = ['''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''x''', '''t''', '''</s>'''] lowerCamelCase_ = tokenizer.convert_tokens_to_string(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def _lowerCAmelCase ( self ) -> str: '''simple docstring''' lowerCamelCase_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): lowerCamelCase_ = [ '''bos_token''', '''eos_token''', '''unk_token''', '''sep_token''', '''pad_token''', '''cls_token''', '''mask_token''', ] lowerCamelCase_ = 0 lowerCamelCase_ = tokenizer.convert_ids_to_tokens( UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ ) for attr in attributes_list: setattr(UpperCamelCase__ , attr + '''_id''' , UpperCamelCase__ ) self.assertEqual(getattr(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(getattr(UpperCamelCase__ , attr + '''_id''' ) , UpperCamelCase__ ) setattr(UpperCamelCase__ , attr + '''_id''' , UpperCamelCase__ ) self.assertEqual(getattr(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(getattr(UpperCamelCase__ , attr + '''_id''' ) , UpperCamelCase__ ) setattr(UpperCamelCase__ , '''additional_special_tokens_ids''' , [] ) self.assertListEqual(getattr(UpperCamelCase__ , '''additional_special_tokens''' ) , [] ) self.assertListEqual(getattr(UpperCamelCase__ , '''additional_special_tokens_ids''' ) , [] ) setattr(UpperCamelCase__ , '''additional_special_tokens_ids''' , [token_id_to_test_setters] ) self.assertListEqual(getattr(UpperCamelCase__ , '''additional_special_tokens''' ) , [token_to_test_setters] ) self.assertListEqual(getattr(UpperCamelCase__ , '''additional_special_tokens_ids''' ) , [token_id_to_test_setters] )
142
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCAmelCase ( a ): """simple docstring""" __lowercase :Optional[int] = ["image_processor", "tokenizer"] __lowercase :int = "ChineseCLIPImageProcessor" __lowercase :Union[str, Any] = ("BertTokenizer", "BertTokenizerFast") def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ ) -> Dict: '''simple docstring''' lowerCamelCase_ = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , UpperCamelCase__ , ) lowerCamelCase_ = kwargs.pop('''feature_extractor''' ) lowerCamelCase_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase_ = self.image_processor def __call__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ ) -> List[str]: '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: lowerCamelCase_ = self.tokenizer(UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if images is not None: lowerCamelCase_ = self.image_processor(UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if text is not None and images is not None: lowerCamelCase_ = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase__ ) , tensor_type=UpperCamelCase__ ) def _lowerCAmelCase ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def _lowerCAmelCase ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @property def _lowerCAmelCase ( self ) -> List[str]: '''simple docstring''' lowerCamelCase_ = self.tokenizer.model_input_names lowerCamelCase_ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _lowerCAmelCase ( self ) -> Tuple: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , UpperCamelCase__ , ) return self.image_processor_class
142
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) snake_case_ : Union[str, Any] = { "configuration_gpt_bigcode": ["GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTBigCodeConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : str = [ "GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTBigCodeForSequenceClassification", "GPTBigCodeForTokenClassification", "GPTBigCodeForCausalLM", "GPTBigCodeModel", "GPTBigCodePreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys snake_case_ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
253
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer snake_case_ : Union[str, Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} snake_case_ : Dict = { "vocab_file": { "unc-nlp/lxmert-base-uncased": "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt", }, "tokenizer_file": { "unc-nlp/lxmert-base-uncased": ( "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json" ), }, } snake_case_ : Union[str, Any] = { "unc-nlp/lxmert-base-uncased": 512, } snake_case_ : Any = { "unc-nlp/lxmert-base-uncased": {"do_lower_case": True}, } class snake_case_ ( __A ): '''simple docstring''' lowerCamelCase = VOCAB_FILES_NAMES lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase = PRETRAINED_INIT_CONFIGURATION lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase = LxmertTokenizer def __init__( self : int , __magic_name__ : Union[str, Any]=None , __magic_name__ : Tuple=None , __magic_name__ : Optional[int]=True , __magic_name__ : Optional[Any]="[UNK]" , __magic_name__ : str="[SEP]" , __magic_name__ : int="[PAD]" , __magic_name__ : Tuple="[CLS]" , __magic_name__ : Any="[MASK]" , __magic_name__ : str=True , __magic_name__ : int=None , **__magic_name__ : Any , ) -> str: super().__init__( __magic_name__ , tokenizer_file=__magic_name__ , do_lower_case=__magic_name__ , unk_token=__magic_name__ , sep_token=__magic_name__ , pad_token=__magic_name__ , cls_token=__magic_name__ , mask_token=__magic_name__ , tokenize_chinese_chars=__magic_name__ , strip_accents=__magic_name__ , **__magic_name__ , ) lowerCamelCase_ : List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , __magic_name__ ) != do_lower_case or normalizer_state.get("strip_accents" , __magic_name__ ) != strip_accents or normalizer_state.get("handle_chinese_chars" , __magic_name__ ) != tokenize_chinese_chars ): lowerCamelCase_ : int = getattr(__magic_name__ , normalizer_state.pop("type" ) ) lowerCamelCase_ : Optional[int] = do_lower_case lowerCamelCase_ : int = strip_accents lowerCamelCase_ : Union[str, Any] = tokenize_chinese_chars lowerCamelCase_ : Optional[Any] = normalizer_class(**__magic_name__ ) lowerCamelCase_ : int = do_lower_case def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : str , __magic_name__ : Dict=None ) -> Dict: lowerCamelCase_ : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]: lowerCamelCase_ : int = [self.sep_token_id] lowerCamelCase_ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]: lowerCamelCase_ : int = self._tokenizer.model.save(__magic_name__ , name=__magic_name__ ) return tuple(__magic_name__ )
253
1
"""simple docstring""" import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging a = logging.get_logger(__name__) def _snake_case ( _snake_case : List[str] , _snake_case : Any ) -> Dict: '''simple docstring''' _A = set() _A = [] def parse_line(_snake_case : Optional[Any] ): for line in fp: if isinstance(_snake_case , _snake_case ): _A = line.decode('UTF-8' ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(' ' ): # process a single warning and move it to `selected_warnings`. if len(_snake_case ) > 0: _A = '\n'.join(_snake_case ) # Only keep the warnings specified in `targets` if any(F''': {x}: ''' in warning for x in targets ): selected_warnings.add(_snake_case ) buffer.clear() continue else: _A = line.strip() buffer.append(_snake_case ) if from_gh: for filename in os.listdir(_snake_case ): _A = os.path.join(_snake_case , _snake_case ) if not os.path.isdir(_snake_case ): # read the file if filename != "warnings.txt": continue with open(_snake_case ) as fp: parse_line(_snake_case ) else: try: with zipfile.ZipFile(_snake_case ) as z: for filename in z.namelist(): if not os.path.isdir(_snake_case ): # read the file if filename != "warnings.txt": continue with z.open(_snake_case ) as fp: parse_line(_snake_case ) except Exception: logger.warning( F'''{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.''' ) return selected_warnings def _snake_case ( _snake_case : Union[str, Any] , _snake_case : List[str] ) -> Dict: '''simple docstring''' _A = set() _A = [os.path.join(_snake_case , _snake_case ) for p in os.listdir(_snake_case ) if (p.endswith('.zip' ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(_snake_case , _snake_case ) ) return selected_warnings if __name__ == "__main__": def _snake_case ( _snake_case : int ) -> Dict: '''simple docstring''' return values.split(',' ) a = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') parser.add_argument( '''--output_dir''', type=str, required=True, help='''Where to store the downloaded artifacts and other result files.''', ) parser.add_argument('''--token''', default=None, type=str, help='''A token that has actions:read permission.''') # optional parameters parser.add_argument( '''--targets''', default='''DeprecationWarning,UserWarning,FutureWarning''', type=list_str, help='''Comma-separated list of target warning(s) which we want to extract.''', ) parser.add_argument( '''--from_gh''', action='''store_true''', help='''If running from a GitHub action workflow and collecting warnings from its artifacts.''', ) a = parser.parse_args() a = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links a = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, '''artifacts.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print('''=''' * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts a = extract_warnings(args.output_dir, args.targets) a = sorted(selected_warnings) with open(os.path.join(args.output_dir, '''selected_warnings.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
7
"""simple docstring""" import math def _snake_case ( _snake_case : float , _snake_case : float ) -> float: '''simple docstring''' if ( not isinstance(_snake_case , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('power_factor must be a valid float value between -1 and 1.' ) return apparent_power * power_factor def _snake_case ( _snake_case : float , _snake_case : float ) -> float: '''simple docstring''' if ( not isinstance(_snake_case , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('power_factor must be a valid float value between -1 and 1.' ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
7
1
"""simple docstring""" from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), F'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), F'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})''' def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=True ): '''simple docstring''' model.train() UpperCAmelCase = model(lowerCAmelCase ) UpperCAmelCase = F.mse_loss(lowerCAmelCase , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(lowerCAmelCase ) def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase=False ): '''simple docstring''' set_seed(42 ) UpperCAmelCase = RegressionModel() UpperCAmelCase = deepcopy(lowerCAmelCase ) UpperCAmelCase = RegressionDataset(length=80 ) UpperCAmelCase = DataLoader(lowerCAmelCase , batch_size=16 ) model.to(accelerator.device ) if sched: UpperCAmelCase = AdamW(params=model.parameters() , lr=1e-3 ) UpperCAmelCase = AdamW(params=ddp_model.parameters() , lr=1e-3 ) UpperCAmelCase = LambdaLR(lowerCAmelCase , lr_lambda=lambda lowerCAmelCase : epoch**0.65 ) UpperCAmelCase = LambdaLR(lowerCAmelCase , lr_lambda=lambda lowerCAmelCase : epoch**0.65 ) # Make a copy of `model` if sched: UpperCAmelCase = accelerator.prepare(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) else: UpperCAmelCase = accelerator.prepare(lowerCAmelCase , lowerCAmelCase ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' # Test when on a single CPU or GPU that the context manager does nothing UpperCAmelCase = get_training_setup(lowerCAmelCase ) # Use a single batch UpperCAmelCase = next(iter(lowerCAmelCase ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(lowerCAmelCase ): step_model(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) else: # Sync grads step_model(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), F'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) UpperCAmelCase = ddp_input[torch.randperm(len(lowerCAmelCase ) )] def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' # Test on distributed setup that context manager behaves properly UpperCAmelCase = get_training_setup(lowerCAmelCase ) # Use a single batch UpperCAmelCase = next(iter(lowerCAmelCase ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(lowerCAmelCase ): step_model(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) else: # Sync grads step_model(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) UpperCAmelCase = ddp_input[torch.randperm(len(lowerCAmelCase ) )] def _lowerCAmelCase ( lowerCAmelCase=False , lowerCAmelCase=False ): '''simple docstring''' UpperCAmelCase = Accelerator( split_batches=lowerCAmelCase , dispatch_batches=lowerCAmelCase , gradient_accumulation_steps=2 ) # Test that context manager behaves properly UpperCAmelCase = get_training_setup(lowerCAmelCase ) for iteration, batch in enumerate(lowerCAmelCase ): UpperCAmelCase = batch.values() # Gather the distributed inputs and targs for the base model UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Do "gradient accumulation" (noop) with accelerator.accumulate(lowerCAmelCase ): step_model(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(lowerCAmelCase ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) UpperCAmelCase = ddp_input[torch.randperm(len(lowerCAmelCase ) )] GradientState._reset_state() def _lowerCAmelCase ( lowerCAmelCase=False , lowerCAmelCase=False ): '''simple docstring''' UpperCAmelCase = Accelerator( split_batches=lowerCAmelCase , dispatch_batches=lowerCAmelCase , gradient_accumulation_steps=2 ) # Test that context manager behaves properly UpperCAmelCase = get_training_setup(lowerCAmelCase , lowerCAmelCase ) for iteration, batch in enumerate(lowerCAmelCase ): UpperCAmelCase = batch.values() # Gather the distributed inputs and targs for the base model UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(lowerCAmelCase )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(lowerCAmelCase ): step_model(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), F'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n''' UpperCAmelCase = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(lowerCAmelCase )) if accelerator.num_processes > 1: check_model_parameters(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) GradientState._reset_state() def _lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase = Accelerator() UpperCAmelCase = RegressionDataset(length=80 ) UpperCAmelCase = DataLoader(lowerCAmelCase , batch_size=16 ) UpperCAmelCase = RegressionDataset(length=96 ) UpperCAmelCase = DataLoader(lowerCAmelCase , batch_size=16 ) UpperCAmelCase = accelerator.prepare(lowerCAmelCase , lowerCAmelCase ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(lowerCAmelCase ): assert id(accelerator.gradient_state.active_dataloader ) == id(lowerCAmelCase ) if iteration < len(lowerCAmelCase ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(lowerCAmelCase ): assert id(accelerator.gradient_state.active_dataloader ) == id(lowerCAmelCase ) if batch_num < len(lowerCAmelCase ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def _lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase = Accelerator() UpperCAmelCase = accelerator.state if state.local_process_index == 0: print("""**Test `accumulate` gradient accumulation with dataloader break**""" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("""**Test NOOP `no_sync` context manager**""" ) test_noop_sync(lowerCAmelCase ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("""**Test Distributed `no_sync` context manager**""" ) test_distributed_sync(lowerCAmelCase ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation, """ , F'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation(lowerCAmelCase , lowerCAmelCase ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("""<""" , """2.0""" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation with optimizer and scheduler, """ , """`split_batches=False`, `dispatch_batches=False`**""" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation with optimizer and scheduler, """ , F'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation_with_opt_and_scheduler(lowerCAmelCase , lowerCAmelCase ) def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
714
"""simple docstring""" import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ : List[Any] = logging.get_logger(__name__) lowerCAmelCase_ : Tuple = { '''b0''': efficientnet.EfficientNetBa, '''b1''': efficientnet.EfficientNetBa, '''b2''': efficientnet.EfficientNetBa, '''b3''': efficientnet.EfficientNetBa, '''b4''': efficientnet.EfficientNetBa, '''b5''': efficientnet.EfficientNetBa, '''b6''': efficientnet.EfficientNetBa, '''b7''': efficientnet.EfficientNetBa, } lowerCAmelCase_ : int = { '''b0''': { '''hidden_dim''': 1_2_8_0, '''width_coef''': 1.0, '''depth_coef''': 1.0, '''image_size''': 2_2_4, '''dropout_rate''': 0.2, '''dw_padding''': [], }, '''b1''': { '''hidden_dim''': 1_2_8_0, '''width_coef''': 1.0, '''depth_coef''': 1.1, '''image_size''': 2_4_0, '''dropout_rate''': 0.2, '''dw_padding''': [1_6], }, '''b2''': { '''hidden_dim''': 1_4_0_8, '''width_coef''': 1.1, '''depth_coef''': 1.2, '''image_size''': 2_6_0, '''dropout_rate''': 0.3, '''dw_padding''': [5, 8, 1_6], }, '''b3''': { '''hidden_dim''': 1_5_3_6, '''width_coef''': 1.2, '''depth_coef''': 1.4, '''image_size''': 3_0_0, '''dropout_rate''': 0.3, '''dw_padding''': [5, 1_8], }, '''b4''': { '''hidden_dim''': 1_7_9_2, '''width_coef''': 1.4, '''depth_coef''': 1.8, '''image_size''': 3_8_0, '''dropout_rate''': 0.4, '''dw_padding''': [6], }, '''b5''': { '''hidden_dim''': 2_0_4_8, '''width_coef''': 1.6, '''depth_coef''': 2.2, '''image_size''': 4_5_6, '''dropout_rate''': 0.4, '''dw_padding''': [1_3, 2_7], }, '''b6''': { '''hidden_dim''': 2_3_0_4, '''width_coef''': 1.8, '''depth_coef''': 2.6, '''image_size''': 5_2_8, '''dropout_rate''': 0.5, '''dw_padding''': [3_1], }, '''b7''': { '''hidden_dim''': 2_5_6_0, '''width_coef''': 2.0, '''depth_coef''': 3.1, '''image_size''': 6_0_0, '''dropout_rate''': 0.5, '''dw_padding''': [1_8], }, } def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' UpperCAmelCase = EfficientNetConfig() UpperCAmelCase = CONFIG_MAP[model_name]["""hidden_dim"""] UpperCAmelCase = CONFIG_MAP[model_name]["""width_coef"""] UpperCAmelCase = CONFIG_MAP[model_name]["""depth_coef"""] UpperCAmelCase = CONFIG_MAP[model_name]["""image_size"""] UpperCAmelCase = CONFIG_MAP[model_name]["""dropout_rate"""] UpperCAmelCase = CONFIG_MAP[model_name]["""dw_padding"""] UpperCAmelCase = """huggingface/label-files""" UpperCAmelCase = """imagenet-1k-id2label.json""" UpperCAmelCase = 1000 UpperCAmelCase = json.load(open(hf_hub_download(lowerCAmelCase , lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) ) UpperCAmelCase = {int(lowerCAmelCase ): v for k, v in idalabel.items()} UpperCAmelCase = idalabel UpperCAmelCase = {v: k for k, v in idalabel.items()} return config def _lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCAmelCase = Image.open(requests.get(lowerCAmelCase , stream=lowerCAmelCase ).raw ) return im def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' UpperCAmelCase = CONFIG_MAP[model_name]["""image_size"""] UpperCAmelCase = EfficientNetImageProcessor( size={"""height""": size, """width""": size} , image_mean=[0.4_85, 0.4_56, 0.4_06] , image_std=[0.47_85_39_44, 0.4_73_28_64, 0.47_43_41_63] , do_center_crop=lowerCAmelCase , ) return preprocessor def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' UpperCAmelCase = [v.split("""_""" )[0].split("""block""" )[1] for v in original_param_names if v.startswith("""block""" )] UpperCAmelCase = sorted(set(lowerCAmelCase ) ) UpperCAmelCase = len(lowerCAmelCase ) UpperCAmelCase = {b: str(lowerCAmelCase ) for b, i in zip(lowerCAmelCase , range(lowerCAmelCase ) )} UpperCAmelCase = [] rename_keys.append(("""stem_conv/kernel:0""", """embeddings.convolution.weight""") ) rename_keys.append(("""stem_bn/gamma:0""", """embeddings.batchnorm.weight""") ) rename_keys.append(("""stem_bn/beta:0""", """embeddings.batchnorm.bias""") ) rename_keys.append(("""stem_bn/moving_mean:0""", """embeddings.batchnorm.running_mean""") ) rename_keys.append(("""stem_bn/moving_variance:0""", """embeddings.batchnorm.running_var""") ) for b in block_names: UpperCAmelCase = block_name_mapping[b] rename_keys.append((F'''block{b}_expand_conv/kernel:0''', F'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') ) rename_keys.append((F'''block{b}_expand_bn/gamma:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') ) rename_keys.append((F'''block{b}_expand_bn/beta:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') ) rename_keys.append( (F'''block{b}_dwconv/depthwise_kernel:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') ) rename_keys.append((F'''block{b}_bn/gamma:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') ) rename_keys.append((F'''block{b}_bn/beta:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') ) rename_keys.append( (F'''block{b}_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') ) rename_keys.append( (F'''block{b}_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') ) rename_keys.append((F'''block{b}_se_reduce/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') ) rename_keys.append((F'''block{b}_se_reduce/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') ) rename_keys.append((F'''block{b}_se_expand/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') ) rename_keys.append((F'''block{b}_se_expand/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') ) rename_keys.append( (F'''block{b}_project_conv/kernel:0''', F'''encoder.blocks.{hf_b}.projection.project_conv.weight''') ) rename_keys.append((F'''block{b}_project_bn/gamma:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.weight''') ) rename_keys.append((F'''block{b}_project_bn/beta:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.bias''') ) rename_keys.append( (F'''block{b}_project_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') ) rename_keys.append( (F'''block{b}_project_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') ) rename_keys.append(("""top_conv/kernel:0""", """encoder.top_conv.weight""") ) rename_keys.append(("""top_bn/gamma:0""", """encoder.top_bn.weight""") ) rename_keys.append(("""top_bn/beta:0""", """encoder.top_bn.bias""") ) rename_keys.append(("""top_bn/moving_mean:0""", """encoder.top_bn.running_mean""") ) rename_keys.append(("""top_bn/moving_variance:0""", """encoder.top_bn.running_var""") ) UpperCAmelCase = {} for item in rename_keys: if item[0] in original_param_names: UpperCAmelCase = """efficientnet.""" + item[1] UpperCAmelCase = """classifier.weight""" UpperCAmelCase = """classifier.bias""" return key_mapping def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' for key, value in tf_params.items(): if "normalization" in key: continue UpperCAmelCase = key_mapping[key] if "_conv" in key and "kernel" in key: UpperCAmelCase = torch.from_numpy(lowerCAmelCase ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: UpperCAmelCase = torch.from_numpy(lowerCAmelCase ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: UpperCAmelCase = torch.from_numpy(np.transpose(lowerCAmelCase ) ) else: UpperCAmelCase = torch.from_numpy(lowerCAmelCase ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(lowerCAmelCase ) @torch.no_grad() def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' UpperCAmelCase = model_classes[model_name]( include_top=lowerCAmelCase , weights="""imagenet""" , input_tensor=lowerCAmelCase , input_shape=lowerCAmelCase , pooling=lowerCAmelCase , classes=1000 , classifier_activation="""softmax""" , ) UpperCAmelCase = original_model.trainable_variables UpperCAmelCase = original_model.non_trainable_variables UpperCAmelCase = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: UpperCAmelCase = param.numpy() UpperCAmelCase = list(tf_params.keys() ) # Load HuggingFace model UpperCAmelCase = get_efficientnet_config(lowerCAmelCase ) UpperCAmelCase = EfficientNetForImageClassification(lowerCAmelCase ).eval() UpperCAmelCase = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("""Converting parameters...""" ) UpperCAmelCase = rename_keys(lowerCAmelCase ) replace_params(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Initialize preprocessor and preprocess input image UpperCAmelCase = convert_image_processor(lowerCAmelCase ) UpperCAmelCase = preprocessor(images=prepare_img() , return_tensors="""pt""" ) # HF model inference hf_model.eval() with torch.no_grad(): UpperCAmelCase = hf_model(**lowerCAmelCase ) UpperCAmelCase = outputs.logits.detach().numpy() # Original model inference UpperCAmelCase = False UpperCAmelCase = CONFIG_MAP[model_name]["""image_size"""] UpperCAmelCase = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) UpperCAmelCase = image.img_to_array(lowerCAmelCase ) UpperCAmelCase = np.expand_dims(lowerCAmelCase , axis=0 ) UpperCAmelCase = original_model.predict(lowerCAmelCase ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(lowerCAmelCase , lowerCAmelCase , atol=1e-3 ), "The predicted logits are not the same." print("""Model outputs match!""" ) if save_model: # Create folder to save model if not os.path.isdir(lowerCAmelCase ): os.mkdir(lowerCAmelCase ) # Save converted model and image processor hf_model.save_pretrained(lowerCAmelCase ) preprocessor.save_pretrained(lowerCAmelCase ) if push_to_hub: # Push model and image processor to hub print(F'''Pushing converted {model_name} to the hub...''' ) UpperCAmelCase = F'''efficientnet-{model_name}''' preprocessor.push_to_hub(lowerCAmelCase ) hf_model.push_to_hub(lowerCAmelCase ) if __name__ == "__main__": lowerCAmelCase_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''b0''', type=str, help='''Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''hf_model''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--save_model''', action='''store_true''', help='''Save model to local''') parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') lowerCAmelCase_ : Optional[Any] = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
378
0
from functools import lru_cache @lru_cache def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int: if num < 0: raise ValueError('''Number should not be negative.''' ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
416
def SCREAMING_SNAKE_CASE__ ( snake_case_ = 1_0_0_0 ) -> int: A__ : Any =3 A__ : Optional[Any] =0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 1_5 == 0: result -= a a += 1 return result if __name__ == "__main__": print(F"{solution() = }")
416
1
'''simple docstring''' from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class lowercase__ ( __lowerCAmelCase ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , )-> Tuple: '''simple docstring''' super().__init__( features=lowerCamelCase__ , cache_dir=lowerCamelCase__ , keep_in_memory=lowerCamelCase__ , streaming=lowerCamelCase__ , num_proc=lowerCamelCase__ , **lowerCamelCase__ , ) lowerCAmelCase__ = Generator( cache_dir=lowerCamelCase__ , features=lowerCamelCase__ , generator=lowerCamelCase__ , gen_kwargs=lowerCamelCase__ , **lowerCamelCase__ , ) def UpperCAmelCase ( self )-> List[Any]: '''simple docstring''' if self.streaming: lowerCAmelCase__ = self.builder.as_streaming_dataset(split="train" ) # Build regular (map-style) dataset else: lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None self.builder.download_and_prepare( download_config=lowerCamelCase__ , download_mode=lowerCamelCase__ , verification_mode=lowerCamelCase__ , base_path=lowerCamelCase__ , num_proc=self.num_proc , ) lowerCAmelCase__ = self.builder.as_dataset( split="train" , verification_mode=lowerCamelCase__ , in_memory=self.keep_in_memory ) return dataset
718
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer a_ = logging.get_logger(__name__) a_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} a_ = { '''vocab_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } a_ = { '''vocab_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } a_ = { '''vocab_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json''' ), }, } a_ = { '''facebook/dpr-ctx_encoder-single-nq-base''': 512, '''facebook/dpr-ctx_encoder-multiset-base''': 512, } a_ = { '''facebook/dpr-question_encoder-single-nq-base''': 512, '''facebook/dpr-question_encoder-multiset-base''': 512, } a_ = { '''facebook/dpr-reader-single-nq-base''': 512, '''facebook/dpr-reader-multiset-base''': 512, } a_ = { '''facebook/dpr-ctx_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-ctx_encoder-multiset-base''': {'''do_lower_case''': True}, } a_ = { '''facebook/dpr-question_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-question_encoder-multiset-base''': {'''do_lower_case''': True}, } a_ = { '''facebook/dpr-reader-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-reader-multiset-base''': {'''do_lower_case''': True}, } class lowercase__ ( _UpperCAmelCase ): a_ =VOCAB_FILES_NAMES a_ =CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP a_ =CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ =CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class lowercase__ ( _UpperCAmelCase ): a_ =VOCAB_FILES_NAMES a_ =QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP a_ =QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ =QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION a_ = collections.namedtuple( '''DPRSpanPrediction''', ['''span_score''', '''relevance_score''', '''doc_id''', '''start_index''', '''end_index''', '''text'''] ) a_ = collections.namedtuple('''DPRReaderOutput''', ['''start_logits''', '''end_logits''', '''relevance_logits''']) a_ = r''' Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: ``` [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> ``` Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `\'tf\'`: Return TensorFlow `tf.constant` objects. - `\'pt\'`: Return PyTorch `torch.Tensor` objects. - `\'np\'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer\'s default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Returns: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. ''' @add_start_docstrings(_UpperCAmelCase ) class lowercase__ : def __call__( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , )-> BatchEncoding: '''simple docstring''' if titles is None and texts is None: return super().__call__( __UpperCAmelCase , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , return_tensors=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , **__UpperCAmelCase , ) elif titles is None or texts is None: lowerCAmelCase__ = titles if texts is None else texts return super().__call__( __UpperCAmelCase , __UpperCAmelCase , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , return_tensors=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , **__UpperCAmelCase , ) lowerCAmelCase__ = titles if not isinstance(__UpperCAmelCase , __UpperCAmelCase ) else [titles] lowerCAmelCase__ = texts if not isinstance(__UpperCAmelCase , __UpperCAmelCase ) else [texts] lowerCAmelCase__ = len(__UpperCAmelCase ) lowerCAmelCase__ = questions if not isinstance(__UpperCAmelCase , __UpperCAmelCase ) else [questions] * n_passages if len(__UpperCAmelCase ) != len(__UpperCAmelCase ): raise ValueError( F"There should be as many titles than texts but got {len(__UpperCAmelCase )} titles and {len(__UpperCAmelCase )} texts." ) lowerCAmelCase__ = super().__call__(__UpperCAmelCase , __UpperCAmelCase , padding=__UpperCAmelCase , truncation=__UpperCAmelCase )["input_ids"] lowerCAmelCase__ = super().__call__(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , padding=__UpperCAmelCase , truncation=__UpperCAmelCase )["input_ids"] lowerCAmelCase__ = { "input_ids": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(__UpperCAmelCase , __UpperCAmelCase ) ] } if return_attention_mask is not False: lowerCAmelCase__ = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) lowerCAmelCase__ = attention_mask return self.pad(__UpperCAmelCase , padding=__UpperCAmelCase , max_length=__UpperCAmelCase , return_tensors=__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 16 , __UpperCAmelCase = 64 , __UpperCAmelCase = 4 , )-> List[DPRSpanPrediction]: '''simple docstring''' lowerCAmelCase__ = reader_input["input_ids"] lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = reader_output[:3] lowerCAmelCase__ = len(__UpperCAmelCase ) lowerCAmelCase__ = sorted(range(__UpperCAmelCase ) , reverse=__UpperCAmelCase , key=relevance_logits.__getitem__ ) lowerCAmelCase__ = [] for doc_id in sorted_docs: lowerCAmelCase__ = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence lowerCAmelCase__ = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: lowerCAmelCase__ = sequence_ids.index(self.pad_token_id ) else: lowerCAmelCase__ = len(__UpperCAmelCase ) lowerCAmelCase__ = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=__UpperCAmelCase , top_spans=__UpperCAmelCase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=__UpperCAmelCase , start_index=__UpperCAmelCase , end_index=__UpperCAmelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(__UpperCAmelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , )-> List[DPRSpanPrediction]: '''simple docstring''' lowerCAmelCase__ = [] for start_index, start_score in enumerate(__UpperCAmelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) lowerCAmelCase__ = sorted(__UpperCAmelCase , key=lambda __UpperCAmelCase : x[1] , reverse=__UpperCAmelCase ) lowerCAmelCase__ = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F"Wrong span indices: [{start_index}:{end_index}]" ) lowerCAmelCase__ = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F"Span is too long: {length} > {max_answer_length}" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(__UpperCAmelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_UpperCAmelCase ) class lowercase__ ( _UpperCAmelCase, _UpperCAmelCase ): a_ =VOCAB_FILES_NAMES a_ =READER_PRETRAINED_VOCAB_FILES_MAP a_ =READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ =READER_PRETRAINED_INIT_CONFIGURATION a_ =["""input_ids""", """attention_mask"""]
115
0
"""simple docstring""" from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def lowercase ( ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = 9, 14 # noqa: F841 _UpperCAmelCase = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] _UpperCAmelCase = defaultdict(_SCREAMING_SNAKE_CASE ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) _UpperCAmelCase = mst(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: _UpperCAmelCase = tuple(answer[:2] ) _UpperCAmelCase = tuple(edge[::-1] ) assert edge in result or reverse in result
602
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A : List[Any] = logging.get_logger(__name__) __A : Optional[Any] = { "google/vivit-b-16x2-kinetics400": ( "https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json" ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = """vivit""" def __init__( self : int , __UpperCamelCase : Union[str, Any]=2_2_4 , __UpperCamelCase : Any=3_2 , __UpperCamelCase : str=[2, 1_6, 1_6] , __UpperCamelCase : Union[str, Any]=3 , __UpperCamelCase : int=7_6_8 , __UpperCamelCase : List[str]=1_2 , __UpperCamelCase : str=1_2 , __UpperCamelCase : Optional[Any]=3_0_7_2 , __UpperCamelCase : Optional[Any]="gelu_fast" , __UpperCamelCase : Union[str, Any]=0.0 , __UpperCamelCase : List[str]=0.0 , __UpperCamelCase : int=0.0_2 , __UpperCamelCase : List[str]=1e-06 , __UpperCamelCase : Union[str, Any]=True , **__UpperCamelCase : Any , )->Optional[int]: _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = image_size _UpperCAmelCase = num_frames _UpperCAmelCase = tubelet_size _UpperCAmelCase = num_channels _UpperCAmelCase = qkv_bias super().__init__(**__UpperCamelCase )
602
1
'''simple docstring''' import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() _lowercase : Tuple = [ "word_embeddings_layernorm.weight", "word_embeddings_layernorm.bias", "input_layernorm.weight", "input_layernorm.bias", "post_attention_layernorm.weight", "post_attention_layernorm.bias", "self_attention.dense.bias", "mlp.dense_4h_to_h.bias", "ln_f.weight", "ln_f.bias", ] _lowercase : str = [ "mlp.dense_4h_to_h.weight", "self_attention.dense.weight", ] def lowerCamelCase ( UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Optional[int] ) -> str: lowercase_ : List[str] = { """word_embeddings.weight""": """word_embeddings.weight""", """word_embeddings.norm.weight""": """word_embeddings_layernorm.weight""", """word_embeddings.norm.bias""": """word_embeddings_layernorm.bias""", """weight""": """ln_f.weight""", """bias""": """ln_f.bias""", } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks lowercase_ : Dict = int(re.match(R""".*layer_(\d*).*""" , UpperCAmelCase__ )[1] ) layer_number -= 3 return F'''h.{layer_number}.''' + key def lowerCamelCase ( UpperCAmelCase__ : Any ) -> Union[str, Any]: if dtype == torch.bool: return 1 / 8 lowercase_ : Tuple = re.search(R"""[^\d](\d+)$""" , str(UpperCAmelCase__ ) ) if bit_search is None: raise ValueError(F'''`dtype` is not a valid dtype: {dtype}.''' ) lowercase_ : Optional[int] = int(bit_search.groups()[0] ) return bit_size // 8 def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[int] ) -> Optional[Any]: # Construct model if bloom_config_file == "": lowercase_ : Union[str, Any] = BloomConfig() else: lowercase_ : int = BloomConfig.from_json_file(UpperCAmelCase__ ) if shard_model: lowercase_ : Optional[Any] = os.listdir(UpperCAmelCase__ ) lowercase_ : Union[str, Any] = sorted(filter(lambda UpperCAmelCase__ : s.startswith("""layer""" ) and "model_00" in s , UpperCAmelCase__ ) ) lowercase_ : Union[str, Any] = {"""weight_map""": {}, """metadata""": {}} lowercase_ : Optional[int] = 0 lowercase_ : int = None lowercase_ : str = BloomConfig() for j, file in enumerate(UpperCAmelCase__ ): print("""Processing file: {}""".format(UpperCAmelCase__ ) ) lowercase_ : Any = None for i in range(UpperCAmelCase__ ): # load all TP files lowercase_ : Any = file.replace("""model_00""" , F'''model_0{i}''' ) lowercase_ : Any = torch.load(os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) , map_location="""cpu""" ) # Rename keys in the transformers names lowercase_ : int = list(temp.keys() ) for key in keys: lowercase_ : Any = temp.pop(UpperCAmelCase__ ) if tensors is None: lowercase_ : str = temp else: for key in tensors.keys(): if any(key.endswith(UpperCAmelCase__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel lowercase_ : Union[str, Any] = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks lowercase_ : Any = torch.cat([tensors[key], temp[key]] , dim=UpperCAmelCase__ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(UpperCAmelCase__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): lowercase_ : Dict = tensors[key] / pretraining_tp torch.save( UpperCAmelCase__ , os.path.join( UpperCAmelCase__ , """pytorch_model_{}-of-{}.bin""".format(str(j + 1 ).zfill(5 ) , str(len(UpperCAmelCase__ ) ).zfill(5 ) ) , ) , ) for key in tensors.keys(): lowercase_ : Optional[int] = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: lowercase_ : Optional[int] = """pytorch_model_{}-of-{}.bin""".format( str(j + 1 ).zfill(5 ) , str(len(UpperCAmelCase__ ) ).zfill(5 ) ) lowercase_ : Dict = BloomConfig() lowercase_ : int = pytorch_dump_folder_path + """/""" + CONFIG_NAME lowercase_ : List[Any] = total_size with open(UpperCAmelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) with open(os.path.join(UpperCAmelCase__ , WEIGHTS_NAME + """.index.json""" ) , """w""" , encoding="""utf-8""" ) as f: lowercase_ : List[Any] = json.dumps(UpperCAmelCase__ , indent=2 , sort_keys=UpperCAmelCase__ ) + """\n""" f.write(UpperCAmelCase__ ) else: lowercase_ : Optional[int] = BloomModel(UpperCAmelCase__ ) lowercase_ : int = os.listdir(UpperCAmelCase__ ) lowercase_ : Optional[int] = sorted(filter(lambda UpperCAmelCase__ : s.startswith("""layer""" ) and "model_00" in s , UpperCAmelCase__ ) ) lowercase_ : Union[str, Any] = None for i, file in enumerate(UpperCAmelCase__ ): lowercase_ : Tuple = None for i in range(UpperCAmelCase__ ): # load all TP files lowercase_ : List[str] = file.replace("""model_00""" , F'''model_0{i}''' ) lowercase_ : List[Any] = torch.load(os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) , map_location="""cpu""" ) # Rename keys in the transformers names lowercase_ : int = list(temp.keys() ) for key in keys: lowercase_ : int = temp.pop(UpperCAmelCase__ ) if tensors is None: lowercase_ : Dict = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(UpperCAmelCase__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel lowercase_ : Dict = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks lowercase_ : Optional[Any] = torch.cat([tensors[key], temp[key]] , dim=UpperCAmelCase__ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(UpperCAmelCase__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): lowercase_ : int = tensors[key] / pretraining_tp lowercase_ : Optional[int] = model.load_state_dict(UpperCAmelCase__ , strict=UpperCAmelCase__ ) assert not other_keys.unexpected_keys, F'''The keys {other_keys.unexpected_keys} are unexpected''' if missing_keys is None: lowercase_ : Union[str, Any] = set(other_keys.missing_keys ) else: lowercase_ : str = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, F'''The keys {missing_keys} are missing''' # Save pytorch-model os.makedirs(UpperCAmelCase__ , exist_ok=UpperCAmelCase__ ) lowercase_ : Union[str, Any] = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME lowercase_ : Any = pytorch_dump_folder_path + """/""" + CONFIG_NAME print(F'''Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}''' ) if config.torch_dtype is not None: lowercase_ : Union[str, Any] = model.to(config.torch_dtype ) torch.save(model.state_dict() , UpperCAmelCase__ ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(UpperCAmelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _lowercase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--bloom_checkpoint_path", default=None, type=str, required=True, help="Path to the Megatron-LM checkpoint path.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--bloom_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--shard_model", action="store_true", help="An optional setting to shard the output model \nThis enables sharding the converted checkpoint", ) parser.add_argument( "--pretraining_tp", default=4, type=int, help="Pretraining TP rank that has been used when training the model in Megatron-LM \n", ) _lowercase : List[str] = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
30
'''simple docstring''' from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge _lowercase : Optional[Any] = [ "Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of the" " final seconds on board Flight 9525. The Germanwings co-pilot says he had a \"previous episode of severe" " depression\" German airline confirms it knew of Andreas Lubitz's depression years before he took control.", "The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal" " accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC's" " founding Rome Statute in January. Israel and the United States opposed the Palestinians' efforts to join the" " body.", "Amnesty International releases its annual report on the death penalty. The report catalogs the use of" " state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the" " world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital" " punishment.", ] _lowercase : List[Any] = [ "Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports ." " Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz" " had informed his Lufthansa training school of an episode of severe depression, airline says .", "Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June ." " Israel and the United States opposed the move, which could open the door to war crimes investigations against" " Israelis .", "Amnesty's annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to" " death . Organization claims that governments around the world are using the threat of terrorism to advance" " executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death" " sentences up by 28% .", ] def lowerCamelCase ( ) -> List[str]: lowercase_ : str = calculate_rouge(UpperCAmelCase__ , UpperCAmelCase__ , bootstrap_aggregation=UpperCAmelCase__ , rouge_keys=["""rouge2""", """rougeL"""] ) assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase_ : int = calculate_rouge(UpperCAmelCase__ , UpperCAmelCase__ , bootstrap_aggregation=UpperCAmelCase__ , rouge_keys=["""rouge2"""] ) assert ( pd.DataFrame(no_aggregation["""rouge2"""] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra["""rouge2"""] ).fmeasure.mean() ) def lowerCamelCase ( ) -> Optional[Any]: lowercase_ : Tuple = """rougeLsum""" lowercase_ : Optional[Any] = calculate_rouge(UpperCAmelCase__ , UpperCAmelCase__ , newline_sep=UpperCAmelCase__ , rouge_keys=[k] )[k] lowercase_ : Optional[Any] = calculate_rouge(UpperCAmelCase__ , UpperCAmelCase__ , newline_sep=UpperCAmelCase__ , rouge_keys=[k] )[k] assert score > score_no_sep def lowerCamelCase ( ) -> List[Any]: lowercase_ : Optional[int] = ["""rouge1""", """rouge2""", """rougeL"""] lowercase_ : Tuple = calculate_rouge(UpperCAmelCase__ , UpperCAmelCase__ , newline_sep=UpperCAmelCase__ , rouge_keys=UpperCAmelCase__ ) lowercase_ : Tuple = calculate_rouge(UpperCAmelCase__ , UpperCAmelCase__ , newline_sep=UpperCAmelCase__ , rouge_keys=UpperCAmelCase__ ) assert score_sep == score_no_sep def lowerCamelCase ( ) -> Optional[Any]: lowercase_ : Union[str, Any] = [ """Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.""", """Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports .""", ] lowercase_ : List[str] = [ """Margot Frank, died in 1945, a month earlier than previously thought.""", """Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of""" """ the final seconds on board Flight 9525.""", ] assert calculate_rouge(UpperCAmelCase__ , UpperCAmelCase__ , newline_sep=UpperCAmelCase__ ) == calculate_rouge(UpperCAmelCase__ , UpperCAmelCase__ , newline_sep=UpperCAmelCase__ ) def lowerCamelCase ( ) -> Union[str, Any]: lowercase_ : Optional[Any] = [ """\" \"a person who has such a video needs to immediately give it to the investigators,\" prosecutor says .<n> \"it is a very disturbing scene,\" editor-in-chief of bild online tells \"erin burnett: outfront\" """ ] lowercase_ : List[Any] = [ """ Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports . Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .""" ] lowercase_ : Optional[int] = calculate_rouge(UpperCAmelCase__ , UpperCAmelCase__ , rouge_keys=["""rougeLsum"""] , newline_sep=UpperCAmelCase__ )["""rougeLsum"""] lowercase_ : List[str] = calculate_rouge(UpperCAmelCase__ , UpperCAmelCase__ , rouge_keys=["""rougeLsum"""] )["""rougeLsum"""] assert new_score > prev_score def lowerCamelCase ( ) -> Tuple: lowercase_ : Optional[int] = Path("""examples/seq2seq/test_data/wmt_en_ro""" ) lowercase_ : List[Any] = calculate_rouge_path(data_dir.joinpath("""test.source""" ) , data_dir.joinpath("""test.target""" ) ) assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase_ : Union[str, Any] = calculate_rouge_path( data_dir.joinpath("""test.source""" ) , data_dir.joinpath("""test.target""" ) , bootstrap_aggregation=UpperCAmelCase__ ) assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ )
30
1
"""simple docstring""" import argparse import json from tqdm import tqdm def a_ ( ): '''simple docstring''' lowercase__ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--src_path' , type=_lowerCAmelCase , default='biencoder-nq-dev.json' , help='Path to raw DPR training data' , ) parser.add_argument( '--evaluation_set' , type=_lowerCAmelCase , help='where to store parsed evaluation_set file' , ) parser.add_argument( '--gold_data_path' , type=_lowerCAmelCase , help='where to store parsed gold_data_path file' , ) lowercase__ : Union[str, Any] = parser.parse_args() with open(args.src_path , 'r' ) as src_file, open(args.evaluation_set , 'w' ) as eval_file, open( args.gold_data_path , 'w' ) as gold_file: lowercase__ : List[str] = json.load(_lowerCAmelCase ) for dpr_record in tqdm(_lowerCAmelCase ): lowercase__ : Any = dpr_record['question'] lowercase__ : Optional[Any] = [context['title'] for context in dpr_record['positive_ctxs']] eval_file.write(question + '\n' ) gold_file.write('\t'.join(_lowerCAmelCase ) + '\n' ) if __name__ == "__main__": main()
599
"""simple docstring""" class UpperCAmelCase_ : def __init__( self , a , a , a ) -> List[Any]: lowercase__ : List[str] = name lowercase__ : List[str] = value lowercase__ : Tuple = weight def __repr__( self ) -> Any: return f"""{self.__class__.__name__}({self.name}, {self.value}, {self.weight})""" def _UpperCAmelCase ( self ) -> Any: return self.value def _UpperCAmelCase ( self ) -> int: return self.name def _UpperCAmelCase ( self ) -> str: return self.weight def _UpperCAmelCase ( self ) -> int: return self.value / self.weight def a_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] ): '''simple docstring''' lowercase__ : Union[str, Any] = [] for i in range(len(_lowerCAmelCase ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def a_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict ): '''simple docstring''' lowercase__ : Optional[Any] = sorted(_lowerCAmelCase , key=_lowerCAmelCase , reverse=_lowerCAmelCase ) lowercase__ : int = [] lowercase__ , lowercase__ : Dict = 0.0, 0.0 for i in range(len(_lowerCAmelCase ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def a_ ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
599
1
'''simple docstring''' def UpperCamelCase_ ( A__ : str ): '''simple docstring''' lowerCAmelCase_ : List[Any] = hex_num.strip() if not hex_num: raise ValueError("""No value was passed to the function""" ) lowerCAmelCase_ : Optional[Any] = hex_num[0] == """-""" if is_negative: lowerCAmelCase_ : Optional[int] = hex_num[1:] try: lowerCAmelCase_ : Tuple = int(A__ , 16 ) except ValueError: raise ValueError("""Invalid value was passed to the function""" ) lowerCAmelCase_ : Optional[Any] = """""" while int_num > 0: lowerCAmelCase_ : str = str(int_num % 2 ) + bin_str int_num >>= 1 return int(("""-""" + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
702
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __A : Tuple = logging.get_logger(__name__) __A : Optional[Any] = "▁" __A : Tuple = {"vocab_file": "sentencepiece.bpe.model"} __A : Tuple = { "vocab_file": { "facebook/xglm-564M": "https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model", } } __A : int = { "facebook/xglm-564M": 2048, } class __snake_case ( _SCREAMING_SNAKE_CASE): """simple docstring""" lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ['input_ids', 'attention_mask'] def __init__( self : Any , lowerCamelCase : Any , lowerCamelCase : str="<s>" , lowerCamelCase : Optional[int]="</s>" , lowerCamelCase : Optional[Any]="</s>" , lowerCamelCase : List[Any]="<s>" , lowerCamelCase : Optional[Any]="<unk>" , lowerCamelCase : int="<pad>" , lowerCamelCase : Optional[Dict[str, Any]] = None , **lowerCamelCase : Optional[Any] , ) -> None: lowerCAmelCase_ : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer lowerCAmelCase_ : str = 7 lowerCAmelCase_ : Any = [F'<madeupword{i}>' for i in range(self.num_madeup_words )] lowerCAmelCase_ : Optional[Any] = kwargs.get("""additional_special_tokens""" , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=lowerCamelCase , eos_token=lowerCamelCase , unk_token=lowerCamelCase , sep_token=lowerCamelCase , cls_token=lowerCamelCase , pad_token=lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase , ) lowerCAmelCase_ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCamelCase ) ) lowerCAmelCase_ : int = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowerCAmelCase_ : List[str] = 1 # Mimic fairseq token-to-id alignment for the first 4 token lowerCAmelCase_ : Any = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} lowerCAmelCase_ : Union[str, Any] = len(self.sp_model ) lowerCAmelCase_ : Any = {F'<madeupword{i}>': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(lowerCamelCase ) lowerCAmelCase_ : int = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : int ) -> Union[str, Any]: lowerCAmelCase_ : Union[str, Any] = self.__dict__.copy() lowerCAmelCase_ : str = None lowerCAmelCase_ : List[str] = self.sp_model.serialized_model_proto() return state def __setstate__( self : Dict , lowerCamelCase : List[Any] ) -> List[Any]: lowerCAmelCase_ : Union[str, Any] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowerCAmelCase_ : int = {} lowerCAmelCase_ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def __lowercase ( self : List[Any] , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.sep_token_id] + token_ids_a lowerCAmelCase_ : List[Any] = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def __lowercase ( self : Tuple , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None , lowerCamelCase : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase , token_ids_a=lowerCamelCase , already_has_special_tokens=lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase )) return [1] + ([0] * len(lowerCamelCase )) + [1, 1] + ([0] * len(lowerCamelCase )) def __lowercase ( self : str , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ) -> List[int]: lowerCAmelCase_ : Dict = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def __lowercase ( self : str ) -> Union[str, Any]: return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def __lowercase ( self : Optional[Any] ) -> Dict: lowerCAmelCase_ : Optional[Any] = {self.convert_ids_to_tokens(lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __lowercase ( self : int , lowerCamelCase : str ) -> List[str]: return self.sp_model.encode(lowerCamelCase , out_type=lowerCamelCase ) def __lowercase ( self : int , lowerCamelCase : Dict ) -> Any: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCAmelCase_ : int = self.sp_model.PieceToId(lowerCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __lowercase ( self : Dict , lowerCamelCase : Optional[int] ) -> Any: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __lowercase ( self : List[str] , lowerCamelCase : Optional[Any] ) -> Optional[Any]: lowerCAmelCase_ : str = """""".join(lowerCamelCase ).replace(lowerCamelCase , """ """ ).strip() return out_string def __lowercase ( self : Optional[Any] , lowerCamelCase : str , lowerCamelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowerCamelCase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return lowerCAmelCase_ : List[str] = os.path.join( lowerCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase , """wb""" ) as fi: lowerCAmelCase_ : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase ) return (out_vocab_file,)
398
0
"""simple docstring""" import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer A_ = logging.get_logger(__name__) A_ = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} A_ = { """vocab_file""": { """Salesforce/codegen-350M-mono""": """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json""", }, """merges_file""": { """Salesforce/codegen-350M-mono""": """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt""", }, """tokenizer_file""": { """Salesforce/codegen-350M-mono""": ( """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json""" ), }, } A_ = { """Salesforce/codegen-350M-mono""": 2048, } class __lowerCamelCase ( lowerCAmelCase ): a__: List[str] = VOCAB_FILES_NAMES a__: Any = PRETRAINED_VOCAB_FILES_MAP a__: int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__: Union[str, Any] = ['input_ids', 'attention_mask'] a__: List[str] = CodeGenTokenizer def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase="<|endoftext|>" , UpperCAmelCase="<|endoftext|>" , UpperCAmelCase="<|endoftext|>" , UpperCAmelCase=False , **UpperCAmelCase , ): super().__init__( UpperCAmelCase , UpperCAmelCase , tokenizer_file=UpperCAmelCase , unk_token=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , **UpperCAmelCase , ) if kwargs.pop('''add_bos_token''' , UpperCAmelCase ): lowerCamelCase_ = kwargs.pop('''name_or_path''' , '''''' ) raise ValueError( '''Currenty GPT2\'s fast tokenizer does NOT support adding a BOS token.''' '''Instead you should use GPT2\'s slow tokenizer class `CodeGenTokenizer` as follows: \n''' f"`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n" f"`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n" '''This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005.''' ''' so that the fast tokenizer works correctly.''' ) lowerCamelCase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , UpperCAmelCase ) != add_prefix_space: lowerCamelCase_ = getattr(UpperCAmelCase , pre_tok_state.pop('''type''' ) ) lowerCamelCase_ = add_prefix_space lowerCamelCase_ = pre_tok_class(**UpperCAmelCase ) lowerCamelCase_ = add_prefix_space def UpperCAmelCase__ ( self , *UpperCAmelCase , **UpperCAmelCase ): lowerCamelCase_ = kwargs.get('''is_split_into_words''' , UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase__ ( self , *UpperCAmelCase , **UpperCAmelCase ): lowerCamelCase_ = kwargs.get('''is_split_into_words''' , UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = None ): lowerCamelCase_ = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = None , **UpperCAmelCase , ): lowerCamelCase_ = super().decode( token_ids=UpperCAmelCase , skip_special_tokens=UpperCAmelCase , clean_up_tokenization_spaces=UpperCAmelCase , **UpperCAmelCase , ) if truncate_before_pattern is not None and len(UpperCAmelCase ) > 0: lowerCamelCase_ = self.truncate(UpperCAmelCase , UpperCAmelCase ) return decoded_text def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ): def find_re(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = pattern.search(UpperCAmelCase , UpperCAmelCase ) return m.start() if m else -1 lowerCamelCase_ = [re.compile(UpperCAmelCase , re.MULTILINE ) for pattern in truncate_before_pattern] lowerCamelCase_ = list(re.finditer('''^print''' , UpperCAmelCase , re.MULTILINE ) ) if len(UpperCAmelCase ) > 1: lowerCamelCase_ = completion[: prints[1].start()] lowerCamelCase_ = list(re.finditer('''^def''' , UpperCAmelCase , re.MULTILINE ) ) if len(UpperCAmelCase ) > 1: lowerCamelCase_ = completion[: defs[1].start()] lowerCamelCase_ = 0 lowerCamelCase_ = [ pos for pos in [find_re(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) for terminal in terminals] if pos != -1 ] if len(UpperCAmelCase ) > 0: return completion[: min(UpperCAmelCase )] else: return completion
29
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) lowerCAmelCase : Optional[Any] = logging.getLogger(__name__) @dataclass class UpperCamelCase__ : """simple docstring""" __magic_name__ = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) __magic_name__ = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __magic_name__ = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) __magic_name__ = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) __magic_name__ = field(default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Whether tp freeze the encoder."} ) __magic_name__ = field(default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Whether to freeze the embeddings."} ) @dataclass class UpperCamelCase__ : """simple docstring""" __magic_name__ = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} ) __magic_name__ = field( default="summarization" , metadata={"help": "Task name, summarization (or summarization_{dataset} for pegasus) or translation"} , ) __magic_name__ = field( default=1_0_2_4 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __magic_name__ = field( default=1_2_8 , metadata={ "help": ( "The maximum total sequence length for target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __magic_name__ = field( default=1_4_2 , metadata={ "help": ( "The maximum total sequence length for validation target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded. " "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used " "during ``evaluate`` and ``predict``." ) } , ) __magic_name__ = field( default=1_4_2 , metadata={ "help": ( "The maximum total sequence length for test target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __magic_name__ = field(default=-1 , metadata={"help": "# training examples. -1 means use all."} ) __magic_name__ = field(default=-1 , metadata={"help": "# validation examples. -1 means use all."} ) __magic_name__ = field(default=-1 , metadata={"help": "# test examples. -1 means use all."} ) __magic_name__ = field(default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Source language id for translation."} ) __magic_name__ = field(default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Target language id for translation."} ) __magic_name__ = field(default=SCREAMING_SNAKE_CASE_ , metadata={"help": "# num_beams to use for evaluation."} ) __magic_name__ = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."} , ) def lowercase (_A , _A , _A ): """simple docstring""" logger.info(f'***** {split} metrics *****' ) for key in sorted(metrics.keys() ): logger.info(f' {key} = {metrics[key]}' ) save_json(_A , os.path.join(_A , f'{split}_results.json' ) ) def lowercase (): """simple docstring""" _lowerCAmelCase : int = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Tuple = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = parser.parse_args_into_dataclasses() check_output_dir(_A ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('Training/evaluation parameters %s' , _A ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCAmelCase : Optional[int] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowerCAmelCase : Tuple = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(_A , _A , _A ): assert hasattr(_A , _A ), f'({config.__class__.__name__}) doesn\'t have a `{p}` attribute' setattr(_A , _A , getattr(_A , _A ) ) _lowerCAmelCase : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowerCAmelCase : str = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf='.ckpt' in model_args.model_name_or_path , config=_A , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(_A , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: _lowerCAmelCase : Union[str, Any] = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(_A , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(_A , _A ): _lowerCAmelCase : Union[str, Any] = tokenizer.lang_code_to_id[data_args.tgt_lang] else: _lowerCAmelCase : Union[str, Any] = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(_A ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) _lowerCAmelCase : Any = SeqaSeqDataset # Get datasets _lowerCAmelCase : List[Any] = ( dataset_class( _A , type_path='train' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , ) if training_args.do_train else None ) _lowerCAmelCase : Optional[Any] = ( dataset_class( _A , type_path='val' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) _lowerCAmelCase : Union[str, Any] = ( dataset_class( _A , type_path='test' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , ) if training_args.do_predict else None ) # Initialize our Trainer _lowerCAmelCase : Optional[Any] = ( build_compute_metrics_fn(data_args.task , _A ) if training_args.predict_with_generate else None ) _lowerCAmelCase : int = SeqaSeqTrainer( model=_A , args=_A , data_args=_A , train_dataset=_A , eval_dataset=_A , data_collator=SeqaSeqDataCollator( _A , _A , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=_A , tokenizer=_A , ) _lowerCAmelCase : str = {} # Training if training_args.do_train: logger.info('*** Train ***' ) _lowerCAmelCase : Dict = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) _lowerCAmelCase : Any = train_result.metrics _lowerCAmelCase : str = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('train' , _A , training_args.output_dir ) all_metrics.update(_A ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , 'trainer_state.json' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) _lowerCAmelCase : List[str] = trainer.evaluate(metric_key_prefix='val' ) _lowerCAmelCase : int = data_args.n_val _lowerCAmelCase : List[str] = round(metrics['val_loss'] , 4 ) if trainer.is_world_process_zero(): handle_metrics('val' , _A , training_args.output_dir ) all_metrics.update(_A ) if training_args.do_predict: logger.info('*** Predict ***' ) _lowerCAmelCase : Any = trainer.predict(test_dataset=_A , metric_key_prefix='test' ) _lowerCAmelCase : Optional[int] = test_output.metrics _lowerCAmelCase : Optional[int] = data_args.n_test if trainer.is_world_process_zero(): _lowerCAmelCase : Dict = round(metrics['test_loss'] , 4 ) handle_metrics('test' , _A , training_args.output_dir ) all_metrics.update(_A ) if training_args.predict_with_generate: _lowerCAmelCase : Union[str, Any] = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=_A , clean_up_tokenization_spaces=_A ) _lowerCAmelCase : List[Any] = lmap(str.strip , _A ) write_txt_file(_A , os.path.join(training_args.output_dir , 'test_generations.txt' ) ) if trainer.is_world_process_zero(): save_json(_A , os.path.join(training_args.output_dir , 'all_results.json' ) ) return all_metrics def lowercase (_A ): """simple docstring""" main() if __name__ == "__main__": main()
444
0
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version SCREAMING_SNAKE_CASE_ : List[Any] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt''') @dataclass class _A : __a = field( default='cifar10' , metadata={'help': 'Name of a dataset from the datasets package'} ) __a = field( default=_lowercase , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) __a = field( default=_lowercase , metadata={'help': 'The column name of the images in the files.'} ) __a = field(default=_lowercase , metadata={'help': 'A folder containing the training data.'} ) __a = field(default=_lowercase , metadata={'help': 'A folder containing the validation data.'} ) __a = field( default=0.15 , metadata={'help': 'Percent to split off of train for validation.'} ) __a = field( default=_lowercase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) __a = field( default=_lowercase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def _lowerCamelCase ( self ) -> Dict: lowerCamelCase__ = {} if self.train_dir is not None: lowerCamelCase__ = self.train_dir if self.validation_dir is not None: lowerCamelCase__ = self.validation_dir lowerCamelCase__ = data_files if data_files else None @dataclass class _A : __a = field( default=_lowercase , metadata={ 'help': ( 'The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.' ) } , ) __a = field( default=_lowercase , metadata={'help': 'Pretrained config name or path if not the same as model_name_or_path'} ) __a = field( default=_lowercase , metadata={ 'help': ( 'Override some existing default config settings when a model is trained from scratch. Example: ' 'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index' ) } , ) __a = field( default=_lowercase , metadata={'help': 'Where do you want to store the pretrained models downloaded from s3'} ) __a = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) __a = field(default=_lowercase , metadata={'help': 'Name or path of preprocessor config.'} ) __a = field( default=_lowercase , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) __a = field( default=0.75 , metadata={'help': 'The ratio of the number of masked tokens in the input sequence.'} ) __a = field( default=_lowercase , metadata={'help': 'Whether or not to train with normalized pixel values as target.'} ) @dataclass class _A ( _lowercase ): __a = field( default=1E-3 , metadata={'help': 'Base learning rate: absolute_lr = base_lr * total_batch_size / 256.'} ) def UpperCAmelCase__ ( A__ ) -> Dict: """simple docstring""" lowerCamelCase__ = torch.stack([example["pixel_values"] for example in examples] ) return {"pixel_values": pixel_values} def UpperCAmelCase__ ( ) -> List[Any]: """simple docstring""" # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCamelCase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_mae" , snake_case__ , snake_case__ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCamelCase__ = training_args.get_process_log_level() logger.setLevel(snake_case__ ) transformers.utils.logging.set_verbosity(snake_case__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. lowerCamelCase__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Initialize our dataset. lowerCamelCase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. lowerCamelCase__ = None if "validation" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , snake_case__ ) and data_args.train_val_split > 0.0: lowerCamelCase__ = ds["train"].train_test_split(data_args.train_val_split ) lowerCamelCase__ = split["train"] lowerCamelCase__ = split["test"] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase__ = { "cache_dir": model_args.cache_dir, "revision": model_args.model_revision, "use_auth_token": True if model_args.use_auth_token else None, } if model_args.config_name: lowerCamelCase__ = ViTMAEConfig.from_pretrained(model_args.config_name , **snake_case__ ) elif model_args.model_name_or_path: lowerCamelCase__ = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **snake_case__ ) else: lowerCamelCase__ = ViTMAEConfig() logger.warning("You are instantiating a new config instance from scratch." ) if model_args.config_overrides is not None: logger.info(f'Overriding config: {model_args.config_overrides}' ) config.update_from_string(model_args.config_overrides ) logger.info(f'New config: {config}' ) # adapt config config.update( { "mask_ratio": model_args.mask_ratio, "norm_pix_loss": model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: lowerCamelCase__ = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **snake_case__ ) elif model_args.model_name_or_path: lowerCamelCase__ = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **snake_case__ ) else: lowerCamelCase__ = ViTImageProcessor() # create model if model_args.model_name_or_path: lowerCamelCase__ = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=snake_case__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("Training new model from scratch" ) lowerCamelCase__ = ViTMAEForPreTraining(snake_case__ ) if training_args.do_train: lowerCamelCase__ = ds["train"].column_names else: lowerCamelCase__ = ds["validation"].column_names if data_args.image_column_name is not None: lowerCamelCase__ = data_args.image_column_name elif "image" in column_names: lowerCamelCase__ = "image" elif "img" in column_names: lowerCamelCase__ = "img" else: lowerCamelCase__ = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: lowerCamelCase__ = image_processor.size["shortest_edge"] else: lowerCamelCase__ = (image_processor.size["height"], image_processor.size["width"]) lowerCamelCase__ = Compose( [ Lambda(lambda A__ : img.convert("RGB" ) if img.mode != "RGB" else img ), RandomResizedCrop(snake_case__ , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(A__ ): lowerCamelCase__ = [transforms(snake_case__ ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError("--do_train requires a train dataset" ) if data_args.max_train_samples is not None: lowerCamelCase__ = ds["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(snake_case__ ) if training_args.do_eval: if "validation" not in ds: raise ValueError("--do_eval requires a validation dataset" ) if data_args.max_eval_samples is not None: lowerCamelCase__ = ( ds["validation"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(snake_case__ ) # Compute absolute learning rate lowerCamelCase__ = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: lowerCamelCase__ = training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer lowerCamelCase__ = Trainer( model=snake_case__ , args=snake_case__ , train_dataset=ds["train"] if training_args.do_train else None , eval_dataset=ds["validation"] if training_args.do_eval else None , tokenizer=snake_case__ , data_collator=snake_case__ , ) # Training if training_args.do_train: lowerCamelCase__ = None if training_args.resume_from_checkpoint is not None: lowerCamelCase__ = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCamelCase__ = last_checkpoint lowerCamelCase__ = trainer.train(resume_from_checkpoint=snake_case__ ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowerCamelCase__ = trainer.evaluate() trainer.log_metrics("eval" , snake_case__ ) trainer.save_metrics("eval" , snake_case__ ) # Write model card and (optionally) push to hub lowerCamelCase__ = { "tasks": "masked-auto-encoding", "dataset": data_args.dataset_name, "tags": ["masked-auto-encoding"], } if training_args.push_to_hub: trainer.push_to_hub(**snake_case__ ) else: trainer.create_model_card(**snake_case__ ) def UpperCAmelCase__ ( A__ ) -> List[str]: """simple docstring""" # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
700
"""simple docstring""" import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def UpperCAmelCase__ ( ) -> List[Any]: """simple docstring""" lowerCamelCase__ = torch.nn.Linear(2 , 4 ) lowerCamelCase__ = torch.optim.AdamW(model.parameters() , lr=1.0 ) lowerCamelCase__ = torch.optim.lr_scheduler.OneCycleLR(A__ , max_lr=0.01 , steps_per_epoch=2 , epochs=1 ) lowerCamelCase__ = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) lowerCamelCase__ = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def UpperCAmelCase__ ( A__ ) -> Any: """simple docstring""" return (model.weight.abs().sum() + model.bias.abs().sum()).item() def UpperCAmelCase__ ( A__ ) -> Any: """simple docstring""" lowerCamelCase__ = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(A__ ) class _A ( __a ): @require_cuda def _lowerCamelCase ( self ) -> Optional[Any]: lowerCamelCase__ = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(SCREAMING_SNAKE_CASE__ ): lowerCamelCase__ = Accelerator(cpu=SCREAMING_SNAKE_CASE__ ) def _lowerCamelCase ( self ) -> Union[str, Any]: lowerCamelCase__ = Accelerator() lowerCamelCase__ = GradientState() assert state.num_steps == 1 lowerCamelCase__ = 4 assert state.num_steps == 4 assert state.sync_gradients is True lowerCamelCase__ = False assert state.sync_gradients is False GradientState._reset_state() def _lowerCamelCase ( self ) -> str: lowerCamelCase__ = Accelerator() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = create_components() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) = accelerator.prepare(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def _lowerCamelCase ( self ) -> Union[str, Any]: lowerCamelCase__ = Accelerator() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = create_components() accelerator.prepare(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def _lowerCamelCase ( self ) -> Dict: PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): pass with patch("torch.cuda.set_device" , SCREAMING_SNAKE_CASE__ ), patch_environment(ACCELERATE_TORCH_DEVICE="cuda:64" ): lowerCamelCase__ = Accelerator() self.assertEqual(str(accelerator.state.device ) , "cuda:64" ) def _lowerCamelCase ( self ) -> Optional[Any]: lowerCamelCase__ = Accelerator() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = create_components() accelerator.prepare(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = get_signature(SCREAMING_SNAKE_CASE__ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(SCREAMING_SNAKE_CASE__ ) # make sure random weights don't match load_random_weights(SCREAMING_SNAKE_CASE__ ) self.assertTrue(abs(model_signature - get_signature(SCREAMING_SNAKE_CASE__ ) ) > 1e-3 ) # make sure loaded weights match accelerator.load_state(SCREAMING_SNAKE_CASE__ ) self.assertTrue(abs(model_signature - get_signature(SCREAMING_SNAKE_CASE__ ) ) < 1e-3 ) def _lowerCamelCase ( self ) -> Any: lowerCamelCase__ = Accelerator() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = create_components() accelerator.prepare(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = get_signature(SCREAMING_SNAKE_CASE__ ) # saving hook def save_config(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowerCamelCase__ = {"class_name": models[0].__class__.__name__} with open(os.path.join(SCREAMING_SNAKE_CASE__ , "data.json" ) , "w" ) as f: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # loading hook def load_config(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): with open(os.path.join(SCREAMING_SNAKE_CASE__ , "data.json" ) , "r" ) as f: lowerCamelCase__ = json.load(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = config["class_name"] lowerCamelCase__ = accelerator.register_save_state_pre_hook(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = accelerator.register_load_state_pre_hook(SCREAMING_SNAKE_CASE__ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(SCREAMING_SNAKE_CASE__ ) # make sure random weights don't match with hooks load_random_weights(SCREAMING_SNAKE_CASE__ ) self.assertTrue(abs(model_signature - get_signature(SCREAMING_SNAKE_CASE__ ) ) > 1e-3 ) # random class name to verify correct one is loaded lowerCamelCase__ = "random" # make sure loaded weights match with hooks accelerator.load_state(SCREAMING_SNAKE_CASE__ ) self.assertTrue(abs(model_signature - get_signature(SCREAMING_SNAKE_CASE__ ) ) < 1e-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(SCREAMING_SNAKE_CASE__ ) # make sure random weights don't match with hooks removed load_random_weights(SCREAMING_SNAKE_CASE__ ) self.assertTrue(abs(model_signature - get_signature(SCREAMING_SNAKE_CASE__ ) ) > 1e-3 ) # random class name to verify correct one is loaded lowerCamelCase__ = "random" # make sure loaded weights match with hooks removed accelerator.load_state(SCREAMING_SNAKE_CASE__ ) self.assertTrue(abs(model_signature - get_signature(SCREAMING_SNAKE_CASE__ ) ) < 1e-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def _lowerCamelCase ( self ) -> Union[str, Any]: lowerCamelCase__ = Accelerator() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = create_components() lowerCamelCase__ = None # This should work lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = accelerator.prepare( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertTrue(dummy_obj is None ) def _lowerCamelCase ( self ) -> List[str]: lowerCamelCase__ = Accelerator() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = create_components() lowerCamelCase__ = [1, 2, 3] # This should work lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = accelerator.prepare( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertEqual( getattr(SCREAMING_SNAKE_CASE__ , "_is_accelerate_prepared" , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ , "Dummy object should have `_is_accelerate_prepared` set to `True`" , ) self.assertEqual( getattr(SCREAMING_SNAKE_CASE__ , "_is_accelerate_prepared" , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ , "Model is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(SCREAMING_SNAKE_CASE__ , "_is_accelerate_prepared" , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ , "Optimizer is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(SCREAMING_SNAKE_CASE__ , "_is_accelerate_prepared" , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ , "Scheduler is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(SCREAMING_SNAKE_CASE__ , "_is_accelerate_prepared" , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ , "Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(SCREAMING_SNAKE_CASE__ , "_is_accelerate_prepared" , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ , "Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`" , ) @slow @require_bnb def _lowerCamelCase ( self ) -> str: from transformers import AutoModelForCausalLM lowerCamelCase__ = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , load_in_abit=SCREAMING_SNAKE_CASE__ , device_map={"": 0} , ) lowerCamelCase__ = Accelerator() # This should work lowerCamelCase__ = accelerator.prepare(SCREAMING_SNAKE_CASE__ ) @slow @require_bnb def _lowerCamelCase ( self ) -> Tuple: from transformers import AutoModelForCausalLM lowerCamelCase__ = Accelerator() with init_empty_weights(): lowerCamelCase__ = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , ) model.tie_weights() lowerCamelCase__ = infer_auto_device_map(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = "cpu" lowerCamelCase__ = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , device_map=SCREAMING_SNAKE_CASE__ , load_in_abit=SCREAMING_SNAKE_CASE__ , llm_inta_enable_fpaa_cpu_offload=SCREAMING_SNAKE_CASE__ ) # This should not work and get value error with self.assertRaises(SCREAMING_SNAKE_CASE__ ): lowerCamelCase__ = accelerator.prepare(SCREAMING_SNAKE_CASE__ ) @slow @require_bnb @require_multi_gpu def _lowerCamelCase ( self ) -> Dict: from transformers import AutoModelForCausalLM lowerCamelCase__ = {"distributed_type": DistributedType.MULTI_GPU} with init_empty_weights(): lowerCamelCase__ = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , ) model.tie_weights() lowerCamelCase__ = infer_auto_device_map(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = 1 lowerCamelCase__ = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , load_in_abit=SCREAMING_SNAKE_CASE__ , device_map=SCREAMING_SNAKE_CASE__ , ) lowerCamelCase__ = Accelerator() # This should not work and get value error with self.assertRaises(SCREAMING_SNAKE_CASE__ ): lowerCamelCase__ = accelerator.prepare(SCREAMING_SNAKE_CASE__ ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def _lowerCamelCase ( self ) -> List[Any]: from transformers import AutoModelForCausalLM with init_empty_weights(): lowerCamelCase__ = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , ) lowerCamelCase__ = infer_auto_device_map(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = 1 lowerCamelCase__ = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , load_in_abit=SCREAMING_SNAKE_CASE__ , device_map=SCREAMING_SNAKE_CASE__ , ) lowerCamelCase__ = Accelerator() # This should work lowerCamelCase__ = accelerator.prepare(SCREAMING_SNAKE_CASE__ ) @require_cuda def _lowerCamelCase ( self ) -> List[str]: lowerCamelCase__ = torch.nn.Linear(10 , 10 ) lowerCamelCase__ = torch.optim.SGD(model.parameters() , lr=0.01 ) lowerCamelCase__ = Accelerator(cpu=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = accelerator.prepare(SCREAMING_SNAKE_CASE__ )
274
0
import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin a_ = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right a_ = 250_004 a_ = 250_020 @require_sentencepiece @require_tokenizers class _lowercase ( snake_case_ , unittest.TestCase ): lowercase = MBartTokenizer lowercase = MBartTokenizerFast lowercase = True lowercase = True def SCREAMING_SNAKE_CASE__ ( self : str ) -> int: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing UpperCamelCase_ : Tuple = MBartTokenizer(snake_case , keep_accents=snake_case ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> Dict: """simple docstring""" UpperCamelCase_ : Optional[int] = MBartTokenizer(snake_case , keep_accents=snake_case ) UpperCamelCase_ : Any = tokenizer.tokenize('This is a test' ) self.assertListEqual(snake_case , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) UpperCamelCase_ : Optional[Any] = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( snake_case , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) UpperCamelCase_ : Tuple = tokenizer.convert_tokens_to_ids(snake_case ) self.assertListEqual( snake_case , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) UpperCamelCase_ : Optional[int] = tokenizer.convert_ids_to_tokens(snake_case ) self.assertListEqual( snake_case , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return UpperCamelCase_ : Optional[int] = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-mbart', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): UpperCamelCase_ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(snake_case , **snake_case ) UpperCamelCase_ : List[Any] = self.tokenizer_class.from_pretrained(snake_case , **snake_case ) UpperCamelCase_ : Dict = tempfile.mkdtemp() UpperCamelCase_ : List[str] = tokenizer_r.save_pretrained(snake_case ) UpperCamelCase_ : List[str] = tokenizer_p.save_pretrained(snake_case ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) UpperCamelCase_ : Optional[int] = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(snake_case , snake_case ) # Checks everything loads correctly in the same way UpperCamelCase_ : List[str] = tokenizer_r.from_pretrained(snake_case ) UpperCamelCase_ : str = tokenizer_p.from_pretrained(snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case , snake_case ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(snake_case ) # Save tokenizer rust, legacy_format=True UpperCamelCase_ : Optional[int] = tempfile.mkdtemp() UpperCamelCase_ : Union[str, Any] = tokenizer_r.save_pretrained(snake_case , legacy_format=snake_case ) UpperCamelCase_ : Dict = tokenizer_p.save_pretrained(snake_case ) # Checks it save with the same files self.assertSequenceEqual(snake_case , snake_case ) # Checks everything loads correctly in the same way UpperCamelCase_ : List[Any] = tokenizer_r.from_pretrained(snake_case ) UpperCamelCase_ : List[str] = tokenizer_p.from_pretrained(snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case , snake_case ) ) shutil.rmtree(snake_case ) # Save tokenizer rust, legacy_format=False UpperCamelCase_ : Optional[Any] = tempfile.mkdtemp() UpperCamelCase_ : List[Any] = tokenizer_r.save_pretrained(snake_case , legacy_format=snake_case ) UpperCamelCase_ : Union[str, Any] = tokenizer_p.save_pretrained(snake_case ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way UpperCamelCase_ : Optional[int] = tokenizer_r.from_pretrained(snake_case ) UpperCamelCase_ : Dict = tokenizer_p.from_pretrained(snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case , snake_case ) ) shutil.rmtree(snake_case ) @require_torch @require_sentencepiece @require_tokenizers class _lowercase ( unittest.TestCase ): lowercase = 'facebook/mbart-large-en-ro' lowercase = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] lowercase = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] lowercase = [8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2, EN_CODE] @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Optional[Any] ) -> str: """simple docstring""" UpperCamelCase_ : MBartTokenizer = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang='en_XX' , tgt_lang='ro_RO' ) UpperCamelCase_ : Any = 1 return cls def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Any: """simple docstring""" self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ar_AR'] , 2_5_0_0_0_1 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['en_EN'] , 2_5_0_0_0_4 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ro_RO'] , 2_5_0_0_2_0 ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ : Tuple = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> int: """simple docstring""" self.assertIn(snake_case , self.tokenizer.all_special_ids ) UpperCamelCase_ : List[str] = [RO_CODE, 8_8_4, 9_0_1_9, 9_6, 9, 9_1_6, 8_6_7_9_2, 3_6, 1_8_7_4_3, 1_5_5_9_6, 5, 2] UpperCamelCase_ : int = self.tokenizer.decode(snake_case , skip_special_tokens=snake_case ) UpperCamelCase_ : List[str] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=snake_case ) self.assertEqual(snake_case , snake_case ) self.assertNotIn(self.tokenizer.eos_token , snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Tuple: """simple docstring""" UpperCamelCase_ : int = ['this is gunna be a long sentence ' * 2_0] assert isinstance(src_text[0] , snake_case ) UpperCamelCase_ : Optional[Any] = 1_0 UpperCamelCase_ : int = self.tokenizer(snake_case , max_length=snake_case , truncation=snake_case ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , snake_case ) self.assertEqual(len(snake_case ) , snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [2_5_0_0_2_6, 2_5_0_0_0_1] ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ : str = tempfile.mkdtemp() UpperCamelCase_ : Union[str, Any] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(snake_case ) UpperCamelCase_ : Optional[Any] = MBartTokenizer.from_pretrained(snake_case ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , snake_case ) @require_torch def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> List[str]: """simple docstring""" UpperCamelCase_ : List[str] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=snake_case , return_tensors='pt' ) UpperCamelCase_ : str = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ : Optional[int] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=snake_case , truncation=snake_case , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) UpperCamelCase_ : List[Any] = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) self.assertIsInstance(snake_case , snake_case ) self.assertEqual((2, 1_4) , batch.input_ids.shape ) self.assertEqual((2, 1_4) , batch.attention_mask.shape ) UpperCamelCase_ : List[str] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , snake_case ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> int: """simple docstring""" UpperCamelCase_ : Optional[int] = self.tokenizer(self.src_text , padding=snake_case , truncation=snake_case , max_length=3 , return_tensors='pt' ) UpperCamelCase_ : str = self.tokenizer( text_target=self.tgt_text , padding=snake_case , truncation=snake_case , max_length=1_0 , return_tensors='pt' ) UpperCamelCase_ : Tuple = targets['input_ids'] UpperCamelCase_ : List[Any] = shift_tokens_right(snake_case , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 1_0 ) @require_torch def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ : Tuple = self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='en_XX' , tgt_lang='ar_AR' ) self.assertEqual( nested_simplify(snake_case ) , { # A, test, EOS, en_XX 'input_ids': [[6_2, 3_0_3_4, 2, 2_5_0_0_0_4]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 2_5_0_0_0_1, } , )
417
import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def __lowercase ( lowerCamelCase : str ): UpperCamelCase_ : Any = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: UpperCamelCase_ : Union[str, Any] = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: UpperCamelCase_ : Union[str, Any] = 4 UpperCamelCase_ : Union[str, Any] = 48 UpperCamelCase_ : List[Any] = 'pixelshuffle_aux' elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: UpperCamelCase_ : Union[str, Any] = [6, 6, 6, 6] UpperCamelCase_ : Union[str, Any] = 60 UpperCamelCase_ : List[str] = [6, 6, 6, 6] UpperCamelCase_ : Tuple = 'pixelshuffledirect' elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: UpperCamelCase_ : Optional[int] = 4 UpperCamelCase_ : Dict = 'nearest+conv' elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: UpperCamelCase_ : Any = 1 UpperCamelCase_ : List[Any] = 1 UpperCamelCase_ : List[str] = 126 UpperCamelCase_ : Dict = 7 UpperCamelCase_ : int = 2_5_5.0 UpperCamelCase_ : str = '' return config def __lowercase ( lowerCamelCase : Optional[int] , lowerCamelCase : Optional[Any] ): if "patch_embed.proj" in name and "layers" not in name: UpperCamelCase_ : Any = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: UpperCamelCase_ : Tuple = name.replace('patch_embed.norm' , 'embeddings.patch_embeddings.layernorm' ) if "layers" in name: UpperCamelCase_ : List[str] = name.replace('layers' , 'encoder.stages' ) if "residual_group.blocks" in name: UpperCamelCase_ : Optional[Any] = name.replace('residual_group.blocks' , 'layers' ) if "attn.proj" in name: UpperCamelCase_ : List[Any] = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: UpperCamelCase_ : Dict = name.replace('attn' , 'attention.self' ) if "norm1" in name: UpperCamelCase_ : List[str] = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: UpperCamelCase_ : Optional[Any] = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: UpperCamelCase_ : List[str] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: UpperCamelCase_ : Optional[Any] = name.replace('mlp.fc2' , 'output.dense' ) if "q_bias" in name: UpperCamelCase_ : List[str] = name.replace('q_bias' , 'query.bias' ) if "k_bias" in name: UpperCamelCase_ : str = name.replace('k_bias' , 'key.bias' ) if "v_bias" in name: UpperCamelCase_ : Tuple = name.replace('v_bias' , 'value.bias' ) if "cpb_mlp" in name: UpperCamelCase_ : Optional[int] = name.replace('cpb_mlp' , 'continuous_position_bias_mlp' ) if "patch_embed.proj" in name: UpperCamelCase_ : Union[str, Any] = name.replace('patch_embed.proj' , 'patch_embed.projection' ) if name == "norm.weight": UpperCamelCase_ : Dict = 'layernorm.weight' if name == "norm.bias": UpperCamelCase_ : List[str] = 'layernorm.bias' if "conv_first" in name: UpperCamelCase_ : Any = name.replace('conv_first' , 'first_convolution' ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: UpperCamelCase_ : int = name.replace('conv_last' , 'final_convolution' ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: UpperCamelCase_ : Union[str, Any] = name.replace('conv_before_upsample.0' , 'conv_before_upsample' ) if "upsample.0" in name: UpperCamelCase_ : Optional[Any] = name.replace('upsample.0' , 'upsample.convolution_0' ) if "upsample.2" in name: UpperCamelCase_ : Optional[Any] = name.replace('upsample.2' , 'upsample.convolution_1' ) UpperCamelCase_ : Dict = 'upsample.' + name elif config.upsampler == "pixelshuffledirect": UpperCamelCase_ : List[Any] = name.replace('upsample.0.weight' , 'upsample.conv.weight' ) UpperCamelCase_ : List[Any] = name.replace('upsample.0.bias' , 'upsample.conv.bias' ) else: pass else: UpperCamelCase_ : Union[str, Any] = 'swin2sr.' + name return name def __lowercase ( lowerCamelCase : Dict , lowerCamelCase : str ): for key in orig_state_dict.copy().keys(): UpperCamelCase_ : Any = orig_state_dict.pop(lowerCamelCase ) if "qkv" in key: UpperCamelCase_ : List[str] = key.split('.' ) UpperCamelCase_ : Any = int(key_split[1] ) UpperCamelCase_ : Union[str, Any] = int(key_split[4] ) UpperCamelCase_ : str = config.embed_dim if "weight" in key: UpperCamelCase_ : str = val[:dim, :] UpperCamelCase_ : Optional[int] = val[dim : dim * 2, :] UpperCamelCase_ : Union[str, Any] = val[-dim:, :] else: UpperCamelCase_ : Dict = val[:dim] UpperCamelCase_ : Tuple = val[dim : dim * 2] UpperCamelCase_ : str = val[-dim:] pass else: UpperCamelCase_ : Tuple = val return orig_state_dict def __lowercase ( lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : str ): UpperCamelCase_ : int = get_config(lowerCamelCase ) UpperCamelCase_ : Dict = SwinaSRForImageSuperResolution(lowerCamelCase ) model.eval() UpperCamelCase_ : Any = torch.hub.load_state_dict_from_url(lowerCamelCase , map_location='cpu' ) UpperCamelCase_ : str = convert_state_dict(lowerCamelCase , lowerCamelCase ) UpperCamelCase_, UpperCamelCase_ : List[Any] = model.load_state_dict(lowerCamelCase , strict=lowerCamelCase ) if len(lowerCamelCase ) > 0: raise ValueError('Missing keys when converting: {}'.format(lowerCamelCase ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(F"Unexpected key {key} in state_dict" ) # verify values UpperCamelCase_ : Tuple = 'https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true' UpperCamelCase_ : List[Any] = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw ).convert('RGB' ) UpperCamelCase_ : Dict = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values UpperCamelCase_ : Union[str, Any] = 126 if 'Jpeg' in checkpoint_url else 256 UpperCamelCase_ : str = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ), ] ) UpperCamelCase_ : Union[str, Any] = transforms(lowerCamelCase ).unsqueeze(0 ) if config.num_channels == 1: UpperCamelCase_ : List[str] = pixel_values[:, 0, :, :].unsqueeze(1 ) UpperCamelCase_ : Optional[Any] = model(lowerCamelCase ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: UpperCamelCase_ : int = torch.Size([1, 3, 512, 512] ) UpperCamelCase_ : List[str] = torch.tensor( [[-0.7_0_8_7, -0.7_1_3_8, -0.6_7_2_1], [-0.8_3_4_0, -0.8_0_9_5, -0.7_2_9_8], [-0.9_1_4_9, -0.8_4_1_4, -0.7_9_4_0]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: UpperCamelCase_ : str = torch.Size([1, 3, 1024, 1024] ) UpperCamelCase_ : Optional[Any] = torch.tensor( [[-0.7_7_7_5, -0.8_1_0_5, -0.8_9_3_3], [-0.7_7_6_4, -0.8_3_5_6, -0.9_2_2_5], [-0.7_9_7_6, -0.8_6_8_6, -0.9_5_7_9]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here UpperCamelCase_ : List[str] = torch.Size([1, 3, 1024, 1024] ) UpperCamelCase_ : Tuple = torch.tensor( [[-0.8_0_3_5, -0.7_5_0_4, -0.7_4_9_1], [-0.8_5_3_8, -0.8_1_2_4, -0.7_7_8_2], [-0.8_8_0_4, -0.8_6_5_1, -0.8_4_9_3]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: UpperCamelCase_ : Any = torch.Size([1, 3, 512, 512] ) UpperCamelCase_ : Tuple = torch.tensor( [[-0.7_6_6_9, -0.8_6_6_2, -0.8_7_6_7], [-0.8_8_1_0, -0.9_9_6_2, -0.9_8_2_0], [-0.9_3_4_0, -1.0_3_2_2, -1.1_1_4_9]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: UpperCamelCase_ : Optional[Any] = torch.Size([1, 3, 1024, 1024] ) UpperCamelCase_ : Tuple = torch.tensor( [[-0.5_2_3_8, -0.5_5_5_7, -0.6_3_2_1], [-0.6_0_1_6, -0.5_9_0_3, -0.6_3_9_1], [-0.6_2_4_4, -0.6_3_3_4, -0.6_8_8_9]] ) assert ( outputs.reconstruction.shape == expected_shape ), F"Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}" assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , lowerCamelCase , atol=1e-3 ) print('Looks ok!' ) UpperCamelCase_ : List[Any] = { 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth': ( 'swin2SR-classical-sr-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth': ( 'swin2SR-classical-sr-x4-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth': ( 'swin2SR-compressed-sr-x4-48' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth': ( 'swin2SR-lightweight-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth': ( 'swin2SR-realworld-sr-x4-64-bsrgan-psnr' ), } UpperCamelCase_ : List[str] = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCamelCase ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(lowerCamelCase ) if push_to_hub: model.push_to_hub(F"caidas/{model_name}" ) processor.push_to_hub(F"caidas/{model_name}" ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth', type=str, help='URL of the original Swin2SR checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument('--push_to_hub', action='store_true', help='Whether to push the converted model to the hub.') a_ = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
417
1
'''simple docstring''' import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class UpperCamelCase__ : '''simple docstring''' def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase=13 ,_lowerCAmelCase=7 ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase=99 ,_lowerCAmelCase=64 ,_lowerCAmelCase=5 ,_lowerCAmelCase=4 ,_lowerCAmelCase=37 ,_lowerCAmelCase="gelu" ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=5_12 ,_lowerCAmelCase=16 ,_lowerCAmelCase=2 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=3 ,_lowerCAmelCase=4 ,_lowerCAmelCase=None ,): lowerCamelCase__ = parent lowerCamelCase__ = batch_size lowerCamelCase__ = seq_length lowerCamelCase__ = is_training lowerCamelCase__ = use_input_mask lowerCamelCase__ = use_token_type_ids lowerCamelCase__ = use_labels lowerCamelCase__ = vocab_size lowerCamelCase__ = hidden_size lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = num_attention_heads lowerCamelCase__ = intermediate_size lowerCamelCase__ = hidden_act lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = max_position_embeddings lowerCamelCase__ = type_vocab_size lowerCamelCase__ = type_sequence_label_size lowerCamelCase__ = initializer_range lowerCamelCase__ = num_labels lowerCamelCase__ = num_choices lowerCamelCase__ = scope lowerCamelCase__ = vocab_size - 1 def UpperCamelCase_ ( self ): lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowerCamelCase__ = None if self.use_input_mask: lowerCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ = None if self.use_labels: lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) lowerCamelCase__ = self.get_config() return config, input_ids, input_mask, token_labels def UpperCamelCase_ ( self ): return GPTNeoXConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=lowerCAmelCase__ ,initializer_range=self.initializer_range ,pad_token_id=self.pad_token_id ,) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.prepare_config_and_inputs() lowerCamelCase__ = True return config, input_ids, input_mask, token_labels def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = GPTNeoXModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowerCamelCase__ = model(lowerCAmelCase__ ,attention_mask=lowerCAmelCase__ ) lowerCamelCase__ = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = True lowerCamelCase__ = GPTNeoXModel(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowerCamelCase__ = model(lowerCAmelCase__ ,attention_mask=lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = GPTNeoXForCausalLM(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowerCamelCase__ = model(lowerCAmelCase__ ,attention_mask=lowerCAmelCase__ ,labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = self.num_labels lowerCamelCase__ = GPTNeoXForQuestionAnswering(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowerCamelCase__ = model(lowerCAmelCase__ ,attention_mask=lowerCAmelCase__ ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = self.num_labels lowerCamelCase__ = GPTNeoXForSequenceClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowerCamelCase__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowerCamelCase__ = model(lowerCAmelCase__ ,attention_mask=lowerCAmelCase__ ,labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = self.num_labels lowerCamelCase__ = GPTNeoXForTokenClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowerCamelCase__ = model(lowerCAmelCase__ ,attention_mask=lowerCAmelCase__ ,labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = True lowerCamelCase__ = GPTNeoXForCausalLM(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() # first forward pass lowerCamelCase__ = model(lowerCAmelCase__ ,attention_mask=lowerCAmelCase__ ,use_cache=lowerCAmelCase__ ) lowerCamelCase__ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCamelCase__ = ids_tensor((self.batch_size, 3) ,config.vocab_size ) lowerCamelCase__ = ids_tensor((self.batch_size, 3) ,vocab_size=2 ) # append to next input_ids and lowerCamelCase__ = torch.cat([input_ids, next_tokens] ,dim=-1 ) lowerCamelCase__ = torch.cat([input_mask, next_mask] ,dim=-1 ) lowerCamelCase__ = model(lowerCAmelCase__ ,attention_mask=lowerCAmelCase__ ,output_hidden_states=lowerCAmelCase__ ) lowerCamelCase__ = output_from_no_past["hidden_states"][0] lowerCamelCase__ = model( lowerCAmelCase__ ,attention_mask=lowerCAmelCase__ ,past_key_values=lowerCAmelCase__ ,output_hidden_states=lowerCAmelCase__ ,)["hidden_states"][0] # select random slice lowerCamelCase__ = ids_tensor((1,) ,output_from_past.shape[-1] ).item() lowerCamelCase__ = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCamelCase__ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCAmelCase__ ,lowerCAmelCase__ ,atol=1E-3 ) ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.prepare_config_and_inputs() lowerCamelCase__ = config_and_inputs lowerCamelCase__ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class UpperCamelCase__ (a__ ,a__ ,a__ ,unittest.TestCase ): '''simple docstring''' _UpperCamelCase = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) _UpperCamelCase = (GPTNeoXForCausalLM,) if is_torch_available() else () _UpperCamelCase = ( { """feature-extraction""": GPTNeoXModel, """question-answering""": GPTNeoXForQuestionAnswering, """text-classification""": GPTNeoXForSequenceClassification, """text-generation""": GPTNeoXForCausalLM, """token-classification""": GPTNeoXForTokenClassification, """zero-shot""": GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False def UpperCamelCase_ ( self ): lowerCamelCase__ = GPTNeoXModelTester(self ) lowerCamelCase__ = ConfigTester(self ,config_class=lowerCAmelCase__ ,hidden_size=64 ,num_attention_heads=8 ) def UpperCamelCase_ ( self ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) def UpperCamelCase_ ( self ): # This regression test was failing with PyTorch < 1.3 lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_decoder() lowerCamelCase__ = None self.model_tester.create_and_check_model_as_decoder(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*lowerCAmelCase__ ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase__ ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase__ ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase__ ) @unittest.skip(reason="""Feed forward chunking is not implemented""" ) def UpperCamelCase_ ( self ): pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def UpperCamelCase_ ( self ,_lowerCAmelCase ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ = ids_tensor([1, 10] ,config.vocab_size ) lowerCamelCase__ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] ,config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowerCamelCase__ = GPTNeoXModel(lowerCAmelCase__ ) original_model.to(lowerCAmelCase__ ) original_model.eval() lowerCamelCase__ = original_model(lowerCAmelCase__ ).last_hidden_state lowerCamelCase__ = original_model(lowerCAmelCase__ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowerCamelCase__ = {"type": scaling_type, "factor": 10.0} lowerCamelCase__ = GPTNeoXModel(lowerCAmelCase__ ) scaled_model.to(lowerCAmelCase__ ) scaled_model.eval() lowerCamelCase__ = scaled_model(lowerCAmelCase__ ).last_hidden_state lowerCamelCase__ = scaled_model(lowerCAmelCase__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowerCAmelCase__ ,lowerCAmelCase__ ,atol=1E-5 ) ) else: self.assertFalse(torch.allclose(lowerCAmelCase__ ,lowerCAmelCase__ ,atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(lowerCAmelCase__ ,lowerCAmelCase__ ,atol=1E-5 ) ) @require_torch class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self ): lowerCamelCase__ = AutoTokenizer.from_pretrained("""EleutherAI/pythia-410m-deduped""" ) for checkpointing in [True, False]: lowerCamelCase__ = GPTNeoXForCausalLM.from_pretrained("""EleutherAI/pythia-410m-deduped""" ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(lowerCAmelCase__ ) lowerCamelCase__ = tokenizer("""My favorite food is""" ,return_tensors="""pt""" ).to(lowerCAmelCase__ ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 lowerCamelCase__ = "My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI'm not sure" lowerCamelCase__ = model.generate(**lowerCAmelCase__ ,do_sample=lowerCAmelCase__ ,max_new_tokens=20 ) lowerCamelCase__ = tokenizer.batch_decode(lowerCAmelCase__ )[0] self.assertEqual(lowerCAmelCase__ ,lowerCAmelCase__ )
708
'''simple docstring''' import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase : List[Any] = get_tests_dir('fixtures/test_sentencepiece_with_bytefallback.model') @require_sentencepiece @require_tokenizers class UpperCamelCase__ (a ,unittest.TestCase ): '''simple docstring''' _UpperCamelCase = GPTSwaTokenizer _UpperCamelCase = False _UpperCamelCase = True _UpperCamelCase = False def UpperCamelCase_ ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase__ = GPTSwaTokenizer(_lowerCAmelCase ,eos_token="""<unk>""" ,bos_token="""<unk>""" ,pad_token="""<unk>""" ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self ,_lowerCAmelCase ): lowerCamelCase__ = """This is a test""" lowerCamelCase__ = """This is a test""" return input_text, output_text def UpperCamelCase_ ( self ): lowerCamelCase__ = """<s>""" lowerCamelCase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCAmelCase ) ,_lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCAmelCase ) ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,"""<unk>""" ) self.assertEqual(vocab_keys[1] ,"""<s>""" ) self.assertEqual(vocab_keys[-1] ,"""j""" ) self.assertEqual(len(_lowerCAmelCase ) ,20_00 ) def UpperCamelCase_ ( self ): self.assertEqual(self.get_tokenizer().vocab_size ,20_00 ) def UpperCamelCase_ ( self ): lowerCamelCase__ = GPTSwaTokenizer(_lowerCAmelCase ) lowerCamelCase__ = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(_lowerCAmelCase ,["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) ,[4_65, 2_87, 2_65, 6_31, 8_42] ) lowerCamelCase__ = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) # fmt: off self.assertListEqual( _lowerCAmelCase ,["""▁I""", """▁was""", """▁bor""", """n""", """▁in""", """▁""", """<0x39>""", """2""", """0""", """0""", """0""", """,""", """▁and""", """▁this""", """▁is""", """▁f""", """al""", """s""", """<0xC3>""", """<0xA9>""", """."""] ,) # fmt: on lowerCamelCase__ = tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) self.assertListEqual( _lowerCAmelCase ,[2_62, 2_72, 15_25, 2_86, 2_71, 2_68, 60, 9_16, 6_33, 6_33, 6_33, 2_59, 2_66, 3_01, 2_87, 3_84, 3_67, 2_63, 1_98, 1_72, 2_60] ,) lowerCamelCase__ = tokenizer.convert_ids_to_tokens(_lowerCAmelCase ) # fmt: off self.assertListEqual( _lowerCAmelCase ,["""▁I""", """▁was""", """▁bor""", """n""", """▁in""", """▁""", """<0x39>""", """2""", """0""", """0""", """0""", """,""", """▁and""", """▁this""", """▁is""", """▁f""", """al""", """s""", """<0xC3>""", """<0xA9>""", """."""] ) # fmt: on def UpperCamelCase_ ( self ): lowerCamelCase__ = GPTSwaTokenizer(_lowerCAmelCase ) lowerCamelCase__ = ["""This is a test""", """I was born in 92000, and this is falsé."""] lowerCamelCase__ = [ [4_65, 2_87, 2_65, 6_31, 8_42], [2_62, 2_72, 15_25, 2_86, 2_71, 2_68, 60, 9_16, 6_33, 6_33, 6_33, 2_59, 2_66, 3_01, 2_87, 3_84, 3_67, 2_63, 1_98, 1_72, 2_60], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(_lowerCAmelCase ,_lowerCAmelCase ): self.assertListEqual(tokenizer.encode_fast(_lowerCAmelCase ) ,_lowerCAmelCase ) # Test that decode_fast returns the input text for text, token_ids in zip(_lowerCAmelCase ,_lowerCAmelCase ): self.assertEqual(tokenizer.decode_fast(_lowerCAmelCase ) ,_lowerCAmelCase ) @slow def UpperCamelCase_ ( self ): lowerCamelCase__ = [ """<|python|>def fibonacci(n)\n if n < 0:\n print('Incorrect input')""", """Hey there, how are you doing this fine day?""", """This is a text with a trailing spaces followed by a dot .""", """Häj sväjs lillebrör! =)""", """Det är inget fel på Mr. Cool""", ] # fmt: off lowerCamelCase__ = {"""input_ids""": [[6_34_23, 5, 68_11, 1_49_54, 2_82, 8_16, 38_21, 6_34_66, 6_34_25, 6_34_62, 18, 6_39_78, 6_78, 3_01, 13_20, 6_34_23, 6_34_55, 6_34_58, 18, 6_39_82, 42_46, 39_40, 19_01, 4_77_89, 55_47, 1_89_94], [1_96_30, 11_00, 6_34_46, 13_42, 6_33, 5_44, 44_88, 5_93, 51_02, 24_16, 6_34_95, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [16_52, 4_28, 2_68, 19_36, 5_15, 2_68, 5_85_93, 2_24_13, 91_06, 5_46, 2_68, 3_32_13, 6_39_79, 6_98, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_51_30, 6_34_50, 9_24, 6_34_49, 22_49, 40_62, 15_58, 3_18, 6_35_04, 2_14_98, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_09, 3_77, 28_27, 25_59, 3_32, 65_75, 6_34_43, 2_68_01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCAmelCase ,model_name="""AI-Sweden/gpt-sw3-126m""" ,sequences=_lowerCAmelCase ,)
9
0
import heapq import sys import numpy as np A_ : Optional[int] =tuple[int, int] class lowercase_ : """simple docstring""" def __init__( self ): """simple docstring""" a_ = [] a_ = set() def lowercase__ ( self ): """simple docstring""" if not self.empty(): return self.elements[0][0] else: return float("""inf""" ) def lowercase__ ( self ): """simple docstring""" return len(self.elements ) == 0 def lowercase__ ( self , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(_lowercase ) else: # update # print("update", item) a_ = [] ((a_) , (a_)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((a_) , (a_)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def lowercase__ ( self , _UpperCAmelCase ): """simple docstring""" if item in self.set: self.set.remove(_lowercase ) a_ = [] ((a_) , (a_)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((a_) , (a_)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def lowercase__ ( self ): """simple docstring""" return self.elements[0][1] def lowercase__ ( self ): """simple docstring""" ((a_) , (a_)) = heapq.heappop(self.elements ) self.set.remove(_lowercase ) return (priority, item) def lowerCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" a_ = np.array(SCREAMING_SNAKE_CASE_ ) a_ = np.array(SCREAMING_SNAKE_CASE_ ) return np.linalg.norm(a - b ) def lowerCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" return consistent_heuristic(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) // t def lowerCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def lowerCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" a_ = g_function[start] + Wa * heuristics[i](SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return ans def lowerCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" a_ = np.chararray((n, n) ) for i in range(SCREAMING_SNAKE_CASE_ ): for j in range(SCREAMING_SNAKE_CASE_ ): a_ = """*""" for i in range(SCREAMING_SNAKE_CASE_ ): for j in range(SCREAMING_SNAKE_CASE_ ): if (j, (n - 1) - i) in blocks: a_ = """#""" a_ = """-""" a_ = back_pointer[goal] while x != start: ((a_) , (a_)) = x # print(x) a_ = """-""" a_ = back_pointer[x] a_ = """-""" for i in range(SCREAMING_SNAKE_CASE_ ): for j in range(SCREAMING_SNAKE_CASE_ ): if (i, j) == (0, n - 1): print(grid[i][j] , end=""" """ ) print("""<-- End position""" , end=""" """ ) else: print(grid[i][j] , end=""" """ ) print() print("""^""" ) print("""Start position""" ) print() print("""# is an obstacle""" ) print("""- is the path taken by algorithm""" ) print("""PATH TAKEN BY THE ALGORITHM IS:-""" ) a_ = back_pointer[goal] while x != start: print(SCREAMING_SNAKE_CASE_ , end=""" """ ) a_ = back_pointer[x] print(SCREAMING_SNAKE_CASE_ ) sys.exit() def lowerCamelCase_ ( UpperCAmelCase__ ): """simple docstring""" if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def lowerCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ): """simple docstring""" for itera in range(SCREAMING_SNAKE_CASE_ ): open_list[itera].remove_element(SCREAMING_SNAKE_CASE_ ) # print("s", s) # print("j", j) ((a_) , (a_)) = s a_ = (x - 1, y) a_ = (x + 1, y) a_ = (x, y + 1) a_ = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(SCREAMING_SNAKE_CASE_ ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(SCREAMING_SNAKE_CASE_ ) a_ = -1 a_ = float("""inf""" ) if valid(SCREAMING_SNAKE_CASE_ ) and g_function[neighbours] > g_function[s] + 1: a_ = g_function[s] + 1 a_ = s if neighbours not in close_list_anchor: open_list[0].put(SCREAMING_SNAKE_CASE_ , key(SCREAMING_SNAKE_CASE_ , 0 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) if neighbours not in close_list_inad: for var in range(1 , SCREAMING_SNAKE_CASE_ ): if key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) <= Wa * key( SCREAMING_SNAKE_CASE_ , 0 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): open_list[j].put( SCREAMING_SNAKE_CASE_ , key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) def lowerCamelCase_ ( ): """simple docstring""" a_ = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list A_ : Optional[int] ={0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} A_ : str =[ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] A_ : List[Any] =make_common_ground() A_ : Optional[int] =blocks_blk # hyper parameters A_ : Dict =1 A_ : Optional[int] =1 A_ : Optional[int] =20 A_ : str =3 # one consistent and two other inconsistent # start and end destination A_ : Optional[Any] =(0, 0) A_ : Optional[int] =(n - 1, n - 1) A_ : Dict =1 def lowerCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" a_ = {start: 0, goal: float("""inf""" )} a_ = {start: -1, goal: -1} a_ = [] a_ = set() for i in range(SCREAMING_SNAKE_CASE_ ): open_list.append(PriorityQueue() ) open_list[i].put(SCREAMING_SNAKE_CASE_ , key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) a_ = [] a_ = [] while open_list[0].minkey() < float("""inf""" ): for i in range(1 , SCREAMING_SNAKE_CASE_ ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float("""inf""" ): do_something(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: a_ , a_ = open_list[i].top_show() visited.add(SCREAMING_SNAKE_CASE_ ) expand_state( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) close_list_inad.append(SCREAMING_SNAKE_CASE_ ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float("""inf""" ): do_something(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: a_ = open_list[0].top_show() visited.add(SCREAMING_SNAKE_CASE_ ) expand_state( SCREAMING_SNAKE_CASE_ , 0 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) close_list_anchor.append(SCREAMING_SNAKE_CASE_ ) print("""No path found to goal""" ) print() for i in range(n - 1 , -1 , -1 ): for j in range(SCREAMING_SNAKE_CASE_ ): if (j, i) in blocks: print("""#""" , end=""" """ ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print("""*""" , end=""" """ ) else: print("""-""" , end=""" """ ) else: print("""*""" , end=""" """ ) if (j, i) == (n - 1, n - 1): print("""<-- End position""" , end=""" """ ) print() print("""^""" ) print("""Start position""" ) print() print("""# is an obstacle""" ) print("""- is the path taken by algorithm""" ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
483
'''simple docstring''' import argparse import torch from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def lowerCamelCase( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) -> str: # Construct model if openai_config_file == "": A_ = OpenAIGPTConfig() else: A_ = OpenAIGPTConfig.from_json_file(SCREAMING_SNAKE_CASE_ ) A_ = OpenAIGPTModel(SCREAMING_SNAKE_CASE_ ) # Load weights from numpy load_tf_weights_in_openai_gpt(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) # Save pytorch-model A_ = pytorch_dump_folder_path + '/' + WEIGHTS_NAME A_ = pytorch_dump_folder_path + '/' + CONFIG_NAME print(F'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(model.state_dict() ,SCREAMING_SNAKE_CASE_ ) print(F'Save configuration file to {pytorch_config_dump_path}' ) with open(SCREAMING_SNAKE_CASE_ ,'w' ,encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( "--openai_checkpoint_folder_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--openai_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained OpenAI model. \n" "This specifies the model architecture." ), ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_openai_checkpoint_to_pytorch( args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path )
366
0
'''simple docstring''' import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class __magic_name__ : def __init__( self : str , lowercase_ : int , lowercase_ : Union[str, Any]=sys.maxsize ): lowercase_ : Optional[int] = '''bilinear''' lowercase_ : Optional[Any] = max_size lowercase_ : List[Any] = short_edge_length def __call__( self : int , lowercase_ : Dict ): lowercase_ : Any = [] for img in imgs: lowercase_ : Optional[Any] = img.shape[:2] # later: provide list and randomly choose index for resize lowercase_ : str = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img lowercase_ : int = size * 1.0 / min(lowercase_ , lowercase_ ) if h < w: lowercase_ : Dict = size, scale * w else: lowercase_ : str = scale * h, size if max(lowercase_ , lowercase_ ) > self.max_size: lowercase_ : Any = self.max_size * 1.0 / max(lowercase_ , lowercase_ ) lowercase_ : Tuple = newh * scale lowercase_ : Any = neww * scale lowercase_ : List[str] = int(neww + 0.5 ) lowercase_ : List[str] = int(newh + 0.5 ) if img.dtype == np.uinta: lowercase_ : Optional[int] = Image.fromarray(lowercase_ ) lowercase_ : List[str] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) lowercase_ : Optional[Any] = np.asarray(lowercase_ ) else: lowercase_ : Any = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw lowercase_ : Union[str, Any] = nn.functional.interpolate( lowercase_ , (newh, neww) , mode=self.interp_method , align_corners=lowercase_ ).squeeze(0 ) img_augs.append(lowercase_ ) return img_augs class __magic_name__ : def __init__( self : Tuple , lowercase_ : Dict ): lowercase_ : Optional[Any] = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) lowercase_ : Any = cfg.INPUT.FORMAT lowercase_ : List[Any] = cfg.SIZE_DIVISIBILITY lowercase_ : List[str] = cfg.PAD_VALUE lowercase_ : Dict = cfg.INPUT.MAX_SIZE_TEST lowercase_ : Optional[Any] = cfg.MODEL.DEVICE lowercase_ : int = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) lowercase_ : Tuple = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) lowercase_ : int = lambda lowercase_ : (x - self.pixel_mean) / self.pixel_std def SCREAMING_SNAKE_CASE_ ( self : List[Any] , lowercase_ : List[Any] ): lowercase_ : Optional[Any] = tuple(max(lowercase_ ) for s in zip(*[img.shape for img in images] ) ) lowercase_ : Union[str, Any] = [im.shape[-2:] for im in images] lowercase_ : Tuple = [ nn.functional.pad( lowercase_ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(lowercase_ , lowercase_ ) ] return torch.stack(lowercase_ ), torch.tensor(lowercase_ ) def __call__( self : List[Any] , lowercase_ : str , lowercase_ : Union[str, Any]=False ): with torch.no_grad(): if not isinstance(lowercase_ , lowercase_ ): lowercase_ : Any = [images] if single_image: assert len(lowercase_ ) == 1 for i in range(len(lowercase_ ) ): if isinstance(images[i] , torch.Tensor ): images.insert(lowercase_ , images.pop(lowercase_ ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( lowercase_ , torch.as_tensor(img_tensorize(images.pop(lowercase_ ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge lowercase_ : Union[str, Any] = torch.tensor([im.shape[:2] for im in images] ) lowercase_ : Dict = self.aug(lowercase_ ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic lowercase_ : List[str] = [self.normalizer(lowercase_ ) for x in images] # now pad them to do the following operations lowercase_ : Dict = self.pad(lowercase_ ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad lowercase_ : Union[str, Any] = torch.true_divide(lowercase_ , lowercase_ ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def lowerCamelCase ( UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Union[str, Any] ) -> Optional[int]: boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple[int, int] ) -> Union[str, Any]: assert torch.isfinite(__A ).all(), "Box tensor contains infinite or NaN!" lowercase_ : Optional[Any] = box_size tensor[:, 0].clamp_(min=0 , max=__A ) tensor[:, 1].clamp_(min=0 , max=__A ) tensor[:, 2].clamp_(min=0 , max=__A ) tensor[:, 3].clamp_(min=0 , max=__A )
708
'''simple docstring''' import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize("""dataset_size""" , [None, 400 * 2**20, 600 * 2**20] ) @pytest.mark.parametrize("""input_in_memory_max_size""" , ["""default""", 0, 100 * 2**20, 900 * 2**20] ) def lowerCamelCase ( UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : str ) -> Any: if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , """IN_MEMORY_MAX_SIZE""" , UpperCAmelCase__ ) lowercase_ : List[Any] = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: lowercase_ : str = dataset_size < in_memory_max_size else: lowercase_ : List[Any] = False lowercase_ : Any = is_small_dataset(UpperCAmelCase__ ) assert result == expected
30
0
def lowerCAmelCase_ ( __a , __a ) -> float: """simple docstring""" _validate_point(__a ) _validate_point(__a ) if len(__a ) != len(__a ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(a - b ) for a, b in zip(__a , __a ) ) ) def lowerCAmelCase_ ( __a ) -> None: """simple docstring""" if point: if isinstance(__a , __a ): for item in point: if not isinstance(__a , (int, float) ): lowerCamelCase__: Union[str, Any] =( "Expected a list of numbers as input, found " F"""{type(__a ).__name__}""" ) raise TypeError(__a ) else: lowerCamelCase__: Dict =F"""Expected a list of numbers as input, found {type(__a ).__name__}""" raise TypeError(__a ) else: raise ValueError("Missing an input" ) def lowerCAmelCase_ ( __a , __a ) -> float: """simple docstring""" _validate_point(__a ) _validate_point(__a ) if len(__a ) != len(__a ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(x - y ) for x, y in zip(__a , __a ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
59
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCAmelCase_ ( __a , __a ) -> List[Any]: """simple docstring""" assert isinstance(__a , __a ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowerCAmelCase_ ( __a , __a , __a ) -> Any: """simple docstring""" lowerCamelCase__: Any =tmp_path / "cache" lowerCamelCase__: Optional[int] ={"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCamelCase__: Tuple =ParquetDatasetReader(__a , cache_dir=__a , keep_in_memory=__a ).read() _check_parquet_dataset(__a , __a ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[str]: """simple docstring""" lowerCamelCase__: int =tmp_path / "cache" lowerCamelCase__: Tuple ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Union[str, Any] =features.copy() if features else default_expected_features lowerCamelCase__: Optional[int] =( Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase__: int =ParquetDatasetReader(__a , features=__a , cache_dir=__a ).read() _check_parquet_dataset(__a , __a ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def lowerCAmelCase_ ( __a , __a , __a ) -> Any: """simple docstring""" lowerCamelCase__: Any =tmp_path / "cache" lowerCamelCase__: Optional[Any] ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Optional[Any] =ParquetDatasetReader(__a , cache_dir=__a , split=__a ).read() _check_parquet_dataset(__a , __a ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def lowerCAmelCase_ ( __a , __a , __a ) -> int: """simple docstring""" if issubclass(__a , __a ): lowerCamelCase__: List[Any] =parquet_path elif issubclass(__a , __a ): lowerCamelCase__: str =[parquet_path] lowerCamelCase__: Tuple =tmp_path / "cache" lowerCamelCase__: Optional[Any] ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: int =ParquetDatasetReader(__a , cache_dir=__a ).read() _check_parquet_dataset(__a , __a ) def lowerCAmelCase_ ( __a , __a , __a=("train",) ) -> Dict: """simple docstring""" assert isinstance(__a , __a ) for split in splits: lowerCamelCase__: Tuple =dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowerCAmelCase_ ( __a , __a , __a ) -> Any: """simple docstring""" lowerCamelCase__: List[Any] =tmp_path / "cache" lowerCamelCase__: Optional[Any] ={"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCamelCase__: Tuple =ParquetDatasetReader( {"train": parquet_path} , cache_dir=__a , keep_in_memory=__a ).read() _check_parquet_datasetdict(__a , __a ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowerCAmelCase_ ( __a , __a , __a ) -> Optional[Any]: """simple docstring""" lowerCamelCase__: Tuple =tmp_path / "cache" lowerCamelCase__: Optional[int] ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: List[Any] =features.copy() if features else default_expected_features lowerCamelCase__: int =( Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase__: Optional[Any] =ParquetDatasetReader({"train": parquet_path} , features=__a , cache_dir=__a ).read() _check_parquet_datasetdict(__a , __a ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def lowerCAmelCase_ ( __a , __a , __a ) -> Union[str, Any]: """simple docstring""" if split: lowerCamelCase__: Any ={split: parquet_path} else: lowerCamelCase__: int ="train" lowerCamelCase__: Any ={"train": parquet_path, "test": parquet_path} lowerCamelCase__: str =tmp_path / "cache" lowerCamelCase__: Any ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: int =ParquetDatasetReader(__a , cache_dir=__a ).read() _check_parquet_datasetdict(__a , __a , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowerCAmelCase_ ( __a , __a ) -> int: """simple docstring""" lowerCamelCase__: List[str] =ParquetDatasetWriter(__a , tmp_path / "foo.parquet" ) assert writer.write() > 0 lowerCamelCase__: List[str] =pq.ParquetFile(tmp_path / "foo.parquet" ) lowerCamelCase__: List[str] =pf.read() assert dataset.data.table == output_table def lowerCAmelCase_ ( __a , __a ) -> List[str]: """simple docstring""" lowerCamelCase__: List[str] =str(shared_datadir / "test_image_rgb.jpg" ) lowerCamelCase__: Union[str, Any] ={"image": [image_path]} lowerCamelCase__: Optional[Any] =Features({"image": Image()} ) lowerCamelCase__: Optional[int] =Dataset.from_dict(__a , features=__a ) lowerCamelCase__: Optional[int] =ParquetDatasetWriter(__a , tmp_path / "foo.parquet" ) assert writer.write() > 0 lowerCamelCase__: Dict =Dataset.from_parquet(str(tmp_path / "foo.parquet" ) ) assert dataset.features == reloaded_dataset.features lowerCamelCase__: Optional[Any] =ParquetDatasetReader(str(tmp_path / "foo.parquet" ) , streaming=__a ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( "feature, expected" , [ (Features({"foo": Value("int32" )} ), None), (Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def lowerCAmelCase_ ( __a , __a ) -> Optional[Any]: """simple docstring""" assert get_writer_batch_size(__a ) == expected
59
1
'''simple docstring''' import qiskit def lowercase__ ( __UpperCamelCase = 2 )-> qiskit.result.counts.Counts: UpperCamelCase = qubits # Using Aer's simulator UpperCamelCase = qiskit.Aer.get_backend("""aer_simulator""" ) # Creating a Quantum Circuit acting on the q register UpperCamelCase = qiskit.QuantumCircuit(__lowerCAmelCase , __lowerCAmelCase ) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0 ) for i in range(1 , __lowerCAmelCase ): # Adding CX (CNOT) gate circuit.cx(i - 1 , __lowerCAmelCase ) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(__lowerCAmelCase ) ) , list(range(__lowerCAmelCase ) ) ) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator UpperCamelCase = qiskit.execute(__lowerCAmelCase , __lowerCAmelCase , shots=1000 ) return job.result().get_counts(__lowerCAmelCase ) if __name__ == "__main__": print(f'Total count for various states are: {quantum_entanglement(3)}')
711
'''simple docstring''' import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class a_ : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=[1, 2, 1] , _SCREAMING_SNAKE_CASE=[2, 2, 4] , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=2.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=1e-5 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=["stage1", "stage2", "stage3"] , _SCREAMING_SNAKE_CASE=[1, 2, 3] , ) -> Any: """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = patch_size UpperCamelCase = num_channels UpperCamelCase = embed_dim UpperCamelCase = depths UpperCamelCase = num_heads UpperCamelCase = window_size UpperCamelCase = mlp_ratio UpperCamelCase = qkv_bias UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = drop_path_rate UpperCamelCase = hidden_act UpperCamelCase = use_absolute_embeddings UpperCamelCase = patch_norm UpperCamelCase = layer_norm_eps UpperCamelCase = initializer_range UpperCamelCase = is_training UpperCamelCase = scope UpperCamelCase = use_labels UpperCamelCase = type_sequence_label_size UpperCamelCase = encoder_stride UpperCamelCase = out_features UpperCamelCase = out_indices def A__ ( self ) -> Any: """simple docstring""" UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = self.get_config() return config, pixel_values, labels def A__ ( self ) -> str: """simple docstring""" return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = MaskFormerSwinModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase = model(_SCREAMING_SNAKE_CASE ) UpperCamelCase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) UpperCamelCase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" UpperCamelCase = MaskFormerSwinBackbone(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase = model(_SCREAMING_SNAKE_CASE ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(_SCREAMING_SNAKE_CASE ): UpperCamelCase = ["""stem"""] UpperCamelCase = MaskFormerSwinBackbone(config=_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> str: """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase ,UpperCamelCase ,UpperCamelCase = config_and_inputs UpperCamelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class a_ ( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) lowercase = {"""feature-extraction""": MaskFormerSwinModel} if is_torch_available() else {} lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False def A__ ( self ) -> int: """simple docstring""" UpperCamelCase = MaskFormerSwinModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( """`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with""" """ `nn.DataParallel`""" ) ) def A__ ( self ) -> List[str]: """simple docstring""" pass def A__ ( self ) -> Dict: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self ) -> int: """simple docstring""" return def A__ ( self ) -> List[str]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_SCREAMING_SNAKE_CASE ) @unittest.skip("""Swin does not use inputs_embeds""" ) def A__ ( self ) -> Optional[Any]: """simple docstring""" pass @unittest.skip("""Swin does not support feedforward chunking""" ) def A__ ( self ) -> Dict: """simple docstring""" pass def A__ ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase ,UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) ) def A__ ( self ) -> int: """simple docstring""" UpperCamelCase ,UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(_SCREAMING_SNAKE_CASE ) UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) @unittest.skip(reason="""MaskFormerSwin is only used as backbone and doesn't support output_attentions""" ) def A__ ( self ) -> Optional[int]: """simple docstring""" pass @unittest.skip(reason="""MaskFormerSwin is only used as an internal backbone""" ) def A__ ( self ) -> List[str]: """simple docstring""" pass def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" UpperCamelCase = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): UpperCamelCase = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) UpperCamelCase = outputs.hidden_states UpperCamelCase = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) # Swin has a different seq_length UpperCamelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCamelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def A__ ( self ) -> str: """simple docstring""" UpperCamelCase ,UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: UpperCamelCase = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase ,UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = 3 UpperCamelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) UpperCamelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCamelCase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) UpperCamelCase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: UpperCamelCase = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (padded_height, padded_width) ) @unittest.skip(reason="""MaskFormerSwin doesn't have pretrained checkpoints""" ) def A__ ( self ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" ) def A__ ( self ) -> str: """simple docstring""" pass @unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" ) def A__ ( self ) -> List[Any]: """simple docstring""" pass def A__ ( self ) -> Any: """simple docstring""" UpperCamelCase ,UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(_SCREAMING_SNAKE_CASE ): UpperCamelCase = 0 return t def check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE={} ): with torch.no_grad(): UpperCamelCase = model(**_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) UpperCamelCase = model(**_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).to_tuple() def recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if isinstance(_SCREAMING_SNAKE_CASE , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(_SCREAMING_SNAKE_CASE ) , set_nan_tensor_to_zero(_SCREAMING_SNAKE_CASE ) , atol=1e-5 ) , msg=( """Tuple and dict output are not equal. Difference:""" F" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:" F" {torch.isnan(_SCREAMING_SNAKE_CASE ).any()} and `inf`: {torch.isinf(_SCREAMING_SNAKE_CASE )}. Dict has" F" `nan`: {torch.isnan(_SCREAMING_SNAKE_CASE ).any()} and `inf`: {torch.isinf(_SCREAMING_SNAKE_CASE )}." ) , ) recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: UpperCamelCase = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) UpperCamelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , {"""output_hidden_states""": True} ) UpperCamelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) UpperCamelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , {"""output_hidden_states""": True} ) @require_torch class a_ ( unittest.TestCase , lowerCamelCase ): lowercase = (MaskFormerSwinBackbone,) if is_torch_available() else () lowercase = MaskFormerSwinConfig def A__ ( self ) -> List[str]: """simple docstring""" UpperCamelCase = MaskFormerSwinModelTester(self ) def A__ ( self ) -> str: """simple docstring""" UpperCamelCase ,UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = inputs_dict["""pixel_values"""].shape[0] for backbone_class in self.all_model_classes: UpperCamelCase = backbone_class(_SCREAMING_SNAKE_CASE ) backbone.to(_SCREAMING_SNAKE_CASE ) backbone.eval() UpperCamelCase = backbone(**_SCREAMING_SNAKE_CASE ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , _SCREAMING_SNAKE_CASE ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True UpperCamelCase = backbone(**_SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) UpperCamelCase ,UpperCamelCase ,UpperCamelCase = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: UpperCamelCase = backbone(**_SCREAMING_SNAKE_CASE , output_attentions=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(outputs.attentions )
35
0
def SCREAMING_SNAKE_CASE ( lowercase_=28_123 ) -> Union[str, Any]: """simple docstring""" A__ = [1] * (limit + 1) for i in range(2 , int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1 ): sum_divs[k * i] += k + i A__ = set() A__ = 0 for n in range(1 , limit + 1 ): if sum_divs[n] > n: abundants.add(lowercase_ ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
87
"""simple docstring""" from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { 'google/efficientnet-b7': 'https://huggingface.co/google/efficientnet-b7/resolve/main/config.json', } class __A ( A_ ): '''simple docstring''' lowerCAmelCase : Dict = "efficientnet" def __init__( self : Optional[Any] ,_snake_case : int = 3 ,_snake_case : int = 600 ,_snake_case : float = 2.0 ,_snake_case : float = 3.1 ,_snake_case : int = 8 ,_snake_case : List[int] = [3, 3, 5, 3, 5, 5, 3] ,_snake_case : List[int] = [32, 16, 24, 40, 80, 112, 192] ,_snake_case : List[int] = [16, 24, 40, 80, 112, 192, 320] ,_snake_case : List[int] = [] ,_snake_case : List[int] = [1, 2, 2, 2, 1, 2, 1] ,_snake_case : List[int] = [1, 2, 2, 3, 3, 4, 1] ,_snake_case : List[int] = [1, 6, 6, 6, 6, 6, 6] ,_snake_case : float = 0.25 ,_snake_case : str = "swish" ,_snake_case : int = 2_560 ,_snake_case : str = "mean" ,_snake_case : float = 0.02 ,_snake_case : float = 0.001 ,_snake_case : float = 0.99 ,_snake_case : float = 0.5 ,_snake_case : float = 0.2 ,**_snake_case : List[str] ,) -> Optional[Any]: """simple docstring""" super().__init__(**_snake_case ) lowercase__ : Optional[Any] = num_channels lowercase__ : Any = image_size lowercase__ : Optional[Any] = width_coefficient lowercase__ : Dict = depth_coefficient lowercase__ : Optional[int] = depth_divisor lowercase__ : Optional[int] = kernel_sizes lowercase__ : str = in_channels lowercase__ : Any = out_channels lowercase__ : Union[str, Any] = depthwise_padding lowercase__ : str = strides lowercase__ : List[str] = num_block_repeats lowercase__ : List[str] = expand_ratios lowercase__ : List[str] = squeeze_expansion_ratio lowercase__ : Optional[Any] = hidden_act lowercase__ : Any = hidden_dim lowercase__ : Optional[int] = pooling_type lowercase__ : List[str] = initializer_range lowercase__ : List[Any] = batch_norm_eps lowercase__ : List[Any] = batch_norm_momentum lowercase__ : Tuple = dropout_rate lowercase__ : Tuple = drop_connect_rate lowercase__ : Union[str, Any] = sum(_snake_case ) * 4 class __A ( A_ ): '''simple docstring''' lowerCAmelCase : List[str] = version.parse("1.11" ) @property def UpperCAmelCase ( self : str ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def UpperCAmelCase ( self : Optional[int] ) -> float: """simple docstring""" return 1e-5
560
0
import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow a_ : Dict = False class UpperCamelCase ( unittest.TestCase ): def UpperCamelCase ( self : int , snake_case__ : List[Any]=3_2 ): """simple docstring""" set_seed(0 ) SCREAMING_SNAKE_CASE = UNetaDModel(sample_size=snake_case__ , in_channels=3 , out_channels=3 ) SCREAMING_SNAKE_CASE = torch.optim.SGD(model.parameters() , lr=0.0_001 ) return model, optimizer @slow def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = 'cpu' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable SCREAMING_SNAKE_CASE = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_start=0.0_001 , beta_end=0.02 , beta_schedule='linear' , clip_sample=snake_case__ , ) SCREAMING_SNAKE_CASE = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_start=0.0_001 , beta_end=0.02 , beta_schedule='linear' , clip_sample=snake_case__ , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0 ) SCREAMING_SNAKE_CASE = [torch.randn((4, 3, 3_2, 3_2) ).clip(-1 , 1 ).to(snake_case__ ) for _ in range(4 )] SCREAMING_SNAKE_CASE = [torch.randn((4, 3, 3_2, 3_2) ).to(snake_case__ ) for _ in range(4 )] SCREAMING_SNAKE_CASE = [torch.randint(0 , 1_0_0_0 , (4,) ).long().to(snake_case__ ) for _ in range(4 )] # train with a DDPM scheduler SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.get_model_optimizer(resolution=3_2 ) model.train().to(snake_case__ ) for i in range(4 ): optimizer.zero_grad() SCREAMING_SNAKE_CASE = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) SCREAMING_SNAKE_CASE = model(snake_case__ , timesteps[i] ).sample SCREAMING_SNAKE_CASE = torch.nn.functional.mse_loss(snake_case__ , noise[i] ) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.get_model_optimizer(resolution=3_2 ) model.train().to(snake_case__ ) for i in range(4 ): optimizer.zero_grad() SCREAMING_SNAKE_CASE = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) SCREAMING_SNAKE_CASE = model(snake_case__ , timesteps[i] ).sample SCREAMING_SNAKE_CASE = torch.nn.functional.mse_loss(snake_case__ , noise[i] ) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(snake_case__ , snake_case__ , atol=1E-5 ) ) self.assertTrue(torch.allclose(snake_case__ , snake_case__ , atol=1E-5 ) )
673
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer a_ : Optional[Any] = logging.get_logger(__name__) a_ : Optional[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} a_ : Any = { "vocab_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json" }, "merges_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt" }, } a_ : Union[str, Any] = {"allegro/herbert-base-cased": 514} a_ : List[Any] = {} class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase =VOCAB_FILES_NAMES __UpperCamelCase =PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase =PRETRAINED_INIT_CONFIGURATION __UpperCamelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase =HerbertTokenizer def __init__( self : Tuple , snake_case__ : Optional[Any]=None , snake_case__ : int=None , snake_case__ : Optional[int]=None , snake_case__ : str="<s>" , snake_case__ : Tuple="<unk>" , snake_case__ : List[str]="<pad>" , snake_case__ : Tuple="<mask>" , snake_case__ : Dict="</s>" , **snake_case__ : List[str] , ): """simple docstring""" super().__init__( snake_case__ , snake_case__ , tokenizer_file=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , sep_token=snake_case__ , **snake_case__ , ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = [self.cls_token_id] SCREAMING_SNAKE_CASE = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase ( self : Optional[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) + [1] return [1] + ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) + [1] def UpperCamelCase ( self : Optional[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase ( self : Tuple , snake_case__ : str , snake_case__ : Optional[str] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ )
673
1
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _a ( _lowerCAmelCase , unittest.TestCase ): A = CLIPTokenizer A = CLIPTokenizerFast A = True A = {} A = False def __snake_case (self ) -> Dict: super().setUp() # fmt: off UpperCAmelCase_: Tuple = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on UpperCAmelCase_: List[Any] = dict(zip(SCREAMING_SNAKE_CASE_, range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) UpperCAmelCase_: Optional[Any] = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>"""] UpperCAmelCase_: List[Any] = {"""unk_token""": """<unk>"""} UpperCAmelCase_: Any = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCAmelCase_: Union[str, Any] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file, """w""", encoding="""utf-8""" ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + """\n""" ) with open(self.merges_file, """w""", encoding="""utf-8""" ) as fp: fp.write("""\n""".join(SCREAMING_SNAKE_CASE_ ) ) def __snake_case (self, **SCREAMING_SNAKE_CASE_ ) -> List[str]: kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname, **SCREAMING_SNAKE_CASE_ ) def __snake_case (self, **SCREAMING_SNAKE_CASE_ ) -> Tuple: kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname, **SCREAMING_SNAKE_CASE_ ) def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> List[str]: UpperCAmelCase_: Optional[Any] = """lower newer""" UpperCAmelCase_: Any = """lower newer""" return input_text, output_text def __snake_case (self ) -> Optional[Any]: UpperCAmelCase_: List[str] = CLIPTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map ) UpperCAmelCase_: Optional[int] = """lower newer""" UpperCAmelCase_: str = ["""lo""", """w""", """er</w>""", """n""", """e""", """w""", """er</w>"""] UpperCAmelCase_: int = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: List[Any] = tokens + [tokenizer.unk_token] UpperCAmelCase_: List[str] = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ), SCREAMING_SNAKE_CASE_ ) @require_ftfy def __snake_case (self ) -> List[Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): UpperCAmelCase_: str = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[int] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[Any] = """A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d.""" UpperCAmelCase_: int = tokenizer_s.tokenize(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: int = tokenizer_r.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways UpperCAmelCase_: int = """xa\u0303y""" + """ """ + """x\xe3y""" UpperCAmelCase_: Optional[Any] = tokenizer_s.tokenize(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Any = tokenizer_r.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # Test that the tokenization is identical on unicode of space type UpperCAmelCase_: Optional[int] = [ """\u0009""", # (horizontal tab, '\t') """\u000B""", # (vertical tab) """\u000C""", # (form feed) """\u0020""", # (space, ' ') """\u200E""", # (left-to-right mark):w """\u200F""", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: UpperCAmelCase_: str = tokenizer_s.tokenize(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[Any] = tokenizer_r.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # Test that the tokenization is identical on unicode of line break type UpperCAmelCase_: List[Any] = [ """\u000A""", # (line feed, '\n') """\r\n""", # (carriage return and line feed, '\r\n') """\u000D""", # (carriage return, '\r') """\r""", # (carriage return, '\r') """\u000D""", # (carriage return, '\r') """\u2028""", # (line separator) """\u2029""", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: UpperCAmelCase_: List[Any] = tokenizer_s.tokenize(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: List[str] = tokenizer_r.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> Union[str, Any]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): UpperCAmelCase_: Optional[Any] = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` UpperCAmelCase_: List[str] = f'{text_of_1_token} {text_of_1_token}' UpperCAmelCase_: str = self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE_, use_fast=SCREAMING_SNAKE_CASE_, ) UpperCAmelCase_: Tuple = tokenizer_r(SCREAMING_SNAKE_CASE_, return_offsets_mapping=SCREAMING_SNAKE_CASE_, add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertEqual(encoding.offset_mapping[0], (0, len(SCREAMING_SNAKE_CASE_ )) ) self.assertEqual( encoding.offset_mapping[1], (len(SCREAMING_SNAKE_CASE_ ) + 1, len(SCREAMING_SNAKE_CASE_ ) + 1 + len(SCREAMING_SNAKE_CASE_ )), ) UpperCAmelCase_: List[str] = f' {text}' UpperCAmelCase_: Tuple = self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE_, use_fast=SCREAMING_SNAKE_CASE_, ) UpperCAmelCase_: str = tokenizer_r(SCREAMING_SNAKE_CASE_, return_offsets_mapping=SCREAMING_SNAKE_CASE_, add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(SCREAMING_SNAKE_CASE_ )) ) self.assertEqual( encoding.offset_mapping[1], (1 + len(SCREAMING_SNAKE_CASE_ ) + 1, 1 + len(SCREAMING_SNAKE_CASE_ ) + 1 + len(SCREAMING_SNAKE_CASE_ )), ) def __snake_case (self ) -> Optional[Any]: # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(SCREAMING_SNAKE_CASE_ ) as context: self.rust_tokenizer_class.from_pretrained("""robot-test/old-clip-tokenizer""" ) self.assertTrue( context.exception.args[0].startswith( """The `backend_tokenizer` provided does not match the expected format.""" ) ) @require_ftfy def __snake_case (self ) -> Dict: super().test_tokenization_python_rust_equals() def __snake_case (self ) -> int: # CLIP always lower cases letters pass
556
from __future__ import annotations def lowerCAmelCase_ (lowerCAmelCase__: int | str ): """simple docstring""" UpperCAmelCase_: Optional[int] = str(lowerCAmelCase__ ) return n == n[::-1] def lowerCAmelCase_ (lowerCAmelCase__: int = 1_0_0_0_0_0_0 ): """simple docstring""" UpperCAmelCase_: int = 0 for i in range(1 , lowerCAmelCase__ ): if is_palindrome(lowerCAmelCase__ ) and is_palindrome(bin(lowerCAmelCase__ ).split("""b""" )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
556
1
import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class __lowerCamelCase ( tf.keras.optimizers.schedules.LearningRateSchedule ): def __init__( self , __snake_case , __snake_case , __snake_case , __snake_case = 1.0 , __snake_case = None , ) -> Union[str, Any]: """simple docstring""" super().__init__() UpperCAmelCase: List[Any] = initial_learning_rate UpperCAmelCase: Tuple = warmup_steps UpperCAmelCase: List[str] = power UpperCAmelCase: List[Any] = decay_schedule_fn UpperCAmelCase: Any = name def __call__( self , __snake_case ) -> Union[str, Any]: """simple docstring""" with tf.name_scope(self.name or "WarmUp" ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. UpperCAmelCase: int = tf.cast(__snake_case , tf.floataa ) UpperCAmelCase: List[str] = tf.cast(self.warmup_steps , tf.floataa ) UpperCAmelCase: List[str] = global_step_float / warmup_steps_float UpperCAmelCase: List[str] = self.initial_learning_rate * tf.math.pow(__snake_case , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=__snake_case , ) def A__ ( self ) -> Optional[int]: """simple docstring""" return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def __UpperCAmelCase ( snake_case_ : float , snake_case_ : int , snake_case_ : int , snake_case_ : float = 0.0 , snake_case_ : float = 0.9 , snake_case_ : float = 0.999 , snake_case_ : float = 1e-8 , snake_case_ : Optional[float] = None , snake_case_ : Optional[float] = None , snake_case_ : float = 0.0 , snake_case_ : float = 1.0 , snake_case_ : Optional[List[str]] = None , ): '''simple docstring''' UpperCAmelCase: int = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=snake_case_ , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=snake_case_ , ) if num_warmup_steps: UpperCAmelCase: Dict = WarmUp( initial_learning_rate=snake_case_ , decay_schedule_fn=snake_case_ , warmup_steps=snake_case_ , ) if weight_decay_rate > 0.0: UpperCAmelCase: str = AdamWeightDecay( learning_rate=snake_case_ , weight_decay_rate=snake_case_ , beta_a=snake_case_ , beta_a=snake_case_ , epsilon=snake_case_ , clipnorm=snake_case_ , global_clipnorm=snake_case_ , exclude_from_weight_decay=["LayerNorm", "layer_norm", "bias"] , include_in_weight_decay=snake_case_ , ) else: UpperCAmelCase: Dict = tf.keras.optimizers.Adam( learning_rate=snake_case_ , beta_a=snake_case_ , beta_a=snake_case_ , epsilon=snake_case_ , clipnorm=snake_case_ , global_clipnorm=snake_case_ , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class __lowerCamelCase ( lowercase ): def __init__( self , __snake_case = 0.0_01 , __snake_case = 0.9 , __snake_case = 0.9_99 , __snake_case = 1e-7 , __snake_case = False , __snake_case = 0.0 , __snake_case = None , __snake_case = None , __snake_case = "AdamWeightDecay" , **__snake_case , ) -> Optional[Any]: """simple docstring""" super().__init__(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , **__snake_case ) UpperCAmelCase: Any = weight_decay_rate UpperCAmelCase: Optional[int] = include_in_weight_decay UpperCAmelCase: List[str] = exclude_from_weight_decay @classmethod def A__ ( cls , __snake_case ) -> List[str]: """simple docstring""" UpperCAmelCase: Tuple = {"WarmUp": WarmUp} return super(__snake_case , cls ).from_config(__snake_case , custom_objects=__snake_case ) def A__ ( self , __snake_case , __snake_case , __snake_case ) -> Union[str, Any]: """simple docstring""" super(__snake_case , self )._prepare_local(__snake_case , __snake_case , __snake_case ) UpperCAmelCase: Union[str, Any] = tf.constant( self.weight_decay_rate , name="adam_weight_decay_rate" ) def A__ ( self , __snake_case , __snake_case , __snake_case ) -> Tuple: """simple docstring""" UpperCAmelCase: Any = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]["weight_decay_rate"] , use_locking=self._use_locking , ) return tf.no_op() def A__ ( self , __snake_case , __snake_case=None , **__snake_case ) -> List[str]: """simple docstring""" UpperCAmelCase: Any = list(zip(*__snake_case ) ) return super(__snake_case , self ).apply_gradients(zip(__snake_case , __snake_case ) , name=__snake_case , **__snake_case ) def A__ ( self , __snake_case , __snake_case , __snake_case ) -> List[Any]: """simple docstring""" if apply_state is None: return self._decayed_lr_t[var_dtype], {} UpperCAmelCase: Optional[Any] = apply_state or {} UpperCAmelCase: Union[str, Any] = apply_state.get((var_device, var_dtype) ) if coefficients is None: UpperCAmelCase: str = self._fallback_apply_state(__snake_case , __snake_case ) UpperCAmelCase: Any = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def A__ ( self , __snake_case , __snake_case , __snake_case=None ) -> List[str]: """simple docstring""" UpperCAmelCase: List[Any] = self._get_lr(var.device , var.dtype.base_dtype , __snake_case ) UpperCAmelCase: List[Any] = self._decay_weights_op(__snake_case , __snake_case , __snake_case ) with tf.control_dependencies([decay] ): return super(__snake_case , self )._resource_apply_dense(__snake_case , __snake_case , **__snake_case ) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case=None ) -> str: """simple docstring""" UpperCAmelCase: Optional[int] = self._get_lr(var.device , var.dtype.base_dtype , __snake_case ) UpperCAmelCase: Optional[Any] = self._decay_weights_op(__snake_case , __snake_case , __snake_case ) with tf.control_dependencies([decay] ): return super(__snake_case , self )._resource_apply_sparse(__snake_case , __snake_case , __snake_case , **__snake_case ) def A__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase: Optional[int] = super().get_config() config.update({"weight_decay_rate": self.weight_decay_rate} ) return config def A__ ( self , __snake_case ) -> List[str]: """simple docstring""" if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(__snake_case , __snake_case ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(__snake_case , __snake_case ) is not None: return False return True class __lowerCamelCase ( lowercase ): def __init__( self ) -> int: """simple docstring""" UpperCAmelCase: Union[str, Any] = [] UpperCAmelCase: Any = None @property def A__ ( self ) -> Dict: """simple docstring""" if self._accum_steps is None: UpperCAmelCase: Union[str, Any] = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=__snake_case , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def A__ ( self ) -> List[str]: """simple docstring""" if not self._gradients: raise ValueError("The accumulator should be called first to initialize the gradients" ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self , __snake_case ) -> List[Any]: """simple docstring""" if not self._gradients: UpperCAmelCase: List[str] = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(__snake_case ) , trainable=__snake_case , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(__snake_case ) != len(self._gradients ): raise ValueError(F'Expected {len(self._gradients )} gradients, but got {len(__snake_case )}' ) for accum_gradient, gradient in zip(self._gradients , __snake_case ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(__snake_case ) self._accum_steps.assign_add(1 ) def A__ ( self ) -> Dict: """simple docstring""" if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(__snake_case ) )
703
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __lowerCamelCase ( lowercase ): def A__ ( self ) -> List[str]: """simple docstring""" UpperCAmelCase: Optional[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__snake_case , "tf_padding" ) ) self.parent.assertTrue(hasattr(__snake_case , "depth_multiplier" ) ) class __lowerCamelCase : def __init__( self , __snake_case , __snake_case=1_3 , __snake_case=3 , __snake_case=3_2 , __snake_case=0.25 , __snake_case=8 , __snake_case=True , __snake_case=1_0_2_4 , __snake_case=3_2 , __snake_case="relu6" , __snake_case=0.1 , __snake_case=0.02 , __snake_case=True , __snake_case=True , __snake_case=1_0 , __snake_case=None , ) -> Tuple: """simple docstring""" UpperCAmelCase: Dict = parent UpperCAmelCase: Optional[int] = batch_size UpperCAmelCase: Optional[int] = num_channels UpperCAmelCase: List[str] = image_size UpperCAmelCase: Optional[Any] = depth_multiplier UpperCAmelCase: List[Any] = min_depth UpperCAmelCase: Optional[Any] = tf_padding UpperCAmelCase: List[Any] = int(last_hidden_size * depth_multiplier ) UpperCAmelCase: Dict = output_stride UpperCAmelCase: List[Any] = hidden_act UpperCAmelCase: Union[str, Any] = classifier_dropout_prob UpperCAmelCase: Tuple = use_labels UpperCAmelCase: Tuple = is_training UpperCAmelCase: int = num_labels UpperCAmelCase: Union[str, Any] = initializer_range UpperCAmelCase: Optional[Any] = scope def A__ ( self ) -> List[Any]: """simple docstring""" UpperCAmelCase: Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase: List[Any] = None UpperCAmelCase: Optional[Any] = None if self.use_labels: UpperCAmelCase: int = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase: Any = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCAmelCase: Tuple = self.get_config() return config, pixel_values, labels, pixel_labels def A__ ( self ) -> Dict: """simple docstring""" return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case ) -> str: """simple docstring""" UpperCAmelCase: List[Any] = MobileNetVaModel(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase: Optional[int] = model(__snake_case ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case ) -> Dict: """simple docstring""" UpperCAmelCase: Dict = self.num_labels UpperCAmelCase: Optional[int] = MobileNetVaForImageClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase: List[str] = model(__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self ) -> Any: """simple docstring""" UpperCAmelCase: int = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase: Union[str, Any] = config_and_inputs UpperCAmelCase: Union[str, Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __lowerCamelCase ( lowercase , lowercase , unittest.TestCase ): lowerCamelCase__: List[str] = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () lowerCamelCase__: Union[str, Any] = ( {'''feature-extraction''': MobileNetVaModel, '''image-classification''': MobileNetVaForImageClassification} if is_torch_available() else {} ) lowerCamelCase__: Optional[int] = False lowerCamelCase__: Any = False lowerCamelCase__: Optional[int] = False lowerCamelCase__: Any = False def A__ ( self ) -> Tuple: """simple docstring""" UpperCAmelCase: List[Any] = MobileNetVaModelTester(self ) UpperCAmelCase: str = MobileNetVaConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case ) def A__ ( self ) -> int: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="MobileNetV1 does not use inputs_embeds" ) def A__ ( self ) -> str: """simple docstring""" pass @unittest.skip(reason="MobileNetV1 does not support input and output embeddings" ) def A__ ( self ) -> Optional[Any]: """simple docstring""" pass @unittest.skip(reason="MobileNetV1 does not output attentions" ) def A__ ( self ) -> Tuple: """simple docstring""" pass def A__ ( self ) -> Dict: """simple docstring""" UpperCAmelCase , UpperCAmelCase: Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase: List[str] = model_class(__snake_case ) UpperCAmelCase: List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase: str = [*signature.parameters.keys()] UpperCAmelCase: Optional[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , __snake_case ) def A__ ( self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def A__ ( self ) -> Tuple: """simple docstring""" def check_hidden_states_output(__snake_case , __snake_case , __snake_case ): UpperCAmelCase: Any = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): UpperCAmelCase: Tuple = model(**self._prepare_for_class(__snake_case , __snake_case ) ) UpperCAmelCase: int = outputs.hidden_states UpperCAmelCase: Dict = 2_6 self.assertEqual(len(__snake_case ) , __snake_case ) UpperCAmelCase , UpperCAmelCase: Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase: Tuple = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase: Union[str, Any] = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) def A__ ( self ) -> List[str]: """simple docstring""" UpperCAmelCase: Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__snake_case ) @slow def A__ ( self ) -> Tuple: """simple docstring""" for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase: Dict = MobileNetVaModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def __UpperCAmelCase ( ): '''simple docstring''' UpperCAmelCase: Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __lowerCamelCase ( unittest.TestCase ): @cached_property def A__ ( self ) -> Union[str, Any]: """simple docstring""" return ( MobileNetVaImageProcessor.from_pretrained("google/mobilenet_v1_1.0_224" ) if is_vision_available() else None ) @slow def A__ ( self ) -> List[str]: """simple docstring""" UpperCAmelCase: Any = MobileNetVaForImageClassification.from_pretrained("google/mobilenet_v1_1.0_224" ).to(__snake_case ) UpperCAmelCase: int = self.default_image_processor UpperCAmelCase: Dict = prepare_img() UpperCAmelCase: List[str] = image_processor(images=__snake_case , return_tensors="pt" ).to(__snake_case ) # forward pass with torch.no_grad(): UpperCAmelCase: List[str] = model(**__snake_case ) # verify the logits UpperCAmelCase: Dict = torch.Size((1, 1_0_0_1) ) self.assertEqual(outputs.logits.shape , __snake_case ) UpperCAmelCase: Optional[int] = torch.tensor([-4.17_39, -1.12_33, 3.12_05] ).to(__snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __snake_case , atol=1e-4 ) )
166
0
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _a : List[Any] = logging.get_logger(__name__) _a : Dict = { 'microsoft/unispeech-sat-base-100h-libri-ft': ( 'https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Dict = "unispeech-sat" def __init__( self , a__=32 , a__=768 , a__=12 , a__=12 , a__=3072 , a__="gelu" , a__=0.1 , a__=0.1 , a__=0.1 , a__=0.0 , a__=0.0 , a__=0.1 , a__=0.1 , a__=0.0_2 , a__=1e-5 , a__="group" , a__="gelu" , a__=(512, 512, 512, 512, 512, 512, 512) , a__=(5, 2, 2, 2, 2, 2, 2) , a__=(10, 3, 3, 3, 3, 2, 2) , a__=False , a__=128 , a__=16 , a__=False , a__=True , a__=0.0_5 , a__=10 , a__=2 , a__=0.0 , a__=10 , a__=0 , a__=320 , a__=2 , a__=0.1 , a__=100 , a__=256 , a__=256 , a__=0.1 , a__="mean" , a__=False , a__=False , a__=256 , a__=(512, 512, 512, 512, 1500) , a__=(5, 3, 3, 1, 1) , a__=(1, 2, 3, 1, 1) , a__=512 , a__=0 , a__=1 , a__=2 , a__=504 , **a__ , ): super().__init__(**a__ , pad_token_id=a__ , bos_token_id=a__ , eos_token_id=a__ ) _lowerCAmelCase : Any = hidden_size _lowerCAmelCase : int = feat_extract_norm _lowerCAmelCase : Any = feat_extract_activation _lowerCAmelCase : List[Any] = list(a__ ) _lowerCAmelCase : List[str] = list(a__ ) _lowerCAmelCase : Dict = list(a__ ) _lowerCAmelCase : str = conv_bias _lowerCAmelCase : Optional[Any] = num_conv_pos_embeddings _lowerCAmelCase : Union[str, Any] = num_conv_pos_embedding_groups _lowerCAmelCase : int = len(self.conv_dim ) _lowerCAmelCase : Optional[Any] = num_hidden_layers _lowerCAmelCase : int = intermediate_size _lowerCAmelCase : Tuple = hidden_act _lowerCAmelCase : Dict = num_attention_heads _lowerCAmelCase : str = hidden_dropout _lowerCAmelCase : Any = attention_dropout _lowerCAmelCase : Optional[Any] = activation_dropout _lowerCAmelCase : Dict = feat_proj_dropout _lowerCAmelCase : List[str] = final_dropout _lowerCAmelCase : Union[str, Any] = layerdrop _lowerCAmelCase : Union[str, Any] = layer_norm_eps _lowerCAmelCase : str = initializer_range _lowerCAmelCase : List[Any] = vocab_size _lowerCAmelCase : str = num_clusters _lowerCAmelCase : Optional[Any] = do_stable_layer_norm _lowerCAmelCase : Optional[Any] = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" F" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," F" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCAmelCase : Tuple = apply_spec_augment _lowerCAmelCase : Optional[Any] = mask_time_prob _lowerCAmelCase : List[Any] = mask_time_length _lowerCAmelCase : List[Any] = mask_time_min_masks _lowerCAmelCase : Optional[Any] = mask_feature_prob _lowerCAmelCase : str = mask_feature_length _lowerCAmelCase : Any = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _lowerCAmelCase : int = num_codevectors_per_group _lowerCAmelCase : Tuple = num_codevector_groups _lowerCAmelCase : str = contrastive_logits_temperature _lowerCAmelCase : Optional[int] = feat_quantizer_dropout _lowerCAmelCase : Any = num_negatives _lowerCAmelCase : Optional[int] = codevector_dim _lowerCAmelCase : List[Any] = proj_codevector_dim _lowerCAmelCase : Optional[int] = diversity_loss_weight # ctc loss _lowerCAmelCase : Union[str, Any] = ctc_loss_reduction _lowerCAmelCase : List[str] = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowerCAmelCase : Optional[int] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowerCAmelCase : int = list(a__ ) _lowerCAmelCase : List[Any] = list(a__ ) _lowerCAmelCase : Union[str, Any] = list(a__ ) _lowerCAmelCase : List[str] = xvector_output_dim @property def __A ( self ): return functools.reduce(operator.mul , self.conv_stride , 1 )
213
"""simple docstring""" import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _a : int = get_tests_dir('fixtures/test_sentencepiece_with_bytefallback.model') @require_sentencepiece @require_tokenizers class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : str = GPTSwaTokenizer _UpperCamelCase : Tuple = False _UpperCamelCase : Union[str, Any] = True _UpperCamelCase : Union[str, Any] = False def __A ( self ): super().setUp() # We have a SentencePiece fixture for testing _lowerCAmelCase : Any = GPTSwaTokenizer(a__ , eos_token="""<unk>""" , bos_token="""<unk>""" , pad_token="""<unk>""" ) tokenizer.save_pretrained(self.tmpdirname ) def __A ( self , a__ ): _lowerCAmelCase : Optional[int] = """This is a test""" _lowerCAmelCase : Optional[int] = """This is a test""" return input_text, output_text def __A ( self ): _lowerCAmelCase : List[Any] = """<s>""" _lowerCAmelCase : Any = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a__ ) , a__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a__ ) , a__ ) def __A ( self ): _lowerCAmelCase : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """j""" ) self.assertEqual(len(a__ ) , 2000 ) def __A ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 2000 ) def __A ( self ): _lowerCAmelCase : Any = GPTSwaTokenizer(a__ ) _lowerCAmelCase : Optional[int] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(a__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , [465, 287, 265, 631, 842] ) _lowerCAmelCase : Tuple = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) # fmt: off self.assertListEqual( a__ , ["""▁I""", """▁was""", """▁bor""", """n""", """▁in""", """▁""", """<0x39>""", """2""", """0""", """0""", """0""", """,""", """▁and""", """▁this""", """▁is""", """▁f""", """al""", """s""", """<0xC3>""", """<0xA9>""", """."""] , ) # fmt: on _lowerCAmelCase : List[str] = tokenizer.convert_tokens_to_ids(a__ ) self.assertListEqual( a__ , [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] , ) _lowerCAmelCase : Union[str, Any] = tokenizer.convert_ids_to_tokens(a__ ) # fmt: off self.assertListEqual( a__ , ["""▁I""", """▁was""", """▁bor""", """n""", """▁in""", """▁""", """<0x39>""", """2""", """0""", """0""", """0""", """,""", """▁and""", """▁this""", """▁is""", """▁f""", """al""", """s""", """<0xC3>""", """<0xA9>""", """."""] ) # fmt: on def __A ( self ): _lowerCAmelCase : Optional[Any] = GPTSwaTokenizer(a__ ) _lowerCAmelCase : str = ["""This is a test""", """I was born in 92000, and this is falsé."""] _lowerCAmelCase : List[Any] = [ [465, 287, 265, 631, 842], [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(a__ , a__ ): self.assertListEqual(tokenizer.encode_fast(a__ ) , a__ ) # Test that decode_fast returns the input text for text, token_ids in zip(a__ , a__ ): self.assertEqual(tokenizer.decode_fast(a__ ) , a__ ) @slow def __A ( self ): _lowerCAmelCase : str = [ """<|python|>def fibonacci(n)\n if n < 0:\n print('Incorrect input')""", """Hey there, how are you doing this fine day?""", """This is a text with a trailing spaces followed by a dot .""", """Häj sväjs lillebrör! =)""", """Det är inget fel på Mr. Cool""", ] # fmt: off _lowerCAmelCase : List[Any] = {"""input_ids""": [[63423, 5, 6811, 14954, 282, 816, 3821, 63466, 63425, 63462, 18, 63978, 678, 301, 1320, 63423, 63455, 63458, 18, 63982, 4246, 3940, 1901, 47789, 5547, 18994], [19630, 1100, 63446, 1342, 633, 544, 4488, 593, 5102, 2416, 63495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1652, 428, 268, 1936, 515, 268, 58593, 22413, 9106, 546, 268, 33213, 63979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [55130, 63450, 924, 63449, 2249, 4062, 1558, 318, 63504, 21498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2827, 2559, 332, 6575, 63443, 26801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=a__ , model_name="""AI-Sweden/gpt-sw3-126m""" , sequences=a__ , )
213
1
import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase_ ( UpperCamelCase , unittest.TestCase ): lowercase = LongformerTokenizer lowercase = True lowercase = LongformerTokenizerFast lowercase = True def snake_case__( self ) -> Any: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _a : Optional[Any] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] _a : List[str] = dict(zip(lowercase , range(len(lowercase ) ) ) ) _a : int = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] _a : Optional[Any] = {'''unk_token''': '''<unk>'''} _a : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _a : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowercase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowercase ) ) def snake_case__( self , **lowercase ) -> List[Any]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase ) def snake_case__( self , **lowercase ) -> List[Any]: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowercase ) def snake_case__( self , lowercase ) -> int: _a : Optional[int] = '''lower newer''' _a : List[Any] = '''lower newer''' return input_text, output_text def snake_case__( self ) -> List[str]: _a : List[str] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) _a : Union[str, Any] = '''lower newer''' _a : Tuple = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] _a : Any = tokenizer.tokenize(lowercase ) # , add_prefix_space=True) self.assertListEqual(lowercase , lowercase ) _a : Union[str, Any] = tokens + [tokenizer.unk_token] _a : Any = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase ) , lowercase ) def snake_case__( self ) -> Dict: _a : str = self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=lowercase ) , [0, 31_414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=lowercase ) , [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2] , ) @slow def snake_case__( self ) -> List[Any]: _a : Tuple = self.tokenizer_class.from_pretrained('''allenai/longformer-base-4096''' ) _a : Union[str, Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=lowercase ) _a : int = tokenizer.encode('''multi-sequence build''' , add_special_tokens=lowercase ) _a : List[Any] = tokenizer.encode( '''sequence builders''' , add_special_tokens=lowercase , add_prefix_space=lowercase ) _a : int = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=lowercase , add_prefix_space=lowercase ) _a : Tuple = tokenizer.build_inputs_with_special_tokens(lowercase ) _a : List[str] = tokenizer.build_inputs_with_special_tokens(lowercase , lowercase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def snake_case__( self ) -> Optional[Any]: _a : str = self.get_tokenizer() _a : Union[str, Any] = '''Encode this sequence.''' _a : int = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]] # Testing encoder arguments _a : Optional[int] = tokenizer.encode(lowercase , add_special_tokens=lowercase , add_prefix_space=lowercase ) _a : Dict = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(lowercase , lowercase ) _a : Tuple = tokenizer.encode(lowercase , add_special_tokens=lowercase , add_prefix_space=lowercase ) _a : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(lowercase , lowercase ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) _a : List[Any] = tokenizer.encode(lowercase , add_special_tokens=lowercase ) _a : Tuple = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(lowercase , lowercase ) # Testing spaces after special tokens _a : Dict = '''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase )} ) # mask token has a left space _a : Union[str, Any] = tokenizer.convert_tokens_to_ids(lowercase ) _a : int = '''Encode <mask> sequence''' _a : Union[str, Any] = '''Encode <mask>sequence''' _a : Any = tokenizer.encode(lowercase ) _a : List[str] = encoded.index(lowercase ) _a : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(lowercase , lowercase ) _a : Any = tokenizer.encode(lowercase ) _a : str = encoded.index(lowercase ) _a : Optional[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(lowercase , lowercase ) def snake_case__( self ) -> Tuple: pass def snake_case__( self ) -> List[Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): _a : str = self.rust_tokenizer_class.from_pretrained(lowercase , **lowercase ) _a : Tuple = self.tokenizer_class.from_pretrained(lowercase , **lowercase ) _a : Optional[Any] = '''A, <mask> AllenNLP sentence.''' _a : List[Any] = tokenizer_r.encode_plus(lowercase , add_special_tokens=lowercase , return_token_type_ids=lowercase ) _a : Dict = tokenizer_p.encode_plus(lowercase , add_special_tokens=lowercase , return_token_type_ids=lowercase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) _a : List[str] = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) _a : str = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( lowercase , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( lowercase , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def snake_case__( self ) -> int: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): _a : int = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) _a : Optional[Any] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) _a : Dict = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , lowercase ) self.assertEqual(post_processor_state['''add_prefix_space'''] , lowercase ) self.assertEqual(post_processor_state['''trim_offsets'''] , lowercase ) def snake_case__( self ) -> Tuple: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): _a : Any = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` _a : int = F'{text_of_1_token} {text_of_1_token}' _a : List[Any] = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) _a : int = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase ) + 1, len(lowercase ) + 1 + len(lowercase )) , ) _a : int = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) _a : Dict = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase ) + 1, len(lowercase ) + 1 + len(lowercase )) , ) _a : Dict = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) _a : Union[str, Any] = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase ), len(lowercase ) + 1 + len(lowercase )) , ) _a : Dict = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) _a : List[str] = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase ), len(lowercase ) + 1 + len(lowercase )) , ) _a : str = F' {text}' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) _a : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) _a : List[Any] = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase ) + 1, 1 + len(lowercase ) + 1 + len(lowercase )) , ) _a : List[Any] = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) _a : Union[str, Any] = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase ), 1 + len(lowercase ) + 1 + len(lowercase )) , ) _a : str = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) _a : Union[str, Any] = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase ), 1 + len(lowercase ) + 1 + len(lowercase )) , )
715
import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class UpperCamelCase_ ( UpperCamelCase ): lowercase = (CMStochasticIterativeScheduler,) lowercase = 10 def snake_case__( self , **lowercase ) -> Tuple: _a : Dict = { '''num_train_timesteps''': 201, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } config.update(**lowercase ) return config def snake_case__( self ) -> Dict: _a : Union[str, Any] = 10 _a : List[Any] = self.get_scheduler_config() _a : Union[str, Any] = self.scheduler_classes[0](**lowercase ) scheduler.set_timesteps(lowercase ) _a : List[str] = scheduler.timesteps[0] _a : Union[str, Any] = scheduler.timesteps[1] _a : Dict = self.dummy_sample _a : str = 0.1 * sample _a : int = scheduler.step(lowercase , lowercase , lowercase ).prev_sample _a : Dict = scheduler.step(lowercase , lowercase , lowercase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def snake_case__( self ) -> Tuple: for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=lowercase ) def snake_case__( self ) -> Tuple: for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=lowercase ) def snake_case__( self ) -> str: _a : Tuple = self.scheduler_classes[0] _a : Any = self.get_scheduler_config() _a : List[Any] = scheduler_class(**lowercase ) _a : str = 1 scheduler.set_timesteps(lowercase ) _a : List[Any] = scheduler.timesteps _a : List[str] = torch.manual_seed(0 ) _a : Tuple = self.dummy_model() _a : Dict = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(lowercase ): # 1. scale model input _a : Optional[int] = scheduler.scale_model_input(lowercase , lowercase ) # 2. predict noise residual _a : Tuple = model(lowercase , lowercase ) # 3. predict previous sample x_t-1 _a : Optional[int] = scheduler.step(lowercase , lowercase , lowercase , generator=lowercase ).prev_sample _a : Union[str, Any] = pred_prev_sample _a : str = torch.sum(torch.abs(lowercase ) ) _a : int = torch.mean(torch.abs(lowercase ) ) assert abs(result_sum.item() - 192.7614 ) < 1e-2 assert abs(result_mean.item() - 0.2510 ) < 1e-3 def snake_case__( self ) -> List[Any]: _a : Any = self.scheduler_classes[0] _a : Optional[int] = self.get_scheduler_config() _a : List[Any] = scheduler_class(**lowercase ) _a : Any = [106, 0] scheduler.set_timesteps(timesteps=lowercase ) _a : List[Any] = scheduler.timesteps _a : Optional[int] = torch.manual_seed(0 ) _a : int = self.dummy_model() _a : str = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input _a : Optional[int] = scheduler.scale_model_input(lowercase , lowercase ) # 2. predict noise residual _a : Union[str, Any] = model(lowercase , lowercase ) # 3. predict previous sample x_t-1 _a : Dict = scheduler.step(lowercase , lowercase , lowercase , generator=lowercase ).prev_sample _a : int = pred_prev_sample _a : List[Any] = torch.sum(torch.abs(lowercase ) ) _a : Optional[int] = torch.mean(torch.abs(lowercase ) ) assert abs(result_sum.item() - 347.6357 ) < 1e-2 assert abs(result_mean.item() - 0.4527 ) < 1e-3 def snake_case__( self ) -> Optional[int]: _a : Optional[int] = self.scheduler_classes[0] _a : Union[str, Any] = self.get_scheduler_config() _a : Optional[Any] = scheduler_class(**lowercase ) _a : List[str] = [39, 30, 12, 15, 0] with self.assertRaises(lowercase , msg='''`timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=lowercase ) def snake_case__( self ) -> str: _a : Union[str, Any] = self.scheduler_classes[0] _a : Tuple = self.get_scheduler_config() _a : Tuple = scheduler_class(**lowercase ) _a : Any = [39, 30, 12, 1, 0] _a : Optional[Any] = len(lowercase ) with self.assertRaises(lowercase , msg='''Can only pass one of `num_inference_steps` or `timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=lowercase , timesteps=lowercase ) def snake_case__( self ) -> List[str]: _a : Optional[Any] = self.scheduler_classes[0] _a : List[Any] = self.get_scheduler_config() _a : Optional[int] = scheduler_class(**lowercase ) _a : Any = [scheduler.config.num_train_timesteps] with self.assertRaises( lowercase , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=lowercase )
307
0
"""simple docstring""" import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class __A ( A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : str = MvpTokenizer lowerCAmelCase : Tuple = MvpTokenizerFast lowerCAmelCase : List[str] = True lowerCAmelCase : Tuple = filter_roberta_detectors def UpperCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" super().setUp() lowercase__ : int = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] lowercase__ : List[str] = dict(zip(_snake_case ,range(len(_snake_case ) ) ) ) lowercase__ : Tuple = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] lowercase__ : int = {'''unk_token''': '''<unk>'''} lowercase__ : Dict = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase__ : List[str] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''' ) as fp: fp.write(json.dumps(_snake_case ) + '''\n''' ) with open(self.merges_file ,'''w''' ,encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_snake_case ) ) def UpperCAmelCase ( self : Optional[int] ,**_snake_case : List[str] ) -> int: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname ,**_snake_case ) def UpperCAmelCase ( self : Tuple ,**_snake_case : Tuple ) -> List[Any]: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname ,**_snake_case ) def UpperCAmelCase ( self : Dict ,_snake_case : Optional[Any] ) -> Tuple: """simple docstring""" return "lower newer", "lower newer" @cached_property def UpperCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" return MvpTokenizer.from_pretrained('''RUCAIBox/mvp''' ) @cached_property def UpperCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" return MvpTokenizerFast.from_pretrained('''RUCAIBox/mvp''' ) @require_torch def UpperCAmelCase ( self : str ) -> str: """simple docstring""" lowercase__ : List[str] = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] lowercase__ : Dict = [0, 250, 251, 17_818, 13, 39_186, 1_938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase__ : List[str] = tokenizer(_snake_case ,max_length=len(_snake_case ) ,padding=_snake_case ,return_tensors='''pt''' ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertEqual((2, 9) ,batch.input_ids.shape ) self.assertEqual((2, 9) ,batch.attention_mask.shape ) lowercase__ : str = batch.input_ids.tolist()[0] self.assertListEqual(_snake_case ,_snake_case ) # Test that special tokens are reset @require_torch def UpperCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" lowercase__ : Union[str, Any] = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase__ : Optional[Any] = tokenizer(_snake_case ,padding=_snake_case ,return_tensors='''pt''' ) # check if input_ids are returned and no labels self.assertIn('''input_ids''' ,_snake_case ) self.assertIn('''attention_mask''' ,_snake_case ) self.assertNotIn('''labels''' ,_snake_case ) self.assertNotIn('''decoder_attention_mask''' ,_snake_case ) @require_torch def UpperCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" lowercase__ : Union[str, Any] = [ '''Summary of the text.''', '''Another summary.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase__ : Optional[int] = tokenizer(text_target=_snake_case ,max_length=32 ,padding='''max_length''' ,return_tensors='''pt''' ) self.assertEqual(32 ,targets['''input_ids'''].shape[1] ) @require_torch def UpperCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase__ : Any = tokenizer( ['''I am a small frog''' * 1_024, '''I am a small frog'''] ,padding=_snake_case ,truncation=_snake_case ,return_tensors='''pt''' ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertEqual(batch.input_ids.shape ,(2, 1_024) ) @require_torch def UpperCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" lowercase__ : Optional[int] = ['''A long paragraph for summarization.'''] lowercase__ : List[str] = [ '''Summary of the text.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase__ : Tuple = tokenizer(_snake_case ,text_target=_snake_case ,return_tensors='''pt''' ) lowercase__ : Dict = inputs['''input_ids'''] lowercase__ : Dict = inputs['''labels'''] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def UpperCAmelCase ( self : Tuple ) -> int: """simple docstring""" pass def UpperCAmelCase ( self : str ) -> List[str]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowercase__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(_snake_case ,**_snake_case ) lowercase__ : Union[str, Any] = self.tokenizer_class.from_pretrained(_snake_case ,**_snake_case ) lowercase__ : List[str] = '''A, <mask> AllenNLP sentence.''' lowercase__ : Dict = tokenizer_r.encode_plus(_snake_case ,add_special_tokens=_snake_case ,return_token_type_ids=_snake_case ) lowercase__ : Any = tokenizer_p.encode_plus(_snake_case ,add_special_tokens=_snake_case ,return_token_type_ids=_snake_case ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) ,sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) ,sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) ,) lowercase__ : List[str] = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) lowercase__ : Tuple = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] ,[0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] ,[0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( _snake_case ,['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( _snake_case ,['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
560
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) class __A ( A_ ): '''simple docstring''' lowerCAmelCase : int = "encoder-decoder" lowerCAmelCase : int = True def __init__( self : Optional[int] ,**_snake_case : Tuple ) -> Tuple: """simple docstring""" super().__init__(**_snake_case ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" lowercase__ : Tuple = kwargs.pop('''encoder''' ) lowercase__ : Dict = encoder_config.pop('''model_type''' ) lowercase__ : Union[str, Any] = kwargs.pop('''decoder''' ) lowercase__ : Any = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig lowercase__ : Optional[int] = AutoConfig.for_model(_snake_case ,**_snake_case ) lowercase__ : Dict = AutoConfig.for_model(_snake_case ,**_snake_case ) lowercase__ : List[str] = True @classmethod def UpperCAmelCase ( cls : str ,_snake_case : PretrainedConfig ,_snake_case : PretrainedConfig ,**_snake_case : Optional[Any] ) -> PretrainedConfig: """simple docstring""" logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' ) lowercase__ : Dict = True lowercase__ : Any = True return cls(encoder=encoder_config.to_dict() ,decoder=decoder_config.to_dict() ,**_snake_case ) def UpperCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" lowercase__ : List[Any] = copy.deepcopy(self.__dict__ ) lowercase__ : List[Any] = self.encoder.to_dict() lowercase__ : List[Any] = self.decoder.to_dict() lowercase__ : Optional[int] = self.__class__.model_type return output
560
1
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging __lowerCamelCase : List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name class _lowercase ( UpperCamelCase__ ): def __init__( self , a , a , a , a , a , a , a , a , a , ): super().__init__() if safety_checker is None: logger.warning( F"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" """ that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered""" """ results in services or applications open to the public. Both the diffusers team and Hugging Face""" """ strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling""" """ it only for use-cases that involve analyzing network behavior or auditing its results. For more""" """ information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""" ) self.register_modules( speech_model=_a , speech_processor=_a , vae=_a , text_encoder=_a , tokenizer=_a , unet=_a , scheduler=_a , feature_extractor=_a , ) def lowercase__ ( self , a = "auto" ): if slice_size == "auto": snake_case__ : Any =self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_a ) def lowercase__ ( self ): self.enable_attention_slicing(_a ) @torch.no_grad() def __call__( self , a , a=1_6_0_0_0 , a = 5_1_2 , a = 5_1_2 , a = 5_0 , a = 7.5 , a = None , a = 1 , a = 0.0 , a = None , a = None , a = "pil" , a = True , a = None , a = 1 , **a , ): snake_case__ : Dict =self.speech_processor.feature_extractor( _a , return_tensors="""pt""" , sampling_rate=_a ).input_features.to(self.device ) snake_case__ : Optional[int] =self.speech_model.generate(_a , max_length=4_8_0_0_0_0 ) snake_case__ : Union[str, Any] =self.speech_processor.tokenizer.batch_decode(_a , skip_special_tokens=_a , normalize=_a )[ 0 ] if isinstance(_a , _a ): snake_case__ : Any =1 elif isinstance(_a , _a ): snake_case__ : Optional[int] =len(_a ) else: raise ValueError(F"`prompt` has to be of type `str` or `list` but is {type(_a )}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_a , _a ) or callback_steps <= 0) ): raise ValueError( F"`callback_steps` has to be a positive integer but is {callback_steps} of type" F" {type(_a )}." ) # get prompt text embeddings snake_case__ : List[Any] =self.tokenizer( _a , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) snake_case__ : Union[str, Any] =text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: snake_case__ : List[str] =self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" F" {self.tokenizer.model_max_length} tokens: {removed_text}" ) snake_case__ : str =text_input_ids[:, : self.tokenizer.model_max_length] snake_case__ : Optional[int] =self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method snake_case__ : List[Any] =text_embeddings.shape snake_case__ : Tuple =text_embeddings.repeat(1 , _a , 1 ) snake_case__ : Union[str, Any] =text_embeddings.view(bs_embed * num_images_per_prompt , _a , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. snake_case__ : Any =guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: snake_case__ : List[str] if negative_prompt is None: snake_case__ : List[Any] =[""""""] * batch_size elif type(_a ) is not type(_a ): raise TypeError( F"`negative_prompt` should be the same type to `prompt`, but got {type(_a )} !=" F" {type(_a )}." ) elif isinstance(_a , _a ): snake_case__ : str =[negative_prompt] elif batch_size != len(_a ): raise ValueError( F"`negative_prompt`: {negative_prompt} has batch size {len(_a )}, but `prompt`:" F" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" """ the batch size of `prompt`.""" ) else: snake_case__ : Optional[int] =negative_prompt snake_case__ : Tuple =text_input_ids.shape[-1] snake_case__ : Dict =self.tokenizer( _a , padding="""max_length""" , max_length=_a , truncation=_a , return_tensors="""pt""" , ) snake_case__ : int =self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method snake_case__ : Optional[Any] =uncond_embeddings.shape[1] snake_case__ : Dict =uncond_embeddings.repeat(1 , _a , 1 ) snake_case__ : str =uncond_embeddings.view(batch_size * num_images_per_prompt , _a , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes snake_case__ : Union[str, Any] =torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. snake_case__ : Union[str, Any] =(batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) snake_case__ : Optional[Any] =text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps snake_case__ : List[str] =torch.randn(_a , generator=_a , device="""cpu""" , dtype=_a ).to( self.device ) else: snake_case__ : Dict =torch.randn(_a , generator=_a , device=self.device , dtype=_a ) else: if latents.shape != latents_shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) snake_case__ : Any =latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(_a ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand snake_case__ : int =self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler snake_case__ : Union[str, Any] =latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] snake_case__ : List[str] ="""eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) snake_case__ : Optional[int] ={} if accepts_eta: snake_case__ : Dict =eta for i, t in enumerate(self.progress_bar(_a ) ): # expand the latents if we are doing classifier free guidance snake_case__ : List[str] =torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents snake_case__ : Dict =self.scheduler.scale_model_input(_a , _a ) # predict the noise residual snake_case__ : Optional[Any] =self.unet(_a , _a , encoder_hidden_states=_a ).sample # perform guidance if do_classifier_free_guidance: snake_case__ : Dict =noise_pred.chunk(2 ) snake_case__ : Optional[Any] =noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 snake_case__ : str =self.scheduler.step(_a , _a , _a , **_a ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_a , _a , _a ) snake_case__ : List[str] =1 / 0.18215 * latents snake_case__ : List[str] =self.vae.decode(_a ).sample snake_case__ : int =(image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 snake_case__ : int =image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": snake_case__ : Dict =self.numpy_to_pil(_a ) if not return_dict: return image return StableDiffusionPipelineOutput(images=_a , nsfw_content_detected=_a )
710
class _lowercase : def __init__( self , a ): snake_case__ : Optional[int] =size snake_case__ : List[Any] =[0] * size snake_case__ : List[Any] =[0] * size @staticmethod def lowercase__ ( a ): return index | (index + 1) @staticmethod def lowercase__ ( a ): return (index & (index + 1)) - 1 def lowercase__ ( self , a , a ): snake_case__ : Optional[Any] =value while index < self.size: snake_case__ : str =self.get_prev(a ) + 1 if current_left_border == index: snake_case__ : Dict =value else: snake_case__ : str =max(a , a , a ) snake_case__ : Dict =self.get_next(a ) def lowercase__ ( self , a , a ): right -= 1 # Because of right is exclusive snake_case__ : Union[str, Any] =0 while left <= right: snake_case__ : List[str] =self.get_prev(a ) if left <= current_left: snake_case__ : Optional[Any] =max(a , self.tree[right] ) snake_case__ : Optional[Any] =current_left else: snake_case__ : Tuple =max(a , self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
448
0
'''simple docstring''' def a__ ( lowerCAmelCase__ ) -> list: for i in range(len(lowerCAmelCase__ ) - 1 , 0 , -1 ): UpperCAmelCase__ : Optional[int] = False for j in range(lowerCAmelCase__ , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: UpperCAmelCase__ , UpperCAmelCase__ : Dict = unsorted[j - 1], unsorted[j] UpperCAmelCase__ : List[str] = True for j in range(lowerCAmelCase__ ): if unsorted[j] > unsorted[j + 1]: UpperCAmelCase__ , UpperCAmelCase__ : int = unsorted[j + 1], unsorted[j] UpperCAmelCase__ : Dict = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase__ = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase__ = [int(item) for item in user_input.split(''',''')] print(F"""{cocktail_shaker_sort(unsorted) = }""")
75
'''simple docstring''' import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html UpperCamelCase__ = '''platform''' import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , ) -> Tuple: if attention_mask is None: UpperCAmelCase__ : List[Any] = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: UpperCAmelCase__ : Union[str, Any] = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: UpperCAmelCase__ : Optional[Any] = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase__ : Optional[int] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase__ : Any = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class lowerCamelCase_ : def __init__( self : Optional[Any] , _A : Optional[Any] , _A : str=13 , _A : int=7 , _A : Any=True , _A : List[Any]=False , _A : Optional[int]=99 , _A : Optional[int]=16 , _A : int=2 , _A : Optional[int]=4 , _A : Optional[int]=4 , _A : int="gelu" , _A : List[str]=0.1 , _A : str=0.1 , _A : int=32 , _A : Optional[int]=2 , _A : int=1 , _A : Dict=0 , _A : Dict=0.0_2 , ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = parent UpperCAmelCase__ : str = batch_size UpperCAmelCase__ : Dict = seq_length UpperCAmelCase__ : str = is_training UpperCAmelCase__ : int = use_labels UpperCAmelCase__ : Union[str, Any] = vocab_size UpperCAmelCase__ : Union[str, Any] = hidden_size UpperCAmelCase__ : int = num_hidden_layers UpperCAmelCase__ : Any = num_attention_heads UpperCAmelCase__ : List[str] = intermediate_size UpperCAmelCase__ : str = hidden_act UpperCAmelCase__ : str = hidden_dropout_prob UpperCAmelCase__ : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase__ : Union[str, Any] = max_position_embeddings UpperCAmelCase__ : int = eos_token_id UpperCAmelCase__ : Optional[int] = pad_token_id UpperCAmelCase__ : List[str] = bos_token_id UpperCAmelCase__ : Union[str, Any] = initializer_range def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Any = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) UpperCAmelCase__ : str = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) UpperCAmelCase__ : List[Any] = shift_tokens_right(_A , 1 , 2 ) UpperCAmelCase__ : List[Any] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=_A , ) UpperCAmelCase__ : Tuple = prepare_blenderbot_inputs_dict(_A , _A , _A ) return config, inputs_dict def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self.prepare_config_and_inputs() return config, inputs_dict def lowercase_ ( self : int , _A : List[Any] , _A : Optional[Any] , _A : int ): '''simple docstring''' UpperCAmelCase__ : List[str] = 20 UpperCAmelCase__ : int = model_class_name(_A ) UpperCAmelCase__ : str = model.encode(inputs_dict['''input_ids'''] ) UpperCAmelCase__ , UpperCAmelCase__ : Dict = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) UpperCAmelCase__ : Tuple = model.init_cache(decoder_input_ids.shape[0] , _A , _A ) UpperCAmelCase__ : Optional[Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) UpperCAmelCase__ : str = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) UpperCAmelCase__ : str = model.decode( decoder_input_ids[:, :-1] , _A , decoder_attention_mask=_A , past_key_values=_A , decoder_position_ids=_A , ) UpperCAmelCase__ : Dict = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) UpperCAmelCase__ : Tuple = model.decode( decoder_input_ids[:, -1:] , _A , decoder_attention_mask=_A , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_A , ) UpperCAmelCase__ : int = model.decode(_A , _A ) UpperCAmelCase__ : Dict = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) def lowercase_ ( self : Tuple , _A : List[Any] , _A : Tuple , _A : Tuple ): '''simple docstring''' UpperCAmelCase__ : Tuple = 20 UpperCAmelCase__ : Optional[int] = model_class_name(_A ) UpperCAmelCase__ : Optional[int] = model.encode(inputs_dict['''input_ids'''] ) UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) UpperCAmelCase__ : Any = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) UpperCAmelCase__ : List[Any] = model.init_cache(decoder_input_ids.shape[0] , _A , _A ) UpperCAmelCase__ : Optional[Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) UpperCAmelCase__ : int = model.decode( decoder_input_ids[:, :-1] , _A , decoder_attention_mask=_A , past_key_values=_A , decoder_position_ids=_A , ) UpperCAmelCase__ : List[Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) UpperCAmelCase__ : Any = model.decode( decoder_input_ids[:, -1:] , _A , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_A , decoder_position_ids=_A , ) UpperCAmelCase__ : List[str] = model.decode(_A , _A , decoder_attention_mask=_A ) UpperCAmelCase__ : str = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) @require_flax class lowerCamelCase_ ( unittest.TestCase ): lowerCAmelCase__ = 9_9 def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[str] = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) UpperCAmelCase__ : int = input_ids.shape[0] UpperCAmelCase__ : List[str] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = self._get_config_and_data() UpperCAmelCase__ : Any = FlaxBlenderbotForConditionalGeneration(_A ) UpperCAmelCase__ : Optional[int] = lm_model(input_ids=_A ) UpperCAmelCase__ : Dict = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['''logits'''].shape , _A ) def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : List[str] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) UpperCAmelCase__ : Union[str, Any] = FlaxBlenderbotForConditionalGeneration(_A ) UpperCAmelCase__ : str = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) UpperCAmelCase__ : Any = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) UpperCAmelCase__ : Tuple = lm_model(input_ids=_A , decoder_input_ids=_A ) UpperCAmelCase__ : int = (*summary.shape, config.vocab_size) self.assertEqual(outputs['''logits'''].shape , _A ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Any = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) UpperCAmelCase__ : Union[str, Any] = shift_tokens_right(_A , 1 , 2 ) UpperCAmelCase__ : str = np.equal(_A , 1 ).astype(np.floataa ).sum() UpperCAmelCase__ : Dict = np.equal(_A , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(_A , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class lowerCamelCase_ ( __a , unittest.TestCase , __a ): lowerCAmelCase__ = True lowerCAmelCase__ = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) lowerCAmelCase__ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Dict = FlaxBlenderbotModelTester(self ) def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(_A , _A , _A ) def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(_A , _A , _A ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase__ : Dict = self._prepare_for_class(_A , _A ) UpperCAmelCase__ : str = model_class(_A ) @jax.jit def encode_jitted(_A : Any , _A : Tuple=None , **_A : Optional[int] ): return model.encode(input_ids=_A , attention_mask=_A ) with self.subTest('''JIT Enabled''' ): UpperCAmelCase__ : Optional[Any] = encode_jitted(**_A ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): UpperCAmelCase__ : Tuple = encode_jitted(**_A ).to_tuple() self.assertEqual(len(_A ) , len(_A ) ) for jitted_output, output in zip(_A , _A ): self.assertEqual(jitted_output.shape , output.shape ) def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase__ : List[str] = model_class(_A ) UpperCAmelCase__ : Tuple = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask'''] ) UpperCAmelCase__ : Tuple = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(_A : Optional[int] , _A : List[Any] , _A : int ): return model.decode( decoder_input_ids=_A , decoder_attention_mask=_A , encoder_outputs=_A , ) with self.subTest('''JIT Enabled''' ): UpperCAmelCase__ : Any = decode_jitted(**_A ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): UpperCAmelCase__ : Optional[int] = decode_jitted(**_A ).to_tuple() self.assertEqual(len(_A ) , len(_A ) ) for jitted_output, output in zip(_A , _A ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowercase_ ( self : List[str] ): '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase__ : Union[str, Any] = model_class_name.from_pretrained('''facebook/blenderbot-400M-distill''' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids UpperCAmelCase__ : Tuple = np.ones((1, 1) ) * model.config.eos_token_id UpperCAmelCase__ : Union[str, Any] = model(_A ) self.assertIsNotNone(_A ) @unittest.skipUnless(jax_device != '''cpu''' , '''3B test too slow on CPU.''' ) @slow def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = {'''num_beams''': 1, '''early_stopping''': True, '''min_length''': 15, '''max_length''': 25} UpperCAmelCase__ : int = {'''skip_special_tokens''': True, '''clean_up_tokenization_spaces''': True} UpperCAmelCase__ : str = FlaxBlenderbotForConditionalGeneration.from_pretrained('''facebook/blenderbot-3B''' , from_pt=_A ) UpperCAmelCase__ : Optional[Any] = BlenderbotTokenizer.from_pretrained('''facebook/blenderbot-3B''' ) UpperCAmelCase__ : Optional[Any] = ['''Sam'''] UpperCAmelCase__ : Dict = tokenizer(_A , return_tensors='''jax''' ) UpperCAmelCase__ : List[str] = model.generate(**_A , **_A ) UpperCAmelCase__ : Dict = '''Sam is a great name. It means "sun" in Gaelic.''' UpperCAmelCase__ : Any = tokenizer.batch_decode(_A , **_A ) assert generated_txt[0].strip() == tgt_text
75
1
'''simple docstring''' # A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def lowerCamelCase_ ( lowercase__): lowerCamelCase__ = [False] * len(lowercase__) lowerCamelCase__ = [-1] * len(lowercase__) def dfs(lowercase__ , lowercase__): lowerCamelCase__ = True lowerCamelCase__ = c for u in graph[v]: if not visited[u]: dfs(lowercase__ , 1 - c) for i in range(len(lowercase__)): if not visited[i]: dfs(lowercase__ , 0) for i in range(len(lowercase__)): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph __A : Optional[Any] = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
187
'''simple docstring''' import tensorflow as tf from ...tf_utils import shape_list class lowercase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : int , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int=1 , __lowerCamelCase : Tuple=False , **__lowerCamelCase : Dict ) -> str: '''simple docstring''' super().__init__(**__lowerCamelCase ) lowerCamelCase__ = vocab_size lowerCamelCase__ = d_embed lowerCamelCase__ = d_proj lowerCamelCase__ = cutoffs + [vocab_size] lowerCamelCase__ = [0] + self.cutoffs lowerCamelCase__ = div_val lowerCamelCase__ = self.cutoffs[0] lowerCamelCase__ = len(self.cutoffs ) - 1 lowerCamelCase__ = self.shortlist_size + self.n_clusters lowerCamelCase__ = keep_order lowerCamelCase__ = [] lowerCamelCase__ = [] def a__ ( self : Optional[int] , __lowerCamelCase : str ) -> List[str]: '''simple docstring''' if self.n_clusters > 0: lowerCamelCase__ = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer="zeros" , trainable=__lowerCamelCase , name="cluster_weight" ) lowerCamelCase__ = self.add_weight( shape=(self.n_clusters,) , initializer="zeros" , trainable=__lowerCamelCase , name="cluster_bias" ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: lowerCamelCase__ = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer="zeros" , trainable=__lowerCamelCase , name=f'''out_projs_._{i}''' , ) self.out_projs.append(__lowerCamelCase ) else: self.out_projs.append(__lowerCamelCase ) lowerCamelCase__ = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer="zeros" , trainable=__lowerCamelCase , name=f'''out_layers_._{i}_._weight''' , ) lowerCamelCase__ = self.add_weight( shape=(self.vocab_size,) , initializer="zeros" , trainable=__lowerCamelCase , name=f'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): lowerCamelCase__ , lowerCamelCase__ = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowerCamelCase__ = self.d_embed // (self.div_val**i) lowerCamelCase__ = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer="zeros" , trainable=__lowerCamelCase , name=f'''out_projs_._{i}''' ) self.out_projs.append(__lowerCamelCase ) lowerCamelCase__ = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer="zeros" , trainable=__lowerCamelCase , name=f'''out_layers_._{i}_._weight''' , ) lowerCamelCase__ = self.add_weight( shape=(r_idx - l_idx,) , initializer="zeros" , trainable=__lowerCamelCase , name=f'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) super().build(__lowerCamelCase ) @staticmethod def a__ ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : List[str]=None ) -> str: '''simple docstring''' lowerCamelCase__ = x if proj is not None: lowerCamelCase__ = tf.einsum("ibd,ed->ibe" , __lowerCamelCase , __lowerCamelCase ) return tf.einsum("ibd,nd->ibn" , __lowerCamelCase , __lowerCamelCase ) + b @staticmethod def a__ ( __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase__ = shape_list(__lowerCamelCase ) lowerCamelCase__ = tf.range(lp_size[0] , dtype=target.dtype ) lowerCamelCase__ = tf.stack([r, target] , 1 ) return tf.gather_nd(__lowerCamelCase , __lowerCamelCase ) def a__ ( self : Any , __lowerCamelCase : int , __lowerCamelCase : Tuple , __lowerCamelCase : str=True , __lowerCamelCase : Tuple=False ) -> int: '''simple docstring''' lowerCamelCase__ = 0 if self.n_clusters == 0: lowerCamelCase__ = self._logit(__lowerCamelCase , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: lowerCamelCase__ = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=__lowerCamelCase , logits=__lowerCamelCase ) lowerCamelCase__ = tf.nn.log_softmax(__lowerCamelCase , axis=-1 ) else: lowerCamelCase__ = shape_list(__lowerCamelCase ) lowerCamelCase__ = [] lowerCamelCase__ = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): lowerCamelCase__ , lowerCamelCase__ = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: lowerCamelCase__ = (target >= l_idx) & (target < r_idx) lowerCamelCase__ = tf.where(__lowerCamelCase ) lowerCamelCase__ = tf.boolean_mask(__lowerCamelCase , __lowerCamelCase ) - l_idx if self.div_val == 1: lowerCamelCase__ = self.out_layers[0][0][l_idx:r_idx] lowerCamelCase__ = self.out_layers[0][1][l_idx:r_idx] else: lowerCamelCase__ = self.out_layers[i][0] lowerCamelCase__ = self.out_layers[i][1] if i == 0: lowerCamelCase__ = tf.concat([cur_W, self.cluster_weight] , 0 ) lowerCamelCase__ = tf.concat([cur_b, self.cluster_bias] , 0 ) lowerCamelCase__ = self._logit(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , self.out_projs[0] ) lowerCamelCase__ = tf.nn.log_softmax(__lowerCamelCase ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: lowerCamelCase__ = tf.boolean_mask(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ = self._gather_logprob(__lowerCamelCase , __lowerCamelCase ) else: lowerCamelCase__ = self._logit(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , self.out_projs[i] ) lowerCamelCase__ = tf.nn.log_softmax(__lowerCamelCase ) lowerCamelCase__ = self.cutoffs[0] + i - 1 # No probability for the head cluster lowerCamelCase__ = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(__lowerCamelCase ) if target is not None: lowerCamelCase__ = tf.boolean_mask(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ = tf.boolean_mask(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ = self._gather_logprob(__lowerCamelCase , __lowerCamelCase ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(__lowerCamelCase , -cur_logprob , shape_list(__lowerCamelCase ) ) lowerCamelCase__ = tf.concat(__lowerCamelCase , axis=-1 ) if target is not None: if return_mean: lowerCamelCase__ = tf.reduce_mean(__lowerCamelCase ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(__lowerCamelCase ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(__lowerCamelCase , name=self.name , aggregation="mean" if return_mean else "" ) return out
187
1
"""simple docstring""" import numpy class _lowerCamelCase : def __init__( self : Union[str, Any] , UpperCamelCase : numpy.ndarray , UpperCamelCase : numpy.ndarray ) -> Tuple: """simple docstring""" lowerCAmelCase__ : Optional[int] = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. lowerCAmelCase__ : Union[str, Any] = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. lowerCAmelCase__ : List[str] = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. lowerCAmelCase__ : List[str] = numpy.random.rand(3 , 1 ) # Real output values provided. lowerCAmelCase__ : Tuple = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. lowerCAmelCase__ : Union[str, Any] = numpy.zeros(output_array.shape ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" lowerCAmelCase__ : Dict = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. lowerCAmelCase__ : Optional[Any] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. lowerCAmelCase__ : Any = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def _lowerCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : Tuple = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) lowerCAmelCase__ : List[Any] = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) lowerCAmelCase__ : Union[str, Any] = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def _lowerCAmelCase ( self : Optional[int] , UpperCamelCase : numpy.ndarray , UpperCamelCase : int , UpperCamelCase : bool ) -> Optional[int]: """simple docstring""" for iteration in range(1 , iterations + 1 ): lowerCAmelCase__ : str = self.feedforward() self.back_propagation() if give_loss: lowerCAmelCase__ : str = numpy.mean(numpy.square(output - self.feedforward() ) ) print(f"""Iteration {iteration} Loss: {loss}""" ) def _lowerCAmelCase ( self : List[str] , UpperCamelCase : numpy.ndarray ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : List[Any] = input_arr lowerCAmelCase__ : Dict = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) lowerCAmelCase__ : Union[str, Any] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) lowerCAmelCase__ : List[Any] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def lowercase_ ( __UpperCAmelCase ) -> numpy.ndarray: return 1 / (1 + numpy.exp(-value )) def lowercase_ ( __UpperCAmelCase ) -> numpy.ndarray: return (value) * (1 - (value)) def lowercase_ ( ) -> int: lowerCAmelCase__ : List[str] = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. lowerCAmelCase__ : List[str] = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. lowerCAmelCase__ : Any = TwoHiddenLayerNeuralNetwork( input_array=__UpperCAmelCase , output_array=__UpperCAmelCase ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=__UpperCAmelCase , iterations=10 , give_loss=__UpperCAmelCase ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
299
import collections import os import re from pathlib import Path lowerCamelCase_ : Optional[Any] = """src/transformers""" # Matches is_xxx_available() lowerCamelCase_ : Union[str, Any] = re.compile(r"""is\_([a-z_]*)_available()""") # Catches a one-line _import_struct = {xxx} lowerCamelCase_ : int = re.compile(r"""^_import_structure\s+=\s+\{([^\}]+)\}""") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] lowerCamelCase_ : Union[str, Any] = re.compile(r"""\s+\"\S*\":\s+\[([^\]]*)\]""") # Catches a line if not is_foo_available lowerCamelCase_ : Any = re.compile(r"""^\s*if\s+not\s+is\_[a-z_]*\_available\(\)""") # Catches a line _import_struct["bla"].append("foo") lowerCamelCase_ : Any = re.compile(r"""^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)""") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] lowerCamelCase_ : List[Any] = re.compile(r"""^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]""") # Catches a line with an object between quotes and a comma: "MyModel", lowerCamelCase_ : Any = re.compile(r"""^\s+\"([^\"]+)\",""") # Catches a line with objects between brackets only: ["foo", "bar"], lowerCamelCase_ : Tuple = re.compile(r"""^\s+\[([^\]]+)\]""") # Catches a line with from foo import bar, bla, boo lowerCamelCase_ : Tuple = re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") # Catches a line with try: lowerCamelCase_ : Dict = re.compile(r"""^\s*try:""") # Catches a line with else: lowerCamelCase_ : Union[str, Any] = re.compile(r"""^\s*else:""") def A__ ( lowerCamelCase ) -> List[Any]: if _re_test_backend.search(lowerCamelCase ) is None: return None UpperCamelCase_: Any = [b[0] for b in _re_backend.findall(lowerCamelCase )] backends.sort() return "_and_".join(lowerCamelCase ) def A__ ( lowerCamelCase ) -> Union[str, Any]: with open(lowerCamelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: UpperCamelCase_: Dict = f.readlines() UpperCamelCase_: Tuple = 0 while line_index < len(lowerCamelCase ) and not lines[line_index].startswith("""_import_structure = {""" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(lowerCamelCase ): return None # First grab the objects without a specific backend in _import_structure UpperCamelCase_: Optional[int] = [] while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None: UpperCamelCase_: Any = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(lowerCamelCase ): UpperCamelCase_: str = _re_one_line_import_struct.search(lowerCamelCase ).groups()[0] UpperCamelCase_: Tuple = re.findall(r"""\[([^\]]+)\]""" , lowerCamelCase ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(""", """ )] ) line_index += 1 continue UpperCamelCase_: Any = _re_import_struct_key_value.search(lowerCamelCase ) if single_line_import_search is not None: UpperCamelCase_: Any = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(lowerCamelCase ) > 0] objects.extend(lowerCamelCase ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) line_index += 1 UpperCamelCase_: Optional[Any] = {"""none""": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("""if TYPE_CHECKING""" ): # If the line is an if not is_backend_available, we grab all objects associated. UpperCamelCase_: Any = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: UpperCamelCase_: Any = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 UpperCamelCase_: int = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ): UpperCamelCase_: Tuple = lines[line_index] if _re_import_struct_add_one.search(lowerCamelCase ) is not None: objects.append(_re_import_struct_add_one.search(lowerCamelCase ).groups()[0] ) elif _re_import_struct_add_many.search(lowerCamelCase ) is not None: UpperCamelCase_: List[str] = _re_import_struct_add_many.search(lowerCamelCase ).groups()[0].split(""", """ ) UpperCamelCase_: str = [obj[1:-1] for obj in imports if len(lowerCamelCase ) > 0] objects.extend(lowerCamelCase ) elif _re_between_brackets.search(lowerCamelCase ) is not None: UpperCamelCase_: Tuple = _re_between_brackets.search(lowerCamelCase ).groups()[0].split(""", """ ) UpperCamelCase_: List[Any] = [obj[1:-1] for obj in imports if len(lowerCamelCase ) > 0] objects.extend(lowerCamelCase ) elif _re_quote_object.search(lowerCamelCase ) is not None: objects.append(_re_quote_object.search(lowerCamelCase ).groups()[0] ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) elif line.startswith(""" """ * 12 + """\"""" ): objects.append(line[13:-3] ) line_index += 1 UpperCamelCase_: List[str] = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend UpperCamelCase_: List[str] = [] while ( line_index < len(lowerCamelCase ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("""else""" ) ): UpperCamelCase_: List[str] = lines[line_index] UpperCamelCase_: Union[str, Any] = _re_import.search(lowerCamelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 UpperCamelCase_: Any = {"""none""": objects} # Let's continue with backend-specific objects while line_index < len(lowerCamelCase ): # If the line is an if is_backend_available, we grab all objects associated. UpperCamelCase_: str = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: UpperCamelCase_: List[Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 UpperCamelCase_: int = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ): UpperCamelCase_: Tuple = lines[line_index] UpperCamelCase_: Union[str, Any] = _re_import.search(lowerCamelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 12 ): objects.append(line[12:-2] ) line_index += 1 UpperCamelCase_: Optional[Any] = objects else: line_index += 1 return import_dict_objects, type_hint_objects def A__ ( lowerCamelCase , lowerCamelCase ) -> List[Any]: def find_duplicates(lowerCamelCase ): return [k for k, v in collections.Counter(lowerCamelCase ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] UpperCamelCase_: Optional[int] = [] for key in import_dict_objects.keys(): UpperCamelCase_: List[str] = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) UpperCamelCase_: Tuple = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): UpperCamelCase_: int = """base imports""" if key == """none""" else F'''{key} backend''' errors.append(F'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def A__ ( ) -> Tuple: UpperCamelCase_: Optional[int] = [] for root, _, files in os.walk(lowerCamelCase ): if "__init__.py" in files: UpperCamelCase_: Union[str, Any] = os.path.join(lowerCamelCase , """__init__.py""" ) UpperCamelCase_: Optional[int] = parse_init(lowerCamelCase ) if objects is not None: UpperCamelCase_: Any = analyze_results(*lowerCamelCase ) if len(lowerCamelCase ) > 0: UpperCamelCase_: Any = F'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append("""\n""".join(lowerCamelCase ) ) if len(lowerCamelCase ) > 0: raise ValueError("""\n\n""".join(lowerCamelCase ) ) def A__ ( ) -> Any: UpperCamelCase_: List[Any] = [] for path, directories, files in os.walk(lowerCamelCase ): for folder in directories: # Ignore private modules if folder.startswith("""_""" ): directories.remove(lowerCamelCase ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(lowerCamelCase ) / folder).glob("""*.py""" ) ) ) == 0: continue UpperCamelCase_: str = str((Path(lowerCamelCase ) / folder).relative_to(lowerCamelCase ) ) UpperCamelCase_: Optional[Any] = short_path.replace(os.path.sep , """.""" ) submodules.append(lowerCamelCase ) for fname in files: if fname == "__init__.py": continue UpperCamelCase_: Dict = str((Path(lowerCamelCase ) / fname).relative_to(lowerCamelCase ) ) UpperCamelCase_: Optional[int] = short_path.replace(""".py""" , """""" ).replace(os.path.sep , """.""" ) if len(submodule.split(""".""" ) ) == 1: submodules.append(lowerCamelCase ) return submodules lowerCamelCase_ : Optional[int] = [ """convert_pytorch_checkpoint_to_tf2""", """modeling_flax_pytorch_utils""", """models.esm.openfold_utils""", ] def A__ ( ) -> List[str]: # This is to make sure the transformers module imported is the one in the repo. from transformers.utils import direct_transformers_import UpperCamelCase_: Optional[Any] = direct_transformers_import(lowerCamelCase ) UpperCamelCase_: Tuple = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(lowerCamelCase , """__init__.py""" ) , """r""" ) as f: UpperCamelCase_: List[Any] = f.read() import_structure_keys.update(set(re.findall(r"""import_structure\[\"([^\"]*)\"\]""" , lowerCamelCase ) ) ) UpperCamelCase_: Dict = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(lowerCamelCase ) > 0: UpperCamelCase_: Dict = """\n""".join(F'''- {module}''' for module in module_not_registered ) raise ValueError( """The following submodules are not properly registed in the main init of Transformers:\n""" F'''{list_of_modules}\n''' """Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" ) if __name__ == "__main__": check_all_inits() check_submodules()
548
0
'''simple docstring''' from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING __a = logging.get_logger(__name__) @add_end_docstrings(_a ) class UpperCAmelCase_ ( _a ): """simple docstring""" def __init__( self : List[Any] , *snake_case_ : List[str] , **snake_case_ : Tuple ): super().__init__(*snake_case_ , **snake_case_ ) requires_backends(self , """decord""" ) self.check_model_type(snake_case_ ) def lowerCamelCase ( self : Optional[int] , snake_case_ : Optional[Any]=None , snake_case_ : Optional[Any]=None , snake_case_ : Optional[int]=None ): snake_case__ : Optional[Any] = {} if frame_sampling_rate is not None: snake_case__ : str = frame_sampling_rate if num_frames is not None: snake_case__ : str = num_frames snake_case__ : List[Any] = {} if top_k is not None: snake_case__ : str = top_k return preprocess_params, {}, postprocess_params def __call__( self : Tuple , snake_case_ : Union[str, List[str]] , **snake_case_ : Tuple ): return super().__call__(snake_case_ , **snake_case_ ) def lowerCamelCase ( self : Optional[int] , snake_case_ : Union[str, Any] , snake_case_ : Tuple=None , snake_case_ : Optional[int]=1 ): if num_frames is None: snake_case__ : List[Any] = self.model.config.num_frames if video.startswith("""http://""" ) or video.startswith("""https://""" ): snake_case__ : Any = BytesIO(requests.get(snake_case_ ).content ) snake_case__ : Optional[int] = VideoReader(snake_case_ ) videoreader.seek(0 ) snake_case__ : Optional[Any] = 0 snake_case__ : Optional[int] = num_frames * frame_sampling_rate - 1 snake_case__ : Any = np.linspace(snake_case_ , snake_case_ , num=snake_case_ , dtype=np.intaa ) snake_case__ : List[str] = videoreader.get_batch(snake_case_ ).asnumpy() snake_case__ : Union[str, Any] = list(snake_case_ ) snake_case__ : Any = self.image_processor(snake_case_ , return_tensors=self.framework ) return model_inputs def lowerCamelCase ( self : Optional[Any] , snake_case_ : Union[str, Any] ): snake_case__ : Any = self.model(**snake_case_ ) return model_outputs def lowerCamelCase ( self : str , snake_case_ : Dict , snake_case_ : List[Any]=5 ): if top_k > self.model.config.num_labels: snake_case__ : List[Any] = self.model.config.num_labels if self.framework == "pt": snake_case__ : str = model_outputs.logits.softmax(-1 )[0] snake_case__ : int = probs.topk(snake_case_ ) else: raise ValueError(f"Unsupported framework: {self.framework}" ) snake_case__ : List[Any] = scores.tolist() snake_case__ : List[str] = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(snake_case_ , snake_case_ )]
719
'''simple docstring''' import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) __a = logging.getLogger(__name__) def __snake_case( _lowerCAmelCase ) -> str: snake_case__ : Dict = git.Repo(search_parent_directories=_lowerCAmelCase ) snake_case__ : Optional[int] = { """repo_id""": str(_lowerCAmelCase ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), } with open(os.path.join(_lowerCAmelCase , """git_log.json""" ) , """w""" ) as f: json.dump(_lowerCAmelCase , _lowerCAmelCase , indent=4 ) def __snake_case( _lowerCAmelCase ) -> Tuple: if params.n_gpu <= 0: snake_case__ : Optional[int] = 0 snake_case__ : Optional[Any] = -1 snake_case__ : Union[str, Any] = True snake_case__ : Dict = False return assert torch.cuda.is_available() logger.info("""Initializing GPUs""" ) if params.n_gpu > 1: assert params.local_rank != -1 snake_case__ : Tuple = int(os.environ["""WORLD_SIZE"""] ) snake_case__ : str = int(os.environ["""N_GPU_NODE"""] ) snake_case__ : Dict = int(os.environ["""RANK"""] ) # number of nodes / node ID snake_case__ : List[str] = params.world_size // params.n_gpu_per_node snake_case__ : str = params.global_rank // params.n_gpu_per_node snake_case__ : Optional[Any] = True assert params.n_nodes == int(os.environ["""N_NODES"""] ) assert params.node_id == int(os.environ["""NODE_RANK"""] ) # local job (single GPU) else: assert params.local_rank == -1 snake_case__ : int = 1 snake_case__ : str = 0 snake_case__ : Optional[int] = 0 snake_case__ : Tuple = 0 snake_case__ : Any = 1 snake_case__ : List[Any] = 1 snake_case__ : Union[str, Any] = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode snake_case__ : Optional[Any] = params.node_id == 0 and params.local_rank == 0 snake_case__ : Optional[Any] = params.n_nodes > 1 # summary snake_case__ : List[Any] = f"--- Global rank: {params.global_rank} - " logger.info(PREFIX + """Number of nodes: %i""" % params.n_nodes ) logger.info(PREFIX + """Node ID : %i""" % params.node_id ) logger.info(PREFIX + """Local rank : %i""" % params.local_rank ) logger.info(PREFIX + """World size : %i""" % params.world_size ) logger.info(PREFIX + """GPUs per node : %i""" % params.n_gpu_per_node ) logger.info(PREFIX + """Master : %s""" % str(params.is_master ) ) logger.info(PREFIX + """Multi-node : %s""" % str(params.multi_node ) ) logger.info(PREFIX + """Multi-GPU : %s""" % str(params.multi_gpu ) ) logger.info(PREFIX + """Hostname : %s""" % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info("""Initializing PyTorch distributed""" ) torch.distributed.init_process_group( init_method="""env://""" , backend="""nccl""" , ) def __snake_case( _lowerCAmelCase ) -> List[str]: np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
301
0
"""simple docstring""" from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def snake_case ( A__ ,A__ ,A__ = None ): if version.parse(hfh.__version__ ).release < version.parse("0.11.0" ).release: # old versions of hfh don't url-encode the file path UpperCAmelCase_ : List[str] = quote(A__ ) return hfh.hf_hub_url(A__ ,A__ ,repo_type="dataset" ,revision=A__ )
95
from torch import nn def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str ): if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f'''Unsupported activation function: {act_fn}''' )
6
0
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process A__: Optional[int] = logging.getLogger(__name__) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Any ,_UpperCAmelCase : int ) -> Dict: return (preds == labels).mean() @dataclass class A__ : __UpperCamelCase : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) __UpperCamelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __UpperCamelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) __UpperCamelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class A__ : __UpperCamelCase : str = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys() )} ) __UpperCamelCase : str = field(metadata={"help": "Should contain the data files for the task."} ) __UpperCamelCase : int = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __UpperCamelCase : bool = field( default=UpperCAmelCase__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def SCREAMING_SNAKE_CASE_ ( ) -> Union[str, Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _a : Optional[int] =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _a : Optional[int] =parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. Use" """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" ,datefmt="""%m/%d/%Y %H:%M:%S""" ,level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN ,) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" ,training_args.local_rank ,training_args.device ,training_args.n_gpu ,bool(training_args.local_rank != -1 ) ,training_args.fpaa ,) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" ,_UpperCAmelCase ) # Set seed set_seed(training_args.seed ) try: _a : Optional[int] =processors[data_args.task_name]() _a : int =processor.get_labels() _a : Any =len(_UpperCAmelCase ) except KeyError: raise ValueError("""Task not found: %s""" % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _a : List[Any] =AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path ,num_labels=_UpperCAmelCase ,finetuning_task=data_args.task_name ,cache_dir=model_args.cache_dir ,) _a : List[Any] =AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,) _a : Any =AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path ,from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) ,config=_UpperCAmelCase ,cache_dir=model_args.cache_dir ,) # Get datasets _a : int =( MultipleChoiceDataset( data_dir=data_args.data_dir ,tokenizer=_UpperCAmelCase ,task=data_args.task_name ,max_seq_length=data_args.max_seq_length ,overwrite_cache=data_args.overwrite_cache ,mode=Split.train ,) if training_args.do_train else None ) _a : Union[str, Any] =( MultipleChoiceDataset( data_dir=data_args.data_dir ,tokenizer=_UpperCAmelCase ,task=data_args.task_name ,max_seq_length=data_args.max_seq_length ,overwrite_cache=data_args.overwrite_cache ,mode=Split.dev ,) if training_args.do_eval else None ) def compute_metrics(_UpperCAmelCase : EvalPrediction ) -> Dict: _a : Dict =np.argmax(p.predictions ,axis=1 ) return {"acc": simple_accuracy(_UpperCAmelCase ,p.label_ids )} # Data collator _a : int =DataCollatorWithPadding(_UpperCAmelCase ,pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer _a : Dict =Trainer( model=_UpperCAmelCase ,args=_UpperCAmelCase ,train_dataset=_UpperCAmelCase ,eval_dataset=_UpperCAmelCase ,compute_metrics=_UpperCAmelCase ,data_collator=_UpperCAmelCase ,) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _a : str ={} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) _a : List[str] =trainer.evaluate() _a : str =os.path.join(training_args.output_dir ,"""eval_results.txt""" ) if trainer.is_world_master(): with open(_UpperCAmelCase ,"""w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(""" %s = %s""" ,_UpperCAmelCase ,_UpperCAmelCase ) writer.write("""%s = %s\n""" % (key, value) ) results.update(_UpperCAmelCase ) return results def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Dict ) -> int: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
705
'''simple docstring''' import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration A__: Dict = 5_0000 A__: Optional[int] = 5000 A__ , A__: Optional[int] = os.path.split(__file__) A__: Union[str, Any] = os.path.join(RESULTS_BASEPATH, '''results''', RESULTS_FILENAME.replace('''.py''', '''.json''')) @get_duration def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : datasets.Dataset ,_UpperCAmelCase : Union[str, Any] ) -> List[str]: for i in range(_UpperCAmelCase ): _a : Union[str, Any] =dataset[i] @get_duration def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : datasets.Dataset ,_UpperCAmelCase : str ,_UpperCAmelCase : List[Any] ) -> str: for i in range(0 ,len(_UpperCAmelCase ) ,_UpperCAmelCase ): _a : int =dataset[i : i + batch_size] @get_duration def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : datasets.Dataset ,_UpperCAmelCase : str ,_UpperCAmelCase : Any ) -> Optional[int]: with dataset.formatted_as(type=_UpperCAmelCase ): for i in range(_UpperCAmelCase ): _a : List[str] =dataset[i] @get_duration def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : datasets.Dataset ,_UpperCAmelCase : Union[str, Any] ,_UpperCAmelCase : int ,_UpperCAmelCase : List[Any] ) -> int: with dataset.formatted_as(type=_UpperCAmelCase ): for i in range(0 ,_UpperCAmelCase ,_UpperCAmelCase ): _a : Optional[int] =dataset[i : i + batch_size] def SCREAMING_SNAKE_CASE_ ( ) -> Union[str, Any]: _a : Optional[int] ={"""num examples""": SPEED_TEST_N_EXAMPLES} _a : Tuple =[ (read, {"""length""": SMALL_TEST}), (read, {"""length""": SPEED_TEST_N_EXAMPLES}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 10}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 100}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1000}), (read_formatted, {"""type""": """numpy""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """pandas""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """torch""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """tensorflow""", """length""": SMALL_TEST}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 10}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 1000}), ] _a : Union[str, Any] =[ (read, {"""length""": SMALL_TEST}), (read, {"""length""": SPEED_TEST_N_EXAMPLES}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 10}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 100}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1000}), (read_formatted, {"""type""": """numpy""", """length""": SMALL_TEST}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 10}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 1000}), ] with tempfile.TemporaryDirectory() as tmp_dir: print("""generating dataset""" ) _a : List[str] =datasets.Features( {"""list""": datasets.Sequence(datasets.Value("""float32""" ) ), """numbers""": datasets.Value("""float32""" )} ) _a : Optional[Any] =generate_example_dataset( os.path.join(_UpperCAmelCase ,"""dataset.arrow""" ) ,_UpperCAmelCase ,num_examples=_UpperCAmelCase ,seq_shapes={"""list""": (100,)} ,) print("""first set of iterations""" ) for func, kwargs in functions: print(func.__name__ ,str(_UpperCAmelCase ) ) _a : int =func(_UpperCAmelCase ,**_UpperCAmelCase ) print("""shuffling dataset""" ) _a : int =dataset.shuffle() print("""Second set of iterations (after shuffling""" ) for func, kwargs in functions_shuffled: print("""shuffled """ ,func.__name__ ,str(_UpperCAmelCase ) ) _a : Union[str, Any] =func( _UpperCAmelCase ,**_UpperCAmelCase ) with open(_UpperCAmelCase ,"""wb""" ) as f: f.write(json.dumps(_UpperCAmelCase ).encode("""utf-8""" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
506
0
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny model through reduction of a normal pre-trained model, but keeping the # full vocab, merges file, and thus also resulting in a larger model due to a large vocab size. # This gives ~3MB in total for all files. # # If you want a 50 times smaller than this see `fsmt-make-super-tiny-model.py`, which is slightly more complicated # # # It will be used then as "stas/tiny-wmt19-en-de" # Build from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration A = 'facebook/wmt19-en-de' A = FSMTTokenizer.from_pretrained(mname) # get the correct vocab sizes, etc. from the master model A = FSMTConfig.from_pretrained(mname) config.update( dict( d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) ) A = FSMTForConditionalGeneration(config) print(f"num of params {tiny_model.num_parameters()}") # Test A = tokenizer(["Making tiny model"], return_tensors="pt") A = tiny_model(**batch) print("test output:", len(outputs.logits[0])) # Save A = 'tiny-wmt19-en-de' tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(f"Generated {mname_tiny}") # Upload # transformers-cli upload tiny-wmt19-en-de
475
import doctest from collections import deque import numpy as np class __lowercase : """simple docstring""" def __init__( self ) -> None: snake_case : Any = [2, 1, 2, -1] snake_case : int = [1, 2, 3, 4] def UpperCAmelCase ( self ) -> list[float]: snake_case : int = len(self.first_signal ) snake_case : Union[str, Any] = len(self.second_signal ) snake_case : Dict = max(A , A ) # create a zero matrix of max_length x max_length snake_case : Optional[int] = [[0] * max_length for i in range(A )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(A ): snake_case : Union[str, Any] = deque(self.second_signal ) rotated_signal.rotate(A ) for j, item in enumerate(A ): matrix[i][j] += item # multiply the matrix with the first signal snake_case : Any = np.matmul(np.transpose(A ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(A , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
587
0
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging A_ :Any = logging.get_logger(__name__) A_ :Tuple = {'''vocab_file''': '''spiece.model'''} A_ :str = { '''vocab_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model''', } } A_ :Tuple = { '''xlnet-base-cased''': None, '''xlnet-large-cased''': None, } # Segments (not really needed) A_ :Optional[int] = 0 A_ :Any = 1 A_ :List[str] = 2 A_ :Optional[int] = 3 A_ :Optional[int] = 4 class __A ( a ): """simple docstring""" UpperCamelCase__ : Tuple =VOCAB_FILES_NAMES UpperCamelCase__ : List[str] =PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ : Tuple =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ : Union[str, Any] ="""left""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=False , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__="<s>" , lowerCamelCase__="</s>" , lowerCamelCase__="<unk>" , lowerCamelCase__="<sep>" , lowerCamelCase__="<pad>" , lowerCamelCase__="<cls>" , lowerCamelCase__="<mask>" , lowerCamelCase__=["<eop>", "<eod>"] , lowerCamelCase__ = None , **lowerCamelCase__ , ): """simple docstring""" __UpperCamelCase : Optional[Any] =AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else mask_token __UpperCamelCase : Union[str, Any] ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowerCamelCase__ , remove_space=lowerCamelCase__ , keep_accents=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , additional_special_tokens=lowerCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase__ , ) __UpperCamelCase : Optional[Any] =3 __UpperCamelCase : int =do_lower_case __UpperCamelCase : str =remove_space __UpperCamelCase : int =keep_accents __UpperCamelCase : Optional[int] =vocab_file __UpperCamelCase : Dict =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCamelCase__ ) @property def __lowercase ( self ): """simple docstring""" return len(self.sp_model ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Any ={self.convert_ids_to_tokens(lowerCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): """simple docstring""" __UpperCamelCase : Tuple =self.__dict__.copy() __UpperCamelCase : Optional[int] =None return state def __setstate__( self , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Any =d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __UpperCamelCase : int ={} __UpperCamelCase : Optional[int] =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" if self.remove_space: __UpperCamelCase : Dict =' '.join(inputs.strip().split() ) else: __UpperCamelCase : Optional[Any] =inputs __UpperCamelCase : Union[str, Any] =outputs.replace('``' , '"' ).replace('\'\'' , '"' ) if not self.keep_accents: __UpperCamelCase : str =unicodedata.normalize('NFKD' , lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] =''.join([c for c in outputs if not unicodedata.combining(lowerCamelCase__ )] ) if self.do_lower_case: __UpperCamelCase : Tuple =outputs.lower() return outputs def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Union[str, Any] =self.preprocess_text(lowerCamelCase__ ) __UpperCamelCase : Optional[Any] =self.sp_model.encode(lowerCamelCase__ , out_type=lowerCamelCase__ ) __UpperCamelCase : Dict =[] for piece in pieces: if len(lowerCamelCase__ ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit(): __UpperCamelCase : Union[str, Any] =self.sp_model.EncodeAsPieces(piece[:-1].replace(lowerCamelCase__ , '' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: __UpperCamelCase : str =cur_pieces[1:] else: __UpperCamelCase : List[Any] =cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(lowerCamelCase__ ) else: new_pieces.append(lowerCamelCase__ ) return new_pieces def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" return self.sp_model.PieceToId(lowerCamelCase__ ) def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" return self.sp_model.IdToPiece(lowerCamelCase__ ) def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Any =''.join(lowerCamelCase__ ).replace(lowerCamelCase__ , ' ' ).strip() return out_string def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ = False , lowerCamelCase__ = None , lowerCamelCase__ = True , **lowerCamelCase__ , ): """simple docstring""" __UpperCamelCase : Union[str, Any] =kwargs.pop('use_source_tokenizer' , lowerCamelCase__ ) __UpperCamelCase : Optional[int] =self.convert_ids_to_tokens(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 __UpperCamelCase : Tuple =[] __UpperCamelCase : Union[str, Any] =[] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCamelCase__ ) ) __UpperCamelCase : Union[str, Any] =[] sub_texts.append(lowerCamelCase__ ) else: current_sub_text.append(lowerCamelCase__ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCamelCase__ ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens __UpperCamelCase : Dict =''.join(lowerCamelCase__ ) __UpperCamelCase : Optional[Any] =( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: __UpperCamelCase : Optional[int] =self.clean_up_tokenization(lowerCamelCase__ ) return clean_text else: return text def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ = None ): """simple docstring""" __UpperCamelCase : List[str] =[self.sep_token_id] __UpperCamelCase : str =[self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase__ , token_ids_a=lowerCamelCase__ , already_has_special_tokens=lowerCamelCase__ ) if token_ids_a is not None: return ([0] * len(lowerCamelCase__ )) + [1] + ([0] * len(lowerCamelCase__ )) + [1, 1] return ([0] * len(lowerCamelCase__ )) + [1, 1] def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ = None ): """simple docstring""" __UpperCamelCase : Union[str, Any] =[self.sep_token_id] __UpperCamelCase : Union[str, Any] =[2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ = None ): """simple docstring""" if not os.path.isdir(lowerCamelCase__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __UpperCamelCase : Optional[int] =os.path.join( lowerCamelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase__ , 'wb' ) as fi: __UpperCamelCase : Optional[int] =self.sp_model.serialized_model_proto() fi.write(lowerCamelCase__ ) return (out_vocab_file,)
154
from __future__ import annotations import csv import requests from bsa import BeautifulSoup def A ( a_ = "" ) -> dict[str, float]: __UpperCamelCase : Tuple =url or 'https://www.imdb.com/chart/top/?ref_=nv_mv_250' __UpperCamelCase : Optional[int] =BeautifulSoup(requests.get(a_ ).text ,'html.parser' ) __UpperCamelCase : Union[str, Any] =soup.find_all('td' ,attrs='titleColumn' ) __UpperCamelCase : Any =soup.find_all('td' ,class_='ratingColumn imdbRating' ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(a_ ,a_ ) } def A ( a_ = "IMDb_Top_250_Movies.csv" ) -> None: __UpperCamelCase : Dict =get_imdb_top_aaa_movies() with open(a_ ,'w' ,newline='' ) as out_file: __UpperCamelCase : Any =csv.writer(a_ ) writer.writerow(['Movie title', 'IMDb rating'] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
154
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class _UpperCamelCase ( A ): '''simple docstring''' a_ : Optional[Any] = "dandelin/vilt-b32-finetuned-vqa" a_ : List[str] = ( "This is a tool that answers a question about an image. It takes an input named `image` which should be the " "image containing the information, as well as a `question` which should be the question in English. It " "returns a text that is the answer to the question." ) a_ : Tuple = "image_qa" a_ : Optional[int] = AutoProcessor a_ : Any = AutoModelForVisualQuestionAnswering a_ : List[str] = ["image", "text"] a_ : str = ["text"] def __init__( self : List[str] , *_lowerCamelCase : Union[str, Any] , **_lowerCamelCase : str ): '''simple docstring''' requires_backends(self , ["""vision"""] ) super().__init__(*_lowerCamelCase , **_lowerCamelCase ) def _snake_case ( self : Tuple , _lowerCamelCase : "Image" , _lowerCamelCase : str ): '''simple docstring''' return self.pre_processor(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" ) def _snake_case ( self : List[Any] , _lowerCamelCase : str ): '''simple docstring''' with torch.no_grad(): return self.model(**_lowerCamelCase ).logits def _snake_case ( self : Tuple , _lowerCamelCase : Any ): '''simple docstring''' __lowerCamelCase : Optional[Any] = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
519
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : int = { 'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = [ 'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST', 'PegasusXForConditionalGeneration', 'PegasusXModel', 'PegasusXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys __UpperCamelCase : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
519
1
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor __a = logging.get_logger(__name__) class A__ ( UpperCamelCase ): """simple docstring""" def __init__( self : Dict , *lowerCAmelCase__ : Dict , **lowerCAmelCase__ : Any ) -> None: """simple docstring""" warnings.warn( "The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use MobileViTImageProcessor instead." , lowerCAmelCase__ , ) super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ )
702
'''simple docstring''' import argparse import torch from transformers import GPTaLMHeadModel, RobertaForMaskedLM if __name__ == "__main__": __a = argparse.ArgumentParser( description=( 'Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='roberta', choices=['roberta', 'gpt2']) parser.add_argument('--model_name', default='roberta-large', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_roberta_048131723.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') __a = parser.parse_args() if args.model_type == "roberta": __a = RobertaForMaskedLM.from_pretrained(args.model_name) __a = 'roberta' elif args.model_type == "gpt2": __a = GPTaLMHeadModel.from_pretrained(args.model_name) __a = 'transformer' __a = model.state_dict() __a = {} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: __a = state_dict[f'{prefix}.{param_name}'] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: __a = f'{prefix}.embeddings.{w}.weight' __a = state_dict[param_name] for w in ["weight", "bias"]: __a = f'{prefix}.embeddings.LayerNorm.{w}' __a = state_dict[param_name] # Transformer Blocks # __a = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: __a = state_dict[ f'{prefix}.h.{teacher_idx}.{layer}.{w}' ] __a = state_dict[f'{prefix}.h.{teacher_idx}.attn.bias'] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: __a = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}' ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: __a = state_dict[f'{layer}'] if args.vocab_transform: for w in ["weight", "bias"]: __a = state_dict[f'lm_head.dense.{w}'] __a = state_dict[f'lm_head.layer_norm.{w}'] elif args.model_type == "gpt2": for w in ["weight", "bias"]: __a = state_dict[f'{prefix}.ln_f.{w}'] __a = state_dict['lm_head.weight'] print(f'N layers selected for distillation: {std_idx}') print(f'Number of params transferred for distillation: {len(compressed_sd.keys())}') print(f'Save transferred checkpoint to {args.dump_checkpoint}.') torch.save(compressed_sd, args.dump_checkpoint)
257
0
import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py lowerCAmelCase__ = """.""" # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) lowerCAmelCase__ = [ """Assert""", """AssignVariableOp""", """EmptyTensorList""", """MergeV2Checkpoints""", """ReadVariableOp""", """ResourceGather""", """RestoreV2""", """SaveV2""", """ShardedFilename""", """StatefulPartitionedCall""", """StaticRegexFullMatch""", """VarHandleOp""", ] def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Union[str, Any] , SCREAMING_SNAKE_CASE_: Union[str, Any] , SCREAMING_SNAKE_CASE_: Dict ) -> Optional[int]: '''simple docstring''' A__ = SavedModel() A__ = [] with open(os.path.join(SCREAMING_SNAKE_CASE_ , "utils" , "tf_ops" , "onnx.json" ) ) as f: A__ = json.load(SCREAMING_SNAKE_CASE_ )["opsets"] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(SCREAMING_SNAKE_CASE_ )] ) with open(SCREAMING_SNAKE_CASE_ , "rb" ) as f: saved_model.ParseFromString(f.read() ) A__ = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want A__ = sorted(SCREAMING_SNAKE_CASE_ ) A__ = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(SCREAMING_SNAKE_CASE_ ) if strict and len(SCREAMING_SNAKE_CASE_ ) > 0: raise Exception(F'Found the following incompatible ops for the opset {opset}:\n' + incompatible_ops ) elif len(SCREAMING_SNAKE_CASE_ ) > 0: print(F'Found the following incompatible ops for the opset {opset}:' ) print(*SCREAMING_SNAKE_CASE_ , sep="\n" ) else: print(F'The saved model {saved_model_path} can properly be converted with ONNX.' ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument("""--saved_model_path""", help="""Path of the saved model to check (the .pb file).""") parser.add_argument( """--opset""", default=1_2, type=int, help="""The ONNX opset against which the model has to be tested.""" ) parser.add_argument( """--framework""", choices=["""onnx"""], default="""onnx""", help="""Frameworks against which to test the saved model.""" ) parser.add_argument( """--strict""", action="""store_true""", help="""Whether make the checking strict (raise errors) or not (raise warnings)""" ) lowerCAmelCase__ = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
514
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: list ) -> list: '''simple docstring''' if len(SCREAMING_SNAKE_CASE_ ) <= 1: return [tuple(SCREAMING_SNAKE_CASE_ )] A__ = [] def generate(SCREAMING_SNAKE_CASE_: int , SCREAMING_SNAKE_CASE_: list ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , SCREAMING_SNAKE_CASE_ ) for i in range(k - 1 ): if k % 2 == 0: # k is even A__ , A__ = arr[k - 1], arr[i] else: # k is odd A__ , A__ = arr[k - 1], arr[0] generate(k - 1 , SCREAMING_SNAKE_CASE_ ) generate(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) return res if __name__ == "__main__": lowerCAmelCase__ = input("""Enter numbers separated by a comma:\n""").strip() lowerCAmelCase__ = [int(item) for item in user_input.split(""",""")] print(heaps(arr))
514
1
from __future__ import annotations _lowercase : Dict =[-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] _lowercase : str =[-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def __UpperCAmelCase ( UpperCamelCase__ :list[float] ) -> list[float]: snake_case__ : Union[str, Any] = [] snake_case__ : Union[str, Any] = len(UpperCamelCase__ ) for i in range(UpperCamelCase__ ): snake_case__ : float = -1 for j in range(i + 1 , UpperCamelCase__ ): if arr[i] < arr[j]: snake_case__ : Dict = arr[j] break result.append(UpperCamelCase__ ) return result def __UpperCAmelCase ( UpperCamelCase__ :list[float] ) -> list[float]: snake_case__ : Tuple = [] for i, outer in enumerate(UpperCamelCase__ ): snake_case__ : float = -1 for inner in arr[i + 1 :]: if outer < inner: snake_case__ : List[str] = inner break result.append(UpperCamelCase__ ) return result def __UpperCAmelCase ( UpperCamelCase__ :list[float] ) -> list[float]: snake_case__ : List[Any] = len(UpperCamelCase__ ) snake_case__ : list[float] = [] snake_case__ : list[float] = [-1] * arr_size for index in reversed(range(UpperCamelCase__ ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: snake_case__ : List[Any] = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) _lowercase : Optional[int] =( "from __main__ import arr, next_greatest_element_slow, " "next_greatest_element_fast, next_greatest_element" ) print( "next_greatest_element_slow():", timeit("next_greatest_element_slow(arr)", setup=setup), ) print( "next_greatest_element_fast():", timeit("next_greatest_element_fast(arr)", setup=setup), ) print( " next_greatest_element():", timeit("next_greatest_element(arr)", setup=setup), )
718
'''simple docstring''' import itertools import string from collections.abc import Generator, Iterable def __UpperCAmelCase ( UpperCamelCase__ :Iterable[str] , UpperCamelCase__ :int ) -> Generator[tuple[str, ...], None, None]: snake_case__ : Union[str, Any] = iter(UpperCamelCase__ ) while True: snake_case__ : Tuple = tuple(itertools.islice(UpperCamelCase__ , UpperCamelCase__ ) ) if not chunk: return yield chunk def __UpperCAmelCase ( UpperCamelCase__ :str ) -> str: snake_case__ : str = ''''''.join([c.upper() for c in dirty if c in string.ascii_letters] ) snake_case__ : List[str] = '''''' if len(UpperCamelCase__ ) < 2: return dirty for i in range(len(UpperCamelCase__ ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(UpperCamelCase__ ) & 1: clean += "X" return clean def __UpperCAmelCase ( UpperCamelCase__ :str ) -> list[str]: # I and J are used interchangeably to allow # us to use a 5x5 table (25 letters) snake_case__ : List[str] = '''ABCDEFGHIKLMNOPQRSTUVWXYZ''' # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler snake_case__ : Union[str, Any] = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(UpperCamelCase__ ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(UpperCamelCase__ ) return table def __UpperCAmelCase ( UpperCamelCase__ :str , UpperCamelCase__ :str ) -> str: snake_case__ : List[str] = generate_table(UpperCamelCase__ ) snake_case__ : List[str] = prepare_input(UpperCamelCase__ ) snake_case__ : int = '''''' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(UpperCamelCase__ , 2 ): snake_case__ , snake_case__ : List[str] = divmod(table.index(UpperCamelCase__ ) , 5 ) snake_case__ , snake_case__ : Tuple = divmod(table.index(UpperCamelCase__ ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def __UpperCAmelCase ( UpperCamelCase__ :str , UpperCamelCase__ :str ) -> str: snake_case__ : List[Any] = generate_table(UpperCamelCase__ ) snake_case__ : Union[str, Any] = '''''' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(UpperCamelCase__ , 2 ): snake_case__ , snake_case__ : Union[str, Any] = divmod(table.index(UpperCamelCase__ ) , 5 ) snake_case__ , snake_case__ : Optional[Any] = divmod(table.index(UpperCamelCase__ ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
574
0
'''simple docstring''' import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCamelCase : Optional[Any] = logging.get_logger(__name__) __lowerCamelCase : List[Any] = { """vocab_file""": """vocab.json""", """tokenizer_config_file""": """tokenizer_config.json""", """merges_file""": """merges.txt""", } __lowerCamelCase : Dict = { """vocab_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json""" ), }, """tokenizer_config_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json""" ), }, """merges_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt""" ), }, } __lowerCamelCase : str = """</w>""" __lowerCamelCase : Any = """@@ """ def __snake_case (__UpperCAmelCase ): """simple docstring""" lowerCamelCase_ : Dict = set() lowerCamelCase_ : Union[str, Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCamelCase_ : Union[str, Any] = char return pairs # Speech2Text2 has no max input length __lowerCamelCase : int = {"""facebook/s2t-wav2vec2-large-en-de""": 1024} class lowerCAmelCase__ ( _lowerCAmelCase ): A = VOCAB_FILES_NAMES A = PRETRAINED_VOCAB_FILES_MAP A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A = ["input_ids", "attention_mask"] def __init__( self : Dict , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[int]="<s>" , UpperCamelCase_ : str="<pad>" , UpperCamelCase_ : Optional[int]="</s>" , UpperCamelCase_ : List[str]="<unk>" , UpperCamelCase_ : List[str]=False , UpperCamelCase_ : Optional[Any]=None , **UpperCamelCase_ : int , ) -> Optional[Any]: """simple docstring""" super().__init__( unk_token=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , do_lower_case=UpperCamelCase_ , **UpperCamelCase_ , ) lowerCamelCase_ : Tuple = do_lower_case with open(UpperCamelCase_ , encoding='''utf-8''' ) as vocab_handle: lowerCamelCase_ : List[Any] = json.load(UpperCamelCase_ ) lowerCamelCase_ : int = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(F"""No merges files provided. {self.__class__.__name__} can only be used for decoding.""" ) lowerCamelCase_ : Dict = None lowerCamelCase_ : Optional[Any] = None else: with open(UpperCamelCase_ , encoding='''utf-8''' ) as merges_handle: lowerCamelCase_ : List[str] = merges_handle.read().split('''\n''' )[:-1] lowerCamelCase_ : Any = [tuple(merge.split()[:2] ) for merge in merges] lowerCamelCase_ : List[Any] = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) lowerCamelCase_ : Optional[Any] = {} @property def __UpperCamelCase ( self : List[str] ) -> int: """simple docstring""" return len(self.decoder ) def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __UpperCamelCase ( self : List[Any] , UpperCamelCase_ : Optional[int] ) -> Tuple: """simple docstring""" lowerCamelCase_ : str = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] lowerCamelCase_ : Union[str, Any] = get_pairs(UpperCamelCase_ ) if not pairs: return token while True: lowerCamelCase_ : Optional[int] = min(UpperCamelCase_ , key=lambda UpperCamelCase_ : self.bpe_ranks.get(UpperCamelCase_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowerCamelCase_ , lowerCamelCase_ : Optional[int] = bigram lowerCamelCase_ : str = [] lowerCamelCase_ : Optional[int] = 0 while i < len(UpperCamelCase_ ): try: lowerCamelCase_ : Dict = word.index(UpperCamelCase_ , UpperCamelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCamelCase_ : Tuple = j if word[i] == first and i < len(UpperCamelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCamelCase_ : str = tuple(UpperCamelCase_ ) lowerCamelCase_ : str = new_word if len(UpperCamelCase_ ) == 1: break else: lowerCamelCase_ : Any = get_pairs(UpperCamelCase_ ) lowerCamelCase_ : List[str] = ''' '''.join(UpperCamelCase_ ) if word == "\n " + BPE_TOKEN_MERGES: lowerCamelCase_ : Dict = '''\n''' + BPE_TOKEN_MERGES if word.endswith(UpperCamelCase_ ): lowerCamelCase_ : Any = word.replace(UpperCamelCase_ , '''''' ) lowerCamelCase_ : Tuple = word.replace(''' ''' , UpperCamelCase_ ) lowerCamelCase_ : Optional[Any] = word return word def __UpperCamelCase ( self : str , UpperCamelCase_ : Tuple ) -> Union[str, Any]: """simple docstring""" if self.bpe_ranks is None: raise ValueError( '''This tokenizer was instantiated without a `merges.txt` file, so''' ''' that it can only be used for decoding, not for encoding.''' '''Make sure to provide `merges.txt` file at instantiation to enable ''' '''encoding.''' ) if self.do_lower_case: lowerCamelCase_ : List[Any] = text.lower() lowerCamelCase_ : List[str] = text.split() lowerCamelCase_ : Dict = [] for token in text: if token: split_tokens.extend(list(self.bpe(UpperCamelCase_ ).split(''' ''' ) ) ) return split_tokens def __UpperCamelCase ( self : Dict , UpperCamelCase_ : str ) -> int: """simple docstring""" return self.encoder.get(UpperCamelCase_ , self.encoder.get(self.unk_token ) ) def __UpperCamelCase ( self : Tuple , UpperCamelCase_ : int ) -> str: """simple docstring""" lowerCamelCase_ : Any = self.decoder.get(UpperCamelCase_ , self.unk_token ) return result def __UpperCamelCase ( self : List[str] , UpperCamelCase_ : List[str] ) -> str: """simple docstring""" lowerCamelCase_ : str = ''' '''.join(UpperCamelCase_ ) # make sure @@ tokens are concatenated lowerCamelCase_ : int = ''''''.join(string.split(UpperCamelCase_ ) ) return string def __UpperCamelCase ( self : Optional[Any] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(UpperCamelCase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCamelCase_ : Optional[Any] = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase_ : Optional[Any] = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(UpperCamelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCamelCase_ , ensure_ascii=UpperCamelCase_ ) + '''\n''' ) lowerCamelCase_ : Optional[Any] = 0 if self.bpe_ranks is None: return (vocab_file,) with open(UpperCamelCase_ , '''w''' , encoding='''utf-8''' ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCamelCase_ : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) lowerCamelCase_ : Union[str, Any] = token_index writer.write(''' '''.join(UpperCamelCase_ ) + '''\n''' ) index += 1 return (vocab_file, merges_file)
501
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __lowerCamelCase : Optional[int] = logging.get_logger(__name__) __lowerCamelCase : List[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} __lowerCamelCase : Tuple = { """vocab_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/vocab.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/vocab.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/vocab.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/vocab.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/vocab.json""", }, """merges_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/merges.txt""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/merges.txt""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/merges.txt""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/merges.txt""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/merges.txt""", }, """tokenizer_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/tokenizer.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/tokenizer.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/tokenizer.json""", }, } __lowerCamelCase : str = { """gpt2""": 1024, """gpt2-medium""": 1024, """gpt2-large""": 1024, """gpt2-xl""": 1024, """distilgpt2""": 1024, } class lowerCAmelCase__ ( _lowerCAmelCase ): A = VOCAB_FILES_NAMES A = PRETRAINED_VOCAB_FILES_MAP A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A = ["input_ids", "attention_mask"] A = GPTaTokenizer def __init__( self : Any , UpperCamelCase_ : Dict=None , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : List[Any]="<|endoftext|>" , UpperCamelCase_ : Dict="<|endoftext|>" , UpperCamelCase_ : Any="<|endoftext|>" , UpperCamelCase_ : Optional[int]=False , **UpperCamelCase_ : Dict , ) -> Optional[int]: """simple docstring""" super().__init__( UpperCamelCase_ , UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , unk_token=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , **UpperCamelCase_ , ) lowerCamelCase_ : Any = kwargs.pop('''add_bos_token''' , UpperCamelCase_ ) lowerCamelCase_ : Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , UpperCamelCase_ ) != add_prefix_space: lowerCamelCase_ : List[str] = getattr(UpperCamelCase_ , pre_tok_state.pop('''type''' ) ) lowerCamelCase_ : int = add_prefix_space lowerCamelCase_ : Tuple = pre_tok_class(**UpperCamelCase_ ) lowerCamelCase_ : List[str] = add_prefix_space def __UpperCamelCase ( self : Union[str, Any] , *UpperCamelCase_ : Any , **UpperCamelCase_ : Union[str, Any] ) -> BatchEncoding: """simple docstring""" lowerCamelCase_ : Optional[Any] = kwargs.get('''is_split_into_words''' , UpperCamelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCamelCase_ , **UpperCamelCase_ ) def __UpperCamelCase ( self : Dict , *UpperCamelCase_ : Tuple , **UpperCamelCase_ : Optional[Any] ) -> BatchEncoding: """simple docstring""" lowerCamelCase_ : Optional[Any] = kwargs.get('''is_split_into_words''' , UpperCamelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCamelCase_ , **UpperCamelCase_ ) def __UpperCamelCase ( self : Union[str, Any] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" lowerCamelCase_ : List[str] = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ ) return tuple(UpperCamelCase_ ) def __UpperCamelCase ( self : Optional[int] , UpperCamelCase_ : "Conversation" ) -> List[int]: """simple docstring""" lowerCamelCase_ : Union[str, Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) + [self.eos_token_id] ) if len(UpperCamelCase_ ) > self.model_max_length: lowerCamelCase_ : List[str] = input_ids[-self.model_max_length :] return input_ids
501
1
import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py _lowerCamelCase : List[Any] = """src/transformers""" _lowerCamelCase : Optional[Any] = """docs/source/en/tasks""" def _SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: with open(lowerCAmelCase__ , 'r' , encoding='utf-8' , newline='\n' ) as f: SCREAMING_SNAKE_CASE : Optional[int] = f.readlines() # Find the start prompt. SCREAMING_SNAKE_CASE : Optional[int] = 0 while not lines[start_index].startswith(lowerCAmelCase__ ): start_index += 1 start_index += 1 SCREAMING_SNAKE_CASE : int = start_index while not lines[end_index].startswith(lowerCAmelCase__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. _lowerCamelCase : str = direct_transformers_import(TRANSFORMERS_PATH) _lowerCamelCase : Dict = { """asr.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, """audio_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, """language_modeling.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, """image_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, """masked_language_modeling.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, """multiple_choice.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, """object_detection.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, """question_answering.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, """semantic_segmentation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, """sequence_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, """summarization.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, """token_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, """translation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, """video_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, """document_question_answering.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, """monocular_depth_estimation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). _lowerCamelCase : Optional[int] = { """summarization.md""": ("""nllb""",), """translation.md""": ("""nllb""",), } def _SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Tuple: SCREAMING_SNAKE_CASE : List[str] = TASK_GUIDE_TO_MODELS[task_guide] SCREAMING_SNAKE_CASE : Union[str, Any] = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(lowerCAmelCase__ , set() ) SCREAMING_SNAKE_CASE : Optional[int] = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F'''[{name}](../model_doc/{code})''' for code, name in model_names.items()] ) + "\n" def _SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase=False ) -> Union[str, Any]: SCREAMING_SNAKE_CASE : Dict = _find_text_in_file( filename=os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) , start_prompt='<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->' , end_prompt='<!--End of the generated tip-->' , ) SCREAMING_SNAKE_CASE : Dict = get_model_list_for_task(lowerCAmelCase__ ) if current_list != new_list: if overwrite: with open(os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F'''The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`''' ' to fix this.' ) if __name__ == "__main__": _lowerCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") _lowerCamelCase : Optional[Any] = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
709
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class lowercase ( unittest.TestCase): '''simple docstring''' def __init__( self : List[Any] , snake_case : Union[str, Any] , snake_case : Optional[int]=7 , snake_case : Tuple=3 , snake_case : List[Any]=30 , snake_case : Union[str, Any]=400 , snake_case : Optional[int]=True , snake_case : Tuple=None , snake_case : List[Any]=True , snake_case : Dict=[0.5, 0.5, 0.5] , snake_case : List[Any]=[0.5, 0.5, 0.5] , snake_case : str=True , snake_case : Any=1 / 255 , snake_case : Optional[int]=True , ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333} SCREAMING_SNAKE_CASE : Union[str, Any] = parent SCREAMING_SNAKE_CASE : int = batch_size SCREAMING_SNAKE_CASE : str = num_channels SCREAMING_SNAKE_CASE : int = min_resolution SCREAMING_SNAKE_CASE : List[str] = max_resolution SCREAMING_SNAKE_CASE : Any = do_resize SCREAMING_SNAKE_CASE : List[Any] = size SCREAMING_SNAKE_CASE : Optional[Any] = do_normalize SCREAMING_SNAKE_CASE : Dict = image_mean SCREAMING_SNAKE_CASE : Dict = image_std SCREAMING_SNAKE_CASE : Dict = do_rescale SCREAMING_SNAKE_CASE : int = rescale_factor SCREAMING_SNAKE_CASE : Optional[int] = do_pad def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowerCamelCase_ ( self : Optional[int] , snake_case : List[str] , snake_case : Dict=False ): '''simple docstring''' if not batched: SCREAMING_SNAKE_CASE : Optional[int] = image_inputs[0] if isinstance(snake_case , Image.Image ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = image.size else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = image.shape[1], image.shape[2] if w < h: SCREAMING_SNAKE_CASE : int = int(self.size['shortest_edge'] * h / w ) SCREAMING_SNAKE_CASE : int = self.size['shortest_edge'] elif w > h: SCREAMING_SNAKE_CASE : int = self.size['shortest_edge'] SCREAMING_SNAKE_CASE : Optional[int] = int(self.size['shortest_edge'] * w / h ) else: SCREAMING_SNAKE_CASE : Optional[Any] = self.size['shortest_edge'] SCREAMING_SNAKE_CASE : int = self.size['shortest_edge'] else: SCREAMING_SNAKE_CASE : Tuple = [] for image in image_inputs: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) SCREAMING_SNAKE_CASE : int = max(snake_case , key=lambda snake_case : item[0] )[0] SCREAMING_SNAKE_CASE : Optional[int] = max(snake_case , key=lambda snake_case : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowercase ( SCREAMING_SNAKE_CASE_ , unittest.TestCase): '''simple docstring''' UpperCAmelCase : Optional[Any] = DeformableDetrImageProcessor if is_vision_available() else None def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = DeformableDetrImageProcessingTester(self ) @property def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case , 'image_mean' ) ) self.assertTrue(hasattr(snake_case , 'image_std' ) ) self.assertTrue(hasattr(snake_case , 'do_normalize' ) ) self.assertTrue(hasattr(snake_case , 'do_resize' ) ) self.assertTrue(hasattr(snake_case , 'do_rescale' ) ) self.assertTrue(hasattr(snake_case , 'do_pad' ) ) self.assertTrue(hasattr(snake_case , 'size' ) ) def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1333} ) self.assertEqual(image_processor.do_pad , snake_case ) SCREAMING_SNAKE_CASE : Tuple = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=snake_case ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , snake_case ) def lowerCamelCase_ ( self : str ): '''simple docstring''' pass def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE : Optional[int] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.image_processor_tester.get_expected_values(snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.image_processor_tester.get_expected_values(snake_case , batched=snake_case ) SCREAMING_SNAKE_CASE : Any = image_processing(snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case , numpify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE : int = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = self.image_processor_tester.get_expected_values(snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE : List[Any] = image_processing(snake_case , return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = self.image_processor_tester.get_expected_values(snake_case , batched=snake_case ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case , torchify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = self.image_processor_tester.get_expected_values(snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE : Union[str, Any] = image_processing(snake_case , return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.image_processor_tester.get_expected_values(snake_case , batched=snake_case ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: SCREAMING_SNAKE_CASE : str = json.loads(f.read() ) SCREAMING_SNAKE_CASE : Optional[int] = {'image_id': 39769, 'annotations': target} # encode them SCREAMING_SNAKE_CASE : str = DeformableDetrImageProcessor() SCREAMING_SNAKE_CASE : int = image_processing(images=snake_case , annotations=snake_case , return_tensors='pt' ) # verify pixel values SCREAMING_SNAKE_CASE : int = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , snake_case ) SCREAMING_SNAKE_CASE : int = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , snake_case , atol=1E-4 ) ) # verify area SCREAMING_SNAKE_CASE : str = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , snake_case ) ) # verify boxes SCREAMING_SNAKE_CASE : Dict = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , snake_case ) SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , snake_case , atol=1E-3 ) ) # verify image_id SCREAMING_SNAKE_CASE : int = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , snake_case ) ) # verify is_crowd SCREAMING_SNAKE_CASE : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , snake_case ) ) # verify class_labels SCREAMING_SNAKE_CASE : str = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , snake_case ) ) # verify orig_size SCREAMING_SNAKE_CASE : Dict = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , snake_case ) ) # verify size SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , snake_case ) ) @slow def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: SCREAMING_SNAKE_CASE : Optional[int] = json.loads(f.read() ) SCREAMING_SNAKE_CASE : List[str] = {'file_name': '000000039769.png', 'image_id': 39769, 'segments_info': target} SCREAMING_SNAKE_CASE : Optional[Any] = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them SCREAMING_SNAKE_CASE : Union[str, Any] = DeformableDetrImageProcessor(format='coco_panoptic' ) SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(images=snake_case , annotations=snake_case , masks_path=snake_case , return_tensors='pt' ) # verify pixel values SCREAMING_SNAKE_CASE : str = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , snake_case ) SCREAMING_SNAKE_CASE : List[str] = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , snake_case , atol=1E-4 ) ) # verify area SCREAMING_SNAKE_CASE : Any = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , snake_case ) ) # verify boxes SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , snake_case ) SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , snake_case , atol=1E-3 ) ) # verify image_id SCREAMING_SNAKE_CASE : int = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , snake_case ) ) # verify is_crowd SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , snake_case ) ) # verify class_labels SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , snake_case ) ) # verify masks SCREAMING_SNAKE_CASE : Tuple = 822873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , snake_case ) # verify orig_size SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , snake_case ) ) # verify size SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , snake_case ) )
308
0
from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder A_ : str = datasets.utils.logging.get_logger(__name__) class _lowerCAmelCase( folder_based_builder.FolderBasedBuilderConfig ): """simple docstring""" a : bool =None a : bool =None class _lowerCAmelCase( folder_based_builder.FolderBasedBuilder ): """simple docstring""" a : str =datasets.Audio() a : List[Any] ='''audio''' a : Optional[Any] =AudioFolderConfig a : List[str] # definition at the bottom of the script a : str =AudioClassification(audio_column='''audio''' , label_column='''label''' ) A_ : Optional[Any] = [ '.aiff', '.au', '.avr', '.caf', '.flac', '.htk', '.svx', '.mat4', '.mat5', '.mpc2k', '.ogg', '.paf', '.pvf', '.raw', '.rf64', '.sd2', '.sds', '.ircam', '.voc', '.w64', '.wav', '.nist', '.wavex', '.wve', '.xi', '.mp3', '.opus', ] A_ : Tuple = AUDIO_EXTENSIONS
57
lowercase__ : Dict = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(100_000)] def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> int: a = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_00_00] number //= 10_00_00 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution lowercase__ : list[bool | None] = [None] * 10_000_000 lowercase__ : Optional[int] = True lowercase__ : List[str] = False def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> bool: if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore a = chain(next_number(__UpperCamelCase)) a = number_chain while number < 10_00_00_00: a = number_chain number *= 10 return number_chain def SCREAMING_SNAKE_CASE ( __UpperCamelCase = 10_00_00_00) -> int: for i in range(1 , __UpperCamelCase): if CHAINS[i] is None: chain(i + 1) return CHAINS[:number].count(__UpperCamelCase) if __name__ == "__main__": import doctest doctest.testmod() print(F'{solution() = }')
515
0
_A = 8.314_4598 def lowercase_ ( A__ , A__ ) -> float: """simple docstring""" if temperature < 0: raise Exception("Temperature cannot be less than 0 K" ) if molar_mass <= 0: raise Exception("Molar mass cannot be less than or equal to 0 kg/mol" ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example _A = 3_00 _A = 28 _A = rms_speed_of_molecule(temperature, molar_mass) print(f"Vrms of Nitrogen gas at 300 K is {vrms} m/s")
294
from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 _A = { # 1536-bit 5: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 2048-bit 14: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AACAA68FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 3072-bit 15: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 4096-bit 16: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199" + "FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 6144-bit 17: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08" + "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B" + "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9" + "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6" + "49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8" + "FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C" + "180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718" + "3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D" + "04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D" + "B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226" + "1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC" + "E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26" + "99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB" + "04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2" + "233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127" + "D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406" + "AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918" + "DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151" + "2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03" + "F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F" + "BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B" + "B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632" + "387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E" + "6DCC4024FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 8192-bit 18: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD" + "F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831" + "179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B" + "DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF" + "5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6" + "D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3" + "23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328" + "06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C" + "DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE" + "12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4" + "38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300" + "741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568" + "3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9" + "22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B" + "4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A" + "062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36" + "4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1" + "B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92" + "4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47" + "9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71" + "60C980DD98EDD3DFFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, } class lowerCamelCase : def __init__(self : Any , _A : int = 1_4 ) -> None: if group not in primes: raise ValueError("Unsupported Group" ) snake_case = primes[group]["prime"] snake_case = primes[group]["generator"] snake_case = int(hexlify(urandom(3_2 ) ) , base=1_6 ) def UpperCAmelCase(self : Any ) -> str: return hex(self.__private_key )[2:] def UpperCAmelCase(self : Tuple ) -> str: snake_case = pow(self.generator , self.__private_key , self.prime ) return hex(_A )[2:] def UpperCAmelCase(self : Optional[int] , _A : int ) -> bool: # check if the other public key is valid based on NIST SP800-56 return ( 2 <= key <= self.prime - 2 and pow(_A , (self.prime - 1) // 2 , self.prime ) == 1 ) def UpperCAmelCase(self : List[Any] , _A : str ) -> str: snake_case = int(_A , base=1_6 ) if not self.is_valid_public_key(_A ): raise ValueError("Invalid public key" ) snake_case = pow(_A , self.__private_key , self.prime ) return shaaaa(str(_A ).encode() ).hexdigest() @staticmethod def UpperCAmelCase(_A : int , _A : int ) -> bool: # check if the other public key is valid based on NIST SP800-56 return ( 2 <= remote_public_key_str <= prime - 2 and pow(_A , (prime - 1) // 2 , _A ) == 1 ) @staticmethod def UpperCAmelCase(_A : str , _A : str , _A : int = 1_4 ) -> str: snake_case = int(_A , base=1_6 ) snake_case = int(_A , base=1_6 ) snake_case = primes[group]["prime"] if not DiffieHellman.is_valid_public_key_static(_A , _A ): raise ValueError("Invalid public key" ) snake_case = pow(_A , _A , _A ) return shaaaa(str(_A ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
294
1
import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __SCREAMING_SNAKE_CASE =logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.14.0""", """To fix: pip install -r examples/pytorch/audio-classification/requirements.txt""") def a (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 1_6_0_0_0 ): SCREAMING_SNAKE_CASE_ = int(round(sample_rate * max_length ) ) if len(_lowerCAmelCase ) <= sample_length: return wav SCREAMING_SNAKE_CASE_ = randint(0 , len(_lowerCAmelCase ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class __magic_name__ : '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[str] = field(default=__UpperCAmelCase , metadata={"help": "Name of a dataset from the datasets package"}) SCREAMING_SNAKE_CASE__ : Optional[str] = field( default=__UpperCAmelCase , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}) SCREAMING_SNAKE_CASE__ : Optional[str] = field( default=__UpperCAmelCase , metadata={"help": "A file containing the training audio paths and labels."}) SCREAMING_SNAKE_CASE__ : Optional[str] = field( default=__UpperCAmelCase , metadata={"help": "A file containing the validation audio paths and labels."}) SCREAMING_SNAKE_CASE__ : str = field( default="train" , metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" } , ) SCREAMING_SNAKE_CASE__ : str = field( default="validation" , metadata={ "help": ( "The name of the training data set split to use (via the datasets library). Defaults to 'validation'" ) } , ) SCREAMING_SNAKE_CASE__ : str = field( default="audio" , metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"} , ) SCREAMING_SNAKE_CASE__ : str = field( default="label" , metadata={"help": "The name of the dataset column containing the labels. Defaults to 'label'"}) SCREAMING_SNAKE_CASE__ : Optional[int] = field( default=__UpperCAmelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) SCREAMING_SNAKE_CASE__ : Optional[int] = field( default=__UpperCAmelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) SCREAMING_SNAKE_CASE__ : float = field( default=20 , metadata={"help": "Audio clips will be randomly cut to this length during training if the value is set."} , ) @dataclass class __magic_name__ : '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = field( default="facebook/wav2vec2-base" , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} , ) SCREAMING_SNAKE_CASE__ : Optional[str] = field( default=__UpperCAmelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"}) SCREAMING_SNAKE_CASE__ : Optional[str] = field( default=__UpperCAmelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from the Hub"}) SCREAMING_SNAKE_CASE__ : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) SCREAMING_SNAKE_CASE__ : Optional[str] = field( default=__UpperCAmelCase , metadata={"help": "Name or path of preprocessor config."}) SCREAMING_SNAKE_CASE__ : bool = field( default=__UpperCAmelCase , metadata={"help": "Whether to freeze the feature encoder layers of the model."}) SCREAMING_SNAKE_CASE__ : bool = field( default=__UpperCAmelCase , metadata={"help": "Whether to generate an attention mask in the feature extractor."}) SCREAMING_SNAKE_CASE__ : bool = field( default=__UpperCAmelCase , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) SCREAMING_SNAKE_CASE__ : Optional[bool] = field( default=__UpperCAmelCase , metadata={"help": "Whether to freeze the feature extractor layers of the model."}) SCREAMING_SNAKE_CASE__ : bool = field( default=__UpperCAmelCase , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , ) def _A ( self: Union[str, Any] ): if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( '''The argument `--freeze_feature_extractor` is deprecated and ''' '''will be removed in a future version. Use `--freeze_feature_encoder`''' '''instead. Setting `freeze_feature_encoder==True`.''' , _lowerCamelCase , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( '''The argument `--freeze_feature_extractor` is deprecated and ''' '''should not be used in combination with `--freeze_feature_encoder`.''' '''Only make use of `--freeze_feature_encoder`.''' ) def a (): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. SCREAMING_SNAKE_CASE_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_audio_classification''' , _lowerCAmelCase , _lowerCAmelCase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() SCREAMING_SNAKE_CASE_ = training_args.get_process_log_level() logger.setLevel(_lowerCAmelCase ) transformers.utils.logging.set_verbosity(_lowerCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} " + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(F"Training/evaluation parameters {training_args}" ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. SCREAMING_SNAKE_CASE_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: SCREAMING_SNAKE_CASE_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " '''Use --overwrite_output_dir to train from scratch.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Initialize our dataset and prepare it for the audio classification task. SCREAMING_SNAKE_CASE_ = DatasetDict() SCREAMING_SNAKE_CASE_ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) SCREAMING_SNAKE_CASE_ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F"--audio_column_name {data_args.audio_column_name} not found in dataset '{data_args.dataset_name}'. " '''Make sure to set `--audio_column_name` to the correct audio column - one of ''' F"{', '.join(raw_datasets['train'].column_names )}." ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F"--label_column_name {data_args.label_column_name} not found in dataset '{data_args.dataset_name}'. " '''Make sure to set `--label_column_name` to the correct text column - one of ''' F"{', '.join(raw_datasets['train'].column_names )}." ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy SCREAMING_SNAKE_CASE_ = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. SCREAMING_SNAKE_CASE_ = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) SCREAMING_SNAKE_CASE_ = feature_extractor.model_input_names[0] def train_transforms(_lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = [] for audio in batch[data_args.audio_column_name]: SCREAMING_SNAKE_CASE_ = random_subsample( audio['''array'''] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , sampling_rate=feature_extractor.sampling_rate ) SCREAMING_SNAKE_CASE_ = {model_input_name: inputs.get(_lowerCAmelCase )} SCREAMING_SNAKE_CASE_ = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(_lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = [audio['''array'''] for audio in batch[data_args.audio_column_name]] SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , sampling_rate=feature_extractor.sampling_rate ) SCREAMING_SNAKE_CASE_ = {model_input_name: inputs.get(_lowerCAmelCase )} SCREAMING_SNAKE_CASE_ = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. SCREAMING_SNAKE_CASE_ = raw_datasets['''train'''].features[data_args.label_column_name].names SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = {}, {} for i, label in enumerate(_lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = str(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = label # Load the accuracy metric from the datasets package SCREAMING_SNAKE_CASE_ = evaluate.load('''accuracy''' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(_lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=_lowerCAmelCase , references=eval_pred.label_ids ) SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(_lowerCAmelCase ) , labelaid=_lowerCAmelCase , idalabel=_lowerCAmelCase , finetuning_task='''audio-classification''' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) SCREAMING_SNAKE_CASE_ = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_lowerCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: SCREAMING_SNAKE_CASE_ = ( raw_datasets['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(_lowerCAmelCase , output_all_columns=_lowerCAmelCase ) if training_args.do_eval: if data_args.max_eval_samples is not None: SCREAMING_SNAKE_CASE_ = ( raw_datasets['''eval'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(_lowerCAmelCase , output_all_columns=_lowerCAmelCase ) # Initialize our trainer SCREAMING_SNAKE_CASE_ = Trainer( model=_lowerCAmelCase , args=_lowerCAmelCase , train_dataset=raw_datasets['''train'''] if training_args.do_train else None , eval_dataset=raw_datasets['''eval'''] if training_args.do_eval else None , compute_metrics=_lowerCAmelCase , tokenizer=_lowerCAmelCase , ) # Training if training_args.do_train: SCREAMING_SNAKE_CASE_ = None if training_args.resume_from_checkpoint is not None: SCREAMING_SNAKE_CASE_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: SCREAMING_SNAKE_CASE_ = last_checkpoint SCREAMING_SNAKE_CASE_ = trainer.train(resume_from_checkpoint=_lowerCAmelCase ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: SCREAMING_SNAKE_CASE_ = trainer.evaluate() trainer.log_metrics('''eval''' , _lowerCAmelCase ) trainer.save_metrics('''eval''' , _lowerCAmelCase ) # Write model card and (optionally) push to hub SCREAMING_SNAKE_CASE_ = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''audio-classification''', '''dataset''': data_args.dataset_name, '''tags''': ['''audio-classification'''], } if training_args.push_to_hub: trainer.push_to_hub(**_lowerCAmelCase ) else: trainer.create_model_card(**_lowerCAmelCase ) if __name__ == "__main__": main()
234
from __future__ import annotations def a (_lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = len(_lowerCAmelCase ) // 2 # choose the middle 3 elements SCREAMING_SNAKE_CASE_ = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
234
1
"""simple docstring""" def lowercase_ ( _lowerCamelCase: int = 1 , _lowerCamelCase: int = 1000 ) -> Optional[int]: '''simple docstring''' __lowerCamelCase : Optional[Any] = 1 __lowerCamelCase : Dict = 0 for divide_by_number in range(_lowerCAmelCase , digit + 1 ): __lowerCamelCase : list[int] = [] __lowerCamelCase : Tuple = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(_lowerCAmelCase ): __lowerCamelCase : Any = len(_lowerCAmelCase ) __lowerCamelCase : Dict = divide_by_number else: has_been_divided.append(_lowerCAmelCase ) __lowerCamelCase : int = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
711
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class _snake_case ( unittest.TestCase ): snake_case__ = ViTImageProcessor if is_vision_available() else None @property def lowerCamelCase__ ( self : List[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase__ ( self : Tuple ): __lowerCamelCase : str = (3, 32, 128) __lowerCamelCase : Optional[int] = tempfile.mkdtemp() # fmt: off __lowerCamelCase : Tuple = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"] # fmt: on __lowerCamelCase : Dict = dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) ) __lowerCamelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(UpperCAmelCase ) + "\n" ) __lowerCamelCase : int = { "do_normalize": False, "do_resize": True, "image_processor_type": "ViTImageProcessor", "resample": 3, "size": {"height": 32, "width": 128}, } __lowerCamelCase : Dict = os.path.join(self.tmpdirname , UpperCAmelCase ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(UpperCAmelCase , UpperCAmelCase ) def lowerCamelCase__ ( self : Tuple , **UpperCAmelCase : Optional[int] ): return MgpstrTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def lowerCamelCase__ ( self : List[str] , **UpperCAmelCase : List[str] ): return ViTImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def lowerCamelCase__ ( self : Tuple ): shutil.rmtree(self.tmpdirname ) def lowerCamelCase__ ( self : str ): __lowerCamelCase : Any = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta ) __lowerCamelCase : Union[str, Any] = Image.fromarray(np.moveaxis(UpperCAmelCase , 0 , -1 ) ) return image_input def lowerCamelCase__ ( self : List[str] ): __lowerCamelCase : Union[str, Any] = self.get_tokenizer() __lowerCamelCase : Any = self.get_image_processor() __lowerCamelCase : List[Any] = MgpstrProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) __lowerCamelCase : str = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase ) def lowerCamelCase__ ( self : Optional[int] ): __lowerCamelCase : Any = self.get_tokenizer() __lowerCamelCase : Dict = self.get_image_processor() __lowerCamelCase : Optional[int] = MgpstrProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) __lowerCamelCase : Dict = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) __lowerCamelCase : Any = self.get_image_processor(do_normalize=UpperCAmelCase , padding_value=1.0 ) __lowerCamelCase : List[str] = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase ) def lowerCamelCase__ ( self : Optional[Any] ): __lowerCamelCase : List[str] = self.get_image_processor() __lowerCamelCase : Dict = self.get_tokenizer() __lowerCamelCase : Optional[int] = MgpstrProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) __lowerCamelCase : Optional[int] = self.prepare_image_inputs() __lowerCamelCase : Optional[int] = image_processor(UpperCAmelCase , return_tensors="np" ) __lowerCamelCase : Tuple = processor(images=UpperCAmelCase , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCamelCase__ ( self : Union[str, Any] ): __lowerCamelCase : int = self.get_image_processor() __lowerCamelCase : Any = self.get_tokenizer() __lowerCamelCase : int = MgpstrProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) __lowerCamelCase : Optional[Any] = "test" __lowerCamelCase : List[Any] = processor(text=UpperCAmelCase ) __lowerCamelCase : Optional[int] = tokenizer(UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCamelCase__ ( self : Union[str, Any] ): __lowerCamelCase : Union[str, Any] = self.get_image_processor() __lowerCamelCase : Optional[Any] = self.get_tokenizer() __lowerCamelCase : Optional[int] = MgpstrProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) __lowerCamelCase : str = "test" __lowerCamelCase : Union[str, Any] = self.prepare_image_inputs() __lowerCamelCase : Optional[Any] = processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "labels"] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase ): processor() def lowerCamelCase__ ( self : Optional[Any] ): __lowerCamelCase : Any = self.get_image_processor() __lowerCamelCase : Optional[Any] = self.get_tokenizer() __lowerCamelCase : Dict = MgpstrProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) __lowerCamelCase : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] __lowerCamelCase : List[Any] = processor.char_decode(UpperCAmelCase ) __lowerCamelCase : Dict = tokenizer.batch_decode(UpperCAmelCase ) __lowerCamelCase : Any = [seq.replace(" " , "" ) for seq in decoded_tok] self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def lowerCamelCase__ ( self : Any ): __lowerCamelCase : str = self.get_image_processor() __lowerCamelCase : str = self.get_tokenizer() __lowerCamelCase : Union[str, Any] = MgpstrProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) __lowerCamelCase : Tuple = None __lowerCamelCase : int = self.prepare_image_inputs() __lowerCamelCase : List[str] = processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def lowerCamelCase__ ( self : Optional[Any] ): __lowerCamelCase : Optional[Any] = self.get_image_processor() __lowerCamelCase : Tuple = self.get_tokenizer() __lowerCamelCase : List[Any] = MgpstrProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) __lowerCamelCase : Optional[int] = torch.randn(1 , 27 , 38 ) __lowerCamelCase : List[str] = torch.randn(1 , 27 , 50257 ) __lowerCamelCase : Union[str, Any] = torch.randn(1 , 27 , 30522 ) __lowerCamelCase : str = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ["generated_text", "scores", "char_preds", "bpe_preds", "wp_preds"] )
366
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase : Tuple = logging.get_logger(__name__) def A__ ( __lowerCAmelCase : int ): lowerCamelCase__ = DPTConfig(embedding_type="""hybrid""" ) if "large" in checkpoint_url: lowerCamelCase__ = 1024 lowerCamelCase__ = 4096 lowerCamelCase__ = 24 lowerCamelCase__ = 16 lowerCamelCase__ = [5, 11, 17, 23] lowerCamelCase__ = [256, 512, 1024, 1024] lowerCamelCase__ = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: lowerCamelCase__ = 768 lowerCamelCase__ = [1, 1, 1, 0.5] lowerCamelCase__ = [256, 512, 768, 768] lowerCamelCase__ = 150 lowerCamelCase__ = 16 lowerCamelCase__ = (1, 384, 384) lowerCamelCase__ = False lowerCamelCase__ = """project""" if "ade" in checkpoint_url: lowerCamelCase__ = True lowerCamelCase__ = 768 lowerCamelCase__ = [1, 1, 1, 0.5] lowerCamelCase__ = 150 lowerCamelCase__ = 16 lowerCamelCase__ = """huggingface/label-files""" lowerCamelCase__ = """ade20k-id2label.json""" lowerCamelCase__ = json.load(open(cached_download(hf_hub_url(__lowerCAmelCase , __lowerCAmelCase , repo_type="""dataset""" ) ) , """r""" ) ) lowerCamelCase__ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} lowerCamelCase__ = idalabel lowerCamelCase__ = {v: k for k, v in idalabel.items()} lowerCamelCase__ = [1, 150, 480, 480] return config, expected_shape def A__ ( __lowerCAmelCase : Optional[int] ): lowerCamelCase__ = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def A__ ( __lowerCAmelCase : List[Any] ): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): lowerCamelCase__ = name.replace("""pretrained.model""" , """dpt.encoder""" ) if "pretrained.model" in name: lowerCamelCase__ = name.replace("""pretrained.model""" , """dpt.embeddings""" ) if "patch_embed" in name: lowerCamelCase__ = name.replace("""patch_embed""" , """""" ) if "pos_embed" in name: lowerCamelCase__ = name.replace("""pos_embed""" , """position_embeddings""" ) if "attn.proj" in name: lowerCamelCase__ = name.replace("""attn.proj""" , """attention.output.dense""" ) if "proj" in name and "project" not in name: lowerCamelCase__ = name.replace("""proj""" , """projection""" ) if "blocks" in name: lowerCamelCase__ = name.replace("""blocks""" , """layer""" ) if "mlp.fc1" in name: lowerCamelCase__ = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowerCamelCase__ = name.replace("""mlp.fc2""" , """output.dense""" ) if "norm1" in name and "backbone" not in name: lowerCamelCase__ = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name and "backbone" not in name: lowerCamelCase__ = name.replace("""norm2""" , """layernorm_after""" ) if "scratch.output_conv" in name: lowerCamelCase__ = name.replace("""scratch.output_conv""" , """head""" ) if "scratch" in name: lowerCamelCase__ = name.replace("""scratch""" , """neck""" ) if "layer1_rn" in name: lowerCamelCase__ = name.replace("""layer1_rn""" , """convs.0""" ) if "layer2_rn" in name: lowerCamelCase__ = name.replace("""layer2_rn""" , """convs.1""" ) if "layer3_rn" in name: lowerCamelCase__ = name.replace("""layer3_rn""" , """convs.2""" ) if "layer4_rn" in name: lowerCamelCase__ = name.replace("""layer4_rn""" , """convs.3""" ) if "refinenet" in name: lowerCamelCase__ = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 lowerCamelCase__ = name.replace(F'''refinenet{layer_idx}''' , F'''fusion_stage.layers.{abs(layer_idx-4 )}''' ) if "out_conv" in name: lowerCamelCase__ = name.replace("""out_conv""" , """projection""" ) if "resConfUnit1" in name: lowerCamelCase__ = name.replace("""resConfUnit1""" , """residual_layer1""" ) if "resConfUnit2" in name: lowerCamelCase__ = name.replace("""resConfUnit2""" , """residual_layer2""" ) if "conv1" in name: lowerCamelCase__ = name.replace("""conv1""" , """convolution1""" ) if "conv2" in name: lowerCamelCase__ = name.replace("""conv2""" , """convolution2""" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess1.0.project.0""" , """neck.reassemble_stage.readout_projects.0.0""" ) if "pretrained.act_postprocess2.0.project.0" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess2.0.project.0""" , """neck.reassemble_stage.readout_projects.1.0""" ) if "pretrained.act_postprocess3.0.project.0" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess3.0.project.0""" , """neck.reassemble_stage.readout_projects.2.0""" ) if "pretrained.act_postprocess4.0.project.0" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess4.0.project.0""" , """neck.reassemble_stage.readout_projects.3.0""" ) # resize blocks if "pretrained.act_postprocess1.3" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess1.3""" , """neck.reassemble_stage.layers.0.projection""" ) if "pretrained.act_postprocess1.4" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess1.4""" , """neck.reassemble_stage.layers.0.resize""" ) if "pretrained.act_postprocess2.3" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess2.3""" , """neck.reassemble_stage.layers.1.projection""" ) if "pretrained.act_postprocess2.4" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess2.4""" , """neck.reassemble_stage.layers.1.resize""" ) if "pretrained.act_postprocess3.3" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess3.3""" , """neck.reassemble_stage.layers.2.projection""" ) if "pretrained.act_postprocess4.3" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess4.3""" , """neck.reassemble_stage.layers.3.projection""" ) if "pretrained.act_postprocess4.4" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess4.4""" , """neck.reassemble_stage.layers.3.resize""" ) if "pretrained" in name: lowerCamelCase__ = name.replace("""pretrained""" , """dpt""" ) if "bn" in name: lowerCamelCase__ = name.replace("""bn""" , """batch_norm""" ) if "head" in name: lowerCamelCase__ = name.replace("""head""" , """head.head""" ) if "encoder.norm" in name: lowerCamelCase__ = name.replace("""encoder.norm""" , """layernorm""" ) if "auxlayer" in name: lowerCamelCase__ = name.replace("""auxlayer""" , """auxiliary_head.head""" ) if "backbone" in name: lowerCamelCase__ = name.replace("""backbone""" , """backbone.bit.encoder""" ) if ".." in name: lowerCamelCase__ = name.replace("""..""" , """.""" ) if "stem.conv" in name: lowerCamelCase__ = name.replace("""stem.conv""" , """bit.embedder.convolution""" ) if "blocks" in name: lowerCamelCase__ = name.replace("""blocks""" , """layers""" ) if "convolution" in name and "backbone" in name: lowerCamelCase__ = name.replace("""convolution""" , """conv""" ) if "layer" in name and "backbone" in name: lowerCamelCase__ = name.replace("""layer""" , """layers""" ) if "backbone.bit.encoder.bit" in name: lowerCamelCase__ = name.replace("""backbone.bit.encoder.bit""" , """backbone.bit""" ) if "embedder.conv" in name: lowerCamelCase__ = name.replace("""embedder.conv""" , """embedder.convolution""" ) if "backbone.bit.encoder.stem.norm" in name: lowerCamelCase__ = name.replace("""backbone.bit.encoder.stem.norm""" , """backbone.bit.embedder.norm""" ) return name def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : int ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase__ = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.weight''' ) lowerCamelCase__ = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase__ = in_proj_weight[: config.hidden_size, :] lowerCamelCase__ = in_proj_bias[: config.hidden_size] lowerCamelCase__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase__ = in_proj_weight[ -config.hidden_size :, : ] lowerCamelCase__ = in_proj_bias[-config.hidden_size :] def A__ ( ): lowerCamelCase__ = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCamelCase__ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return im @torch.no_grad() def A__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Any ): lowerCamelCase__ , lowerCamelCase__ = get_dpt_config(__lowerCAmelCase ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") lowerCamelCase__ = torch.load(__lowerCAmelCase , map_location="""cpu""" ) # remove certain keys remove_ignore_keys_(__lowerCAmelCase ) # rename keys for key in state_dict.copy().keys(): lowerCamelCase__ = state_dict.pop(__lowerCAmelCase ) lowerCamelCase__ = val # read in qkv matrices read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase ) # load HuggingFace model lowerCamelCase__ = DPTForSemanticSegmentation(__lowerCAmelCase ) if """ade""" in checkpoint_url else DPTForDepthEstimation(__lowerCAmelCase ) model.load_state_dict(__lowerCAmelCase ) model.eval() # Check outputs on an image lowerCamelCase__ = 480 if """ade""" in checkpoint_url else 384 lowerCamelCase__ = DPTImageProcessor(size=__lowerCAmelCase ) lowerCamelCase__ = prepare_img() lowerCamelCase__ = image_processor(__lowerCAmelCase , return_tensors="""pt""" ) # forward pass lowerCamelCase__ = model(**__lowerCAmelCase ).logits if """ade""" in checkpoint_url else model(**__lowerCAmelCase ).predicted_depth if show_prediction: lowerCamelCase__ = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode="""bicubic""" , align_corners=__lowerCAmelCase , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowerCAmelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__lowerCAmelCase ) if push_to_hub: model.push_to_hub("""ybelkada/dpt-hybrid-midas""" ) image_processor.push_to_hub("""ybelkada/dpt-hybrid-midas""" ) if __name__ == "__main__": UpperCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) parser.add_argument( '--show_prediction', action='store_true', ) UpperCamelCase : List[str] = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
50
'''simple docstring''' from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class __lowercase (__lowerCamelCase ): def __init__( self : Optional[int] , UpperCAmelCase_ : pyspark.sql.DataFrame , UpperCAmelCase_ : Optional[NamedSplit] = None , UpperCAmelCase_ : Optional[Features] = None , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : str = None , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : str = None , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : str = "arrow" , **UpperCAmelCase_ : str , ): super().__init__( split=UpperCAmelCase_ , features=UpperCAmelCase_ , cache_dir=UpperCAmelCase_ , keep_in_memory=UpperCAmelCase_ , streaming=UpperCAmelCase_ , **UpperCAmelCase_ , ) UpperCamelCase__ : Union[str, Any] = load_from_cache_file UpperCamelCase__ : int = file_format UpperCamelCase__ : Any = Spark( df=UpperCAmelCase_ , features=UpperCAmelCase_ , cache_dir=UpperCAmelCase_ , working_dir=UpperCAmelCase_ , **UpperCAmelCase_ , ) def __UpperCamelCase ( self : Optional[int]): if self.streaming: return self.builder.as_streaming_dataset(split=self.split) UpperCamelCase__ : Tuple = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=UpperCAmelCase_ , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split)
596
0
'''simple docstring''' from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract _SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' return [ int(10_00 * (box[0] / width) ), int(10_00 * (box[1] / height) ), int(10_00 * (box[2] / width) ), int(10_00 * (box[3] / height) ), ] def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = to_pil_image(lowercase_ ) SCREAMING_SNAKE_CASE__ = pil_image.size SCREAMING_SNAKE_CASE__ = pytesseract.image_to_data(lowercase_ , lang=lowercase_ , output_type='''dict''' , config=lowercase_ ) SCREAMING_SNAKE_CASE__ = data["text"], data["left"], data["top"], data["width"], data["height"] # filter empty words and corresponding coordinates SCREAMING_SNAKE_CASE__ = [idx for idx, word in enumerate(lowercase_ ) if not word.strip()] SCREAMING_SNAKE_CASE__ = [word for idx, word in enumerate(lowercase_ ) if idx not in irrelevant_indices] SCREAMING_SNAKE_CASE__ = [coord for idx, coord in enumerate(lowercase_ ) if idx not in irrelevant_indices] SCREAMING_SNAKE_CASE__ = [coord for idx, coord in enumerate(lowercase_ ) if idx not in irrelevant_indices] SCREAMING_SNAKE_CASE__ = [coord for idx, coord in enumerate(lowercase_ ) if idx not in irrelevant_indices] SCREAMING_SNAKE_CASE__ = [coord for idx, coord in enumerate(lowercase_ ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format SCREAMING_SNAKE_CASE__ = [] for x, y, w, h in zip(lowercase_ , lowercase_ , lowercase_ , lowercase_ ): SCREAMING_SNAKE_CASE__ = [x, y, x + w, y + h] actual_boxes.append(lowercase_ ) # finally, normalize the bounding boxes SCREAMING_SNAKE_CASE__ = [] for box in actual_boxes: normalized_boxes.append(normalize_box(lowercase_ , lowercase_ , lowercase_ ) ) assert len(lowercase_ ) == len(lowercase_ ), "Not as many words as there are bounding boxes" return words, normalized_boxes class UpperCAmelCase__ ( _UpperCamelCase ): """simple docstring""" a = ["pixel_values"] def __init__( self : Tuple , __lowerCamelCase : bool = True , __lowerCamelCase : Dict[str, int] = None , __lowerCamelCase : PILImageResampling = PILImageResampling.BILINEAR , __lowerCamelCase : bool = True , __lowerCamelCase : float = 1 / 255 , __lowerCamelCase : bool = True , __lowerCamelCase : Union[float, Iterable[float]] = None , __lowerCamelCase : Union[float, Iterable[float]] = None , __lowerCamelCase : bool = True , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[str] = "" , **__lowerCamelCase : Optional[Any] , ) -> None: super().__init__(**__a ) SCREAMING_SNAKE_CASE__ = size if size is not None else {"height": 224, "width": 224} SCREAMING_SNAKE_CASE__ = get_size_dict(__a ) SCREAMING_SNAKE_CASE__ = do_resize SCREAMING_SNAKE_CASE__ = size SCREAMING_SNAKE_CASE__ = resample SCREAMING_SNAKE_CASE__ = do_rescale SCREAMING_SNAKE_CASE__ = rescale_value SCREAMING_SNAKE_CASE__ = do_normalize SCREAMING_SNAKE_CASE__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN SCREAMING_SNAKE_CASE__ = image_std if image_std is not None else IMAGENET_STANDARD_STD SCREAMING_SNAKE_CASE__ = apply_ocr SCREAMING_SNAKE_CASE__ = ocr_lang SCREAMING_SNAKE_CASE__ = tesseract_config def lowercase_ ( self : Dict , __lowerCamelCase : np.ndarray , __lowerCamelCase : Dict[str, int] , __lowerCamelCase : PILImageResampling = PILImageResampling.BILINEAR , __lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase : Optional[int] , ) -> np.ndarray: SCREAMING_SNAKE_CASE__ = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) SCREAMING_SNAKE_CASE__ = (size["height"], size["width"]) return resize(__a , size=__a , resample=__a , data_format=__a , **__a ) def lowercase_ ( self : Tuple , __lowerCamelCase : np.ndarray , __lowerCamelCase : Union[int, float] , __lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase : Optional[Any] , ) -> np.ndarray: return rescale(__a , scale=__a , data_format=__a , **__a ) def lowercase_ ( self : str , __lowerCamelCase : np.ndarray , __lowerCamelCase : Union[float, Iterable[float]] , __lowerCamelCase : Union[float, Iterable[float]] , __lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase : Optional[Any] , ) -> np.ndarray: return normalize(__a , mean=__a , std=__a , data_format=__a , **__a ) def lowercase_ ( self : str , __lowerCamelCase : ImageInput , __lowerCamelCase : bool = None , __lowerCamelCase : Dict[str, int] = None , __lowerCamelCase : str=None , __lowerCamelCase : bool = None , __lowerCamelCase : float = None , __lowerCamelCase : bool = None , __lowerCamelCase : Union[float, Iterable[float]] = None , __lowerCamelCase : Union[float, Iterable[float]] = None , __lowerCamelCase : bool = None , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[Union[str, TensorType]] = None , __lowerCamelCase : ChannelDimension = ChannelDimension.FIRST , **__lowerCamelCase : Optional[int] , ) -> PIL.Image.Image: SCREAMING_SNAKE_CASE__ = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE__ = size if size is not None else self.size SCREAMING_SNAKE_CASE__ = get_size_dict(__a ) SCREAMING_SNAKE_CASE__ = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE__ = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE__ = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE__ = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE__ = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE__ = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE__ = apply_ocr if apply_ocr is not None else self.apply_ocr SCREAMING_SNAKE_CASE__ = ocr_lang if ocr_lang is not None else self.ocr_lang SCREAMING_SNAKE_CASE__ = tesseract_config if tesseract_config is not None else self.tesseract_config SCREAMING_SNAKE_CASE__ = make_list_of_images(__a ) if not valid_images(__a ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''' ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE__ = [to_numpy_array(__a ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , '''pytesseract''' ) SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] for image in images: SCREAMING_SNAKE_CASE__ = apply_tesseract(__a , __a , __a ) words_batch.append(__a ) boxes_batch.append(__a ) if do_resize: SCREAMING_SNAKE_CASE__ = [self.resize(image=__a , size=__a , resample=__a ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE__ = [self.rescale(image=__a , scale=__a ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE__ = [self.normalize(image=__a , mean=__a , std=__a ) for image in images] SCREAMING_SNAKE_CASE__ = [to_channel_dimension_format(__a , __a ) for image in images] SCREAMING_SNAKE_CASE__ = BatchFeature(data={'''pixel_values''': images} , tensor_type=__a ) if apply_ocr: SCREAMING_SNAKE_CASE__ = words_batch SCREAMING_SNAKE_CASE__ = boxes_batch return data
707
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCAmelCase__ ( A__ , A__ , A__ , unittest.TestCase ): """simple docstring""" a = AltDiffusionPipeline a = TEXT_TO_IMAGE_PARAMS a = TEXT_TO_IMAGE_BATCH_PARAMS a = TEXT_TO_IMAGE_IMAGE_PARAMS a = TEXT_TO_IMAGE_IMAGE_PARAMS def lowercase_ ( self : Tuple ) -> Tuple: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) SCREAMING_SNAKE_CASE__ = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=__lowerCamelCase , set_alpha_to_one=__lowerCamelCase , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5002 , ) SCREAMING_SNAKE_CASE__ = CLIPTextModel(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) SCREAMING_SNAKE_CASE__ = 77 SCREAMING_SNAKE_CASE__ = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def lowercase_ ( self : Any , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[int]=0 ) -> Union[str, Any]: if str(__lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE__ = torch.manual_seed(__lowerCamelCase ) else: SCREAMING_SNAKE_CASE__ = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def lowercase_ ( self : List[Any] ) -> str: super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def lowercase_ ( self : List[Any] ) -> int: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def lowercase_ ( self : Dict ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__ = self.get_dummy_components() torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder SCREAMING_SNAKE_CASE__ = RobertaSeriesModelWithTransformation(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = text_encoder SCREAMING_SNAKE_CASE__ = AltDiffusionPipeline(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = alt_pipe.to(__lowerCamelCase ) alt_pipe.set_progress_bar_config(disable=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.get_dummy_inputs(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''A photo of an astronaut''' SCREAMING_SNAKE_CASE__ = alt_pipe(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = output.images SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE__ = np.array( [0.5748162, 0.60447145, 0.48821217, 0.50100636, 0.5431185, 0.45763683, 0.49657696, 0.48132733, 0.47573093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase_ ( self : List[Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__ = self.get_dummy_components() SCREAMING_SNAKE_CASE__ = PNDMScheduler(skip_prk_steps=__lowerCamelCase ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder SCREAMING_SNAKE_CASE__ = RobertaSeriesModelWithTransformation(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = text_encoder SCREAMING_SNAKE_CASE__ = AltDiffusionPipeline(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = alt_pipe.to(__lowerCamelCase ) alt_pipe.set_progress_bar_config(disable=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.get_dummy_inputs(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = alt_pipe(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = output.images SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE__ = np.array( [0.51605093, 0.5707241, 0.47365507, 0.50578886, 0.5633877, 0.4642503, 0.5182081, 0.48763484, 0.49084237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : Tuple ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self : str ) -> Any: # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE__ = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , safety_checker=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = alt_pipe.to(__lowerCamelCase ) alt_pipe.set_progress_bar_config(disable=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''A painting of a squirrel eating a burger''' SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = alt_pipe([prompt] , generator=__lowerCamelCase , guidance_scale=6.0 , num_inference_steps=20 , output_type='''np''' ) SCREAMING_SNAKE_CASE__ = output.images SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE__ = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase_ ( self : Optional[int] ) -> List[str]: SCREAMING_SNAKE_CASE__ = DDIMScheduler.from_pretrained('''BAAI/AltDiffusion''' , subfolder='''scheduler''' ) SCREAMING_SNAKE_CASE__ = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , scheduler=__lowerCamelCase , safety_checker=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = alt_pipe.to(__lowerCamelCase ) alt_pipe.set_progress_bar_config(disable=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''A painting of a squirrel eating a burger''' SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = alt_pipe([prompt] , generator=__lowerCamelCase , num_inference_steps=2 , output_type='''numpy''' ) SCREAMING_SNAKE_CASE__ = output.images SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE__ = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
472
0
"""simple docstring""" a_ = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' def __UpperCAmelCase ( ): __lowercase : Any = input('''Enter message: ''' ) __lowercase : Union[str, Any] = input('''Enter key [alphanumeric]: ''' ) __lowercase : List[Any] = input('''Encrypt/Decrypt [e/d]: ''' ) if mode.lower().startswith('''e''' ): __lowercase : Union[str, Any] = '''encrypt''' __lowercase : Any = encrypt_message(__UpperCamelCase , __UpperCamelCase ) elif mode.lower().startswith('''d''' ): __lowercase : int = '''decrypt''' __lowercase : Dict = decrypt_message(__UpperCamelCase , __UpperCamelCase ) print(f"""\n{mode.title()}ed message:""" ) print(__UpperCamelCase ) def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): return translate_message(__UpperCamelCase , __UpperCamelCase , '''encrypt''' ) def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): return translate_message(__UpperCamelCase , __UpperCamelCase , '''decrypt''' ) def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): __lowercase : Optional[Any] = [] __lowercase : Union[str, Any] = 0 __lowercase : Optional[int] = key.upper() for symbol in message: __lowercase : Optional[Any] = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(__UpperCamelCase ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(__UpperCamelCase ): __lowercase : List[Any] = 0 else: translated.append(__UpperCamelCase ) return "".join(__UpperCamelCase ) if __name__ == "__main__": main()
76
"""simple docstring""" import gc import threading import time import psutil import torch class UpperCAmelCase_ : def __init__( self ) -> str: __lowercase : List[Any] = psutil.Process() __lowercase : Any = False def _lowerCamelCase ( self ) -> Union[str, Any]: __lowercase : Optional[Any] = -1 while True: __lowercase : List[str] = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def _lowerCamelCase ( self ) -> Optional[Any]: __lowercase : List[Any] = True __lowercase : List[Any] = threading.Thread(target=self.peak_monitor ) __lowercase : Optional[int] = True self.thread.start() def _lowerCamelCase ( self ) -> Optional[Any]: __lowercase : Union[str, Any] = False self.thread.join() return self.cpu_memory_peak a_ = PeakCPUMemory() def __UpperCAmelCase ( ): # Time __lowercase : Union[str, Any] = {'''time''': time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem __lowercase : List[Any] = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): __lowercase : List[str] = torch.cuda.memory_allocated(__UpperCamelCase ) torch.cuda.reset_peak_memory_stats() return measures def __UpperCAmelCase ( __UpperCamelCase ): # Time __lowercase : List[Any] = {'''time''': time.time() - start_measures['''time''']} gc.collect() torch.cuda.empty_cache() # CPU mem __lowercase : Union[str, Any] = (psutil.Process().memory_info().rss - start_measures['''cpu''']) / 2**20 __lowercase : Dict = (cpu_peak_tracker.stop() - start_measures['''cpu''']) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): __lowercase : str = (torch.cuda.memory_allocated(__UpperCamelCase ) - start_measures[str(__UpperCamelCase )]) / 2**20 __lowercase : Optional[int] = (torch.cuda.max_memory_allocated(__UpperCamelCase ) - start_measures[str(__UpperCamelCase )]) / 2**20 return measures def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): print(f"""{description}:""" ) print(f"""- Time: {measures["time"]:.2f}s""" ) for i in range(torch.cuda.device_count() ): print(f"""- GPU {i} allocated: {measures[str(__UpperCamelCase )]:.2f}MiB""" ) __lowercase : Dict = measures[f"""{i}-peak"""] print(f"""- GPU {i} peak: {peak:.2f}MiB""" ) print(f"""- CPU RAM allocated: {measures["cpu"]:.2f}MiB""" ) print(f"""- CPU RAM peak: {measures["cpu-peak"]:.2f}MiB""" )
76
1
def lowerCamelCase_ ( _a : float , _a : float , _a : int ): '''simple docstring''' if principal <= 0: raise Exception("""Principal borrowed must be > 0""" ) if rate_per_annum < 0: raise Exception("""Rate of interest must be >= 0""" ) if years_to_repay <= 0 or not isinstance(_a , _a ): raise Exception("""Years to repay must be an integer > 0""" ) # Yearly rate is divided by 12 to get monthly rate UpperCAmelCase_ : Optional[int] = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly UpperCAmelCase_ : List[Any] = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
702
from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput UpperCamelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name class _snake_case ( __snake_case , __snake_case ): '''simple docstring''' @register_to_config def __init__( self: str ,lowerCamelCase_: bool ,lowerCamelCase_: Optional[int] = None ,lowerCamelCase_: Optional[int] = None ) -> int: super().__init__() UpperCAmelCase_ : List[str] = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" UpperCAmelCase_ : Optional[int] = torch.zeros(lowerCamelCase_ ,lowerCamelCase_ ) else: UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : Tuple = torch.nn.Parameter(lowerCamelCase_ ) class _snake_case ( __snake_case ): '''simple docstring''' A__ : VQModel A__ : CLIPTextModel A__ : CLIPTokenizer A__ : TransformeraDModel A__ : LearnedClassifierFreeSamplingEmbeddings A__ : VQDiffusionScheduler def __init__( self: str ,lowerCamelCase_: VQModel ,lowerCamelCase_: CLIPTextModel ,lowerCamelCase_: CLIPTokenizer ,lowerCamelCase_: TransformeraDModel ,lowerCamelCase_: VQDiffusionScheduler ,lowerCamelCase_: LearnedClassifierFreeSamplingEmbeddings ,) -> int: super().__init__() self.register_modules( vqvae=lowerCamelCase_ ,transformer=lowerCamelCase_ ,text_encoder=lowerCamelCase_ ,tokenizer=lowerCamelCase_ ,scheduler=lowerCamelCase_ ,learned_classifier_free_sampling_embeddings=lowerCamelCase_ ,) def A__ ( self: List[Any] ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: List[str] ) -> Tuple: UpperCAmelCase_ : Optional[int] = len(lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else 1 # get prompt text embeddings UpperCAmelCase_ : List[Any] = self.tokenizer( lowerCamelCase_ ,padding="""max_length""" ,max_length=self.tokenizer.model_max_length ,return_tensors="""pt""" ,) UpperCAmelCase_ : Tuple = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCAmelCase_ : int = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" F''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) UpperCAmelCase_ : Union[str, Any] = text_input_ids[:, : self.tokenizer.model_max_length] UpperCAmelCase_ : Tuple = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 UpperCAmelCase_ : Dict = prompt_embeds / prompt_embeds.norm(dim=-1 ,keepdim=lowerCamelCase_ ) # duplicate text embeddings for each generation per prompt UpperCAmelCase_ : Tuple = prompt_embeds.repeat_interleave(lowerCamelCase_ ,dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: UpperCAmelCase_ : int = self.learned_classifier_free_sampling_embeddings.embeddings UpperCAmelCase_ : Optional[int] = negative_prompt_embeds.unsqueeze(0 ).repeat(lowerCamelCase_ ,1 ,1 ) else: UpperCAmelCase_ : Optional[int] = [""""""] * batch_size UpperCAmelCase_ : Tuple = text_input_ids.shape[-1] UpperCAmelCase_ : Union[str, Any] = self.tokenizer( lowerCamelCase_ ,padding="""max_length""" ,max_length=lowerCamelCase_ ,truncation=lowerCamelCase_ ,return_tensors="""pt""" ,) UpperCAmelCase_ : Optional[int] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings UpperCAmelCase_ : Tuple = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 ,keepdim=lowerCamelCase_ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCAmelCase_ : List[str] = negative_prompt_embeds.shape[1] UpperCAmelCase_ : str = negative_prompt_embeds.repeat(1 ,lowerCamelCase_ ,1 ) UpperCAmelCase_ : int = negative_prompt_embeds.view(batch_size * num_images_per_prompt ,lowerCamelCase_ ,-1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCAmelCase_ : Union[str, Any] = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self: Tuple ,lowerCamelCase_: Union[str, List[str]] ,lowerCamelCase_: int = 100 ,lowerCamelCase_: float = 5.0 ,lowerCamelCase_: float = 1.0 ,lowerCamelCase_: int = 1 ,lowerCamelCase_: Optional[Union[torch.Generator, List[torch.Generator]]] = None ,lowerCamelCase_: Optional[torch.FloatTensor] = None ,lowerCamelCase_: Optional[str] = "pil" ,lowerCamelCase_: bool = True ,lowerCamelCase_: Optional[Callable[[int, int, torch.FloatTensor], None]] = None ,lowerCamelCase_: int = 1 ,) -> Union[ImagePipelineOutput, Tuple]: if isinstance(lowerCamelCase_ ,lowerCamelCase_ ): UpperCAmelCase_ : List[str] = 1 elif isinstance(lowerCamelCase_ ,lowerCamelCase_ ): UpperCAmelCase_ : Any = len(lowerCamelCase_ ) else: raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(lowerCamelCase_ )}''' ) UpperCAmelCase_ : Any = batch_size * num_images_per_prompt UpperCAmelCase_ : int = guidance_scale > 1.0 UpperCAmelCase_ : Union[str, Any] = self._encode_prompt(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowerCamelCase_ ,lowerCamelCase_ ) or callback_steps <= 0) ): raise ValueError( F'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' F''' {type(lowerCamelCase_ )}.''' ) # get the initial completely masked latents unless the user supplied it UpperCAmelCase_ : Dict = (batch_size, self.transformer.num_latent_pixels) if latents is None: UpperCAmelCase_ : Optional[int] = self.transformer.num_vector_embeds - 1 UpperCAmelCase_ : Optional[int] = torch.full(lowerCamelCase_ ,lowerCamelCase_ ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( """Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,""" F''' {self.transformer.num_vector_embeds - 1} (inclusive).''' ) UpperCAmelCase_ : Optional[Any] = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(lowerCamelCase_ ,device=self.device ) UpperCAmelCase_ : List[str] = self.scheduler.timesteps.to(self.device ) UpperCAmelCase_ : Any = latents for i, t in enumerate(self.progress_bar(lowerCamelCase_ ) ): # expand the sample if we are doing classifier free guidance UpperCAmelCase_ : Tuple = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` UpperCAmelCase_ : Tuple = self.transformer(lowerCamelCase_ ,encoder_hidden_states=lowerCamelCase_ ,timestep=lowerCamelCase_ ).sample if do_classifier_free_guidance: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = model_output.chunk(2 ) UpperCAmelCase_ : str = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(lowerCamelCase_ ,dim=1 ,keepdim=lowerCamelCase_ ) UpperCAmelCase_ : str = self.truncate(lowerCamelCase_ ,lowerCamelCase_ ) # remove `log(0)`'s (`-inf`s) UpperCAmelCase_ : Optional[Any] = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase_ : Union[str, Any] = self.scheduler.step(lowerCamelCase_ ,timestep=lowerCamelCase_ ,sample=lowerCamelCase_ ,generator=lowerCamelCase_ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) UpperCAmelCase_ : List[str] = self.vqvae.config.vq_embed_dim UpperCAmelCase_ : Union[str, Any] = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) UpperCAmelCase_ : List[Any] = self.vqvae.quantize.get_codebook_entry(lowerCamelCase_ ,shape=lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = self.vqvae.decode(lowerCamelCase_ ,force_not_quantize=lowerCamelCase_ ).sample UpperCAmelCase_ : Optional[int] = (image / 2 + 0.5).clamp(0 ,1 ) UpperCAmelCase_ : Union[str, Any] = image.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": UpperCAmelCase_ : str = self.numpy_to_pil(lowerCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCamelCase_ ) def A__ ( self: Union[str, Any] ,lowerCamelCase_: torch.FloatTensor ,lowerCamelCase_: float ) -> torch.FloatTensor: UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = torch.sort(lowerCamelCase_ ,1 ,descending=lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = torch.exp(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out UpperCAmelCase_ : Optional[Any] = torch.full_like(keep_mask[:, 0:1, :] ,lowerCamelCase_ ) UpperCAmelCase_ : Any = torch.cat((all_true, keep_mask) ,dim=1 ) UpperCAmelCase_ : Union[str, Any] = keep_mask[:, :-1, :] UpperCAmelCase_ : Dict = keep_mask.gather(1 ,indices.argsort(1 ) ) UpperCAmelCase_ : Any = log_p_x_0.clone() UpperCAmelCase_ : int = -torch.inf # -inf = log(0) return rv
322
0
import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class snake_case ( _snake_case , _snake_case , unittest.TestCase ): '''simple docstring''' UpperCamelCase__ : List[Any] = IFPipeline UpperCamelCase__ : List[Any] = TEXT_TO_IMAGE_PARAMS - {"width", "height", "latents"} UpperCamelCase__ : str = TEXT_TO_IMAGE_BATCH_PARAMS UpperCamelCase__ : List[str] = PipelineTesterMixin.required_optional_params - {"latents"} def UpperCAmelCase ( self : str ) ->Optional[int]: '''simple docstring''' return self._get_dummy_components() def UpperCAmelCase ( self : str , lowerCamelCase_ : Tuple , lowerCamelCase_ : Union[str, Any]=0 ) ->Dict: '''simple docstring''' if str(lowerCamelCase_ ).startswith("""mps""" ): UpperCAmelCase__ = torch.manual_seed(lowerCamelCase_ ) else: UpperCAmelCase__ = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) UpperCAmelCase__ = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def UpperCAmelCase ( self : Optional[Any] ) ->int: '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def UpperCAmelCase ( self : Optional[int] ) ->Dict: '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCAmelCase ( self : Tuple ) ->Any: '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCAmelCase ( self : int ) ->int: '''simple docstring''' self._test_save_load_local() def UpperCAmelCase ( self : List[Any] ) ->Optional[int]: '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1E-2 , ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def UpperCAmelCase ( self : List[str] ) ->Optional[int]: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @slow @require_torch_gpu class snake_case ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : Dict ) ->str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self : Optional[Any] ) ->Optional[Any]: '''simple docstring''' UpperCAmelCase__ = IFPipeline.from_pretrained("""DeepFloyd/IF-I-XL-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa ) UpperCAmelCase__ = IFSuperResolutionPipeline.from_pretrained( """DeepFloyd/IF-II-L-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to("""cuda""" ) UpperCAmelCase__ , UpperCAmelCase__ = pipe_a.encode_prompt("""anime turtle""" , device="""cuda""" ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() UpperCAmelCase__ = None UpperCAmelCase__ = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img UpperCAmelCase__ = IFImgaImgPipeline(**pipe_a.components ) UpperCAmelCase__ = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting UpperCAmelCase__ = IFInpaintingPipeline(**pipe_a.components ) UpperCAmelCase__ = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : str , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[str] ) ->Union[str, Any]: '''simple docstring''' _start_torch_memory_measurement() UpperCAmelCase__ = torch.Generator(device="""cpu""" ).manual_seed(0 ) UpperCAmelCase__ = pipe_a( prompt_embeds=lowerCamelCase_ , negative_prompt_embeds=lowerCamelCase_ , num_inference_steps=2 , generator=lowerCamelCase_ , output_type="""np""" , ) UpperCAmelCase__ = output.images[0] assert image.shape == (64, 64, 3) UpperCAmelCase__ = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 UpperCAmelCase__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy""" ) assert_mean_pixel_difference(lowerCamelCase_ , lowerCamelCase_ ) # pipeline 2 _start_torch_memory_measurement() UpperCAmelCase__ = torch.Generator(device="""cpu""" ).manual_seed(0 ) UpperCAmelCase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(lowerCamelCase_ ) UpperCAmelCase__ = pipe_a( prompt_embeds=lowerCamelCase_ , negative_prompt_embeds=lowerCamelCase_ , image=lowerCamelCase_ , generator=lowerCamelCase_ , num_inference_steps=2 , output_type="""np""" , ) UpperCAmelCase__ = output.images[0] assert image.shape == (256, 256, 3) UpperCAmelCase__ = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 UpperCAmelCase__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy""" ) assert_mean_pixel_difference(lowerCamelCase_ , lowerCamelCase_ ) def UpperCAmelCase ( self : Tuple , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Union[str, Any] ) ->Optional[int]: '''simple docstring''' _start_torch_memory_measurement() UpperCAmelCase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(lowerCamelCase_ ) UpperCAmelCase__ = torch.Generator(device="""cpu""" ).manual_seed(0 ) UpperCAmelCase__ = pipe_a( prompt_embeds=lowerCamelCase_ , negative_prompt_embeds=lowerCamelCase_ , image=lowerCamelCase_ , num_inference_steps=2 , generator=lowerCamelCase_ , output_type="""np""" , ) UpperCAmelCase__ = output.images[0] assert image.shape == (64, 64, 3) UpperCAmelCase__ = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 UpperCAmelCase__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy""" ) assert_mean_pixel_difference(lowerCamelCase_ , lowerCamelCase_ ) # pipeline 2 _start_torch_memory_measurement() UpperCAmelCase__ = torch.Generator(device="""cpu""" ).manual_seed(0 ) UpperCAmelCase__ = floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(lowerCamelCase_ ) UpperCAmelCase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(lowerCamelCase_ ) UpperCAmelCase__ = pipe_a( prompt_embeds=lowerCamelCase_ , negative_prompt_embeds=lowerCamelCase_ , image=lowerCamelCase_ , original_image=lowerCamelCase_ , generator=lowerCamelCase_ , num_inference_steps=2 , output_type="""np""" , ) UpperCAmelCase__ = output.images[0] assert image.shape == (256, 256, 3) UpperCAmelCase__ = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 UpperCAmelCase__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy""" ) assert_mean_pixel_difference(lowerCamelCase_ , lowerCamelCase_ ) def UpperCAmelCase ( self : Any , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[Any] ) ->Dict: '''simple docstring''' _start_torch_memory_measurement() UpperCAmelCase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(lowerCamelCase_ ) UpperCAmelCase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(lowerCamelCase_ ) UpperCAmelCase__ = torch.Generator(device="""cpu""" ).manual_seed(0 ) UpperCAmelCase__ = pipe_a( prompt_embeds=lowerCamelCase_ , negative_prompt_embeds=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , num_inference_steps=2 , generator=lowerCamelCase_ , output_type="""np""" , ) UpperCAmelCase__ = output.images[0] assert image.shape == (64, 64, 3) UpperCAmelCase__ = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 UpperCAmelCase__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy""" ) assert_mean_pixel_difference(lowerCamelCase_ , lowerCamelCase_ ) # pipeline 2 _start_torch_memory_measurement() UpperCAmelCase__ = torch.Generator(device="""cpu""" ).manual_seed(0 ) UpperCAmelCase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(lowerCamelCase_ ) UpperCAmelCase__ = floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(lowerCamelCase_ ) UpperCAmelCase__ = floats_tensor((1, 3, 256, 256) , rng=random.Random(1 ) ).to(lowerCamelCase_ ) UpperCAmelCase__ = pipe_a( prompt_embeds=lowerCamelCase_ , negative_prompt_embeds=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , original_image=lowerCamelCase_ , generator=lowerCamelCase_ , num_inference_steps=2 , output_type="""np""" , ) UpperCAmelCase__ = output.images[0] assert image.shape == (256, 256, 3) UpperCAmelCase__ = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 UpperCAmelCase__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy""" ) assert_mean_pixel_difference(lowerCamelCase_ , lowerCamelCase_ ) def lowercase ( ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
392
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class snake_case ( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase ( self : List[str] ) ->Optional[Any]: '''simple docstring''' UpperCAmelCase__ = XLMRobertaModel.from_pretrained("""xlm-roberta-base""" ) UpperCAmelCase__ = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]] ) # The dog is cute and lives in the garden house UpperCAmelCase__ = torch.Size((1, 12, 768) ) # batch_size, sequence_length, embedding_vector_dim UpperCAmelCase__ = torch.tensor( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCAmelCase__ = model(lowerCamelCase_ )["""last_hidden_state"""].detach() self.assertEqual(output.shape , lowerCamelCase_ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , lowerCamelCase_ , atol=1E-3 ) ) @slow def UpperCAmelCase ( self : Optional[int] ) ->Tuple: '''simple docstring''' UpperCAmelCase__ = XLMRobertaModel.from_pretrained("""xlm-roberta-large""" ) UpperCAmelCase__ = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]] ) # The dog is cute and lives in the garden house UpperCAmelCase__ = torch.Size((1, 12, 1024) ) # batch_size, sequence_length, embedding_vector_dim UpperCAmelCase__ = torch.tensor( [[-0.0699, -0.0318, 0.0705, -0.1241, 0.0999, -0.0520, 0.1004, -0.1838, -0.4704, 0.1437, 0.0821, 0.0126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCAmelCase__ = model(lowerCamelCase_ )["""last_hidden_state"""].detach() self.assertEqual(output.shape , lowerCamelCase_ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , lowerCamelCase_ , atol=1E-3 ) )
392
1
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def lowercase__ ( __A: str ,__A: int=False ): '''simple docstring''' __magic_name__ : List[Any] = OmegaConf.load(__A ) if display: print(yaml.dump(OmegaConf.to_container(__A ) ) ) return config def lowercase__ ( __A: int ,__A: Optional[int]=None ,__A: Union[str, Any]=None ): '''simple docstring''' if conf_path is None: __magic_name__ : Tuple = '''./model_checkpoints/vqgan_only.yaml''' __magic_name__ : List[str] = load_config(__A ,display=__A ) __magic_name__ : Dict = VQModel(**config.model.params ) if ckpt_path is None: __magic_name__ : Tuple = '''./model_checkpoints/vqgan_only.pt''' __magic_name__ : Any = torch.load(__A ,map_location=__A ) if ".ckpt" in ckpt_path: __magic_name__ : Optional[int] = sd['''state_dict'''] model.load_state_dict(__A ,strict=__A ) model.to(__A ) del sd return model def lowercase__ ( __A: Tuple ,__A: str ): '''simple docstring''' __magic_name__ , __magic_name__ , __magic_name__ : int = model.encode(__A ) print(F'''VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}''' ) __magic_name__ : List[Any] = model.decode(__A ) return xrec def lowercase__ ( __A: Dict ,__A: Union[str, Any]=False ): '''simple docstring''' __magic_name__ , __magic_name__ : List[Any] = string.rsplit('''.''' ,1 ) if reload: __magic_name__ : Dict = importlib.import_module(__A ) importlib.reload(__A ) return getattr(importlib.import_module(__A ,package=__A ) ,cls ) def lowercase__ ( __A: Optional[Any] ): '''simple docstring''' if "target" not in config: raise KeyError('''Expected key `target` to instantiate.''' ) return get_obj_from_str(config['''target'''] )(**config.get('''params''' ,{} ) ) def lowercase__ ( __A: str ,__A: Union[str, Any] ,__A: List[Any]=True ,__A: Optional[int]=True ): '''simple docstring''' __magic_name__ : Union[str, Any] = instantiate_from_config(__A ) if sd is not None: model.load_state_dict(__A ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def lowercase__ ( __A: Optional[Any] ,__A: int ,__A: int ,__A: str ): '''simple docstring''' if ckpt: __magic_name__ : str = torch.load(__A ,map_location='''cpu''' ) __magic_name__ : Any = pl_sd['''global_step'''] print(F'''loaded model from global step {global_step}.''' ) else: __magic_name__ : Any = {'''state_dict''': None} __magic_name__ : Tuple = None __magic_name__ : str = load_model_from_config(config.model ,pl_sd['''state_dict'''] ,gpu=__A ,eval_mode=__A )['''model'''] return model, global_step
501
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) __lowerCamelCase : List[Any] = { '''configuration_speech_to_text''': ['''SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Speech2TextConfig'''], '''processing_speech_to_text''': ['''Speech2TextProcessor'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Any = ['''Speech2TextTokenizer'''] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Optional[Any] = ['''Speech2TextFeatureExtractor'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Any = [ '''TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFSpeech2TextForConditionalGeneration''', '''TFSpeech2TextModel''', '''TFSpeech2TextPreTrainedModel''', ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Any = [ '''SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Speech2TextForConditionalGeneration''', '''Speech2TextModel''', '''Speech2TextPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys __lowerCamelCase : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
501
1
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable _A : str = {"""configuration_gpt_neox""": ["""GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoXConfig"""]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : int = ["""GPTNeoXTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Dict = [ """GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoXForCausalLM""", """GPTNeoXForQuestionAnswering""", """GPTNeoXForSequenceClassification""", """GPTNeoXForTokenClassification""", """GPTNeoXLayer""", """GPTNeoXModel""", """GPTNeoXPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox import ( GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXLayer, GPTNeoXModel, GPTNeoXPreTrainedModel, ) else: import sys _A : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
100
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowercase : List[str] = {"""configuration_van""": ["""VAN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """VanConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Tuple = [ """VAN_PRETRAINED_MODEL_ARCHIVE_LIST""", """VanForImageClassification""", """VanModel""", """VanPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys __lowercase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
142
0
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class __UpperCAmelCase( unittest.TestCase ): def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Optional[Any]= tempfile.mkdtemp() # fmt: off lowercase__ : Optional[Any]= ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on lowercase__ : Any= dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) lowercase__ : str= ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] lowercase__ : Union[str, Any]= {"unk_token": "<unk>"} lowercase__ : str= os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowercase__ : Optional[int]= os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(snake_case__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(snake_case__ ) ) lowercase__ : List[str]= { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], "image_std": [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } lowercase__ : Optional[int]= os.path.join(self.tmpdirname , snake_case__ ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(snake_case__ , snake_case__ ) def UpperCAmelCase_ ( self , **snake_case__ ): '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def UpperCAmelCase_ ( self , **snake_case__ ): '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **snake_case__ ) def UpperCAmelCase_ ( self , **snake_case__ ): '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **snake_case__ ) def UpperCAmelCase_ ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Dict= [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowercase__ : List[str]= [Image.fromarray(np.moveaxis(snake_case__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Any= self.get_tokenizer() lowercase__ : Dict= self.get_rust_tokenizer() lowercase__ : List[str]= self.get_image_processor() lowercase__ : int= CLIPSegProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) processor_slow.save_pretrained(self.tmpdirname ) lowercase__ : Union[str, Any]= CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=snake_case__ ) lowercase__ : Union[str, Any]= CLIPSegProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) processor_fast.save_pretrained(self.tmpdirname ) lowercase__ : List[Any]= CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , snake_case__ ) self.assertIsInstance(processor_fast.tokenizer , snake_case__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , snake_case__ ) self.assertIsInstance(processor_fast.image_processor , snake_case__ ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : str= CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase__ : Optional[int]= self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) lowercase__ : Union[str, Any]= self.get_image_processor(do_normalize=snake_case__ , padding_value=1.0 ) lowercase__ : List[str]= CLIPSegProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=snake_case__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case__ ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : str= self.get_image_processor() lowercase__ : Dict= self.get_tokenizer() lowercase__ : int= CLIPSegProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) lowercase__ : Tuple= self.prepare_image_inputs() lowercase__ : Union[str, Any]= image_processor(snake_case__ , return_tensors="np" ) lowercase__ : Any= processor(images=snake_case__ , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Optional[Any]= self.get_image_processor() lowercase__ : str= self.get_tokenizer() lowercase__ : List[str]= CLIPSegProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) lowercase__ : Tuple= "lower newer" lowercase__ : Union[str, Any]= processor(text=snake_case__ ) lowercase__ : List[Any]= tokenizer(snake_case__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Tuple= self.get_image_processor() lowercase__ : Optional[int]= self.get_tokenizer() lowercase__ : Tuple= CLIPSegProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) lowercase__ : Any= "lower newer" lowercase__ : Any= self.prepare_image_inputs() lowercase__ : List[str]= processor(text=snake_case__ , images=snake_case__ ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(snake_case__ ): processor() def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Optional[int]= self.get_image_processor() lowercase__ : List[Any]= self.get_tokenizer() lowercase__ : Optional[Any]= CLIPSegProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) lowercase__ : Any= self.prepare_image_inputs() lowercase__ : List[Any]= self.prepare_image_inputs() lowercase__ : Dict= processor(images=snake_case__ , visual_prompt=snake_case__ ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "conditional_pixel_values"] ) # test if it raises when no input is passed with pytest.raises(snake_case__ ): processor() def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : int= self.get_image_processor() lowercase__ : List[Any]= self.get_tokenizer() lowercase__ : Any= CLIPSegProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) lowercase__ : List[Any]= [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase__ : List[Any]= processor.batch_decode(snake_case__ ) lowercase__ : Optional[int]= tokenizer.batch_decode(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ )
704
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import _LazyModule a : List[str] = {"""processing_wav2vec2_with_lm""": ["""Wav2Vec2ProcessorWithLM"""]} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys a : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
85
0
import torch from diffusers import DiffusionPipeline class lowerCamelCase_ ( _lowercase ): def __init__( self : Optional[int] , __A : Optional[Any] , __A : Dict ): super().__init__() self.register_modules(unet=__A , scheduler=__A ) def __call__( self : List[Any] ): __A : Optional[Any] = torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) __A : List[str] = 1 __A : Union[str, Any] = self.unet(__A , __A ).sample __A : Union[str, Any] = self.scheduler.step(__A , __A , __A ).prev_sample __A : int = scheduler_output - scheduler_output + torch.ones_like(__A ) return result
17
from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class __lowercase : """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=[1, 1, 2] , __UpperCAmelCase=1 , __UpperCAmelCase=32 , __UpperCAmelCase=4 , __UpperCAmelCase=8 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu_new" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=5_12 , __UpperCAmelCase=3 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , __UpperCAmelCase=False , ) -> Tuple: A : Optional[int] = parent A : int = batch_size A : Union[str, Any] = seq_length A : Optional[Any] = is_training A : int = use_input_mask A : List[Any] = use_token_type_ids A : Optional[int] = use_labels A : List[Any] = vocab_size A : int = block_sizes A : Optional[int] = num_decoder_layers A : int = d_model A : Dict = n_head A : Tuple = d_head A : int = d_inner A : Tuple = hidden_act A : Tuple = hidden_dropout A : Any = attention_dropout A : Any = activation_dropout A : List[Any] = max_position_embeddings A : int = type_vocab_size A : Dict = 2 A : List[str] = num_labels A : Optional[int] = num_choices A : int = scope A : int = initializer_std # Used in the tests to check the size of the first attention layer A : Optional[int] = n_head # Used in the tests to check the size of the first hidden state A : List[Any] = self.d_model # Used in the tests to check the number of output hidden states/attentions A : Dict = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: A : Union[str, Any] = self.num_hidden_layers + 2 def snake_case ( self ) -> List[Any]: A : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A : Any = None if self.use_input_mask: A : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) A : List[str] = None if self.use_token_type_ids: A : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A : Any = None A : Union[str, Any] = None A : Optional[Any] = None if self.use_labels: A : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) A : List[str] = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[int]: A : str = TFFunnelModel(config=__UpperCAmelCase ) A : str = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} A : Tuple = model(__UpperCAmelCase ) A : str = [input_ids, input_mask] A : Optional[Any] = model(__UpperCAmelCase ) A : List[str] = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) A : str = False A : List[str] = TFFunnelModel(config=__UpperCAmelCase ) A : str = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) A : Union[str, Any] = False A : Tuple = TFFunnelModel(config=__UpperCAmelCase ) A : Any = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Union[str, Any]: A : Dict = TFFunnelBaseModel(config=__UpperCAmelCase ) A : Optional[int] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} A : List[str] = model(__UpperCAmelCase ) A : Union[str, Any] = [input_ids, input_mask] A : Optional[Any] = model(__UpperCAmelCase ) A : Union[str, Any] = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) A : List[Any] = False A : Union[str, Any] = TFFunnelBaseModel(config=__UpperCAmelCase ) A : Union[str, Any] = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) ) A : int = False A : Tuple = TFFunnelBaseModel(config=__UpperCAmelCase ) A : Tuple = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> List[Any]: A : List[str] = TFFunnelForPreTraining(config=__UpperCAmelCase ) A : Any = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} A : Optional[Any] = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> List[Any]: A : str = TFFunnelForMaskedLM(config=__UpperCAmelCase ) A : int = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} A : str = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Union[str, Any]: A : Tuple = self.num_labels A : List[Any] = TFFunnelForSequenceClassification(config=__UpperCAmelCase ) A : List[str] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} A : Any = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Dict: A : Union[str, Any] = self.num_choices A : Tuple = TFFunnelForMultipleChoice(config=__UpperCAmelCase ) A : Tuple = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) A : List[Any] = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) A : Any = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) A : str = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } A : Any = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> str: A : Optional[Any] = self.num_labels A : List[str] = TFFunnelForTokenClassification(config=__UpperCAmelCase ) A : int = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} A : Optional[Any] = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Any: A : Dict = TFFunnelForQuestionAnswering(config=__UpperCAmelCase ) A : str = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} A : List[Any] = model(__UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case ( self ) -> str: A : Union[str, Any] = self.prepare_config_and_inputs() ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) : Optional[Any] = config_and_inputs A : Union[str, Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : Any = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) UpperCAmelCase_ : Optional[Any] = ( { '''feature-extraction''': (TFFunnelBaseModel, TFFunnelModel), '''fill-mask''': TFFunnelForMaskedLM, '''question-answering''': TFFunnelForQuestionAnswering, '''text-classification''': TFFunnelForSequenceClassification, '''token-classification''': TFFunnelForTokenClassification, '''zero-shot''': TFFunnelForSequenceClassification, } if is_tf_available() else {} ) UpperCAmelCase_ : Optional[Any] = False UpperCAmelCase_ : Optional[Any] = False def snake_case ( self ) -> str: A : Dict = TFFunnelModelTester(self ) A : int = ConfigTester(self , config_class=__UpperCAmelCase ) def snake_case ( self ) -> Tuple: self.config_tester.run_common_tests() def snake_case ( self ) -> List[str]: A : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def snake_case ( self ) -> Union[str, Any]: A : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__UpperCAmelCase ) def snake_case ( self ) -> Optional[Any]: A : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase ) def snake_case ( self ) -> Optional[Any]: A : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase ) def snake_case ( self ) -> Optional[int]: A : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase ) @require_tf class __lowercase ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : Any = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) UpperCAmelCase_ : str = False UpperCAmelCase_ : Union[str, Any] = False def snake_case ( self ) -> int: A : Optional[int] = TFFunnelModelTester(self , base=__UpperCAmelCase ) A : Optional[Any] = ConfigTester(self , config_class=__UpperCAmelCase ) def snake_case ( self ) -> str: self.config_tester.run_common_tests() def snake_case ( self ) -> Tuple: A : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*__UpperCAmelCase ) def snake_case ( self ) -> int: A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCAmelCase ) def snake_case ( self ) -> Tuple: A : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__UpperCAmelCase )
542
0
from __future__ import annotations from decimal import Decimal from numpy import array def __lowercase ( _UpperCAmelCase ) -> list[list[float]]: '''simple docstring''' __lowercase = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(_UpperCAmelCase ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix __lowercase = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError("This matrix has no inverse." ) # Creates a copy of the matrix with swapped positions of the elements __lowercase = [[0.0, 0.0], [0.0, 0.0]] __lowercase , __lowercase = matrix[1][1], matrix[0][0] __lowercase , __lowercase = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(_UpperCAmelCase ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(_UpperCAmelCase ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule __lowercase = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError("This matrix has no inverse." ) # Creating cofactor matrix __lowercase = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] __lowercase = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) __lowercase = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) __lowercase = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) __lowercase = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) __lowercase = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) __lowercase = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) __lowercase = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) __lowercase = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) __lowercase = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) __lowercase = array(_UpperCAmelCase ) for i in range(3 ): for j in range(3 ): __lowercase = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix __lowercase = array(_UpperCAmelCase ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(_UpperCAmelCase ) # Calculate the inverse of the matrix return [[float(d(_UpperCAmelCase ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError("Please provide a matrix of size 2x2 or 3x3." )
576
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase__ = {'configuration_xglm': ['XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XGLMConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['XGLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['XGLMTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ 'XGLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'XGLMForCausalLM', 'XGLMModel', 'XGLMPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ 'FlaxXGLMForCausalLM', 'FlaxXGLMModel', 'FlaxXGLMPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ 'TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXGLMForCausalLM', 'TFXGLMModel', 'TFXGLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure)
576
1
from maths.prime_factors import prime_factors def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> int: if not isinstance(_snake_case , _snake_case ): _A = F'''Input value of [number={number}] must be an integer''' raise TypeError(_snake_case ) if number < 1: raise ValueError('''Input must be a positive integer''' ) return -1 if len(prime_factors(_snake_case ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
2
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar UpperCAmelCase_ = TypeVar("""T""") def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> int: return (position - 1) // 2 def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> int: return (2 * position) + 1 def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> int: return (2 * position) + 2 class lowerCamelCase__ ( Generic[T]): """simple docstring""" def __init__( self : Optional[int] ) -> None: _A = [] _A = {} _A = 0 def __len__( self : str ) -> int: return self.elements def __repr__( self : Optional[int] ) -> str: return str(self.heap ) def snake_case_ ( self : str ) -> bool: # Check if the priority queue is empty return self.elements == 0 def snake_case_ ( self : Optional[int] , __lowerCAmelCase : T , __lowerCAmelCase : int ) -> None: # Add an element with given priority to the queue self.heap.append((elem, weight) ) _A = self.elements self.elements += 1 self._bubble_up(__lowerCAmelCase ) def snake_case_ ( self : Tuple ) -> T: # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) _A , _A = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: _A , _A = self.heap[0] self._bubble_down(__lowerCAmelCase ) return elem def snake_case_ ( self : int , __lowerCAmelCase : T , __lowerCAmelCase : int ) -> None: # Update the weight of the given key _A = self.position_map[elem] _A = (elem, weight) if position > 0: _A = get_parent_position(__lowerCAmelCase ) _A , _A = self.heap[parent_position] if parent_weight > weight: self._bubble_up(__lowerCAmelCase ) else: self._bubble_down(__lowerCAmelCase ) else: self._bubble_down(__lowerCAmelCase ) def snake_case_ ( self : Optional[Any] , __lowerCAmelCase : T ) -> None: # Place a node at the proper position (upward movement) [to be used internally # only] _A = self.position_map[elem] if curr_pos == 0: return None _A = get_parent_position(__lowerCAmelCase ) _A , _A = self.heap[curr_pos] _A , _A = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(__lowerCAmelCase , __lowerCAmelCase ) return self._bubble_up(__lowerCAmelCase ) return None def snake_case_ ( self : Dict , __lowerCAmelCase : T ) -> None: # Place a node at the proper position (downward movement) [to be used # internally only] _A = self.position_map[elem] _A , _A = self.heap[curr_pos] _A = get_child_left_position(__lowerCAmelCase ) _A = get_child_right_position(__lowerCAmelCase ) if child_left_position < self.elements and child_right_position < self.elements: _A , _A = self.heap[child_left_position] _A , _A = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(__lowerCAmelCase , __lowerCAmelCase ) return self._bubble_down(__lowerCAmelCase ) if child_left_position < self.elements: _A , _A = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(__lowerCAmelCase , __lowerCAmelCase ) return self._bubble_down(__lowerCAmelCase ) else: return None if child_right_position < self.elements: _A , _A = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(__lowerCAmelCase , __lowerCAmelCase ) return self._bubble_down(__lowerCAmelCase ) return None def snake_case_ ( self : List[str] , __lowerCAmelCase : int , __lowerCAmelCase : int ) -> None: # Swap the nodes at the given positions _A = self.heap[nodea_pos][0] _A = self.heap[nodea_pos][0] _A , _A = ( self.heap[nodea_pos], self.heap[nodea_pos], ) _A = nodea_pos _A = nodea_pos class lowerCamelCase__ ( Generic[T]): """simple docstring""" def __init__( self : str ) -> None: _A = {} _A = 0 def __repr__( self : str ) -> str: return str(self.connections ) def __len__( self : Dict ) -> int: return self.nodes def snake_case_ ( self : Any , __lowerCAmelCase : T ) -> None: # Add a node in the graph if it is not in the graph if node not in self.connections: _A = {} self.nodes += 1 def snake_case_ ( self : str , __lowerCAmelCase : T , __lowerCAmelCase : T , __lowerCAmelCase : int ) -> None: # Add an edge between 2 nodes in the graph self.add_node(__lowerCAmelCase ) self.add_node(__lowerCAmelCase ) _A = weight _A = weight def SCREAMING_SNAKE_CASE_ ( _snake_case :GraphUndirectedWeighted[T] , ) -> tuple[dict[T, int], dict[T, T | None]]: _A = {node: maxsize for node in graph.connections} _A = {node: None for node in graph.connections} _A = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(_snake_case , _snake_case ) if priority_queue.is_empty(): return dist, parent # initialization _A = priority_queue.extract_min() _A = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: _A = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(_snake_case , dist[neighbour] ) _A = node # running prim's algorithm while not priority_queue.is_empty(): _A = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: _A = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(_snake_case , dist[neighbour] ) _A = node return dist, parent
2
1
from ...configuration_utils import PretrainedConfig from ...utils import logging a__: Optional[Any] = logging.get_logger(__name__) a__: Tuple = {} class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = '''llama''' __SCREAMING_SNAKE_CASE = ['''past_key_values'''] def __init__( self,__lowerCamelCase=3_2000,__lowerCamelCase=4096,__lowerCamelCase=1_1008,__lowerCamelCase=32,__lowerCamelCase=32,__lowerCamelCase=None,__lowerCamelCase="silu",__lowerCamelCase=2048,__lowerCamelCase=0.02,__lowerCamelCase=1E-6,__lowerCamelCase=True,__lowerCamelCase=0,__lowerCamelCase=1,__lowerCamelCase=2,__lowerCamelCase=1,__lowerCamelCase=False,__lowerCamelCase=None,**__lowerCamelCase,): A__ = vocab_size A__ = max_position_embeddings A__ = hidden_size A__ = intermediate_size A__ = num_hidden_layers A__ = num_attention_heads # for backward compatibility if num_key_value_heads is None: A__ = num_attention_heads A__ = num_key_value_heads A__ = hidden_act A__ = initializer_range A__ = rms_norm_eps A__ = pretraining_tp A__ = use_cache A__ = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=__lowerCamelCase,bos_token_id=__lowerCamelCase,eos_token_id=__lowerCamelCase,tie_word_embeddings=__lowerCamelCase,**__lowerCamelCase,) def UpperCamelCase ( self ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling,__lowerCamelCase ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f"got {self.rope_scaling}" ) A__ = self.rope_scaling.get('''type''',__lowerCamelCase ) A__ = self.rope_scaling.get('''factor''',__lowerCamelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(__lowerCamelCase,__lowerCamelCase ) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
212
from ...configuration_utils import PretrainedConfig from ...utils import logging a__: Any = logging.get_logger(__name__) a__: List[str] = { 'microsoft/trocr-base-handwritten': ( 'https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = '''trocr''' __SCREAMING_SNAKE_CASE = ['''past_key_values'''] __SCREAMING_SNAKE_CASE = { '''num_attention_heads''': '''decoder_attention_heads''', '''hidden_size''': '''d_model''', '''num_hidden_layers''': '''decoder_layers''', } def __init__( self,__lowerCamelCase=5_0265,__lowerCamelCase=1024,__lowerCamelCase=12,__lowerCamelCase=16,__lowerCamelCase=4096,__lowerCamelCase="gelu",__lowerCamelCase=512,__lowerCamelCase=0.1,__lowerCamelCase=0.0,__lowerCamelCase=0.0,__lowerCamelCase=2,__lowerCamelCase=0.02,__lowerCamelCase=0.0,__lowerCamelCase=True,__lowerCamelCase=False,__lowerCamelCase=True,__lowerCamelCase=True,__lowerCamelCase=1,__lowerCamelCase=0,__lowerCamelCase=2,**__lowerCamelCase,): A__ = vocab_size A__ = d_model A__ = decoder_layers A__ = decoder_attention_heads A__ = decoder_ffn_dim A__ = activation_function A__ = max_position_embeddings A__ = dropout A__ = attention_dropout A__ = activation_dropout A__ = init_std A__ = decoder_layerdrop A__ = use_cache A__ = scale_embedding A__ = use_learned_position_embeddings A__ = layernorm_embedding super().__init__( pad_token_id=__lowerCamelCase,bos_token_id=__lowerCamelCase,eos_token_id=__lowerCamelCase,decoder_start_token_id=__lowerCamelCase,**__lowerCamelCase,)
212
1
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING __lowerCAmelCase : str = logging.get_logger(__name__) __lowerCAmelCase : Optional[int] = { '''salesforce/blip2-opt-2.7b''': '''https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json''', } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''blip_2_vision_model''' def __init__( self , _lowercase=1_4_0_8 , _lowercase=6_1_4_4 , _lowercase=3_9 , _lowercase=1_6 , _lowercase=2_2_4 , _lowercase=1_4 , _lowercase="gelu" , _lowercase=0.0_0001 , _lowercase=0.0 , _lowercase=1E-10 , _lowercase=True , **_lowercase , ) -> Any: '''simple docstring''' super().__init__(**_lowercase ) snake_case_ : int = hidden_size snake_case_ : Any = intermediate_size snake_case_ : Any = num_hidden_layers snake_case_ : Union[str, Any] = num_attention_heads snake_case_ : Any = patch_size snake_case_ : Dict = image_size snake_case_ : Union[str, Any] = initializer_range snake_case_ : Union[str, Any] = attention_dropout snake_case_ : Optional[Any] = layer_norm_eps snake_case_ : int = hidden_act snake_case_ : Optional[Any] = qkv_bias @classmethod def UpperCAmelCase__ ( cls , _lowercase , **_lowercase ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_lowercase ) snake_case_ , snake_case_ : Tuple = cls.get_config_dict(_lowercase , **_lowercase ) # get the vision config dict if we are loading from Blip2Config if config_dict.get("""model_type""" ) == "blip-2": snake_case_ : str = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_lowercase , **_lowercase ) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''blip_2_qformer''' def __init__( self , _lowercase=3_0_5_2_2 , _lowercase=7_6_8 , _lowercase=1_2 , _lowercase=1_2 , _lowercase=3_0_7_2 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=5_1_2 , _lowercase=0.02 , _lowercase=1E-12 , _lowercase=0 , _lowercase="absolute" , _lowercase=2 , _lowercase=1_4_0_8 , **_lowercase , ) -> Optional[int]: '''simple docstring''' super().__init__(pad_token_id=_lowercase , **_lowercase ) snake_case_ : Optional[Any] = vocab_size snake_case_ : Optional[int] = hidden_size snake_case_ : Union[str, Any] = num_hidden_layers snake_case_ : Any = num_attention_heads snake_case_ : str = hidden_act snake_case_ : int = intermediate_size snake_case_ : Tuple = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : Dict = max_position_embeddings snake_case_ : List[str] = initializer_range snake_case_ : Union[str, Any] = layer_norm_eps snake_case_ : str = position_embedding_type snake_case_ : List[str] = cross_attention_frequency snake_case_ : Union[str, Any] = encoder_hidden_size @classmethod def UpperCAmelCase__ ( cls , _lowercase , **_lowercase ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_lowercase ) snake_case_ , snake_case_ : Optional[int] = cls.get_config_dict(_lowercase , **_lowercase ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get("""model_type""" ) == "blip-2": snake_case_ : str = config_dict["""qformer_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_lowercase , **_lowercase ) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''blip-2''' _lowerCamelCase = True def __init__( self , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=3_2 , **_lowercase ) -> Any: '''simple docstring''' super().__init__(**_lowercase ) if vision_config is None: snake_case_ : Optional[int] = {} logger.info("""vision_config is None. initializing the Blip2VisionConfig with default values.""" ) if qformer_config is None: snake_case_ : Union[str, Any] = {} logger.info("""qformer_config is None. Initializing the Blip2QFormerConfig with default values.""" ) if text_config is None: snake_case_ : Tuple = {} logger.info("""text_config is None. Initializing the text config with default values (`OPTConfig`).""" ) snake_case_ : Tuple = BlipaVisionConfig(**_lowercase ) snake_case_ : Union[str, Any] = BlipaQFormerConfig(**_lowercase ) snake_case_ : Union[str, Any] = text_config["""model_type"""] if """model_type""" in text_config else """opt""" snake_case_ : Optional[int] = CONFIG_MAPPING[text_model_type](**_lowercase ) snake_case_ : Optional[int] = self.text_config.tie_word_embeddings snake_case_ : Dict = self.text_config.is_encoder_decoder snake_case_ : Any = num_query_tokens snake_case_ : List[str] = self.vision_config.hidden_size snake_case_ : Union[str, Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES snake_case_ : Dict = 1.0 snake_case_ : Optional[Any] = 0.02 @classmethod def UpperCAmelCase__ ( cls , _lowercase , _lowercase , _lowercase , **_lowercase , ) -> Dict: '''simple docstring''' return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_lowercase , ) def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : Optional[Any] = copy.deepcopy(self.__dict__ ) snake_case_ : Optional[int] = self.vision_config.to_dict() snake_case_ : Union[str, Any] = self.qformer_config.to_dict() snake_case_ : Dict = self.text_config.to_dict() snake_case_ : Tuple = self.__class__.model_type return output
58
"""simple docstring""" from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( '''The RoBERTa Model transformer with early exiting (DeeRoBERTa). ''' , SCREAMING_SNAKE_CASE__ , ) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = RobertaConfig _lowerCamelCase = '''roberta''' def __init__( self , _lowercase ) -> Optional[Any]: '''simple docstring''' super().__init__(_lowercase ) snake_case_ : str = RobertaEmbeddings(_lowercase ) self.init_weights() @add_start_docstrings( '''RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top, also takes care of multi-layer training. ''' , SCREAMING_SNAKE_CASE__ , ) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = RobertaConfig _lowerCamelCase = '''roberta''' def __init__( self , _lowercase ) -> List[Any]: '''simple docstring''' super().__init__(_lowercase ) snake_case_ : Optional[Any] = config.num_labels snake_case_ : Dict = config.num_hidden_layers snake_case_ : str = DeeRobertaModel(_lowercase ) snake_case_ : Dict = nn.Dropout(config.hidden_dropout_prob ) snake_case_ : List[str] = nn.Linear(config.hidden_size , self.config.num_labels ) @add_start_docstrings_to_model_forward(_lowercase ) def UpperCAmelCase__ ( self , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=-1 , _lowercase=False , ) -> Tuple: '''simple docstring''' snake_case_ : Any = self.num_layers try: snake_case_ : int = self.roberta( _lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , position_ids=_lowercase , head_mask=_lowercase , inputs_embeds=_lowercase , ) snake_case_ : str = outputs[1] snake_case_ : Union[str, Any] = self.dropout(_lowercase ) snake_case_ : Tuple = self.classifier(_lowercase ) snake_case_ : Dict = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: snake_case_ : List[Any] = e.message snake_case_ : Union[str, Any] = e.exit_layer snake_case_ : Dict = outputs[0] if not self.training: snake_case_ : Dict = entropy(_lowercase ) snake_case_ : Optional[int] = [] snake_case_ : Union[str, Any] = [] if labels is not None: if self.num_labels == 1: # We are doing regression snake_case_ : Dict = MSELoss() snake_case_ : Dict = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: snake_case_ : Union[str, Any] = CrossEntropyLoss() snake_case_ : Union[str, Any] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits snake_case_ : int = [] for highway_exit in outputs[-1]: snake_case_ : Tuple = highway_exit[0] if not self.training: highway_logits_all.append(_lowercase ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression snake_case_ : Optional[int] = MSELoss() snake_case_ : Optional[Any] = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: snake_case_ : Optional[int] = CrossEntropyLoss() snake_case_ : Union[str, Any] = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(_lowercase ) if train_highway: snake_case_ : Dict = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: snake_case_ : List[str] = (loss,) + outputs if not self.training: snake_case_ : Optional[Any] = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: snake_case_ : Tuple = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
58
1
'''simple docstring''' from datetime import datetime import matplotlib.pyplot as plt import torch def __snake_case ( lowercase : Union[str, Any] ): for param in module.parameters(): snake_case_ = False def __snake_case ( ): snake_case_ = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): snake_case_ = "mps" if device == "mps": print( "WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues" " with generations." ) return device def __snake_case ( lowercase : Union[str, Any] ): snake_case_ = plt.imshow(_UpperCamelCase ) fig.axes.get_xaxis().set_visible(_UpperCamelCase ) fig.axes.get_yaxis().set_visible(_UpperCamelCase ) plt.show() def __snake_case ( ): snake_case_ = datetime.now() snake_case_ = current_time.strftime("%H:%M:%S" ) return timestamp
721
'''simple docstring''' import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy lowercase__ = logging.get_logger(__name__) lowercase__ = { '''artists_file''': '''artists.json''', '''lyrics_file''': '''lyrics.json''', '''genres_file''': '''genres.json''', } lowercase__ = { '''artists_file''': { '''jukebox''': '''https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json''', }, '''genres_file''': { '''jukebox''': '''https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json''', }, '''lyrics_file''': { '''jukebox''': '''https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json''', }, } lowercase__ = { '''jukebox''': 5_12, } class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" snake_case = VOCAB_FILES_NAMES snake_case = PRETRAINED_VOCAB_FILES_MAP snake_case = PRETRAINED_LYRIC_TOKENS_SIZES snake_case = ["""input_ids""", """attention_mask"""] def __init__( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=["v3", "v2", "v2"] , UpperCAmelCase_=5_12 , UpperCAmelCase_=5 , UpperCAmelCase_="<|endoftext|>" , **UpperCAmelCase_ , ): snake_case_ = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else unk_token super().__init__( unk_token=UpperCAmelCase_ , n_genres=UpperCAmelCase_ , version=UpperCAmelCase_ , max_n_lyric_tokens=UpperCAmelCase_ , **UpperCAmelCase_ , ) snake_case_ = version snake_case_ = max_n_lyric_tokens snake_case_ = n_genres with open(UpperCAmelCase_ , encoding="utf-8" ) as vocab_handle: snake_case_ = json.load(UpperCAmelCase_ ) with open(UpperCAmelCase_ , encoding="utf-8" ) as vocab_handle: snake_case_ = json.load(UpperCAmelCase_ ) with open(UpperCAmelCase_ , encoding="utf-8" ) as vocab_handle: snake_case_ = json.load(UpperCAmelCase_ ) snake_case_ = R"[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+" # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 79: snake_case_ = oov.replace(R"\-'" , R"\-+'" ) snake_case_ = regex.compile(UpperCAmelCase_ ) snake_case_ = {v: k for k, v in self.artists_encoder.items()} snake_case_ = {v: k for k, v in self.genres_encoder.items()} snake_case_ = {v: k for k, v in self.lyrics_encoder.items()} @property def _lowercase ( self ): return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def _lowercase ( self ): return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def _lowercase ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): snake_case_ = [self.artists_encoder.get(UpperCAmelCase_ , 0 ) for artist in list_artists] for genres in range(len(UpperCAmelCase_ ) ): snake_case_ = [self.genres_encoder.get(UpperCAmelCase_ , 0 ) for genre in list_genres[genres]] snake_case_ = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) snake_case_ = [[self.lyrics_encoder.get(UpperCAmelCase_ , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def _lowercase ( self , UpperCAmelCase_ ): return list(UpperCAmelCase_ ) def _lowercase ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ): snake_case_ , snake_case_ , snake_case_ = self.prepare_for_tokenization(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = self._tokenize(UpperCAmelCase_ ) return artist, genre, lyrics def _lowercase ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = False ): for idx in range(len(self.version ) ): if self.version[idx] == "v3": snake_case_ = artists[idx].lower() snake_case_ = [genres[idx].lower()] else: snake_case_ = self._normalize(artists[idx] ) + ".v2" snake_case_ = [ self._normalize(UpperCAmelCase_ ) + ".v2" for genre in genres[idx].split("_" ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": snake_case_ = regex.compile(R"[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+" ) snake_case_ = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+'\"()[] \t\n" snake_case_ = {vocab[index]: index + 1 for index in range(len(UpperCAmelCase_ ) )} snake_case_ = 0 snake_case_ = len(UpperCAmelCase_ ) + 1 snake_case_ = self.vocab snake_case_ = {v: k for k, v in self.vocab.items()} snake_case_ = "" else: snake_case_ = regex.compile(R"[^A-Za-z0-9.,:;!?\-+'\"()\[\] \t\n]+" ) snake_case_ = self._run_strip_accents(UpperCAmelCase_ ) snake_case_ = lyrics.replace("\\" , "\n" ) snake_case_ = self.out_of_vocab.sub("" , UpperCAmelCase_ ), [], [] return artists, genres, lyrics def _lowercase ( self , UpperCAmelCase_ ): snake_case_ = unicodedata.normalize("NFD" , UpperCAmelCase_ ) snake_case_ = [] for char in text: snake_case_ = unicodedata.category(UpperCAmelCase_ ) if cat == "Mn": continue output.append(UpperCAmelCase_ ) return "".join(UpperCAmelCase_ ) def _lowercase ( self , UpperCAmelCase_ ): snake_case_ = ( [chr(UpperCAmelCase_ ) for i in range(ord("a" ) , ord("z" ) + 1 )] + [chr(UpperCAmelCase_ ) for i in range(ord("A" ) , ord("Z" ) + 1 )] + [chr(UpperCAmelCase_ ) for i in range(ord("0" ) , ord("9" ) + 1 )] + ["."] ) snake_case_ = frozenset(UpperCAmelCase_ ) snake_case_ = re.compile(R"_+" ) snake_case_ = "".join([c if c in accepted else "_" for c in text.lower()] ) snake_case_ = pattern.sub("_" , UpperCAmelCase_ ).strip("_" ) return text def _lowercase ( self , UpperCAmelCase_ ): return " ".join(UpperCAmelCase_ ) def _lowercase ( self , UpperCAmelCase_ , UpperCAmelCase_ = None , UpperCAmelCase_ = False ): # Convert to TensorType if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): snake_case_ = TensorType(UpperCAmelCase_ ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( "Unable to convert output to TensorFlow tensors format, TensorFlow is not installed." ) import tensorflow as tf snake_case_ = tf.constant snake_case_ = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError("Unable to convert output to PyTorch tensors format, PyTorch is not installed." ) import torch snake_case_ = torch.tensor snake_case_ = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError("Unable to convert output to JAX tensors format, JAX is not installed." ) import jax.numpy as jnp # noqa: F811 snake_case_ = jnp.array snake_case_ = _is_jax else: snake_case_ = np.asarray snake_case_ = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: snake_case_ = [inputs] if not is_tensor(UpperCAmelCase_ ): snake_case_ = as_tensor(UpperCAmelCase_ ) except: # noqa E722 raise ValueError( "Unable to create tensor, you should probably activate truncation and/or padding " "with 'padding=True' 'truncation=True' to have batched tensors with the same length." ) return inputs def __call__( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_="" , UpperCAmelCase_="pt" ): snake_case_ = [0, 0, 0] snake_case_ = [artist] * len(self.version ) snake_case_ = [genres] * len(self.version ) snake_case_ , snake_case_ , snake_case_ = self.tokenize(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ , snake_case_ , snake_case_ = self._convert_token_to_id(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = [-INFINITY] * len(full_tokens[-1] ) snake_case_ = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=UpperCAmelCase_ ) for i in range(len(self.version ) ) ] return BatchEncoding({"input_ids": input_ids, "attention_masks": attention_masks} ) def _lowercase ( self , UpperCAmelCase_ , UpperCAmelCase_ = None ): if not os.path.isdir(UpperCAmelCase_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case_ = os.path.join( UpperCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["artists_file"] ) with open(UpperCAmelCase_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=UpperCAmelCase_ ) ) snake_case_ = os.path.join( UpperCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["genres_file"] ) with open(UpperCAmelCase_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=UpperCAmelCase_ ) ) snake_case_ = os.path.join( UpperCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["lyrics_file"] ) with open(UpperCAmelCase_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=UpperCAmelCase_ ) ) return (artists_file, genres_file, lyrics_file) def _lowercase ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): snake_case_ = self.artists_decoder.get(UpperCAmelCase_ ) snake_case_ = [self.genres_decoder.get(UpperCAmelCase_ ) for genre in genres_index] snake_case_ = [self.lyrics_decoder.get(UpperCAmelCase_ ) for character in lyric_index] return artist, genres, lyrics
420
0
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class __UpperCamelCase ( _a ): '''simple docstring''' __magic_name__ = 42 class __UpperCamelCase ( _a ,_a ): '''simple docstring''' @register_to_config def __init__( self , lowerCamelCase__ = 6_5_5_3_6 , lowerCamelCase__ = None , lowerCamelCase__ = 2 , lowerCamelCase__ = 2 , lowerCamelCase__ = 0 , lowerCamelCase__ = "fourier" , lowerCamelCase__ = True , lowerCamelCase__ = False , lowerCamelCase__ = 0.0 , lowerCamelCase__ = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , lowerCamelCase__ = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , lowerCamelCase__ = "UNetMidBlock1D" , lowerCamelCase__ = None , lowerCamelCase__ = (3_2, 3_2, 6_4) , lowerCamelCase__ = None , lowerCamelCase__ = 8 , lowerCamelCase__ = 1 , lowerCamelCase__ = False , ): super().__init__() UpperCAmelCase__: Dict = sample_size # time if time_embedding_type == "fourier": UpperCAmelCase__: Union[str, Any] = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=lowerCamelCase__ , log=lowerCamelCase__ , flip_sin_to_cos=lowerCamelCase__ ) UpperCAmelCase__: Optional[Any] = 2 * block_out_channels[0] elif time_embedding_type == "positional": UpperCAmelCase__: Any = Timesteps( block_out_channels[0] , flip_sin_to_cos=lowerCamelCase__ , downscale_freq_shift=lowerCamelCase__ ) UpperCAmelCase__: Optional[Any] = block_out_channels[0] if use_timestep_embedding: UpperCAmelCase__: Dict = block_out_channels[0] * 4 UpperCAmelCase__: Optional[int] = TimestepEmbedding( in_channels=lowerCamelCase__ , time_embed_dim=lowerCamelCase__ , act_fn=lowerCamelCase__ , out_dim=block_out_channels[0] , ) UpperCAmelCase__: Any = nn.ModuleList([] ) UpperCAmelCase__: Optional[int] = None UpperCAmelCase__: Union[str, Any] = nn.ModuleList([] ) UpperCAmelCase__: Any = None # down UpperCAmelCase__: Any = in_channels for i, down_block_type in enumerate(lowerCamelCase__ ): UpperCAmelCase__: List[Any] = output_channel UpperCAmelCase__: Tuple = block_out_channels[i] if i == 0: input_channel += extra_in_channels UpperCAmelCase__: Tuple = i == len(lowerCamelCase__ ) - 1 UpperCAmelCase__: Any = get_down_block( lowerCamelCase__ , num_layers=lowerCamelCase__ , in_channels=lowerCamelCase__ , out_channels=lowerCamelCase__ , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(lowerCamelCase__ ) # mid UpperCAmelCase__: Optional[Any] = get_mid_block( lowerCamelCase__ , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=lowerCamelCase__ , add_downsample=lowerCamelCase__ , ) # up UpperCAmelCase__: List[str] = list(reversed(lowerCamelCase__ ) ) UpperCAmelCase__: Any = reversed_block_out_channels[0] if out_block_type is None: UpperCAmelCase__: List[Any] = out_channels else: UpperCAmelCase__: str = block_out_channels[0] for i, up_block_type in enumerate(lowerCamelCase__ ): UpperCAmelCase__: Tuple = output_channel UpperCAmelCase__: Optional[Any] = ( reversed_block_out_channels[i + 1] if i < len(lowerCamelCase__ ) - 1 else final_upsample_channels ) UpperCAmelCase__: Optional[int] = i == len(lowerCamelCase__ ) - 1 UpperCAmelCase__: Optional[Any] = get_up_block( lowerCamelCase__ , num_layers=lowerCamelCase__ , in_channels=lowerCamelCase__ , out_channels=lowerCamelCase__ , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(lowerCamelCase__ ) UpperCAmelCase__: Optional[int] = output_channel # out UpperCAmelCase__: Tuple = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 3_2 ) UpperCAmelCase__: Dict = get_out_block( out_block_type=lowerCamelCase__ , num_groups_out=lowerCamelCase__ , embed_dim=block_out_channels[0] , out_channels=lowerCamelCase__ , act_fn=lowerCamelCase__ , fc_dim=block_out_channels[-1] // 4 , ) def _UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = True , ): UpperCAmelCase__: Optional[Any] = timestep if not torch.is_tensor(lowerCamelCase__ ): UpperCAmelCase__: Optional[Any] = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(lowerCamelCase__ ) and len(timesteps.shape ) == 0: UpperCAmelCase__: Optional[Any] = timesteps[None].to(sample.device ) UpperCAmelCase__: Any = self.time_proj(lowerCamelCase__ ) if self.config.use_timestep_embedding: UpperCAmelCase__: Union[str, Any] = self.time_mlp(lowerCamelCase__ ) else: UpperCAmelCase__: int = timestep_embed[..., None] UpperCAmelCase__: List[Any] = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) UpperCAmelCase__: Optional[int] = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down UpperCAmelCase__: List[Any] = () for downsample_block in self.down_blocks: UpperCAmelCase__ , UpperCAmelCase__: int = downsample_block(hidden_states=lowerCamelCase__ , temb=lowerCamelCase__ ) down_block_res_samples += res_samples # 3. mid if self.mid_block: UpperCAmelCase__: Dict = self.mid_block(lowerCamelCase__ , lowerCamelCase__ ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): UpperCAmelCase__: Dict = down_block_res_samples[-1:] UpperCAmelCase__: str = down_block_res_samples[:-1] UpperCAmelCase__: Dict = upsample_block(lowerCamelCase__ , res_hidden_states_tuple=lowerCamelCase__ , temb=lowerCamelCase__ ) # 5. post-process if self.out_block: UpperCAmelCase__: List[str] = self.out_block(lowerCamelCase__ , lowerCamelCase__ ) if not return_dict: return (sample,) return UNetaDOutput(sample=lowerCamelCase__ )
113
import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 _lowerCAmelCase : List[str] =get_tests_dir("""fixtures/dummy_feature_extractor_config.json""") _lowerCAmelCase : List[str] =get_tests_dir("""fixtures/vocab.json""") _lowerCAmelCase : Dict =get_tests_dir("""fixtures""") class __UpperCamelCase ( unittest.TestCase ): '''simple docstring''' __magic_name__ = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] def _UpperCAmelCase ( self ): UpperCAmelCase__: Union[str, Any] = 0 def _UpperCAmelCase ( self ): UpperCAmelCase__: Optional[int] = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h" ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def _UpperCAmelCase ( self ): with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase__: Any = WavaVecaConfig() UpperCAmelCase__: Tuple = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h" ) # save in new folder model_config.save_pretrained(lowerCamelCase__ ) processor.save_pretrained(lowerCamelCase__ ) UpperCAmelCase__: int = AutoProcessor.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def _UpperCAmelCase ( self ): with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(lowerCamelCase__ , os.path.join(lowerCamelCase__ , lowerCamelCase__ ) ) copyfile(lowerCamelCase__ , os.path.join(lowerCamelCase__ , "vocab.json" ) ) UpperCAmelCase__: Tuple = AutoProcessor.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def _UpperCAmelCase ( self ): with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase__: Optional[Any] = WavaVecaFeatureExtractor() UpperCAmelCase__: List[Any] = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h" ) UpperCAmelCase__: Dict = WavaVecaProcessor(lowerCamelCase__ , lowerCamelCase__ ) # save in new folder processor.save_pretrained(lowerCamelCase__ ) # drop `processor_class` in tokenizer with open(os.path.join(lowerCamelCase__ , lowerCamelCase__ ) , "r" ) as f: UpperCAmelCase__: Optional[int] = json.load(lowerCamelCase__ ) config_dict.pop("processor_class" ) with open(os.path.join(lowerCamelCase__ , lowerCamelCase__ ) , "w" ) as f: f.write(json.dumps(lowerCamelCase__ ) ) UpperCAmelCase__: Any = AutoProcessor.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def _UpperCAmelCase ( self ): with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase__: str = WavaVecaFeatureExtractor() UpperCAmelCase__: Tuple = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h" ) UpperCAmelCase__: List[Any] = WavaVecaProcessor(lowerCamelCase__ , lowerCamelCase__ ) # save in new folder processor.save_pretrained(lowerCamelCase__ ) # drop `processor_class` in feature extractor with open(os.path.join(lowerCamelCase__ , lowerCamelCase__ ) , "r" ) as f: UpperCAmelCase__: str = json.load(lowerCamelCase__ ) config_dict.pop("processor_class" ) with open(os.path.join(lowerCamelCase__ , lowerCamelCase__ ) , "w" ) as f: f.write(json.dumps(lowerCamelCase__ ) ) UpperCAmelCase__: Tuple = AutoProcessor.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def _UpperCAmelCase ( self ): with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase__: Union[str, Any] = WavaVecaConfig(processor_class="Wav2Vec2Processor" ) model_config.save_pretrained(lowerCamelCase__ ) # copy relevant files copyfile(lowerCamelCase__ , os.path.join(lowerCamelCase__ , "vocab.json" ) ) # create emtpy sample processor with open(os.path.join(lowerCamelCase__ , lowerCamelCase__ ) , "w" ) as f: f.write("{}" ) UpperCAmelCase__: Union[str, Any] = AutoProcessor.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def _UpperCAmelCase ( self ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(lowerCamelCase__ ): UpperCAmelCase__: Optional[Any] = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor" ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCamelCase__ ): UpperCAmelCase__: Optional[int] = AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor" , trust_remote_code=lowerCamelCase__ ) UpperCAmelCase__: Union[str, Any] = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor" , trust_remote_code=lowerCamelCase__ ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , "NewProcessor" ) UpperCAmelCase__: Dict = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) UpperCAmelCase__: Any = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" ) # Test we can also load the slow version UpperCAmelCase__: Dict = AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor" , trust_remote_code=lowerCamelCase__ , use_fast=lowerCamelCase__ ) UpperCAmelCase__: str = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , "NewTokenizer" ) else: self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) def _UpperCAmelCase ( self ): try: AutoConfig.register("custom" , lowerCamelCase__ ) AutoFeatureExtractor.register(lowerCamelCase__ , lowerCamelCase__ ) AutoTokenizer.register(lowerCamelCase__ , slow_tokenizer_class=lowerCamelCase__ ) AutoProcessor.register(lowerCamelCase__ , lowerCamelCase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCamelCase__ ): AutoProcessor.register(lowerCamelCase__ , lowerCamelCase__ ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCAmelCase__: Dict = CustomFeatureExtractor.from_pretrained(lowerCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase__: Tuple = os.path.join(lowerCamelCase__ , "vocab.txt" ) with open(lowerCamelCase__ , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) UpperCAmelCase__: str = CustomTokenizer(lowerCamelCase__ ) UpperCAmelCase__: Optional[int] = CustomProcessor(lowerCamelCase__ , lowerCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(lowerCamelCase__ ) UpperCAmelCase__: Tuple = AutoProcessor.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def _UpperCAmelCase ( self ): class __UpperCamelCase ( _a ): '''simple docstring''' __magic_name__ = False class __UpperCamelCase ( _a ): '''simple docstring''' __magic_name__ = False class __UpperCamelCase ( _a ): '''simple docstring''' __magic_name__ = "AutoFeatureExtractor" __magic_name__ = "AutoTokenizer" __magic_name__ = False try: AutoConfig.register("custom" , lowerCamelCase__ ) AutoFeatureExtractor.register(lowerCamelCase__ , lowerCamelCase__ ) AutoTokenizer.register(lowerCamelCase__ , slow_tokenizer_class=lowerCamelCase__ ) AutoProcessor.register(lowerCamelCase__ , lowerCamelCase__ ) # If remote code is not set, the default is to use local classes. UpperCAmelCase__: Any = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor" ) self.assertEqual(processor.__class__.__name__ , "NewProcessor" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. UpperCAmelCase__: Union[str, Any] = AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor" , trust_remote_code=lowerCamelCase__ ) self.assertEqual(processor.__class__.__name__ , "NewProcessor" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. UpperCAmelCase__: Tuple = AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor" , trust_remote_code=lowerCamelCase__ ) self.assertEqual(processor.__class__.__name__ , "NewProcessor" ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def _UpperCAmelCase ( self ): UpperCAmelCase__: Union[str, Any] = AutoProcessor.from_pretrained("hf-internal-testing/tiny-random-bert" ) self.assertEqual(processor.__class__.__name__ , "BertTokenizerFast" ) def _UpperCAmelCase ( self ): UpperCAmelCase__: Tuple = AutoProcessor.from_pretrained("hf-internal-testing/tiny-random-convnext" ) self.assertEqual(processor.__class__.__name__ , "ConvNextImageProcessor" ) @is_staging_test class __UpperCamelCase ( unittest.TestCase ): '''simple docstring''' __magic_name__ = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def _UpperCAmelCase ( cls ): UpperCAmelCase__: Dict = TOKEN HfFolder.save_token(lowerCamelCase__ ) @classmethod def _UpperCAmelCase ( cls ): try: delete_repo(token=cls._token , repo_id="test-processor" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-processor-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-processor" ) except HTTPError: pass def _UpperCAmelCase ( self ): UpperCAmelCase__: Optional[Any] = WavaVecaProcessor.from_pretrained(lowerCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(lowerCamelCase__ , "test-processor" ) , push_to_hub=lowerCamelCase__ , use_auth_token=self._token ) UpperCAmelCase__: Union[str, Any] = WavaVecaProcessor.from_pretrained(F"{USER}/test-processor" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(lowerCamelCase__ , getattr(new_processor.feature_extractor , lowerCamelCase__ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def _UpperCAmelCase ( self ): UpperCAmelCase__: Dict = WavaVecaProcessor.from_pretrained(lowerCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(lowerCamelCase__ , "test-processor-org" ) , push_to_hub=lowerCamelCase__ , use_auth_token=self._token , organization="valid_org" , ) UpperCAmelCase__: Optional[int] = WavaVecaProcessor.from_pretrained("valid_org/test-processor-org" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(lowerCamelCase__ , getattr(new_processor.feature_extractor , lowerCamelCase__ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def _UpperCAmelCase ( self ): CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() UpperCAmelCase__: List[str] = CustomFeatureExtractor.from_pretrained(lowerCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase__: Optional[int] = os.path.join(lowerCamelCase__ , "vocab.txt" ) with open(lowerCamelCase__ , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) UpperCAmelCase__: Optional[Any] = CustomTokenizer(lowerCamelCase__ ) UpperCAmelCase__: str = CustomProcessor(lowerCamelCase__ , lowerCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(F"{USER}/test-dynamic-processor" , token=self._token ) UpperCAmelCase__: int = Repository(lowerCamelCase__ , clone_from=F"{USER}/test-dynamic-processor" , token=self._token ) processor.save_pretrained(lowerCamelCase__ ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { "AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor", "AutoProcessor": "custom_processing.CustomProcessor", } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(lowerCamelCase__ , "tokenizer_config.json" ) ) as f: UpperCAmelCase__: Tuple = json.load(lowerCamelCase__ ) self.assertDictEqual( tokenizer_config["auto_map"] , { "AutoTokenizer": ["custom_tokenization.CustomTokenizer", None], "AutoProcessor": "custom_processing.CustomProcessor", } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(lowerCamelCase__ , "custom_feature_extraction.py" ) ) ) self.assertTrue(os.path.isfile(os.path.join(lowerCamelCase__ , "custom_tokenization.py" ) ) ) self.assertTrue(os.path.isfile(os.path.join(lowerCamelCase__ , "custom_processing.py" ) ) ) repo.push_to_hub() UpperCAmelCase__: Union[str, Any] = AutoProcessor.from_pretrained(F"{USER}/test-dynamic-processor" , trust_remote_code=lowerCamelCase__ ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , "CustomProcessor" )
113
1
'''simple docstring''' import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger a = get_logger(__name__) class a_ : def __init__( self : Union[str, Any] , a_ : Optional[str] = None ) -> Any: snake_case: Any =( os.path.join(a_ , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) snake_case: Dict =Extractor def UpperCamelCase ( self : int , a_ : str ) -> str: from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" snake_case: Union[str, Any] =os.path.abspath(a_ ) return os.path.join(self.extract_dir , hash_url_to_filename(a_ ) ) def UpperCamelCase ( self : List[Any] , a_ : str , a_ : bool ) -> bool: return force_extract or ( not os.path.isfile(a_ ) and not (os.path.isdir(a_ ) and os.listdir(a_ )) ) def UpperCamelCase ( self : List[str] , a_ : str , a_ : bool = False ) -> str: snake_case: Optional[int] =self.extractor.infer_extractor_format(a_ ) if not extractor_format: return input_path snake_case: int =self._get_output_path(a_ ) if self._do_extract(a_ , a_ ): self.extractor.extract(a_ , a_ , a_ ) return output_path class a_ ( UpperCAmelCase__ ): @classmethod @abstractmethod def UpperCamelCase ( cls : Any , a_ : Union[Path, str] , **a_ : List[Any] ) -> bool: ... @staticmethod @abstractmethod def UpperCamelCase ( a_ : Union[Path, str] , a_ : Union[Path, str] ) -> None: ... class a_ ( UpperCAmelCase__ , UpperCAmelCase__ ): UpperCAmelCase : List[bytes] = [] @staticmethod def UpperCamelCase ( a_ : Union[Path, str] , a_ : int ) -> Dict: with open(a_ , 'rb' ) as f: return f.read(a_ ) @classmethod def UpperCamelCase ( cls : Tuple , a_ : Union[Path, str] , a_ : bytes = b"" ) -> bool: if not magic_number: snake_case: str =max(len(a_ ) for cls_magic_number in cls.magic_numbers ) try: snake_case: Any =cls.read_magic_number(a_ , a_ ) except OSError: return False return any(magic_number.startswith(a_ ) for cls_magic_number in cls.magic_numbers ) class a_ ( UpperCAmelCase__ ): @classmethod def UpperCamelCase ( cls : str , a_ : Union[Path, str] , **a_ : Optional[Any] ) -> bool: return tarfile.is_tarfile(a_ ) @staticmethod def UpperCamelCase ( a_ : Optional[Any] , a_ : int ) -> Union[str, Any]: def resolved(a_ : str ) -> str: return os.path.realpath(os.path.abspath(a_ ) ) def badpath(a_ : str , a_ : str ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(a_ , a_ ) ).startswith(a_ ) def badlink(a_ : List[Any] , a_ : str ) -> bool: # Links are interpreted relative to the directory containing the link snake_case: str =resolved(os.path.join(a_ , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=a_ ) snake_case: Dict =resolved(a_ ) for finfo in members: if badpath(finfo.name , a_ ): logger.error(F'''Extraction of {finfo.name} is blocked (illegal path)''' ) elif finfo.issym() and badlink(a_ , a_ ): logger.error(F'''Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}''' ) elif finfo.islnk() and badlink(a_ , a_ ): logger.error(F'''Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}''' ) else: yield finfo @staticmethod def UpperCamelCase ( a_ : Union[Path, str] , a_ : Union[Path, str] ) -> None: os.makedirs(a_ , exist_ok=a_ ) snake_case: Optional[int] =tarfile.open(a_ ) tar_file.extractall(a_ , members=TarExtractor.safemembers(a_ , a_ ) ) tar_file.close() class a_ ( UpperCAmelCase__ ): UpperCAmelCase : str = [B'\x1F\x8B'] @staticmethod def UpperCamelCase ( a_ : Union[Path, str] , a_ : Union[Path, str] ) -> None: with gzip.open(a_ , 'rb' ) as gzip_file: with open(a_ , 'wb' ) as extracted_file: shutil.copyfileobj(a_ , a_ ) class a_ ( UpperCAmelCase__ ): UpperCAmelCase : Dict = [ B'PK\x03\x04', B'PK\x05\x06', # empty archive B'PK\x07\x08', # spanned archive ] @classmethod def UpperCamelCase ( cls : List[Any] , a_ : Union[Path, str] , a_ : bytes = b"" ) -> bool: if super().is_extractable(a_ , magic_number=a_ ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(a_ , 'rb' ) as fp: snake_case: int =_EndRecData(a_ ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: snake_case: List[Any] =fp.read(a_ ) # CD is where we expect it to be if len(a_ ) == sizeCentralDir: snake_case: Tuple =struct.unpack(a_ , a_ ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def UpperCamelCase ( a_ : Union[Path, str] , a_ : Union[Path, str] ) -> None: os.makedirs(a_ , exist_ok=a_ ) with zipfile.ZipFile(a_ , 'r' ) as zip_file: zip_file.extractall(a_ ) zip_file.close() class a_ ( UpperCAmelCase__ ): UpperCAmelCase : List[Any] = [B'\xFD\x37\x7A\x58\x5A\x00'] @staticmethod def UpperCamelCase ( a_ : Union[Path, str] , a_ : Union[Path, str] ) -> None: with lzma.open(a_ ) as compressed_file: with open(a_ , 'wb' ) as extracted_file: shutil.copyfileobj(a_ , a_ ) class a_ ( UpperCAmelCase__ ): UpperCAmelCase : List[str] = [B'Rar!\x1a\x07\x00', B'Rar!\x1a\x07\x01\x00'] # RAR_ID # RAR5_ID @staticmethod def UpperCamelCase ( a_ : Union[Path, str] , a_ : Union[Path, str] ) -> None: if not config.RARFILE_AVAILABLE: raise ImportError('Please pip install rarfile' ) import rarfile os.makedirs(a_ , exist_ok=a_ ) snake_case: Dict =rarfile.RarFile(a_ ) rf.extractall(a_ ) rf.close() class a_ ( UpperCAmelCase__ ): UpperCAmelCase : List[str] = [B'\x28\xb5\x2F\xFD'] @staticmethod def UpperCamelCase ( a_ : Union[Path, str] , a_ : Union[Path, str] ) -> None: if not config.ZSTANDARD_AVAILABLE: raise ImportError('Please pip install zstandard' ) import zstandard as zstd snake_case: int =zstd.ZstdDecompressor() with open(a_ , 'rb' ) as ifh, open(a_ , 'wb' ) as ofh: dctx.copy_stream(a_ , a_ ) class a_ ( UpperCAmelCase__ ): UpperCAmelCase : int = [B'\x42\x5A\x68'] @staticmethod def UpperCamelCase ( a_ : Union[Path, str] , a_ : Union[Path, str] ) -> None: with bza.open(a_ , 'rb' ) as compressed_file: with open(a_ , 'wb' ) as extracted_file: shutil.copyfileobj(a_ , a_ ) class a_ ( UpperCAmelCase__ ): UpperCAmelCase : int = [B'\x37\x7A\xBC\xAF\x27\x1C'] @staticmethod def UpperCamelCase ( a_ : Union[Path, str] , a_ : Union[Path, str] ) -> None: if not config.PY7ZR_AVAILABLE: raise ImportError('Please pip install py7zr' ) import pyazr os.makedirs(a_ , exist_ok=a_ ) with pyazr.SevenZipFile(a_ , 'r' ) as archive: archive.extractall(a_ ) class a_ ( UpperCAmelCase__ ): UpperCAmelCase : Optional[int] = [B'\x04\x22\x4D\x18'] @staticmethod def UpperCamelCase ( a_ : Union[Path, str] , a_ : Union[Path, str] ) -> None: if not config.LZ4_AVAILABLE: raise ImportError('Please pip install lz4' ) import lza.frame with lza.frame.open(a_ , 'rb' ) as compressed_file: with open(a_ , 'wb' ) as extracted_file: shutil.copyfileobj(a_ , a_ ) class a_ : # Put zip file to the last, b/c it is possible wrongly detected as zip (I guess it means: as tar or gzip) UpperCAmelCase : Dict[str, Type[BaseExtractor]] = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def UpperCamelCase ( cls : List[Any] ) -> Optional[int]: return max( len(a_ ) for extractor in cls.extractors.values() if issubclass(a_ , a_ ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def UpperCamelCase ( a_ : Union[Path, str] , a_ : int ) -> Tuple: try: return MagicNumberBaseExtractor.read_magic_number(a_ , magic_number_length=a_ ) except OSError: return b"" @classmethod def UpperCamelCase ( cls : str , a_ : Union[Path, str] , a_ : bool = False ) -> bool: warnings.warn( 'Method \'is_extractable\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ' 'Use \'infer_extractor_format\' instead.' , category=a_ , ) snake_case: Union[str, Any] =cls.infer_extractor_format(a_ ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def UpperCamelCase ( cls : Any , a_ : Union[Path, str] ) -> str: # <Added version="2.4.0"/> snake_case: Dict =cls._get_magic_number_max_length() snake_case: Optional[Any] =cls._read_magic_number(a_ , a_ ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(a_ , magic_number=a_ ): return extractor_format @classmethod def UpperCamelCase ( cls : List[Any] , a_ : Union[Path, str] , a_ : Union[Path, str] , a_ : Optional[str] = None , a_ : Optional[BaseExtractor] = "deprecated" , ) -> None: os.makedirs(os.path.dirname(a_ ) , exist_ok=a_ ) # Prevent parallel extractions snake_case: Dict =str(Path(a_ ).with_suffix('.lock' ) ) with FileLock(a_ ): shutil.rmtree(a_ , ignore_errors=a_ ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(a_ , a_ ): # passed as positional arg warnings.warn( 'Parameter \'extractor\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ' 'Use \'extractor_format\' instead.' , category=a_ , ) snake_case: Any =extractor if extractor != """deprecated""" else extractor_format else: snake_case: Any =cls.extractors[extractor_format] return extractor.extract(a_ , a_ ) else: warnings.warn( 'Parameter \'extractor_format\' was made required in version 2.4.0 and not passing it will raise an ' 'exception in 3.0.0.' , category=a_ , ) for extractor in cls.extractors.values(): if extractor.is_extractable(a_ ): return extractor.extract(a_ , a_ )
714
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors a = logging.getLogger(__name__) class a_ ( snake_case ): UpperCAmelCase : Any = """sequence-classification""" def __init__( self : int , a_ : str ) -> str: if type(a_ ) == dict: snake_case: List[Any] =Namespace(**a_ ) snake_case: Tuple =glue_output_modes[hparams.task] snake_case: Any =glue_tasks_num_labels[hparams.task] super().__init__(a_ , a_ , self.mode ) def UpperCamelCase ( self : Tuple , **a_ : Tuple ) -> Union[str, Any]: return self.model(**a_ ) def UpperCamelCase ( self : int , a_ : Union[str, Any] , a_ : Optional[int] ) -> Optional[int]: snake_case: Any ={'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: snake_case: Optional[int] =batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None snake_case: Optional[int] =self(**a_ ) snake_case: Any =outputs[0] snake_case: Union[str, Any] =self.trainer.lr_schedulers[0]['scheduler'] snake_case: str ={'loss': loss, 'rate': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def UpperCamelCase ( self : str ) -> Tuple: snake_case: int =self.hparams snake_case: Union[str, Any] =processors[args.task]() snake_case: Union[str, Any] =processor.get_labels() for mode in ["train", "dev"]: snake_case: Optional[Any] =self._feature_file(a_ ) if os.path.exists(a_ ) and not args.overwrite_cache: logger.info('Loading features from cached file %s' , a_ ) else: logger.info('Creating features from dataset file at %s' , args.data_dir ) snake_case: int =( processor.get_dev_examples(args.data_dir ) if mode == 'dev' else processor.get_train_examples(args.data_dir ) ) snake_case: Tuple =convert_examples_to_features( a_ , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('Saving features into cached file %s' , a_ ) torch.save(a_ , a_ ) def UpperCamelCase ( self : List[Any] , a_ : str , a_ : int , a_ : bool = False ) -> DataLoader: snake_case: List[Any] ='dev' if mode == 'test' else mode snake_case: Union[str, Any] =self._feature_file(a_ ) logger.info('Loading features from cached file %s' , a_ ) snake_case: Dict =torch.load(a_ ) snake_case: Union[str, Any] =torch.tensor([f.input_ids for f in features] , dtype=torch.long ) snake_case: List[Any] =torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) snake_case: str =torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": snake_case: Optional[Any] =torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": snake_case: Union[str, Any] =torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(a_ , a_ , a_ , a_ ) , batch_size=a_ , shuffle=a_ , ) def UpperCamelCase ( self : List[str] , a_ : Optional[int] , a_ : Any ) -> Dict: snake_case: int ={'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: snake_case: Tuple =batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None snake_case: List[str] =self(**a_ ) snake_case , snake_case: str =outputs[:2] snake_case: Any =logits.detach().cpu().numpy() snake_case: Union[str, Any] =inputs['labels'].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def UpperCamelCase ( self : int , a_ : Union[str, Any] ) -> tuple: snake_case: Optional[Any] =torch.stack([x['val_loss'] for x in outputs] ).mean().detach().cpu().item() snake_case: str =np.concatenate([x['pred'] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": snake_case: Union[str, Any] =np.argmax(a_ , axis=1 ) elif self.hparams.glue_output_mode == "regression": snake_case: Optional[Any] =np.squeeze(a_ ) snake_case: Tuple =np.concatenate([x['target'] for x in outputs] , axis=0 ) snake_case: Any =[[] for _ in range(out_label_ids.shape[0] )] snake_case: str =[[] for _ in range(out_label_ids.shape[0] )] snake_case: int ={**{'val_loss': val_loss_mean}, **compute_metrics(self.hparams.task , a_ , a_ )} snake_case: Union[str, Any] =dict(results.items() ) snake_case: Dict =results return ret, preds_list, out_label_list def UpperCamelCase ( self : str , a_ : list ) -> dict: snake_case , snake_case , snake_case: Union[str, Any] =self._eval_end(a_ ) snake_case: Optional[Any] =ret['log'] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def UpperCamelCase ( self : Tuple , a_ : Tuple ) -> dict: snake_case , snake_case , snake_case: int =self._eval_end(a_ ) snake_case: List[Any] =ret['log'] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def UpperCamelCase ( a_ : Optional[int] , a_ : Dict ) -> Tuple: BaseTransformer.add_model_specific_args(a_ , a_ ) parser.add_argument( '--max_seq_length' , default=1_2_8 , type=a_ , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--task' , default='' , type=a_ , required=a_ , help='The GLUE task to run' , ) parser.add_argument( '--gpus' , default=0 , type=a_ , help='The number of GPUs allocated for this, it is by default 0 meaning none' , ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) return parser def a_ ( ) -> Any: """simple docstring""" snake_case: Tuple =argparse.ArgumentParser() add_generic_args(__UpperCAmelCase , os.getcwd() ) snake_case: List[Any] =GLUETransformer.add_model_specific_args(__UpperCAmelCase , os.getcwd() ) snake_case: Optional[int] =parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: snake_case: Optional[int] =os.path.join( './results' , f'''{args.task}_{time.strftime("%Y%m%d_%H%M%S" )}''' , ) os.makedirs(args.output_dir ) snake_case: str =GLUETransformer(__UpperCAmelCase ) snake_case: Tuple =generic_train(__UpperCAmelCase , __UpperCAmelCase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: snake_case: str =sorted(glob.glob(os.path.join(args.output_dir , 'checkpoint-epoch=*.ckpt' ) , recursive=__UpperCAmelCase ) ) snake_case: int =model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(__UpperCAmelCase ) if __name__ == "__main__": main()
347
0
import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='session' ) def __lowerCAmelCase( ) -> Optional[Any]: """simple docstring""" _A = 10 _A = datasets.Features( { 'tokens': datasets.Sequence(datasets.Value('string' ) ), 'labels': datasets.Sequence(datasets.ClassLabel(names=['negative', 'positive'] ) ), 'answers': datasets.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), 'id': datasets.Value('int64' ), } ) _A = datasets.Dataset.from_dict( { 'tokens': [['foo'] * 5] * n, 'labels': [[1] * 5] * n, 'answers': [{'answer_start': [97], 'text': ['1976']}] * 10, 'id': list(range(_SCREAMING_SNAKE_CASE ) ), } , features=_SCREAMING_SNAKE_CASE , ) return dataset @pytest.fixture(scope='session' ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" _A = str(tmp_path_factory.mktemp('data' ) / 'file.arrow' ) dataset.map(cache_file_name=_SCREAMING_SNAKE_CASE ) return filename # FILE_CONTENT + files __A : Union[str, Any] = "\\n Text data.\n Second line of data." @pytest.fixture(scope='session' ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" _A = tmp_path_factory.mktemp('data' ) / 'file.txt' _A = FILE_CONTENT with open(_SCREAMING_SNAKE_CASE , 'w' ) as f: f.write(_SCREAMING_SNAKE_CASE ) return filename @pytest.fixture(scope='session' ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" import bza _A = tmp_path_factory.mktemp('data' ) / 'file.txt.bz2' _A = bytes(_SCREAMING_SNAKE_CASE , 'utf-8' ) with bza.open(_SCREAMING_SNAKE_CASE , 'wb' ) as f: f.write(_SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope='session' ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" import gzip _A = str(tmp_path_factory.mktemp('data' ) / 'file.txt.gz' ) _A = bytes(_SCREAMING_SNAKE_CASE , 'utf-8' ) with gzip.open(_SCREAMING_SNAKE_CASE , 'wb' ) as f: f.write(_SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope='session' ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" if datasets.config.LZ4_AVAILABLE: import lza.frame _A = tmp_path_factory.mktemp('data' ) / 'file.txt.lz4' _A = bytes(_SCREAMING_SNAKE_CASE , 'utf-8' ) with lza.frame.open(_SCREAMING_SNAKE_CASE , 'wb' ) as f: f.write(_SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope='session' ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" if datasets.config.PY7ZR_AVAILABLE: import pyazr _A = tmp_path_factory.mktemp('data' ) / 'file.txt.7z' with pyazr.SevenZipFile(_SCREAMING_SNAKE_CASE , 'w' ) as archive: archive.write(_SCREAMING_SNAKE_CASE , arcname=os.path.basename(_SCREAMING_SNAKE_CASE ) ) return path @pytest.fixture(scope='session' ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" import tarfile _A = tmp_path_factory.mktemp('data' ) / 'file.txt.tar' with tarfile.TarFile(_SCREAMING_SNAKE_CASE , 'w' ) as f: f.add(_SCREAMING_SNAKE_CASE , arcname=os.path.basename(_SCREAMING_SNAKE_CASE ) ) return path @pytest.fixture(scope='session' ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" import lzma _A = tmp_path_factory.mktemp('data' ) / 'file.txt.xz' _A = bytes(_SCREAMING_SNAKE_CASE , 'utf-8' ) with lzma.open(_SCREAMING_SNAKE_CASE , 'wb' ) as f: f.write(_SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope='session' ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" import zipfile _A = tmp_path_factory.mktemp('data' ) / 'file.txt.zip' with zipfile.ZipFile(_SCREAMING_SNAKE_CASE , 'w' ) as f: f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.basename(_SCREAMING_SNAKE_CASE ) ) return path @pytest.fixture(scope='session' ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd _A = tmp_path_factory.mktemp('data' ) / 'file.txt.zst' _A = bytes(_SCREAMING_SNAKE_CASE , 'utf-8' ) with zstd.open(_SCREAMING_SNAKE_CASE , 'wb' ) as f: f.write(_SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope='session' ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" _A = tmp_path_factory.mktemp('data' ) / 'file.xml' _A = textwrap.dedent( '\\n <?xml version="1.0" encoding="UTF-8" ?>\n <tmx version="1.4">\n <header segtype="sentence" srclang="ca" />\n <body>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang="en"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang="en"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang="en"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang="en"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang="en"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>' ) with open(_SCREAMING_SNAKE_CASE , 'w' ) as f: f.write(_SCREAMING_SNAKE_CASE ) return filename __A : Optional[int] = [ {"col_1": "0", "col_2": 0, "col_3": 0.0}, {"col_1": "1", "col_2": 1, "col_3": 1.0}, {"col_1": "2", "col_2": 2, "col_3": 2.0}, {"col_1": "3", "col_2": 3, "col_3": 3.0}, ] __A : Optional[Any] = [ {"col_1": "4", "col_2": 4, "col_3": 4.0}, {"col_1": "5", "col_2": 5, "col_3": 5.0}, ] __A : Any = { "col_1": ["0", "1", "2", "3"], "col_2": [0, 1, 2, 3], "col_3": [0.0, 1.0, 2.0, 3.0], } __A : Optional[Any] = [ {"col_3": 0.0, "col_1": "0", "col_2": 0}, {"col_3": 1.0, "col_1": "1", "col_2": 1}, ] __A : str = [ {"col_1": "s0", "col_2": 0, "col_3": 0.0}, {"col_1": "s1", "col_2": 1, "col_3": 1.0}, {"col_1": "s2", "col_2": 2, "col_3": 2.0}, {"col_1": "s3", "col_2": 3, "col_3": 3.0}, ] @pytest.fixture(scope='session' ) def __lowerCAmelCase( ) -> List[str]: """simple docstring""" return DATA_DICT_OF_LISTS @pytest.fixture(scope='session' ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" _A = datasets.Dataset.from_dict(_SCREAMING_SNAKE_CASE ) _A = str(tmp_path_factory.mktemp('data' ) / 'dataset.arrow' ) dataset.map(cache_file_name=_SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope='session' ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" _A = str(tmp_path_factory.mktemp('data' ) / 'dataset.sqlite' ) with contextlib.closing(sqlitea.connect(_SCREAMING_SNAKE_CASE ) ) as con: _A = con.cursor() cur.execute('CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)' ) for item in DATA: cur.execute('INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)' , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='session' ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _A = str(tmp_path_factory.mktemp('data' ) / 'dataset.csv' ) with open(_SCREAMING_SNAKE_CASE , 'w' , newline='' ) as f: _A = csv.DictWriter(_SCREAMING_SNAKE_CASE , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(_SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope='session' ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" _A = str(tmp_path_factory.mktemp('data' ) / 'dataset2.csv' ) with open(_SCREAMING_SNAKE_CASE , 'w' , newline='' ) as f: _A = csv.DictWriter(_SCREAMING_SNAKE_CASE , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(_SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope='session' ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" import bza _A = tmp_path_factory.mktemp('data' ) / 'dataset.csv.bz2' with open(_SCREAMING_SNAKE_CASE , 'rb' ) as f: _A = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(_SCREAMING_SNAKE_CASE , 'wb' ) as f: f.write(_SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope='session' ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" _A = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(_SCREAMING_SNAKE_CASE , 'w' ) as f: f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.basename(_SCREAMING_SNAKE_CASE ) ) f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.basename(_SCREAMING_SNAKE_CASE ) ) return path @pytest.fixture(scope='session' ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" _A = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(_SCREAMING_SNAKE_CASE , 'w' ) as f: f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.basename(csv_path.replace('.csv' , '.CSV' ) ) ) f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.basename(csva_path.replace('.csv' , '.CSV' ) ) ) return path @pytest.fixture(scope='session' ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" _A = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.csv.zip' with zipfile.ZipFile(_SCREAMING_SNAKE_CASE , 'w' ) as f: f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.join('main_dir' , os.path.basename(_SCREAMING_SNAKE_CASE ) ) ) f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.join('main_dir' , os.path.basename(_SCREAMING_SNAKE_CASE ) ) ) return path @pytest.fixture(scope='session' ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" _A = str(tmp_path_factory.mktemp('data' ) / 'dataset.parquet' ) _A = pa.schema( { 'col_1': pa.string(), 'col_2': pa.intaa(), 'col_3': pa.floataa(), } ) with open(_SCREAMING_SNAKE_CASE , 'wb' ) as f: _A = pq.ParquetWriter(_SCREAMING_SNAKE_CASE , schema=_SCREAMING_SNAKE_CASE ) _A = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(_SCREAMING_SNAKE_CASE ) )] for k in DATA[0]} , schema=_SCREAMING_SNAKE_CASE ) writer.write_table(_SCREAMING_SNAKE_CASE ) writer.close() return path @pytest.fixture(scope='session' ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _A = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) _A = {'data': DATA} with open(_SCREAMING_SNAKE_CASE , 'w' ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope='session' ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" _A = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) _A = {'data': DATA_DICT_OF_LISTS} with open(_SCREAMING_SNAKE_CASE , 'w' ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope='session' ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" _A = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl' ) with open(_SCREAMING_SNAKE_CASE , 'w' ) as f: for item in DATA: f.write(json.dumps(_SCREAMING_SNAKE_CASE ) + '\n' ) return path @pytest.fixture(scope='session' ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" _A = str(tmp_path_factory.mktemp('data' ) / 'dataset2.jsonl' ) with open(_SCREAMING_SNAKE_CASE , 'w' ) as f: for item in DATA: f.write(json.dumps(_SCREAMING_SNAKE_CASE ) + '\n' ) return path @pytest.fixture(scope='session' ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" _A = str(tmp_path_factory.mktemp('data' ) / 'dataset_312.jsonl' ) with open(_SCREAMING_SNAKE_CASE , 'w' ) as f: for item in DATA_312: f.write(json.dumps(_SCREAMING_SNAKE_CASE ) + '\n' ) return path @pytest.fixture(scope='session' ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" _A = str(tmp_path_factory.mktemp('data' ) / 'dataset-str.jsonl' ) with open(_SCREAMING_SNAKE_CASE , 'w' ) as f: for item in DATA_STR: f.write(json.dumps(_SCREAMING_SNAKE_CASE ) + '\n' ) return path @pytest.fixture(scope='session' ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" import gzip _A = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt.gz' ) with open(_SCREAMING_SNAKE_CASE , 'rb' ) as orig_file: with gzip.open(_SCREAMING_SNAKE_CASE , 'wb' ) as zipped_file: zipped_file.writelines(_SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope='session' ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" import gzip _A = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.gz' ) with open(_SCREAMING_SNAKE_CASE , 'rb' ) as orig_file: with gzip.open(_SCREAMING_SNAKE_CASE , 'wb' ) as zipped_file: zipped_file.writelines(_SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope='session' ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" _A = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.zip' with zipfile.ZipFile(_SCREAMING_SNAKE_CASE , 'w' ) as f: f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.basename(_SCREAMING_SNAKE_CASE ) ) f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.basename(_SCREAMING_SNAKE_CASE ) ) return path @pytest.fixture(scope='session' ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" _A = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.zip' with zipfile.ZipFile(_SCREAMING_SNAKE_CASE , 'w' ) as f: f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.join('nested' , os.path.basename(_SCREAMING_SNAKE_CASE ) ) ) return path @pytest.fixture(scope='session' ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" _A = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.jsonl.zip' with zipfile.ZipFile(_SCREAMING_SNAKE_CASE , 'w' ) as f: f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.join('main_dir' , os.path.basename(_SCREAMING_SNAKE_CASE ) ) ) f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.join('main_dir' , os.path.basename(_SCREAMING_SNAKE_CASE ) ) ) return path @pytest.fixture(scope='session' ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" _A = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.tar' with tarfile.TarFile(_SCREAMING_SNAKE_CASE , 'w' ) as f: f.add(_SCREAMING_SNAKE_CASE , arcname=os.path.basename(_SCREAMING_SNAKE_CASE ) ) f.add(_SCREAMING_SNAKE_CASE , arcname=os.path.basename(_SCREAMING_SNAKE_CASE ) ) return path @pytest.fixture(scope='session' ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" _A = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.tar' with tarfile.TarFile(_SCREAMING_SNAKE_CASE , 'w' ) as f: f.add(_SCREAMING_SNAKE_CASE , arcname=os.path.join('nested' , os.path.basename(_SCREAMING_SNAKE_CASE ) ) ) return path @pytest.fixture(scope='session' ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" _A = ['0', '1', '2', '3'] _A = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt' ) with open(_SCREAMING_SNAKE_CASE , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _A = ['0', '1', '2', '3'] _A = str(tmp_path_factory.mktemp('data' ) / 'dataset2.txt' ) with open(_SCREAMING_SNAKE_CASE , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" _A = ['0', '1', '2', '3'] _A = tmp_path_factory.mktemp('data' ) / 'dataset.abc' with open(_SCREAMING_SNAKE_CASE , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" _A = tmp_path_factory.mktemp('data' ) / 'dataset.text.zip' with zipfile.ZipFile(_SCREAMING_SNAKE_CASE , 'w' ) as f: f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.basename(_SCREAMING_SNAKE_CASE ) ) f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.basename(_SCREAMING_SNAKE_CASE ) ) return path @pytest.fixture(scope='session' ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" _A = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.text.zip' with zipfile.ZipFile(_SCREAMING_SNAKE_CASE , 'w' ) as f: f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.join('main_dir' , os.path.basename(_SCREAMING_SNAKE_CASE ) ) ) f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.join('main_dir' , os.path.basename(_SCREAMING_SNAKE_CASE ) ) ) return path @pytest.fixture(scope='session' ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" _A = tmp_path_factory.mktemp('data' ) / 'dataset.ext.zip' with zipfile.ZipFile(_SCREAMING_SNAKE_CASE , 'w' ) as f: f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.basename('unsupported.ext' ) ) f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.basename('unsupported_2.ext' ) ) return path @pytest.fixture(scope='session' ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" _A = '\n'.join(['First', 'Second\u2029with Unicode new line', 'Third'] ) _A = str(tmp_path_factory.mktemp('data' ) / 'dataset_with_unicode_new_lines.txt' ) with open(_SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as f: f.write(_SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope='session' ) def __lowerCAmelCase( ) -> Dict: """simple docstring""" return os.path.join('tests' , 'features' , 'data' , 'test_image_rgb.jpg' ) @pytest.fixture(scope='session' ) def __lowerCAmelCase( ) -> Union[str, Any]: """simple docstring""" return os.path.join('tests' , 'features' , 'data' , 'test_audio_44100.wav' ) @pytest.fixture(scope='session' ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _A = tmp_path_factory.mktemp('data' ) / 'dataset.img.zip' with zipfile.ZipFile(_SCREAMING_SNAKE_CASE , 'w' ) as f: f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.basename(_SCREAMING_SNAKE_CASE ) ) f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.basename(_SCREAMING_SNAKE_CASE ).replace('.jpg' , '2.jpg' ) ) return path @pytest.fixture(scope='session' ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _A = tmp_path_factory.mktemp('data_dir' ) (data_dir / "subdir").mkdir() with open(data_dir / 'subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 10 ) with open(data_dir / 'subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) # hidden file with open(data_dir / 'subdir' / '.test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '.subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 10 ) with open(data_dir / '.subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) return data_dir
27
"""simple docstring""" import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py SCREAMING_SNAKE_CASE = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. SCREAMING_SNAKE_CASE = direct_transformers_import(PATH_TO_TRANSFORMERS) SCREAMING_SNAKE_CASE = transformers.models.auto.configuration_auto.CONFIG_MAPPING SCREAMING_SNAKE_CASE = { # used to compute the property `self.chunk_length` """EncodecConfig""": ["""overlap"""], # used as `self.bert_model = BertModel(config, ...)` """DPRConfig""": True, # not used in modeling files, but it's an important information """FSMTConfig""": ["""langs"""], # used internally in the configuration class file """GPTNeoConfig""": ["""attention_types"""], # used internally in the configuration class file """EsmConfig""": ["""is_folding_model"""], # used during training (despite we don't have training script for these models yet) """Mask2FormerConfig""": ["""ignore_value"""], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) """OneFormerConfig""": ["""ignore_value""", """norm"""], # used during preprocessing and collation, see `collating_graphormer.py` """GraphormerConfig""": ["""spatial_pos_max"""], # used internally in the configuration class file """T5Config""": ["""feed_forward_proj"""], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally """MT5Config""": ["""feed_forward_proj""", """tokenizer_class"""], """UMT5Config""": ["""feed_forward_proj""", """tokenizer_class"""], # used internally in the configuration class file """LongT5Config""": ["""feed_forward_proj"""], # used internally in the configuration class file """SwitchTransformersConfig""": ["""feed_forward_proj"""], # having default values other than `1e-5` - we can't fix them without breaking """BioGptConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """GLPNConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """SegformerConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """CvtConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """PerceiverConfig""": ["""layer_norm_eps"""], # used internally to calculate the feature size """InformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate the feature size """TimeSeriesTransformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate the feature size """AutoformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate `mlp_dim` """SamVisionConfig""": ["""mlp_ratio"""], # For (head) training, but so far not implemented """ClapAudioConfig""": ["""num_classes"""], # Not used, but providing useful information to users """SpeechT5HifiGanConfig""": ["""sampling_rate"""], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { """CLIPSegConfig""": True, """DeformableDetrConfig""": True, """DetaConfig""": True, """DinatConfig""": True, """DonutSwinConfig""": True, """EfficientFormerConfig""": True, """FSMTConfig""": True, """JukeboxConfig""": True, """LayoutLMv2Config""": True, """MaskFormerSwinConfig""": True, """MT5Config""": True, """NatConfig""": True, """OneFormerConfig""": True, """PerceiverConfig""": True, """RagConfig""": True, """SpeechT5Config""": True, """SwinConfig""": True, """Swin2SRConfig""": True, """Swinv2Config""": True, """SwitchTransformersConfig""": True, """TableTransformerConfig""": True, """TapasConfig""": True, """TransfoXLConfig""": True, """UniSpeechConfig""": True, """UniSpeechSatConfig""": True, """WavLMConfig""": True, """WhisperConfig""": True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) """JukeboxPriorConfig""": True, # TODO: @Younes (for `is_decoder`) """Pix2StructTextConfig""": True, } ) def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )-> Optional[Any]: """simple docstring""" UpperCamelCase = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( F"config.{attribute}" in modeling_source or F"getattr(config, \"{attribute}\"" in modeling_source or F"getattr(self.config, \"{attribute}\"" in modeling_source ): UpperCamelCase = True # Deal with multi-line cases elif ( re.search( RF"getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*\"{attribute}\"" , UpperCAmelCase_ , ) is not None ): UpperCamelCase = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: UpperCamelCase = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files UpperCamelCase = [ "bos_index", "eos_index", "pad_index", "unk_index", "mask_index", "image_size", "use_cache", "out_features", "out_indices", ] UpperCamelCase = ["encoder_no_repeat_ngram_size"] # Special cases to be allowed UpperCamelCase = True if not attribute_used: UpperCamelCase = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: UpperCamelCase = True elif attribute in ["tie_word_embeddings"] and default_value is False: UpperCamelCase = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: UpperCamelCase = True elif attribute.endswith("_token_id" ): UpperCamelCase = True # configuration class specific cases if not case_allowed: UpperCamelCase = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) UpperCamelCase = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def lowerCamelCase__ ( UpperCAmelCase_ )-> Optional[Any]: """simple docstring""" UpperCamelCase = dict(inspect.signature(config_class.__init__ ).parameters ) UpperCamelCase = [x for x in list(signature.keys() ) if x not in ["self", "kwargs"]] UpperCamelCase = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass UpperCamelCase = {} if len(config_class.attribute_map ) > 0: UpperCamelCase = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files UpperCamelCase = inspect.getsourcefile(UpperCAmelCase_ ) UpperCamelCase = os.path.dirname(UpperCAmelCase_ ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. UpperCamelCase = [os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) for fn in os.listdir(UpperCAmelCase_ ) if fn.startswith("modeling_" )] # Get the source code strings UpperCamelCase = [] for path in modeling_paths: if os.path.isfile(UpperCAmelCase_ ): with open(UpperCAmelCase_ ) as fp: modeling_sources.append(fp.read() ) UpperCamelCase = [] for config_param, default_value in zip(UpperCAmelCase_ , UpperCAmelCase_ ): # `attributes` here is all the variant names for `config_param` UpperCamelCase = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): unused_attributes.append(attributes[0] ) return sorted(UpperCAmelCase_ ) def lowerCamelCase__ ( )-> List[str]: """simple docstring""" UpperCamelCase = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) UpperCamelCase = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda UpperCAmelCase_ : inspect.isclass(UpperCAmelCase_ ) and issubclass(UpperCAmelCase_ , UpperCAmelCase_ ) and inspect.getmodule(UpperCAmelCase_ ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: UpperCamelCase = check_config_attributes_being_used(UpperCAmelCase_ ) if len(UpperCAmelCase_ ) > 0: UpperCamelCase = unused_attributes if len(UpperCAmelCase_ ) > 0: UpperCamelCase = "The following configuration classes contain unused attributes in the corresponding modeling files:\n" for name, attributes in configs_with_unused_attributes.items(): error += F"{name}: {attributes}\n" raise ValueError(UpperCAmelCase_ ) if __name__ == "__main__": check_config_attributes()
554
0
def a__ ( snake_case ) -> bool: """simple docstring""" if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError('''Input series is not valid, valid series - [2, 4, 6]''' ) if len(__lowerCAmelCase ) == 0: raise ValueError('''Input list must be a non empty list''' ) if len(__lowerCAmelCase ) == 1: return True __SCREAMING_SNAKE_CASE : Dict = series[1] - series[0] for index in range(len(__lowerCAmelCase ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def a__ ( snake_case ) -> float: """simple docstring""" if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError('''Input series is not valid, valid series - [2, 4, 6]''' ) if len(__lowerCAmelCase ) == 0: raise ValueError('''Input list must be a non empty list''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = 0 for val in series: answer += val return answer / len(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
712
from math import pi, sqrt def a__ ( snake_case ): """simple docstring""" if num <= 0: raise ValueError('''math domain error''' ) if num > 171.5: raise OverflowError('''math range error''' ) elif num - int(snake_case ) not in (0, 0.5): raise NotImplementedError('''num must be an integer or a half-integer''' ) elif num == 0.5: return sqrt(snake_case ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def a__ ( ): """simple docstring""" assert gamma(0.5 ) == sqrt(snake_case ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() lowercase_ = 1.0 while num: lowercase_ = float(input("""Gamma of: """)) print(f'''gamma({num}) = {gamma(num)}''') print("""\nEnter 0 to exit...""")
131
0
"""simple docstring""" import os from math import logaa def lowercase__ ( snake_case_ :str = "base_exp.txt" ): __UpperCAmelCase = 0 __UpperCAmelCase = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(snake_case_ ) , snake_case_ ) ) ): __UpperCAmelCase , __UpperCAmelCase = list(map(snake_case_ , line.split(''',''' ) ) ) if x * logaa(snake_case_ ) > largest: __UpperCAmelCase = x * logaa(snake_case_ ) __UpperCAmelCase = i + 1 return result if __name__ == "__main__": print(solution())
49
"""simple docstring""" from collections import deque class _UpperCAmelCase : def __init__( self : List[Any] , _lowercase : str , _lowercase : int , _lowercase : int ): __UpperCAmelCase = process_name # process name __UpperCAmelCase = arrival_time # arrival time of the process # completion time of finished process or last interrupted time __UpperCAmelCase = arrival_time __UpperCAmelCase = burst_time # remaining burst time __UpperCAmelCase = 0 # total time of the process wait in ready queue __UpperCAmelCase = 0 # time from arrival time to completion time class _UpperCAmelCase : def __init__( self : List[str] , _lowercase : int , _lowercase : list[int] , _lowercase : deque[Process] , _lowercase : int , ): # total number of mlfq's queues __UpperCAmelCase = number_of_queues # time slice of queues that round robin algorithm applied __UpperCAmelCase = time_slices # unfinished process is in this ready_queue __UpperCAmelCase = queue # current time __UpperCAmelCase = current_time # finished process is in this sequence queue __UpperCAmelCase = deque() def a ( self : Dict ): __UpperCAmelCase = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def a ( self : str , _lowercase : list[Process] ): __UpperCAmelCase = [] for i in range(len(_lowercase ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def a ( self : Any , _lowercase : list[Process] ): __UpperCAmelCase = [] for i in range(len(_lowercase ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def a ( self : Tuple , _lowercase : list[Process] ): __UpperCAmelCase = [] for i in range(len(_lowercase ) ): completion_times.append(queue[i].stop_time ) return completion_times def a ( self : Optional[int] , _lowercase : deque[Process] ): return [q.burst_time for q in queue] def a ( self : str , _lowercase : Process ): process.waiting_time += self.current_time - process.stop_time return process.waiting_time def a ( self : Union[str, Any] , _lowercase : deque[Process] ): __UpperCAmelCase = deque() # sequence deque of finished process while len(_lowercase ) != 0: __UpperCAmelCase = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(_lowercase ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 __UpperCAmelCase = 0 # set the process's turnaround time because it is finished __UpperCAmelCase = self.current_time - cp.arrival_time # set the completion time __UpperCAmelCase = self.current_time # add the process to queue that has finished queue finished.append(_lowercase ) self.finish_queue.extend(_lowercase ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def a ( self : Union[str, Any] , _lowercase : deque[Process] , _lowercase : int ): __UpperCAmelCase = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(_lowercase ) ): __UpperCAmelCase = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(_lowercase ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time __UpperCAmelCase = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(_lowercase ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished __UpperCAmelCase = 0 # set the finish time __UpperCAmelCase = self.current_time # update the process' turnaround time because it is finished __UpperCAmelCase = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(_lowercase ) self.finish_queue.extend(_lowercase ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def a ( self : Union[str, Any] ): # all queues except last one have round_robin algorithm for i in range(self.number_of_queues - 1 ): __UpperCAmelCase , __UpperCAmelCase = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest _lowercase : List[str] = Process('P1', 0, 53) _lowercase : str = Process('P2', 0, 17) _lowercase : Union[str, Any] = Process('P3', 0, 68) _lowercase : int = Process('P4', 0, 24) _lowercase : Any = 3 _lowercase : Union[str, Any] = [17, 25] _lowercase : Dict = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={'queue': deque([Pa, Pa, Pa, Pa])}) _lowercase : Optional[Any] = Process('P1', 0, 53) _lowercase : Tuple = Process('P2', 0, 17) _lowercase : Optional[int] = Process('P3', 0, 68) _lowercase : int = Process('P4', 0, 24) _lowercase : int = 3 _lowercase : int = [17, 25] _lowercase : List[str] = deque([Pa, Pa, Pa, Pa]) _lowercase : List[Any] = MLFQ(number_of_queues, time_slices, queue, 0) _lowercase : str = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( f"""waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print completion times of processes(P1, P2, P3, P4) print( f"""completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print total turnaround times of processes(P1, P2, P3, P4) print( f"""turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print sequence of finished processes print( f"""sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}""" )
49
1
"""simple docstring""" def __lowerCamelCase ( SCREAMING_SNAKE_CASE,SCREAMING_SNAKE_CASE,SCREAMING_SNAKE_CASE,SCREAMING_SNAKE_CASE,SCREAMING_SNAKE_CASE,) -> float: """simple docstring""" _UpperCAmelCase = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError('All input parameters must be positive' ) if any(p > 1 for p in parameters[1:4] ): raise ValueError('Relative densities cannot be greater than one' ) else: _UpperCAmelCase = 1 - (matter_density + radiation_density + dark_energy) _UpperCAmelCase = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) _UpperCAmelCase = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation lowerCAmelCase_ = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1E-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
494
"""simple docstring""" from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class lowerCAmelCase ( snake_case ): lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
494
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { 'weiweishi/roc-bert-base-zh': 'https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json', } class snake_case_ ( __UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = "roc_bert" def __init__( self : List[str] , _UpperCamelCase : Optional[Any]=3_0_5_2_2 , _UpperCamelCase : Tuple=7_6_8 , _UpperCamelCase : Any=1_2 , _UpperCamelCase : Dict=1_2 , _UpperCamelCase : List[str]=3_0_7_2 , _UpperCamelCase : Dict="gelu" , _UpperCamelCase : str=0.1 , _UpperCamelCase : str=0.1 , _UpperCamelCase : Optional[int]=5_1_2 , _UpperCamelCase : str=2 , _UpperCamelCase : int=0.02 , _UpperCamelCase : Tuple=1e-12 , _UpperCamelCase : Union[str, Any]=True , _UpperCamelCase : List[str]=0 , _UpperCamelCase : Union[str, Any]="absolute" , _UpperCamelCase : Tuple=None , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : int=True , _UpperCamelCase : Dict=7_6_8 , _UpperCamelCase : Optional[int]=9_1_0 , _UpperCamelCase : int=5_1_2 , _UpperCamelCase : Dict=2_4_8_5_8 , _UpperCamelCase : Optional[int]=True , **_UpperCamelCase : List[str] , ) ->Dict: snake_case_ = vocab_size snake_case_ = max_position_embeddings snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = initializer_range snake_case_ = type_vocab_size snake_case_ = layer_norm_eps snake_case_ = use_cache snake_case_ = enable_pronunciation snake_case_ = enable_shape snake_case_ = pronunciation_embed_dim snake_case_ = pronunciation_vocab_size snake_case_ = shape_embed_dim snake_case_ = shape_vocab_size snake_case_ = concat_input snake_case_ = position_embedding_type snake_case_ = classifier_dropout super().__init__(pad_token_id=_UpperCamelCase , **_UpperCamelCase )
39
import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor _a : Optional[Any] = logging.get_logger(__name__) class UpperCamelCase_ ( __UpperCamelCase ): """simple docstring""" def __init__( self , *UpperCAmelCase , **UpperCAmelCase ): warnings.warn( """The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DeiTImageProcessor instead.""" , UpperCAmelCase , ) super().__init__(*UpperCAmelCase , **UpperCAmelCase )
479
0
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging _lowercase = logging.get_logger(__name__) def _A (UpperCamelCase : Dict , UpperCamelCase : Optional[int] ) ->Tuple: '''simple docstring''' lowerCamelCase__ : List[str] = nn.functional.normalize(UpperCamelCase ) lowerCamelCase__ : Tuple = nn.functional.normalize(UpperCamelCase ) return torch.mm(UpperCamelCase , normalized_text_embeds.t() ) class __A (A_ ): UpperCamelCase :Optional[Any] = CLIPConfig UpperCamelCase :Optional[Any] = ['''CLIPEncoderLayer'''] def __init__(self , __magic_name__ ): super().__init__(__magic_name__ ) lowerCamelCase__ : Union[str, Any] = CLIPVisionModel(config.vision_config ) lowerCamelCase__ : Any = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=__magic_name__ ) lowerCamelCase__ : Any = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=__magic_name__ ) lowerCamelCase__ : Union[str, Any] = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=__magic_name__ ) lowerCamelCase__ : Any = nn.Parameter(torch.ones(17 ) , requires_grad=__magic_name__ ) lowerCamelCase__ : Optional[Any] = nn.Parameter(torch.ones(3 ) , requires_grad=__magic_name__ ) @torch.no_grad() def _snake_case (self , __magic_name__ , __magic_name__ ): lowerCamelCase__ : Any = self.vision_model(__magic_name__ )[1] # pooled_output lowerCamelCase__ : Tuple = self.visual_projection(__magic_name__ ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowerCamelCase__ : Any = cosine_distance(__magic_name__ , self.special_care_embeds ).cpu().float().numpy() lowerCamelCase__ : str = cosine_distance(__magic_name__ , self.concept_embeds ).cpu().float().numpy() lowerCamelCase__ : int = [] lowerCamelCase__ : str = image_embeds.shape[0] for i in range(__magic_name__ ): lowerCamelCase__ : str = {"""special_scores""": {}, """special_care""": [], """concept_scores""": {}, """bad_concepts""": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images lowerCamelCase__ : Optional[Any] = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): lowerCamelCase__ : List[str] = special_cos_dist[i][concept_idx] lowerCamelCase__ : Tuple = self.special_care_embeds_weights[concept_idx].item() lowerCamelCase__ : str = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["""special_scores"""][concept_idx]} ) lowerCamelCase__ : List[str] = 0.01 for concept_idx in range(len(cos_dist[0] ) ): lowerCamelCase__ : str = cos_dist[i][concept_idx] lowerCamelCase__ : Dict = self.concept_embeds_weights[concept_idx].item() lowerCamelCase__ : int = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(__magic_name__ ) result.append(__magic_name__ ) lowerCamelCase__ : Tuple = [len(res["""bad_concepts"""] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def _snake_case (self , __magic_name__ , __magic_name__ ): lowerCamelCase__ : Union[str, Any] = self.vision_model(__magic_name__ )[1] # pooled_output lowerCamelCase__ : str = self.visual_projection(__magic_name__ ) lowerCamelCase__ : Optional[Any] = cosine_distance(__magic_name__ , self.special_care_embeds ) lowerCamelCase__ : Dict = cosine_distance(__magic_name__ , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images lowerCamelCase__ : Any = 0.0 lowerCamelCase__ : Dict = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) lowerCamelCase__ : Union[str, Any] = torch.any(special_scores > 0 , dim=1 ) lowerCamelCase__ : Optional[Any] = special_care * 0.01 lowerCamelCase__ : Dict = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) lowerCamelCase__ : Tuple = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) lowerCamelCase__ : Any = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
717
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging _lowercase = logging.get_logger(__name__) def _A (UpperCamelCase : Dict , UpperCamelCase : Optional[int] ) ->Tuple: '''simple docstring''' lowerCamelCase__ : List[str] = nn.functional.normalize(UpperCamelCase ) lowerCamelCase__ : Tuple = nn.functional.normalize(UpperCamelCase ) return torch.mm(UpperCamelCase , normalized_text_embeds.t() ) class __A ( A_ ): UpperCamelCase :Optional[Any] = CLIPConfig UpperCamelCase :Optional[Any] = ['''CLIPEncoderLayer'''] def __init__(self , __magic_name__ ): super().__init__(__magic_name__ ) lowerCamelCase__ : Union[str, Any] = CLIPVisionModel(config.vision_config ) lowerCamelCase__ : Any = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=__magic_name__ ) lowerCamelCase__ : Any = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=__magic_name__ ) lowerCamelCase__ : Union[str, Any] = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=__magic_name__ ) lowerCamelCase__ : Any = nn.Parameter(torch.ones(17 ) , requires_grad=__magic_name__ ) lowerCamelCase__ : Optional[Any] = nn.Parameter(torch.ones(3 ) , requires_grad=__magic_name__ ) @torch.no_grad() def _snake_case (self , __magic_name__ , __magic_name__ ): lowerCamelCase__ : Any = self.vision_model(__magic_name__ )[1] # pooled_output lowerCamelCase__ : Tuple = self.visual_projection(__magic_name__ ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowerCamelCase__ : Any = cosine_distance(__magic_name__ , self.special_care_embeds ).cpu().float().numpy() lowerCamelCase__ : str = cosine_distance(__magic_name__ , self.concept_embeds ).cpu().float().numpy() lowerCamelCase__ : int = [] lowerCamelCase__ : str = image_embeds.shape[0] for i in range(__magic_name__ ): lowerCamelCase__ : str = {"""special_scores""": {}, """special_care""": [], """concept_scores""": {}, """bad_concepts""": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images lowerCamelCase__ : Optional[Any] = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): lowerCamelCase__ : List[str] = special_cos_dist[i][concept_idx] lowerCamelCase__ : Tuple = self.special_care_embeds_weights[concept_idx].item() lowerCamelCase__ : str = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["""special_scores"""][concept_idx]} ) lowerCamelCase__ : List[str] = 0.01 for concept_idx in range(len(cos_dist[0] ) ): lowerCamelCase__ : str = cos_dist[i][concept_idx] lowerCamelCase__ : Dict = self.concept_embeds_weights[concept_idx].item() lowerCamelCase__ : int = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(__magic_name__ ) result.append(__magic_name__ ) lowerCamelCase__ : Tuple = [len(res["""bad_concepts"""] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def _snake_case (self , __magic_name__ , __magic_name__ ): lowerCamelCase__ : Union[str, Any] = self.vision_model(__magic_name__ )[1] # pooled_output lowerCamelCase__ : str = self.visual_projection(__magic_name__ ) lowerCamelCase__ : Optional[Any] = cosine_distance(__magic_name__ , self.special_care_embeds ) lowerCamelCase__ : Dict = cosine_distance(__magic_name__ , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images lowerCamelCase__ : Any = 0.0 lowerCamelCase__ : Dict = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) lowerCamelCase__ : Union[str, Any] = torch.any(special_scores > 0 , dim=1 ) lowerCamelCase__ : Optional[Any] = special_care * 0.01 lowerCamelCase__ : Dict = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) lowerCamelCase__ : Tuple = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) lowerCamelCase__ : Any = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
96
0
"""simple docstring""" import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class UpperCamelCase_ (unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: UpperCAmelCase_ : int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) UpperCAmelCase_ : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) UpperCAmelCase_ : str = "xvjiarui/stable-diffusion-2-inpainting" UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = FlaxStableDiffusionInpaintPipeline.from_pretrained(lowerCAmelCase_ , safety_checker=lowerCAmelCase_ ) UpperCAmelCase_ : List[str] = "Face of a yellow cat, high resolution, sitting on a park bench" UpperCAmelCase_ : int = jax.random.PRNGKey(0 ) UpperCAmelCase_ : Dict = 50 UpperCAmelCase_ : Union[str, Any] = jax.device_count() UpperCAmelCase_ : Any = num_samples * [prompt] UpperCAmelCase_ : int = num_samples * [init_image] UpperCAmelCase_ : List[str] = num_samples * [mask_image] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = pipeline.prepare_inputs(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # shard inputs and rng UpperCAmelCase_ : List[str] = replicate(lowerCAmelCase_ ) UpperCAmelCase_ : Dict = jax.random.split(lowerCAmelCase_ , jax.device_count() ) UpperCAmelCase_ : int = shard(lowerCAmelCase_ ) UpperCAmelCase_ : str = shard(lowerCAmelCase_ ) UpperCAmelCase_ : Optional[int] = shard(lowerCAmelCase_ ) UpperCAmelCase_ : Optional[int] = pipeline( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , jit=lowerCAmelCase_ ) UpperCAmelCase_ : List[str] = output.images.reshape(lowerCAmelCase_ , 512 , 512 , 3 ) UpperCAmelCase_ : Any = images[0, 253:256, 253:256, -1] UpperCAmelCase_ : Optional[Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) UpperCAmelCase_ : Dict = jnp.array( [0.3_6_1_1_3_0_7, 0.3_7_6_4_9_7_3_6, 0.3_7_5_7_4_0_8, 0.3_8_2_1_3_9_5_3, 0.3_9_2_9_5_1_6_7, 0.3_8_4_1_6_3_1, 0.4_1_5_5_4_9_7_8, 0.4_1_3_7_4_7_5, 0.4_2_1_7_0_8_4] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
95
def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) lowerCamelCase : List[str] = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b" lowerCamelCase : Any = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b" lowerCamelCase : Optional[int] = max(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(SCREAMING_SNAKE_CASE_ ) , b_binary.zfill(SCREAMING_SNAKE_CASE_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
340
0
'''simple docstring''' import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @require_torch def snake_case__ ( self ): """simple docstring""" __A : Optional[int] = pipeline( task='zero-shot-audio-classification' , model='hf-internal-testing/tiny-clap-htsat-unfused' ) __A : str = load_dataset('ashraq/esc50' ) __A : Union[str, Any] = dataset['train']['audio'][-1]['array'] __A : List[str] = audio_classifier(__lowercase , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] ) self.assertEqual( nested_simplify(__lowercase ) , [{'score': 0.5_0_1, 'label': 'Sound of a dog'}, {'score': 0.4_9_9, 'label': 'Sound of vaccum cleaner'}] , ) @unittest.skip('No models are available in TF' ) def snake_case__ ( self ): """simple docstring""" pass @slow @require_torch def snake_case__ ( self ): """simple docstring""" __A : Dict = pipeline( task='zero-shot-audio-classification' , model='laion/clap-htsat-unfused' , ) # This is an audio of a dog __A : Optional[Any] = load_dataset('ashraq/esc50' ) __A : List[str] = dataset['train']['audio'][-1]['array'] __A : Union[str, Any] = audio_classifier(__lowercase , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] ) self.assertEqual( nested_simplify(__lowercase ) , [ {'score': 0.9_9_9, 'label': 'Sound of a dog'}, {'score': 0.0_0_1, 'label': 'Sound of vaccum cleaner'}, ] , ) __A : Any = audio_classifier([audio] * 5 , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] ) self.assertEqual( nested_simplify(__lowercase ) , [ [ {'score': 0.9_9_9, 'label': 'Sound of a dog'}, {'score': 0.0_0_1, 'label': 'Sound of vaccum cleaner'}, ], ] * 5 , ) __A : str = audio_classifier( [audio] * 5 , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] , batch_size=5 ) self.assertEqual( nested_simplify(__lowercase ) , [ [ {'score': 0.9_9_9, 'label': 'Sound of a dog'}, {'score': 0.0_0_1, 'label': 'Sound of vaccum cleaner'}, ], ] * 5 , ) @unittest.skip('No models are available in TF' ) def snake_case__ ( self ): """simple docstring""" pass
540
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def snake_case__ ( self ): """simple docstring""" torch.manual_seed(0 ) __A : Optional[int] = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('AttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'AttnUpBlock2D') , ) return model @property def snake_case__ ( self ): """simple docstring""" torch.manual_seed(0 ) __A : Dict = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , cross_attention_dim=10 , ) return model @property def snake_case__ ( self ): """simple docstring""" torch.manual_seed(0 ) __A : Union[str, Any] = AutoencoderKL( sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') , up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') , ) __A : Union[str, Any] = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('AttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'AttnUpBlock2D') , ) return vqvae, unet @slow def snake_case__ ( self ): """simple docstring""" __A : str = 'cpu' # ensure determinism for the device-dependent torch.Generator __A : int = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) __A : Tuple = DDPMScheduler() __A : Optional[int] = AudioDiffusionPipeline(vqvae=__lowercase , unet=self.dummy_unet , mel=__lowercase , scheduler=__lowercase ) __A : Dict = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __A : Tuple = torch.Generator(device=__lowercase ).manual_seed(42 ) __A : Tuple = pipe(generator=__lowercase , steps=4 ) __A : Union[str, Any] = output.audios[0] __A : Dict = output.images[0] __A : Optional[Any] = torch.Generator(device=__lowercase ).manual_seed(42 ) __A : Optional[int] = pipe(generator=__lowercase , steps=4 , return_dict=__lowercase ) __A : int = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) __A : Optional[int] = np.frombuffer(image.tobytes() , dtype='uint8' )[:10] __A : List[Any] = np.frombuffer(image_from_tuple.tobytes() , dtype='uint8' )[:10] __A : Optional[Any] = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 __A : Optional[int] = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) __A : Optional[Any] = DDIMScheduler() __A : List[Any] = self.dummy_vqvae_and_unet __A : int = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=__lowercase , scheduler=__lowercase ) __A : Dict = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) np.random.seed(0 ) __A : Dict = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) __A : Dict = torch.Generator(device=__lowercase ).manual_seed(42 ) __A : List[Any] = pipe(raw_audio=__lowercase , generator=__lowercase , start_step=5 , steps=10 ) __A : Tuple = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) __A : int = np.frombuffer(image.tobytes() , dtype='uint8' )[:10] __A : List[str] = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 __A : Any = self.dummy_unet_condition __A : Optional[int] = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=__lowercase , mel=__lowercase , scheduler=__lowercase ) __A : Union[str, Any] = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) np.random.seed(0 ) __A : Dict = torch.rand((1, 1, 10) ) __A : Any = pipe(generator=__lowercase , encoding=__lowercase ) __A : Union[str, Any] = output.images[0] __A : List[Any] = np.frombuffer(image.tobytes() , dtype='uint8' )[:10] __A : int = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self ): """simple docstring""" __A : Union[str, Any] = torch_device __A : Union[str, Any] = DiffusionPipeline.from_pretrained('teticio/audio-diffusion-ddim-256' ) __A : Dict = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __A : Any = torch.Generator(device=__lowercase ).manual_seed(42 ) __A : Optional[Any] = pipe(generator=__lowercase ) __A : Union[str, Any] = output.audios[0] __A : List[Any] = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] __A : Union[str, Any] = np.frombuffer(image.tobytes() , dtype='uint8' )[:10] __A : Optional[Any] = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
540
1
'''simple docstring''' from torch import nn class __lowerCAmelCase ( nn.Module ): def __init__(self , lowerCAmelCase__ , lowerCAmelCase__ ): super().__init__() _UpperCAmelCase : Union[str, Any] = class_size _UpperCAmelCase : Dict = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) _UpperCAmelCase : Any = nn.Linear(lowerCAmelCase__ , lowerCAmelCase__ ) def snake_case_ (self , lowerCAmelCase__ ): # hidden_state = nn.functional.relu(self.mlp1(hidden_state)) # hidden_state = self.mlp2(hidden_state) _UpperCAmelCase : Tuple = self.mlp(lowerCAmelCase__ ) return logits
414
'''simple docstring''' from __future__ import annotations from random import random class __lowerCAmelCase : def __init__(self , lowerCAmelCase__ = None ): _UpperCAmelCase : List[Any] = value _UpperCAmelCase : Optional[int] = random() _UpperCAmelCase : Node | None = None _UpperCAmelCase : Node | None = None def __repr__(self ): from pprint import pformat if self.left is None and self.right is None: return F"'{self.value}: {self.prior:.5}'" else: return pformat( {F"{self.value}: {self.prior:.5}": (self.left, self.right)} , indent=1 ) def __str__(self ): _UpperCAmelCase : List[Any] = str(self.value ) + """ """ _UpperCAmelCase : str = str(self.left or """""" ) _UpperCAmelCase : Dict = str(self.right or """""" ) return value + left + right def __A ( lowerCAmelCase_ , lowerCAmelCase_ ): if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: _UpperCAmelCase , _UpperCAmelCase : Dict = split(root.left , lowerCAmelCase_ ) return left, root else: _UpperCAmelCase , _UpperCAmelCase : List[str] = split(root.right , lowerCAmelCase_ ) return root, right def __A ( lowerCAmelCase_ , lowerCAmelCase_ ): if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: _UpperCAmelCase : str = merge(left.right , lowerCAmelCase_ ) return left else: _UpperCAmelCase : List[str] = merge(lowerCAmelCase_ , right.left ) return right def __A ( lowerCAmelCase_ , lowerCAmelCase_ ): _UpperCAmelCase : List[str] = Node(lowerCAmelCase_ ) _UpperCAmelCase , _UpperCAmelCase : str = split(lowerCAmelCase_ , lowerCAmelCase_ ) return merge(merge(lowerCAmelCase_ , lowerCAmelCase_ ) , lowerCAmelCase_ ) def __A ( lowerCAmelCase_ , lowerCAmelCase_ ): _UpperCAmelCase , _UpperCAmelCase : int = split(lowerCAmelCase_ , value - 1 ) _UpperCAmelCase , _UpperCAmelCase : Dict = split(lowerCAmelCase_ , lowerCAmelCase_ ) return merge(lowerCAmelCase_ , lowerCAmelCase_ ) def __A ( lowerCAmelCase_ ): if not root: # None return else: inorder(root.left ) print(root.value , end=""",""" ) inorder(root.right ) def __A ( lowerCAmelCase_ , lowerCAmelCase_ ): for arg in args.split(): if arg[0] == "+": _UpperCAmelCase : List[str] = insert(lowerCAmelCase_ , int(arg[1:] ) ) elif arg[0] == "-": _UpperCAmelCase : Tuple = erase(lowerCAmelCase_ , int(arg[1:] ) ) else: print("""Unknown command""" ) return root def __A ( ): _UpperCAmelCase : Union[str, Any] = None print( """enter numbers to create a tree, + value to add value into treap, """ """- value to erase all nodes with value. 'q' to quit. """ ) _UpperCAmelCase : Tuple = input() while args != "q": _UpperCAmelCase : Union[str, Any] = interact_treap(lowerCAmelCase_ , lowerCAmelCase_ ) print(lowerCAmelCase_ ) _UpperCAmelCase : Optional[int] = input() print("""good by!""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
414
1
a__: int = '\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' a__: Dict = [{'type': 'code', 'content': INSTALL_CONTENT}] a__: Any = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
718
import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor a__: Optional[int] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): def __init__( self,*__lowerCamelCase,**__lowerCamelCase ): warnings.warn( '''The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DPTImageProcessor instead.''',__lowerCamelCase,) super().__init__(*__lowerCamelCase,**__lowerCamelCase )
212
0
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch __A : Union[str, Any] = random.Random() def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Optional[Any]: """simple docstring""" if rng is None: _A = global_rng _A = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class lowerCamelCase( unittest.TestCase ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_=7 , snake_case_=400 , snake_case_=2000 , snake_case_=10 , snake_case_=160 , snake_case_=8 , snake_case_=0.0 , snake_case_=4000 , snake_case_=False , snake_case_=True , ): _A = parent _A = batch_size _A = min_seq_length _A = max_seq_length _A = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _A = padding_value _A = sampling_rate _A = return_attention_mask _A = do_normalize _A = feature_size _A = chunk_length _A = hop_length def lowerCAmelCase__ ( self ): return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowerCAmelCase__ ( self , snake_case_=False , snake_case_=False ): def _flatten(snake_case_ ): return list(itertools.chain(*snake_case_ ) ) if equal_length: _A = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _A = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _A = [np.asarray(snake_case_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowerCamelCase( __snake_case , unittest.TestCase ): '''simple docstring''' __magic_name__ = WhisperFeatureExtractor if is_speech_available() else None def lowerCAmelCase__ ( self ): _A = WhisperFeatureExtractionTester(self ) def lowerCAmelCase__ ( self ): _A = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A = feat_extract_first.save_pretrained(snake_case_ )[0] check_json_file_has_correct_format(snake_case_ ) _A = self.feature_extraction_class.from_pretrained(snake_case_ ) _A = feat_extract_first.to_dict() _A = feat_extract_second.to_dict() _A = feat_extract_first.mel_filters _A = feat_extract_second.mel_filters self.assertTrue(np.allclose(snake_case_ , snake_case_ ) ) self.assertEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A = os.path.join(snake_case_ , 'feat_extract.json' ) feat_extract_first.to_json_file(snake_case_ ) _A = self.feature_extraction_class.from_json_file(snake_case_ ) _A = feat_extract_first.to_dict() _A = feat_extract_second.to_dict() _A = feat_extract_first.mel_filters _A = feat_extract_second.mel_filters self.assertTrue(np.allclose(snake_case_ , snake_case_ ) ) self.assertEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self ): # Tests that all call wrap to encode_plus and batch_encode_plus _A = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _A = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _A = [np.asarray(snake_case_ ) for speech_input in speech_inputs] # Test feature size _A = feature_extractor(snake_case_ , padding='max_length' , return_tensors='np' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input _A = feature_extractor(speech_inputs[0] , return_tensors='np' ).input_features _A = feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_features self.assertTrue(np.allclose(snake_case_ , snake_case_ , atol=1E-3 ) ) # Test batched _A = feature_extractor(snake_case_ , return_tensors='np' ).input_features _A = feature_extractor(snake_case_ , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(snake_case_ , snake_case_ ): self.assertTrue(np.allclose(snake_case_ , snake_case_ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. _A = [floats_list((1, x) )[0] for x in (800, 800, 800)] _A = np.asarray(snake_case_ ) _A = feature_extractor(snake_case_ , return_tensors='np' ).input_features _A = feature_extractor(snake_case_ , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(snake_case_ , snake_case_ ): self.assertTrue(np.allclose(snake_case_ , snake_case_ , atol=1E-3 ) ) # Test truncation required _A = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] _A = [np.asarray(snake_case_ ) for speech_input in speech_inputs] _A = [x[: feature_extractor.n_samples] for x in speech_inputs] _A = [np.asarray(snake_case_ ) for speech_input in speech_inputs_truncated] _A = feature_extractor(snake_case_ , return_tensors='np' ).input_features _A = feature_extractor(snake_case_ , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(snake_case_ , snake_case_ ): self.assertTrue(np.allclose(snake_case_ , snake_case_ , atol=1E-3 ) ) def lowerCAmelCase__ ( self ): import torch _A = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _A = np.random.rand(100 , 32 ).astype(np.floataa ) _A = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _A = feature_extractor.pad([{'input_features': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) _A = feature_extractor.pad([{'input_features': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def lowerCAmelCase__ ( self , snake_case_ ): _A = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech _A = ds.sort('id' ).select(range(snake_case_ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def lowerCAmelCase__ ( self ): # fmt: off _A = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on _A = self._load_datasamples(1 ) _A = WhisperFeatureExtractor() _A = feature_extractor(snake_case_ , return_tensors='pt' ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , snake_case_ , atol=1E-4 ) ) def lowerCAmelCase__ ( self ): _A = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _A = self._load_datasamples(1 )[0] _A = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5535 # Rescale to [0, 65535] to show issue _A = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=snake_case_ )[0] self.assertTrue(np.all(np.mean(snake_case_ ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(snake_case_ ) - 1 ) < 1E-3 ) )
27
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file __A : Optional[int] = "Run commands across TPU VMs for initial setup before running `accelerate launch`." def __lowerCAmelCase( _SCREAMING_SNAKE_CASE=None ) -> str: """simple docstring""" if subparsers is not None: _A = subparsers.add_parser('tpu-config' , description=_description ) else: _A = argparse.ArgumentParser('Accelerate tpu-config command' , description=_description ) # Core arguments _A = parser.add_argument_group( 'Config Arguments' , 'Arguments that can be configured through `accelerate config`.' ) config_args.add_argument( '--config_file' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , help='Path to the config file to use for accelerate.' , ) config_args.add_argument( '--tpu_name' , default=_SCREAMING_SNAKE_CASE , help='The name of the TPU to use. If not specified, will use the TPU specified in the config file.' , ) config_args.add_argument( '--tpu_zone' , default=_SCREAMING_SNAKE_CASE , help='The zone of the TPU to use. If not specified, will use the zone specified in the config file.' , ) _A = parser.add_argument_group('TPU Arguments' , 'Arguments for options ran inside the TPU.' ) pod_args.add_argument( '--use_alpha' , action='store_true' , help='Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.' , ) pod_args.add_argument( '--command_file' , default=_SCREAMING_SNAKE_CASE , help='The path to the file containing the commands to run on the pod on startup.' , ) pod_args.add_argument( '--command' , action='append' , nargs='+' , help='A command to run on the pod. Can be passed multiple times.' , ) pod_args.add_argument( '--install_accelerate' , action='store_true' , help='Whether to install accelerate on the pod. Defaults to False.' , ) pod_args.add_argument( '--accelerate_version' , default='latest' , help='The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.' , ) pod_args.add_argument( '--debug' , action='store_true' , help='If set, will print the command that would be run instead of running it.' ) if subparsers is not None: parser.set_defaults(func=_SCREAMING_SNAKE_CASE ) return parser def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" _A = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(_SCREAMING_SNAKE_CASE ): _A = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: _A = defaults.command_file if not args.command and defaults.commands is not None: _A = defaults.commands if not args.tpu_name: _A = defaults.tpu_name if not args.tpu_zone: _A = defaults.tpu_zone if args.accelerate_version == "dev": _A = 'git+https://github.com/huggingface/accelerate.git' elif args.accelerate_version == "latest": _A = 'accelerate -U' elif isinstance(parse(args.accelerate_version ) , _SCREAMING_SNAKE_CASE ): _A = F"accelerate=={args.accelerate_version}" if not args.command_file and not args.command: raise ValueError('You must specify either a command file or a command to run on the pod.' ) if args.command_file: with open(args.command_file , 'r' ) as f: _A = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , _SCREAMING_SNAKE_CASE ): _A = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate _A = ['cd /usr/share'] if args.install_accelerate: new_cmd += [F"pip install {args.accelerate_version}"] new_cmd += args.command _A = '; '.join(_SCREAMING_SNAKE_CASE ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess _A = ['gcloud'] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F"Running {' '.join(_SCREAMING_SNAKE_CASE )}" ) return subprocess.run(_SCREAMING_SNAKE_CASE ) print('Successfully setup pod.' ) def __lowerCAmelCase( ) -> Tuple: """simple docstring""" _A = tpu_command_parser() _A = parser.parse_args() tpu_command_launcher(_SCREAMING_SNAKE_CASE )
27
1
'''simple docstring''' import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase__ : Any = '''▁''' UpperCamelCase__ : Dict = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class _UpperCamelCase ( lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' _A : Dict = BertGenerationTokenizer _A : List[Any] = False _A : Union[str, Any] = True def UpperCamelCase__ ( self : Optional[Any] ): """simple docstring""" super().setUp() __SCREAMING_SNAKE_CASE : Dict = BertGenerationTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase__ ( self : Optional[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = """<s>""" __SCREAMING_SNAKE_CASE : Optional[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ ) def UpperCamelCase__ ( self : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(lowerCAmelCase__ ) , 1_0_0_2 ) def UpperCamelCase__ ( self : Optional[int] ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_0 ) def UpperCamelCase__ ( self : Optional[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = BertGenerationTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowerCAmelCase__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2] , ) __SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) __SCREAMING_SNAKE_CASE : Any = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) self.assertListEqual( lowerCAmelCase__ , [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 0, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 0, 4] , ) __SCREAMING_SNAKE_CASE : Any = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def UpperCamelCase__ ( self : List[str] ): """simple docstring""" return BertGenerationTokenizer.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) @slow def UpperCamelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = """Hello World!""" __SCREAMING_SNAKE_CASE : Dict = [1_8_5_3_6, 2_2_6_0, 1_0_1] self.assertListEqual(lowerCAmelCase__ , self.big_tokenizer.encode(lowerCAmelCase__ ) ) @slow def UpperCamelCase__ ( self : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) __SCREAMING_SNAKE_CASE : Optional[int] = [ 8_7_1, 4_1_9, 3_5_8, 9_4_6, 9_9_1, 2_5_2_1, 4_5_2, 3_5_8, 1_3_5_7, 3_8_7, 7_7_5_1, 3_5_3_6, 1_1_2, 9_8_5, 4_5_6, 1_2_6, 8_6_5, 9_3_8, 5_4_0_0, 5_7_3_4, 4_5_8, 1_3_6_8, 4_6_7, 7_8_6, 2_4_6_2, 5_2_4_6, 1_1_5_9, 6_3_3, 8_6_5, 4_5_1_9, 4_5_7, 5_8_2, 8_5_2, 2_5_5_7, 4_2_7, 9_1_6, 5_0_8, 4_0_5, 3_4_3_2_4, 4_9_7, 3_9_1, 4_0_8, 1_1_3_4_2, 1_2_4_4, 3_8_5, 1_0_0, 9_3_8, 9_8_5, 4_5_6, 5_7_4, 3_6_2, 1_2_5_9_7, 3_2_0_0, 3_1_2_9, 1_1_7_2, ] self.assertListEqual(lowerCAmelCase__ , self.big_tokenizer.encode(lowerCAmelCase__ ) ) @require_torch @slow def UpperCamelCase__ ( self : str ): """simple docstring""" import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence __SCREAMING_SNAKE_CASE : List[Any] = list(self.big_tokenizer.get_vocab().keys() )[:1_0] __SCREAMING_SNAKE_CASE : int = """ """.join(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self.big_tokenizer.encode_plus(lowerCAmelCase__ , return_tensors="""pt""" , return_token_type_ids=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = self.big_tokenizer.batch_encode_plus( [sequence + """ """ + sequence] , return_tensors="""pt""" , return_token_type_ids=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = BertGenerationConfig() __SCREAMING_SNAKE_CASE : Any = BertGenerationEncoder(lowerCAmelCase__ ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**lowerCAmelCase__ ) model(**lowerCAmelCase__ ) @slow def UpperCamelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = {"""input_ids""": [[3_9_2_8_6, 4_5_8, 3_6_3_3_5, 2_0_0_1, 4_5_6, 1_3_0_7_3, 1_3_2_6_6, 4_5_5, 1_1_3, 7_7_4_6, 1_7_4_1, 1_1_1_5_7, 3_9_1, 1_3_0_7_3, 1_3_2_6_6, 4_5_5, 1_1_3, 3_9_6_7, 3_5_4_1_2, 1_1_3, 4_9_3_6, 1_0_9, 3_8_7_0, 2_3_7_7, 1_1_3, 3_0_0_8_4, 4_5_7_2_0, 4_5_8, 1_3_4, 1_7_4_9_6, 1_1_2, 5_0_3, 1_1_6_7_2, 1_1_3, 1_1_8, 1_1_2, 5_6_6_5, 1_3_3_4_7, 3_8_6_8_7, 1_1_2, 1_4_9_6, 3_1_3_8_9, 1_1_2, 3_2_6_8, 4_7_2_6_4, 1_3_4, 9_6_2, 1_1_2, 1_6_3_7_7, 8_0_3_5, 2_3_1_3_0, 4_3_0, 1_2_1_6_9, 1_5_5_1_8, 2_8_5_9_2, 4_5_8, 1_4_6, 4_1_6_9_7, 1_0_9, 3_9_1, 1_2_1_6_9, 1_5_5_1_8, 1_6_6_8_9, 4_5_8, 1_4_6, 4_1_3_5_8, 1_0_9, 4_5_2, 7_2_6, 4_0_3_4, 1_1_1, 7_6_3, 3_5_4_1_2, 5_0_8_2, 3_8_8, 1_9_0_3, 1_1_1, 9_0_5_1, 3_9_1, 2_8_7_0, 4_8_9_1_8, 1_9_0_0, 1_1_2_3, 5_5_0, 9_9_8, 1_1_2, 9_5_8_6, 1_5_9_8_5, 4_5_5, 3_9_1, 4_1_0, 2_2_9_5_5, 3_7_6_3_6, 1_1_4], [4_4_8, 1_7_4_9_6, 4_1_9, 3_6_6_3, 3_8_5, 7_6_3, 1_1_3, 2_7_5_3_3, 2_8_7_0, 3_2_8_3, 1_3_0_4_3, 1_6_3_9, 2_4_7_1_3, 5_2_3, 6_5_6, 2_4_0_1_3, 1_8_5_5_0, 2_5_2_1, 5_1_7, 2_7_0_1_4, 2_1_2_4_4, 4_2_0, 1_2_1_2, 1_4_6_5, 3_9_1, 9_2_7, 4_8_3_3, 3_8_8, 5_7_8, 1_1_7_8_6, 1_1_4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_8_4, 2_1_6_9, 7_6_8_7, 2_1_9_3_2, 1_8_1_4_6, 7_2_6, 3_6_3, 1_7_0_3_2, 3_3_9_1, 1_1_4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name="""google/bert_for_seq_generation_L-24_bbc_encoder""" , revision="""c817d1fd1be2ffa69431227a1fe320544943d4db""" , )
178
'''simple docstring''' from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging UpperCamelCase__ : Tuple = logging.get_logger(__name__) UpperCamelCase__ : List[str] = { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/config.json''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/config.json''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/config.json''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/config.json''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/config.json''', } class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' _A : Union[str, Any] = '''t5''' _A : Optional[Any] = ['''past_key_values'''] _A : Any = {'''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self : Union[str, Any] , lowerCAmelCase__ : List[str]=3_2_1_2_8 , lowerCAmelCase__ : Dict=5_1_2 , lowerCAmelCase__ : str=6_4 , lowerCAmelCase__ : Tuple=2_0_4_8 , lowerCAmelCase__ : Optional[Any]=6 , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : Any=8 , lowerCAmelCase__ : Dict=3_2 , lowerCAmelCase__ : Dict=1_2_8 , lowerCAmelCase__ : Any=0.1 , lowerCAmelCase__ : str=1E-6 , lowerCAmelCase__ : str=1.0 , lowerCAmelCase__ : Optional[Any]="relu" , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Union[str, Any]=True , lowerCAmelCase__ : Optional[Any]=0 , lowerCAmelCase__ : List[Any]=1 , **lowerCAmelCase__ : Dict , ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = vocab_size __SCREAMING_SNAKE_CASE : str = d_model __SCREAMING_SNAKE_CASE : str = d_kv __SCREAMING_SNAKE_CASE : Optional[Any] = d_ff __SCREAMING_SNAKE_CASE : Optional[Any] = num_layers __SCREAMING_SNAKE_CASE : List[str] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __SCREAMING_SNAKE_CASE : Optional[int] = num_heads __SCREAMING_SNAKE_CASE : Any = relative_attention_num_buckets __SCREAMING_SNAKE_CASE : int = relative_attention_max_distance __SCREAMING_SNAKE_CASE : Optional[int] = dropout_rate __SCREAMING_SNAKE_CASE : Optional[int] = layer_norm_epsilon __SCREAMING_SNAKE_CASE : Optional[int] = initializer_factor __SCREAMING_SNAKE_CASE : Any = feed_forward_proj __SCREAMING_SNAKE_CASE : str = use_cache __SCREAMING_SNAKE_CASE : List[str] = self.feed_forward_proj.split("""-""" ) __SCREAMING_SNAKE_CASE : Tuple = act_info[-1] __SCREAMING_SNAKE_CASE : int = act_info[0] == """gated""" if len(lowerCAmelCase__ ) > 1 and act_info[0] != "gated" or len(lowerCAmelCase__ ) > 2: raise ValueError( F"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer." """Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """ """'gated-gelu' or 'relu'""" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": __SCREAMING_SNAKE_CASE : List[Any] = """gelu_new""" super().__init__( pad_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__ , ) class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' @property def UpperCamelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = { """input_ids""": {0: """batch""", 1: """encoder_sequence"""}, """attention_mask""": {0: """batch""", 1: """encoder_sequence"""}, } if self.use_past: __SCREAMING_SNAKE_CASE : Optional[Any] = """past_encoder_sequence + sequence""" __SCREAMING_SNAKE_CASE : Optional[Any] = {0: """batch"""} __SCREAMING_SNAKE_CASE : Optional[int] = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: __SCREAMING_SNAKE_CASE : List[Any] = {0: """batch""", 1: """decoder_sequence"""} __SCREAMING_SNAKE_CASE : Optional[Any] = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase__ , direction="""inputs""" ) return common_inputs @property def UpperCamelCase__ ( self : List[str] ): """simple docstring""" return 1_3
178
1
from collections import namedtuple import requests from lxml import html # type: ignore A_: List[str] = namedtuple('covid_data', 'cases deaths recovered') def __lowerCAmelCase ( _A = "https://www.worldometers.info/coronavirus/" ): """simple docstring""" _lowercase = """//div[@class = \"maincounter-number\"]/span/text()""" return covid_data(*html.fromstring(requests.get(A_ ).content ).xpath(A_ ) ) A_: Any = "Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}" print(fmt.format(*covid_stats()))
398
'''simple docstring''' from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class _SCREAMING_SNAKE_CASE : """simple docstring""" pass
316
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { 'tanreinama/GPTSAN-2.8B-spout_is_uniform': ( 'https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json' ), } class _lowercase ( __a ): _UpperCAmelCase = '''gptsan-japanese''' _UpperCAmelCase = [ '''past_key_values''', ] _UpperCAmelCase = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , A__=3_60_00 , A__=12_80 , A__=10_24 , A__=81_92 , A__=40_96 , A__=1_28 , A__=10 , A__=0 , A__=16 , A__=16 , A__=1_28 , A__=0.0 , A__=1e-5 , A__=False , A__=0.0 , A__="float32" , A__=False , A__=False , A__=False , A__=0.0_0_2 , A__=False , A__=True , A__=3_59_98 , A__=3_59_95 , A__=3_59_99 , **A__ , ) -> List[Any]: snake_case = vocab_size snake_case = max_position_embeddings snake_case = d_model snake_case = d_ff snake_case = d_ext snake_case = d_spout snake_case = num_switch_layers snake_case = num_ext_layers snake_case = num_switch_layers + num_ext_layers snake_case = num_heads snake_case = num_experts snake_case = expert_capacity snake_case = dropout_rate snake_case = layer_norm_epsilon snake_case = router_bias snake_case = router_jitter_noise snake_case = router_dtype snake_case = router_ignore_padding_tokens snake_case = output_hidden_states snake_case = output_attentions snake_case = initializer_factor snake_case = output_router_logits snake_case = use_cache super().__init__( separator_token_id=A__ , pad_token_id=A__ , eos_token_id=A__ , **A__ , )
44
'''simple docstring''' from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class _lowercase ( yaml.SafeLoader ): def UpperCamelCase ( self , A__ ) -> List[str]: snake_case = [self.constructed_objects[key_node] for key_node, _ in node.value] snake_case = [tuple(A__ ) if isinstance(A__ , A__ ) else key for key in keys] snake_case = Counter(A__ ) snake_case = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(F"""Got duplicate yaml keys: {duplicate_keys}""" ) def UpperCamelCase ( self , A__ , A__=False ) -> List[Any]: snake_case = super().construct_mapping(A__ , deep=A__ ) self._check_no_duplicates_on_constructed_node(A__ ) return mapping def __UpperCamelCase ( a : str ) ->Tuple[Optional[str], str]: snake_case = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: snake_case = full_content[1:].index('''---''' ) + 1 snake_case = '''\n'''.join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(a ) class _lowercase ( __a ): # class attributes _UpperCAmelCase = {'''train_eval_index'''} # train-eval-index in the YAML metadata @classmethod def UpperCamelCase ( cls , A__ ) -> "DatasetMetadata": with open(A__ , encoding='''utf-8''' ) as readme_file: snake_case , snake_case = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(A__ ) else: return cls() def UpperCamelCase ( self , A__ ) -> str: if path.exists(): with open(A__ , encoding='''utf-8''' ) as readme_file: snake_case = readme_file.read() else: snake_case = None snake_case = self._to_readme(A__ ) with open(A__ , '''w''' , encoding='''utf-8''' ) as readme_file: readme_file.write(A__ ) def UpperCamelCase ( self , A__ = None ) -> str: if readme_content is not None: snake_case , snake_case = _split_yaml_from_readme(A__ ) snake_case = '''---\n''' + self.to_yaml_string() + '''---\n''' + content else: snake_case = '''---\n''' + self.to_yaml_string() + '''---\n''' return full_content @classmethod def UpperCamelCase ( cls , A__ ) -> "DatasetMetadata": snake_case = yaml.load(A__ , Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields snake_case = { (key.replace('''-''' , '''_''' ) if key.replace('''-''' , '''_''' ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**A__ ) def UpperCamelCase ( self ) -> str: return yaml.safe_dump( { (key.replace('''_''' , '''-''' ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=A__ , allow_unicode=A__ , encoding='''utf-8''' , ).decode('''utf-8''' ) _lowercase = { 'image-classification': [], 'translation': [], 'image-segmentation': [], 'fill-mask': [], 'automatic-speech-recognition': [], 'token-classification': [], 'sentence-similarity': [], 'audio-classification': [], 'question-answering': [], 'summarization': [], 'zero-shot-classification': [], 'table-to-text': [], 'feature-extraction': [], 'other': [], 'multiple-choice': [], 'text-classification': [], 'text-to-image': [], 'text2text-generation': [], 'zero-shot-image-classification': [], 'tabular-classification': [], 'tabular-regression': [], 'image-to-image': [], 'tabular-to-text': [], 'unconditional-image-generation': [], 'text-retrieval': [], 'text-to-speech': [], 'object-detection': [], 'audio-to-audio': [], 'text-generation': [], 'conversational': [], 'table-question-answering': [], 'visual-question-answering': [], 'image-to-text': [], 'reinforcement-learning': [], 'voice-activity-detection': [], 'time-series-forecasting': [], 'document-question-answering': [], } if __name__ == "__main__": from argparse import ArgumentParser _lowercase = ArgumentParser(usage='Validate the yaml metadata block of a README.md file.') ap.add_argument('readme_filepath') _lowercase = ap.parse_args() _lowercase = Path(args.readme_filepath) _lowercase = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
44
1
'''simple docstring''' import re def _SCREAMING_SNAKE_CASE (A ) -> bool: """simple docstring""" lowercase__ = re.compile(R'''^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$''' ) if match := re.search(A , A ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator('+918827897895'))
460
'''simple docstring''' import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def _SCREAMING_SNAKE_CASE (A ) -> Dict: """simple docstring""" lowercase__ = os.path.join(args.tf_model_dir , '''parameters.json''' ) lowercase__ = json.loads(open(A ).read() ) if not params: raise ValueError( f"It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file." ) if not args.output.endswith('''.pt''' ): lowercase__ = args.output + '''.pt''' lowercase__ = OrderedDict() with tf.device('''/CPU:0''' ): lowercase__ = tf.train.load_checkpoint(args.tf_model_dir ) lowercase__ = reader.get_variable_to_shape_map() for key_name in shapes.keys(): lowercase__ = reader.get_tensor(A ).astype(np.floataa ) if key_name.endswith('''/adam_m''' ) or key_name.endswith('''/adam_v''' ): continue if key_name.startswith('''pasts/''' ): if key_name.startswith('''pasts/mlp''' ): lowercase__ = int(key_name[9] ) elif key_name.startswith('''pasts/out''' ): lowercase__ = 8 lowercase__ = '''model.sqout.%d.weight''' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(A ) elif key_name.startswith('''model/moe''' ): lowercase__ = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/switch_gating/kernel''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.router.classifier.weight''' % player lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(A ) elif key_name.endswith('''/softmlp/kernel''' ): lowercase__ = '''model.blocks.%d.feed_forward.soft_bypass_mlp.weight''' % player lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(A ) elif key_name.endswith('''/wo/kernel''' ) or key_name.endswith('''/wi/kernel''' ): lowercase__ = key_name[-9:-7] for i in range(16 ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight''' % (player, i, nlayer) lowercase__ = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided lowercase__ = torch.tensor(A ) elif key_name.startswith('''model/mlp''' ): lowercase__ = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/p1/kernel''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.wi.weight''' % player lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(A ) elif key_name.endswith('''/p1/bias''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.wi.bias''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(A ) elif key_name.endswith('''/p2/kernel''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.wo.weight''' % player lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(A ) elif key_name.endswith('''/p2/bias''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.wo.bias''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(A ) elif key_name.startswith('''model/ln''' ): lowercase__ = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): lowercase__ = '''model.blocks.%d.feed_forward.norm.bias''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(A ) elif key_name.endswith('''/g''' ): lowercase__ = '''model.blocks.%d.feed_forward.norm.weight''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(A ) elif key_name.startswith('''model/att''' ): lowercase__ = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/qkv/kernel''' ): lowercase__ = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum lowercase__ = state[:, 0, :, :] lowercase__ = state[:, 1, :, :] lowercase__ = state[:, 2, :, :] lowercase__ = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase__ = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase__ = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase__ = '''model.blocks.%d.self_attn.self_attn.q_proj.weight''' % player lowercase__ = torch.tensor(A ) lowercase__ = '''model.blocks.%d.self_attn.self_attn.k_proj.weight''' % player lowercase__ = torch.tensor(A ) lowercase__ = '''model.blocks.%d.self_attn.self_attn.v_proj.weight''' % player lowercase__ = torch.tensor(A ) elif key_name.endswith('''/o/kernel''' ): lowercase__ = '''model.blocks.%d.self_attn.self_attn.out_proj.weight''' % player lowercase__ = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(A ) elif key_name.startswith('''model/an''' ): lowercase__ = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): lowercase__ = '''model.blocks.%d.self_attn.norm.bias''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(A ) elif key_name.endswith('''/g''' ): lowercase__ = '''model.blocks.%d.self_attn.norm.weight''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(A ) elif ( key_name.startswith('''model/wte''' ) or key_name.startswith('''model/wpe''' ) or key_name.startswith('''model/ete''' ) ): lowercase__ = {'''wte''': '''embed_tokens''', '''wpe''': '''position_embeddings''', '''ete''': '''extra_position_embeddings'''}[ key_name[-3:] ] lowercase__ = '''model.%s.weight''' % nlayer lowercase__ = vnp.copy() # same in embedded lowercase__ = torch.tensor(A ) if key_name.startswith('''model/wte''' ): lowercase__ = '''lm_head.weight''' lowercase__ = vnp.copy() # same in embedded lowercase__ = torch.tensor(A ) elif key_name.startswith('''model/wob''' ): lowercase__ = '''final_logits_bias''' lowercase__ = vnp.copy() # same in embedded lowercase__ = state.reshape((1, -1) ) lowercase__ = torch.tensor(A ) elif key_name == "model/dense/kernel": lowercase__ = '''model.last_project.weight''' lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(A ) elif key_name == "model/dense_1/bias": lowercase__ = '''model.last_project.bias''' lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(A ) torch.save(A , args.output ) if __name__ == "__main__": lowerCamelCase : Optional[int] = argparse.ArgumentParser( description='model converter.', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('--tf_model_dir', metavar='PATH', type=str, required=True, help='import model') parser.add_argument('--output', metavar='PATH', type=str, required=True, help='output model') lowerCamelCase : Dict = parser.parse_args() convert_tf_gptsan_to_pt(args)
460
1
"""simple docstring""" import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowercase : List[str] = logging.get_logger(__name__) __lowercase : Union[str, Any] = { "vocab_file": "vocab.txt", "merges_file": "bpe.codes", } __lowercase : Optional[int] = { "vocab_file": { "vinai/phobert-base": "https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt", "vinai/phobert-large": "https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt", }, "merges_file": { "vinai/phobert-base": "https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes", "vinai/phobert-large": "https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes", }, } __lowercase : Dict = { "vinai/phobert-base": 256, "vinai/phobert-large": 256, } def SCREAMING_SNAKE_CASE ( snake_case): __snake_case = set() __snake_case = word[0] for char in word[1:]: pairs.add((prev_char, char)) __snake_case = char __snake_case = set(snake_case) return pairs class _A ( _UpperCAmelCase ): """simple docstring""" UpperCamelCase_ : Union[str, Any] = VOCAB_FILES_NAMES UpperCamelCase_ : Any = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Union[str, Any] , A_ : Optional[Any] , A_ : Optional[int] , A_ : str="<s>" , A_ : List[str]="</s>" , A_ : List[Any]="</s>" , A_ : List[str]="<s>" , A_ : Optional[int]="<unk>" , A_ : List[str]="<pad>" , A_ : Any="<mask>" , **A_ : int , ) -> Tuple: super().__init__( bos_token=A_ , eos_token=A_ , unk_token=A_ , sep_token=A_ , cls_token=A_ , pad_token=A_ , mask_token=A_ , **A_ , ) __snake_case = vocab_file __snake_case = merges_file __snake_case = {} __snake_case = 0 __snake_case = 1 __snake_case = 2 __snake_case = 3 self.add_from_file(A_ ) __snake_case = {v: k for k, v in self.encoder.items()} with open(A_ , encoding='''utf-8''' ) as merges_handle: __snake_case = merges_handle.read().split('''\n''' )[:-1] __snake_case = [tuple(merge.split()[:-1] ) for merge in merges] __snake_case = dict(zip(A_ , range(len(A_ ) ) ) ) __snake_case = {} def lowercase ( self : str , A_ : List[int] , A_ : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __snake_case = [self.cls_token_id] __snake_case = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase ( self : Dict , A_ : List[int] , A_ : Optional[List[int]] = None , A_ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) if token_ids_a is None: return [1] + ([0] * len(A_ )) + [1] return [1] + ([0] * len(A_ )) + [1, 1] + ([0] * len(A_ )) + [1] def lowercase ( self : Optional[Any] , A_ : List[int] , A_ : Optional[List[int]] = None ) -> List[int]: __snake_case = [self.sep_token_id] __snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowercase ( self : List[Any] ) -> str: return len(self.encoder ) def lowercase ( self : Union[str, Any] ) -> Optional[int]: return dict(self.encoder , **self.added_tokens_encoder ) def lowercase ( self : str , A_ : List[Any] ) -> Optional[int]: if token in self.cache: return self.cache[token] __snake_case = tuple(A_ ) __snake_case = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) __snake_case = get_pairs(A_ ) if not pairs: return token while True: __snake_case = min(A_ , key=lambda A_ : self.bpe_ranks.get(A_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break __snake_case , __snake_case = bigram __snake_case = [] __snake_case = 0 while i < len(A_ ): try: __snake_case = word.index(A_ , A_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __snake_case = j if word[i] == first and i < len(A_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __snake_case = tuple(A_ ) __snake_case = new_word if len(A_ ) == 1: break else: __snake_case = get_pairs(A_ ) __snake_case = '''@@ '''.join(A_ ) __snake_case = word[:-4] __snake_case = word return word def lowercase ( self : int , A_ : Tuple ) -> int: __snake_case = [] __snake_case = re.findall(R'''\S+\n?''' , A_ ) for token in words: split_tokens.extend(list(self.bpe(A_ ).split(''' ''' ) ) ) return split_tokens def lowercase ( self : Union[str, Any] , A_ : Tuple ) -> int: return self.encoder.get(A_ , self.encoder.get(self.unk_token ) ) def lowercase ( self : int , A_ : Dict ) -> Optional[Any]: return self.decoder.get(A_ , self.unk_token ) def lowercase ( self : Union[str, Any] , A_ : int ) -> Tuple: __snake_case = ''' '''.join(A_ ).replace('''@@ ''' , '''''' ).strip() return out_string def lowercase ( self : str , A_ : str , A_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(A_ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return __snake_case = os.path.join( A_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) __snake_case = os.path.join( A_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ): copyfile(self.vocab_file , A_ ) if os.path.abspath(self.merges_file ) != os.path.abspath(A_ ): copyfile(self.merges_file , A_ ) return out_vocab_file, out_merge_file def lowercase ( self : Optional[int] , A_ : Union[str, Any] ) -> Dict: if isinstance(A_ , A_ ): try: with open(A_ , '''r''' , encoding='''utf-8''' ) as fd: self.add_from_file(A_ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f"Incorrect encoding detected in {f}, please rebuild the dataset" ) return __snake_case = f.readlines() for lineTmp in lines: __snake_case = lineTmp.strip() __snake_case = line.rfind(''' ''' ) if idx == -1: raise ValueError('''Incorrect dictionary format, expected \'<token> <cnt>\'''' ) __snake_case = line[:idx] __snake_case = len(self.encoder )
93
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowercase : Dict = { "configuration_vision_text_dual_encoder": ["VisionTextDualEncoderConfig"], "processing_vision_text_dual_encoder": ["VisionTextDualEncoderProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Optional[int] = ["VisionTextDualEncoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Optional[int] = ["FlaxVisionTextDualEncoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Any = ["TFVisionTextDualEncoderModel"] if TYPE_CHECKING: from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel else: import sys __lowercase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure)
93
1
"""simple docstring""" import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class __A : def __init__( self : str , __snake_case : int , __snake_case : Dict=1_3 , __snake_case : Dict=7 , __snake_case : str=False , __snake_case : Dict=True , __snake_case : Tuple=False , __snake_case : List[Any]=False , __snake_case : Dict=1_9 , __snake_case : Dict=3_2 , __snake_case : Union[str, Any]=5 , __snake_case : List[Any]=4 , __snake_case : List[Any]=3_7 , __snake_case : Union[str, Any]="gelu" , __snake_case : List[str]=0.1 , __snake_case : Union[str, Any]=0.1 , __snake_case : List[str]=5_1_2 , __snake_case : List[str]=1_6 , __snake_case : Tuple=2 , __snake_case : Optional[Any]=0.02 , __snake_case : str=3 , __snake_case : List[str]=4 , __snake_case : Optional[int]=None , ) -> Optional[int]: __magic_name__: Any = parent __magic_name__: Optional[Any] = batch_size __magic_name__: Optional[Any] = seq_length __magic_name__: Optional[Any] = is_training __magic_name__: str = use_input_mask __magic_name__: Optional[Any] = use_token_type_ids __magic_name__: List[str] = use_labels __magic_name__: List[str] = vocab_size __magic_name__: Union[str, Any] = hidden_size __magic_name__: List[Any] = num_hidden_layers __magic_name__: Dict = num_attention_heads __magic_name__: int = intermediate_size __magic_name__: List[Any] = hidden_act __magic_name__: int = hidden_dropout_prob __magic_name__: List[str] = attention_probs_dropout_prob __magic_name__: Tuple = max_position_embeddings __magic_name__: Any = type_vocab_size __magic_name__: Union[str, Any] = type_sequence_label_size __magic_name__: List[str] = initializer_range __magic_name__: Optional[Any] = num_labels __magic_name__: List[str] = num_choices __magic_name__: Tuple = scope def lowerCamelCase__ ( self : Optional[int] ) -> Any: __magic_name__: Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__: Dict = None if self.use_input_mask: __magic_name__: Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) __magic_name__: str = None __magic_name__: Optional[Any] = None __magic_name__: int = None if self.use_labels: __magic_name__: List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__: str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __magic_name__: Dict = ids_tensor([self.batch_size] , self.num_choices ) __magic_name__: Dict = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase__ ( self : int ) -> Any: __magic_name__: List[Any] = EsmConfig( vocab_size=3_3 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=__snake_case , esmfold_config={"""trunk""": {"""num_blocks""": 2}, """fp16_esm""": False} , ) return config def lowerCamelCase__ ( self : Optional[int] , __snake_case : Optional[Any] , __snake_case : Optional[Any] , __snake_case : Any , __snake_case : List[Any] , __snake_case : Any , __snake_case : Union[str, Any] ) -> Optional[Any]: __magic_name__: str = EsmForProteinFolding(config=__snake_case ).float() model.to(__snake_case ) model.eval() __magic_name__: str = model(__snake_case , attention_mask=__snake_case ) __magic_name__: Any = model(__snake_case ) __magic_name__: Dict = model(__snake_case ) self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 1_4, 3) ) self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2) ) def lowerCamelCase__ ( self : Any ) -> int: __magic_name__: str = self.prepare_config_and_inputs() ( ( __magic_name__ ), ( __magic_name__ ), ( __magic_name__ ), ( __magic_name__ ), ( __magic_name__ ), ( __magic_name__ ), ): Union[str, Any] = config_and_inputs __magic_name__: Any = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __A ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): UpperCAmelCase__ = False UpperCAmelCase__ = (EsmForProteinFolding,) if is_torch_available() else () UpperCAmelCase__ = () UpperCAmelCase__ = {} if is_torch_available() else {} UpperCAmelCase__ = False def lowerCamelCase__ ( self : List[Any] ) -> Optional[Any]: __magic_name__: Optional[int] = EsmFoldModelTester(self ) __magic_name__: Optional[Any] = ConfigTester(self , config_class=__snake_case , hidden_size=3_7 ) def lowerCamelCase__ ( self : Optional[int] ) -> Any: self.config_tester.run_common_tests() def lowerCamelCase__ ( self : List[str] ) -> str: __magic_name__: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) @unittest.skip("""Does not support attention outputs""" ) def lowerCamelCase__ ( self : List[str] ) -> str: pass @unittest.skip def lowerCamelCase__ ( self : List[Any] ) -> Tuple: pass @unittest.skip("""Esm does not support embedding resizing""" ) def lowerCamelCase__ ( self : List[Any] ) -> Optional[int]: pass @unittest.skip("""Esm does not support embedding resizing""" ) def lowerCamelCase__ ( self : str ) -> str: pass @unittest.skip("""ESMFold does not support passing input embeds!""" ) def lowerCamelCase__ ( self : Optional[int] ) -> List[Any]: pass @unittest.skip("""ESMFold does not support head pruning.""" ) def lowerCamelCase__ ( self : Any ) -> List[str]: pass @unittest.skip("""ESMFold does not support head pruning.""" ) def lowerCamelCase__ ( self : Union[str, Any] ) -> List[Any]: pass @unittest.skip("""ESMFold does not support head pruning.""" ) def lowerCamelCase__ ( self : int ) -> Tuple: pass @unittest.skip("""ESMFold does not support head pruning.""" ) def lowerCamelCase__ ( self : Optional[int] ) -> Optional[Any]: pass @unittest.skip("""ESMFold does not support head pruning.""" ) def lowerCamelCase__ ( self : Optional[Any] ) -> Optional[Any]: pass @unittest.skip("""ESMFold does not output hidden states in the normal way.""" ) def lowerCamelCase__ ( self : Union[str, Any] ) -> List[Any]: pass @unittest.skip("""ESMfold does not output hidden states in the normal way.""" ) def lowerCamelCase__ ( self : Any ) -> int: pass @unittest.skip("""ESMFold only has one output format.""" ) def lowerCamelCase__ ( self : Union[str, Any] ) -> str: pass @unittest.skip("""This test doesn't work for ESMFold and doesn't test core functionality""" ) def lowerCamelCase__ ( self : List[Any] ) -> Dict: pass @unittest.skip("""ESMFold does not support input chunking.""" ) def lowerCamelCase__ ( self : int ) -> Any: pass @unittest.skip("""ESMFold doesn't respect you and it certainly doesn't respect your initialization arguments.""" ) def lowerCamelCase__ ( self : int ) -> Union[str, Any]: pass @unittest.skip("""ESMFold doesn't support torchscript compilation.""" ) def lowerCamelCase__ ( self : Any ) -> Optional[Any]: pass @unittest.skip("""ESMFold doesn't support torchscript compilation.""" ) def lowerCamelCase__ ( self : Optional[int] ) -> int: pass @unittest.skip("""ESMFold doesn't support torchscript compilation.""" ) def lowerCamelCase__ ( self : Union[str, Any] ) -> List[str]: pass @unittest.skip("""ESMFold doesn't support data parallel.""" ) def lowerCamelCase__ ( self : List[str] ) -> str: pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCamelCase__ ( self : Union[str, Any] ) -> Dict: pass @require_torch class __A ( SCREAMING_SNAKE_CASE_ ): @slow def lowerCamelCase__ ( self : Optional[Any] ) -> List[Any]: __magic_name__: Any = EsmForProteinFolding.from_pretrained("""facebook/esmfold_v1""" ).float() model.eval() __magic_name__: Optional[int] = torch.tensor([[0, 6, 4, 1_3, 5, 4, 1_6, 1_2, 1_1, 7, 2]] ) __magic_name__: Dict = model(__snake_case )["""positions"""] __magic_name__: Tuple = torch.tensor([2.5828, 0.7993, -10.9334] , dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , __snake_case , atol=1E-4 ) )
96
"""simple docstring""" import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class __A ( unittest.TestCase ): def lowerCamelCase__ ( self : Union[str, Any] ) -> Optional[Any]: __magic_name__: List[str] = """| <pad> <unk> <s> </s> a b c d e f g h i j k""".split() __magic_name__: List[Any] = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) __magic_name__: Union[str, Any] = { """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>""", } __magic_name__: Optional[int] = { """feature_size""": 1, """padding_value""": 0.0, """sampling_rate""": 1_6_0_0_0, """return_attention_mask""": False, """do_normalize""": True, } __magic_name__: int = tempfile.mkdtemp() __magic_name__: Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __magic_name__: Tuple = os.path.join(self.tmpdirname , __snake_case ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__snake_case ) + """\n""" ) with open(self.feature_extraction_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__snake_case ) + """\n""" ) # load decoder from hub __magic_name__: Dict = """hf-internal-testing/ngram-beam-search-decoder""" def lowerCamelCase__ ( self : Any , **__snake_case : str ) -> Optional[int]: __magic_name__: Union[str, Any] = self.add_kwargs_tokens_map.copy() kwargs.update(__snake_case ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **__snake_case ) def lowerCamelCase__ ( self : str , **__snake_case : int ) -> Dict: return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **__snake_case ) def lowerCamelCase__ ( self : int , **__snake_case : List[str] ) -> int: return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **__snake_case ) def lowerCamelCase__ ( self : Union[str, Any] ) -> Any: shutil.rmtree(self.tmpdirname ) def lowerCamelCase__ ( self : List[Any] ) -> Optional[Any]: __magic_name__: Dict = self.get_tokenizer() __magic_name__: Any = self.get_feature_extractor() __magic_name__: Tuple = self.get_decoder() __magic_name__: Tuple = WavaVecaProcessorWithLM(tokenizer=__snake_case , feature_extractor=__snake_case , decoder=__snake_case ) processor.save_pretrained(self.tmpdirname ) __magic_name__: Dict = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , __snake_case ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , __snake_case ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , __snake_case ) def lowerCamelCase__ ( self : Any ) -> Tuple: __magic_name__: Union[str, Any] = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __magic_name__: int = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def lowerCamelCase__ ( self : Optional[int] ) -> Optional[Any]: __magic_name__: Union[str, Any] = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["""xx"""] ) with self.assertRaisesRegex(__snake_case , """include""" ): WavaVecaProcessorWithLM( tokenizer=__snake_case , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def lowerCamelCase__ ( self : Union[str, Any] ) -> int: __magic_name__: int = self.get_feature_extractor() __magic_name__: Optional[Any] = self.get_tokenizer() __magic_name__: List[Any] = self.get_decoder() __magic_name__: int = WavaVecaProcessorWithLM(tokenizer=__snake_case , feature_extractor=__snake_case , decoder=__snake_case ) __magic_name__: Tuple = floats_list((3, 1_0_0_0) ) __magic_name__: List[str] = feature_extractor(__snake_case , return_tensors="""np""" ) __magic_name__: Tuple = processor(__snake_case , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCamelCase__ ( self : Union[str, Any] ) -> List[str]: __magic_name__: Tuple = self.get_feature_extractor() __magic_name__: List[str] = self.get_tokenizer() __magic_name__: str = self.get_decoder() __magic_name__: Tuple = WavaVecaProcessorWithLM(tokenizer=__snake_case , feature_extractor=__snake_case , decoder=__snake_case ) __magic_name__: Optional[int] = """This is a test string""" __magic_name__: List[str] = processor(text=__snake_case ) __magic_name__: Tuple = tokenizer(__snake_case ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCamelCase__ ( self : int , __snake_case : List[str]=(2, 1_0, 1_6) , __snake_case : List[Any]=7_7 ) -> Dict: np.random.seed(__snake_case ) return np.random.rand(*__snake_case ) def lowerCamelCase__ ( self : Any ) -> Any: __magic_name__: int = self.get_feature_extractor() __magic_name__: Tuple = self.get_tokenizer() __magic_name__: Any = self.get_decoder() __magic_name__: Tuple = WavaVecaProcessorWithLM(tokenizer=__snake_case , feature_extractor=__snake_case , decoder=__snake_case ) __magic_name__: List[Any] = self._get_dummy_logits(shape=(1_0, 1_6) , seed=1_3 ) __magic_name__: str = processor.decode(__snake_case ) __magic_name__: Optional[int] = decoder.decode_beams(__snake_case )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual("""</s> <s> </s>""" , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ["""fork"""], ["""spawn"""]] ) def lowerCamelCase__ ( self : int , __snake_case : Dict ) -> Any: __magic_name__: int = self.get_feature_extractor() __magic_name__: List[Any] = self.get_tokenizer() __magic_name__: int = self.get_decoder() __magic_name__: Optional[Any] = WavaVecaProcessorWithLM(tokenizer=__snake_case , feature_extractor=__snake_case , decoder=__snake_case ) __magic_name__: Optional[int] = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __magic_name__: Optional[int] = processor.batch_decode(__snake_case ) else: with get_context(__snake_case ).Pool() as pool: __magic_name__: Any = processor.batch_decode(__snake_case , __snake_case ) __magic_name__: Dict = list(__snake_case ) with get_context("""fork""" ).Pool() as p: __magic_name__: List[str] = decoder.decode_beams_batch(__snake_case , __snake_case ) __magic_name__, __magic_name__, __magic_name__: Optional[int] = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(__snake_case , decoded_processor.text ) self.assertListEqual(["""<s> <s> </s>""", """<s> <s> <s>"""] , decoded_processor.text ) self.assertListEqual(__snake_case , decoded_processor.logit_score ) self.assertListEqual(__snake_case , decoded_processor.lm_score ) def lowerCamelCase__ ( self : List[Any] ) -> List[Any]: __magic_name__: List[str] = self.get_feature_extractor() __magic_name__: Optional[Any] = self.get_tokenizer() __magic_name__: Optional[int] = self.get_decoder() __magic_name__: Dict = WavaVecaProcessorWithLM(tokenizer=__snake_case , feature_extractor=__snake_case , decoder=__snake_case ) __magic_name__: str = self._get_dummy_logits() __magic_name__: Dict = 1_5 __magic_name__: int = -20.0 __magic_name__: int = -4.0 __magic_name__: Dict = processor.batch_decode( __snake_case , beam_width=__snake_case , beam_prune_logp=__snake_case , token_min_logp=__snake_case , ) __magic_name__: Optional[int] = decoded_processor_out.text __magic_name__: Union[str, Any] = list(__snake_case ) with get_context("""fork""" ).Pool() as pool: __magic_name__: str = decoder.decode_beams_batch( __snake_case , __snake_case , beam_width=__snake_case , beam_prune_logp=__snake_case , token_min_logp=__snake_case , ) __magic_name__: Any = [d[0][0] for d in decoded_decoder_out] __magic_name__: Optional[int] = [d[0][2] for d in decoded_decoder_out] __magic_name__: Optional[Any] = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(__snake_case , __snake_case ) self.assertListEqual(["""</s> <s> <s>""", """<s> <s> <s>"""] , __snake_case ) self.assertTrue(np.array_equal(__snake_case , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , __snake_case , atol=1E-3 ) ) self.assertTrue(np.array_equal(__snake_case , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , __snake_case , atol=1E-3 ) ) def lowerCamelCase__ ( self : Union[str, Any] ) -> int: __magic_name__: int = self.get_feature_extractor() __magic_name__: Any = self.get_tokenizer() __magic_name__: Union[str, Any] = self.get_decoder() __magic_name__: str = WavaVecaProcessorWithLM(tokenizer=__snake_case , feature_extractor=__snake_case , decoder=__snake_case ) __magic_name__: Any = self._get_dummy_logits() __magic_name__: Union[str, Any] = 2.0 __magic_name__: Optional[Any] = 5.0 __magic_name__: Optional[Any] = -20.0 __magic_name__: List[str] = True __magic_name__: List[Any] = processor.batch_decode( __snake_case , alpha=__snake_case , beta=__snake_case , unk_score_offset=__snake_case , lm_score_boundary=__snake_case , ) __magic_name__: Union[str, Any] = decoded_processor_out.text __magic_name__: Union[str, Any] = list(__snake_case ) decoder.reset_params( alpha=__snake_case , beta=__snake_case , unk_score_offset=__snake_case , lm_score_boundary=__snake_case , ) with get_context("""fork""" ).Pool() as pool: __magic_name__: str = decoder.decode_beams_batch( __snake_case , __snake_case , ) __magic_name__: List[str] = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(__snake_case , __snake_case ) self.assertListEqual(["""<s> </s> <s> </s> </s>""", """</s> </s> <s> </s> </s>"""] , __snake_case ) __magic_name__: List[str] = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , __snake_case ) def lowerCamelCase__ ( self : Union[str, Any] ) -> List[Any]: __magic_name__: List[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __magic_name__: Union[str, Any] = processor.decoder.model_container[processor.decoder._model_key] __magic_name__: Union[str, Any] = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() __magic_name__: Optional[int] = os.listdir(__snake_case ) __magic_name__: Union[str, Any] = ["""alphabet.json""", """language_model"""] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(__snake_case , __snake_case ) def lowerCamelCase__ ( self : Any ) -> Any: __magic_name__: int = snapshot_download("""hf-internal-testing/processor_with_lm""" ) __magic_name__: List[Any] = WavaVecaProcessorWithLM.from_pretrained(__snake_case ) __magic_name__: Any = processor.decoder.model_container[processor.decoder._model_key] __magic_name__: int = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() __magic_name__: str = os.listdir(__snake_case ) __magic_name__: Tuple = os.listdir(__snake_case ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(__snake_case , __snake_case ) def lowerCamelCase__ ( self : Optional[int] ) -> int: __magic_name__: List[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __magic_name__: List[str] = AutoProcessor.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __magic_name__: List[str] = floats_list((3, 1_0_0_0) ) __magic_name__: Tuple = processor_wavaveca(__snake_case , return_tensors="""np""" ) __magic_name__: Optional[Any] = processor_auto(__snake_case , return_tensors="""np""" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) __magic_name__: int = self._get_dummy_logits() __magic_name__: List[Any] = processor_wavaveca.batch_decode(__snake_case ) __magic_name__: Union[str, Any] = processor_auto.batch_decode(__snake_case ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def lowerCamelCase__ ( self : Union[str, Any] ) -> str: __magic_name__: Optional[int] = self.get_feature_extractor() __magic_name__: Any = self.get_tokenizer() __magic_name__: Dict = self.get_decoder() __magic_name__: List[str] = WavaVecaProcessorWithLM(tokenizer=__snake_case , feature_extractor=__snake_case , decoder=__snake_case ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , ) @staticmethod def lowerCamelCase__ ( __snake_case : Optional[int] , __snake_case : int ) -> int: __magic_name__: Any = [d[key] for d in offsets] return retrieved_list def lowerCamelCase__ ( self : str ) -> Union[str, Any]: __magic_name__: Tuple = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __magic_name__: Tuple = self._get_dummy_logits()[0] __magic_name__: List[Any] = processor.decode(__snake_case , output_word_offsets=__snake_case ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(__snake_case , __snake_case ) ) self.assertEqual(""" """.join(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """end_offset""" ) , [1, 3, 5] ) def lowerCamelCase__ ( self : Optional[int] ) -> Dict: __magic_name__: Optional[int] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __magic_name__: Optional[int] = self._get_dummy_logits() __magic_name__: Any = processor.batch_decode(__snake_case , output_word_offsets=__snake_case ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(__snake_case , __snake_case ) ) self.assertListEqual( [""" """.join(self.get_from_offsets(__snake_case , """word""" ) ) for o in outputs["""word_offsets"""]] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """end_offset""" ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def lowerCamelCase__ ( self : Union[str, Any] ) -> int: import torch __magic_name__: List[Any] = load_dataset("""common_voice""" , """en""" , split="""train""" , streaming=__snake_case ) __magic_name__: Dict = ds.cast_column("""audio""" , datasets.Audio(sampling_rate=1_6_0_0_0 ) ) __magic_name__: Any = iter(__snake_case ) __magic_name__: Optional[int] = next(__snake_case ) __magic_name__: Optional[int] = AutoProcessor.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) __magic_name__: Tuple = WavaVecaForCTC.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __magic_name__: List[str] = processor(sample["""audio"""]["""array"""] , return_tensors="""pt""" ).input_values with torch.no_grad(): __magic_name__: List[Any] = model(__snake_case ).logits.cpu().numpy() __magic_name__: Optional[Any] = processor.decode(logits[0] , output_word_offsets=__snake_case ) __magic_name__: List[str] = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __magic_name__: str = [ { """start_time""": d["""start_offset"""] * time_offset, """end_time""": d["""end_offset"""] * time_offset, """word""": d["""word"""], } for d in output["""word_offsets"""] ] __magic_name__: Tuple = """WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL""" # output words self.assertEqual(""" """.join(self.get_from_offsets(__snake_case , """word""" ) ) , __snake_case ) self.assertEqual(""" """.join(self.get_from_offsets(__snake_case , """word""" ) ) , output.text ) # output times __magic_name__: Dict = torch.tensor(self.get_from_offsets(__snake_case , """start_time""" ) ) __magic_name__: Optional[Any] = torch.tensor(self.get_from_offsets(__snake_case , """end_time""" ) ) # fmt: off __magic_name__: Tuple = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) __magic_name__: int = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=0.01 ) ) self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=0.01 ) )
96
1
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch __lowercase : Union[str, Any] = logging.get_logger(__name__) class _A ( _UpperCAmelCase ): """simple docstring""" UpperCamelCase_ : Optional[int] = ['''pixel_values'''] def __init__( self : List[Any] , A_ : bool = True , A_ : Optional[Dict[str, int]] = None , A_ : PILImageResampling = PILImageResampling.BILINEAR , A_ : bool = True , A_ : Dict[str, int] = None , A_ : bool = True , A_ : Union[int, float] = 1 / 255 , A_ : bool = True , A_ : Optional[Union[float, List[float]]] = None , A_ : Optional[Union[float, List[float]]] = None , **A_ : Tuple , ) -> None: super().__init__(**A_ ) __snake_case = size if size is not None else {'''shortest_edge''': 256} __snake_case = get_size_dict(A_ , default_to_square=A_ ) __snake_case = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} __snake_case = get_size_dict(A_ , param_name='''crop_size''' ) __snake_case = do_resize __snake_case = size __snake_case = resample __snake_case = do_center_crop __snake_case = crop_size __snake_case = do_rescale __snake_case = rescale_factor __snake_case = do_normalize __snake_case = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __snake_case = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase ( self : Optional[int] , A_ : np.ndarray , A_ : Dict[str, int] , A_ : PILImageResampling = PILImageResampling.BICUBIC , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : List[str] , ) -> np.ndarray: __snake_case = get_size_dict(A_ , default_to_square=A_ ) if "shortest_edge" not in size: raise ValueError(f"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) __snake_case = get_resize_output_image_size(A_ , size=size['''shortest_edge'''] , default_to_square=A_ ) return resize(A_ , size=A_ , resample=A_ , data_format=A_ , **A_ ) def lowercase ( self : Tuple , A_ : np.ndarray , A_ : Dict[str, int] , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : Optional[int] , ) -> np.ndarray: __snake_case = get_size_dict(A_ ) if "height" not in size or "width" not in size: raise ValueError(f"The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}" ) return center_crop(A_ , size=(size['''height'''], size['''width''']) , data_format=A_ , **A_ ) def lowercase ( self : Dict , A_ : np.ndarray , A_ : float , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : Dict ) -> np.ndarray: return rescale(A_ , scale=A_ , data_format=A_ , **A_ ) def lowercase ( self : Optional[int] , A_ : np.ndarray , A_ : Union[float, List[float]] , A_ : Union[float, List[float]] , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : Optional[int] , ) -> np.ndarray: return normalize(A_ , mean=A_ , std=A_ , data_format=A_ , **A_ ) def lowercase ( self : Any , A_ : ImageInput , A_ : Optional[bool] = None , A_ : Dict[str, int] = None , A_ : PILImageResampling = None , A_ : bool = None , A_ : Dict[str, int] = None , A_ : Optional[bool] = None , A_ : Optional[float] = None , A_ : Optional[bool] = None , A_ : Optional[Union[float, List[float]]] = None , A_ : Optional[Union[float, List[float]]] = None , A_ : Optional[Union[str, TensorType]] = None , A_ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **A_ : Dict , ) -> Union[str, Any]: __snake_case = do_resize if do_resize is not None else self.do_resize __snake_case = size if size is not None else self.size __snake_case = get_size_dict(A_ , default_to_square=A_ ) __snake_case = resample if resample is not None else self.resample __snake_case = do_center_crop if do_center_crop is not None else self.do_center_crop __snake_case = crop_size if crop_size is not None else self.crop_size __snake_case = get_size_dict(A_ , param_name='''crop_size''' ) __snake_case = do_rescale if do_rescale is not None else self.do_rescale __snake_case = rescale_factor if rescale_factor is not None else self.rescale_factor __snake_case = do_normalize if do_normalize is not None else self.do_normalize __snake_case = image_mean if image_mean is not None else self.image_mean __snake_case = image_std if image_std is not None else self.image_std __snake_case = make_list_of_images(A_ ) if not valid_images(A_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. __snake_case = [to_numpy_array(A_ ) for image in images] if do_resize: __snake_case = [self.resize(image=A_ , size=A_ , resample=A_ ) for image in images] if do_center_crop: __snake_case = [self.center_crop(image=A_ , size=A_ ) for image in images] if do_rescale: __snake_case = [self.rescale(image=A_ , scale=A_ ) for image in images] if do_normalize: __snake_case = [self.normalize(image=A_ , mean=A_ , std=A_ ) for image in images] __snake_case = [to_channel_dimension_format(A_ , A_ ) for image in images] __snake_case = {'''pixel_values''': images} return BatchFeature(data=A_ , tensor_type=A_ ) def lowercase ( self : int , A_ : Dict , A_ : List[Tuple] = None ) -> Any: __snake_case = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(A_ ) != len(A_ ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(A_ ): __snake_case = target_sizes.numpy() __snake_case = [] for idx in range(len(A_ ) ): __snake_case = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=A_ ) __snake_case = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(A_ ) else: __snake_case = logits.argmax(dim=1 ) __snake_case = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
93
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __lowercase : int = logging.get_logger(__name__) __lowercase : Tuple = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } __lowercase : List[Any] = { "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } __lowercase : List[str] = {"facebook/blenderbot-3B": 128} class _A ( _UpperCAmelCase ): """simple docstring""" UpperCamelCase_ : Optional[Any] = VOCAB_FILES_NAMES UpperCamelCase_ : int = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : int = ['''input_ids''', '''attention_mask'''] UpperCamelCase_ : str = BlenderbotTokenizer def __init__( self : Union[str, Any] , A_ : Any=None , A_ : Optional[int]=None , A_ : Optional[Any]=None , A_ : Union[str, Any]="replace" , A_ : Union[str, Any]="<s>" , A_ : Union[str, Any]="</s>" , A_ : Optional[int]="</s>" , A_ : List[Any]="<s>" , A_ : Union[str, Any]="<unk>" , A_ : Any="<pad>" , A_ : List[str]="<mask>" , A_ : int=False , A_ : Tuple=True , **A_ : Optional[Any] , ) -> int: super().__init__( A_ , A_ , tokenizer_file=A_ , errors=A_ , bos_token=A_ , eos_token=A_ , sep_token=A_ , cls_token=A_ , unk_token=A_ , pad_token=A_ , mask_token=A_ , add_prefix_space=A_ , trim_offsets=A_ , **A_ , ) __snake_case = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , A_ ) != add_prefix_space: __snake_case = getattr(A_ , pre_tok_state.pop('''type''' ) ) __snake_case = add_prefix_space __snake_case = pre_tok_class(**A_ ) __snake_case = add_prefix_space __snake_case = '''post_processor''' __snake_case = getattr(self.backend_tokenizer , A_ , A_ ) if tokenizer_component_instance: __snake_case = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __snake_case = tuple(state['''sep'''] ) if "cls" in state: __snake_case = tuple(state['''cls'''] ) __snake_case = False if state.get('''add_prefix_space''' , A_ ) != add_prefix_space: __snake_case = add_prefix_space __snake_case = True if state.get('''trim_offsets''' , A_ ) != trim_offsets: __snake_case = trim_offsets __snake_case = True if changes_to_apply: __snake_case = getattr(A_ , state.pop('''type''' ) ) __snake_case = component_class(**A_ ) setattr(self.backend_tokenizer , A_ , A_ ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def lowercase ( self : List[Any] ) -> str: if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def lowercase ( self : int , A_ : Union[str, Any] ) -> List[Any]: __snake_case = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else value __snake_case = value def lowercase ( self : Any , *A_ : List[str] , **A_ : Optional[int] ) -> BatchEncoding: __snake_case = kwargs.get('''is_split_into_words''' , A_ ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*A_ , **A_ ) def lowercase ( self : str , *A_ : Tuple , **A_ : str ) -> BatchEncoding: __snake_case = kwargs.get('''is_split_into_words''' , A_ ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*A_ , **A_ ) def lowercase ( self : str , A_ : str , A_ : Optional[str] = None ) -> Tuple[str]: __snake_case = self._tokenizer.model.save(A_ , name=A_ ) return tuple(A_ ) def lowercase ( self : Tuple , A_ : List[int] , A_ : Optional[List[int]] = None ) -> List[int]: __snake_case = [self.sep_token_id] __snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase ( self : Tuple , A_ : List[int] , A_ : Optional[List[int]] = None ) -> Any: return token_ids_a + [self.eos_token_id] def lowercase ( self : Optional[Any] , A_ : "Conversation" ) -> List[int]: __snake_case = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(''' ''' + text ) else: # Generated responses should contain them already. inputs.append(A_ ) __snake_case = ''' '''.join(A_ ) __snake_case = self.encode(A_ ) if len(A_ ) > self.model_max_length: __snake_case = input_ids[-self.model_max_length :] logger.warning(f"Trimmed input from conversation as it was longer than {self.model_max_length} tokens." ) return input_ids
93
1
from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run UpperCamelCase_ = True except (ImportError, AttributeError): UpperCamelCase_ = object def _UpperCAmelCase ( *A , **A ): '''simple docstring''' pass UpperCamelCase_ = False UpperCamelCase_ = logging.get_logger('transformers-cli/serving') def _UpperCAmelCase ( A ): '''simple docstring''' UpperCAmelCase__ =pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) return ServeCommand(A , args.host , args.port , args.workers ) class snake_case_ ( a ): '''simple docstring''' __UpperCamelCase = 42 class snake_case_ ( a ): '''simple docstring''' __UpperCamelCase = 42 __UpperCamelCase = 42 class snake_case_ ( a ): '''simple docstring''' __UpperCamelCase = 42 class snake_case_ ( a ): '''simple docstring''' __UpperCamelCase = 42 class snake_case_ ( a ): '''simple docstring''' @staticmethod def __UpperCAmelCase ( A_ ) -> Any: UpperCAmelCase__ =parser.add_parser( "serve", help="CLI tool to run inference requests through REST and GraphQL endpoints." ) serve_parser.add_argument( "--task", type=A_, choices=get_supported_tasks(), help="The task to run the pipeline on", ) serve_parser.add_argument("--host", type=A_, default="localhost", help="Interface the server will listen on." ) serve_parser.add_argument("--port", type=A_, default=8888, help="Port the serving will listen to." ) serve_parser.add_argument("--workers", type=A_, default=1, help="Number of http workers" ) serve_parser.add_argument("--model", type=A_, help="Model's name or path to stored model." ) serve_parser.add_argument("--config", type=A_, help="Model's config name or path to stored model." ) serve_parser.add_argument("--tokenizer", type=A_, help="Tokenizer name to use." ) serve_parser.add_argument( "--device", type=A_, default=-1, help="Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)", ) serve_parser.set_defaults(func=A_ ) def __init__( self, A_, A_, A_, A_ ) -> str: UpperCAmelCase__ =pipeline UpperCAmelCase__ =host UpperCAmelCase__ =port UpperCAmelCase__ =workers if not _serve_dependencies_installed: raise RuntimeError( "Using serve command requires FastAPI and uvicorn. " "Please install transformers with [serving]: pip install \"transformers[serving]\"." "Or install FastAPI and uvicorn separately." ) else: logger.info(f"""Serving model over {host}:{port}""" ) UpperCAmelCase__ =FastAPI( routes=[ APIRoute( "/", self.model_info, response_model=A_, response_class=A_, methods=["GET"], ), APIRoute( "/tokenize", self.tokenize, response_model=A_, response_class=A_, methods=["POST"], ), APIRoute( "/detokenize", self.detokenize, response_model=A_, response_class=A_, methods=["POST"], ), APIRoute( "/forward", self.forward, response_model=A_, response_class=A_, methods=["POST"], ), ], timeout=600, ) def __UpperCAmelCase ( self ) -> Union[str, Any]: run(self._app, host=self.host, port=self.port, workers=self.workers ) def __UpperCAmelCase ( self ) -> List[Any]: return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) ) def __UpperCAmelCase ( self, A_ = Body(A_, embed=A_ ), A_ = Body(A_, embed=A_ ) ) -> Any: try: UpperCAmelCase__ =self._pipeline.tokenizer.tokenize(A_ ) if return_ids: UpperCAmelCase__ =self._pipeline.tokenizer.convert_tokens_to_ids(A_ ) return ServeTokenizeResult(tokens=A_, tokens_ids=A_ ) else: return ServeTokenizeResult(tokens=A_ ) except Exception as e: raise HTTPException(status_code=500, detail={"model": "", "error": str(A_ )} ) def __UpperCAmelCase ( self, A_ = Body(A_, embed=A_ ), A_ = Body(A_, embed=A_ ), A_ = Body(A_, embed=A_ ), ) -> Optional[int]: try: UpperCAmelCase__ =self._pipeline.tokenizer.decode(A_, A_, A_ ) return ServeDeTokenizeResult(model="", text=A_ ) except Exception as e: raise HTTPException(status_code=500, detail={"model": "", "error": str(A_ )} ) async def __UpperCAmelCase ( self, A_=Body(A_, embed=A_ ) ) -> int: # Check we don't have empty string if len(A_ ) == 0: return ServeForwardResult(output=[], attention=[] ) try: # Forward through the model UpperCAmelCase__ =self._pipeline(A_ ) return ServeForwardResult(output=A_ ) except Exception as e: raise HTTPException(500, {"error": str(A_ )} )
625
from __future__ import annotations import requests UpperCamelCase_ = set( 'approved_at_utc approved_by author_flair_background_color\nauthor_flair_css_class author_flair_richtext author_flair_template_id author_fullname\nauthor_premium can_mod_post category clicked content_categories created_utc downs\nedited gilded gildings hidden hide_score is_created_from_ads_ui is_meta\nis_original_content is_reddit_media_domain is_video link_flair_css_class\nlink_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title\nname permalink pwls quarantine saved score secure_media secure_media_embed selftext\nsubreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type\ntotal_awards_received ups upvote_ratio url user_reports'.split() ) def _UpperCAmelCase ( A , A = 1 , A = "new" , A = None ): '''simple docstring''' UpperCAmelCase__ =wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(A ) - valid_terms ) ): UpperCAmelCase__ =F"""Invalid search term: {invalid_search_terms}""" raise ValueError(A ) UpperCAmelCase__ =requests.get( F"""https://reddit.com/r/{subreddit}/{age}.json?limit={limit}""" , headers={"User-agent": "A random string"} , ) if response.status_code == 429: raise requests.HTTPError UpperCAmelCase__ =response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(A )} UpperCAmelCase__ ={} for id_ in range(A ): UpperCAmelCase__ ={ item: data["data"]["children"][id_]["data"][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data('learnpython', wanted_data=['title', 'url', 'selftext']))
625
1
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = '''▁''' _lowerCamelCase = { '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', } _lowerCamelCase = { '''vocab_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json''' ), }, '''spm_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model''' ) }, } _lowerCamelCase = { '''facebook/s2t-small-librispeech-asr''': 1024, } _lowerCamelCase = ['''pt''', '''fr''', '''ru''', '''nl''', '''ro''', '''it''', '''es''', '''de'''] _lowerCamelCase = {'''mustc''': MUSTC_LANGS} class _SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = MAX_MODEL_INPUT_SIZES lowerCAmelCase = ["""input_ids""", """attention_mask"""] lowerCAmelCase = [] def __init__( self : Optional[int] , UpperCamelCase : int , UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[int]="<s>" , UpperCamelCase : List[Any]="</s>" , UpperCamelCase : Any="<pad>" , UpperCamelCase : Tuple="<unk>" , UpperCamelCase : List[str]=False , UpperCamelCase : Tuple=False , UpperCamelCase : int=None , UpperCamelCase : List[Any]=None , UpperCamelCase : Optional[Any] = None , **UpperCamelCase : Union[str, Any] , )->None: __SCREAMING_SNAKE_CASE : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , do_upper_case=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , tgt_lang=lowerCAmelCase__ , lang_codes=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : Tuple = do_upper_case __SCREAMING_SNAKE_CASE : List[Any] = do_lower_case __SCREAMING_SNAKE_CASE : List[str] = load_json(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = {v: k for k, v in self.encoder.items()} __SCREAMING_SNAKE_CASE : Tuple = spm_file __SCREAMING_SNAKE_CASE : int = load_spm(lowerCAmelCase__ , self.sp_model_kwargs ) if lang_codes is not None: __SCREAMING_SNAKE_CASE : List[Any] = lang_codes __SCREAMING_SNAKE_CASE : Any = LANGUAGES[lang_codes] __SCREAMING_SNAKE_CASE : Tuple = [F"""<lang:{lang}>""" for lang in self.langs] __SCREAMING_SNAKE_CASE : Tuple = {lang: self.sp_model.PieceToId(F"""<lang:{lang}>""" ) for lang in self.langs} __SCREAMING_SNAKE_CASE : Dict = self.lang_tokens __SCREAMING_SNAKE_CASE : Union[str, Any] = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: __SCREAMING_SNAKE_CASE : Tuple = {} @property def __snake_case ( self : Union[str, Any] )->int: return len(self.encoder ) @property def __snake_case ( self : List[str] )->str: return self._tgt_lang @tgt_lang.setter def __snake_case ( self : str , UpperCamelCase : int )->None: __SCREAMING_SNAKE_CASE : List[str] = new_tgt_lang self.set_tgt_lang_special_tokens(lowerCAmelCase__ ) def __snake_case ( self : Optional[Any] , UpperCamelCase : List[str] )->None: __SCREAMING_SNAKE_CASE : int = self.lang_code_to_id[tgt_lang] __SCREAMING_SNAKE_CASE : Union[str, Any] = [lang_code_id] def __snake_case ( self : Any , UpperCamelCase : Optional[int] )->List[str]: return self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__ ) def __snake_case ( self : Dict , UpperCamelCase : List[Any] )->Any: return self.encoder.get(lowerCAmelCase__ , self.encoder[self.unk_token] ) def __snake_case ( self : List[Any] , UpperCamelCase : Tuple )->str: return self.decoder.get(lowerCAmelCase__ , self.unk_token ) def __snake_case ( self : Optional[int] , UpperCamelCase : str )->str: __SCREAMING_SNAKE_CASE : int = [] __SCREAMING_SNAKE_CASE : Optional[int] = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: __SCREAMING_SNAKE_CASE : Optional[Any] = self.sp_model.decode(lowerCAmelCase__ ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " __SCREAMING_SNAKE_CASE : Any = [] else: current_sub_tokens.append(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = self.sp_model.decode(lowerCAmelCase__ ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def __snake_case ( self : Dict , UpperCamelCase : List[Any] , UpperCamelCase : Union[str, Any]=None )->List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def __snake_case ( self : int , UpperCamelCase : Any , UpperCamelCase : List[Any] = None , UpperCamelCase : Any = False )->List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = [1] * len(self.prefix_tokens ) __SCREAMING_SNAKE_CASE : Tuple = [1] if token_ids_a is None: return prefix_ones + ([0] * len(lowerCAmelCase__ )) + suffix_ones return prefix_ones + ([0] * len(lowerCAmelCase__ )) + ([0] * len(lowerCAmelCase__ )) + suffix_ones def __snake_case ( self : List[str] )->Dict: __SCREAMING_SNAKE_CASE : Optional[Any] = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Any )->Dict: __SCREAMING_SNAKE_CASE : Optional[Any] = self.__dict__.copy() __SCREAMING_SNAKE_CASE : Dict = None return state def __setstate__( self : Tuple , UpperCamelCase : Dict )->None: __SCREAMING_SNAKE_CASE : int = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __SCREAMING_SNAKE_CASE : Optional[int] = {} __SCREAMING_SNAKE_CASE : Union[str, Any] = load_spm(self.spm_file , self.sp_model_kwargs ) def __snake_case ( self : Any , UpperCamelCase : List[str] , UpperCamelCase : Tuple = None )->Tuple[str]: __SCREAMING_SNAKE_CASE : str = Path(lowerCAmelCase__ ) assert save_dir.is_dir(), F"""{save_directory} should be a directory""" __SCREAMING_SNAKE_CASE : Any = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"] ) __SCREAMING_SNAKE_CASE : Tuple = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["spm_file"] ) save_json(self.encoder , lowerCAmelCase__ ) if os.path.abspath(self.spm_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , lowerCAmelCase__ ) elif not os.path.isfile(self.spm_file ): with open(lowerCAmelCase__ , "wb" ) as fi: __SCREAMING_SNAKE_CASE : Optional[int] = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase__ ) return (str(lowerCAmelCase__ ), str(lowerCAmelCase__ )) def _lowerCAmelCase ( __lowerCamelCase : str , __lowerCamelCase : Dict[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = sentencepiece.SentencePieceProcessor(**_lowercase ) spm.Load(str(_lowercase ) ) return spm def _lowerCAmelCase ( __lowerCamelCase : str ): """simple docstring""" with open(_lowercase , "r" ) as f: return json.load(_lowercase ) def _lowerCAmelCase ( __lowerCamelCase : Dict , __lowerCamelCase : str ): """simple docstring""" with open(_lowercase , "w" ) as f: json.dump(_lowercase , _lowercase , indent=2 )
709
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def _lowerCAmelCase ( __lowerCamelCase : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = botoa.client("iam" ) __SCREAMING_SNAKE_CASE : List[Any] = { "Version": "2012-10-17", "Statement": [ {"Effect": "Allow", "Principal": {"Service": "sagemaker.amazonaws.com"}, "Action": "sts:AssumeRole"} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=__lowerCamelCase , AssumeRolePolicyDocument=json.dumps(__lowerCamelCase , indent=2 ) ) __SCREAMING_SNAKE_CASE : str = { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": [ "sagemaker:*", "ecr:GetDownloadUrlForLayer", "ecr:BatchGetImage", "ecr:BatchCheckLayerAvailability", "ecr:GetAuthorizationToken", "cloudwatch:PutMetricData", "cloudwatch:GetMetricData", "cloudwatch:GetMetricStatistics", "cloudwatch:ListMetrics", "logs:CreateLogGroup", "logs:CreateLogStream", "logs:DescribeLogStreams", "logs:PutLogEvents", "logs:GetLogEvents", "s3:CreateBucket", "s3:ListBucket", "s3:GetBucketLocation", "s3:GetObject", "s3:PutObject", ], "Resource": "*", } ], } # attach policy to role iam_client.put_role_policy( RoleName=__lowerCamelCase , PolicyName=F"""{role_name}_policy_permission""" , PolicyDocument=json.dumps(__lowerCamelCase , indent=2 ) , ) except iam_client.exceptions.EntityAlreadyExistsException: print(F"""role {role_name} already exists. Using existing one""" ) def _lowerCAmelCase ( __lowerCamelCase : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = botoa.client("iam" ) return iam_client.get_role(RoleName=__lowerCamelCase )["Role"]["Arn"] def _lowerCAmelCase ( ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = _ask_options( "How do you want to authorize?" , ["AWS Profile", "Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) "] , __lowerCamelCase , ) __SCREAMING_SNAKE_CASE : str = None if credentials_configuration == 0: __SCREAMING_SNAKE_CASE : List[str] = _ask_field("Enter your AWS Profile name: [default] " , default="default" ) __SCREAMING_SNAKE_CASE : Any = aws_profile else: print( "Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with," "`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`" ) __SCREAMING_SNAKE_CASE : Dict = _ask_field("AWS Access Key ID: " ) __SCREAMING_SNAKE_CASE : Union[str, Any] = aws_access_key_id __SCREAMING_SNAKE_CASE : Union[str, Any] = _ask_field("AWS Secret Access Key: " ) __SCREAMING_SNAKE_CASE : Optional[int] = aws_secret_access_key __SCREAMING_SNAKE_CASE : List[Any] = _ask_field("Enter your AWS Region: [us-east-1]" , default="us-east-1" ) __SCREAMING_SNAKE_CASE : Any = aws_region __SCREAMING_SNAKE_CASE : int = _ask_options( "Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?" , ["Provide IAM Role name", "Create new IAM role using credentials"] , __lowerCamelCase , ) if role_management == 0: __SCREAMING_SNAKE_CASE : List[str] = _ask_field("Enter your IAM role name: " ) else: __SCREAMING_SNAKE_CASE : Any = "accelerate_sagemaker_execution_role" print(F"""Accelerate will create an iam role \"{iam_role_name}\" using the provided credentials""" ) _create_iam_role_for_sagemaker(__lowerCamelCase ) __SCREAMING_SNAKE_CASE : Any = _ask_field( "Do you want to use custom Docker image? [yes/NO]: " , _convert_yes_no_to_bool , default=__lowerCamelCase , error_message="Please enter yes or no." , ) __SCREAMING_SNAKE_CASE : Tuple = None if is_custom_docker_image: __SCREAMING_SNAKE_CASE : List[Any] = _ask_field("Enter your Docker image: " , lambda __lowerCamelCase : str(__lowerCamelCase ).lower() ) __SCREAMING_SNAKE_CASE : Dict = _ask_field( "Do you want to provide SageMaker input channels with data locations? [yes/NO]: " , _convert_yes_no_to_bool , default=__lowerCamelCase , error_message="Please enter yes or no." , ) __SCREAMING_SNAKE_CASE : List[Any] = None if is_sagemaker_inputs_enabled: __SCREAMING_SNAKE_CASE : List[str] = _ask_field( "Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): " , lambda __lowerCamelCase : str(__lowerCamelCase ).lower() , ) __SCREAMING_SNAKE_CASE : Dict = _ask_field( "Do you want to enable SageMaker metrics? [yes/NO]: " , _convert_yes_no_to_bool , default=__lowerCamelCase , error_message="Please enter yes or no." , ) __SCREAMING_SNAKE_CASE : int = None if is_sagemaker_metrics_enabled: __SCREAMING_SNAKE_CASE : Dict = _ask_field( "Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): " , lambda __lowerCamelCase : str(__lowerCamelCase ).lower() , ) __SCREAMING_SNAKE_CASE : Any = _ask_options( "What is the distributed mode?" , ["No distributed training", "Data parallelism"] , _convert_sagemaker_distributed_mode , ) __SCREAMING_SNAKE_CASE : Tuple = {} __SCREAMING_SNAKE_CASE : str = _ask_field( "Do you wish to optimize your script with torch dynamo?[yes/NO]:" , _convert_yes_no_to_bool , default=__lowerCamelCase , error_message="Please enter yes or no." , ) if use_dynamo: __SCREAMING_SNAKE_CASE : Optional[Any] = "dynamo_" __SCREAMING_SNAKE_CASE : Optional[Any] = _ask_options( "Which dynamo backend would you like to use?" , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = _ask_field( "Do you want to customize the defaults sent to torch.compile? [yes/NO]: " , _convert_yes_no_to_bool , default=__lowerCamelCase , error_message="Please enter yes or no." , ) if use_custom_options: __SCREAMING_SNAKE_CASE : Union[str, Any] = _ask_options( "Which mode do you want to use?" , __lowerCamelCase , lambda __lowerCamelCase : TORCH_DYNAMO_MODES[int(__lowerCamelCase )] , default="default" , ) __SCREAMING_SNAKE_CASE : str = _ask_field( "Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: " , _convert_yes_no_to_bool , default=__lowerCamelCase , error_message="Please enter yes or no." , ) __SCREAMING_SNAKE_CASE : Any = _ask_field( "Do you want to enable dynamic shape tracing? [yes/NO]: " , _convert_yes_no_to_bool , default=__lowerCamelCase , error_message="Please enter yes or no." , ) __SCREAMING_SNAKE_CASE : Optional[int] = "Which EC2 instance type you want to use for your training?" if distributed_type != SageMakerDistributedType.NO: __SCREAMING_SNAKE_CASE : List[Any] = _ask_options( __lowerCamelCase , __lowerCamelCase , lambda __lowerCamelCase : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(__lowerCamelCase )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" __SCREAMING_SNAKE_CASE : Union[str, Any] = _ask_field(__lowerCamelCase , lambda __lowerCamelCase : str(__lowerCamelCase ).lower() , default="ml.p3.2xlarge" ) __SCREAMING_SNAKE_CASE : List[Any] = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): __SCREAMING_SNAKE_CASE : Any = _ask_field( "How many machines do you want use? [1]: " , __lowerCamelCase , default=1 , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = _ask_options( "Do you wish to use FP16 or BF16 (mixed precision)?" , ["no", "fp16", "bf16", "fp8"] , _convert_mixed_precision , ) if use_dynamo and mixed_precision == "no": print( "Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts." ) return SageMakerConfig( image_uri=__lowerCamelCase , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=__lowerCamelCase , use_cpu=__lowerCamelCase , dynamo_config=__lowerCamelCase , eca_instance_type=__lowerCamelCase , profile=__lowerCamelCase , region=__lowerCamelCase , iam_role_name=__lowerCamelCase , mixed_precision=__lowerCamelCase , num_machines=__lowerCamelCase , sagemaker_inputs_file=__lowerCamelCase , sagemaker_metrics_file=__lowerCamelCase , )
447
0
from __future__ import annotations UpperCamelCase = 8.9_88e9 # units = N * m^s * C^-2 def __lowerCamelCase ( __lowerCAmelCase : float , __lowerCAmelCase : float , __lowerCAmelCase : float , __lowerCAmelCase : float ) -> dict[str, float]: __UpperCamelCase : Dict = abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if distance < 0: raise ValueError("""Distance cannot be negative""" ) if force == 0: __UpperCamelCase : List[str] = COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: __UpperCamelCase : Optional[Any] = abs(__lowerCAmelCase ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: __UpperCamelCase : List[Any] = abs(__lowerCAmelCase ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: __UpperCamelCase : List[Any] = (COULOMBS_CONSTANT * charge_product / abs(__lowerCAmelCase )) ** 0.5 return {"distance": distance} raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
269
from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
269
1
'''simple docstring''' __UpperCamelCase : Tuple = """0.18.2""" from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
270
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) __UpperCamelCase : Optional[int] = { """configuration_speech_to_text""": ["""SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Speech2TextConfig"""], """processing_speech_to_text""": ["""Speech2TextProcessor"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Union[str, Any] = ["""Speech2TextTokenizer"""] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = ["""Speech2TextFeatureExtractor"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[Any] = [ """TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFSpeech2TextForConditionalGeneration""", """TFSpeech2TextModel""", """TFSpeech2TextPreTrainedModel""", ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = [ """SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Speech2TextForConditionalGeneration""", """Speech2TextModel""", """Speech2TextPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys __UpperCamelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
270
1
def _UpperCAmelCase ( a : int ): if num <= 0: raise ValueError("""Input must be a positive integer""" ) snake_case__ = [True] * (num + 1) snake_case__ = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , a ): snake_case__ = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() a__ = int(input("""Enter a positive integer: """).strip()) print(prime_sieve_eratosthenes(user_num))
654
import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class _lowerCAmelCase ( lowercase_ ): """simple docstring""" _lowercase : int = (IPNDMScheduler,) _lowercase : int = (('''num_inference_steps''', 50),) def __magic_name__ ( self : Any , **UpperCamelCase__ : Tuple): '''simple docstring''' snake_case__ = {"""num_train_timesteps""": 1_0_0_0} config.update(**UpperCamelCase__) return config def __magic_name__ ( self : int , UpperCamelCase__ : Dict=0 , **UpperCamelCase__ : int): '''simple docstring''' snake_case__ = dict(self.forward_default_kwargs) snake_case__ = kwargs.pop("""num_inference_steps""" , UpperCamelCase__) snake_case__ = self.dummy_sample snake_case__ = 0.1 * sample snake_case__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: snake_case__ = self.get_scheduler_config(**UpperCamelCase__) snake_case__ = scheduler_class(**UpperCamelCase__) scheduler.set_timesteps(UpperCamelCase__) # copy over dummy past residuals snake_case__ = dummy_past_residuals[:] if time_step is None: snake_case__ = scheduler.timesteps[len(scheduler.timesteps) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase__) snake_case__ = scheduler_class.from_pretrained(UpperCamelCase__) new_scheduler.set_timesteps(UpperCamelCase__) # copy over dummy past residuals snake_case__ = dummy_past_residuals[:] snake_case__ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__).prev_sample snake_case__ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" snake_case__ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__).prev_sample snake_case__ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def __magic_name__ ( self : List[Any]): '''simple docstring''' pass def __magic_name__ ( self : Tuple , UpperCamelCase__ : Union[str, Any]=0 , **UpperCamelCase__ : Tuple): '''simple docstring''' snake_case__ = dict(self.forward_default_kwargs) snake_case__ = kwargs.pop("""num_inference_steps""" , UpperCamelCase__) snake_case__ = self.dummy_sample snake_case__ = 0.1 * sample snake_case__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**UpperCamelCase__) scheduler.set_timesteps(UpperCamelCase__) # copy over dummy past residuals (must be after setting timesteps) snake_case__ = dummy_past_residuals[:] if time_step is None: snake_case__ = scheduler.timesteps[len(scheduler.timesteps) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase__) snake_case__ = scheduler_class.from_pretrained(UpperCamelCase__) # copy over dummy past residuals new_scheduler.set_timesteps(UpperCamelCase__) # copy over dummy past residual (must be after setting timesteps) snake_case__ = dummy_past_residuals[:] snake_case__ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__).prev_sample snake_case__ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" snake_case__ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__).prev_sample snake_case__ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def __magic_name__ ( self : Union[str, Any] , **UpperCamelCase__ : Dict): '''simple docstring''' snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config(**UpperCamelCase__) snake_case__ = scheduler_class(**UpperCamelCase__) snake_case__ = 1_0 snake_case__ = self.dummy_model() snake_case__ = self.dummy_sample_deter scheduler.set_timesteps(UpperCamelCase__) for i, t in enumerate(scheduler.timesteps): snake_case__ = model(UpperCamelCase__ , UpperCamelCase__) snake_case__ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__).prev_sample for i, t in enumerate(scheduler.timesteps): snake_case__ = model(UpperCamelCase__ , UpperCamelCase__) snake_case__ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__).prev_sample return sample def __magic_name__ ( self : Optional[int]): '''simple docstring''' snake_case__ = dict(self.forward_default_kwargs) snake_case__ = kwargs.pop("""num_inference_steps""" , UpperCamelCase__) for scheduler_class in self.scheduler_classes: snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**UpperCamelCase__) snake_case__ = self.dummy_sample snake_case__ = 0.1 * sample if num_inference_steps is not None and hasattr(UpperCamelCase__ , """set_timesteps"""): scheduler.set_timesteps(UpperCamelCase__) elif num_inference_steps is not None and not hasattr(UpperCamelCase__ , """set_timesteps"""): snake_case__ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) snake_case__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] snake_case__ = dummy_past_residuals[:] snake_case__ = scheduler.timesteps[5] snake_case__ = scheduler.timesteps[6] snake_case__ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__).prev_sample snake_case__ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) snake_case__ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__).prev_sample snake_case__ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) def __magic_name__ ( self : Union[str, Any]): '''simple docstring''' for timesteps in [1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=UpperCamelCase__ , time_step=UpperCamelCase__) def __magic_name__ ( self : Dict): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 1_0] , [1_0, 5_0, 1_0_0]): self.check_over_forward(num_inference_steps=UpperCamelCase__ , time_step=UpperCamelCase__) def __magic_name__ ( self : List[str]): '''simple docstring''' snake_case__ = self.full_loop() snake_case__ = torch.mean(torch.abs(UpperCamelCase__)) assert abs(result_mean.item() - 2_5_4_0_5_2_9) < 1_0
654
1
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch __lowerCAmelCase : str = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' snake_case__ : List[Any] = ['pixel_values'] def __init__( self :List[Any] , __magic_name__ :bool = True , __magic_name__ :Optional[Dict[str, int]] = None , __magic_name__ :PILImageResampling = PILImageResampling.BILINEAR , __magic_name__ :bool = True , __magic_name__ :Dict[str, int] = None , __magic_name__ :bool = True , __magic_name__ :Union[int, float] = 1 / 255 , __magic_name__ :bool = True , __magic_name__ :Optional[Union[float, List[float]]] = None , __magic_name__ :Optional[Union[float, List[float]]] = None , **__magic_name__ :Optional[int] , ) -> None: '''simple docstring''' super().__init__(**__magic_name__ ) a__ = size if size is not None else {'''shortest_edge''': 256} a__ = get_size_dict(__magic_name__ , default_to_square=__magic_name__ ) a__ = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} a__ = get_size_dict(__magic_name__ , param_name='''crop_size''' ) a__ = do_resize a__ = size a__ = resample a__ = do_center_crop a__ = crop_size a__ = do_rescale a__ = rescale_factor a__ = do_normalize a__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN a__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def _UpperCamelCase ( self :str , __magic_name__ :np.ndarray , __magic_name__ :Dict[str, int] , __magic_name__ :PILImageResampling = PILImageResampling.BICUBIC , __magic_name__ :Optional[Union[str, ChannelDimension]] = None , **__magic_name__ :str , ) -> np.ndarray: '''simple docstring''' a__ = get_size_dict(__magic_name__ , default_to_square=__magic_name__ ) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) a__ = get_resize_output_image_size(__magic_name__ , size=size['''shortest_edge'''] , default_to_square=__magic_name__ ) return resize(__magic_name__ , size=__magic_name__ , resample=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def _UpperCamelCase ( self :List[str] , __magic_name__ :np.ndarray , __magic_name__ :Dict[str, int] , __magic_name__ :Optional[Union[str, ChannelDimension]] = None , **__magic_name__ :Optional[Any] , ) -> np.ndarray: '''simple docstring''' a__ = get_size_dict(__magic_name__ ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}" ) return center_crop(__magic_name__ , size=(size['''height'''], size['''width''']) , data_format=__magic_name__ , **__magic_name__ ) def _UpperCamelCase ( self :Optional[int] , __magic_name__ :np.ndarray , __magic_name__ :float , __magic_name__ :Optional[Union[str, ChannelDimension]] = None , **__magic_name__ :Any ) -> np.ndarray: '''simple docstring''' return rescale(__magic_name__ , scale=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def _UpperCamelCase ( self :List[str] , __magic_name__ :np.ndarray , __magic_name__ :Union[float, List[float]] , __magic_name__ :Union[float, List[float]] , __magic_name__ :Optional[Union[str, ChannelDimension]] = None , **__magic_name__ :List[str] , ) -> np.ndarray: '''simple docstring''' return normalize(__magic_name__ , mean=__magic_name__ , std=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def _UpperCamelCase ( self :str , __magic_name__ :ImageInput , __magic_name__ :Optional[bool] = None , __magic_name__ :Dict[str, int] = None , __magic_name__ :PILImageResampling = None , __magic_name__ :bool = None , __magic_name__ :Dict[str, int] = None , __magic_name__ :Optional[bool] = None , __magic_name__ :Optional[float] = None , __magic_name__ :Optional[bool] = None , __magic_name__ :Optional[Union[float, List[float]]] = None , __magic_name__ :Optional[Union[float, List[float]]] = None , __magic_name__ :Optional[Union[str, TensorType]] = None , __magic_name__ :Union[str, ChannelDimension] = ChannelDimension.FIRST , **__magic_name__ :List[Any] , ) -> List[Any]: '''simple docstring''' a__ = do_resize if do_resize is not None else self.do_resize a__ = size if size is not None else self.size a__ = get_size_dict(__magic_name__ , default_to_square=__magic_name__ ) a__ = resample if resample is not None else self.resample a__ = do_center_crop if do_center_crop is not None else self.do_center_crop a__ = crop_size if crop_size is not None else self.crop_size a__ = get_size_dict(__magic_name__ , param_name='''crop_size''' ) a__ = do_rescale if do_rescale is not None else self.do_rescale a__ = rescale_factor if rescale_factor is not None else self.rescale_factor a__ = do_normalize if do_normalize is not None else self.do_normalize a__ = image_mean if image_mean is not None else self.image_mean a__ = image_std if image_std is not None else self.image_std a__ = make_list_of_images(__magic_name__ ) if not valid_images(__magic_name__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. a__ = [to_numpy_array(__magic_name__ ) for image in images] if do_resize: a__ = [self.resize(image=__magic_name__ , size=__magic_name__ , resample=__magic_name__ ) for image in images] if do_center_crop: a__ = [self.center_crop(image=__magic_name__ , size=__magic_name__ ) for image in images] if do_rescale: a__ = [self.rescale(image=__magic_name__ , scale=__magic_name__ ) for image in images] if do_normalize: a__ = [self.normalize(image=__magic_name__ , mean=__magic_name__ , std=__magic_name__ ) for image in images] a__ = [to_channel_dimension_format(__magic_name__ , __magic_name__ ) for image in images] a__ = {'''pixel_values''': images} return BatchFeature(data=__magic_name__ , tensor_type=__magic_name__ ) def _UpperCamelCase ( self :int , __magic_name__ :int , __magic_name__ :List[Tuple] = None ) -> Any: '''simple docstring''' a__ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__magic_name__ ) != len(__magic_name__ ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(__magic_name__ ): a__ = target_sizes.numpy() a__ = [] for idx in range(len(__magic_name__ ) ): a__ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=__magic_name__ ) a__ = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(__magic_name__ ) else: a__ = logits.argmax(dim=1 ) a__ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
711
"""simple docstring""" import math import qiskit def __snake_case ( UpperCamelCase = 1 , UpperCamelCase = 1 , UpperCamelCase = 1 ) -> qiskit.result.counts.Counts: """simple docstring""" if ( isinstance(UpperCamelCase , UpperCamelCase ) or isinstance(UpperCamelCase , UpperCamelCase ) or isinstance(UpperCamelCase , UpperCamelCase ) ): raise TypeError('''inputs must be integers.''' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('''inputs must be positive.''' ) if ( (math.floor(UpperCamelCase ) != input_a) or (math.floor(UpperCamelCase ) != input_a) or (math.floor(UpperCamelCase ) != carry_in) ): raise ValueError('''inputs must be exact integers.''' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('''inputs must be less or equal to 2.''' ) # build registers a__ = qiskit.QuantumRegister(4 , '''qr''' ) a__ = qiskit.ClassicalRegister(2 , '''cr''' ) # list the entries a__ = [input_a, input_a, carry_in] a__ = qiskit.QuantumCircuit(UpperCamelCase , UpperCamelCase ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(UpperCamelCase ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(UpperCamelCase ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(UpperCamelCase ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , UpperCamelCase ) # measure the last two qbits a__ = qiskit.Aer.get_backend('''aer_simulator''' ) a__ = qiskit.execute(UpperCamelCase , UpperCamelCase , shots=1_000 ) return job.result().get_counts(UpperCamelCase ) if __name__ == "__main__": print(f"Total sum count for state is: {quantum_full_adder(1, 1, 1)}")
158
0
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : List[str] = logging.get_logger(__name__) UpperCamelCase__ : Any = { "microsoft/wavlm-base": "https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json", # See all WavLM models at https://huggingface.co/models?filter=wavlm } class _a (lowerCAmelCase__): """simple docstring""" SCREAMING_SNAKE_CASE = 'wavlm' def __init__( self , A__=32 , A__=7_68 , A__=12 , A__=12 , A__=30_72 , A__="gelu" , A__=0.1 , A__=0.1 , A__=0.1 , A__=0.0 , A__=0.1 , A__=0.1 , A__=0.02 , A__=1E-5 , A__="group" , A__="gelu" , A__=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , A__=(5, 2, 2, 2, 2, 2, 2) , A__=(10, 3, 3, 3, 3, 2, 2) , A__=False , A__=1_28 , A__=16 , A__=3_20 , A__=8_00 , A__=False , A__=True , A__=0.05 , A__=10 , A__=2 , A__=0.0 , A__=10 , A__=3_20 , A__=2 , A__=0.1 , A__=1_00 , A__=2_56 , A__=2_56 , A__=0.1 , A__="mean" , A__=False , A__=False , A__=2_56 , A__=(5_12, 5_12, 5_12, 5_12, 15_00) , A__=(5, 3, 3, 1, 1) , A__=(1, 2, 3, 1, 1) , A__=5_12 , A__=80 , A__=0 , A__=1 , A__=2 , A__=False , A__=3 , A__=2 , A__=3 , A__=None , **A__ , ) -> Any: super().__init__(**_A , pad_token_id=_A , bos_token_id=_A , eos_token_id=_A ) _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = feat_extract_norm _SCREAMING_SNAKE_CASE = feat_extract_activation _SCREAMING_SNAKE_CASE = list(_A ) _SCREAMING_SNAKE_CASE = list(_A ) _SCREAMING_SNAKE_CASE = list(_A ) _SCREAMING_SNAKE_CASE = conv_bias _SCREAMING_SNAKE_CASE = num_buckets _SCREAMING_SNAKE_CASE = max_bucket_distance _SCREAMING_SNAKE_CASE = num_conv_pos_embeddings _SCREAMING_SNAKE_CASE = num_conv_pos_embedding_groups _SCREAMING_SNAKE_CASE = len(self.conv_dim ) _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = hidden_dropout _SCREAMING_SNAKE_CASE = attention_dropout _SCREAMING_SNAKE_CASE = activation_dropout _SCREAMING_SNAKE_CASE = feat_proj_dropout _SCREAMING_SNAKE_CASE = final_dropout _SCREAMING_SNAKE_CASE = layerdrop _SCREAMING_SNAKE_CASE = layer_norm_eps _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = num_ctc_classes _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = do_stable_layer_norm _SCREAMING_SNAKE_CASE = use_weighted_layer_sum _SCREAMING_SNAKE_CASE = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" F" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," F" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _SCREAMING_SNAKE_CASE = apply_spec_augment _SCREAMING_SNAKE_CASE = mask_time_prob _SCREAMING_SNAKE_CASE = mask_time_length _SCREAMING_SNAKE_CASE = mask_time_min_masks _SCREAMING_SNAKE_CASE = mask_feature_prob _SCREAMING_SNAKE_CASE = mask_feature_length # parameters for pretraining with codevector quantized representations _SCREAMING_SNAKE_CASE = num_codevectors_per_group _SCREAMING_SNAKE_CASE = num_codevector_groups _SCREAMING_SNAKE_CASE = contrastive_logits_temperature _SCREAMING_SNAKE_CASE = num_negatives _SCREAMING_SNAKE_CASE = codevector_dim _SCREAMING_SNAKE_CASE = proj_codevector_dim _SCREAMING_SNAKE_CASE = diversity_loss_weight # ctc loss _SCREAMING_SNAKE_CASE = ctc_loss_reduction _SCREAMING_SNAKE_CASE = ctc_zero_infinity # adapter _SCREAMING_SNAKE_CASE = add_adapter _SCREAMING_SNAKE_CASE = adapter_kernel_size _SCREAMING_SNAKE_CASE = adapter_stride _SCREAMING_SNAKE_CASE = num_adapter_layers _SCREAMING_SNAKE_CASE = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _SCREAMING_SNAKE_CASE = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _SCREAMING_SNAKE_CASE = list(_A ) _SCREAMING_SNAKE_CASE = list(_A ) _SCREAMING_SNAKE_CASE = list(_A ) _SCREAMING_SNAKE_CASE = xvector_output_dim @property def UpperCamelCase ( self ) -> Dict: return functools.reduce(operator.mul , self.conv_stride , 1 )
591
import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = XCLIPTextConfig() # derive patch size from model name __SCREAMING_SNAKE_CASE : Tuple = model_name.find('''patch''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = int(model_name[start_idx + len('''patch''' ) : start_idx + len('''patch''' ) + 2] ) __SCREAMING_SNAKE_CASE : Tuple = XCLIPVisionConfig(patch_size=snake_case , num_frames=snake_case ) if "large" in model_name: __SCREAMING_SNAKE_CASE : Optional[Any] = 768 __SCREAMING_SNAKE_CASE : Optional[int] = 3_072 __SCREAMING_SNAKE_CASE : Optional[Any] = 12 __SCREAMING_SNAKE_CASE : Optional[Any] = 1_024 __SCREAMING_SNAKE_CASE : int = 4_096 __SCREAMING_SNAKE_CASE : Tuple = 16 __SCREAMING_SNAKE_CASE : Optional[int] = 24 __SCREAMING_SNAKE_CASE : Optional[int] = 768 __SCREAMING_SNAKE_CASE : Optional[int] = 3_072 if model_name == "xclip-large-patch14-16-frames": __SCREAMING_SNAKE_CASE : Any = 336 __SCREAMING_SNAKE_CASE : Any = XCLIPConfig.from_text_vision_configs(snake_case , snake_case ) if "large" in model_name: __SCREAMING_SNAKE_CASE : Any = 768 return config def a__ ( snake_case ): """simple docstring""" # text encoder if name == "token_embedding.weight": __SCREAMING_SNAKE_CASE : List[str] = name.replace('''token_embedding.weight''' , '''text_model.embeddings.token_embedding.weight''' ) if name == "positional_embedding": __SCREAMING_SNAKE_CASE : List[str] = name.replace('''positional_embedding''' , '''text_model.embeddings.position_embedding.weight''' ) if "ln_1" in name: __SCREAMING_SNAKE_CASE : Union[str, Any] = name.replace('''ln_1''' , '''layer_norm1''' ) if "ln_2" in name: __SCREAMING_SNAKE_CASE : str = name.replace('''ln_2''' , '''layer_norm2''' ) if "c_fc" in name: __SCREAMING_SNAKE_CASE : List[str] = name.replace('''c_fc''' , '''fc1''' ) if "c_proj" in name: __SCREAMING_SNAKE_CASE : Dict = name.replace('''c_proj''' , '''fc2''' ) if name.startswith('''transformer.resblocks''' ): __SCREAMING_SNAKE_CASE : Any = name.replace('''transformer.resblocks''' , '''text_model.encoder.layers''' ) if "attn.out_proj" in name and "message" not in name: __SCREAMING_SNAKE_CASE : Dict = name.replace('''attn.out_proj''' , '''self_attn.out_proj''' ) if "ln_final" in name: __SCREAMING_SNAKE_CASE : List[str] = name.replace('''ln_final''' , '''text_model.final_layer_norm''' ) # visual encoder if name == "visual.class_embedding": __SCREAMING_SNAKE_CASE : Optional[Any] = name.replace('''visual.class_embedding''' , '''vision_model.embeddings.class_embedding''' ) if name == "visual.positional_embedding": __SCREAMING_SNAKE_CASE : Tuple = name.replace('''visual.positional_embedding''' , '''vision_model.embeddings.position_embedding.weight''' ) if name.startswith('''visual.transformer.resblocks''' ): __SCREAMING_SNAKE_CASE : List[Any] = name.replace('''visual.transformer.resblocks''' , '''vision_model.encoder.layers''' ) if "visual.conv1" in name: __SCREAMING_SNAKE_CASE : Any = name.replace('''visual.conv1''' , '''vision_model.embeddings.patch_embedding''' ) if "visual.ln_pre" in name: __SCREAMING_SNAKE_CASE : List[str] = name.replace('''visual.ln_pre''' , '''vision_model.pre_layernorm''' ) if "visual.ln_post" in name: __SCREAMING_SNAKE_CASE : Dict = name.replace('''visual.ln_post''' , '''vision_model.post_layernorm''' ) if "visual.proj" in name: __SCREAMING_SNAKE_CASE : Union[str, Any] = name.replace('''visual.proj''' , '''visual_projection.weight''' ) if "text_projection" in name: __SCREAMING_SNAKE_CASE : Union[str, Any] = name.replace('''text_projection''' , '''text_projection.weight''' ) # things on top if "prompts_visual_proj" in name: __SCREAMING_SNAKE_CASE : str = name.replace('''prompts_visual_proj''' , '''prompts_visual_projection''' ) if "prompts_visual_ln" in name: __SCREAMING_SNAKE_CASE : Optional[int] = name.replace('''prompts_visual_ln''' , '''prompts_visual_layernorm''' ) # mit if name == "mit.positional_embedding": __SCREAMING_SNAKE_CASE : Any = name.replace('''positional''' , '''position''' ) if name.startswith('''mit.resblocks''' ): __SCREAMING_SNAKE_CASE : Union[str, Any] = name.replace('''mit.resblocks''' , '''mit.encoder.layers''' ) # prompts generator if name.startswith('''prompts_generator.norm''' ): __SCREAMING_SNAKE_CASE : Tuple = name.replace('''prompts_generator.norm''' , '''prompts_generator.layernorm''' ) return name def a__ ( snake_case , snake_case ): """simple docstring""" for key in orig_state_dict.copy().keys(): __SCREAMING_SNAKE_CASE : Tuple = orig_state_dict.pop(snake_case ) if "attn.in_proj" in key: __SCREAMING_SNAKE_CASE : Optional[Any] = key.split('''.''' ) if key.startswith('''visual''' ): __SCREAMING_SNAKE_CASE : List[Any] = key_split[3] __SCREAMING_SNAKE_CASE : Any = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: __SCREAMING_SNAKE_CASE : Union[str, Any] = val[ :dim, : ] __SCREAMING_SNAKE_CASE : str = val[ dim : dim * 2, : ] __SCREAMING_SNAKE_CASE : Tuple = val[ -dim:, : ] else: __SCREAMING_SNAKE_CASE : Optional[Any] = val[ :dim ] __SCREAMING_SNAKE_CASE : Tuple = val[ dim : dim * 2 ] __SCREAMING_SNAKE_CASE : Tuple = val[ -dim: ] else: if "weight" in key: __SCREAMING_SNAKE_CASE : Tuple = val[ :dim, : ] __SCREAMING_SNAKE_CASE : str = val[ dim : dim * 2, : ] __SCREAMING_SNAKE_CASE : str = val[ -dim:, : ] else: __SCREAMING_SNAKE_CASE : Dict = val[:dim] __SCREAMING_SNAKE_CASE : str = val[ dim : dim * 2 ] __SCREAMING_SNAKE_CASE : Tuple = val[-dim:] elif key.startswith('''mit''' ): __SCREAMING_SNAKE_CASE : List[str] = key_split[2] __SCREAMING_SNAKE_CASE : Union[str, Any] = config.vision_config.mit_hidden_size if "weight" in key: __SCREAMING_SNAKE_CASE : str = val[:dim, :] __SCREAMING_SNAKE_CASE : Tuple = val[dim : dim * 2, :] __SCREAMING_SNAKE_CASE : Optional[int] = val[-dim:, :] else: __SCREAMING_SNAKE_CASE : Any = val[:dim] __SCREAMING_SNAKE_CASE : Any = val[dim : dim * 2] __SCREAMING_SNAKE_CASE : Optional[Any] = val[-dim:] else: __SCREAMING_SNAKE_CASE : Optional[Any] = key_split[2] __SCREAMING_SNAKE_CASE : Any = config.text_config.hidden_size if "weight" in key: __SCREAMING_SNAKE_CASE : Tuple = val[:dim, :] __SCREAMING_SNAKE_CASE : int = val[ dim : dim * 2, : ] __SCREAMING_SNAKE_CASE : Dict = val[-dim:, :] else: __SCREAMING_SNAKE_CASE : Tuple = val[:dim] __SCREAMING_SNAKE_CASE : str = val[ dim : dim * 2 ] __SCREAMING_SNAKE_CASE : int = val[-dim:] else: __SCREAMING_SNAKE_CASE : int = rename_key(snake_case ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: __SCREAMING_SNAKE_CASE : int = val.T __SCREAMING_SNAKE_CASE : Union[str, Any] = val return orig_state_dict def a__ ( snake_case ): """simple docstring""" if num_frames == 8: __SCREAMING_SNAKE_CASE : List[Any] = '''eating_spaghetti_8_frames.npy''' elif num_frames == 16: __SCREAMING_SNAKE_CASE : Tuple = '''eating_spaghetti.npy''' elif num_frames == 32: __SCREAMING_SNAKE_CASE : Dict = '''eating_spaghetti_32_frames.npy''' __SCREAMING_SNAKE_CASE : List[str] = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename=snake_case , repo_type='''dataset''' , ) __SCREAMING_SNAKE_CASE : int = np.load(snake_case ) return list(snake_case ) def a__ ( snake_case , snake_case=None , snake_case=False ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = { # fully supervised kinetics-400 checkpoints '''xclip-base-patch32''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth''', '''xclip-base-patch32-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth''' ), '''xclip-base-patch16''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth''', '''xclip-base-patch16-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth''' ), '''xclip-large-patch14''': '''https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb''', '''xclip-large-patch14-16-frames''': '''https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f''', # fully supervised kinetics-600 checkpoints '''xclip-base-patch16-kinetics-600''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth''' ), '''xclip-base-patch16-kinetics-600-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth''' ), '''xclip-large-patch14-kinetics-600''': '''https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be''', # few shot '''xclip-base-patch16-hmdb-2-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth''' ), '''xclip-base-patch16-hmdb-4-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth''' ), '''xclip-base-patch16-hmdb-8-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth''' ), '''xclip-base-patch16-hmdb-16-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth''' ), '''xclip-base-patch16-ucf-2-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth''' ), '''xclip-base-patch16-ucf-4-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth''' ), '''xclip-base-patch16-ucf-8-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth''' ), '''xclip-base-patch16-ucf-16-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth''' ), # zero shot '''xclip-base-patch16-zero-shot''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth''', } __SCREAMING_SNAKE_CASE : Optional[Any] = model_to_url[model_name] __SCREAMING_SNAKE_CASE : Any = 8 if "16-frames" in model_name: __SCREAMING_SNAKE_CASE : Optional[int] = 16 elif "shot" in model_name: __SCREAMING_SNAKE_CASE : Optional[Any] = 32 __SCREAMING_SNAKE_CASE : List[str] = get_xclip_config(snake_case , snake_case ) __SCREAMING_SNAKE_CASE : Tuple = XCLIPModel(snake_case ) model.eval() if "drive" in checkpoint_url: __SCREAMING_SNAKE_CASE : Union[str, Any] = '''pytorch_model.bin''' gdown.cached_download(snake_case , snake_case , quiet=snake_case ) __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.load(snake_case , map_location='''cpu''' )['''model'''] else: __SCREAMING_SNAKE_CASE : str = torch.hub.load_state_dict_from_url(snake_case )['''model'''] __SCREAMING_SNAKE_CASE : List[Any] = convert_state_dict(snake_case , snake_case ) __SCREAMING_SNAKE_CASE : Union[str, Any] = XCLIPModel(snake_case ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Any = model.load_state_dict(snake_case , strict=snake_case ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() __SCREAMING_SNAKE_CASE : Any = 336 if model_name == '''xclip-large-patch14-16-frames''' else 224 __SCREAMING_SNAKE_CASE : str = VideoMAEImageProcessor(size=snake_case ) __SCREAMING_SNAKE_CASE : int = CLIPTokenizer.from_pretrained('''openai/clip-vit-base-patch32''' ) __SCREAMING_SNAKE_CASE : Optional[int] = CLIPTokenizerFast.from_pretrained('''openai/clip-vit-base-patch32''' ) __SCREAMING_SNAKE_CASE : List[Any] = XCLIPProcessor(image_processor=snake_case , tokenizer=snake_case ) __SCREAMING_SNAKE_CASE : Dict = prepare_video(snake_case ) __SCREAMING_SNAKE_CASE : List[str] = processor( text=['''playing sports''', '''eating spaghetti''', '''go shopping'''] , videos=snake_case , return_tensors='''pt''' , padding=snake_case ) print('''Shape of pixel values:''' , inputs.pixel_values.shape ) with torch.no_grad(): __SCREAMING_SNAKE_CASE : Optional[Any] = model(**snake_case ) # Verify outputs __SCREAMING_SNAKE_CASE : Dict = outputs.logits_per_video __SCREAMING_SNAKE_CASE : Tuple = logits_per_video.softmax(dim=1 ) print('''Probs:''' , snake_case ) # kinetics-400 if model_name == "xclip-base-patch32": __SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([[0.0019, 0.9951, 0.0030]] ) elif model_name == "xclip-base-patch32-16-frames": __SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([[7.0999E-04, 9.9883E-01, 4.5580E-04]] ) elif model_name == "xclip-base-patch16": __SCREAMING_SNAKE_CASE : Dict = torch.tensor([[0.0083, 0.9681, 0.0236]] ) elif model_name == "xclip-base-patch16-16-frames": __SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([[7.6937E-04, 9.9728E-01, 1.9473E-03]] ) elif model_name == "xclip-large-patch14": __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([[0.0062, 0.9864, 0.0075]] ) elif model_name == "xclip-large-patch14-16-frames": __SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([[3.3877E-04, 9.9937E-01, 2.8888E-04]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([[0.0555, 0.8914, 0.0531]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([[3.8554E-04, 9.9929E-01, 3.2754E-04]] ) elif model_name == "xclip-large-patch14-kinetics-600": __SCREAMING_SNAKE_CASE : List[str] = torch.tensor([[0.0036, 0.9920, 0.0045]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": __SCREAMING_SNAKE_CASE : str = torch.tensor([[7.1890E-06, 9.9994E-01, 5.6559E-05]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": __SCREAMING_SNAKE_CASE : int = torch.tensor([[1.0320E-05, 9.9993E-01, 6.2435E-05]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": __SCREAMING_SNAKE_CASE : Tuple = torch.tensor([[4.1377E-06, 9.9990E-01, 9.8386E-05]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": __SCREAMING_SNAKE_CASE : Dict = torch.tensor([[4.1347E-05, 9.9962E-01, 3.3411E-04]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": __SCREAMING_SNAKE_CASE : Tuple = torch.tensor([[8.5857E-05, 9.9928E-01, 6.3291E-04]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": __SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([[8.5857E-05, 9.9928E-01, 6.3291E-04]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": __SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([[0.0027, 0.9904, 0.0070]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": __SCREAMING_SNAKE_CASE : Tuple = torch.tensor([[9.8219E-04, 9.9593E-01, 3.0863E-03]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": __SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([[3.5082E-04, 9.9785E-01, 1.7966E-03]] ) else: raise ValueError(F'''Model name {model_name} not supported''' ) assert torch.allclose(snake_case , snake_case , atol=1E-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case ) if push_to_hub: print('''Pushing model, processor and slow tokenizer files to the hub...''' ) model.push_to_hub(snake_case , organization='''nielsr''' ) processor.push_to_hub(snake_case , organization='''nielsr''' ) slow_tokenizer.push_to_hub(snake_case , organization='''nielsr''' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""xclip-base-patch32""", type=str, help="""Name of the model.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowercase_ = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
74
0
__A : Any ={ "Pillow": "Pillow", "accelerate": "accelerate>=0.11.0", "compel": "compel==0.1.8", "black": "black~=23.1", "datasets": "datasets", "filelock": "filelock", "flax": "flax>=0.4.1", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.13.2", "requests-mock": "requests-mock==1.10.0", "importlib_metadata": "importlib_metadata", "invisible-watermark": "invisible-watermark", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2", "jaxlib": "jaxlib>=0.1.65", "Jinja2": "Jinja2", "k-diffusion": "k-diffusion>=0.0.12", "torchsde": "torchsde", "note_seq": "note_seq", "librosa": "librosa", "numpy": "numpy", "omegaconf": "omegaconf", "parameterized": "parameterized", "protobuf": "protobuf>=3.20.3,<4", "pytest": "pytest", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "ruff": "ruff>=0.0.241", "safetensors": "safetensors", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "scipy": "scipy", "onnx": "onnx", "regex": "regex!=2019.12.17", "requests": "requests", "tensorboard": "tensorboard", "torch": "torch>=1.4", "torchvision": "torchvision", "transformers": "transformers>=4.25.1", "urllib3": "urllib3<=2.0.0", }
708
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny model through reduction of a normal pre-trained model, but keeping the # full vocab, merges file, and thus also resulting in a larger model due to a large vocab size. # This gives ~3MB in total for all files. # # If you want a 50 times smaller than this see `fsmt-make-super-tiny-model.py`, which is slightly more complicated # # # It will be used then as "stas/tiny-wmt19-en-de" # Build from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration __A ="facebook/wmt19-en-de" __A =FSMTTokenizer.from_pretrained(mname) # get the correct vocab sizes, etc. from the master model __A =FSMTConfig.from_pretrained(mname) config.update( dict( d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) ) __A =FSMTForConditionalGeneration(config) print(f'''num of params {tiny_model.num_parameters()}''') # Test __A =tokenizer(["Making tiny model"], return_tensors="pt") __A =tiny_model(**batch) print("test output:", len(outputs.logits[0])) # Save __A ="tiny-wmt19-en-de" tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(f'''Generated {mname_tiny}''') # Upload # transformers-cli upload tiny-wmt19-en-de
241
0
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('Googling.....') lowerCAmelCase : List[Any] = 'https://www.google.com/search?q=' + ' '.join(sys.argv[1:]) lowerCAmelCase : List[Any] = requests.get(url, headers={'UserAgent': UserAgent().random}) # res.raise_for_status() with open('project1a.html', 'wb') as out_file: # only for knowing the class for data in res.iter_content(1_00_00): out_file.write(data) lowerCAmelCase : Tuple = BeautifulSoup(res.text, 'html.parser') lowerCAmelCase : List[Any] = list(soup.select('.eZt8xd'))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('href')) else: webbrowser.open(f"""https://google.com{link.get('href')}""")
3
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : Union[str, Any] = { 'configuration_git': ['GIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GitConfig', 'GitVisionConfig'], 'processing_git': ['GitProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[Any] = [ 'GIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GitForCausalLM', 'GitModel', 'GitPreTrainedModel', 'GitVisionModel', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
3
1
import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa lowercase_ = logging.getLogger(__name__) class A__ ( __SCREAMING_SNAKE_CASE ): lowerCamelCase__ : Dict ="summarization" lowerCamelCase__ : Dict =["loss"] lowerCamelCase__ : Union[str, Any] =ROUGE_KEYS lowerCamelCase__ : Optional[int] ="rouge2" def __init__( self , lowerCamelCase , **lowerCamelCase ) -> int: """simple docstring""" if hparams.sortish_sampler and hparams.gpus > 1: __magic_name__ : str = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError('''Dynamic Batch size does not work for multi-gpu training''' ) if hparams.sortish_sampler: raise ValueError('''--sortish_sampler and --max_tokens_per_batch may not be used simultaneously''' ) super().__init__(lowerCamelCase , num_labels=lowerCamelCase , mode=self.mode , **lowerCamelCase ) use_task_specific_params(self.model , '''summarization''' ) save_git_info(self.hparams.output_dir ) __magic_name__ : Optional[int] = Path(self.output_dir ) / '''metrics.json''' __magic_name__ : Tuple = Path(self.output_dir ) / '''hparams.pkl''' pickle_save(self.hparams , self.hparams_save_path ) __magic_name__ : Optional[int] = 0 __magic_name__ : Any = defaultdict(lowerCamelCase ) __magic_name__ : int = self.config.model_type __magic_name__ : Any = self.config.tgt_vocab_size if self.model_type == '''fsmt''' else self.config.vocab_size __magic_name__ : dict = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } __magic_name__ : Tuple = { '''train''': self.hparams.n_train, '''val''': self.hparams.n_val, '''test''': self.hparams.n_test, } __magic_name__ : List[Any] = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} __magic_name__ : Dict = { '''train''': self.hparams.max_target_length, '''val''': self.hparams.val_max_target_length, '''test''': self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], F'''target_lens: {self.target_lens}''' assert self.target_lens["train"] <= self.target_lens["test"], F'''target_lens: {self.target_lens}''' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) __magic_name__ : Optional[Any] = get_git_info()['''repo_sha'''] __magic_name__ : Optional[Any] = hparams.num_workers __magic_name__ : str = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , lowerCamelCase ): __magic_name__ : str = self.tokenizer.lang_code_to_id[hparams.tgt_lang] __magic_name__ : Tuple = self.decoder_start_token_id __magic_name__ : Optional[int] = ( SeqaSeqDataset if hasattr(self.tokenizer , '''prepare_seq2seq_batch''' ) else LegacySeqaSeqDataset ) __magic_name__ : Any = False __magic_name__ : List[str] = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: __magic_name__ : Any = self.hparams.eval_max_gen_length else: __magic_name__ : str = self.model.config.max_length __magic_name__ : List[Any] = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def lowercase ( self , lowerCamelCase ) -> Dict[str, List[str]]: """simple docstring""" __magic_name__ : List[str] = { k: self.tokenizer.batch_decode(v.tolist() ) if '''mask''' not in k else v.shape for k, v in batch.items() } save_json(lowerCamelCase , Path(self.output_dir ) / '''text_batch.json''' ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / '''tok_batch.json''' ) __magic_name__ : List[Any] = True return readable_batch def lowercase ( self , lowerCamelCase , **lowerCamelCase ) -> str: """simple docstring""" return self.model(lowerCamelCase , **lowerCamelCase ) def lowercase ( self , lowerCamelCase ) -> Tuple: """simple docstring""" __magic_name__ : Any = self.tokenizer.batch_decode( lowerCamelCase , skip_special_tokens=lowerCamelCase , clean_up_tokenization_spaces=lowerCamelCase ) return lmap(str.strip , lowerCamelCase ) def lowercase ( self , lowerCamelCase ) -> Tuple: """simple docstring""" __magic_name__ : List[Any] = self.tokenizer.pad_token_id __magic_name__ , __magic_name__ : Any = batch['''input_ids'''], batch['''attention_mask'''] __magic_name__ : Union[str, Any] = batch['''labels'''] if isinstance(self.model , lowerCamelCase ): __magic_name__ : Optional[Any] = self.model._shift_right(lowerCamelCase ) else: __magic_name__ : str = shift_tokens_right(lowerCamelCase , lowerCamelCase ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero __magic_name__ : int = decoder_input_ids self.save_readable_batch(lowerCamelCase ) __magic_name__ : Union[str, Any] = self(lowerCamelCase , attention_mask=lowerCamelCase , decoder_input_ids=lowerCamelCase , use_cache=lowerCamelCase ) __magic_name__ : str = outputs['''logits'''] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id __magic_name__ : List[Any] = nn.CrossEntropyLoss(ignore_index=lowerCamelCase ) assert lm_logits.shape[-1] == self.vocab_size __magic_name__ : Union[str, Any] = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: __magic_name__ : Optional[Any] = nn.functional.log_softmax(lowerCamelCase , dim=-1 ) __magic_name__ , __magic_name__ : Dict = label_smoothed_nll_loss( lowerCamelCase , lowerCamelCase , self.hparams.label_smoothing , ignore_index=lowerCamelCase ) return (loss,) @property def lowercase ( self ) -> int: """simple docstring""" return self.tokenizer.pad_token_id def lowercase ( self , lowerCamelCase , lowerCamelCase ) -> Dict: """simple docstring""" __magic_name__ : Optional[int] = self._step(lowerCamelCase ) __magic_name__ : Optional[int] = dict(zip(self.loss_names , lowerCamelCase ) ) # tokens per batch __magic_name__ : Any = batch['''input_ids'''].ne(self.pad ).sum() + batch['''labels'''].ne(self.pad ).sum() __magic_name__ : List[str] = batch['''input_ids'''].shape[0] __magic_name__ : List[Any] = batch['''input_ids'''].eq(self.pad ).sum() __magic_name__ : List[str] = batch['''input_ids'''].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def lowercase ( self , lowerCamelCase , lowerCamelCase ) -> Dict: """simple docstring""" return self._generative_step(lowerCamelCase ) def lowercase ( self , lowerCamelCase , lowerCamelCase="val" ) -> Dict: """simple docstring""" self.step_count += 1 __magic_name__ : List[str] = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} __magic_name__ : int = losses['''loss'''] __magic_name__ : Any = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ['''gen_time''', '''gen_len'''] } __magic_name__ : Optional[int] = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) __magic_name__ : torch.FloatTensor = torch.tensor(lowerCamelCase ).type_as(lowerCamelCase ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(lowerCamelCase ) __magic_name__ : str = {F'''{prefix}_avg_{k}''': x for k, x in losses.items()} __magic_name__ : Tuple = self.step_count self.metrics[prefix].append(lowerCamelCase ) # callback writes this to self.metrics_save_path __magic_name__ : Union[str, Any] = flatten_list([x['''preds'''] for x in outputs] ) return { "log": all_metrics, "preds": preds, F'''{prefix}_loss''': loss, F'''{prefix}_{self.val_metric}''': metric_tensor, } def lowercase ( self , lowerCamelCase , lowerCamelCase ) -> Dict: """simple docstring""" return calculate_rouge(lowerCamelCase , lowerCamelCase ) def lowercase ( self , lowerCamelCase ) -> dict: """simple docstring""" __magic_name__ : int = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') __magic_name__ : Any = self.model.generate( batch['''input_ids'''] , attention_mask=batch['''attention_mask'''] , use_cache=lowerCamelCase , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) __magic_name__ : Tuple = (time.time() - ta) / batch['''input_ids'''].shape[0] __magic_name__ : List[str] = self.ids_to_clean_text(lowerCamelCase ) __magic_name__ : List[str] = self.ids_to_clean_text(batch['''labels'''] ) __magic_name__ : str = self._step(lowerCamelCase ) __magic_name__ : Optional[int] = dict(zip(self.loss_names , lowerCamelCase ) ) __magic_name__ : Dict = self.calc_generative_metrics(lowerCamelCase , lowerCamelCase ) __magic_name__ : Optional[int] = np.mean(lmap(lowerCamelCase , lowerCamelCase ) ) base_metrics.update(gen_time=lowerCamelCase , gen_len=lowerCamelCase , preds=lowerCamelCase , target=lowerCamelCase , **lowerCamelCase ) return base_metrics def lowercase ( self , lowerCamelCase , lowerCamelCase ) -> List[Any]: """simple docstring""" return self._generative_step(lowerCamelCase ) def lowercase ( self , lowerCamelCase ) -> Dict: """simple docstring""" return self.validation_epoch_end(lowerCamelCase , prefix='''test''' ) def lowercase ( self , lowerCamelCase ) -> SeqaSeqDataset: """simple docstring""" __magic_name__ : Dict = self.n_obs[type_path] __magic_name__ : Dict = self.target_lens[type_path] __magic_name__ : str = self.dataset_class( self.tokenizer , type_path=lowerCamelCase , n_obs=lowerCamelCase , max_target_length=lowerCamelCase , **self.dataset_kwargs , ) return dataset def lowercase ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = False ) -> DataLoader: """simple docstring""" __magic_name__ : List[str] = self.get_dataset(lowerCamelCase ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": __magic_name__ : str = dataset.make_sortish_sampler(lowerCamelCase , distributed=self.hparams.gpus > 1 ) return DataLoader( lowerCamelCase , batch_size=lowerCamelCase , collate_fn=dataset.collate_fn , shuffle=lowerCamelCase , num_workers=self.num_workers , sampler=lowerCamelCase , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": __magic_name__ : int = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( lowerCamelCase , batch_sampler=lowerCamelCase , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( lowerCamelCase , batch_size=lowerCamelCase , collate_fn=dataset.collate_fn , shuffle=lowerCamelCase , num_workers=self.num_workers , sampler=lowerCamelCase , ) def lowercase ( self ) -> DataLoader: """simple docstring""" __magic_name__ : Optional[int] = self.get_dataloader('''train''' , batch_size=self.hparams.train_batch_size , shuffle=lowerCamelCase ) return dataloader def lowercase ( self ) -> DataLoader: """simple docstring""" return self.get_dataloader('''val''' , batch_size=self.hparams.eval_batch_size ) def lowercase ( self ) -> DataLoader: """simple docstring""" return self.get_dataloader('''test''' , batch_size=self.hparams.eval_batch_size ) @staticmethod def lowercase ( lowerCamelCase , lowerCamelCase ) -> Tuple: """simple docstring""" BaseTransformer.add_model_specific_args(lowerCamelCase , lowerCamelCase ) add_generic_args(lowerCamelCase , lowerCamelCase ) parser.add_argument( '''--max_source_length''' , default=1024 , type=lowerCamelCase , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--max_target_length''' , default=56 , type=lowerCamelCase , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--val_max_target_length''' , default=142 , type=lowerCamelCase , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--test_max_target_length''' , default=142 , type=lowerCamelCase , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument('''--freeze_encoder''' , action='''store_true''' ) parser.add_argument('''--freeze_embeds''' , action='''store_true''' ) parser.add_argument('''--sortish_sampler''' , action='''store_true''' , default=lowerCamelCase ) parser.add_argument('''--overwrite_output_dir''' , action='''store_true''' , default=lowerCamelCase ) parser.add_argument('''--max_tokens_per_batch''' , type=lowerCamelCase , default=lowerCamelCase ) parser.add_argument('''--logger_name''' , type=lowerCamelCase , choices=['''default''', '''wandb''', '''wandb_shared'''] , default='''default''' ) parser.add_argument('''--n_train''' , type=lowerCamelCase , default=-1 , required=lowerCamelCase , help='''# examples. -1 means use all.''' ) parser.add_argument('''--n_val''' , type=lowerCamelCase , default=500 , required=lowerCamelCase , help='''# examples. -1 means use all.''' ) parser.add_argument('''--n_test''' , type=lowerCamelCase , default=-1 , required=lowerCamelCase , help='''# examples. -1 means use all.''' ) parser.add_argument( '''--task''' , type=lowerCamelCase , default='''summarization''' , required=lowerCamelCase , help='''# examples. -1 means use all.''' ) parser.add_argument('''--label_smoothing''' , type=lowerCamelCase , default=0.0 , required=lowerCamelCase ) parser.add_argument('''--src_lang''' , type=lowerCamelCase , default='''''' , required=lowerCamelCase ) parser.add_argument('''--tgt_lang''' , type=lowerCamelCase , default='''''' , required=lowerCamelCase ) parser.add_argument('''--eval_beams''' , type=lowerCamelCase , default=lowerCamelCase , required=lowerCamelCase ) parser.add_argument( '''--val_metric''' , type=lowerCamelCase , default=lowerCamelCase , required=lowerCamelCase , choices=['''bleu''', '''rouge2''', '''loss''', None] ) parser.add_argument('''--eval_max_gen_length''' , type=lowerCamelCase , default=lowerCamelCase , help='''never generate more than n tokens''' ) parser.add_argument('''--save_top_k''' , type=lowerCamelCase , default=1 , required=lowerCamelCase , help='''How many checkpoints to save''' ) parser.add_argument( '''--early_stopping_patience''' , type=lowerCamelCase , default=-1 , required=lowerCamelCase , help=( '''-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So''' ''' val_check_interval will effect it.''' ) , ) return parser class A__ ( __SCREAMING_SNAKE_CASE ): lowerCamelCase__ : Tuple ="translation" lowerCamelCase__ : str =["loss"] lowerCamelCase__ : Optional[int] =["bleu"] lowerCamelCase__ : str ="bleu" def __init__( self , lowerCamelCase , **lowerCamelCase ) -> Optional[int]: """simple docstring""" super().__init__(lowerCamelCase , **lowerCamelCase ) __magic_name__ : int = hparams.src_lang __magic_name__ : Union[str, Any] = hparams.tgt_lang def lowercase ( self , lowerCamelCase , lowerCamelCase ) -> dict: """simple docstring""" return calculate_bleu(lowerCamelCase , lowerCamelCase ) def lowerCAmelCase ( UpperCAmelCase, UpperCAmelCase=None ) ->SummarizationModule: """simple docstring""" Path(args.output_dir ).mkdir(exist_ok=UpperCAmelCase ) check_output_dir(UpperCAmelCase, expected_items=3 ) if model is None: if "summarization" in args.task: __magic_name__ : SummarizationModule = SummarizationModule(UpperCAmelCase ) else: __magic_name__ : SummarizationModule = TranslationModule(UpperCAmelCase ) __magic_name__ : Optional[Any] = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith('''/tmp''' ) or str(args.output_dir ).startswith('''/var''' ) ): __magic_name__ : Dict = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger __magic_name__ : List[str] = os.environ.get('''WANDB_PROJECT''', UpperCAmelCase ) __magic_name__ : Optional[Any] = WandbLogger(name=model.output_dir.name, project=UpperCAmelCase ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger __magic_name__ : Any = WandbLogger(name=model.output_dir.name, project=F'''hf_{dataset}''' ) if args.early_stopping_patience >= 0: __magic_name__ : Tuple = get_early_stopping_callback(model.val_metric, args.early_stopping_patience ) else: __magic_name__ : Tuple = False __magic_name__ : int = args.val_metric == '''loss''' __magic_name__ : pl.Trainer = generic_train( UpperCAmelCase, UpperCAmelCase, logging_callback=SeqaSeqLoggingCallback(), checkpoint_callback=get_checkpoint_callback( args.output_dir, model.val_metric, args.save_top_k, UpperCAmelCase ), early_stopping_callback=UpperCAmelCase, logger=UpperCAmelCase, ) pickle_save(model.hparams, model.output_dir / '''hparams.pkl''' ) if not args.do_predict: return model __magic_name__ : Union[str, Any] = '''''' __magic_name__ : List[str] = sorted(glob.glob(os.path.join(args.output_dir, '''*.ckpt''' ), recursive=UpperCAmelCase ) ) if checkpoints: __magic_name__ : str = checkpoints[-1] __magic_name__ : Tuple = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() lowercase_ = pl.Trainer.add_argparse_args(parser) lowercase_ = SummarizationModule.add_model_specific_args(parser, os.getcwd()) lowercase_ = parser.parse_args() main(args)
336
import math import random def lowerCAmelCase ( UpperCAmelCase, UpperCAmelCase = False ) ->float: """simple docstring""" if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value lowercase_ = 0.0_2 def lowerCAmelCase ( UpperCAmelCase, UpperCAmelCase ) ->float: """simple docstring""" __magic_name__ : Optional[int] = float(2 * (random.randint(1, 100 )) - 1 ) for _ in range(UpperCAmelCase ): # Forward propagation __magic_name__ : Optional[Any] = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? __magic_name__ : Optional[int] = (expected / 100) - layer_a # Error delta __magic_name__ : Tuple = layer_1_error * sigmoid_function(UpperCAmelCase, UpperCAmelCase ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 100 if __name__ == "__main__": import doctest doctest.testmod() lowercase_ = int(input('''Expected value: ''')) lowercase_ = int(input('''Number of propagations: ''')) print(forward_propagation(expected, number_propagations))
336
1
import math from datetime import datetime, timedelta def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : int ): UpperCamelCase_ : Tuple = year % 19 UpperCamelCase_ : Optional[int] = year % 4 UpperCamelCase_ : int = year % 7 UpperCamelCase_ : str = math.floor(year / 100 ) UpperCamelCase_ : Optional[Any] = math.floor((13 + 8 * leap_day_inhibits) / 25 ) UpperCamelCase_ : Tuple = leap_day_inhibits / 4 UpperCamelCase_ : Optional[Any] = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 UpperCamelCase_ : Any = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 UpperCamelCase_ : List[Any] = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon UpperCamelCase_ : str = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(SCREAMING_SNAKE_CASE__ , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(SCREAMING_SNAKE_CASE__ , 4 , 18 ) else: return datetime(SCREAMING_SNAKE_CASE__ , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1994, 2000, 2010, 2021, 2023): SCREAMING_SNAKE_CASE : int = "will be" if year > datetime.now().year else "was" print(F'''Easter in {year} {tense} {gauss_easter(year)}''')
635
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor lowerCamelCase = logging.get_logger(__name__) class A ( UpperCamelCase_ ): def __init__( self : Optional[Any] , *lowercase_ : str , **lowercase_ : List[Any] ) -> None: """simple docstring""" warnings.warn( 'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use MobileViTImageProcessor instead.' , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_ )
464
0
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class __lowercase ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = StableUnCLIPPipeline SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_PARAMS SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_BATCH_PARAMS SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_IMAGE_PARAMS SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false SCREAMING_SNAKE_CASE = False def lowerCAmelCase_ ( self : Any ): """simple docstring""" __A = 32 __A = embedder_hidden_size # prior components torch.manual_seed(0 ) __A = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) torch.manual_seed(0 ) __A = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=UpperCamelCase_ , projection_dim=UpperCamelCase_ , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) __A = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=UpperCamelCase_ , num_layers=1 , ) torch.manual_seed(0 ) __A = DDPMScheduler( variance_type="""fixed_small_log""" , prediction_type="""sample""" , num_train_timesteps=1_000 , clip_sample=UpperCamelCase_ , clip_sample_range=5.0 , beta_schedule="""squaredcos_cap_v2""" , ) # regular denoising components torch.manual_seed(0 ) __A = StableUnCLIPImageNormalizer(embedding_dim=UpperCamelCase_ ) __A = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" ) torch.manual_seed(0 ) __A = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) torch.manual_seed(0 ) __A = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=UpperCamelCase_ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) __A = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="""projection""" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=UpperCamelCase_ , layers_per_block=1 , upcast_attention=UpperCamelCase_ , use_linear_projection=UpperCamelCase_ , ) torch.manual_seed(0 ) __A = DDIMScheduler( beta_schedule="""scaled_linear""" , beta_start=0.00085 , beta_end=0.012 , prediction_type="""v_prediction""" , set_alpha_to_one=UpperCamelCase_ , steps_offset=1 , ) torch.manual_seed(0 ) __A = AutoencoderKL() __A = { # prior components """prior_tokenizer""": prior_tokenizer, """prior_text_encoder""": prior_text_encoder, """prior""": prior, """prior_scheduler""": prior_scheduler, # image noising components """image_normalizer""": image_normalizer, """image_noising_scheduler""": image_noising_scheduler, # regular denoising components """tokenizer""": tokenizer, """text_encoder""": text_encoder, """unet""": unet, """scheduler""": scheduler, """vae""": vae, } return components def lowerCAmelCase_ ( self : Any , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Union[str, Any]=0 ): """simple docstring""" if str(UpperCamelCase_ ).startswith("""mps""" ): __A = torch.manual_seed(UpperCamelCase_ ) else: __A = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __A = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """prior_num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def lowerCAmelCase_ ( self : List[str] ): """simple docstring""" __A = torch_device == """cpu""" self._test_attention_slicing_forward_pass(test_max_difference=UpperCamelCase_ ) def lowerCAmelCase_ ( self : int ): """simple docstring""" __A = torch_device in ["""cpu""", """mps"""] self._test_inference_batch_single_identical(test_max_difference=UpperCamelCase_ ) @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : Union[str, Any] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ ( self : Any ): """simple docstring""" __A = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy""" ) __A = StableUnCLIPPipeline.from_pretrained("""fusing/stable-unclip-2-1-l""" , torch_dtype=torch.floataa ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __A = torch.Generator(device="""cpu""" ).manual_seed(0 ) __A = pipe("""anime turle""" , generator=UpperCamelCase_ , output_type="""np""" ) __A = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase_ ( self : Optional[int] ): """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __A = StableUnCLIPPipeline.from_pretrained("""fusing/stable-unclip-2-1-l""" , torch_dtype=torch.floataa ) __A = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __A = pipe( """anime turtle""" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="""np""" , ) __A = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
199
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
199
1
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : torch.FloatTensor _lowercase : torch.FloatTensor _lowercase : Optional[torch.FloatTensor] = None class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : Optional[int] = 2 @register_to_config def __init__( self , _lowercase = 0.02 , _lowercase = 100 , _lowercase = 1.007 , _lowercase = 80 , _lowercase = 0.05 , _lowercase = 50 , ): """simple docstring""" _lowerCAmelCase = sigma_max # setable values _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None # sigma(t_i) def _lowercase ( self , _lowercase , _lowercase = None ): """simple docstring""" return sample def _lowercase ( self , _lowercase , _lowercase = None ): """simple docstring""" _lowerCAmelCase = num_inference_steps _lowerCAmelCase = np.arange(0 , self.num_inference_steps )[::-1].copy() _lowerCAmelCase = torch.from_numpy(_lowercase ).to(_lowercase ) _lowerCAmelCase = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] _lowerCAmelCase = torch.tensor(_lowercase , dtype=torch.floataa , device=_lowercase ) def _lowercase ( self , _lowercase , _lowercase , _lowercase = None ): """simple docstring""" if self.config.s_min <= sigma <= self.config.s_max: _lowerCAmelCase = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: _lowerCAmelCase = 0 # sample eps ~ N(0, S_noise^2 * I) _lowerCAmelCase = self.config.s_noise * randn_tensor(sample.shape , generator=_lowercase ).to(sample.device ) _lowerCAmelCase = sigma + gamma * sigma _lowerCAmelCase = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase = True , ): """simple docstring""" _lowerCAmelCase = sample_hat + sigma_hat * model_output _lowerCAmelCase = (sample_hat - pred_original_sample) / sigma_hat _lowerCAmelCase = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=_lowercase , derivative=_lowercase , pred_original_sample=_lowercase ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase = True , ): """simple docstring""" _lowerCAmelCase = sample_prev + sigma_prev * model_output _lowerCAmelCase = (sample_prev - pred_original_sample) / sigma_prev _lowerCAmelCase = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=_lowercase , derivative=_lowercase , pred_original_sample=_lowercase ) def _lowercase ( self , _lowercase , _lowercase , _lowercase ): """simple docstring""" raise NotImplementedError()
5
"""simple docstring""" import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowercase__ : List[str] = 16 lowercase__ : Optional[Any] = 32 def __lowercase ( _a , _a = 16 ): snake_case_ : List[Any] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) snake_case_ : Dict = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(_a ): # max_length=None => use the model max length (it's actually the default) snake_case_ : int = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=_a , max_length=_a ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): snake_case_ : Optional[Any] = datasets.map( _a , batched=_a , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case_ : int = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(_a ): # On TPU it's best to pad everything to the same length or training will be very slow. snake_case_ : Dict = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": snake_case_ : Optional[Any] = 16 elif accelerator.mixed_precision != "no": snake_case_ : Optional[Any] = 8 else: snake_case_ : Union[str, Any] = None return tokenizer.pad( _a , padding='''longest''' , max_length=_a , pad_to_multiple_of=_a , return_tensors='''pt''' , ) # Instantiate dataloaders. snake_case_ : int = DataLoader( tokenized_datasets['''train'''] , shuffle=_a , collate_fn=_a , batch_size=_a , drop_last=_a ) snake_case_ : str = DataLoader( tokenized_datasets['''validation'''] , shuffle=_a , collate_fn=_a , batch_size=_a , drop_last=(accelerator.mixed_precision == '''fp8''') , ) return train_dataloader, eval_dataloader def __lowercase ( _a , _a ): # Initialize accelerator snake_case_ : Tuple = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case_ : Union[str, Any] = config['''lr'''] snake_case_ : str = int(config['''num_epochs'''] ) snake_case_ : Optional[Any] = int(config['''seed'''] ) snake_case_ : Tuple = int(config['''batch_size'''] ) snake_case_ : str = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation snake_case_ : Dict = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: snake_case_ : Union[str, Any] = batch_size // MAX_GPU_BATCH_SIZE snake_case_ : Any = MAX_GPU_BATCH_SIZE set_seed(_a ) snake_case_, snake_case_ : Union[str, Any] = get_dataloaders(_a , _a ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case_ : int = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=_a ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). snake_case_ : Union[str, Any] = model.to(accelerator.device ) # Instantiate optimizer snake_case_ : Any = AdamW(params=model.parameters() , lr=_a ) # Instantiate scheduler snake_case_ : Any = get_linear_schedule_with_warmup( optimizer=_a , num_warmup_steps=100 , num_training_steps=(len(_a ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ : Tuple = accelerator.prepare( _a , _a , _a , _a , _a ) # Now we train the model for epoch in range(_a ): model.train() for step, batch in enumerate(_a ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) snake_case_ : List[Any] = model(**_a ) snake_case_ : Optional[int] = outputs.loss snake_case_ : int = loss / gradient_accumulation_steps accelerator.backward(_a ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_a ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case_ : int = model(**_a ) snake_case_ : Optional[Any] = outputs.logits.argmax(dim=-1 ) snake_case_, snake_case_ : Union[str, Any] = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=_a , references=_a , ) snake_case_ : Optional[int] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" , _a ) def __lowercase ( ): snake_case_ : Dict = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=_a , default=_a , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) snake_case_ : int = parser.parse_args() snake_case_ : Union[str, Any] = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(_a , _a ) if __name__ == "__main__": main()
123
0
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def lowercase__ ( _UpperCamelCase) -> Union[str, Any]: """simple docstring""" UpperCamelCase = filter(lambda _UpperCamelCase: p.requires_grad , model.parameters()) UpperCamelCase = sum([np.prod(p.size()) for p in model_parameters]) return params __magic_name__ : Optional[Any] = logging.getLogger(__name__) def lowercase__ ( _UpperCamelCase , _UpperCamelCase) -> Any: """simple docstring""" if metric == "rouge2": UpperCamelCase = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": UpperCamelCase = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": UpperCamelCase = '{val_avg_em:.4f}-{step_count}' else: raise NotImplementedError( F'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' ' function.') UpperCamelCase = ModelCheckpoint( dirpath=__snake_case , filename=__snake_case , monitor=F'val_{metric}' , mode='max' , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def lowercase__ ( _UpperCamelCase , _UpperCamelCase) -> Tuple: """simple docstring""" return EarlyStopping( monitor=F'val_{metric}' , mode='min' if 'loss' in metric else 'max' , patience=__snake_case , verbose=__snake_case , ) class A__ ( pl.Callback ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : int , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" UpperCamelCase = {f'lr_group_{i}': param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_A ) @rank_zero_only def _SCREAMING_SNAKE_CASE ( self : Any , _SCREAMING_SNAKE_CASE : pl.Trainer , _SCREAMING_SNAKE_CASE : pl.LightningModule , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Tuple=True ): """simple docstring""" logger.info(f'***** {type_path} results at step {trainer.global_step:05d} *****' ) UpperCamelCase = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results UpperCamelCase = Path(pl_module.hparams.output_dir ) if type_path == "test": UpperCamelCase = od / 'test_results.txt' UpperCamelCase = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. UpperCamelCase = od / f'{type_path}_results/{trainer.global_step:05d}.txt' UpperCamelCase = od / f'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=_A ) generations_file.parent.mkdir(exist_ok=_A ) with open(_A , 'a+' ) as writer: for key in sorted(_A ): if key in ["log", "progress_bar", "preds"]: continue UpperCamelCase = metrics[key] if isinstance(_A , torch.Tensor ): UpperCamelCase = val.item() UpperCamelCase = f'{key}: {val:.6f}\n' writer.write(_A ) if not save_generations: return if "preds" in metrics: UpperCamelCase = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(_A ) @rank_zero_only def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" try: UpperCamelCase = pl_module.model.model.num_parameters() except AttributeError: UpperCamelCase = pl_module.model.num_parameters() UpperCamelCase = count_trainable_parameters(_A ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} ) @rank_zero_only def _SCREAMING_SNAKE_CASE ( self : str , _SCREAMING_SNAKE_CASE : pl.Trainer , _SCREAMING_SNAKE_CASE : pl.LightningModule ): """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(_A , _A , 'test' ) @rank_zero_only def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _SCREAMING_SNAKE_CASE : pl.Trainer , _SCREAMING_SNAKE_CASE : str ): """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
705
__magic_name__ : List[str] = tuple[float, float, float] __magic_name__ : Optional[int] = tuple[float, float, float] def lowercase__ ( _UpperCamelCase , _UpperCamelCase) -> Vectorad: """simple docstring""" UpperCamelCase = end_pointa[0] - end_pointa[0] UpperCamelCase = end_pointa[1] - end_pointa[1] UpperCamelCase = end_pointa[2] - end_pointa[2] return (x, y, z) def lowercase__ ( _UpperCamelCase , _UpperCamelCase) -> Vectorad: """simple docstring""" UpperCamelCase = ab[1] * ac[2] - ab[2] * ac[1] # *i UpperCamelCase = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j UpperCamelCase = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def lowercase__ ( _UpperCamelCase , _UpperCamelCase) -> bool: """simple docstring""" return tuple(round(_UpperCamelCase , _UpperCamelCase) for x in vector) == (0, 0, 0) def lowercase__ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 10) -> bool: """simple docstring""" UpperCamelCase = create_vector(_UpperCamelCase , _UpperCamelCase) UpperCamelCase = create_vector(_UpperCamelCase , _UpperCamelCase) return is_zero_vector(get_ad_vectors_cross(_UpperCamelCase , _UpperCamelCase) , _UpperCamelCase)
410
0
def _a ( lowerCamelCase ): return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def _a ( lowerCamelCase ): lowerCamelCase : Optional[Any] = 0 lowerCamelCase : List[str] = len(lowercase_ ) # No of vertices in graph lowerCamelCase : Dict = [0] * n lowerCamelCase : Optional[Any] = [False] * n def dfs(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ): lowerCamelCase : Any = True lowerCamelCase : int = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(lowercase_, lowercase_, lowercase_, id_ ) lowerCamelCase : List[str] = min(low[at], low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge lowerCamelCase : Union[str, Any] = min(low[at], low[to] ) lowerCamelCase : Optional[int] = [] for i in range(lowercase_ ): if not visited[i]: dfs(lowercase_, -1, lowercase_, id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
681
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny model through reduction of a normal pre-trained model, but keeping the # full vocab, merges file, and thus also resulting in a larger model due to a large vocab size. # This gives ~3MB in total for all files. # # If you want a 50 times smaller than this see `fsmt-make-super-tiny-model.py`, which is slightly more complicated # # # It will be used then as "stas/tiny-wmt19-en-de" # Build from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration __a : Optional[Any] = """facebook/wmt19-en-de""" __a : Union[str, Any] = FSMTTokenizer.from_pretrained(mname) # get the correct vocab sizes, etc. from the master model __a : Optional[int] = FSMTConfig.from_pretrained(mname) config.update( dict( d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) ) __a : Union[str, Any] = FSMTForConditionalGeneration(config) print(F'num of params {tiny_model.num_parameters()}') # Test __a : Optional[Any] = tokenizer(["""Making tiny model"""], return_tensors="""pt""") __a : Optional[Any] = tiny_model(**batch) print("""test output:""", len(outputs.logits[0])) # Save __a : Union[str, Any] = """tiny-wmt19-en-de""" tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F'Generated {mname_tiny}') # Upload # transformers-cli upload tiny-wmt19-en-de
606
0
'''simple docstring''' def SCREAMING_SNAKE_CASE ( lowercase_ : str , lowercase_ : str ): def get_matched_characters(lowercase_ : str , lowercase_ : str ) -> str: lowercase = [] lowercase = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): lowercase = int(max(0 , i - limit ) ) lowercase = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(lowercase_ ) lowercase = F"""{_stra[0:_stra.index(lowercase_ )]} {_stra[_stra.index(lowercase_ ) + 1:]}""" return "".join(lowercase_ ) # matching characters lowercase = get_matched_characters(lowercase_ , lowercase_ ) lowercase = get_matched_characters(lowercase_ , lowercase_ ) lowercase = len(lowercase_ ) # transposition lowercase = ( len([(ca, ca) for ca, ca in zip(lowercase_ , lowercase_ ) if ca != ca] ) // 2 ) if not match_count: lowercase = 0.0 else: lowercase = ( 1 / 3 * ( match_count / len(lowercase_ ) + match_count / len(lowercase_ ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters lowercase = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('''hello''', '''world'''))
653
'''simple docstring''' def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ): def update_area_of_max_square(lowercase_ : int , lowercase_ : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 lowercase = update_area_of_max_square(lowercase_ , col + 1 ) lowercase = update_area_of_max_square(row + 1 , col + 1 ) lowercase = update_area_of_max_square(row + 1 , lowercase_ ) if mat[row][col]: lowercase = 1 + min([right, diagonal, down] ) lowercase = max(largest_square_area[0] , lowercase_ ) return sub_problem_sol else: return 0 lowercase = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ): def update_area_of_max_square_using_dp_array( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] lowercase = update_area_of_max_square_using_dp_array(lowercase_ , col + 1 , lowercase_ ) lowercase = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , lowercase_ ) lowercase = update_area_of_max_square_using_dp_array(row + 1 , lowercase_ , lowercase_ ) if mat[row][col]: lowercase = 1 + min([right, diagonal, down] ) lowercase = max(largest_square_area[0] , lowercase_ ) lowercase = sub_problem_sol return sub_problem_sol else: return 0 lowercase = [0] lowercase = [[-1] * cols for _ in range(lowercase_ )] update_area_of_max_square_using_dp_array(0 , 0 , lowercase_ ) return largest_square_area[0] def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ): lowercase = [[0] * (cols + 1) for _ in range(rows + 1 )] lowercase = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowercase = dp_array[row][col + 1] lowercase = dp_array[row + 1][col + 1] lowercase = dp_array[row + 1][col] if mat[row][col] == 1: lowercase = 1 + min(lowercase_ , lowercase_ , lowercase_ ) lowercase = max(dp_array[row][col] , lowercase_ ) else: lowercase = 0 return largest_square_area def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ): lowercase = [0] * (cols + 1) lowercase = [0] * (cols + 1) lowercase = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowercase = current_row[col + 1] lowercase = next_row[col + 1] lowercase = next_row[col] if mat[row][col] == 1: lowercase = 1 + min(lowercase_ , lowercase_ , lowercase_ ) lowercase = max(current_row[col] , lowercase_ ) else: lowercase = 0 lowercase = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
653
1
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu _A : str = False class a__ ( unittest.TestCase ): def __magic_name__ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __magic_name__ ( self ): return 12 @property def __magic_name__ ( self ): return 12 @property def __magic_name__ ( self ): return 32 @property def __magic_name__ ( self ): torch.manual_seed(0 ) lowercase : str = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def __magic_name__ ( self ): lowercase : List[str] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) return tokenizer @property def __magic_name__ ( self ): torch.manual_seed(0 ) lowercase : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(_a ) @property def __magic_name__ ( self ): torch.manual_seed(0 ) lowercase : Optional[Any] = 12 lowercase : Optional[int] = 12 lowercase : str = { "attention_bias": True, "cross_attention_dim": 32, "attention_head_dim": height * width, "num_attention_heads": 1, "num_vector_embeds": self.num_embed, "num_embeds_ada_norm": self.num_embeds_ada_norm, "norm_num_groups": 32, "sample_size": width, "activation_fn": "geglu-approximate", } lowercase : Tuple = TransformeraDModel(**_a ) return model def __magic_name__ ( self ): lowercase : Tuple = "cpu" lowercase : Any = self.dummy_vqvae lowercase : Optional[int] = self.dummy_text_encoder lowercase : int = self.dummy_tokenizer lowercase : Dict = self.dummy_transformer lowercase : Tuple = VQDiffusionScheduler(self.num_embed ) lowercase : Optional[int] = LearnedClassifierFreeSamplingEmbeddings(learnable=_a ) lowercase : List[Any] = VQDiffusionPipeline( vqvae=_a , text_encoder=_a , tokenizer=_a , transformer=_a , scheduler=_a , learned_classifier_free_sampling_embeddings=_a , ) lowercase : Union[str, Any] = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) lowercase : Union[str, Any] = "teddy bear playing in the pool" lowercase : str = torch.Generator(device=_a ).manual_seed(0 ) lowercase : List[str] = pipe([prompt] , generator=_a , num_inference_steps=2 , output_type="np" ) lowercase : str = output.images lowercase : Optional[Any] = torch.Generator(device=_a ).manual_seed(0 ) lowercase : List[Any] = pipe( [prompt] , generator=_a , output_type="np" , return_dict=_a , num_inference_steps=2 )[0] lowercase : Dict = image[0, -3:, -3:, -1] lowercase : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) lowercase : Any = np.array([0.6_5_5_1, 0.6_1_6_8, 0.5_0_0_8, 0.5_6_7_6, 0.5_6_5_9, 0.4_2_9_5, 0.6_0_7_3, 0.5_5_9_9, 0.4_9_9_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def __magic_name__ ( self ): lowercase : Optional[Any] = "cpu" lowercase : Optional[Any] = self.dummy_vqvae lowercase : Optional[int] = self.dummy_text_encoder lowercase : int = self.dummy_tokenizer lowercase : int = self.dummy_transformer lowercase : Dict = VQDiffusionScheduler(self.num_embed ) lowercase : Optional[Any] = LearnedClassifierFreeSamplingEmbeddings( learnable=_a , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) lowercase : Tuple = VQDiffusionPipeline( vqvae=_a , text_encoder=_a , tokenizer=_a , transformer=_a , scheduler=_a , learned_classifier_free_sampling_embeddings=_a , ) lowercase : Union[str, Any] = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) lowercase : Any = "teddy bear playing in the pool" lowercase : Dict = torch.Generator(device=_a ).manual_seed(0 ) lowercase : Dict = pipe([prompt] , generator=_a , num_inference_steps=2 , output_type="np" ) lowercase : Tuple = output.images lowercase : Dict = torch.Generator(device=_a ).manual_seed(0 ) lowercase : Union[str, Any] = pipe( [prompt] , generator=_a , output_type="np" , return_dict=_a , num_inference_steps=2 )[0] lowercase : Optional[int] = image[0, -3:, -3:, -1] lowercase : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) lowercase : List[str] = np.array([0.6_6_9_3, 0.6_0_7_5, 0.4_9_5_9, 0.5_7_0_1, 0.5_5_8_3, 0.4_3_3_3, 0.6_1_7_1, 0.5_6_8_4, 0.4_9_8_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class a__ ( unittest.TestCase ): def __magic_name__ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ ( self ): lowercase : Any = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy" ) lowercase : Union[str, Any] = VQDiffusionPipeline.from_pretrained("microsoft/vq-diffusion-ithq" ) lowercase : Any = pipeline.to(_a ) pipeline.set_progress_bar_config(disable=_a ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though lowercase : int = torch.Generator(device=_a ).manual_seed(0 ) lowercase : Union[str, Any] = pipeline( "teddy bear playing in the pool" , num_images_per_prompt=1 , generator=_a , output_type="np" , ) lowercase : int = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
361
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class a__ ( unittest.TestCase ): @slow def __magic_name__ ( self ): lowercase : Tuple = AutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" , return_dict=_a ).to(_a ) lowercase : Union[str, Any] = AutoTokenizer.from_pretrained("google/mt5-small" ) lowercase : Optional[Any] = tokenizer("Hello there" , return_tensors="pt" ).input_ids lowercase : Union[str, Any] = tokenizer("Hi I am" , return_tensors="pt" ).input_ids lowercase : int = model(input_ids.to(_a ) , labels=labels.to(_a ) ).loss lowercase : str = -(labels.shape[-1] * loss.item()) lowercase : List[str] = -8_4.9_1_2_7 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
361
1
'''simple docstring''' import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 __lowerCAmelCase = get_tests_dir('fixtures/dummy-config.json') class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : Any ) -> Any: a_ : Any = 0 def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec('''transformers.models.auto''' ) ) def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: a_ : Optional[int] = AutoConfig.from_pretrained('''bert-base-uncased''' ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : int ) -> Any: a_ : str = AutoConfig.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: a_ : Optional[Any] = AutoConfig.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: a_ : str = AutoConfig.for_model('''roberta''' ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : str ) -> Dict: with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. a_ : Union[str, Any] = os.path.join(__SCREAMING_SNAKE_CASE , '''fake-roberta''' ) os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) with open(os.path.join(__SCREAMING_SNAKE_CASE , '''config.json''' ) , '''w''' ) as f: f.write(json.dumps({} ) ) a_ : List[str] = AutoConfig.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertEqual(type(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : int ) -> Any: try: AutoConfig.register('''custom''' , __SCREAMING_SNAKE_CASE ) # Wrong model type will raise an error with self.assertRaises(__SCREAMING_SNAKE_CASE ): AutoConfig.register('''model''' , __SCREAMING_SNAKE_CASE ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__SCREAMING_SNAKE_CASE ): AutoConfig.register('''bert''' , __SCREAMING_SNAKE_CASE ) # Now that the config is registered, it can be used as any other config with the auto-API a_ : str = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Any = AutoConfig.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: with self.assertRaisesRegex( __SCREAMING_SNAKE_CASE , '''bert-base is not a local folder and is not a valid model identifier''' ): a_ : List[Any] = AutoConfig.from_pretrained('''bert-base''' ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: with self.assertRaisesRegex( __SCREAMING_SNAKE_CASE , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): a_ : Optional[int] = AutoConfig.from_pretrained(__SCREAMING_SNAKE_CASE , revision='''aaaaaa''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: with self.assertRaisesRegex( __SCREAMING_SNAKE_CASE , '''hf-internal-testing/no-config-test-repo does not appear to have a file named config.json.''' , ): a_ : Tuple = AutoConfig.from_pretrained('''hf-internal-testing/no-config-test-repo''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__SCREAMING_SNAKE_CASE ): a_ : Union[str, Any] = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(__SCREAMING_SNAKE_CASE ): a_ : Tuple = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=__SCREAMING_SNAKE_CASE ) a_ : List[Any] = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=__SCREAMING_SNAKE_CASE ) self.assertEqual(config.__class__.__name__ , '''NewModelConfig''' ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Dict = AutoConfig.from_pretrained(__SCREAMING_SNAKE_CASE , trust_remote_code=__SCREAMING_SNAKE_CASE ) self.assertEqual(reloaded_config.__class__.__name__ , '''NewModelConfig''' ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = "new-model" try: AutoConfig.register('''new-model''' , __SCREAMING_SNAKE_CASE ) # If remote code is not set, the default is to use local a_ : Optional[Any] = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' ) self.assertEqual(config.__class__.__name__ , '''NewModelConfigLocal''' ) # If remote code is disabled, we load the local one. a_ : str = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=__SCREAMING_SNAKE_CASE ) self.assertEqual(config.__class__.__name__ , '''NewModelConfigLocal''' ) # If remote is enabled, we load from the Hub a_ : Optional[Any] = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=__SCREAMING_SNAKE_CASE ) self.assertEqual(config.__class__.__name__ , '''NewModelConfig''' ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
666
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE_ ) class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) snake_case__ = Features({"image": Image()} ) snake_case__ = Features({"labels": ClassLabel} ) snake_case__ = "image" snake_case__ = "labels" def SCREAMING_SNAKE_CASE ( self : List[str] , __SCREAMING_SNAKE_CASE : List[Any] ) -> Any: if self.label_column not in features: raise ValueError(f'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column] , __SCREAMING_SNAKE_CASE ): raise ValueError(f'Column {self.label_column} is not a ClassLabel.' ) a_ : Optional[int] = copy.deepcopy(self ) a_ : int = self.label_schema.copy() a_ : Tuple = features[self.label_column] a_ : str = label_schema return task_template @property def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict[str, str]: return { self.image_column: "image", self.label_column: "labels", }
666
1
import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def lowerCAmelCase_ ( __a ) -> int: """simple docstring""" lowerCamelCase__: Any =os.path.join(args.tf_model_dir , "parameters.json" ) lowerCamelCase__: Any =json.loads(open(__a ).read() ) if not params: raise ValueError( F"""It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.""" ) if not args.output.endswith(".pt" ): lowerCamelCase__: Union[str, Any] =args.output + ".pt" lowerCamelCase__: str =OrderedDict() with tf.device("/CPU:0" ): lowerCamelCase__: Dict =tf.train.load_checkpoint(args.tf_model_dir ) lowerCamelCase__: Optional[int] =reader.get_variable_to_shape_map() for key_name in shapes.keys(): lowerCamelCase__: Union[str, Any] =reader.get_tensor(__a ).astype(np.floataa ) if key_name.endswith("/adam_m" ) or key_name.endswith("/adam_v" ): continue if key_name.startswith("pasts/" ): if key_name.startswith("pasts/mlp" ): lowerCamelCase__: str =int(key_name[9] ) elif key_name.startswith("pasts/out" ): lowerCamelCase__: int =8 lowerCamelCase__: List[Any] ="model.sqout.%d.weight" % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time lowerCamelCase__: Tuple =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCamelCase__: Dict =torch.tensor(__a ) elif key_name.startswith("model/moe" ): lowerCamelCase__: Tuple =int(key_name[9:].split("/" )[0] ) if key_name.endswith("/switch_gating/kernel" ): lowerCamelCase__: Optional[Any] ="model.blocks.%d.feed_forward.mlp.router.classifier.weight" % player lowerCamelCase__: Dict =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCamelCase__: List[Any] =torch.tensor(__a ) elif key_name.endswith("/softmlp/kernel" ): lowerCamelCase__: List[Any] ="model.blocks.%d.feed_forward.soft_bypass_mlp.weight" % player lowerCamelCase__: Any =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCamelCase__: Dict =torch.tensor(__a ) elif key_name.endswith("/wo/kernel" ) or key_name.endswith("/wi/kernel" ): lowerCamelCase__: int =key_name[-9:-7] for i in range(16 ): lowerCamelCase__: Union[str, Any] ="model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight" % (player, i, nlayer) lowerCamelCase__: List[Any] =( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided lowerCamelCase__: Tuple =torch.tensor(__a ) elif key_name.startswith("model/mlp" ): lowerCamelCase__: str =int(key_name[9:].split("/" )[0] ) if key_name.endswith("/p1/kernel" ): lowerCamelCase__: Optional[int] ="model.blocks.%d.feed_forward.mlp.wi.weight" % player lowerCamelCase__: Optional[Any] =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCamelCase__: int =torch.tensor(__a ) elif key_name.endswith("/p1/bias" ): lowerCamelCase__: List[Any] ="model.blocks.%d.feed_forward.mlp.wi.bias" % player lowerCamelCase__: Dict =vnp.copy() # same because it is one dimensional lowerCamelCase__: Optional[Any] =torch.tensor(__a ) elif key_name.endswith("/p2/kernel" ): lowerCamelCase__: Dict ="model.blocks.%d.feed_forward.mlp.wo.weight" % player lowerCamelCase__: Any =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCamelCase__: str =torch.tensor(__a ) elif key_name.endswith("/p2/bias" ): lowerCamelCase__: Any ="model.blocks.%d.feed_forward.mlp.wo.bias" % player lowerCamelCase__: int =vnp.copy() # same because it is one dimensional lowerCamelCase__: List[Any] =torch.tensor(__a ) elif key_name.startswith("model/ln" ): lowerCamelCase__: Dict =int(key_name[8:].split("/" )[0] ) if key_name.endswith("/b" ): lowerCamelCase__: Tuple ="model.blocks.%d.feed_forward.norm.bias" % player lowerCamelCase__: str =vnp.copy() # same because it is one dimensional lowerCamelCase__: List[Any] =torch.tensor(__a ) elif key_name.endswith("/g" ): lowerCamelCase__: List[Any] ="model.blocks.%d.feed_forward.norm.weight" % player lowerCamelCase__: Optional[Any] =vnp.copy() # same because it is one dimensional lowerCamelCase__: Optional[int] =torch.tensor(__a ) elif key_name.startswith("model/att" ): lowerCamelCase__: Tuple =int(key_name[9:].split("/" )[0] ) if key_name.endswith("/qkv/kernel" ): lowerCamelCase__: Optional[int] =vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum lowerCamelCase__: str =state[:, 0, :, :] lowerCamelCase__: List[str] =state[:, 1, :, :] lowerCamelCase__: Optional[int] =state[:, 2, :, :] lowerCamelCase__: Dict =( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowerCamelCase__: List[str] =( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowerCamelCase__: str =( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowerCamelCase__: Optional[int] ="model.blocks.%d.self_attn.self_attn.q_proj.weight" % player lowerCamelCase__: List[str] =torch.tensor(__a ) lowerCamelCase__: int ="model.blocks.%d.self_attn.self_attn.k_proj.weight" % player lowerCamelCase__: Optional[int] =torch.tensor(__a ) lowerCamelCase__: List[str] ="model.blocks.%d.self_attn.self_attn.v_proj.weight" % player lowerCamelCase__: List[str] =torch.tensor(__a ) elif key_name.endswith("/o/kernel" ): lowerCamelCase__: List[Any] ="model.blocks.%d.self_attn.self_attn.out_proj.weight" % player lowerCamelCase__: List[str] =( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix lowerCamelCase__: Union[str, Any] =torch.tensor(__a ) elif key_name.startswith("model/an" ): lowerCamelCase__: Any =int(key_name[8:].split("/" )[0] ) if key_name.endswith("/b" ): lowerCamelCase__: Optional[int] ="model.blocks.%d.self_attn.norm.bias" % player lowerCamelCase__: Tuple =vnp.copy() # same because it is one dimensional lowerCamelCase__: Any =torch.tensor(__a ) elif key_name.endswith("/g" ): lowerCamelCase__: Optional[Any] ="model.blocks.%d.self_attn.norm.weight" % player lowerCamelCase__: Tuple =vnp.copy() # same because it is one dimensional lowerCamelCase__: Dict =torch.tensor(__a ) elif ( key_name.startswith("model/wte" ) or key_name.startswith("model/wpe" ) or key_name.startswith("model/ete" ) ): lowerCamelCase__: int ={"wte": "embed_tokens", "wpe": "position_embeddings", "ete": "extra_position_embeddings"}[ key_name[-3:] ] lowerCamelCase__: int ="model.%s.weight" % nlayer lowerCamelCase__: Optional[Any] =vnp.copy() # same in embedded lowerCamelCase__: str =torch.tensor(__a ) if key_name.startswith("model/wte" ): lowerCamelCase__: str ="lm_head.weight" lowerCamelCase__: Optional[Any] =vnp.copy() # same in embedded lowerCamelCase__: List[Any] =torch.tensor(__a ) elif key_name.startswith("model/wob" ): lowerCamelCase__: int ="final_logits_bias" lowerCamelCase__: Optional[Any] =vnp.copy() # same in embedded lowerCamelCase__: List[Any] =state.reshape((1, -1) ) lowerCamelCase__: Tuple =torch.tensor(__a ) elif key_name == "model/dense/kernel": lowerCamelCase__: List[str] ="model.last_project.weight" lowerCamelCase__: Union[str, Any] =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCamelCase__: Optional[Any] =torch.tensor(__a ) elif key_name == "model/dense_1/bias": lowerCamelCase__: Optional[int] ="model.last_project.bias" lowerCamelCase__: Union[str, Any] =vnp.copy() # same because it is one dimensional lowerCamelCase__: Optional[Any] =torch.tensor(__a ) torch.save(__a , args.output ) if __name__ == "__main__": __A = argparse.ArgumentParser( description="model converter.", formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument("--tf_model_dir", metavar="PATH", type=str, required=True, help="import model") parser.add_argument("--output", metavar="PATH", type=str, required=True, help="output model") __A = parser.parse_args() convert_tf_gptsan_to_pt(args)
59
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _a ( UpperCamelCase__ ): def __init__( self: int , *UpperCamelCase_: str , UpperCamelCase_: List[str]=None , UpperCamelCase_: int=None , **UpperCamelCase_: Optional[Any] ) -> List[str]: """simple docstring""" super().__init__(*UpperCamelCase_ , **UpperCamelCase_ ) lowercase__ = eval_examples lowercase__ = post_process_function def lowerCamelCase_ ( self: List[str] , UpperCamelCase_: Optional[Dataset] = None , UpperCamelCase_: List[Any]=None , UpperCamelCase_: Optional[List[str]] = None , UpperCamelCase_: str = "eval" , **UpperCamelCase_: int , ) -> Dict[str, float]: """simple docstring""" lowercase__ = gen_kwargs.copy() lowercase__ = ( gen_kwargs['''max_length'''] if gen_kwargs.get('''max_length''' ) is not None else self.args.generation_max_length ) lowercase__ = ( gen_kwargs['''num_beams'''] if gen_kwargs.get('''num_beams''' ) is not None else self.args.generation_num_beams ) lowercase__ = gen_kwargs lowercase__ = self.eval_dataset if eval_dataset is None else eval_dataset lowercase__ = self.get_eval_dataloader(UpperCamelCase_ ) lowercase__ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. lowercase__ = self.compute_metrics lowercase__ = None lowercase__ = time.time() lowercase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowercase__ = eval_loop( UpperCamelCase_ , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase_ , metric_key_prefix=UpperCamelCase_ , ) finally: lowercase__ = compute_metrics lowercase__ = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( UpperCamelCase_ , UpperCamelCase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default lowercase__ = self.post_process_function(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = self.compute_metrics(UpperCamelCase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): lowercase__ = metrics.pop(UpperCamelCase_ ) metrics.update(output.metrics ) else: lowercase__ = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(UpperCamelCase_ ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) lowercase__ = self.callback_handler.on_evaluate(self.args , self.state , self.control , UpperCamelCase_ ) return metrics def lowerCamelCase_ ( self: Dict , UpperCamelCase_: Any , UpperCamelCase_: Tuple , UpperCamelCase_: List[str]=None , UpperCamelCase_: str = "test" , **UpperCamelCase_: Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = gen_kwargs.copy() lowercase__ = self.get_test_dataloader(UpperCamelCase_ ) # Temporarily disable metric computation, we will do it in the loop here. lowercase__ = self.compute_metrics lowercase__ = None lowercase__ = time.time() lowercase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowercase__ = eval_loop( UpperCamelCase_ , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase_ , metric_key_prefix=UpperCamelCase_ , ) finally: lowercase__ = compute_metrics lowercase__ = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( UpperCamelCase_ , UpperCamelCase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output lowercase__ = self.post_process_function(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , '''predict''' ) lowercase__ = self.compute_metrics(UpperCamelCase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): lowercase__ = metrics.pop(UpperCamelCase_ ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=UpperCamelCase_ )
43
0
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> str: """simple docstring""" __UpperCamelCase = len(a_ ) for i in range(length - 1 ): __UpperCamelCase = i for k in range(i + 1 , a_ ): if collection[k] < collection[least]: __UpperCamelCase = k if least != i: __UpperCamelCase = (collection[i], collection[least]) return collection if __name__ == "__main__": a_ = input("Enter numbers separated by a comma:\n").strip() a_ = [int(item) for item in user_input.split(",")] print(selection_sort(unsorted))
705
from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { "RWKV/rwkv-4-169m-pile": "https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json", "RWKV/rwkv-4-430m-pile": "https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json", "RWKV/rwkv-4-1b5-pile": "https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json", "RWKV/rwkv-4-3b-pile": "https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json", "RWKV/rwkv-4-7b-pile": "https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json", "RWKV/rwkv-4-14b-pile": "https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json", "RWKV/rwkv-raven-1b5": "https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json", "RWKV/rwkv-raven-3b": "https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json", "RWKV/rwkv-raven-7b": "https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json", "RWKV/rwkv-raven-14b": "https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json", } class _lowerCamelCase ( _SCREAMING_SNAKE_CASE ): """simple docstring""" lowerCAmelCase__ : Union[str, Any] = "rwkv" lowerCAmelCase__ : Union[str, Any] = {"max_position_embeddings": "context_length"} def __init__( self : Optional[int] , snake_case : Optional[Any]=50277 , snake_case : str=1024 , snake_case : str=4096 , snake_case : Optional[Any]=32 , snake_case : Union[str, Any]=None , snake_case : Optional[Any]=None , snake_case : Optional[Any]=1E-5 , snake_case : List[str]=0 , snake_case : Optional[Any]=0 , snake_case : Union[str, Any]=6 , snake_case : Tuple=False , snake_case : Any=True , **snake_case : List[str] , ): __UpperCamelCase = vocab_size __UpperCamelCase = context_length __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = attention_hidden_size if attention_hidden_size is not None else hidden_size __UpperCamelCase = intermediate_size if intermediate_size is not None else 4 * hidden_size __UpperCamelCase = layer_norm_epsilon __UpperCamelCase = rescale_every __UpperCamelCase = use_cache __UpperCamelCase = bos_token_id __UpperCamelCase = eos_token_id super().__init__( tie_word_embeddings=snake_case , bos_token_id=snake_case , eos_token_id=snake_case , **snake_case )
375
0